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Octave DOIN et Fils, éditeurs, 8, place de 1'0déon, Paris.
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O OppOse assey 1.-::-]|-1:1i1'|'-'_ dans le :ltb!lja-qilll' e ]:l meca-
nique appliquée, 'homme de la théorie a I"homme de la
pratique. Le premier, enclin aux spéculations abstraites,
est tenu pour prélérer aux problemes qu'ofire la réalité ceux

1 qui se prétent plus aisément anx solutions élégantes et, par
suile, pour étre disposé a négliger, en dépit de leur impor-
lance Etntri|1-'i't|t|:- telles circonstances qui seraient de nature
a entraver le JL'll de I'instrument .Llh||\lu]|n"‘. le second, au
conlraire, uniguement soucieux des données de 'empirisme,
pour regarder toule Lhiéorie scientiligque comme un luxe
511'['u.*rt'111 dont il vaul mieux se passer.
Ce sont la des tendances exlrémes contre lesquelles il
convient de se meltre en garde. 8l est vrai que certains

*
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esprits, séduils par 'imposante beauté de la science abstraite,
ont quelque répugnance a se plier aux exigences de la réa-
lité, généralement difficiles & conecilier avec une aussi belle
harmonie de forme, que d'aulres, en revanche, par crainle
des complications gquentraine & leurs yenx lappareil ana-
|.1. Ii:|l.u-, — peut-clre aussi, parlois, en raison de leur ma niue
d'habitude & le manier, — tendent 4 méconnaitre les émi-
nents services qu'on en peul altendre, il n'en reste pas
moins désirable, pour le plus grand bien des applications,
de voir réaliser 'union la plus intime de la théorie et de la
[‘JI:"ﬂLiiiI]f.‘!, de la théorie qni coordonne, H}'nthﬁ{iss;. reduit en
formules simples et parlantes les faits révélés par Pexpé-
rience, et de la pratique qqui doil, tout d’abord, les en deéga-
ger. La vérité est que 'une ne sauraitl se passer de Faulre,
que toules deux doivenl progresser parallélement. Ce n'est
pas d’hier que Bacon I'a dit : « Si les expériences ne sonlt
pas dirigées par la Lhéorie, elles sont aveugles ; si la théorie
n'est pas soutenue par U'expérience, elle devient incertaine
el trompeuse. »

Développant cetle pensée, un homme qui, dans un do-
maine important de la Mécanique appliquée, a su réaliser,
de la facon la plus heurense, cetle union si désirable, s'est
exprimé comme suit ! : «... La théorie n'a point la préten-
tion de se substituer & l'expérvience ni de se poser en flace
d'elle en adversaire dédaigneux. C'est I'union de ces deux
optrations de 'esprit dans une régle générale pour la
recherche de la vérité qui constitue essence de la méthode :
la théorie est le guide qqu'on prend au départ, qu'on inter-
roge sans cesse le long de la route, qui instruit toujours par
ses réponses, qui indique le chemin le plus str et qui
découvre horizon le plus vaste. Elle saura réunir dans une
méme explication générale les fails les plus divers, conduire

! Commandant P. CHARRONNIER, Histarigus de la Balistique extévieurve
d la commisgion de Gdavre, p. B.
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a des formules d'un type rationnel et 4 des caleuls d'une
approximation sire.

« La science aura plus d’aundace parce qu’elle aura une
base plus large et plus solidement établie. Les rvésultals
experimentanx, au lieu de faive nombre, viendront & chague
instant contribuer &4 asseoir la théorie, el ce n'est plus en
eux-mémes que les faits seront & considérer, mais suivant
leur place rationnelle dans la secience. La théorie saura
mettre expérimentateur en garde contre les anomalies des
expériences, et 'expérience, le théoricien contre les dédue-
tions trop audacieuses de la théorie. »

Ces quelques réflexions pourraient servir d'épigraphe a
la premiére moitié de la présente Bibliotheque consacrée
a la Mecanoue arprniovie. Elles définissent I'esprit général
dans lequel sont congus ses volumes : applicalion rationnelle
de la théorie, poussée aussi loin que le comporte Uétal actuel
de la setence, aux Jrrr'tjlrrlrr".r.'ir'.ﬁ tels rJIf[‘r-Jl.x' .\:'r:el'f'r'r-'.u.f r:ﬂ,fiﬂ.-'.ffj-.r-n.w.'.-!
darns la Jrirr'ru"fnlfl.'r', BOIS rien s:r-*:‘fjr'r'a' les ir.'rjrjr:.l*e}_'rr}:#.\: nécessiles
de celle-ci a la plus grande facilité des déductions de celle-la.

Il ne s'agit pas, dans Papplication scientifique ainsi com-
prise, de torturer les faits pour les forcer &t rentrer, vaille
que vaille, dans le cadre de théories, plus en moins sédui-
santes, conc¢ues a priori, mais de plier la théorie & toules
les exigences du fait; il ne s'agit pas de lorger des exemples
destinés & illustrer et a éclairer 'exposé de telle ou telle
théorie (comme cela se rencontre dans les Traités de méca-
niue rationnelle ot une telle maniére de faire est, vu le
but poursuivi, parfaitement légitime), mais de tirer de la
théorie toutes les ressources ¢u’elle peut oflrir pour sur-
monter les difficultés qui résultent de la nature méme des
choses,

Quand les problémes sont ainsi posés, ils ne se prétent
céndralement pas & des solutions aboutissant directement
des formuales simples el L’*lr?gﬂnlv:-a; ils forcent & suivre la
voie plus pénible des approximaltions successives : mais défi-
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nir par une premidre approximation l'allure générale d'un
phénomdéne, puis, par un efforl sans cesse renouvelé, arriver
a le server de plus en plns prés, en se rendant comple, a
chaque instant, de I'écartement des limiles entre lesquelles
on esl parvenu & le renflermer, c'est bel et bien faire cuvre
de seience ; et ¢'est pourquoi, dans une Encyclopédie qui,
comme son ltitre I'indique, est, avanl tont, .;:erﬁn.i{ﬁr]r;nJ, la
Mécanique appliquée a sa place marguée an méme titre que
la Mécanique rationnelle, .

La seconde moiti¢ de la Bibliothtque est réservée aux
divers arts Im:hni{llwﬁ dont 'ensemble constitue ce qu’on
est ordinairement convenu E]'uplu-i{'r le Gexie tanl civil (que
militaire ! et maritime.

Ici, de par la force méme des choses, I'exposé des prin-
r."ip{?s s éearte dnvm‘a!ugt: de la forme mathématique pour se
rapprocher de celle qui est usitée dans le domaine des
sciences descriplives. Cela n'empéche d'aillenrs quiil n'y
ait encore, dans la facon de classer logiquement les faits,
d'en faire saillir les lignes principales, surtoul d'en dégager
des i{lf'{*.s_gq"m‘r.'llc.a'. |m,~"-.:-:ihi|it{r d’avoir recours i nne méthode
vraiment :‘.~'Civr1lifi1|1|4'~_

Telle est 'impression qui se dégagera de l'ensemble de
cette Bibliotheque, dont les volumes ont été confiés & des
spécialistes hautement autorisés, personnellement adonnés
4 des travaux rentrant dang leurs cadres respectifs et, par
cela méme, pour la l}luiml‘L du moins, ordinairement
détournés du labeur de 'éerivain dont ils ont oceasion-
nellement accepté la charge en vue de 'envre de mise au
point dont les condilions générales viennentl d'étre indi-

quées.
Il convient d'ajouter que le programme de cette Biblio-
théque, — dont la liste ci-dessous fail connailtre une pre-

! Le mot étant pris dans sa plus large acceptioff et s'élendant tout anssi bien
& la technique de I'Argillerie qu'i I'ensemble de celles qui sont plus particna-
ligrement du ressort de I'arme a laquelle on applique le nom de Gdnde,
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miere ébauche, r-'-ll-'ic.'n'11li|.lli’ de revision et de compléments
ulterieurs, — solendra 4 toutes les |]i||'|;l_“~' 1|1|; ln"n'v.'l"nl
intéresser ingénienr mécanicien on constructeur, a 'excep-
tion de celles qui ont trait soit avx applications de I'Elec-
tricité, soil a la pratique de la construction propremenl
dite, rattachées, dans celte I‘:Hl'_‘.II'[H-EHJ'tl-II', i d'autres Biblio-

1|:;'111H_1n. (20 el .'"r.";'r_].

Les volumes seront publids  dans e fornat in-18 jésus cartonnd ; ils forme-
ront chacun 900 poges environ avec ou sang figures dens le foxte, Le prix
margue de chacun d'enx, quel gue soit le nombre de pages, est fixd & & vones,

Chague yolume se vendrn separeément.

Yoir, a la fin du volume, la notice sur I'ENCYCLOPEDIE
SCIENTIFIQUE, pour les conditions générales de publication,
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TABLE DES VOLUMES
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Les volumes publiés sont indigués par un °

. Statique graphigue.

. Résistance des matériaux, par A. Messacen, Ingénieur cn

Chef des Ponts et Chaussdées, Professeur 4 'Ecole des
Ponts et Chaussces.:

. Stabilité des constructions, par A, Auvwic ¢t G. Pieravn,

Ingénieurs des Ponls el Chaussdées,
el

. Cinématique appliquée, Théorie des mécanismes, par

15 Buvente, ahicien capitaine d'arlillevie.

. Dynamigue appliquée, par L. Leconsv, Ingénieur en chef

des Mines, Professeur 4 'Ecole polytechnique.

i, Régularisation du mouvement.
. Chronométrie, par J. Axoprane, Frofesscur a la Facultd des

Sciecnces de Besancon,

. Hydraulique générale, 2 volumes, par A. Boviancen, Pro-

fesseur a la Facultd des Sciences de Lille.

. Pneumatique générale.

Machines hydrauliques.

Pompes et ventilateurs.

Air comprimeé.

Moteurs thermiques, par E. Jovover, Ingénicur au corps
des Mines,

Machines a vapeur, par F. Conmenr, chef d'escadron d'ar-
tillerie.

Machines & combustion interne, par A. Wirz, Professeur
4 la Faculté libre des Sciences de Lille, Correspondait de
I"Institut.
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Turbines 4 vapeur, par le commandant F. Cornrzn.

Chaudiéres et condenseurs, par le commandant F, Conmen.

a. Machines-outils.
. Machinerie de I'industrie du tabac et des matiéres simi-

laires, par E. Brror, Directeur des tabacs au Havre.
19. Appareils de levage, par G. EspiTaLLien, Lieutenant-colonel

du génie lerrite yrial.

20, Cables télédynamiques et transporteurs aériens, par A. Gis-
cnann, Lieutenant-colonel du Génie territorial.
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. Mécanique des explosifs, par E. Joveurr.
a. Balistique extérieure rationnelle. Probléme principal,

par P. Cusnpoxsien, Chef d'escadron d'Artillerie colo-

niale.

. Balistique extérieure rationnelle. Problémes secon-

daires, par le Commandant CranpoNNIER.

CHARPONNIER.

. Balistique extérieure expérimentale, par le Commandant

d. Balistique intérieure, par le Commandant CnanpoNxien,

d'Artillerie.

. Tir des armes portatives, par H. Baraintaen, Capitaine

Résistance et construction des bouches a feu, par L. Jacon,
Colonel d'Artillerie coloniale, Directeur du Laboraloire

central de la Marine.
. Mécanique des affiits, par J. Cuaruiar, Capilaine d'Artilleria.
. Armes automatiques, par L.

d"Artillerie.

Cuavcitar, Chel d'escadron

Artillerie de campagne, par J. Pavogue, Lieutenant - Colo-
nel d’Artillerie, Professeur 4 1'Ecole supérieure de guerre.

Colonel Jacon.

a. Artillerie navale. Les canons et les projectiles, par le

b. Artillerie navale. Les affiits, les poudres, les tourelles

et le tir, par le Colonel Jacos.

. Théorie du navire, par M. Bovnneuie, Ingénieur de la Ma-

rine, Professenr 4 'Ecole du Génie maritime.

4. Constructions navales. Coque, par J.
principal de la Marine,

b. Gonstructions navales. Accessoires, par J. Rovae.
. Machines marines, par P. Drosse, Ingénieur de la Marine.
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40. Chandiéres marines, par P. Dnosse.

31. Torpilles.

32, Navigation sous-marine, par C. Rapicven, Ingénicur de la
Marine.

33. Navigation aérienne, par R. Sonrav, Ingénieur, ancien
éléve de I'Ecole polytechnigue.

*34. Technique du ballon, par G. EsriTauiien.

35 . Ponts en maconnerie, par A. Avnic, Ingénieur des Panls
el Chaussdes,

*35 b. Ponts métalliques. Caleuls, par G. Pieeavn, Ingénieur des
Ponts et Chaussdées,

35 ¢. Ponts métalligues. Construction, par G. Piceaun.

35 . Ponts suspendus et Ponts a transbordeur, par (. Luine-
kucEL Le Cocg, Ingénieur de la Marine, Ingénieur de la mai-
son F. Anwomy, et G. Apwooaw, Inginicur constructeor,

a6, Infrastructure des routes et chemins de fer.
37. Chemins de fer. Superstructure.

*44. Locomotives & vapenr, par J. Napar, Ingénieur en chef des
Mineg, Adjoint & 'Ingénicur en chef du matériel des che-
mins de fer de 1'ELat.

30 a, Chemins de fer. Matériel de transport. Voitures a voya-
geurs, par E. Branp, Ingénicur principal 4 la Cie.de 1"Est.

40 b, Wagons 4 marchandises, par . Bianp.

30 c¢. Freinage du matériel de chemin de fer, par P. Gossunez,
Ingénieur au service du matériel roulant de la (2# de 1'Est.

40. Chemins de fer. Exploitation technique.

41. Chemins de fer d'intérét local.

42. Chemins de fer funiculaires et & crémaillére.

43, Tramways urbains.

i. Automobiles, par k. Bonscuneck, Capitaine du Génie,
45. Bicyclettes et motocyclettes.

46. Navigation intérieure, Riviéres et Canaux.

i7. Fleuves & marées et estuaires, par L.-L. Gooanp, Ingénieur
en chef des Ponts el Chausstes.

4%, Travaux maritimes,
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*i9. Phares et signaux maritimes, par C, Biming, Ingénieur en
chef des Ponts el Chaussiées.

50. Hydraulique urbaine et agricole.

51 a. Mines. Méthodes d'exploitation, par L. Cnussann, Ingé-
nieur au corps des Mines, Professeur i I'Tcole des Mines
de Saint-Elienne.

51 b, Mines. Grisou, Explosions, Aérage, par L. Crrssamno.
51 c. Mines. Travaux au rocher et Services généraux.

52, Ponts improvisés. Ponts militaires et ponts coloniaux, par
G. Esprravuien el T, Duorano, Capitaine du Génie,

53 a. Fortification cuirassée, par L. ne Moxpisin, Liculenant-
Colonel du Génie, Professeur & l'Ecole supirieure de
Guarre.

53 b. Technique des cuirassements et bétonnage des places
fortes, par (G. Esriravuien,

NOTA. La collaboration des aunteurs appartenant anx armeess de terre et
P AL

de mer, ou & certaines administrations de 'Elat, ne sara définitivement acquise

gue movennant 'appeobation émanant du ministére competent.,
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PUHLIEE S0US LA DIREOTION
du D* ToULOUSE , Directeur de Laboratolre & I'Eeole des Hautes Eludes,

Secrdétaire géndral @ H. PIERDN , Agrégé de U'Université

BIBLIOTHEQUE DE MECANIQUE APPLIQUEE ET GENIE
Directeur : M. D'OCAGNE

Imgénieur en chef deg Ponts et Chaussées, Professeur & 'Ecole des Ponts el Chanssees
Répétitenr & I'Ecale polytechnigue,

HYDRAULIQUE GENERALE

p -2
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HYDRAULIQUE GENERALE

PAR

A. BOULANGER
AXCIEN BELEVE DE L'ECOLE POLYTECHXNIQUE

I'NOFESSEUNM-ADJIOINT DE MECA NITQUE

A LA F A U l.T]:I- DES BCOI'ENCES DE LILLEBE

TOME 1
PRINCIPES
ET PROBLEMES FONDAMENTAUX

Avec 11 figures dans le texte

PARIS
OCTAVE DOIN ET FILS, . EDITEURS

8 PLACE DE L ODEON, B

)

1490

Touz droils réserves,

Gatiiuaglion
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Moxsieur J. BOUSSINESQ

ANCIEN PROFTESSEUR A LA [".-'HZI.'I!.T!i': DES SCIENCES DE LILLE

PROFESSETR A La SORPONNE , MEMDRE DE |-1t."1'l'iT[T'I'T

Hommage respectueus.

A, BOULANGER,
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AVANT-PROPOS

4 1l serait bien & désirer gqu'on puat
frouver pour Phyvdranligue des lois et
dea formules comme celles qu'offrent
pour Mastronomie les éerits des New-
ton, des Euler, des Lagrange, des
Laplace... »

(FranNz voN GesTNeER, Theorie der
Woellern . 1504, )

Pour n’élre le reflet d'anean de ses pareils, ee Précis
d'Hydraulique générale est loin d'étre une wuvre originale ;
ce n'esl (u’un compendium  des théories par lesquelles
M. Boussinesq a rendu comple de la plupart des phéno-
menes imfmrtnnlrc présentics naturellement par le mouve-
ment des eaux.

Les recherches de M. Boussinesq ont été 1:1:!!1*.-'.!1i\'i:‘.h'
pendant prés de ¢uarante ans, et, duranlt cetle iu"]'imh',
M. Bazin consacrait ses efforts a I'étade U\[J:"I'i-lm*lllilll:' pri-
cise du mouvemenl de 'eau dans les canaux el tuvaux de
conduaite, de son ¢coulement par les orifices et les déversoirs.
Tanlot lexpérience est venue confirmer des résultats théo-
rigques, tantol la théorme est venue justilier numériguementl
iles résnltais de 'observation,

Iﬂ"_‘; t['q'l\q'l:l.l't [I_l"' ‘i], I%l'l'll‘\:."ii]“‘“"i‘i:l .“ﬂ‘"i' l].i."'.‘"(.‘”li|ll.'?; ‘.I“ll"" ]1":‘1
!nﬂnli.ﬁlliunn' :u'm!i"l:lL'u'lllrl_‘-w~ ol ‘I’]IJ"[‘i.I.'I[[IH[I'H"h . 51 cerlains forment
des notes insérées anx Comples rendus de I'Académie des
seienees, 1l fant dire que ces notes sont an nombre d'une
centaine, et d’autre part plusieurs mémoires, lels que I'E's-
sal sur la théorie des eaur courantes, sont trés volumineux.
L'ensemble des fmh“:'{a!i{.-n.-; de D'éminent hvdraulicien
:'m‘nl_‘-l‘e::d plus de 1800 pages in-4°. Le Directeur de la
Bibliothéque de Mécanique appliquée a cru qu'un résumé
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-:‘-‘-kl: !11El1l{|lt{‘ des résultals obtenus pmumll rendre des ser-
vices, et il a bien voulu nous demander de le ridiger.
M. 1‘;1!1!5:\!11('“', 4 qui nous avons demandé I” -LL:luuauimlr e
faire & son muvre les emprunts nécessaires, nous a accueilli
avec une cordialité dont nons hu sommes tres reconnais-
sant.

Limilé par l'espace, nous avons di parfois. nous borner
a un exposé un peu sommaire : le lecleur qui voudra plus
de rigueur ou de dr'u-hqqu-un-m sur quelques points aura
i se |Epmlt' aux memorres cilés en notes,

Le présent valume f:mllpu*ltcf I'e wposition des |1:|t|m|p{‘5
fuudmm-‘-ntnu\ el U'étnde de [fiwnmm-nrh géneraux (ul

appar Liennenlt au meins aulanl au domaine d{* la pi11lu-.n—
phie nalurelle 1||1 a celul de lart de Uingénieur.

Nous réservons pum' un aulee ‘-[}lllltl{‘ I'examen de ques-
tions I}n-,w'a par la |‘Jmlu||:L el LllJl sonlt, l]{}u! la i}lupilrt
des 11rnh[q*|nr.'- de régimes a singularités (& feoulements par
orifices : écoulements par déversoirs ; mouvements dans des
tuyaux ou canaux l]-li‘-ﬂ ntant des 11:11='1~5r~men'q |)r'l.1~»(I||Es
ou des coudes; coups de bélier d;lu*-» les  canalisations
d'eau, ete...). A ces questions, l'ingénieur exige, vaille que
vaille, une réponse r|'|mn1ll'11n{*. et il doit se contenter le
slus souvent de résultats empiriques; les théories de
M. Ht‘mhhuwk{i justifient la plupart de ces résullats, en redui-
sant Lappel & [{‘hEJL‘lIE‘HLE vreaisemblablement au minimum.

Mais 1l ne faudrail pas se méprendre sur notre intention,
el le titre méme d Hvr!’r'ﬂuhu;rm générale a éLé vjnptn pour
la bien marquer : 1l s'agit dune étude du mouvement de
I'eau « faite au point Lil:L vue d'une science concrite, sou-
cieuse de connailre les véritables phénomeénes naturels,
mais d'ailleurs désintéressée dé toute application immédiate
aux machines mues par lmu ou aux duht':. travaux hydrau-
ligues dont s Du}upunt les i 11151=uwura .

Nous laissons aux personnes ::ompetenl,es le soin d' apprL-
cier, en dehors de la coordination des ma’u-rmur les qnuph-
ﬁcal,mus d'exposition (ue nous avons cru pouvoir introduire.

1 J, Boussingsg, 25, p
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HYDRAULIQUE GENERALE

( PRINCIPES ET PROBLEMES FONDAMENTAUX)

INTRODUCTION

ETABLISSEMENT DES EQUATIONS FONDAMENTALES

CHAPITRE 1

LOIS GENERALES QUI REGISSENT LES PHESSIONS
Bl LES DEFORMATIONS A L INTERIEUR DES MILIEUX

CONTINUS

1. Pression sur un élément plan. — Consi-
dérons, & Uintérieur d'un corps quelcongue (solide on
fluide), 4 un instant donné, un élément matériel limité
par deux I_v].-lrm paralléles extrémement voisins et parune
surface cylindrique normale 4 ces plans: I'épasseur e
de cet élément est lres |u;'-lih‘ par rap-
port aux dimensions des bases s el ', Soil e
M un JH'ﬁ][ll sitné dans 1'élément, Mg la s-gag\
normale 4 la base s vers l'extérieur de
I'élément. Laissons le point M et la direc Fig. 1.
tion Ms invariables, el imaginons gue 'on
fasse décroitre indéfiniment les dimensions de 'élément

-

matériel, en conservant leurs grandeurs relatives et en

Hydraulique gdénérale. 1
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2o INTRODUCTION

enveloppant toujours le point M : on obtiendra ce
(qu'on appelle un élément plan infiniment petit passant
par M, ses faces s et 8 ¢lant orientées respectivement
vers la divection Mg el vers la divection opposée.

La matiére exterieure 4 cet élément E et en con-
tact immdédial avec la lace s exerce sur I'é¢lément E
certaines réactions. Imaginons qu'on transporte ces
réactions équipollemment & elles-mémes . de quantités
mmperceplibles, pour les appliquer au point M, ces
changements n'altérant pas leurs projections. ni méme
d une maniere appréciable lenrs moments par rapporl
& loul axe silué¢ a4 une dislance visible de ce poind
leur résullanle sera 'effort exercé sur 'élément de
surface s orvienté vers Mz, Les diverses parties égales
de s détant placées, saufl des exceptions négligeables,
dans les mémes conditions physiques. les réactions
qu elles supportent seront sensiblement paralléles el ne
pourront différer les unes des autres quinfiniment peu
par rapport & elles-mémes; leur résultante sera donc
proportionnelle a 1'étendue de I'élément plan. Le quo-
tient de cette résultante par aire de P'élément s es
un vectear (P) qui, lorsque les dimensions de 1'élé-
ment matériel tendent vers zéro dans les condilions
susdites. tend vers une limite bien déterminée (p).
généralement finie, quelquefois nulle.  Ce vecleur
limite (p) sera dit la pression par unité de surface,
au point M, sur la face de I'élément plan orientée
vers Ms.

Le vecteur pression (p) ne varie plus, & un instant
donné, qu'avec les coordonnées (i, v, z,) du point M el
avec les cosinus directeurs (z, (. v) de la divection Mz
fixant 'ortentation de 1'élément.

Droits réservés au Cnam et a ses partenaires
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2. Loide variation dela pressionavecl’orien-
tation de l'élément. — Tout d’abord. sur les deny
faces opposées s et & d'un méme élément plan, les
pressions (p) et (p') sont égales et directernent oppo
stes. Cela résulte de ce que la somme g:'*r:-r'm"-lrif[ue
des forces extéricures appliquées a I'élément matériel E
el des forces d'inertie est nulle : comme le poids el
I'inertie de £ sont de l'ordre du volume de 1'élément.
que la somme des réactions latérales est de 'ordre de
grandeur de aire latérale, gque ce volume et cette aire
sont numériquement neégligeables vis-a-vis des aires s
et &, comme enfin-les aires 5 et s sont éeales, on
reconnait immédiatement que (p)—(p') 0.

[l en résulte, par voie de continuité el eu égard au
principe de 1'égalité de 'action et de la réaction, que
sur des éléments plans égaux. paralltles. trés voisins,
de méme ortentalion par rapport 4 une demi-normale
commune, les pressions different extrémement peu.

Considérons maintenant. en un point M du COrps ,
deux éléments plans s et §,, avant pour erientalions
respectives les droites Mg et Mg, ; soienl (p) et (p,) les
pressions au point M de s et au point M de s,. Nous
allons démontrer que la projection de (p) sur la diree
ticrmt Mgz, est .r:f;rn'rr' o f'a.f‘r”'.-“f'ffn.rf tle (py) sur la diree-
tion Mz. Ce resullat, did a Cauchy, est connm sous le
nom de lof de f-rzlr;r.'f.f'fr.: des composantes normeales réci
progques !

Imaginons qu'on isole du corps un parallélépipéde
dont une aréte, dirigée suivant lintersection des élé-
ments. ait son milien en M, dont les faces adjacentes
situces dans les plans des éléments soient des carrés de

1A, Cavcas 1, p. 67
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coté [. Eerivons 'éguation fournie par le théortme des
moments cinéliques appliqué a I'équilibre dynamique
du parallélépipéde dont on fera tendre vers zéro I'aréte /,
I'axe des moments élant la paralléle oz & I'intersection
des éléments menée par le centre o du parallélépipide.
Les moments des forces d'inertie et des forces exté
rieures a distance (pesanteur) sont de l'ordre de /*;
ceux des eflforts exercés sur les
faces losanges sont nuls. 1l reste
a mettre en compte les eflorts
exercés sur les faces carrées. Soif
a el b les centres de deux faces
opposées; les efforts correspon-
dant & ces faces, sensiblement

., ¢gaux, forment un couple ; si [ et
g ¢ sont les projections des pres
Fig, 2. sions en @ el b (f=—¢. sensi-

blement) suivant la direction Ms,
(normale a ab), le moment de ce couple par rapport
a 0z sera — fI* X lou— flis Si f; et g, sont de méme
les projections des pressions aux centres «, et b, des
deux autres faces carrdes, on trouvera de méme. pour
moment résultant des efforts exercés sur ces faces,
Sl Léquation d’équilibre dynamigue sera :

flE—f B4 Al =o0,

A étant une quantité qui ne croit pas indéfiniment
quand { tend vers zéro. Le passage & la limite montre
que f et f, tendent A devenir égales entre elles el A
coincider avec les composantes des pressions en M sur
les éléments s et s,, projelées respectivement suivant
Mz, et Mz. D'onl le théoreme de Cauchy,

Droits réservés au Cnam et a ses partenaires
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[+

Ce résultat acquis, soit en un point M trois éléments
plans s,. s,. s.. orientés normalement aux axes rectlan
gulaires ox, oy, oz. Nous désignerons par N,, N,, N.
les composantes normales des pressions relatives & ces
¢léments. D'aprés le théoréme précédent appliqué aux
éléments s, et 5., la composante suivant oz de la pres-
sion sur s, el celle suivant oy de la pression sur s. sont
egales ; nous désignerons leur valeur commune par T,.
En définissant de méme par permutation tournante

deux quantités analogues T, et T., nous formerons le

A

tableau des composantes, suivant les axes, des pressions
relatives aux trois éléments

I 0y 0z

52 | No | 5. | T,
[ |

— e

g LRl 1 P ied )
&y | FI‘_l.' | 'I'I.-: | “":

soit enfin & un élément plan quelcongue passant par
M, orvienté normalement & la dirvection de cosinus
directeurs a, B, v p.. p,. p. les composantes, suivant
. 8ys 5. lES

les axes, de la [H‘L-"?%;'i]fﬂ] en M sur cet élément : s, s,,
¢léments projections de s sur les plans menés par M
normalement aux axes de coordonndes, éléments oricen-
tés suivant ces axes. En appliquant a4 1'élément s et a
sa projection s, le théoréme de la réciprocité des com-

posantes normales des pressions, 1l vient
Pe=—oN, ET.+T,.
OUn aura de méme
— T f. T =T I
py= T, BN, ++T,.
S d L . N
Pr=—a I.-.'_|_i“' - '|"I?\'-‘

(1)

T e TR
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Ces formules fondamentales sont dues 4 Cauchy’.

H 3 bl b5 el A

3. Eléments orthostatiques en un point. —
Nous allons monlrer. d'aprés Cauchy, rllf.'mh}tn' de

e

tout point M d'un milieu, il existe trois éléments for-

B Tl

mant un triedre trirectangle et sur lesquels les pres-
sions sont normales aux éléments mémes. Barpd de
Samnt-Venant les a appelés éléments orthostatigues, et
les pressions correspondantes sont diles principales.
Les conditions pour qu'un élément orienté normale-
ment & la direction (a, [, +) soil orthoslalique sonl,
en designant par P

a pression normale

Pz = . Dy ST 4 S B

s R e
= e E.J |
(1 {\,.— P}:..:—'—T._I’:—i—.li.,‘i’L{.h

On reconnait les éuations définissant les direcltions
des axes de la |1||:u.|ri{||1t: a4 centre :
N X2 N, Y2 N, 2 o 2T, Y2 - 2T, 2%
-+ 2T XY = Const.

e la résulte existence des trois éléments ortho-
staliques. Les pressions correspondantes sonl les racines
P,, P,. P, de I'équation

| 2 e
| N,— P I. |
| .

|

)

1. N—P T

o i
. 4 5 4 B N.-—P
ol (N, —P)(N,—P)(N,—P)—T2(N, — P)

— T3 (N,— P) — T2 (N.— P) — 2T, T, T.=o.

L

I

VAL Caveny; 4, p. 68
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(On reconnait de suile que
N, N, —+—N.= PP, | P..

en sorte que N, —+ N, —-N. est une guantité invarianle
par rapporl aux axes de coordonndes,

Imaginons qu'on ait pris les plans de coordonnées
parallélement aux éléments orthostatiques en M ; avec
ce choix d'axes, la guadrigue précédente devant Slre
eapportée i ses axes, on devra avoir T,=T, =1. =0
de plusy N, =P N =M N, —= P.: les formules de

nisent donc a

{Canchy se ré

I

j.«_lf;r_!] R B JrJ._'_'j‘-,

et l'on a : ' N (g < DR P
lrf [ |}:. | BE

Done le lieu des extrémilés des vecteurs repreésentant
les pressions sur les éléments plans passant par M esl
un ellipsoide ayanl pour axes les pressions principales
relatives & ce point.

Soient (a, a', ) les cosinus directeurs de P,,
HJ, |".u', ir:'"]- cenx de |’1, e, (i r"':l Ceux e J[:'; ||Ii1|‘ rap-
port a4 des axes rectangulaires oxyz quelconques|:
imverserent. par rapport aux directions des ]H'r‘ir&ilrnu
||r'ia|rip;th“-:. les axes ox, oy, 0z auronl !'+'.-||r!'r1i‘~'|‘rlI:"Hl
pour cosinus diveclteurs (a. b, ¢), (b el ) e b e
D'autre part, la pression relative a un ¢élément plan
orienté suivanlt la direction (£, m, n) par rapport aux pres-
sions principales, a pour projections sur les directions de
CES  Pressions P, mPy, nP, ||l'.‘i]r!'f:.~'1 les formules de
1'-:III:.'}1}|, el la projection de cette méme pression sur
la direction ({, m', n') a pour mesure

P, L m'm P, n'n P,.

Droits réservés au Cnam et a ses partenaires
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Pour ([, m, n)=(a, b, ¢) et (I, m', n'y=(a, b, ), on
Aarra

N.=a*P, - *P; | ¢*P,.
Pour (I, m, ny=(a, b, ¢) et (I, m', n'y= (a'. ', ¢'),

on aura :
T.=aal, 4+ bb'P, 4 cc'P,.

Nous aurons & faire usage de ces formules (el des
analogues oblenues par permutation tournante des
lettres) dans le prochain chapitre.

1. Relations entre les forces extérieures a
distance et d’inertie sollicitant un élément
matériel et les pressions autour d'un point
de cet élément. — Considérons dans le corps un
point M (&, y, 2) el construisons un parallélépipéde
de centre M, d’arétes paralléles aux axes de coordonndes
et de dimensions lrés petites 2a, 2b, 2¢. Isolons par
la pensée I'élément matériel inclus dans ce parallélé-
piptéde et appliquons-lut le théoréme duo mouvement
du centre de gravité,

Soit ¢ la densité au point M: X, Y, Z les compo-
santes de la résultante des forces extérieures appliquées
a I'élément, rapportée & l'unité de
masse ; w', ©', w' les composantes de
I'accélération actuelle du point M;
(N. Ty les composantes des pressions
relatives au point M, fonctions de (wyz)

que nous supposerons continues et ddé-
Fig. 3. rivables.

Droits réservés au Cnam et a ses partenaires
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LLes pressions sur les deux faces normales & ox-

auront pour projections totales
proj
T S | ATy . ; i
N.(c—a, y,2) —N,(x —a, Vi &¥ s
T.(e+a,y,2)—T.(x —a,y, 2).

T,{x4a, v.2)—T, (x—a, ¥ Z)i

les efforts extérienrs relatifs & ces faces daire com
mune A4be auront done pour parties principales des pro-
jections de leur somme géométrique

AN, T T,

Sal Babe — Ral
{ic — & LEENC == S i :
I (i fr a (i B AR O

On ferait un caleul analogue pour chaque couple de
faces. Si V est le volume Sabe de 1'élément. on aura
ainsi pour projections, sur les axes, de la somme 2éo
mélrique des efforts de contacl exercés sur les diverses
faces du ]'h"l]‘-"l”!zll:i'll;E]E‘ii{' - :
v L ON.. {7 (o I ] oT, J v ( 0T, 58 N, e OT, :I
ozt Wl 3l R e

-';\LJ" Oy )

%
]

/ 1‘!-11.,, 1‘}1:__ s :‘I-.‘\\_ ]
G =24 L% R

Les composanles de la force extérieure & distance
sollicitant 1'élément de volume sont ¢AV, pYVY, pZV,
tandis que celles de I'inertie sont :

— it N, —gp' V., — ' Y.
) § 1}

Apres suppression du facteur V, on obtiendra les trois

Droits réservés au Cnam et a ses partenaires
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équations suivantes, dues & Cauchy eb retrouvées par

Poisson ! :

|‘|nl"'| B 1‘!lr| 0 l '

. T F‘n.* —+ [‘;— X =,
aT. anN aT y

—rein o, elipin lf __l_ i = (=] —t !-f.
O = o S B i e | ) &
o T e o ON,

e T oy s s

On peat d'ailleurs démontrer qu'on scrait conduit &
ces memes cquations si |'on parlail d'un élément de
volume de forme queleongue.

Enfin st 'on appligquait au méme élément de volume
le théoréme des moments cindtigques, on aboulirait, au
meéme ordre dCapproximation, & des dquations identi-
quement vérifides

b. Deéformation infiniment petite dun
milieu. Isolons par la pensée une certaine masse
d'un milien qui subit, sous 'action de forces données,
un mouvement infiniment petit n'en altérant pas la
continuité, et proposons-nous d'étudier la déformation
de cette masse ¢lémentaire E.

Un point matériel de E a pour pesition initiale M
(. ¥, 2) et pour position (inale M'

(€U, y V.24 W);

les composantes U, W du déplacement de ce point
sont trois fonctions de o, v, z. assujetties seulement i
célre unilormes .

continues, infiniment petites, el &

1 A. Caveny, 3, p. 144. — S, D. Powssan, 2, p. 387,
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LO1S GENERALES (QUI REGISSENT LES PRE=SIONS [ 1
admettre des dérivées partielles du premier ordre pos-
sedant les mémes propriélés.

Un denxiéme point de E infliniment voisin du preé

k,z4-10),

subira un déplacement dent les composantes se dédui-

cédent, de position initiale M, (e — b,y

ront de U, V, W en y remplagant &, y, z respeclive
ment par £—-h, y4+-Fk, z4-{; les coordonndes de sa
nouvelle posilion M, seront done

il ol Ol
i T == e | i
(. | h | e N e o ()

Posons

ol O OWA
'EIT: T llil_._ " |1"_
' I i 4 I'\'-‘v g T
T, O W O 1"*[ O W
Cimama e S M P st ¢ dz T Oz
N 01
== = o _|_ R
0O Wy 0y 0l OWW
'J'JI':I r— - ).arl— —EaE e S
I"-IIJ Oz Oz B
OV 0Ol
ey J—
e Do BLT

Les projections du déplacement M,M’, du deuxiéme
point peuvent s'éerire identiquement
Ut+gl—srk4-0. 4.k el

Sous cette forme, elles nous permettent de regarder,
avec Cauchy. ce déplacement comme la résullante
1* de la translation (U, V., W): 2° de la rotation
(ps q, r) autour du point M, translation et rotation
infiniment petites qui sont les mémes pour lous les

Droits réservés au Cnam et a ses partenaires
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points M, de I'élément infinitésimal E et dont I'ensemble
conserve la forme géométrique de I'élément; 3° du
déplacement de composantes

Oh - vk =y,
Etudions a part leffel de ce dernier déplacement, dit
déformation pure. Le point dont les coordonnées ini-
tiales relatives & M sont h, A, [, a pour coordonndes
finales :
H=h(1-}0,) .kl (T)
Ces équations de définition earactérisent une trans-
lormation ponctuelle homographique conservant le
plan de U'infini : les éléments rectilignes et les éléments
plans se transforment en éléments rectilignes et en élé-
menls plans. et il y a conservation du parallélisme de
tels éléments. :
Si 'on suppose seulement que le déterminant de
cette transformation lindaire et homogéne n'est pas
nul, une sphére de centre M sera changée en un ellip-
soide de méme centre. Tmaginons que les centres de
coordonnées aient ¢1é pris paralléles aux axes principaux
de cet ellipsoide : les formules de passage de la sphére
& lellipsoide sont nécessairement de la forme

H=—ugch, K—ga.k, | R,

la déformation pure se réduit donc i la superposition
des trois dilatations géométriques, deux i deux rectan-
gulaires, définies par ces formules.

Etudions de plus prés la déformation pure dans
Phypothése ofi les quantités 0 et g différent infiniment

Droits réservés au Cnam et a ses partenaires
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peu de zéro. en sorte qu'on puisse dans les caleuls
n‘en conserver que les premiéres puissances. Le déter
minant de la transformation différe alors trés peu de
'unite.

ln parallélépipede élémentaire d’ardtes paralleles
aux axes rectangulaires de coordonnées, de centre M
(2, v, 2) et de dimensions (2, ab, 2¢), se change en
un paralléléepipéde obligque donl nous allons caleuler les
cléments,

Pour les extrémités d'une aréte AA" paralleéle & or,
les valeurs de h. k., [ sont respectivement

(—a,— b, — c)et (-a,

les projections de cette ardte sur les axes fixes étaient
]

T el

avant la déformation (24, o, o) el sont maintenan!
a (1 1 0,)a, 2v.a, ay,a; la longueur A A, de 1'ardte
transformée est donc

AL a0 :'._":_‘I—_HE:

la partie principale en est 2a (1 - 0,). Par suite.

AAL — AN
KA

coincide avec 0,, au degré d'approximation admis ; el
0, est appelé la dilatation, sux environs du point M,
des droites matérielles paralléles a o,

0, et 0. regoivent une interprétation et une dénomi-
nation analogues.

L'angle de deux ardtes voisines AA', AD paralléles
respectivement & ox et & oy, primitivement droit, vau

dra, apres la déformation, ?’ —z.:  les cosinus des

arttes transformées A A, et A;B) sont [aux facteurs
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it f}r!} L ] 1 _. I \
AA, o Presl (00 Yo vy ot e (110,),
.3 la valeur de sin z. en résalte immédiatement, el
si, dans 'égalité obtenue,. on s’en tienl aux parties
principales, il vient :

g.— A~ — Irl,f..

Gur Gus = sont donc les décroissements des angles
des faces du parallélépipide initial ; on leur donne pour
cetle raison le nom de glissements ou dislorsions au
point M. relatifs aux axes de référence.

Déterminons  enfin 'accroissement unilaire  dn
volume du parallélépipéde élémentaire, produit par le
fait de la déformation, ou, comme on dit, la dilatation
cubigue an point M. Ce volume, qui vant initialement
Babe, sera aprés la déformation :

1 —""-",- ' ol . |
| L = i
V= I —|— h“ Y | Sabe :
" . | {
| I I i ﬁ'-

sa partie principale est (1 - Oy~ 0, 4 0.) Babe. La
dilatation 4"111]i11[|r-t est done

=" -JI 0, —|— 0.

Examinons maintenanl la déformation pure o une
petite sphére de rayon s et de centre M. Pour les
points de sa périphérie, h, k., [ vérifient la relation :

.| T ;T

;I +£ —|—f.r =k
Pour obtenir 'équation de la surface bransformée,
nous résoudrons par rapport & h, k, [ les équations de
transformation (T); ce qui donne. en négligeant les

Droits réservés au Cnam et a ses partenaires
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.|l|;|r|1]||'e.~; du second ordre de petitesse et en notant que
le déterminanl se rédul a I =0 == - l - )

l.-‘ll} II =t i'\. e I.,

[]

.I'I.'—.I:I

wiis nous obtiendrons immdédiatement
|

}_I_ l{ I — 0,) H — A R A _.I!\ et

y
ou simplement, au méme ordre d’approximation :
¥(1—=20,)H*—aXg KL =¢*
Telle est 'éguation de ellipsoide en lequel se trans-

forme la h’1b]'||l‘]'l_' il 'I”-"”' appelle 1'r*|"f'-';!':.~;-.l'-"t.!rr.' de dilala
tion relatif an point M.

Cet ellipsoide joue un réle important dans étude

| faite par Cauchy! de la déformation autourd'un point.
6. Dilatations principales. — Supposons quon

ail mené les axes de coordonnées |5:1|‘:1]|1"|i‘1lu'!i1 anx

! axes de i1t'||i;+%1r'l'|!|'- dle dilatation dua |:-1ili| M. On aura

IHIIH' Gy AXES ||lill'|ii_'l.l-|i':':l"- a

b

e — Ir,.'_,; = 1rf_ —

Donc, en tout point du milien, il existe trois dlirections
rectangulaires pour lesguelles les glissements sonl nuls.
La déformation d'an parallélépipéde entourant le
point M et d’arétes paralléles & ces directions se redutl
A la dilatalion de ses aréles.
Les dilatations correspondant a ces trois directions

sont dites les difataiions Iru'.f.'n'."lp'u.'hm relatives au point M.

A Cavcnx, 2, p. 92 &, p. 283-284,
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Les paramétres (2, B, +) d'une direction de dilata-
tion principale sont définis par les ¢quations :

(t—20, —8)a—g.p —gy=0,].

la quantité S satisfait A l'ﬁrlnntiﬂn :

S “_J_ 20, — I s by
q. S —-20, — 1 7. =5
'R 7 S +920.—1
qui admet trois racines réelles Sqy 85, 8. L'équation

réduite de lellipsoide de dilatation s’éerira alors :

S FC8 -8, N E -8, 00— 2,
tandis que si 1'on désigne par d,, 0,, 0, les dilatations
principales, elle doit &tre

(r —20,)JC - (r — 20) W24 (1 — 20,) £ = ¢°.

S1 done on pose S=—1— 23, onaura comme équa-
tion aux dilatations principales o :
2(0,—0) . Yo
. 2(0, — 0) . —:
G Y 2(0. —0)
ou - ;

§(0:—0)(0, — 0) (0, — 0) — g2(0,— D) — 42 (D, — D)
— g0, —0) — 9:9,0.=—0.
On reconnait que :

8=0,10,+0.=0,-+ 0,19,
en sorte que la dilatation cubique, égale & la somme
des dilatations principales au point M, est une quanlité
invariante par rapport aux axes de coordonndes.
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Sotent 7 el g [ O, 6"y (e, ¢ ie?y les cozinus
directeurs des trois dilatations principales 0, 05, 0,. Con-
siddérons les équations hnéaires
2(0,—0,)a —|— f,n"_-_“'.

2 (0, — {‘:'_ll'"r‘ —|— Il'l.f_"l-'l _i_ ,".nr.--"r'.. = =T

a0 o r‘—!—lri,r:r" + ,".I",lr'”. — § 1]

-"J|'II_|"|' ! ===

Résolues par rapport a 0, et g., elles donnent. en
égard aux relations connues entre les cosinus directeurs
de trois droites rectangulaires deux & denx

l.\l- e r'fzi":l: —=— |'r.l-'l.~1___ i 1 |':-i\!-;.

1 . : =
= a4 —l— bl L oo Chc-
o . 2
Ces formules et leurs analogues serontl utihisées au

]lrc'lq_'|1;|fn s'!|;1||il1'|n concurremment avec celles établies

aua g a°

! Sur 'ensemble de ce chapitre, voir Motano, XXTIe lecon.

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

CHAPITRE 11

EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES

A. — Géndralités sur les fluides.

t. Propriéeté caractéristique des fluides!' —
Imaginons qu'une particule matérielle soit, dans son élat
actuel (qu'il est loisible de fixer par commodité), inté-
vieuremenl conformée de facon a présenter la méme
structure moléculaire. la méme disposition géndrale de
sts points maltériels, & un observaleur infiniment petil
el infiniment perspicace, placé vers son cenire et sy
orientant dans tous les sens : une telle particule est dite
isotrope. Toute particule ne possédant pas ce caractére
est dite hétérotrope on anisotrope.

Les |n'ﬂ‘.|ii|'i1."lq.'--a '[tln'sit.luvs- d'une particule 1sotrope (] 1l
dépendent de son agencemenlt intéricur aurvont la méme

exprossion analyhque par rapport a tout triedre de véfé-
rence enlraind dans le déplacement de 'observateur.

L J. Bovssisese, 46, p. 1099-1105.
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EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES | &

I;it"'illl'f'F[i‘ll.:‘ deviendrait la syméetrie si ces }u'ﬁlu'iﬁtf‘-:&;
conservaient en outre la méme expression lors du chan-
cement de stzne de ce triedre.,

' corps d élendue finie est .l'..'i-'r.'rf'-'rlflr.'. quand loules
ses particules sont isotropes.

La propriété qui caractérise les corps fluides d’étendue
finie est la suivante : « ce sont des COTPS i:-_anlr'uimr«'-
capables de reconstituer spontanément leur isolropie
apres toutes les déformations possibles, el méme de
la carder 4 forl peuw pres durant ces déformations.
pourva gqu’elles s'effectuent avee une lenteur suffisante. »

Pi‘ﬂ:ii-‘llll— [Pﬂ mouvenienis oYy ens e |H*J'r‘|1i‘.'f‘r|1 s
sens, il se produit d'imperceptibles mais continuelles
modifications de structure moléculaire tendant a la
reconstitulion de |'i.-a[>=ll'|:-E1E{' ile ='|1;H'|Ill". particule.

On attribue la possibilité de cette reconstitution A la
grandenr de l'amplitude des vibrations calorifiques dans
les fuides : cette grandeur suffivait 3 séparer les molé
cules et & lear permettre de prendre  constamiment
|':|;T-'vt1-;‘{*nu~|1l le plus stable et sans doute aussi le plus
simple, c¢'est-d-dire celui de I"isotropie.

Les tourbillonnements lents et incessants de ean la
plus calme, connus sous le nom de mounrements brow-
niens et que M. Gouy a partieulitrement étudids, mou
vements rendus appréciables MICrOSco piguernen | par
I"entrainement des poussitres éparses dansle liquide, sont
recardés comme la partie sensible de cetle H*r_-_"i!;'tlir'lr|.

Dans certains corps dils & viscosité negligeable (ean,
aleool, .. ), la régularisation de 1is¢ ropie est extréme
ment rapide. méme durant les monvements: dans
d'antres fluides dits visqueux (huile, goudron,...), elle

ne s opére guavec lentenr.
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2. Des fluides a ’état élastique. — Nous n'étu-
dierons ici que les mouvements des premiers fluides,
dont le type commun est I'eau, et r[ui =sonl pm‘ﬁﬁtumcnl
conducteurs de la chaleur : nous supposerons que la
lempérature est uniforme dans loute la masse considé-
rée, et qu'elle garde une valeur constante durant les
modifications examinées.

Pour un tel fluide & température constante et uniforme
animé d'un mouvement {rés fent, on admel. avec une
approximation assez grande, & ce qu'il semble, que
chaque groupe atomigque ou moléculaive alteigne sans
cesse une configuration fonction seulement des situations
relatives actuelles des centres de gravité de ce groupe
et des groupes environnants. La reconstitution de I'iso-
tropie exige alors une certaine liaison entre celle con-
figuration et ce mouvement local moyen ou visible du
groupe, liaison capable de modifier la forme du groupe
el méme de produire la destrnction des groupes. Cel
état particulier de la matitre est dit élat élastique’.

 L'élat élastique, une fois atteint, ne varie. a une

température donnée, qu'avee 'étendue laissée & chaque
¢lément matériel pour y distribuer uniformémentl ses
molécules, soil avec la rvépartition de la densité.

Menons un élément plan quelconque dans une parti-
cule fluide & I'état élastique, orienté normalement a la
direction Ms; pourun observateur infiniment petit placé

suivant Mgz, les pieds en M, la structure moléculaire est
la méme queHe que soil son orientation. La direction
de la pression exercée sur cet élément, qui est déler-
mindée par cette structure méme, devra présenter la

1 J. Bovssineso, 22, VII& lecon, pp. B3 eb 84.
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EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES — 21
méme symétrie par rapport & Ms el sera par suile dirigée
suivant la normale Mz a 'élément.

D’autre part, si 'on fait pivoter I'élément autour de
son centre M, la structure observée restera

a meme,
el conséquemment aussi la pression. Ce fait est d aillenrs
solidaire du premier. car, avec les notations du cha-
pitre [. 'orthogonalité de la pression () sur 'élément
orienté normalement & la direction (z, 2, +) sexprime
par les relations

(N, — w) - BT, T, = o,

pour :ill'vHr-H solent vérilides [Im_-l.-s. (que snlent les cosi
nus directeurs «., 3, 1l faut et il suffit que 'on ail :

e —="T r=fy, " N e ree N ry,

i

eb 'on est conduait aux mémes conditions en prrimnu!
ar la méthode de Lagrange, la constance de (r3) quelle
grang |
que soit Vorientation de I'élément, c’est-d-dire la cons
tance de 2 (xN. | __’;'I".—|—~I-’I“._,]:. quels gque soient z, §, Ts
liés par la relation o 2* -+ = 1.
{n n|rE1r.*l|=.* pression moyenne auw point N la valenr

commune, changée de signe, de N, N, N_, soil
L)
‘I'J:—'?i_‘\l_ S ‘\.J. ——— ‘\:].

L.a pression moyenne en un point dépendra unique-
ment, a une température v donnee, de la densité 5.
tout comme I'étal élastique; elle eroitra avee ¢, car les
réepulsions considérables exercées entre les molécules
voisines grandissent trées vite dés gqu'augmente leur rap
prochement mutuel, et cette croissance rapide permel
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méme de se rendre comple de la quasi-incompressibiiilé
des liquides a densité notable.

Les déformations quelconques d'un fluide. produites
avec une lenteur suffisante et qui ne changeront pas la
densité, ne leronl done naitre dans le fluide auncune
résistance notable. capable de s'opposer & leur conti-
nuation ou de les mainlenir entre certaines limiles. Les
changements de forme pourronl par suile, sans gue
lenr eause devienne sensible. atteindre des valeurs
quelcongues, et, notammefit, le fluide se moulera exacte-
ment sur tout solide qui le touchera, si légérement que
ce soil. Ce phénoméne de déformation illimitée s'appelle
écoudement, el la propriété qu'ont les corps dont il
s'agit de le présenter, cest-iiedire de couler, sous des
efforts tellement faibles qu'ils échappent a4 nos invest
gations. est celle qu’on nomme fuidité et qui leur a fail
donner le nom de fuides. Elle est en somme plus appa-
rente que leur isotropie persistante ou continue . dont
an fond elle dérive.

3. Des fluides a 'état non élastique. — Les
lois simples qu'on vient d'exposer ne vaudront généra-
lement plus pour les fluides en mouvement doués de
viscosilé méme minime, si ces fludes éprouvent des
déformations rapides. Les groupes moléculaires n'au-
ront pas le temps, la déformation d'ensemble de la
particule étant de durée extrémement bréve, de prendre
complétement, & toul instant, leur disposition interne
approprice i l'agencement actuel des centres de ces
groupes, el qui constituerail leur forme permanente si
cet agencement persistait. Toutefois. les écarts quiil y
aura entre la structure moléculaive effective de la parli-
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EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES 23

cule et sa structure élastique ou Isotrope seronl assex
minimes pour ne modilier d'ordinaire les pressions que
de petites fractions de leurs valeurs, Eu egard a la rapi-
dité extréme avec lagquelle ils s'évanouniraient si les défor
mations d'ensemble de la particule venaient & s'arréter.
ils ne :lxr‘|n‘*1ul!'unl sensiblement que du mouvement
actuel, caractérisé par les vilesses. non des mouvements
antérieurs, définis jusqu'a un certain point par les
r|-'~1'ju'-|:-:-:. |ii-.=-'~ |ii\|-r'~1 tl!lill'H‘ r||'-*- vilesses |rar |'.-=|1||m|-[
au temps, el dont les effets sur la structure ¢lastique
des groupes moléculaives seront déja disparus.

\insi. I'état élastique isotrope du fluide &lant pris
comme ¢état type comparativement i son état vrai, les
écarts des pressions relativement aux pressions clastiques
ou primitives (ou les parties non élastiques  des pres
sions). dus aux éearls de structure interne produits par
le mouvement, se trouveront sensiblement ilentiques
pour des particules fluides de méme nature. densilé
el température, subissant actuellement, pendant un tres
bref intervalle de temps. le méme ensemble de défor
mations rapportées & Munité de temips, quelle gqu’en saoil
I'orientation. -

LCes parties non élastigues des pressions admettent.
pour un ¢lément plan, une composanle normale qui
%'.'l_ir'-tlh' ﬂl,‘hl'ir'li*l'i*{l“'llH"I!! a la |H'P.~'~.~=inn 1'-]:1.~a!i:|11r=. et une
composante tangenlielle : ¢'est & ensemble de ces com
posantes langentielles qu'on a donné le nom de frotte
mends ntériears du fluide.

En résumé, « existence de pressions obliques ¢l
inégales en divers sens. dans les fluides qui se déforment
avee une vitesse suffisante, ne constitue pas une pro

priété de ces corps  purement accidentelle ou suscep-
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tible de disparaitre en laissant subsister dans 'état de
monvement la fluidité parfaite (¢’est-a-dire I'orthogo-
nalité et 'égalité en tous sens des pressions) dont ils
jouissent 4 I'état de repos. Cette imperfection de la
Sluidité d'un fluide qui se déforme est essentielle. nsé-
parable de la cause méme qui produit la fluidité, savoir,
du rétablissement incessant, mais qui ne saurail.élre
tout & fait instantané, de I'isotropie sans cesse détruite
par les déformations. »

B. — Equations générales du mouvement des fluides
Uétal élastique.

1. Variables de Lagrange et variables
d’Euler. — Considérons une masse fluide, & tempéra-
ture uniforme et constante, occupanlt a 'instant o une
portion 8, de l'espace. Supposons qu’elle soit animde
d’un mouvement qui la laisse sensiblement a I'élat élas-
tique et par suite me rompe en aucun point sa conli-
nuité : 4 un instant . elle oceupera un certain domaine
S, d'wn geul tenant comme S, . :

Soit E un élément matériel déterminé de ce fluide;
Bus Tus @y Yoo 2, les valeurs de la densité, du volume et
des coordonndes de cet élément a l'instant o 0) U5, %L Y2
leurs valeurs & linstant (. Comme la masse d'un ¢lé-
ment se conserve quelles que soient ses déformations,
on aura i pw=— p,t,. Cefte équation est désignée sous
le nom d'équation de conlinuité.

Le mouvement de la masse fluide sera défini si 'on
peut, & tout instant £, caleuler la position et la densitdé
d'un élément quelconque de posifion intiale connue,
en d'autres termes si 'on peut caleuler les quatre fonc-
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. Lo Tone=
tions bien déterminces de ¢ (quel que soit ) et de

tions &, ¥, z et g des qualre variables x,, v.. z

Loy Yas 2o (& N'intérienr du domaine 8.)). se réduisant
respectivement & ., y,, 2., go pourt =—o.

Des fonctions x, y, z dex,, y,, z,, L. on déduit immé-
diatement la vitesze et 'accélération de 1'élément consi
déré : les projections de ces vecteurs sur les axes fives
de référence sont respectivement les dérivies partielles
premieres et secondes des fonctions @, y, 2 par rapporl
a [

L'emplol des wvariables x,, Yos Zay L pour étudier le
mounvement des fluides, utilisé d'abord par Euler, a &té
mlnpt-.'- presque systematiquement par l.n;.;r:-nlgtr; aussi
ces variables sont celles dites les variables e Lagrange.

Euler. dans ses premitres recherches, avait envisage
[ |n'1'-h]f_r[u=' a un point de vue différent. Au lieu de suivre
dans la succession de ses étals une masse &lémentaire
du fluide, 1l envisageait la série des éléments flurdes
dont le point moyen passait en un poinl geomdétrigue P
(x, y, 2) de l'espace fixe.

Soit, 4 un instant donné, f, u, v, w les composantes
de la vitesse de 'élément du fluide qui occupe la posi-
tion P (vitesse du fluide en P) et o la densité de cet
¢lément. |

w, v, w el g sonl des fonclions des quaftre variables

[I1-:1lr'|lt‘r]1.|4!n|1"H x, v, z. b, o dites variables d Euler, et ces

fonctions gont bien déterminées dans la portion e
I"espace occupée par le fluide.
LLa connaissance de ces (qualre fonctions définit ce
||LL‘|-r1 i!I.‘liH‘“J[P le J*r:.rfJ':thi du fluide.
L'oblention du régime est une premiére étape du
probleme de 'intégration des équations du mouvemen
Hydranligue générale, Bk
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du fluide : il ne reste qu'a intégrer un systéme de trois
:'*1||m|ir:|"|ﬁ différenticlles ordinaires pour caleuler la tra-
jectoire d'un quelconqgue des éléments du flaide.

En effet, les fonctions z, v, z de x,,

v . z.etl, vir
fient les égmations.

itr iy

T == ¥ Z i), .r.h —Wax, ¥, .4,

iz
. Ve S
il wa

et se réduisent. pour | = o, respectivement & .. ¥, 2,-
D'aprés le théoréme bien connu de Canchy ., il existe
un el un senl systeme de trois fonctions satisfaisant o
ces conditions. L'intégration de ce systeme fournira
done la trajectoire de toul élément de position initiale
donnée.

Comme la densité 5 esl connue en fonction de
By 2wk, 9oy remplace x, y, =, en fonction de
Lor Yor Zo» I, ON aura I'expression de cetle densité au
moven des variables de Lagrange.

2. Equations indéfinies du mouvement ou
équations d’Euler'. — La formation des équations
indéfinies du mouvement d'un fluide exige le caleul
préalable des composantes (', v, w') de l'accélération
d'un élément de ce fluide.

Soit en général F (=, y. z. t) une fonction quel-
conque des variables d'Euler ; supposons qu'on la cal
cule pour la succession des }lmﬁilh_‘ulﬁ d'un méme éle-
ment du corps : elle sera une fonction bien déterminée

1 L. Bunen, p. 286.
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du temps dont nous allons calenler la dérivée a ins-
tant £.

La wvitesse de Uélément considéré ayant pour com-
posanbes i, v, w a I'instant 1, le déplacement de cet éleé

merl [n‘m|;ml "intervalle infiniment petit o aura pour

|p|'|1li1-L_'[i|||t~i f|"..": {.'-rrr.l". f.l'r‘l. = f‘-fl‘rn", n'r_' — -'l“f-"l|". e ]i’l \-'il'i-l-
tion correspondante de la fonction F sera
.;."| 1. - 1‘- "| s I 1| =
E ol g | SR ol \dt.
47 LR ) ) 0z ot

La dérivée de ¥ par rapport au temps. en smvanl
I'élément malériel qui occupe & Uinslant / la position
v. Z: vandra done
OF ok OK Ol

Pl —rieT g Je e =y M B et
I T i e B TR B T ™ i

Supposons alors ¢ue la fonction F coincide succes
sivement avec chacune des trois composantes u, v, w
(fonctions de &, y. z, 1) de la vitesse d'un élément situé
auw point (@, y, z) & Uinstanl £, et nous aurons lés trois
composantes de I'accélération du fluide & I'instant £, an

|Hli|'|| e

L1

I'fl — i 1"|-I_|-- —|— i ey —|._ L _\:-_T — s i\'-fl

Ol O O O (}
\

Cela étant, comme le fluide est supposé a viscosilé
nulle, la |11'e-:-a.~_ai|m sur un ¢lément plan quelcongue est,
nous l'avons vu. indépendante de l'orientation de cet
clément. et par suite, avee les notations .dn r‘]‘]:!F]i“'i" .

on a en lout Eminl du milien

[, —T,—T.—o0, N,=N,=N.——p
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Les équations générales du n® 4 du chapitre 1°7, appli-
cables au mouvement d'un milieu quelcongue, donne
ront donc, en désignant par X, Y, Z les composantes
de la force extérieure totale rapportée & l'unité de
masse, au point (&, y, z) :

I 0 " Ot O o " or
——--'“:\—u’"_—_\—-—u— — = W 5= —

g Ox O Oy 0z 0/

1 0Op ; ; _ Op on QYN e
l?—igj:ir_‘i—i'_\—iiﬁ—! -‘ﬂ;——w az'—"ﬂ.pf[a]
e = ey O O O Ow
— 7 W= —ls — W —

o Oz O Oy 0z (o7 et

Ces trois équations ont é1¢ établies par Euler (loc. eif).

3. Equation de continuité et relation sup-
plémentaire. — Considérons A U'instant ¢ un élément
du corps. entourant le point (x, y, z), possédant la
vitesse (. v, w) et la densité ¢.

Suivons cet  élément pendant e temps infiniment
court df; le déplacement de son centre a pour compo-
santes : ;

U =udl, V = wdl, W — wdr.

Dans la déformation infiniment petite de cet élément,
la dilatation cubique est done (Ch. I, § ) :

" Ou ov , 0w
Y= (1_}5;' 5 0y I -'?:_)rh'

St 5 est le volume de I'élément et drs sa variation
durant I'intervalle Jdf. on a :

tlrs
T
o
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et comme la masse prr est constante, I'équation qui
. o

exprime que o {I:n.—-,] 0, S ecrirsa

rf; £ O O |"j,l,r~..
T T R EAE T e

-

f + nr b 4
Dans celte égalité, —x s caleulée en suivant 1'élé-
!

] I.\I'.: | ) I\I: L"]l: D}r-._ {!I
ment, a pour valeur u e "l\'j" S i _|_Wf_ . On

aura, par suite
Op olpit) . O(gv) _l_i_‘_b{'lz_u'!l

R R R SRS I 2

Telle est 'éguation de continuité sous la forme que
lut a donnée Euler!.

Dans les quatre équations (E) et (C). la pression
élasticque p est une fonction de la densité z; mais la
relation :111[ lie g a g, Ou refation HHMae"r:ﬂm'H!rrr'.l"f’. n'est
pas ou est mal connue.

Cependant on sait que les liquides sont ;‘.lr.r:;.w'--r'r.lrw.rn—
pressibles, ce qui revient & dire que la densité s ne subit
que des variations insensibles, et par suite ¢u’elle peul
etre considérée comme constante la ot elle est multi-
pliée par des quantités finies. Mais il n'en faudrait pas
conclure que la pression p doit rester conslante : a
une variation minime de la densité g correspond une
variation énorme de la pression élastique p.

Devant I'impossibilité ot l'on est de rattacher les
variations de p aux insensibles variations de g. on
regarde, dans les équations (E), la pression p comme

1 L., Eoien, p. 987!
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une lonction de x, y, z, ¢ ne dépendant pas des vitesses:

on remplace Péquation de continuité (C) par celle
qui s’en déduit en 'y regardant s ecomme

g constant,
O Op Oitr

soit ; e el e "his
R R e (C™)

on caleule enfin poainsi que w, v, w, en fonction de
@, ¥, 2, { par lintégration des quatre équalions aux
dérivées partielles (E) et (C") o y élant supposé cons-
lant|.

A un autre point de vue, la relation simplifide (C")
est une équation de liaison, et la foree de laison cor-
respondante est la pression élastique regardée comme
fonction de . g

Nous reviendrons ultérieurement sur les condilions
limites el initiales que doivent vérifier les qualre
fonctions cherchées,

C. — Eyualions générales des mouvements régulicrs
el bien continus des fluides & Uélal naturel,

1. Forces de frottement intérieur intro-
duites par le mouvement '. — Nous allons établir
les équations donndes par Navier pour représenter, en
tenant compte des frolements inlérieurs, les écoule-
ments uides, soit le long des tubes fins, soit A travers
les milicux poreux, tels que les sables. lorsque ces
mouvements se [onl, ou assez lentement, ou contre des
parois asses polies, pour que les vitesses des molécules
(lnides varient graduellement, d’une manitre continue.

L J. Boussineso, 2. 81,
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3
d'un point aux points voisins et d'un instant aux sui-
vanls. Nouns excluons pour le moment les cas on il se
produil de ces brusques tourbillonnements, inévitables
dans les écoulements & travers de grandes scetions, et
qui rendent les glissements et les froltements mutuels
des conches luides énormément différents de ce (quils
seraient si le mouvement vrai de chague particule se
rédmsait 4 la translation odénérale on moyvenne de cette
particule : ces cas seront envisagés ultérieurement.,

Le centre d'un élément de volume du fluide. de posi-
tion (i, y, z)et de vitesse (u, v, w) 4 'instant /. subit
pendant Pintervalle infliniment petit consécutif of un
||+'-|||nu“r-t1'n-1|f

U — adi, V — i, W —widdl.

f.a déformation infiniment I,‘lt."litv de cel élément est

caraclérisée par les dilatations et elissements

i
i B r."'.l'—_I]r:"f ........
lj.f'
S Orp ;
Fe =={ i e .}J.I'r."_'l‘l Bttt

dont les quotients par dt : D,, ......., 3y, ia.atl 56
nomment vitesses de dilalation et vitesses de glissement.

Or, nous [lavons dit [A, § 3], cet é

cment, des que
sa délormation pure cesse de se produire on dés que
son mouvement wvisible s'arréte. reprend (rés vite sa
conslitution isotrope qui v annule les frottements inté-
rieurs. Les parties non élastiques des pressions dépen-
dent done de la déformation actuelle et non des défor
mations antérienres dont les effets. aussi antérieurs,
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se sonl effacés successivement et méme presque instan-
lanément : elles sont des fonctions de DDy
G, G, G.. Comme les vitesses relatives des molécules
dans les mouvements considérés ici sont fort petites
entre particules contiguis, il est naturel de dévelop
per les I‘E{[‘H‘Erjﬁiﬂm& de ces parties non ¢lastiques  des
pressions par la formule de Mac-Laurin. en les regar-
dant comme fonctions des D, G. et de se borner aux
termes du premier degré, si les dérivées de u, v, w
par rapport a v, y, z, sont assez petites pour qu on
puisse négliger les carrés et les produits de ces déri
vies,

Celle propriété est évidemment indépendante des
axes de coordonnées. Supposons pour un moment que
ces axes solent, a4 U'instant actuel f. paralleles aux direc
tions des dilatations principales & cet instant ¢ an point
#, Y, @ par rapport a ces axes, les vitesses de glisse-
ment seront nulles et celles de dilatation seront D.,
D,. D,. Les déformations se feront symétriguement
par rapport a ces directions : les couches fluides &14-
mentaires, normales 4 ox par exemple, de la particule
de centre M ne - subissent pas de glissement les unes
devant les autres, et la pression corrélative de cette
déformation ne pourra qu étre normale 4 ces couches.
En d'autres termes. tout élément plan principal au
point de vue de la déformation est principal au point
de vue des pressions,

Soient alors P,, P,, P, les pressions principales ;
p la pression ¢lastigque au point M, ¢’est-d-dire la pres-
SIOR qui serait exercée au point M si les molécules per
daient inslantanément leurs vitesses toul en gardant les
mémes places relalives, pression qui est fonction de la

Droits réservés au Cnam et a ses partenaires
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densité p an point M. Nous sommes conduits par ce
;||1i [:r'l'w*.f‘ih- i poser

Ph=—p-++{D, +ID, 1D,
P,=——p-+mD, 1+ m'D, | "D,
Py—= —p—+4+nD, +n'D, n"D,.

Les neul coefficients /, ..., n", qui ne dépendent
Fpin.-: des vitesses de déformation, mais ll1]ii|lH"!'J'|LHiI de
I"état de la particule supposée réduite au repos, soit &
I'état 1sotrope, se réduisent & deux seulement. En eflet,
SUPPOSONSs ¢ue 'on permute les axes ax et oy + D, el
D.,, P, et P, se permutent, tandis que D,, P, ne
changent pas. On doit done avoir

[—m', {(=m, [=m'. n=—n".

En raisonnant de méme pour chagque couple d’axes,
on reconnait gue tous les coefficients ont une méme
valeur 7, saufl les coeflicients diagonaux [, m', n" qui
ont une valeur commune distincte de la premiere, soit
2 1u.. Posons alors

$=—D, - D, D,

el nous anrons

Riae———x L T 2:-'—' ) ]
P,——ptastab, b ()
P, — — p-4+-3s 4 2uD,.

Les coefficients A el 23 varient avec la constitution de la
particule fluide, soit, pour un mouvement 1sothermicgue,
avec la densité: el, comme pour les hqudes celle-ci
cst sensiblement constanle, nous négligerons les varia-
tions de % et de w, trés petites par rapport a A el p eux-

A
memes.
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W

Revenons maintenant i des axes quelcongues. Soient
7 N e i 7 R I 0 (¢, ¢, &), les cosinus direc-
teurs des trois diveclions principales, dilatations el pres-
sions. Les formules é&tablies au § 6 du chapitre 1
s'étendent immédiatement aux vitesses de déformation,
et 'on a notamment :

t=D,~+D,+D,=D. ~+ D, D..

Multiplions enfin les

vement par a* 52, ¢

®

et R = Ty

T

meémes dgualions (1) respecti-
, et ajoutons-les en lenanl comple
des relations connues des 8§ 3 el 6 du chapitre I. 1l
vient ; N

e B e |

e=—p—4iz| 25D,

Multiplions enfin les mémes equations  respeclive

] ment par aa’, bb'; ec', et opérons de méme. Il vient

Fi—ul).

». Equations indéfinies du mouvement ou
équations de Navier'. — 1a connaissance des
pressions (N, T) en un point et des composantes de
acedlération (55 =] permel e

= S ST

déduire immdédia-
tement des équations géncrales du § 4 du chapitre |
les trois eqqualions suivantes qui sonl dues & Navier :

O i (i Ol O O |
Or — ¢ l: X—u D~ o 1‘1}-'_ T N s W} )
x Oz (N
~+ (A~ 1) e wAu,
. |

ott A désigne le symbole opératoire de Laplace :
02 D 02

r:'lj;"': _|_ '-i-'l"ﬂ_ -l_ Nz’

L E. Navign, p. 414,

2l

H
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Dans le cas d'un liguide sensiblement INCOMPres-
sible, en raisonnant comme plus haut A, § 3], on

sera condull a reduire I'.'-r|n;|li<'m de continuite i

Ovie : vy o (e

i ac i Vol i Sy b
g g i = (G**)

soil a = 0. Alors dans les cguabions de Navier les
lermes en H.—I—:M s‘annulent . et & esl une conslante,
tandis que la pression p est regardée comme une fone
tion de &=, ¥, Tk définie . avee w, v, w0, par le ".'f"'"‘hl"1"'
des guatre équations (N) et (G"¥),

La con&sidération des frottements intérieurs n'intro
duil dans ces n’-1||1:a|i--n:-t qu un coefficient w, dat a'rn'l;.f;',ﬁ'
cient de viscosité ou micux :'n-f__',u"_'f.r'.':"r'.fr." e .,-'"."r_u"l". fend
mbériewr. Ce coeflicient est +|.|".-'i|u'rt:r- par = en France,
par v en Allemagne, par v en Anglelerre. Sa mesure
resulte. comme on le verra, d'expériences lres précises
de Poisenille sur 1'écoulement permanent des |i:i|Lir.1|'.-'~
dans les tubes capillaires, expériences dont les pré-
sentes cqualions rendent parfaitement compte ; elle a
fait anssi |.l'Jhlli1'E de belles recherches 4-\|1:'-r"||m-|11,--||L-.-'.
directes d'Osborne Reynolds et de M. Maurice Couelte’.
Un peut, en unités CGS el a la température de 10°,
[FI'I.'IH]!'E_‘ pour I'ean

l-_r, O E=— 0,01 .-rH}:_'II.

et nune lon L'-i:||1ir'if|||&‘ fournit les variations de = avec la

température : 4 la température = évaluée en degrés

I M. Coverre, 2,

La bibliographie ct le résumé des travaux faits i I'étranger sm
cetle guestion sont remarquablement présentés par M. Marcel
Brillovin dans ses Le¢ons sur [a viscosité des liguides et des
gaz [ M. Brirroviv, 2).

i
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centigrades & partir de 10°, la valeup précédente de
e doit étre divisée par

(1 + 0.02884 4 0,000188 )

D. Equations générales des mowvements tourbillon-
naires el tumulluenr des Sluides & U'état natupel.

1. Des fluides a I’état turbulent. — La valeur
numérique du coelficient e des frottements intérienrs,
déduite des expériences de Poiseuille, est confirmée
par certaines observations de Darcy sur les écoulements
assez lenls le long de tuyaux polis de quelques centi-
méetres de diamétre. Mais si, muni de cette valeur de ¢,
on se met & caleuler, en usant des ¢quations précédenes,
la vitesse moyenne de 'ean qui se meut dans un canal
i section semi-circulaire de g dr?'m}'au, sous la seule
action de la pesanteur, la penle étant insignifiante
(0, 000 01), on est conduit & une vitesse comparable &
celle d'un boulet de canon sortant de la bouche 3 feu,
et ce résultal n'esl pas sens.

En fait, bien avani quaient pu s'¢labliv dans les
canaux el tuyaux de conduite les vitessps enormes qui
8’y réaliseraient dans, I'hypothése de la continuieé par-
faile des mouvements, les inégalités des parois, les bal-
lotterments inévitables & Vintérieur de grandes seclions
se combinent avee I'effet de la translation générale du
fTuide pour produire des chocs obliques contre Jles
parois, pour faire décrire aux molécules des lignes i
s enchevélrent, eof ces molécules, par leurs passages
irréguliers les unes devant les autres, développent des
tourbillonnements étendus et provogquent des pésis-
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tances lrés différentes de celles qui auraient lien si les
vilesses ne variaient pas brusquement d'un point aux
I:H-HII:-& VOISINS.

Ce passage du régime régulier a ce quon appelle le
regime  hydravligue on furbulent a 616 signaldé par
Darey?! en 1857, et Osborne Reynolds®, en 1883, le
rendit visible par une expérience élégante. Il introdui
sit dans l'axe d'un tube de verre. traversé par umn cou
rant d'eau incolore, un mince filet d'un licuide coloré,
s'echappant, sous l'entrainement du courant, de la
pointe eflilée d'un tube capillaire : 1'écoulement lent
ou régulier fut caractérisé par un filet central teinté et
|'I'-.[fltdr|'[i|1r‘; mais, des que la witesse du courant attei-
enil une cerlaine limite. ce filet se détraisit, et la
maltiere colorante se dispersa en tourbillons en travers
le tayau,

[l va de soi que le passage d'un régime a l'aulre
ne se fait pas brusquement; mais nous renongons i
cludier le mouvemenlt dans la période transitoire.

Les  phénoménes  d'écoulement  tourbillonnant el
tnmultueux sont les ]1]1t-- i]lll'url'|cl.ll|r"~ de ]11}(!['.‘[““(“](' :
st les eours d’eau n’offraient pas cette « turbulence »,
leur surface serait en général unie comme une glace,
et on ne verrait pas les herbes et jones du fond sans
cesse secoues, Ur ces phénomeénes usuels n'avaient pre
senté, jusqu’a la ]ruhlil_'nl]nll des recherches de M. Bous-
."-'~]IH':-'=[|. gquune « désespérante énigme », suivant le mot
de B, de Saint-Venanl.

Bien des observaleurs, 4 commencer par Léonard de

H. Danex, 1, p. 330-2331:
=0, RHeyxorns, § 11, p. 91-92 o Ezxperiments by Means of Colour
Bands in Glass Tubes.

Hydranllgue générale. 2
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Vinct, avaient, il esl vrai, remargué que dans une
masse fluide commencant & couler entre des parois
quelcongues, les moindres déviations causées par leurs
rugosités entrainent des choces qui se cormmmuniquent
d'une particale a 'autre, se multipliant dés que la
vitesse est notable, sillonnant bienldt la masse en tous
sens. produisant une agitation & périodicité irrégulidre.
appelée parfois par les hivdrauliciens le pouls dua cou-
rant. La done o les mécaniciens n'avaient introduit
(que des vitesses et des pressions varviant d'une maniére
parfaitement réguliére el continue de chaque point aux
points voisins et de chaque instant anx suivants, il ¥
avait liea, et ¢’était le point délicat, d'exprimer l'in-
lluence dominante des changements rapides et irréguliers
qu éprouvent la vitesse, l'acedlération et les pressions aux
divers points de la masse ; de méme que l'imperceptible
agitation calorifique d’un corps est mesurdée par la tempé-
rature. cette turbulence 4 amplitude pereeptible quoique
pelite constitue, en chaque endroit et pour chague rapi
dité de transport de la masse, un état ancuel 11 fallail
associer une grandeur mesurable. Cette difficile mise en
comple, cetle introduction d'une sorte de Imnpf’-l'aturv
de I'dcoulement a été faite par M. Boussinesq .

2. Vitesses, accélérations et déformations
moyennes locales. — M. Boussinesq dislingue
d'abord deux parties, i propriéiés toutes différentes,
dans la vitesse et aceélération g0il d'une méme parti

V. Bovssizesg, T, p. 1096 — . Bovssingsg, 8, p. 22-163: ce
mémoire fundamental a él¢ présenté & 1'Académie des sciences
le 28 oclobre 1872, — J. Bovssixeso, 18: les 8 qui suivent =ont
en partic emprunlds aux trois premieres Notes.
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cule suivie dans ses positions snccessives pendant un
bref instant. soil des particules qui passent successive-
ment par un point donné (x, y, ) de 'espace durant
un lemps [rés court.

La premiere partie, correspondant & la translation
géndrale des molécules, n'est autre chose que la noyenne
dite locale des valeurs de la vitesse on de 'accélération
effective en question ; elle est. des deux parties. la
plus grande. mais celle qui a les dérivées les plus
petites (vu gqu'elle varie graduellement, tant dun ins-
tant & l'auire que d'un point & autre ); elle est Ia
seule importante pour I'hydraulicien, enregistrable par
les appareils hydrométriques |[voir Hydraulique phy
:-:il[m-l. celle qui correspond A proprement parler &
'¢coulement : H!]‘-L'l"[l-1‘||::]1' d e t'l.-i1|:'rr-.-=v|]|1r-v par des
fonclions régulicres et relalivernent simples de &, v, 2, 1,
elle est la seule quon ait pu. .1“"“1”-‘1' M. Boussinesg,
mitroduire dans les formules.

Quant a la seconde partie. elle varie tres rapidement
avec w, ¥, =, | dans des sens opposés pour des valeurs
a peine différentes des wvariables, en sorvle que  sa
moyenne, pendant un temps assez court quelcongue,
est nulle & chaque endroit; elle peut avoir des dérivées
a valeurs notables, mais & moyenne eégalement nulle.
Clest une vitesse ou une accélération d'agitation locale.
¢ est-d-clire d'un mouvement qui, sil existait seul, pro-
duiran partoul des déformations aceidenlelles notables,
des ghissements locaux de sens divers, sans translation
gencrale dans aucune région.

Soienl u, v, w les composantes, suivant les axes, de
la vitesse moyenne locale au point (x, y, 2); u,, v,
w, les composantes de la petite vitesse irréguliere
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d'agitation [ces vitesses sont d’ailleurs deux quanlités T
parfaiternent définies en chaque point et indépendantes

du choix des axes|. Posons ; :

'I.} £ O G _l}_r: _ﬁh_'_ ‘

G e e R R i =R Dy} e e J

v

L] Guma iy 02t i

= B, 1t s ER L\fll1_.* 3

: i

Les six vitesses élémentaires de dilatation et de glis- o

sement (par rapport aux axes oxyz) d'une particule i :

I'instant ¢ sont i)

Ot - u,) Mo —-v,) | 02 - w,) :

I\I.I' e T O e e |"‘|:j_ =l —n‘_r—' e - 1

:

LT g N S v GGl o el dent Tas A

sommes algébriques des vitesses de déformation rela.

lives au mouvemeni général et de celles relatives & 4'

lagitation ; les premiéres parties (D, G) graduellement y

variables sont beanconp plus petites que les secondes 4

(D', G'), mais elles ont seules une moyenne différente :
de zéro en général, '

En effet, s1 T désigne la periode assez petite consi-
dérée, comme on a par définition

b
G
iy r—r‘:.{}.
o i

la dérivation relative & . par exemple. donne :

i '
b & — AL

7 IR
J T oz oA = 2 i
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et I'on reconnaitrait de méme que la moyenne de cha
cun des (D', G') est aussi nulle.
Il en résulte en particulier que

T

g i
(D!~ D} 4 Dy Ii =

= T

Supposons que, le fluide étant incompressible, le
mouvement ail lieu avec conservation parfaite  des
volumes aux divers instants: I'équation de continuité
¢tablit entre les vitesses effectives de dilatation sui-
vant les axes la relation linéaire

Ot —— 1) O —v,) O i)
o 5 L)

011 {i}—l—“—! H_}I—I:H_!I }—!:'I—|—H"]n —1f B

Prenons, pour l'en retrancher ensuite, la valeur

moyenne ]rH_‘r't]l* r!{‘* |‘|J<'u|i]|' erme. ]| ‘n.'i:_-rll lf:"h'j[ll'|||—

menl : B —i—il__—:—ll._u,

S1 done 'on concoit, au lien du ligquide étudié réel
lement, un fluide fictif dont la vitesse réelle serail
(i, v, w), en chaque point et a chaque instant, c’est
i-dire dont les mouvemenls vrais coincideraient avee
les monvements moyens du liquide considérd, ce fluide
lictil’ sera incompressible.

La relation établie entraine aussi
DI LD LD —o.

en sorte que la vitesse d'agitation prise separémen|
verifie aussi 'équation de conservation des volumes.
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Etudions enfin l'accélération. Sa projection sur o
est, nous l'avons vu :

O~ u,) Ot~ u,)
Pt ] B a ] ik O A
37 + (u—-Lu,) i

% : Ot — 1) L o L ey O u,)
= | l_f'._J_W‘_ - (W —t,) N s
Calculons la valeur moyenne locale de cette pro-
jection, en effectuant sur les différents termes 1'opé-

el |
=l 4

ration / _f:@ .
f—=p I

Tout d’abord, comme

O, O, O, O,

ot B L e S , st
O T S e =y Oy T 0z

est l'aceélération, suivant I'nxe des x, de Tagitation
locale, la valeur moyenne de 'ensemble de ces termes
est nulle par hypothése.

" En second lieu, les teérmes qui conliennent un fac
teur relatif 4 la vitesse moyenne et un factenr relatif i
Iagitation ont chacun une valeur moyenne nulle. On
peat en effel concevoir r|n+;-1::rmq1_1r_-.:=_. A chaque instant,
les déformations imprimées soit 4 une particule e
matiére, soil anx particules vepant passer en un méme
endroit (&, v, 2), et il en est par suite de méme tant
de leurs moyennes fque de leurs exeédents i chaque
instant sur leurs moyennes (sous la seule réserve que
ceux-ci aient deés lors-leurs propres moyennes nulles).
Il y a donc indépendance compléte des déformations
d'agitation et des déformations meoyennes locales, et
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cette indépendance. qui persisie lorsqu’on impose au
fluide la liaison ¢gui caractérise 'incompressibilité (con-
servation des volumes aux divers instants), entraine
comme rrl-r:-.i"||||:*|u'r que, dans 'opdration

les facteurs relalifs aux composanles de la vilesse
movenne peuvent &tre sortis du signe de sommation.
(In a ainsi, par exemple

I . &
: Ot ef! Ot el
¥ - e -~ W =m0,
T i {hr I O I l

3 I."IHI r-'l.|l (RIF il f
— v =— ! ———— =,
yr | e |

-

- i

1l ne reste, en lin de compte, que

; Ol O : Oyl : ; Ol
ot Tt S I T

done la composante, suivant 'axe ox par exemple, de

Uaceélération moyenne locale en un point, sexprime

sénéralement en fonction des vitesses movennes locales

et de leurs dérivées premicres, comime s1 les mouve-

ments étarent bien conbinus.

5. Pressions moyennes locales; formules
qui les définissent. — Soient N, N, N, I.”_ A
. les i'ﬂl1||1n:~."1|]|r:-'|. sutvant les axes, des ill'l.-:m‘:uult""

unitaires, & l'instant { ¢t au pomt (2, ¥, 2). relatives a
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trois ¢éléments plans orientés normalement aux axes
oayz; Moy, My, Mo, E,. G,. . les valeurs moyennes
qu’elles prennent pendant le temps tres court T. el
qui sont des fonctions continues de . Vot ke 0 D
Pys P: représentent les composantes, suivant les axes,
de la pression unitaire & travers un élément plan mené
an méme point (@, y, z) el orienté normalement 4 la
direction (ux, £. v). on a :

e Ry AT
2,

St P'on prend les moyennes des valeurs de tous les
termes pendant le temps T [z, . v ne variant pas/, on
trouve pour composanles du vecleur qu on appelle la
pression. moyenne locale relative & 1'¢lément envisagd :

R B S S e (1)

La grandeur et la direction de la pression maoyenne
locale sont indépendantes des axes choisis, lout comme
celles de la vitesse moyenne,

Létude des pressions moyennes locales est rédnite
a celle des six composanles (J0, G).

Les six pressions élémentaires (N, T) relatives aux
axes el exercées a 'intérienr de la particule, dénude de
viscosilé, entourant le poinl (a, v, z) 4 Pinstant . com-
prennent une partie clastique fonction de la densité
seule, la méme dans les (N), et nulle dans les (T). et
une partie fonction de la densité el des éearts existan|
entre la contexture interne effective de la particule el
sa contexture 1sotrope & la méme densilé ; celle partie
non élastique sannule avee ces écarts. Les dits édearls
dépendent de la rapidité actuelle des déformations.
cette rapidité ne permettant pas a la particule de
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EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES &5
reconstituer son isotropie troublée incessamment par la
continuation du mouvement relatif de sa matiére © ils
sont caractérisés par les six variables (D, -+ DLy, ..,
(GG, ...

Soit de plus g, la variation éventuelle concomitante de

densilé de la particule sur sa moyenne s pendant la

durée T de la période considérée : ¢ est ;_:'J'ilillli'“l:'l'llt'llt
variable : quant & ¢, loujours minime, & moyenne
nulle, ses puissances el ses produits par les vilesses
moyennes de déformation (D, G) pourront aussi ¢re
neglioes,

Les quantités (N, T) comprendront, outre Ia partie
élastique. fonction de s-}- 5, une partie non élas
tique fonction des sept variables s+ 2. D+ DL
G, - GLo.... Orles vilesses movennes de déformation
(D, G) sont toujours trés petites, & cause de la graduelle
variation de w, v, w en &, v, z, en comparaison des
vitesses de déformation d’agitation (D!, G (ui pen
venl élre considérables.

On peat done développer les six fonctions (N, T)
survant les puissances des (D, (), par la formule de
Taylor, réduite aux termes du premier degré.

La partie élastique, fonetion de 6+ pis et les coef-
ficients de chacun des (D. (i) peuvent &ire développés

suivant les puissances de g,. ef, eu égard 4 T'ordre e

— iy

grandeur de g, on peut limiler la partie élastique &
un terme fonction de g et a un terme du premier degré
en z,. les coefficients des (D. G) & leurs valeurs cor
respondant & g, =—o.

Prenons alars les moyennes des valeurs des rt{;\.'q’?lc'}r
pements ainsi limités sur de faibles élendues. ou durant
de courts instants en un méme endroit (a, ¥. &), pour
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avoir les pressions moyennes locales ()G, (). La partie 3
clastique donnera (la moyenne de o, ¢tant nulle), dans
les )G, une fonction de la densité movenne ¢ seule,
— plg)s et dans les T, zéro. Pour les parties non élas-
tiques, on obtiendra des fonctions linéaires et homo-
eenes des six variables (D. G) : les coefficients de ces
variables, fonctions de la densité moyenne 2, dépen-
dront, pour la particule environnant le point (x, y, ),
des vitesses d'agitation autour de ce point « par certains
caracteres géndéraux ot n'entrent pas plus les valeurs

Lot

a

imdividuelles de ces vitesses & un instant el en un point
(quaux aulres voisins dans tout intervalle ot leurs
moyennes sont nulles: ces coefficients ne sont fone-
tions™ que de la variable ¢ définissant 'état élastique
maoyen local, el. en outre. de l'agitation, elle qu elle
esl durant un courl instant dans une petite  étendue
entourant le poimnt (ax, )

Nous allons préciser davantage I'expression de ces
fonctions (DT, G).

La forme des relations (1), linéaires en 2. 5. . enlraine
existence, au point (x, v, 2), de trois élémenls plans
orthostatiques pour les pressions moyennes, cest-a-

dire sur lesquels les pressions movennes locales sonl
normales.

¥ - 3
T i AL il SN A 59 i

Dautre part, a la déformation locale moyenne. de
vitesses (D, G), infiniment petite durant le temps df,
correspond I'existence, au point (i, v, 2) et & Uinstant £,

quelconques , de trois éléments plans matériels princi- !
pawxe pour cette déformation moyenne, c’est-d-dire de _
trois éléments plans. reclangulaires entre eux, par rap 1
port auxquels la déformation se fait symétriquement .

pendant 'instant df. J
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Nous sommes naturellement conduits i admettre que
tout élément plan principal, au point de vue des défor
mations moyennes locales, est aussi principal au point
de vue des pressions moyennes locales. ¢'esl a-ire per
pendiculaire & la pression exercie sur lui.

|"[‘1-|Hu|.:-'- eIl t-iT[}l 1!_‘-4 }_:|.‘I11H rlu;" 1'||l|!':]|'lr|l||.r*|'-r- 1r.‘11'ﬂ|.”*|i_“:-_‘~
aux ¢léments prineipanx de la déformation moyenne

locale au point (@, y, z). Pour l'é¢lément normal a

l'axe des =, on a a,=—o0, G 0 es couches uides
de la particule normales a4 I'axe des x n éprouvenl pas
de glissement moyen loeal les unes vis-i-vis des antres :
elles ne possédent que le glissement di & Pagitation el
nul en movenne; des files de molécules d'abord nor-
males 4 ces couches :4'_". mmclinent tantdt dans un sens.
tantdt dans un aulre. ce sens variant d'ailleurs avec
chaque file, avec une irrégularité qui est celle méme de
|'agitation. mais de manitre &4 ne produire en délini-
tive. aucun effet moyen. Done, vu Uisotropie naturelle
du fluide, de telles déformations ne pourront don
ner lieu sur un élément plan formant une face dune
telle couche qu’a une pression movenne symélrigque
par J'upl'lrn'l A celte couche, soil |]|r+'nh'||:' a celle
u'-III'I'IH'.

Ceci admis, les formules établies au chapitre | per
meltant de |1.'1.-:-a|'i':i|| :-a.'-.':-cln‘*]m- initial au .-'_\~—L|"!1u_' formmde

{"1. {p £

par les élémenlts principaux, désignons par . gy la
les pressions moyennes locales principales, par ),
(1),, (B, les vilesses moyennes principales de dilata
tion (les glissements éfant nuls). Eu égard aux consi
déralions présentées plus haut, les pressions princi-
palas @ A0 - % pourront étee développées lindairementl

suivant les vitesses movennes locales l_‘lrr‘r{~:-;|n|s|r_1i1nlr.‘-'.
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lesquelles se réduisent aux trois dilatations (D, (0,
(1),. Soit done :

P=—p+ID, +IO, LID,

P, = — p—+ mib, - m'y, Lm0,

| (e L, ; | f [ Iy

| ° a=—p—+nl, Lal), —+n" (),

[ 1 ¥ . ¥ wis T

la pression élastique p dépendant de la densité moyenne 6
el les coefficients /.

tation .
locale.

n' dépendant de ¢ et de Fagi-
mais nullement de la déformation MOYenne

Concevons que deux des dilatations moyennes (L),
et (D, deviennent égales : Pellipsoide de délormation
devienl de révolulion autour d'une paralléle & oz, et il
doit en étre de méme de celui des pressions, ¢'est-a-dire
quon doit avoir &', =%,. Il faut donc que "=—m",
{4l =m—-m'. On trouverait de méme que m = n,
m-m"=n 4-n"; 0 =" a + =141 Nous
satisferons de la maniére la plus générale & ees condi-
ions en prenant : { —=m' —az, '=—n"—2z, m—1— 9¢.

m' —=n"— 9, n—="1—9s, ' —=m' — ¢, . m'. . & vos-
tant arbitraires.
Posons alors : (D = (D, —+ (B - (D),

J e — L mBy; 4 n'D, — 2:(1)).

Les expressions de 4., @, 4, s’écrivent alors, en rem-
placant, par exemple, dans la premiére, le coelficient de
26, (D, |- @, par (k) — (D), :

e — R 524,
UL}_-{ = —|— 2:(1)s.

. >
P=—=09_1 el
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La pression moyenne 7 (4, 494+ %) a pour
expression — p— (I, —— m'(, - n"(L),) — =00 ;
3 3

celie pression moyenne reste invariable quand on permule
|i_"_~a axes, soil iill.‘ll:rl_] on permule (&), (b, (K),: les coel-
fictents [, ', n" ont done une méme valeur ¢, , et l'on
peut poser. en fin de compte

P = — p—(g — 2:)B 4 2:00),,
. = — P (g, — 22)() L 2:00),, "‘ (2)
'[,1.1-3:—||’r+l,zl — 2 )b ——2:z(L),. \

Les coefficients : et g, — 2:, dits coeflicienis de {rol-
tement inteérienr et dimparfaite flawdité, dépendent de la
densité moyenne ¢ et du degré d’agitation ; le premier
d’entre eux = eslt aussi appelé en Anglelerre coefficient
e ianrbulence.

Revenons maintenant & des axes quelconques el cal-
culons les six pressions | JG, ) relatives & ces axes.
Soient alors (a, &', a”), (b, b, b"), (e, c

directeurs des trois directions |1r‘illn‘i]hfl|l*H. dilatations et

. ") les cosinus

pressions moyennes locales. Les relations établies au
§ & du chapitre 1 sappliquent aux |'rI'E‘HH-i1'HP.'% M0 Y eNnes
locales, et celles élablies au § 6 s'étendent aux vitesses
moyennes de déformation ; en particulier
D=0, + D, 4+D;=D,4D,+D..

Multiplions alors respectivement les relations (2)
d’abord par a®, b2, 2, f!IIiH par arm, b, ee', el -'l._iHIIEIIH:%‘—
les membre & membre. Eu égard aux relalions ainsi
ctendues, 1l vient

JI~_,_:;;: 4 (5, —2:) (D, 4D, D.) 4+ 2D,

b.—G..
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Dans les expressions de )T, )G, 6., le terme en
g —2¢) (D, 4D, 1 D.) seia 3 coup sir négligeable
vis-i-vis des autres termes en z, dans tous les mouve
ments des liquides que nous étudierons, o les chan-
gements de forme des particules seront incomparable-
ment plus grands que ceux de leur volume,

Les expressions définitives des pressions MO Yennes

locales seront done données par les h'ipl[*:ﬂ formules -

(-, -ﬁj‘{*_ﬂ, I ) =—p -|— 2z (D, D,I.. 1),

{_{T.r‘ {T_.'.'! f:-":l =k {{ll‘ {;_--'" f-'l'.:l'

i- Expression du coefficient = des frotte
ments intérieurs. — [ valeurs obtenues  des
(I, &) coincident avee celles donndes par Navier pour
le cas des mouvemonts bien continus. i cels prés que
le coefficient = dait dépendre en ¢haque point non sen-
lement de la densité g et peul-étre de la pression p,
mais encore ef surtout de 'intensité de agitation
moyenue qui S’y lrouve produite.

Dans les écoulemenis ctudiés , la densité du liquide
variera a peine ; ses changements nauront influence
que dans la mesure o jls modifierant la pression Olas-
tique. Or des expériences de Dy Buat et de Darcy onl
montré que les frottements produits par les mémes
mouvements relatifs des conches fluides ne sont pas
plus importants sous pression notable que sons faible
pression. Cela d'aillenrs parait naturel si 1'on observe
(qu une pression, méme assex considérable, influant peu
sur la densité dn H:Iuirh'. ne rapproche cudre les molé-
cules et ne doil pas rendre beaucoup plus grande leur
résistance au glissement réciprmir_u_-.

”rilpt‘?.‘ril cela, fe r'f_.le'l’{.!'r'.-'.r_‘uf g g5l {{.ru'.r‘lr;{w]h*.r:frﬁju{'!:‘uu
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de Cagitation. Quand 'agitation cesse, sa valeur se
récluit & celle du ecoefficient de Poiseuille, qui est insen-

sible vis-d-vis des valeurs que prend e quand agita-

tion devient notable. \ussi pouvons-nous considérer ¢
comme nul :1\;*4‘ I'ng]lillinlt el comme fonction de toutes
les causes qui font varier cetle agitation. Quant a cetle
dépendance . nous Pexprimerons pour chague cause de
la maniére qui paraitra & la fois la plus simple et la
plus naturelle, quitte & demander & Texpérience une
confirmation des I1:-.'|Junl'|1f_*.~=r'.~'. admises.

Nous notrs bornerons & dtudier la loi de variation
de =z pour les mounvemenls qu se l!]'lll_'Hin‘r]f dans les
I tuyanx ou dans les canaux déconverts & axe sensible-
ment droil; nous admettons done que la masse fhuide
s'écoule dans un hit & forme & pen prés evlindrigue,
de maniére que les vilesses moyennes atent pu devemr,
sur une longueur élendue, presque paralléles a une

B e =

méme direction suivanl lagquelle nous choisirons 'axe
des @, La vitesse longitudinale u sera alors trés grande
vis-i-vis des composantes ¢ et w, ou vilesses transver
sales, en sorle (que ¢ et aw seront, vis-d-vis de wu, de
petites quantités ayant leurs carrés el produit négh-
ceables. De plus. ces vitesses v et w0 ne varieront d'une
maniere sensible [i]]'n]] bout o an 11'ttIF::-= ass50% |Hlllu' 1
sur des parcours assez grands : deés lors, les aceéléra-
an o
ox D

geables devant ¢ et w. Au conlraive, |'accélération lon-

A lLOms |'!| w ot les dérivees

seront ru';;.{ll

| . ; . W i O :

i eitudinale «' et la dérvee Vs seronl de 'ordre
¢ Oar

# de v et de w. — Ces condilions définissenl ce {[li1l'!'J!

:l11|h:‘]|ﬁ* un réqgime f,"f‘fi-‘.'r.'n_*l'rf'r*mr’n." veiree.
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Nous appellerons ¢ la surface d'une section da fluide
normale a 'axe des @, el v la longuenr du eontour
mouillé de celle section., ¢'est-a-dire le perimétre de la
partic de paroi en contact avee la section fluide s .G
el % correspondent & une méme abscisse .

Le probléme & traiter étant ainsi délimite, analysons
les causes de production de I'agitation tourbillonnaire !,
« Si l'on considére, par exemple, la surface libre d'une
eau trouble coulant dans un canal. on voit sans cesse
des volumes fluides de dimensions peltites, mais finies,
un instant adhérents aux parois, s'en détiacher tout A
coup ef se propager de plus en plus vers Uintérieur en
formant un on plusieurs tourbillons & axes verticaux.
On observe aussi. surlout vers le milieu du canal. des
houillons ou tourbillons & axe horizontal. partis du
fond el qui émergent un instant au-dessus de la sur-
tace libre pour replonger aussitdt. Le trouble apporté
a 'écoulerfient, el en vertu duquel des mouvements de
sens alternativement opposés se superposent & la trans-
lation générale, qui senle est représentée en chaque
point par la vitesse moyenne locale, provient done sur-
tout d’un nombre fini, mais tres arand, de tourbillons
produits prés des parois el propagés de la,

« D'aprés cela, I"agitation tourbillonnaire dépendra
de beaucoup de causes. Et d'abord, celle qui est pro
duite en un point dune paroi doit varier : 1 avec la
vitesse moyenne locale en ce poinl [vitesse que nous
pouvons confondre avee sa composante longitudi-

t I, Boussixgsq, 8, p. 47-40. — Ce passage, d'une analyse trés
pénétrante, est cité aussi par M. Cun. Rasvr dans son cours
autographié d'Hydraunlique, de 1'Ecole des Ponts-ct-Chaussées
(1006 ).
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nale H,,!. car cette vitesse mesuare |'i||]|1L1|ﬁir:pr moyenne
qui a donné naissance aux tourbillons el (qui leur
communique lenr force vive [cette vitesse doit méme
atteindre une certaine valeur pour que Dagitation
naisse ; des expériences de Darcy, Osborne Reynolds,
Couette ont en effel montré que les mouvements sonf
bien continus, méme dans des tubes de plus d'un cen-
imetre carré de section, mais polis, jusqu’a une limite
superieure de vilesse qui est en raigon inverse du dia-

melre ) o

M

5
avec la grandeur du rapport de la

section normale (luide = & son contour monillé o+ Tap
port qui mesure 'élendue de section correspondant &
'unité de contour monillé. car cette grandeur favorise
les mouvemenits oscillatoires ., lH‘r"H'ftli”ﬁ'[f]:‘li]'i".‘-i a la
parol [ou mouvements de ballottement |, qui tendent &
en détacher les groupes moléculaires. el sans lesquels
Paction tangentielle exercée par Ja paroi sur ces groupes
n dprouverait pas de variations brusques ; or ce doiven|
dtre ces variations, combindes avee la translalion géné
rale du liquide. qui impriment aux particules fuides
des mouvemenls giratoires: 3° avee le degré de pohi
de la paroi considérée; plus celle-ci est rugucuse, plus
elle doit, en heurtant les volumes |ililli1_|l‘.‘-'~ i'Itlli:‘Ii'f"rl|‘i.
produire des tourbillons et concourirainsi 4 la formation
des mouvements oscillatoires dont il vient d’étre parlé.

« A partir des parois, les lourbillons se prapageront
vers Pintérieur, et il est impossible d'évaluer un pen
exaclement Pagilation locale qu'ils doivenl produire en
un point donné, sans connaitre les lois de leur propa-
galion et de leur extinetion (ou plutdt de leur transfor
mation en énergie interne on calovilique), el aussi celles
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de leur réflexion sur les surfaces-limites du fluide qu’ils
rencontrent. Toutefois il est naturel d’admetire (que
agitation tourbillonnaire augmente & parlir des parois,
lorsque les tourbillons émanés de celles-ci ou réfléchis
par elles se propagent sur des surfaces don I'aire est
de plus en plus petite, ce qui a lien quand le contour
mouillé de la section reste concave - gqu'elle diminue
dans le cas contraire. el quelle reste sensiblement
conslante lorsque, la section normale étant un rectangle
a base indéfinie, le contour wouillé est rectiligne. 11
est encore naturel de supposer Fagitation tourbillon
naire i peu pres la méme dans un tuyau d'une seetion
reclangulaire trés large ou circulaire que dans un canal
découvert ayanl pour section la moitié inférieure de
celle-1a, car la réflexion. sur la surface libre. des tour-
hillons parliz du fond ou des hords, doit donner nais-
sance. dans le cas du canal découvert. i une agitation
sensiblement pareille & celle que causeraient dans le
tuyau, sur la moitié inférienre des sections. les tour-
billons venus de la partie supéricure des parois.
Nous considérerons d’abord quatre cas trés simples :
d'une part, le cas d'un luyau & section rectangulaire
trés large, de largeur qu’on puisse considérer comme
indéfinie et de hauteur 2k » ot celul d'un canal décou-
vert a section pareille, et de profondeur & - dans I'un
et L'autre cas, l'influence des bhords de la section esl
négligeable ; d'autre part, le cas d'un tuyau circulaire
de rayon R. et celui-d’un canal découverl a4 seclion
demi-circulaire, coulant i pleins bards, et de rayon R.
Les rugosités sont dailleurs supposées uniformément
réparties sur toute I'étendue de la paroi. Dans ces
quaire cas, par raison de symétrie. la vitesse & |a
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parol @, est la méme sur tout le contour de la section,
et des éléments égaux quelcongues de ce conlour pre-
sentent devant eux des zones de méme ampleur a la
propagation des tourbillonnements : eette ampleur
: 5 .

mesurée par le rapport  —. qu'on appelle le rayon
maoyen, a pour valeur h dans les deux premiers cas. et
£

—dans les deux autres.

Nous admettons que D'imfluence de 'agitation sur la
valeur de & se traduit, pour les deux premiéres causes
signalées, par lexistence en facteur, dans &, de la
vitesse moyenne u, el duo rayon moyen i ou l:l

« A partir des parois, l'agitation se propage & 'inté-
ricur des sections sur des plans paralléles au fond ou
anx denx bases dans les cananx el tuyaux tres ]ul‘gfl-.-:
de hauteur b ou 2k, el sur des eylindres on demi-
cylindres conaxigues de rayons décroissants r dans le
tuvan circulaire ou le canal demi-civeulaire, I1 est natu-
rel de supposer que son degrdé se conserve sensible-
ment de conche en couche dans les deux premiers cas,
on elle ne se concentre ni se ||i:~'pr-1'.-‘-v, pf rqn'il croif
I'lE!lI.“'u I{"'.‘N' I]I‘ll\ [II'!']IiE"']'.‘"' i 1'H1]‘ r‘l]]H; r'ﬁE'ii:ﬁil |.:'1lltl"' fl.l-' |E]
ditférence de vilesse des couches. elle se concentre sui-

P . .
vanl le rapporl . mverse de celui de lenrs aires, »
i
Nous admetlrons done que e reste eonstant aux divers
points dune section dans les denx premiers cas. el

R

i[II'E| varie § |s;||-lf|' ides Imrui.»'- dans le rapport
- .-'_-‘T

= o

dans les deux antres,
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Soit alors pg le poids sensiblement constant de unité

L o
de volume de liquide, et A un coefficient d’autant plas
grand que le fond sera plus ruguenx. Nous prendrons
comme expression de premiére approximation de e

=

e =pg\hu,
pour une section reclangulaire tris large,

v H
E— iclrJr \ ]_: Il _.r'“

wour une section circulaire ou demi-cireulaire.
I

Les dimensions de ¢ sout MLT'T=". et celles de A

sont par suile I

[Yapres la confrontation avee 'expérience, la valeur
de A serail en moyenne de 0,064 (unités CGS). Done
pour un canal rectangulaire dans lequel coulerait, avee
une vilesse de 1 meétre sur le fond. une nappe d’ean
ayant 1 métre de profondeur. on aurait done =— 64
(unités CGS), soit presque Hooo fois la valeur du
coeflicient des frottements intérieurs dans le cas des
mouvements hien continus.

Nous reviendrons ultérieurement sur la loi de varia
tion de A avee le degré de rugosité.

Notons que., pour le eas d'une section circulaire. la
loi admise de variation de ¢ ne saurail étre valable aux
environs de 'axe : elle conduirait en effet A une valeur
infinie de ¢ pour r=—o, soil i une agitation inflinie
sur 'axe. el ceci n'a pas de sens physique. Au point
de vue analytique. il n'en vésulte pas de difficulté : en
effet, la vitesse relative du glissement moyen local des
conches déeroit Jusqu'a zéro sur l'axe, par raison de
continuité et de symétrie. el par suite. sur I'axe, = se

-
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tronve multiplié par une quantité qui tend vers zéro;
1l n'en résulle dans la répartition des vitesses i un
insignifiant écart local.

Toultefois, dans une seconde approximation, M. Bous-
sinesqq a cherché & représenter . dans le cas d'une sec-
tion circulaire, par la formule

!

i
R"RTv lﬁﬂ_)

PYA - W,

i e : .
L{W\j étant une fonction constamment trés pelite

pour r<_R et restant finie et différente de zéro sur
'axe. Nous n'aurons pas besoin, dans les questions que
nous exposerons, de recourir a cette seconde approxi-
mation.

Supposons enfin qu'il s'agisse d'un tuyau de forme
quelconque |cas dans !cqliu:'l il est loisible de faire ren-
trer. comme on l'a dit plus haut, celmn d'un canal
découvert]|. Soit u, la vilesse en un point déterminé
de la section z. par exemple au point le plus bas;
\, un coelficient spéeifique du degré de rugosité en ce
point. En un autre point quelconque de la section,
Nnous ex}n"lrm'-rmn-: les ¢léments analogues u el A par les
produils de ces valeurs respectivement par une fonclion,
la méme pour toutes les sections semblables, des rap-

LY = s o s e e i ; =
ports ——r:— e des coordonnées ¥s 2 du poinl con-
sidéré au rayon moyen, rapporis qui sont les mémes
aux points homologues de deux sections. En particu-
lier, le produit des deux fonctions supposées connues
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A* s ; : ;
A7 2 = prises aux divers potrts  dun  contour

mouillé, produil essentiellement positif et se réduisant
a 'unité  dans les quatre cas particuliers examinés,

.. - » - > 1‘!
sera désigné par /| A A }

5 =

PRl T TR, o :’J,V 2\
e =)

[sur le contour mouillé: |,
D'autre part . I'mu;y]r:nr offerte an ballottement vis-
a-vis de chaque élément du contour n'es plus la méme
; ‘: pour chaque élément : elle ne sers plus constammen|

mesurée par ; 1l conviendrait de la représenter

~|a

z y : . Y L
ar le produit de — par une fonetion de £ a A ’
I f ” | 5 3

-]

et — ne sera ['l.l{‘ il \'EIJ{‘HI' 1111'1:'& cnne.

Enfin', « comme VPagitation i partir des parois se
transmelttra dans la masse en s¢ concentrant ou en =e

disséminant suivant les mémes proportions aux points
homologues de T'intérieur. ou en se réfléchissant de
méme aux points homologues des surfaces limites. il
est naturel quon puisse exprimer le rapport de sa
valeur en chaque point (y,z) de 5 & ce (qu elle est an
: fond ot A et u sont A, et u,. par une fonction posi

live de la forme {*{"T—"(—] ln méme pour

7.

toutes les sections semblables dont il s’agit. 1l viendra

i J. Bovssivesg, 18, broch., P 21,
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done comme cénéralisation des formules ei-dessus -

-H,,E" { T}r ] :E: \J (]

¥

b. Equations indéfinies du mouvement. —
Considérons. & un instani fquelconque, les équations
toujours valables, d'¢quilibre dynamique du milieu

O\, T, ol
B T oy Tz T

X = 1Y,

Ty

ot l'on désigne par (N, T). (X, Y, Z) et (U, O, 14Y)
les pressions élémentaires. la [orce extérieure (réduile
ici & la pesanteur) el I'accélération au point (&, y. 2),
telles qu’elles sont & V'instant .

Fay ! 3 el o
Multiplions ces équations par 5. et intégrons
S i b )
chaque lerme entre les limites | — =l Sl

1 élant la pelite durée de l'irrégulitre période de 'agi
tation au point (@, y.z). A cause de I'indépendance
de t et de (. v, z) dans notre opéralion, on peut inté
grer sous le signe de dillérentiation, et 'on obtient dans
les premiers membres des lermes analogues a

.‘!I o T ~j-\.

& SR il T O

=t

p _"l" ¥ Gl ‘.‘IJ'

o i

La densité o et la force extérieure restant constantes.
les derniers termes se reproduisent. Enfin les termes
(O, @, CAY) fournissent les valeurs (u, ', ') caleu
lées au § 2 [p. 43].

e

i s oy ————— e . e e
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! Nous obtenons ainsi les l:‘['|1.1{1ti(}l]!:':"
|

I | P]'-T{'\__r_ {}E—s ; 1}[-‘:-2" 3% . \
f h...;_‘ _|_ ﬁ}. i Dz —FF\_F[;? J

\

. Dans ces équations, nous substituerons aux ()0, )

(5)

1| les expressions caleulées au § 3, en fonction de p,
' de = et des dérivées de u, v, w par rapport a @, y, 2,
4 ¢ sa valear donnée au § 4 pour les cas envisagés:
A u', v, w les valeurs calculées a la fin dua § 2.

A ces lrois équations liant la vifesse moyenne (i, v, w)
et la pression élastique p & @, y, z, I, nous adjoindrons,
Il |“Jllhi{IIlI" dans les guestions ict étudices 1l y a sensible-
ment conservation des volumes fluides, I{-qltmmn

Ou O O P =
O 5 Ay = e (C bis)

el nous considérerons p comme fonction de x, v, 2, !
et non de 7, comme il a été expliqué & propos des
fluides parfaits.

\uun oblenons ainsi quatre équations aux dérivées

L partielles pour déterminer les quatre fonctions u. v, w, p
: des quatre variables x, y, =. L.
b Nous examinerons en détail deux cas particuliers
irnpﬁrinnl_ﬁ.
| 1° Cas ow les frottements sonl négliyeables. — Le

coeflicient des frottements intérieurs, quoique énorme-
ment plus grand dans les mouvements tourbillonnaires
que dans les mouvements bien continus, est encore
trés petit. Aussi dans les phénoménes de bréve durée, _
les effels retardateurs des frottements intérieurs n'ayant ]

e i e e e e
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pas le temps de s'accumuler, on pourra négliger les
termes en :. Mais alors on a ;

=

I, = o, — Mo, — — P G,=06,=06.—o.,

Ir

el 'on est conduit aux équations mémes (qui régissent
les mouvements des fluides parfaits on 4 I'état ¢lasticque.
Ainsi, « lorsque les frottements sont négligeables, les
équations des mouvements des uides parfaits régissent
les mouvements tourbillonnaires et tumultuenx  des
fluides, pourvu gquon y introduise, au lieu des vilesses

vraies el de la pression vraie 4 chaque instant, leurs
valeurs moyennes locales, »

Parmi les problémes qui comporleront cette approxi-
malion, on ecilera 1'écoulement par orifices en mince
parol, écoulement par déversoir, les mouvemenls
périodiques de petite amplitude et de courte durde
d'oscillation , tels (que ceux gui constituent la houle et
le clapotis, la propagation des ondes de translation &
longuenr modérée.

Mais il est d'autres problémes o ce degré d’approxi

! mation est notoirement insuffisant : rentre dans celte
espéce I'étude de tout mouvement o chaque molé-
cule est suivie pendant un temps assez long pour que

3 I'influence des. frottements finisse par étre comparable

i 4 celle des forces extérieures : écoulement dans les

| tuyaux de conduite, éconlement dans les canaux décon-

verts, propagation d'une onde trés longue. amortisse-
ment des mouvements ondulatoires.

2 Cas d'un régime graduellement varié. — Les mon
vements dans les canaux et les tuyaux de conduite
rentrent dans la catégorie de ceux qui ont été précisés
au § 4 sous le nom de régime graduellement varié, Si

Hydraulique géndrale. 2%

N s l aat. < Bi
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l'on appelle filet fluide une ligne & laquelle sont
tangentes les vitesses moyennes locales construiles en
chacun de ses points (on un faiscean de telles lignes. &
section infinimentl petite), nous supposons que. dans
le mouvement étudié, les filets fluides sont presque
reetilignes et paralléles & une divection prise pour celle
de T'axe des @.

D'aprés cela. les vilesses transversales v el w seront.
par rapport a la vitesse longitudinale n, des quantités
du premier ordre de petitesse: 1l en sera de méme de
leurs dérivées, et. en verlu de 'éguation de conti
nuité, de L .

Oz

Enfin. a cause de la petitesse du coeflicient = (due a
celle de A), = sera assimilé¢ & une gquantité du premier
ovdre de petitesse et on négligera son produil par 'une
des quantités précédentes de cet ordre.

Il vient ainst :

Do, == = M, == — Js L =0,

- O 2 O

{I':iﬁ_}' L_-IW

Nous pouvons encore noler que les dérivées de ¢ et
de G. par rapport & & sont négligeables : elles admettent
en effet en lactenr & 'an de leurs termes le coefficient :

: : 2 TR o LS
el la trés pelite dérivée . dérivée § nouveau par
O
1 L) b 'I' } l- ¥ r "‘IE
. a1 L : e i - L] .l ¥ I ." ,ri £ .'I"‘"'.I ————
mppmr azouay, el ol aulre ferme la aerived =

d'un ordre de petitesse plus élevé, eu égard a la varia
tion graduelle admise du régime.

Droits réservés au Cnam et a ses partenaires

b e M T Sl 2t e



http://www.cnam.fr/

ST T

o e S

EQUATIONS GENERALES DU MOUVEMENT DES FLUINES

b3

En résumant les diverses simplifications ainsi légi-
timées, nous écrirons les cquations du mouvement
ainsi

0p Q- Ol ;7 Du
| B g1 _ b B Ry
T B T by (.E v, ¥ 0z (__' hE _,} -eX=¢u,
1"1‘” |
— 3y T PY=p

'éqquation de continuité conservant sa lorme.

Les denx derniéres équations enlrainent pour EXPLes-
ston de la variation de la pression quand on se déplace
dans une section normale i axe des

dp = o(Ydy - Zdz)

sy —w'dz).
N'il n'y a pas d'autre force extérieure que la pesan-
teur. Y, Z sont constanls, et 'on a comme condition
d'intégrabilité de cette expression de p dans une section ;

O’ O’

¥ Oy
Lomme les vilesses, par suite de 'hypothése de la
graduelle varviation du régime, ne changent sensible-
ment qu’au bout d'assez longs parcours, il sera permis
de regarder les accélérations latérales o', w' comme du
second ordre de pelilesse, tandis que l'accélération lon-
giludinale ' sera du premier ordre. Alors |'expression
de dp se réduil & o(Ydy |- Zdz), ¢'est-a-dire & sa valeur
hydrostatique dans une méme section normale & Paxe
des .. Si p, est la pression moyenne au point ot Paxe
des i perce la section, et s'il n'y a pas d'autre force
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extérieure que la pesanteur, en sorte que Y, Z soient
constants, nous aurons :
p=p.+p (Yy-+22),
et la dérivée de p en @ se réduit & celle de la pression
P sur laxe ox.
La premitre équation pourra alors s

0 ( oub 0/ O et O ,.
m ( ﬂy)_'L Oz (" ﬁ:_J"‘(_F- "——[i_:—,_:):;n_

Nous transformerons ultérieurement cette ¢ouation
fondamentale.

écrire ainsi

E. — Conditions initiales et conditions aux lLimites.

1. Cas d'un fluide parfait. — Les fonctions
u, v, w, p des variables @, ¥, 2, t sont définies, dans
tous les eas, par un systéme de quatre équalions, aux
dérivées partielles; mais elles doivent en oulre salis-
faire a4 des conditions que nous allons examiner,

Tout d'abord, & I'instant initial, le domaine occupk
par le fluide et la distribution des vilesses et de la
pression des divers éléments sont supposés donnés, En
d’autres lermes. pour { = o, les lonctions n, », 2. p ont
des valeurs donndes en chaque point de ce domaine. Les
conditions qui en résultent sont dites conditions énitiales.

En outre, sur les surfaces qui limitent la masse 3
tout instant, le fluide est astreint A rester en contacl
avec une paroi. fixe ou animée dun mouvement
connu, — ou a confiner & un autre fluide qui, dans nos
applications, sera I'air dont la pression sera constante
sur toute la surface considérée, dite surface libre.1l en
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résulte pour les fonctions u, v, w, p des conditions (ue
nous allons traduire analytiquement. et qu’on appelle
conditions awx limites.

Supposons que le fluide soit en contact avec une
paroi parfaitement polie, définie par une ¢quation
H(x, y, 2, [)=o0. qui renferme ou non le temps selon
que la parot est mobile suivant une loi donnée. ou est
fixe. Les molécules qui, & un instant ¢, sont en contact
avec la paroi. formenl une surface continue dont
I'équation est H (x, Y, 2, [y=o0. A l'instant {-}-di, la
surlace formde par les mémes ¢léments matériels
coineide encore avec la paroi : on ne saurait en effet
admettre qu’il se forme subitement un vide entre la
paroi et la dite surface. Or les coordonndes de la molé-
cule située en (@, y,z) a linstant { sont devenues, &
I'instant { ——dt : &= - udi, y—+wvdl, z-wdt. On doit
done avoir H(x—-udl, y—uvdt, z4-wdl, i-4-dl)=o0. el
comme H(x, y, z, ) = o pour I'élément matériel envi-
sagé, les fonctions w, v, w doivent vérifier la relation

oH ok aH aH
EAB T i YR Y S

i

pour tous les systemes de valeurs o, y, z, { salisfaisant
a I'équation H=o0. Sil est indépendant du temps, la
relation réduite exprime que les vitesses des éléments.
au contact de la paroi fixe, sonl tangentes a cetle
paroi.

Supposons qu'il s'agisse dune surface libre en tous
les points de laquelle la pression a une valeur donnée i
L'équation de cette surface est p(x, y, 2. {)=p,. et I'on
exprime, comme plus haut. que tout élément qui. a
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qw * . [ . .
'instant [. se lrouve sur la surface deséparation, glisse
sur celle surface, par la relation :

ﬁ;; : P‘-f: ﬁl,u L\Jn
RGN St TN Y T

£

En dehors de celte condition cinématigque, nous avons
i exprimer gque Ueffort exercé sur la paroi par le fluide
intérieur est, en chagque point de cetle paroi. égal et
contraire & celui gu'exerce sur elle le milien environ-
nant.

Supposons la parot fixe, pour n’avoir pas & metire en
compte son inertie. La paroi étant supposée parfaite
menk pr_r]h*. ¢ est-a-dire a réaction normale. et la pres-
ston du fhaide sur tout elément plan lai éant normale,
cette condition dynamigque ne se traduit par aucune

relation analytique entre les grandeurs prises en consi-
dération.

L'atmosphére n'exercant pas d'action de frottement
senstble sur la suace du Humde & cause de la faible
densité de Tair, la condition dynamique esl satisfaite
d’elle-méme sur la surface hibre.

2. Cas d’'un fluide naturel a mouvements
continus. — Supposons maintenant qur'il s'agisse d'un

fluide natarel & mouvements réguliers. Je dis qualors”
pres dune parot fixe mouillée par le liquide, les trois
composantes u, v, 1w de la vilesse sont nulles.

Comme en effet une différence extrémement faible de
vitesse entre des molécules voisines développe une force
de frottement appreeiable, une différence finie de vitesse
entre les molécules de la parot et celles du fluide en
contact développerail un frottement énormément plus
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grand. Ce frollement ne saurait laisser en équilibre
dynamique la couche infiniment mince en eontact avee
la paroi, car il aurait a équilibrer 'action tlangentielle
exercée par le lluide sur 'autre surface de la couche,
a moins qu'il ne corresponde &4 une vitesse extréme-
ment ]H.‘lih: de la couche, el. .‘Il'h'l]_"l.'f.]l[ll[_‘]l!{‘nl‘ 1'-:__!i1l1_‘ a
2010,

La condition cinémalique est alors identigquement
satisfaite.

\ la surface libre, en admeftant encore que le fluide
ne subisse pas de frollement sensible de la part de
I1ellll=t¢r-.[b]'tt1't‘[". NOUs aurons i t“\ini‘inw:' que les COmpo-
santes tangentielles de la force exercée par le liguide
en chague point de sa surface libre sont nulles et que
la composanle normale est égale & la pression almo-
sphériquet.

3. Cas d'un fluide & mouvements turbu-
lents. — Nous nous bornerons encore an cas dun
lit sensiblement evlindrique et d'un régime graduel-
lement varié,

Les conditions cinématiques aux surfaces limiles sont
analogues 4 ce qu'elles étaient aun § 1, & condition de
considérer Jes surfaces libres nmoyennes, surfaces conti-
nues dont les surfaces libres réelles s'écartent lédgere-
ment, irrégulitrement, et en moyenne autant d’'un coile
fque de 'autre. :

On reconnait de suite qu'une molécule qui se trou-
verail & un instant donné en un point d'une surface
limite moyenme, et posséderait la vilesse moyenne

Fl. Bovssisgse, 3, p. 383,
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locale en ce point resterait constamment située sur
cetle surface !,

Si done (2, 8, v) sont les cosinus directeurs de la
normale exlérieure 4 la parol en un point M du con-
tour », nous aurons :

al—~ o4 yw=o0 (paroi fixe).

Supposons que, ox ayant la direction du lit el oy
étant horizontal, il y ait une surface libre. Comme la
pression moyenne varie hydrostatiquement sur toute
I'dtendue de la section normale 5. nous reconnaitrons
dans un instant que, & la surface libre, p devra égaler
la pression constante p, de l'atmosphére : il en résul-
tera que la trace du plan de la section sur la surface
libre sera paralléle & oy, et par suite la surface libre
moyenne sera une surface cylindrique, # géndratrices
paralléles & ay.

Comme, 4 la surface libre, p ne dépendra pas de ¥y
[avec ce choix d'axes|, I'équation e Pa vésolue par
rapport & zdonne : z, =/ (., #), et, dans notre régime,
z; varie lentement avec @ et {. En exprimant qu’une
molécule de vitesse (u, v, ) reste sur cette surface. nous
aurons :

‘?T}' —+u i—;‘ —w=o0 |[surface libre|,

Passons aux conditions dynamiques. Soit i I'angle
de oy et de la normale au contour + au point M o la
paroi admel pour normale exlérieure (2 B.v) [la nor-
male au contour éant aussi extérieure|. Si le canal
¢tait parfaitement cylindrique, on aurait

E=—10, B =—=2C0sk, T =sIni;

! J. Bovssixesg, B, p- 07,

i s ———

Droits réservés au Cnam et a ses partenaires

b m L

&3

f]
H



http://www.cnam.fr/

EOUATIONS GENERALES DU MOUVEMENT DES FLUIDES 69

comme il ne difftre que pen de cette forme. %, .7
différeront pen de ces valeurs, el les écarls deviendront
négligeables lorqu'il faudra les multiplier par le petit
coefficient =. Cela étant, eu égard aux valeurs connues
des (2T, &), nous oblenons pour composantes de la
pression exercée sur I'élément de surface environnant le

E::him M:

/O k A i
pe=—pa-+tel| 3y 08 r.—|—-ﬁ: sin ;]
IJ___,___'—--JI',J;‘” Ps=—p.
Cetle |‘|l-¢?.~:-.~sir-r1 est la résultante d'une pression —p

normale 4 la surface limite, et d'une autre dirigée sui-
vant le filet fluide qui rase cette surface. Soil MN =dn
une longueur infiniment pelite portée sur la normale
intérieure au contour. Quand on passe de Ma N, y etz

subissent les variations — dncosh, —dnsini et u Ia
e O R 17 T

variation du égale & —| COS J—- sin 7. | dn.
- Oy " Dz

La partie tangentielle de la pression a done pour

dir. [ el . Pl .

mestire — e—— | — est dit la deényee de w prse

eln dn :

suivant la normale intérieure au contour|.

La pression exercee par la masse fluide sur une couche
matérielle infiniment mince voisine de la paroi esl
doale et contraire & Laction exercée sur l'autre face de

i
B

la méme couche par le milien formanl la limite,
lagruelle comporte une composante normale inconnue,
dont la valeur sera égale & p, et urte composanie lan-
gentielle, qui esteffort unitaire F, produit par le [rolte
ment du fluide sur la paroi, opposé & la vitesse longi-
tudinale w.
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Le frotlement exlérienr F, dépend du nombre des ]
molécules fluides qui viennent, dans 'unité de lemips.,
choquer les rugosités de 'unité de surface de la paroi.

nombre qui est en raison directede u; — de la vitesse
dont ces molécules sont animées au moment de la
rencontre. vilesse dont la moyenne est u; — enfin du

11(*5‘11? e 1‘Il;_;'ﬂ5i1f~ de la _lmr'-_-[ (qui aceélére [y]n:_, O TOns
les choes successifs. Nous sommes ainsi conduits A
poser [rmﬂ'ur:mfnuﬁnt aux resultats des expériences de
Girard constatant la proportionnalité du frotlement au
carrd de la vitesse du fluide contre la paroi] : F,.—ggBu?,

B étant un coefficient constant pour chaque nature de
paroi, mais variable d'une nature de paroi i lantre. Ce
coelficient croit bien plus rapidement avee le degré de
rogosité que ne le faisait A, et M. Boussinesq admet
oy VT S B
(ce que lexpérience a confirmd)que le rapport AE esl
constant pour les diverses espéces de parois. Aussi pose- '|
B i
rons-nous ullérieurement @ A = 7\ B, K étant un '

coellicient indépendant du degré de rugosité des parois,
mais pouvant varier avee la nature du fluide,
Nous aurons done le long du contour mouillé de la

. elu : :
paroi: —: — cgBu®,  ou encore, eu égard aux
f . .

nolations anlérienres D, § __’1| 3

du

o i

[

\

Sur un ¢lément de la surface libre. x esl minime .

a

e I:;‘r;li,,u:";f(l'_r—. 4

£ est nul, el + est voisin de 'anité. La pression exer- i
cée par le Liquide sur un élément de la couche peéri- '
N
|
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EQUATIONS GENERALES DU MOUVEMENT DES FLUIDES il

]r|1|'~1'il|mr se reduit a la composante normale — p el i
O
0z

lacomposante langentielle longitudinale ¢ Siop,

est la valeur de la pression atmospherigque, on doit done
avoir sur toute la surface libre :
O
= [las T il

La connaissance de la pression remplace icl celle de
la composanle de la vitesse moyenne lacale. suivanl la
normale. nulle le long d’'une paroi fixe.

Fn fait. & la surface libre, le pen de résislance de
I'air aux déplacements bruscues entraine. dans la couche
supéricure du fluide. des perturbations continuelles du
réoime des vitesses:; mais des abservations frés précises
A'H. Bazin onl monlré que ces |w-|'lnri_mlinn.-a n'altérent
pas les vilesses moyennes locales de quanliteés appreé

ciables?,

1 H. Banx, 1, p. 176-177. — J. Boussisesg, 18, p. 14,
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APPENDICE

Formules de Riemann et d’Ostrogradsky
(ou de Green). — Nous aurons maintes fois & utili-
ser une formule donnée par Riemann et qui permel de
transformer une certaine intégrale double en une inté
grale curviligne. Nous 'établirons sommairement?.

Soient 'V et W deux fonctions de denx variables
indépendantes y. z; considérons I'intégrale de surface

\ (2 gl 1‘!“1) FEF
LEDE TS 0N
ctendue & une aire ¢ du plan des yz, de contour e et

1} ¥V oVy

dans Impwliu - : sont bien  détermindes
0z Oy

et continues. Supposons de plus que le contour de aire
satisfasse 4 cetle condition qu i chaque abseisse ¥ cor-
respondent seulement deux ordonnées z ol de méme i
a chaque ordonnée deux abscisses.

s DY i £
Pour calculer o dz, on divisera laire ¢ en
bandes infinitésimales de largeur dy, paralléles a Paxe des

' B. Bismaxy, Tnangural Dissertation, & 7, p.12-14 (1851),
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APPENDICE T3

z. On intégrera d’abord le long de la bande d’abscisse y,
d'ordonnées extrémes z; et z,, ce qui donnera :

Vr-z) — V(@ 2)
el I'on aura & prendre l'intégrale simple

[V 2) —V(y, 2)]dy.

entre les abscisses extrémes du contour: cetle inté-

Fig. 4.

orale n'est aulre que S\' (v, 2)dy, élendue au contour

i de . déerit dans le sens |m:eLI1I‘.

L oW : :
De midme. S.Eﬁ}’ = a pour valeur S'\\ {:r,:]r.f:,

étendue au méme contour décrit dans le sens néga-
tif.

Réunissant les deux résultalts, nous aurons la for-
mule de Riemann :

OV . dDW) e N o

Hydrauligue géndrale. 2
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Té APPENDICE
Uintégrale curviligne correspondant & une description
du contour dans le sens négatil.

Supposons en particulier que V et W aient la forme
particuliere

; l.‘lg Om
.._|. - i e | § = e ]
Py - Oz W= It}'_}n.‘h'

Vors 'élément & intégrer s'éeril

5‘1 ’_.l
Wlz — Ydy =W ‘7 e — \ﬁ rh’ |

0 ¥

ou, en désignant par fl'rff un élément du contour et

I"angle de la direction de parconrs de cet élément avec oy :

Cln= a0

W] 57 sina— 52 dy.

Gy D

Menons au centre M de 1'élément u").r une pelile nor-
male MN = dn au contour L NETS I'intériear de Paire.
e point N a pour coordonnées :

Yy — dn sin e, 2 - dn cos o,

el gquand on passe de M & N, la fonetion o subit la
ey L T 1“3_')
varahon g — - [ — SN g — 1 gns g ] i .
i Oy Az

Nous aurons done en lin de comple :

K 18 -' . D) ( Do\ ) e do
'_' i = s = g
Sﬁ F’ ‘\‘jr' \ 0 \' } |h' 0z } y ”F,.; t"? r e rf‘{'
L : i
T etant ce que nous avons appelé la dérivée de o

1]
[_r{'i:-u_- dans Je sens de la normale inlérieure & Vaire -,
el le contour o étant déerit dans le sens positif,
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APPENDICE Ta

Dans le cas .w'im]rlr ot Y esl une conslante, cette for-
mule se réduit a

y r.'lljj
5;&;.”?:- Sx'rm afs

ot A estle symbole opératoirede Laplace.,

e 0
[",‘V". "|" Ozt "
Ces lormules s'étendent aisément an cas d'un con-
tour quelconqgue.
Sotent maintenant U, V., W trois fonctions des
variables indépendantes &, y, z; l'intéerale

"ol oy O
S(T‘“&T —I s |‘U.'I i Oz } dv

élendue & un volume U Limité & une surface 5 fermde
: il oy W\ ! 5
el on : . - sonl bien déterminées
0 ﬂ"}" 0z

et conlinues. se ramene aisément de la méme maniere
4 une intégrale étendue & la surface 5. Si «, §, v sonf
les cosinus direcleurs de la normale. intérieure au
volume U, en un point de la surface limite, et ds un
elément de la surface S environnant ce point, cette
intégrale est égale a

§ (U BV -+ W) ds.

L'égalite de ces intégrales constitue la formule d'Ostro
gradsky.

51 U, V., W sont, & un facteur W (x, y, z) pres, les
dérivées partielles d'une fonction o (x, y, 2). Uexpres

; (b 1o O (o] o |
SLOEL: SRt s e e gk autre chose gue
R el S Y 5. M étant autre chose que
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16 APPENDICE
Sl da . : :
la dérivée —= de la fonection o, prise suivant la

dn

. - . 0
normale mtérieure au [']DI'I'IHI[](‘ L), on aura:

W

S _ﬁu* (i Tl s T R o O ) :
S ' ﬁ_T{.\l O )_._:"I-‘T IlL] Fr} ! l."l‘ [\.l h ) H dt

©
—\ ¥ 1.’:?_ ds.
dn

Si W' n'est quune conslante, cetle formule se réduil
encore: il vient :

-fg..'
S _\,- o= S~. n ds.

ot A est le symbole opératoire de Laplace a irois
variables.
Cette dernitre formule a été donnée par G. Green,

avant Riemann et Ostrogradsky.
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PREMIERE SECTION

PHENOMENES OU L'INFLUENCE DES FROTTEMENTS
EST' NEGLIGEABLE

CHAPITRE 1

THEOREMES GENERAUX

. Principe de Daniel Bernoulli'. — Suppo
sons (u'en chaque point la vitesse moyenne locale el
la pression moyenne solent indépendantes du temps,
auquel cas on dit que le mouvement est permanent.
L'influence des frottements inlérieurs élant, par hypo-
thése. négligeable, les équations du mouvement ne
sont autres que celles des fluides parfaits :

Op
0 (2, ¥ 2)

[

= (X, Y, Z)— (u, v, w').

1
Ajoutons ces trois dguations apres les avolr multi-
plides respectivement par les variations

de = udt, dy = vdt, dz = wdt

1 D. Benvovrur, p. 11. — J. Bovssixgse, 8, p. 53l.
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T8 MOUVEMENTS A FROTTEMENTS NEGLIGEABLES

des coordonndées d'une particule pendant le temps
infiniment court df. Si I'on observe : 1* que la pres
sion p ne dépend que de @&, v, z: 2° quen désignani
par T la cote de la particule au-dessus d'un plan hori
zontal fixe situd sous le fluide, on a :

N = Ydy 4 Zdz =d (— ¢%) ;

,1

o que les accélérations o', v, w' de la particule ne
sonl autre chose que les dérivées lolales, par rapport
au temps. des composantes u, v, w de la vilesse, il
viernl

/| s M P A
( r“_"r.‘!—_ T A e A ol ot

Par suite, en désignant par V la grandear de la
vitesse de la particule, et en suivanl la, particule dans

les positions successives qu'elle occuperait en vertu du |
mouvemenl moyen, on o }i
R A !
=P —-'ir— JI— A Cionslt, |
o 'y |

1 . ; L 1 )
Liinvariance de la quantitt — ! -+ e
it vy
long d'un ménte filet n'est que Pexpression du prin-
cipe de la conservation de 1'énergie,
ra L]

La quantité’ ——. hauteur dont il faut laisser tom-
24

ber sans vitesse 'élément Muide en chute libre pour
qu'il acquitre la vitesse Y, s'appelle la hauteur due 0
la vitesse V. :
L
1\_.-I"

en cquilibre sous aclion de la pesanteur, capable

La pression hautenr de la colonne du liuides
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THEDREMES GENERAUX 19
d'exercer sur sa base la pression p, est dite hauteur dy
liquide représentalive de la pression p.

Cette terminologie permel d'énoncer ainsi le résultal
¢labli @ Dans le mouvement Jr?f'rnw.rrr'.rr# d'un fluide sans

frotiemeni, en tous les poinis d'un méme filel liguide, la

hawteur an-dessus o 'un ;:r’fm forizontal jn‘r‘ la hautenr
die & la vitesse et la  hauteur représentative de la
pression onl une somme constanle.

Théoreme de Lagrange et de Cauchy. —
Supposons maintenant le mouvement quelconque, per-
manent ou non. Un cas exirémement important esl
celuil oni la force extérieure [";. 2 4 :-":] dérive d'un |]frTi"T]—
tiel F (x, y, z) indépendant du temps et ot les com-
posantes w, v, w de la vitesse locale sont & chague ins-

lant les dérivées par rapport & x. vy, z d'une méme
fonction o(xz, v, 2, 1) :
e 0 M
SRR ey e R

On dit alors qu'il existe un poteniiel des vilesses o
I'équation de continuilé, gui s'éeril
vy | Do O
O 02 D]:?
montre que cette fonction o est, pour chaque valeur
de {, une fonction har .-mmr.:pn de «, ¥, 2.
La condition nécessairve et suffisante d’existence d’un
potentiel des vitesses est que les bindmes
O Op 17, OV
e v e ot e
o C‘H.'_ e BIT:
B 53 O Oy

2

Wiy

sotent nuls quelle que soit la valeur de 1.
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80 MOUVEMENRTS A FROTTEMENTS NEGLIGEABLES

« St, a wun moment donné et a Uintérieur dune par-
ticule flyide, ces binémes sont nuls, ils seront encore
nuls & une époque quelconque, @ Uendroit de l'espace ol
se lrowverall & celle époque la particule, supposée animée
conslamment de la seule vilesse lranslaloire (u, v, w). »

Ce théoréme fondamental, dont 1'énoncé est di A
Lagrange', a été établi d'une manidre fort remarguable
par Ang. Cauchy *; la démonstration de Cauchy a été
réduite & la plus grande simplicité en 1872 par
M. Boussinesq®, qui, un peu plus tard, en 18 e L
remplacée par une démonstration plus directe et extré-
mement bréve!. Nous exposerons la premiére démons-
tration de M. Boussinesq, qui nous permeltra de don-
ner, en passant, quelques aperqus sur la théorie des
tourbillons d'H. von Helmholtz.

Partons des équations
I Op aOF

e D, y,2) 0@y, 2)

— (u; v, w) (1)

et exprimons les coordonnées actuelles (&, ¥, 2) des
molécules au moyen des variables de Lagrange (coor-
données initiales »,, Yor 2o eb temps {). u, v, w, p, devien-
dront des fonctions de &, v,, 2., {; u, v, wet w', v, w
ne seront autres que les dérivées de ces fonetions, x, Y, 2
d'une part et u, v, w d'antre part, par rapport i ',
puisqu’on obtient ces dérivées en suivant une méme
molécule, c'est-d-dire sans faire varier x,, Yos

CAE

1 J. L. Lacna~Ge, 2¢ partie, section XI, §8 16, 17, 18.

2 A. Cavcay, 8§, p. 40-43,

¥ J, Boussivesg, 3, § 1. ;

* J. Borssinese, 8, p. 532. Celle démonstration a é1é repro-
duile par M. Saulréaux dans sa thése [C, Savrniavx, p. 3-8,
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Multiplions les équations (1) respectivement par les

dérivées de @, y, z prises successivement par rapport
A X, Y 2o b ajoutons-les. Il vient :

i op = oF O Ox
_F _ﬁ'L‘-'-nr.'*'vf Zal o e Wy 2a) - o (%55 ¥51 Za)
O Oy O 0=

=0 O Dty Wos Bak . OB Dk Yorda)”
5!_||+|‘H_‘r5r'_:|15 g constant, on méme |]|uﬁ gém"re‘lli‘l]mllT.
fonetion de p. Les conditions d'intégrabilité de la fonc-
tion p sont au nombre de Irois : 'une d'elles s'obtien-
dra en dérivant la seconde équation par rapport a z,. la
troisiéme par rapport & y,, et en prenant la différence. Si

D
'on nole que t=—=-—-+,..., et que par suile
I Of i I
02 O

ﬁy;, A f}‘v.] SEgaticd
on trouve immeédiatement :
O\ ou Ox ou Ox ov Oy O Oy
DL Dz OFs | O, B2, £ 02 = Oy N Oz,
Dw Oz Ow 0z )
G TR Yty ol v e

La ¢uantité entre parenthoses a done une valenr
indépendante du temps.

Nons sommes ainsi conduits 4 trois intégrales pre
mieres ue nous allons, avec {_'.uuf_thj.*, mekbtre sous une
[orme. plus suggestive. Posons :

O, ¥s 2)

0 (22, v, 2)
Ot (

{']}.-n - — (l.!'_,: b 3 {":r.

a5 bely,

= I[H!_, b, L‘::I_.

0(x, ¥, 2)
0z,
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82 MOUYEMENTS A FROTTEMENTS NEGLIGEABLES
U T
l]'"_l a b ¢

|

a’ ble™

et revemons, pour les dérivédes de w, v. w. aux
variables v, y, z; autremement dit, remplagons par

: O Ot O O
exemple do, DA 5 @ —|_E. b - 55 ¢ ele.

La quantité éerite plus haut entre parenthéses devient

N

e T G ez
ma? Tt

—a'( G+ g b3 )
(g O g )
— b o 5y U -5
et s )

EATisLo 1 e Ow ., Ow )
$6 (\1 o b —|—-_;,J‘—r';).

1

Si l'on groupe les termes semblables. les bindmes
3= . . el
22, 27, 20 se trouvent mis en évidence, el leurs coeffi-

cients ne sonl autres que les mineurs du jacobien D.
Comme, pour ! = o, les élémenlts a. ', ¢" de ce déter
minant sont égaux & I'unité, tandis que les aulres sonl
nuls, la valeur constante de la quantilé envisagée se

-

réduit & la valeur initiale 22, de 2%,
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On obtient de la sorte le systéme de trois équations ;
ab) oD

e, d, 7)) T IG5
e OB S e e
_|_‘-. (:'[rl'r-"".,l’_'”]' —{*.n-- o '.'1]-

Résolvons ce systéme par rapport 4 £, », ¢, Il vient
immédiatement
oz, 2y | O, ¥, z)
S M S
1 Ol&E,¥,2)
: Dz, :
Le déterminant D a d’ailleurs une signification plhiy-
sique. In effet. des relations
0 0 0 0
% — %3z -4 3y - S R
on déduit : |
0 abD; o v, ¢ MR R b S

DIE g, Ly —=&,.

D =T £l et ] Al ity
O da O, —I_ a- Oy, - Bat O
;'ﬁ,l!ii“l:l_lli.rl'lﬁ ces formules respectivement & u, v, w, el
ajoutons-les en nolani que, par exemple,
Ou d | D il
o e i
il vient :
D f O O O \1 oD du dl)
(ﬁ:r_—l_ oy R y. Ly Al T
Mais comme d'aulre part on a, en verlu de I'écpua-
tion de conlinuitd :

il e [ O : o Qe :
&t telsetoy T 5 )=2
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la relation obtenue peul s'écrive :

s gD - d(zD)
D “ ':r”r-ff__ — R e e — 0.

Si g, est la densité initiale de la particule, comme
an -début D = 1. nous aurons : )= fas

Pour un fluide incompressible, D sera constamment
égal & l'unité,

D’aprés cela, D ne sera jamais ni nul ni infini, et

les bindmes Z, =, £ prennent la forme

Vol ye2) o O(a, 2)

(B O =i ey e B SN K S
-1 LR p :J al,._{:ll = ':-.J_VI, (L1
| e a v
¢ DR Z)
e
La conclusion est alors immédiate. — Si, pour eer-

taines valeurs de x,, Yus Zus Cest-a-dire si, autour

d'une ecertaine molécule & un moment donné, = . ¢

N A A
sont nuls, on aura, en prenant ce moment pour ori
gine du temps, £, —=n,—,—0. et les ¢quations pré-
cédentes  montrent qu'a  toute époque  on - aura
i=n={=—o0. ce qui démontre le théoréme de
Lagrange.

5. Proprietés fondamentales des tourbillons
d’Helmholtz. — Les équations oblenues par Cauchy
ont recu d'H. von Helmholtz! une interprétation phy-
sique élégante, qui constilue la théorie des tourbillons,
en usant du mot tourbillon dans un sens qui sepa
spécial au présent paragraphe.

Helmholtz nomme fourbillon au l}nini'{_’m,y. z) le

! H. HewvmouTz, p. 112-114, 118
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vecleur qui a ce point pour origine et (£,4,¢) pour
compaosantes,

Toute ligne qui, en chacun de ses points, & un ins-
tant donné {, est tangente an vecteur-tourbillon de ce
point, est dite ligne-tourbillon.

Les équations différentielles des lignes-tourbillons & un

f

: r dy iz
imstant ¢ sont: - Lt

= " L

Considérons deux particules situées & 'inslant ini-
ttal sur une méme ligne-tourbillon L,. T'une au
point M (2,, y,, 2,), Vantre au point infiniment voi-
sin M',, (x, -+ dax,,....). Soit ds, V'arc MM';, o, la
grandeur du vecteur-tourbillon en M.. On a évidem-
ment

X ” Wi
s M L) e (ckx,, dv., dz.),
s . ds, , ;

él par suite, 4 un instant [ quelconque, quand les
particules sonf venues occuper respectivement les posi -
tions M (@, ¥, 2) et M’ (x4 dx,....), on a, d'apris
le résultal de Cauchy |en désignant par ds I'arc MM'| :

<. TS L:,rf.\‘ \ O(x, ¥, :1 da,

(o Sl e e B o
O, ¥, 2) dy, L T T A

G oy, T AR T T oy

Les trois valeurs de la parenthése sont les dérivées
totales par rapport 4 s, & linstant /. des fonctions
x, ¥, z, Donc
sds d(x, v,z
0, dS, ~ ds
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Ces formules expriment que le vecteur-tourbillon
au point M. & linstant / quelconque. est porté sur la
tangente au point M, au lieu des moléeules qui étaient
initialement sur la ligne-tourbillon L. Dot cette
interpréfalion des intégrales de Canchy :

Les particules qui, a un instand ”I'””,u“:__J,r‘,,;-”-;,r_:m e
ligne-tourbillon, continuent & former une ligne-tourbillon
pendant toule la durée du mowvement.

De plus, la valeur du tourbillon & Iinstant 7 au
I:-.I'?rh'
pacls,

On appelle filet-tourbiflon la sarface obtenue en
menanlt, & un. mstanl donné, par les différents points
d'une courbe fermée infiniment petite, les lignes-tour-
billons.

point M est  w=—ue,

D'apreés le résultat préeédent, fles molécules (Ui cons
tituent @ un inslant donné un filel-tourbillon formeni
un filet-tourbillon pendant toute la durée du mouve-
ment,

Par les points M,. M, d'une licne-tourbillon appar
tenanl, a l'instant initial, 4 la limite d'un filet-tourbillon.
menons les sections droites de ee filet-tourbillon . et
soit g, l'aire d'une de ces seclions infiniment voisines
[1‘[.,:1[",,: s, | ; la masse fluide comprise enlre ces sections
et le filet a pour valeur p.z.ds,. A Uinstant 7, les molé-
cules qui constituaient ce volume formeront un antre filel
tourbillon ; celles qui étaient en M, et M, seront venues
en M et M. et celles qui formaient les sections droites
occuperont d'autres sections infiniment voisines (qui ne
seront pas neécessairement des sections droites dn non
veau ftlet: mais la masse comprise entre ces sections
aura pour valeur Ir.:ffx en appelant ¢ la section droite
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du filet menée par M et par ds I'élément MM'. La
conservation de la masse donnera |'ézalité

ﬂ-’:l"f.\- — :”_T“ﬂ;._\'“,
1 :

ol o el 1

e égard a la relation établie entre « el w,. Donc

St Fon considire les particules dont Uensemble forme
une section droite d'un filet-tourbillon, le produit de
laire qu'elles recouwvrent par la grandeur du veeleur-
tourbillon rjr;{.f lewr rru'f‘g'.h'jm.':rf reste constant I,HI_‘HHIHHF
loute la darée du mouvement.

On peul établic une propriété analogue pour l'en-
semble des sections droites d'un méme filet. Considé-
rons en effet, a un mstanl donné, deux sections
droites s et ¢ d'un méme filet-tourbillon ; soient ©
el w' les grandeurs correspondantes du tourbillon.
Comme les fonctions 2, w, { de =, v, : vérvilient iden-
liquement la relation

0 | Om , OF
TS T R 7

ot [ O . Om &
I'intégrale S ( s - ﬁ% -+ ;1: ) dv  est nulle pour

un volume {.[Ul‘lf.:f.lll{llli_‘--. el en i'ull'lif"ll“q'_'r pour le tron-
con de filet-tourbillon limité par = et . On a done
pour ce troncon, dapres la formule d'Ostrogradsky

—_—)

S{x";' —I—-- fon — ey a5 =10

Sur la surface latérale, la normale est perpendicu-
laire an tourbillon (%, ». {). et la partie correspondante
de I'iul:'eg'mle est nulle, Sur les bases, le tourbillon est

dirigé pour 'une suivant la normale et pour l'autre en
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sens inverse, et la relation précédente se réduit simple-
ment & : ws—w' ¢ — o,

Ainsi, @ un instant donné. le produil de Uaire de la
section droite d'un filet-tourbillon par la grandeur du
tourbillon correspondant a, iout le long du filet-tour
billon, une valeur constanle dite intensité de ce filet.

De la résulte qu’un filet-tourbillon ne peul pas se
terminer au milieu du fluide, car en ce point la sec-
tion droite serait nulle et par suile le tourbillon infini,
ce qui est impossible d’aprés les équations de Cauchy.
Ainsi lout filet-tourbillon se Jerme sur lui-méme en
Jorme d'anneau, ou bien va s'ourir par deux extrémi-
tés @ la paroi de la masse fluide.

Les filets-tourbillons donnent lieu & beaucon p d'autres
propriétés trés élégantes et susceptibles de contrdle
expérimental, mais qui n'intéressent pas direclement
I'hydraulicien : aussi nous bornerons-nous i Fenvoyer
a l'exposé trés condenséd que M. Marcel Brillouin a
donné des recherches relatives a ce sujet!,

i. Mouvements giratoires. Lorsque le sys-
teme fluide et le régime restent symétriques par rap-
port & un axe oz, le mouvement est dit qiraloire.

Soient alors U, V, W les composantes de la vitesse
dune particule de position M (i, y, ), suivant le pro-
longement du rayon de rotation r, suivant la perpen-
dulaire au plan zeM dans le sens de croissance du
ditdre (zoM, zox) et suivant oz. U, V, W ne dépendent
que de r=\/z*-4y*, de z et de £. De plus,

p=U=—VL, Gyl v y_w

I

M. Brurrovm, 4.
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. Calculons les projections Z, H, 7 du

tourbillon
en M sur les directions des vitesses U, V. W. Elles
sont fonctions de r, z, ¢ par hypothése. 11 est donc
loisible d’admellre, pour ce calcul, qu'a Iinstant
; actuel le plan zox passe par M : les composantes
‘l ,..]: et e ! o . l; i x.lll_.,. E-, = r
cherchees onl alors pour valeurs celles cde

- "PJ'I .-,_?

ot 'on fera x=rety=o. Il vient de suite, en par-

tant des équations de définition de 2, +, 2. en calculant

les dérivées de u, v, w d'apres les formules de trans
formation ci-dessus, puis en faisant e —=r, y —o":

s X E B 00

W A R 0 3 0 L
4 oV Y 1 O(Vr)

Bl e

! I

a2

A linstant actuel ¢, 1'élément de ligne-tourbillon

) issu du point M satisfait & I'écuation
dr ilz OV / a(Nr)
_——— oun — el Ll —.
i 7 or 2 0z
Celle équation exprime que, a [instant r‘;m'fcn.r.lrﬂn“
considéré, le produit Nr a la méme valeur tout le long
: dun filet-tourbillon.
Le mouvement giratoire est a4 tourbillon nul en
chaque point s'il vérifie les conditions
: av ol oW a(Vr)
| ety 1 1 T — 2 b el
; 0z : 0z or or

: Of = 0
soit : ‘f:-—{‘— ['-__'u"f_ F, P o 0f

r RIS T T s

C ne dépendant ni de r, ni de z, et f étant une

=

fonction arbitraire de r, z, ¢. En particulier, si le mou-
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vement est permanent, C est une constante absolue el
f dépend seulement de r et de z. ;
OUn rencontre de tels mouvements lonrpants autour
d'un axe de symélrie vertical dans le « cas d'un fluide
pesant qui s'écoule hors d'un réservoir par un orifice
inférieur, sous des charges assez peu considérables pour
que la surface libre devienne au-dessus de Torilice
sensiblement concave, et pourvu qu’il v ait en méme
temps, soil dans les C-il'('.l'llﬂﬂﬂr!t't':} mitiales, soit plutdt
dans la disposition de lorifice el des parois du vase,
quelque cause de dissymétrie tendant i produire une
rotation de la masse autour d'un axe vertical. Alors le
liquide environnant, affluant dans les parties plus pro-
fondes de celle concavité. acquiert par sa chute une
vitesse trés supérienre A la vitesse méme d'éeoulement
vers 'orilice dont sont animées les couches fluides sur
lescpuelles il glisse ; par suite. la plus grande partie de
sa vitesse est forcément horizontale, et le mouvement
devient, dans chaque creux de la surface libre. & peu
pres circulaive autour de la verticale mende par son
point le plus bas. Toule molécule fluide qui entre dans
un pareil mouvement lui appartient depuis I'instant o,
arrivant sur son bord. qui est un cercle dun certain
rayon r, décrit autour de 'axe. avec une vitesse initiale
donnée V, tangente A ce bord. elle commence & des
cendre dans la concavité, Jusqu’a celui oti, aprés avoir
déerit, en descendant Iﬂujmlrs. un certain nombre, de
spires, elle s’est assez rapprochée de 'axe de la dépres
sion et aussi de Vorifice méme pour qu'une partie trés
notable de sa vitesse soil devenue verlicale et qu’elle
puisse rapidement s'écouler. Dans ce phénomeéne, le
frottement n’a une grande influence que sur les couches
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Nuides assez ¢loignées de 1'axe pour subir longtemps
son action avant d'arriver & l'orifice. Il ne doit qu'en
avoir une négligeable, dans un premier calcul, sur
les couches qui se renouvellent fréquemment. Aussi
Jadmeltrai que la vitesse de ces couches puisse se cal-
culer, dés que le régime s'est constitué el esl censé
devenu permanent, au moyen du principe de Ber-
noulli’, »

Soit 2z N'ordonnée verticale d'une particule., comptée
positivement vers le bas, & partiv du cercle de vayon r,,
origine de lentonnoir; p, la pression atmosphérique
constante; V, la vilesse constante avec laguelle les
molécules fluides arrvivent au bord de Ventonnoir: V, p
la vitesse el la pression en un point gquelconqgue, fonc
tons de z et de r.

Les trajectoires des molécules sont, i fort pen pres.
des cercles horizontaux, saul dans le voisinage de axe:
I'acedlération verticale est par suite sensiblement nulle,

; O e b .
et I'on a T e de plus, aceélération horizon-
Lrs v
\-E
tale se rvéduit & la composante cenlrifuge e AL

comme on a :

op Op @ I.\IJH Op ¥

0z~ Or r’ hj.* T b

les deux premicres équations générales donnent

fblf,- i g Ve

B e

VL Bovssiseso, 8, po G16-620,
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La condition d’intégrabilité de p se réduit & ce que
V ne dépende pas de z.
Il en résulte comme CT{'['FI‘{?Sﬁir}Tl gt’rnf‘.mle de Pl

" ! ‘s
p=pq2 —+ 2 l — dr - Const.

D’autre part, le long de la trajectoire d'une molécule,

d’aprés le principe de Bernoulli, p—|— p— — pgz
E e | 1"

: Ve
reste constant, et par suile - -{- J ne
dépend pas de r. Ainsi
dV Y dIVrl
1- 1 1 ~
L) (16| —— i [
ffl.F + u ar

En particulier, pour les molécules de la surface de
I'entonnoir, on aura donc :
Nota

N

V=

La vitesse linéaire est done en raison inverse de la
distance a l'axe, conformément & la loi indiquée par
Léonard de Vinci et vérifiée par Venturi', Aulrement
dit, la vitesse angulaire d'une molécule varie en raison
inverse du carré de sa distance a 'axe.

Ce résultat est attribué an Suédois Swanberg®.

Enfin, comme sur toule la surface libre p=p,. la

LJ.-B, Vesxtenr, 1, 10 fragmenl et observations 4 la saile;
2, Prop. x1, L. I1I, 1800, p. 150-153. — L. o1 Vivcr, 2, manuscrit
F; fol. 13, verso; fol. 14, verso:

TH. Resar; 61, -p. 200,
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cote 2, du point de la surface libre ot la vitesse est V
a pour expression :

e S L e l

2 - ag e

b 2

J..:.' .’f, i

Cette équation définit la méridienne de la surface

. ”II:[ T :
libre. et coefficient angulaire de la tangente. croi
de — ﬂf_l'“ a l'infini, quand r va de r, & 0. La surface
0

libre a donc bien, dans la région ol nos hypothéses
sont valables, la forme d'un entonnoir dont la demi-
méridienne est concave vers le bas.

Le mouvement gue nous avons considéré est tel
gqu'on ait :

oV O(\Vr
U=0, — =0, : ih’*}- =04, 0B de=f=—a.

5. Mouvements irrotationnels; équations
générales. — Si I'on se reporle & ce que nous avons
dit de la déformation infiniment petite d'un milieu,
on reconnaitra que, dans le déplacement dune par-
ticule qu'il faut joindre & sa déformation pure pour
passer dun élat de cette particule a I'étal conséeutif,
z.m, L représentent la rotation instantanée. Pour rappeler
ce fail, les mouvemenls on =y M. L Sont partout nuls
sonl dits irrotationnels.

D'apres le théoreme établi au § 2, il suffit que,
pour chaque particule, Z,7,{ soient nuls un instant
pour qu’ils le soient constamment. En particulier, il
suffit que chaque particule soit en repos un instant,
comme il arrive, lors de la propagation d'ondes ou de
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remons, avant que le mouvement ait envahi les |1H11iﬂﬁ
considérées, pour que les fonctions =, »,¢ soient nulles

i ce moment, el par suile toujours.
Comme on a alors :

09 0o Dy
= = i W) =
o Oy Oz

o ¢tant une certaine fonclion de », v, z, 1, I'étude du
régime du fluide est ramenée & la recherche des fonc-
tons o el p.

La fonction o, nous lavons dit, considérée comme
fonction de &, y. z, vérifie I'équation

._"tf_;l _—y
D aulre part, comme on a :

W1 &1l (417 e

Dy O’ sl
on peul ¢erire w sous la forme :

, an . O O O
—_——— e — ) ———
% af A e O | . oo + ; O

O encore -

! ﬁ |\'I:, — 1= 2
s 1 : | ! —|—.r.r

Qi {W '

St l'on suppose le fuide i|u_~.1_:f|1|n'4:.:.a:~ail.1|t*. enn sorle

(ue g soit constant, et s1 I'on ]‘H'!SI‘ :

s

¢ 0g\% (0o fﬂJ"
Me=l7s) Hzy I Hae

les équations du mouvement peuvent Llc:m: 8 eorire :

i f (0 e
Bz, ) :l i"‘m"‘ l at
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[l suit de Id que la ¢uantité entre parenthéses est
une fonction de [ seulement, soit f({). Ainsi

P—¥(z,y,:)— 09
OF

e ]

1 { 1‘,.1-} 2 g\ 2 ! i ﬁ;‘",-. 1 : =t
(Y 2 {2 ] 410,
[ (1) étant arbitraire.

Il faudra. dans 1']I:'H{IH‘ 1}1'|'r}_n1i"||1i‘, trouver les fonclions
o et p verifiant ces 1"f|‘1'.|:1ill15'|1.~'1 el r'ﬂ.‘JJ|1_J|i-%r=ur1I les eondi=
tions initiales el les conditions anx limites.
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HOULE DE MER. CLAPOTIS

1. Houle cylindrique réguliére ; définition;
lois de F. von Gerstner. — L. 'action du vent sur
la mer se traduit & la vue par une forme ondulatoire,
plis ou moins régulicre, de la surface, dont les ondu-
lations se nomment vagues on lames. Si le yent vienl
A cesser, laissant I'eau & la seule influence de la pesan
teur et de ses forces d'inertie, les ondulations persistent
en prenant une forme trés réguliere et tréssimple @ elles
constituent alors la houle.

Lorsque la direction et la vilesse générales du vent
ont ¢t¢ sensiblement constantes pendant un temps assez
long el que le venl a soufflé sur une région (rés éten-
due, la houle subséquente a la forme d'une surface
cylindrique & génératrices horizontales eta section droite
ondulée mobile.

I.’observation montre que toute section droite se pro-
page dans son plan, horizontalement et d'un mouve-
menl uniforme, dont la vitesse est dite la célérité de
la houle.

Cette houle cylindrigue est dite réguliére si les ondu-
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lations successives & un instant donné quelconque sont
toutes pareilles et si la forme de chacune reste inva-
riable dans sa propagation.

L'étude dn phénoméne que nous venons de décrive
a donné lien & des recherches théoriques el expérimen-
tales trés mombreuses. dont I'historique a été fait par
Barré de Saint-Venant!. Parmi les savants qui s'en
sont occupds, nous citerons seulement Newlon, D. Ber-
noulli, Laplace, Lagrange. Cauchy, Poisson, Gerstner
surtout. les fréres Weber (de Halle ), le colonel dun
génie Emy, les ingénieurs de la marine Reech, Berlin,
de Benazé. et enfin M. Boussinesq. _

Le fait fondamental caractéristique de la houle est
que la propagation du profil n'est pas corrélative dune
translation générale de la masse fluide. Dés le xv* siecle,
Léonard de Viner I'avail observé : « La vitesse de pro-
pagation des ondulations, disait-il, excede toujours
considérablement celle que posséde leur eau, car leur
eau le plus souvent ne change pas de lieu; de méme
que le blé d'un champ, tout en restant fixé & la terre.
offre, sous I'impulsion du vent, la forme de vagues cou
rant & travers la campagne 2, »

En réalité, dansla propagation de la houle, une par-
ticule quelconque de la surface libre reste constam
ment sur cette surface et décrit seulement une trajec-
toire fermide autour d'un point fixe de I'espace (ce qu’on
exprime en disant qu’elle posséde un mouvement orbe
laire); toute particule intérieure & la masse posséde
de méme un mouvement orbitaire. De nombreuses

VB, pe Sawst-Vexast, 4, §1: Historigue suceinel des recherches
sur les ondes.
2L, ot Wmer, 4, v, HI, ch. xxxvrL

Hydraniique générale. 3%
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expériences de laboratoire et des observations a la mer,
dues aux fréres Weber (1821), au colonel Emy (18371),
a A. de Caligny (1868) et & bien d'autres, mettent ce
point hors de contestation,

L'ingénteur Franz von Gersiner, professeur a 1'Uni-
versité de Prague. avait été amené & ce résultat en 1804
par des vues théoriques développées dans un éerit!
d'une forme assez élémentaire, resté inappréecié. et
méme tout & fait inconmu en France jusqu’en 1869 :
4 la vérité, dit M. Boussinesq®, « auteur fonde ses
raisonnements et calculs sur une base fausse telle qu'il
I'énonce, mais jusle dans sa pensée. et qui revient a
supposer rendues immobiles la surface houleuse et les
autres surfaces d'égale pression. en communiquant a
toute la masse fluide une vitesse égale et contraire a
celle du transport apparent des vagues, en sorte que
les molécules de I'eau ne font plus que glisser sur ces
surfaces et entre elles. »

Quoi qu'il en soit, F. von Gerstner est arrivé, pour
une masse d'eau dont il n'exprime pas suffisamment
que la profondeur doit élre supposée indinie. & énoncer
ot démonltrer les résullats smivants :

1° Les molécules fluides décrivent toules, dans des
plans de section droite de la houle, des orbites ciren-
laires. d'nn mouvement continu et wniforme dans une
méme période 2T, synchroniquement pour toules les
molécules qui ont le cenire de leur orbite sur une
meéme verticale, et avec des vilesses dirigées, au som-
met des orbites, snivant le sens du transport apparent

t F. vox GersTyen, p. 31-86 (frad.). — Ce mémoire avait été
lu & Prague en 1801,
2 J. Bouvssinesq, &, p. 57

ds
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de la surface libre. laquelle est dés lors trochiidale,
2° Les rayons de ces orbiles décroissent avec la pro-

fondeur = de leur centre. comme I'exponentielle
LT désigne la demi-longueur d'une vague (de

téle en creux).
3" La demi-période T est reliée & la demi-longueur
de vague L par la formule

e \/: L
9

4° Chaque particule reste soumise pendant le mou-
vemenl a la pression qu’elle eprouvail dans I'étal pri-
mitif de repos de tout le fluide,

En 186¢g, M. Boussinesq 1. qui ignorait alors le tra
vail de Gerstner, établit la théorie de la houle régu-
litre en supposant seulement que les composantes duy
déplacement de chaque molécule, § partir de sa posi
tion moyenne ou d’équilibre, sont proportionnelles an
sius ou au cosinus d'une fonction lindaire du lemps
parmi bien d’autres résultats sur lesquels nous aurons
& revenir, 'auteur retronve les lois de Gerstner.

Presque simultanément, Bertin ® aboulissait aussi 4
ces lois en partant de la supposition trés vraisemblable.
quil y a, & toutes profondeurs, coincidence compléte
entre les surfaces d'onde (ou lienx géométriques des
positions, & un instant donné, de toutes les molécules
situées antérieurement sur des plans horizontanx) et les
surfaces de niveau (ou lieux des positions en lesquelles,
au méme instant, la pression a la méme valeur).

J. Borssixeso . 4,
B -L. Berrin, 4.2 P. 100-166.

L
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Bientdt aprés, B. de Saint-Venant! exposa la méme
théorie en suivant une méthode qui fut reproduite par
M. Flamant® et par les professeurs de I'Ecole du génie
maritime 9. A linverse de ce que faisait Gerstner, il
atteibue arbitrairernent aux moléecules liquides des
orhites circulaires et un mouvement uniforme sur cetle
orbite . forme et loi de mouvement pouvant conduire
pour la surface libre & une forme réguliérement ondulée
et & propagation uniforme dans son plan ; puisil vérifie
qu'un tel mouvement de la masse fluide peut satisfaire
aux équalions g{*m'&mlcs du mouvement des fluides sans
froltement. et aux conditions aux limiles (pression
constante 4 la surface libre et vitesse verticale nulle an
fond). _

Ces diverses théories fournissent bien un mouvement
<atisfaisant 4 toutes les conditions du probleme. Ce
mouvement est-il le seul admissible? Les précédentes
analyses montrent simplement qu'il est possible, mais
non qu'il est nécessaire. B. de Saint-Venant et ses con-
tinuateurs ne crovaient pas 4 sa nécessité : ils élaient
convaincus que dantres formes de houle étaienl éga-
lement possibles, comme il y en a effectivement powr
les petites profondeurs.

Clest en 1895 que M. Boussinesq * a dissipé ce doute
et a démontré que ftoule houle réguliére a4 motvemenls
svanouissants awr grandes profondeurs est régie par les
lois de Gerstner. Sa belle démonstration est une théorie
compléte du phénoméne (ui nous oeeupe.

B. ng Sanr-VeENanT, 2.
A, Frauasr, 4, p. 774-800,
Par exemple : J. Poirarp et A, Dupesour, tome I; ch. xuL

J. Bovssixgsa, 4T.

B G3 D e
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2. Theéorie de la houle : équations géné-
rales. — Nous définirons la houle eylindrigue simple
comme « un mouvement périodique d'un  liquide
pesant dans lequel tontes les particules (uides déeri-
venl indéfiniment des orbites fermées, comprises dans
des plans verticaux paralléles, et oti, sur chague sur-
face hovizontale, les mémes circonstances (vitesses et
pressions ) se reproduisent successivement, i loules les
distances d'un plan vertical perpendiculaire aux plans
des orbites, au bout de temps proportionnels & ces
distances ».

L'axe oz étant dirigé suivant la verticale descendante
et le plagn zox étant paralléle aux plans des orbites,
soit w la vitesse de propagation du mouvement suivant
l'axe ow (eélérité de la houle). Toutes les moléeules
situées sur une paralléle & oy participant & un méme
mouvement paralléle au plan zox, on aura partout et
toujours v=o.

En deux points M et M' de méme cote z el tels que
MM — wr, les mémes circonstances se produisent aux
mstants ¢ et ¢+ <. Si 'on prend pour variables carac-
térisant la molécule passant par M & linstant { les
quantités & — of, z et , la vitesse et la pression pren-
dront les mémes valeurs si on remplace & par » L w7
el [ par -7, c'est-d-dire si on remplace » — wi, z et
I par &—wl, z et {4, el cela quel que soit 7. Vitesse
et pression ne dépendent donc pas explicitement de f,
¢t ne sont fonctions que de & —wf et de :.

Si on suit alors denx molécules placées respecti-
vement en M et en M', 'une & partir de I'instant {,
Fautre & partir de l'instant (4=, elles décriront des
trajectoires identiques, dont I'une se déduit de l'autre
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par une translation de direction or et de me-
sure o, 3

Soit (a, ¢) la situation moyenne de la premiére molé-
cule décrivant sa trajectoire fermée : (a - wr, ¢) sera
celle de la seconde moléeule.

Posons : x—=a - %, :==e¢ 4. Les écarts £ et { sont
des fonctions de a, ¢ et du temps #, ou encore, si I'on
veut, de @ —wl. ¢ et {. Les fonctions % et £ ne changent
pas quand on remplace a par a 4 wt, el { par ."—}-—':.
c'esl-a-dire a —wl, ¢ et { par a —wl. et I+ 7. el
cela pour toute valeur de . Donc £ el £ ne dépendent
que de a—wt el c. Il en résulte que @, w, p, qui ne
dépendent que de x — w! et de z, soit de a4 — wi -+ £
et ¢ ¢, ne dépendent aussi que de a—wt et de ¢.

En tous les points de la surface libre. la pression a
une valeur constante donnée p, [nulle, si l'on veut|, Si
I'on regarde p comme fonction de a—wl et de ¢, la
relation p=p, définit, & tout instant. le lieu des posi-
lions moyennes des moléeules formant a cet instant
la surface libre : celte équation détermine ¢ comme
fonction de (@ — w). Sil'on regarde p comme fonction
de ir—wl et de z, 'éguation p=—p, définit & tout ins-
tant la forme de la sarface libre, surface L':gflindriql.le &
geéneralrices paralléles & oy, de forme constante, animée
de la vitesse w de translation apparente paralléle & o,
Cette éqnation défimit le z de la surface hbre. z que
nous désignerons par — h, h élant la hauleur de la
surface libre an-dessus du plan horizontal de repére
: =—o. h sera une fonction de @ —wi, ou encore de
a—wl %, on enfin de @« —w!, = dépendant de @ — o
et de ¢, et ¢ étant fonction de a — wl.

Cela posé, éerivons les équations indéfinies de hydro-
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HOULE DE MERE. CLAPOTIS 163
dynamique en prenant pour variables @ et ¢. Ces equin-

tions se réduisent & :

I [Wp sudly £l el i
e ﬁ{rf—|— ]| 5 ¢ Oe &) =l '

et I'éguation de continuité devient :

O O

(e —-2) —|_ m;-_|_ } ==t

Or une simple dérivation donne. pour une fonction
quelconque :
0 ) ( [\13 b\ G
Ve Dot T oa. J—— ﬁwr i
0 ] ﬂ: azh
T ﬁ{” _"_E De. fH: —l_ } ( —|— T'a{:l

Ni done on Pose 2

/ AEN 7 oF Oz DY
bl el has

on a en particulier :

Ot o O A o
e
M —1—3) Oa \ e 0¢ O
Wb, o OF o 0=
) — e i e = e
e —— ) Oa Oc —I_ e (\l _|_ :ﬁ:r)
.r|'rf il

etsil'onnotegune u— —(&— , w— . |'égual o
i s 1 oy dquation de

continuité s'écrit :
d BENF - O S 27 AL OF
.rf.l; (m) 1 5 x s Oe | L -rg"_.f ( ﬂ_I'Jl ; —l_ O \

d (o) O - " 0=
ye W (\F) T}r.: n’! (n"m e =
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s dD)
o1 enfin . W—U.

Ainsi 'éguation de continuité exprime que D a,
pour chaque molécule de situation moyenne (a, ¢), une
valeur invariable; il est loisible de prendre pour cette
valeur celle qu'aurail D si loutes les molécules se pla-
caient, hors de leurs orbites, sur les verticales de leurs
situations moyennes, en sorle que = s'annule partoul,
et 4 des distances 7, de ces situations moyennes choi-
sies, de maniére que la densité garde sa mlﬁm‘ effective.

s s OL,
Dans ces condilions, D se réduit & 1 PQ} S

I'égquation de continuité prend la forme :
5 1% _|__*_ﬁ’? OF - - 05 rOGes 0k (1)
o Yr A R ¥ Oa Oc Oc O e
D’autre part. les équations indéfinies du mouvement

s r *
s ecrivent :

S OpEy s ' \ 0L

F-Tﬁ_m“ "'_L‘lr.z =) ﬁrz'

{ 0 _|“ 'IN}H / 0 :

= e — — — e —+ (g —uf }(xl _ﬁF_J'

Ce

ou encore, en notant gque Wi==cag W =

SR o e d*(E, )

e g T3T 0 =

@z odr A .
S R e Y e T

3. Equations de premiére approximation;
leur intégration. Aux trois équations indéfinies
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exactes (1) et (2), nous allons substituer des équations
de In‘c‘.mi:'zw* f ppw.mimalli.ﬂn. valables pour les mouve-
ments de faible amplitude ot les carrés et produils des

dearts 2, £ el de leurs dérivées peuvent élre néghgds.

Posons : y— - —+qgle ~4=1); (3)

les équations (2) se réduisent a
i, w) g L DS (V%
O = Y 2

Multiplions ces équations par df el inlégrons & par-
tir d'un instant {, identigue pour tout le fluide; si
(., w,) est la vitesse de la molécule de position
moyenne (., ¢) & cet instant, il vient

(0 — 1, w—1t,) __ﬂi” & / P dt.

Prenons la valeur moyenne de chagque membre entre
les instants ¢, et £, 2T, 2T désignant la durée d'une
période, et retranchons-la du méme membre. Eu égard
a ce que les valeurs moyennes de % et I sont constam
ment nulles, les valeurs moyennes de u el v le seront
aussi. Si done on pose :

-3

o7 =t

S8 /"*l (“_‘/ rJ".f / Ut dt, (4)

O aura les ['E:']Fl!.iﬁl'lﬂ :

Om
ﬁ{\rr, )
qui exprimenl 'existence, & l'approximation admise,
d'un potentiel o des vilesses dans une eau houleuse.

(u, w)y=—
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Ces équations (3) s'écrivent

dE7)_ vp e
i e ﬁ{ufrl‘ i)

et sont du méme type que les éguations (2"). Soumet-
tons-les au méme traitemenl que nous avons fait subir i
a celles-ci. En posant :

|
- iy = T i
di ;
e / st / Sl B ~
' 2] v
' =" In fu .I
il viendra :
= L _ |
(50=3u. - (7) .
|
Ainsi les composantes 2. T du déplacement de la 'I
molécule de situation moyenne (a, ¢) sont les dérivées .}
partielles, par rapporl & a, ¢, d'une méme fonction & : !
nous exprimerons ce fail en disant qu’elles dérivent
d'un potentiel des déplacements @.
Quant a I'équation de continuité, réduite 4 ses termes
du premier ordre :
0% 07 0L, =
St s=1 |
it oie Ne |
elle donne par dérivation relativement & 7/ : i
Ou O 0 0 i
e oo =10y /011 - e L Py )
O —l_ O O O AT’ 5 ]
Pour former I'expression des conditions aux limites,
notons que les équations de définition (4) et (6)
entrainent : :
0 .y, O
1 T 0 ==t
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HOULE DE MER. CLAPOTIS 107

et que, par smite, I'équation (3) donne :

AT o PR s R
o1 S '“*_F DT Ll O g of

Cela &tant, & I surface libre, o

p=o0 el I"—I—:ﬁ—h..

cetle éguation et celle (qui s'en déduit par dérivation
relativement 4 ¢, donneront :

h=t il 2 09 ﬁ?_.: 3 ﬁi_?_ {3}
o O O i AT

D'antre part, aux trés grandes profondeurs, lo
s . o Lo op .
mouvement est supposé¢ évanounissant : N terd
vers z6ro et p tend A& devenir indépendant de «
el par suite de a— w, soit de £; donc W défini par (3)
tend vers une constante. qu'il est loisible de supposer
nulle, moyennant un choix convenable du plan zay
dont le niveau a ét¢ laissé indéterminé. Ainsi, pour
¢y e gl — 0.

Par saite aussi. eu ¢gard aux expressions (4) et (6)
de o et de @, pour ¢ =oc, o el O sannulen! asym-
ptotiquement.

Pour intégrer les dqualions de premiére approxi-
mation élabhlies, envisageons I'expression

08 I f‘#ff_:.«
e

A la surface libre. nous venons de voir que I'on a
T=0, d'aprés I'équation (3). Au fond, on a de méme
T=0. Nous allons maintenant monitrer que l'on a
T=0 dans loule lo masse liguide.
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Comme, < est formé linéairemenl avec les dérivees

de o et que 'on a dans toute la masse Ag=o0, on y
aura aussi : Ar=p.
De plus, la fonction = el ses dérivées, admetlant,

comme o, la période 2T quant au temps el ne dépen-
dant du tuupn (que par I.n'rumunl a1 — wl, admettront
par rapport a l'abscisse a 1.1 période 2l.= 2T |dite
longueur de vague|.

Considérons alors la masse fluide de profondeur
infinie, dont les molécules auraient leur siluation
moyenne comprise entre la surface libre. deux plans
d’abscisses a, et a, 2L et deux plans d'ordonnées
b, et b, 4-1; élendons & tous les éléments de volume

dv de cette masse l'intégrale
S‘T. Az . dv.
L'intégration pour un filet paralléle a oy est immé-
diate, et 'on est conduil & calculer
S 13 .AT ; rf':
pour tous les éléments du rectangle
a(a,. a, -+ oL; — h, o),

de contour .
Or, d'une maniére "unmah*. la formule de Riemann

donne (en y supposant Y == = 3 e — o U

- ﬂ" . [ OT\Y
S_ e S I( o) +(5) Jrfg
"_S rr’h Lk

La premiére intégrale est nulle, puisque dans toute
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HOULE DE MER. CLAPOTIS 108

la masse Ar=o0. Je dis que la derniére est également
nulle.

En effet, d'une part, i la surface libre comme au
fond; ona T =0o0.

D'autre part, en deux points de méme cole ¢ el
d’abscisses différant de 2L, = et sa dérivée par rapport
a a reprennent la méme valeur; comme les dérivies

”!I'._
normales o QL deux tels points du conlour ¢ sonl
el 3
prises suivant l'axe or, dans des sens opposés. leurs
valeurs associces sont dégales et de signes contraires;
les éléments correspondants de l'intégrale curviligne

1 ”rT P B 1 . 3 =
S T S ”Illf. se détruisent, Celle 1r1l:~g1-nh_~ est par suile
nulle.

Il reste donc

C ) 4+ Jao—en

ce qui exige que l'on ait, dans toule la masse envi-
0T 0T

saoee ! 0. =
= et are

= sera “donc une constante, el vaudra zéro, valeur
quelle prend & la surface libre ; sa périodicilé entraine
sa nullité dans toute 'étendue du liguide.
D'aprés cela, on a. quel que soil ¢ :
ﬁ? R

T T -[‘J.I';

Comme o dépend du temps par Pargument a— wl,

m . 00
on-a —:I;- s o SR
: O AT
Hydranllgne générale. 5
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si donc on note que Ag==o. U'équation précédente

3 a
ﬁ? Wt O

s'écrira : 5 -f:f Nol —
!' CP-

).

Elle est intégrable : elle exprime que., tout le long
d'une verticale quelconque. l'expression T T
.ll'llf (81

conserve la méme valeur, qui dailleurs est zéro an
fond. On a done: ]
-l‘-j-? =i /) =0

[T SR i

On en déduit par une intégration imimeédiate :

e

o=—=¢e w? Blg — wl),

F désignant une fonction arbitraive de o — wl.
Comme cette fonction IY doit étre telle que l'on ait

An=—o0, il vienl. pour la déterminer, I'équation diflé-
[l

= '
rentielle F —|— —"I F'— 0.

"

dont 'intégration donne de suite :

b -
F=0Csmn|- 0 — wi k.
: ot ( )+ A
Par un choix convenable de l'Lsrlgilw des abscisses
ou de celle des temps, il nous sera loisible de suppo-
ser k—o0. D¢s lors le }*fu’(’nffr‘f des vitesses esl :
ge-
— I

X o=
- e sin == (a — wl) .
£y i

3
| |
|
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et une intégration par rapporl i | donne I'expression
du ‘;:r;e’rn.fr}'f' des rh?p.*'rn:'r*rnr'::fs £

fc

':::f-] g f
Pb——02¢ COS '{ = ) .
‘f}r ) I !
La période par rapport au temps étant 2T et celle rela
: : ; : qT gL
tive & Vabscisse étant al,onas 2~ —nx, -‘i-_.—:'—..
L0 ] L0}

rads s
ol T e e T:\ﬁf IrJr =0,00083 VL

Daprés cela, les coordonnédes actuelles d’'une molé-
cule ont pour expressions :

i

G et
e COS Tl 5 5 =
(T —7)

La trajectoire de ceite molécule est donc le cercle

2me

de centre (a, ¢) et de rayon

e o
== £
(=)
La loi de décroissance de ce rayon quand ¢ augmente
est dite lof de fa profondeur. La décroissance esl trts
rapide ; ainst on a :

pour —;— NG LT e o o L
e
e b =0,730 ... 0,208 ... 0,043 ... 0,000 ... 0,018 ,,. 0,00008,
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Tous les cercles décrits par les molécules dont les
situations movennes sonl sur une méme verticale sont
déerits dans le méme sens avec la méme vitesse angu-

laire T : le passage au point le plus haut de chaque
orbile a lien au méme instant et la vitesse v a le sens
du transport apparent de la houle.
Ce sont les lois mémes de Franz von Gerstner.
Comme on vérifie de suile que l'on a :

O I Og

= O _ﬁ ot -’

¥ g % FI — :"_"L IIHI?
la formule 2 = C=fN i 0t
donne p=-ey¢.

Ainsi toute molécule est soumise durant toul son
mouvement & une pression constante égale a4 celle
aqu’elle subirait & I'état statique, si. dans cet état, elle
occupait sa posilion moyenne.,

La surface libre est alors définie par la condition e —o:
ses éguations paramétrigques sont

| S o 2
w=a—- sinz(f —)

[11 / il f .
= —-: COR T [‘-‘-L — ,I. ]:

1

elles délinissent, & tout instant ¢ donné, une trochoide
circulaire.

4. Equations de seconde approximation. —
Nous venons de reconnaitre la nécessilé des lois de
Gerstner, a une premiere n;)}n'o.\:]nml]{_‘nn. Reprenons

Droits réservés au Cnam et a ses partenaires

o

.

T il W

.

Farry

e

AT

e

5=

b

tr;
;


http://www.cnam.fr/

i

Al Gt i

Fa

e YT e i i T O o A il e

HOULE DE MER..CLAPOTIS 1134

maintenant les équations générales pour y garder, cette
fois, les pelits termes negligés comme non linéaires,
u égard & leur petitesse, nous y remplacerons Z et £
par les valeurs de premiére approximation que nous
venons de calculer.

La lot trouvée comme premicre approximation donne ;

3

71
-I]"f“

SR LT

o
s s l'y

en sorle que l'ensemble des deux derniers termes
négligés dans les équations générales (2) du § 9
devient :

; P s o N e
o E et L i U I_“ (.
Ofea, ¢) R \

Si done nous posons

PSR +gle+5) - ‘-}1-:-""' o (3 bis)
les équations (2) deviendronl :
d(u, w) oY,

> e da, o) (2 ler)

-y
#

dous cette forme, elles coincident (A I'indice pres
de W) avee les équations (2 bis) : soumises au méme

trailement que celles-ci, elles justifieraient 'existence

d'un potentiel des vitesses o, el d'un potentiel des dépler

cements @, les variables étant les canridonnées Moyenies
des molécules,
Comme on aurail
Oe, O,
Y

i
b
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I"équation (3 bis) donnerait [en ayant égard aux valeurs
de premiére approximation dans estimation du terme
mmpi{’z.nwnmire| ;

e ;
p % = OE TwE 1 O,
Lol o e
By 2gw 1 g ol
2 e
Co e o
e .-tll"jflizrl-‘;! ; = e g OF
A la surface libre, ot p—=oetc4=-—Hh, on a:
Igc
Pl e I O
J'r.": arra : — I
2gwT? g 0l
Dérivons celte relation par rapporl a [: comme
Oh O 0,
hiﬁ T 7 1 R A o
09, L 0%,

S = 0y R bis
il vient - PR Y (8 his)

nous retrouvons 'éguation (8), & lindice prés de la
fonction o,.

2gc
e

Aux trés grandes profondeurs, e esl mdeé-

fimmment déeroissant. et 'on aura encore :
petird =Gey oMy e b g e
Passons & I'égquation de coutinuité. Les valeurs de
premiére approximalion donnen|

g 0L 0z Of WE DEVEL & ( 0 )'

De 0c  Oc 0a . dad dct |\ dade
e
Crgts =7
— _.'- e
"
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L'équation de continuité complétée s'éerit alors :

- 2ae
vy . =gc
'ﬁ " (-".rf w*

Cpg— e
e -" 2t

Ad, —

St P'on dérive cette relation par rapporl au temps,
il vient encore :
-3?] —4 N
Nous sommes ainsi amenéds & satisfaire aux mémes
cquations indéfinies et aux miémes cquations aux limiles
(ue dans le précédent paragraphe. Les ealeuls effectuds
subsisteront, et 'on anra :

fE
e g Bty .
Oy == G e S1T0 il-f (2 — wl).
fre
& ( gyt T3 (] I
— = & CO8-—= Il —wl).
; [0 'l j

ot
Les conclusions formulées subsisteront : les lois du
mouvement seront encore celles de Gestner.
La loi relative & la pression sera seule modifide.
Comme I'expression tronvée pour &, entraine Ad, — o,
I'équation de continuité donnera -

/ = 2ge
\ {Jﬂf e
, g by _J'It 2 —

e i T
la quantilé entre parenthéses a done une valeur cons-
tante toutle long d'une verticale ; eomme pour t—roe,
les deux termes en sont nuls: nous avons

2g¢e
] {-,ilrar T w?
o :J

Lp=———"
i 90t
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Yautre part. on a encore

“e ﬁllll I :'}f‘rl
B T g 0
el par suile
- _hage | fos )
CR M TEiaR, o C PR A S RS T e g
et o M ik YA ¢ { =29 } et T S

Comme ¢T = o=, 1l vient simplement

p=gy(c —|— ) I

Si p oest le rayon dune trajectoire. vu que

qe
{: T
== &
(e)
' ; i i > - 3 7y it V2
ilyiendra: L= P ewr it —————, €n
’ w10 I’z ql: 24

;|[1E3[J[LL[1I V la vitesse hindaires constante de la molécule
décrivant cette “trajectoire. Alors p=—gzg {: - Ee ;-

La molécule snbit dans son mouvement une pression
constante ¢gale a la pression stalique correspondant &
la cote de sa situation moyenne augmentée de la
hauteur due & sa vitesse lindaire.

[l est aisé de reconnaitre que les équations fournies
par la seconde approximation :

s U T el
;:—; e HH:L"' — I:}
1)
L o i
S ol
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verifient rigoureusement les équations indéfinies (1)
et (2) du mouvemenl, ainsi que les conditions aux
limites.

Deés lors, des termes du troisicme ordre de petitesse
quon adjoindrait aux expressions de z, L, p pour les
compléter ne devraient figurer (sauf erreur relative
négligeable) que dans les parties lindaives des équations
du mouvement, et par suite ils auraient les formes des
termes de premiére approximation : on les joindrait a
ceux-ci, et on aurail par suite les mémes lois que plus
haut. Toute approximation ultérieure conduirait a la
méme conclusion.

Ainsi la houle simple en eau infiniment profonde est
si du

nécessairement régie par les lois de Gerstner,
moins les Ll{?p]m;tmun[n' sont assez pelils pour qn'nn
puisse d'abord négliger les carrés et produils de ces
deplacements dans les équations du phénoméne el
appliquer ensuite la méthode des approximations suc-
CeSSIVES,

0. Houle en profondeur finie. — Lorsqu'il
s'agit de la houle dans une masse d'eau de profondeur
linie, la théorie est beaucoup moins avancée. Nous
pouvons bien indiquer une solution du probléme, mais
non pas établir qu'elle est unique.

WA la condition que le mouvement soil évanouissant
aux grandes profondeurs, nous avons a substituer les
0z

conditions :  {=o0, E-E-IU. pour - e=—H,
si H est la cote du plan horizontal qui limite inférieu

rement la masse fluide.
Par :umlngie, nous chercherons # satisfaire aux
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¢quations du mouvement et anx conditions aux limites
en posant :

N

: : £
=M Hi“‘:( :_"- L_;}' Z:_‘icnsr:{--r;. s _r_)

M et N étant des fonctions de la cote ¢ seule. La tra-
jectoire d'une moléeule quelconque sera alors une
ellipse ayant un axe vertical.

Nous nous bornerons 4 la premiére approximation ,
¢l nous porterons tout d'abord ces valeurs = et 7 dans
I'équation de continuité (1) dérivée par rapport au
i .-"ﬂg'*} 0 ( GEN

temps : O |:._'rw T Je

s

f“h;__
: : ON T
Il vient de suite : —— "M, {2)
"'\”' I.}
; E 7 ML Ll
D’autre part, comme on a : —ar == (&0,

les équations geéndérales (2) se réduisent A :

4

i) ﬂ ru ; % ¥4 - S
‘\E?"T "II i = _‘!_- H{‘ +h:' . P 'J_":‘. [?‘-' '

elles donnent comme condition d'intégrabilité :

02 (1]

O O /

OM a=bA :
ol e =T N. (£)

Les équations (x) et (f) entrainent :

U

"\H = | J‘_'
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el par suite :

i e 1

e
M=me L —+ ne L, N=mel —pe T,

Les conditions relatives au [ond se réduisent i -

mll __-._':ll
M(Hy=o0. ou me L —npe L —p;
wH =
) T Wt oL
elles donnent : = 4 pe=—e :

7 élant une constante. Alors :

me—H) ~(c— )

M =i coshyp - ST 5 N=)sinhyp — e
4 4

el conséequemment :

| mH—o) . ( ¢ 2 \ s

===l e — = \
IJ | ].r Oz

4 m(H—¢) g @\ Om
S “““”(’T“_ I'.)_Tx}':*

el

i

i

"~ LJ 'ﬁ- 1—27 If
en posant : g= 11 ch ll[I ‘) {!.ﬂs:(—,r - ;I—)

[1 existerait done un potentiel des déplacements &
L'intégration des équations (2) donne simplement :

P : oy
S— e e g . ti=—const.,
og T i e 0
ou, eu égard aux valeurs trouvées de 7 et de @
=(H — &)

L

-_P—fr"—{—}. [HI'I
Py :
s (H o)

— ¢l
e —— C I _— s
g 1.

- ! W _
COS = (T - LIL ) ~- const.
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A la surface libre. on a p=o0; doi. a toul instant /,
une relation entre les coordonnées (n. ¢) des situations

el o P it

moyennes des molécules superficielles. En dérivant par {
rapporlt a [ cette velation. nous sommes conduits A
sl —¢) =L =(H —¢) §
sh ==t Sch-— o L, |
L. e 1.

Il résulte de la que les molécules qui forment la
surface libre ont leurs situations moyennes dans un
méme plan horizontal ¢ = const., et il est loisible de
supposer que c'est le plan woy. Alors ¢ = 0. Ainsi,
H étant la distance de ce plan au fond, on a la relation :
e |

=H L= = fwls ~H i
tgh - = _rfl_ . ou T= \/ 7 calgh £ |
La surface libre d’équations paramétriques T

: =H . Ly 1y .
&=a—-+5 ch [ Sinw (—T fT,J ll
- =H £l 7
rg— e :-|l L COS (T —_— I_J 5

a pour profil une frochoide c‘ffflra.f.ﬂ'q:.'e“.
Pour avoir I'expression de la pression en un point

quelconque, nous remplacerons dans la formule géné-
: al L tol =hi t terc |
rale ar tgh—— et nous nolerons que
gT* B s 1 !

pour ¢c=o. on a p=—o0; il vient ainsi

) 7 e £ 1 &
--I-_- —¢—————sh——cos = [(Tr — J :
og h =1 L 1l L,
L
S e - : f
Si 'on veul mettre en évidence le demi-axe vertical i

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

e ———

HOULE DE MER. CLAPOTIS

de la trajectoire d'une maolécule superficielle, comme

il est : h— 7 sh :[H ;
=(H—1)
i Ty ch — T . g Ay A
Ul vient* : c=nh = o) — §IN "('I' =
sh
I.J
=(H —¢)
3 ! 5 G Tl a
(=—b——eai(r - 1)

La célérité de propagation du mouvement est :

I gL ] =H
[.:.—_-,-r — = ii.u- e L—

En supposant que H croisse indéfiniment, on sera
conduit aux formules des paragraphes précédents et
qui sont I'expression des lois de Gerstner.

Nous reviendrons ultérieurement & cette étude pour
examiner l'influence des frottements sur lextinction
de la houle.

6. Clapotis®*. — Le colonel Emy a donné le nom
d’ondes clapoteuses aux ondes produites par la super-
position de deux houles propagées en sens inverse.
Ce phénoméne, qu'on appelle maintenant clapolis, se
produit naturellement pres des coles et dans les ports
quand une houle, arrivant du large, vient & rencontrer

1 J, Boussinesg, 8, p. 334,
2 J, Bovssingsg, &, p. 15. — F. Naup, 1t parlie.
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un obstacle vertical perpendiculaire & la direction de
propagation, et s'y réfléchit de maniére & donner nais-
sance & une houle de sens contraire. de méme ampli-
tude et de méme longueur de vague, qui se superpose
a la premitre. 1l peut étre facilement réalisé el observé
d'ailleurs dans des experiences de laboraloire (voir § 7).

Nous délinirons le clapotis simple comme le mou-
vement resultant de la superposition de deux houles
tgales qui se propagent en sens opposés et i mou-
vemenls évanouissants aux grandes profondeurs.

Supposons les déplacements assez petits pour qu’on
puisse négliger leurs carrés ol leurs produits. Les
potentiels de déplacement des deux houles composantes
sonl nécessairemenl

wC
s G
‘]’I ——¢

3

a1
['!Tlré-'.( AT
\ L

¥ i

Ve e Il.. i ¥
‘I'a_'[.ar—!r' UH:(I]. —|——I—)

Le {lf'-}Jlah'.ﬂnlent réel d'une molécule étant la <omme
géométrique des déplacements que produisent les houles
1snlées, ses composantes seronl :

1_']:[; O ” ; 0 II!IJ_ 0 ![ilz

el Oa s O 1# -

i

et le mouvement (e clapotis admettra néecessairement
un potentiel de déplacement de la forme

T

R wil T
b=d L ¢, —9C —¢ COS —— COS .
f |

i L
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|.cs composantes du déplacement d'une moléenle
sont done : -
me
. SR i S e (L N, i
Ee—ali—¢ 1 8 B e b 2 B
% gL I. |
e
P T e 1 el Tl
= —20( ¢ COS —— GOS8~ .
ﬂ].r d I
_ 5 - E T 4
Nous en déduirons : = = lang o

Ainsi les trajectoires de toutes les moléenles dont les
situations moyennes sont sur un méme plan paralléle
a yoz sont des droites également inclindes sur [Thorizon.
— (Ces droites sont verticales pour a = nl. et hori-
contales pour a=—n-—, nélant un entier quel-

2
congue,
Lﬁmplilndzr du mouvement d'une molécule a pour

=
(¢ ey

HIJ [
fondeur angmenle.

Comme les moléeules de la surface libre ont leur
silnation moyenne dans le plan ¢=o0. el comme on a

mesure 40 - elle decroit L|1mm] la pro-

¥

wr=y¢T, les équations paramétriques de la surface
libre seront :
T =l il

P —g-—2a0 1, cos I— sin T

4 4
o =l "a
Y= =l L cOs T oS &

elles définissent un profil trochoidal circulaire.
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Considérons la famille des courbes licux des positions
maoyennes (a. ¢) des molécules, lelles que toute pelite
trajectoire de molécule soit tangente & la courbe passant
par son cenire. — Le coeflicient angulaive de la tan-

e
gente a la courbe est = celui de la trajectoire est

Tl

colg . L'équation différentielle des courbes en
A

question est done

T il L
St rf:'_—__(‘(}lﬂ — H‘I(—);
IJ r: IJ '\\ IJ F

son intégration donne (4 éant une constante arbi-
T

B

: " s TRl
traire) : AR ——

IJ

Ces courbes sont dites courbes de clapotis ; elles
portent sensiblement les petites trajectoires du liguide
clapoteux. Elles coupent orthogonalement les surfaces
lieux des positions moyennes des molécules d'égal

potentiel des vitesses (& un instant donné) -

™

= Ty P
ety | B ¢ COS —— SIN T = const.

l.-l

7- Vérifications expérimentales. — Les résul
lats obtenus sont conformes & de nombreuses observa.
tions.

1" Quand une houle chemine e long dun mur ver-
tical paralltle & la divection de propagation, on vérifie
que la forme de la surface libre est assez exactement i
profil trochoidal cireulaire.

2® St 'on mesure dans des houles, par calme en
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]
pleine mer, la période T et la longueur de vague 2L,
et si Pon construil 'ensemble des points de coordon-
nées (T, L) pour un grand nombre d’observations, on

constate que la parabole T*= — [. passe trés sensi-
{

f

blement au milien de la bande des points obtenus . et
que les dcarls se répartissent a4 égalité entre Uextérieur
et Uintérieur de la parabole. Eu égard a la difficulté
de mesurage de L et de T. cette vérification est Lrés
satisfaisante !.

Ainsi, parmi les observations failes a 'aide du trace-
vagues de MM, Paris, on trouve

1 Uine série de cing vagues assez régulitres, pour
lesquelles on a :

L=, § — el g R

g1
2° Une série de quatre vagues réguliéres, pour les
quelles on a :

s e

L= 2" 10, | B ==t
it g
; 18 b :
Les écarts entre L el A ne pnnussm'll. pas

.(dépasser les errenrs possibles dans les observations.

3 Quant a la loi de la profondeur. elle n'a donné
lieu & aveun contrdle quantitatif : il est difficile d’ob-
server sous 'ean:; mais A une distance de la surface
libre de l'ordre de 2L, on constate que lagitation esl
insensible, ce qui est conforme & la loi trouvée =

4° La forme rectiligne des trajectoires du clapotis a

i A, Pams, p. 731. — E. L. Bentv, 4, passim:.2, p. 161,
¥, L. Benns, 2, p..163.
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été vérifice par MM. Boussinesq el Terquem ' méme
pour une profondeur finie, si toutefois la demi-hauteur
d'onde nexcede pas le cinquitme de la profondeur
moyenne el de la demi-longueur d'onde L. « Il suffit
de verser de I'eau dans une ange rectangulaire en verre,
puis d’y provoquer des oscillations d'une demi-lon-
gueur d'onde L égale & la longueur de I'auge, en abais-
sanl et soulevant alternativement une planchette posée
horizontalement sur le liguide, prés d'un bont. et que
I'on retire ensuile, el d'observer enfin d'une pelite dis-
tance, avec la lunette d'un cathétometre, les lrajectoires
que décrivent les poussiéres mélées 4 lean : dés que
le. mouvement s'est régularisé, on voit les particules
comprises dans le champ de la lunette décrire des tra-
Jectoires droites, dont la direction peut &tre appréciée
en faisant tourner la lunette autour de son axe jus
qu'a ce quun fil réticulaire recouvre précisément 1'une
d'elles, »

2° La :2]|m]|011l1111.1ir;1_'|";lphie est enfin venue apporter
un contrdle encore plus précis @ M. Marey . par des
series d'instantanés conséeutifs, a fourni des images
donnant la succession des états de la surface libre
d'une ean clapoteuse et les trajectoires de parlicules
brillantes mises en suspension dans cette ean : ces
images meltent ainsi en évidence la forme des courbes
de clapotis.

1.J. Bovssisesg, 8, p. 817,

¢ J.-B. Maney, p. 915. Les photographies donndes par M. Marey
ont été reproduites par M. Nau dans sa thése [Nat, p. 4, 5,
13-ty
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CHAPITRE I11

ONDES DE TRANSLATION ; OXDE SOLITAIRE

1. Onde solitaire; lois de Scott Russell;
production et propriétés expérimentales des
ondes de translation. — En 1834, un ingénieur
anglais, John Scott Russell, observant par hasard un
batean halé rapidement par deux chevaux dans un
canal étroit, vit ce bateau s’arréter brusquement, tandis
que la masse d'ean mise en mouvement par le halage
formait un gonflement vers la proue, s'en détachait,
filait le long du canal en prenant un profil arrondi trés
r{tgulim': d’environ 9 métres de longueur et o™.4o de
fleche. L'intumescence se propagea avec une vilesse de
13 kilométres & I'heure et put étre suivie & cheval pen-
dant 2 kilométres. & peu iu'im. conservant sa forme
générale, mais s'étalant et sTaplatissanl peu & peu.

Cette observation accidentelle a été¢ l'oecasion de
belles recherches expérimentales, faites d’abord sous la
direction de J. Scorr Russenn!, en Anglelerre, puis

1 Le premier mémaoire de Scotf Russell, publié en 1836, au
vaol, XTIV des Transactions d'Edimburg, et contenant les expé-
riences de 15834 eb 15335, a ¢Lé Eraduib en francais en 1837 [1.-5.
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par H. Bazix' et par A. pe Caneyy 2 en France.
Le phénoméne peut étre reproduil au laboratoire

trés simplement. 1
A une extrémité dun petit canal & fond horizontal,

a4 parois verticales transparentes, rempli d'eau en repos

a une hauteur H. et censé indélini dans un sens. éta-

blissons un réservoir en arriere de la paroi termii-

nale AB et remplissons-le & un niveau supérieur i

celui du canal. La paroi AB est disposée en forme de

vanne qu'on ouvre brusquement. La surcharge d'eau () i

se répand tumultueusement dans le canal et forme
hientdt un gonflement en saillie sur la surface du canal,
gonflement & profil d’apparence sinusoidale el qui se
propage sans déformation sensible le long du canal.

RusseLy, voir surtout la seclion III, p. 166 . Les cxpériences
furent répétées les années suivanles par Scott Russell, el leurs
nombreux résultats ont ¢té consignés par l'auteur dans le Nepart
af the fourtheenth Meeting of the British Association for the
advancement of Seience held in York in sepfember 1844,
vol. VI, p. 448: London, 1845,

! 1. Baziv, 2, p. 495-639. Ce travail a été présentd & 1'Aca-
démie des sciences en 1863,

2 AL e Canrexy. Voir diverses Notes dans les C. B. de P'Acad.
des sciences de 1544, 1852, 1863, 1864, 1866, 1860,
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Ce bourrelel constitue Uonde solitaire ou oade de trans-
lation de Scott Russell (solitary wawe).

On réalise encore le méme effet en refoulant 'eau du
canal par un déplacement longitudinal brusque de sa
paroi terminale fonctionnant comme un piston,

Scott Russell a résumé dans les lois suivantes les
résultals de ses expériences relatives a un canal & sec-
tion reclangulaive.

1* L'onde oblenue est unigue, toule en saillie sur le
niveau libre primitif du canal; sa surface est eylin-
drique, & génératrices horizontales et normales a4 la
direction du canal.

Le profil, symétrique par rapport & la verlicale de
son sommet. présente seulement deuy points d'inflexion ;
il est a peu prés sinusoidal quand la saillie h est trés
faible vis-d-vis de la profondenr I,

2 Chague particule fluide, en repos avanl que 'intu-
mescence atteigne. déerit une trajectoire ouverte, sorte
de demn E_‘“i['lréf_* dont le zrand axe est horizontlal el a
une grandeur constante. tandis que 'axe vertical, égal
a la hauteur h de intumescence a4 la surface libre,
décroit de la surface an fond o il est nul. Elle est
ramenée au repos aprés le passage de 'onde.

[l suffit de placer dans le canal des poussiéres colo-
rées pour observer ces trajectoires, el pour reconnaitre
que le passage de intumescence dans une seclion
droite translate les molécules primitivement situées
dans cette section et les améne définitivement dans
une méme autre section droite siluée & une distance
de la premiérve dgale & 'axe horizontal commun de
loutes les trajectoires, du edté de la propagation.

3° Le volume de D'intumescence ezl constamment
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¥

égal au volume Q de la masse liquide productrice de
l'onde,
4° La vitesse de propagation, ou célérité de l'onde.
a pour expression :
) — !,'-'r_r}[ H¥h}_ ;
9" Les lois précédentes supposent que le rapport F{

de la hauteur du conflement & la profondeur du canal
est pelit. Si ce rapport se rapproche de I'unité, « 'onde
se raccourcit, sa forme cesse d'étre stable, et son som
met, se propageant plus vile que sa partie antérieure .
surplombe enfin et tombe en avant, par fragments qui
donnent naissance & toul autant de nouvelles ondes
solitaires plus petites : on dit alors que  onde
ff{.:ﬁ'.“ft“. 1

Au lieu d'une intumescence. on peut produire. sous
le niveau libre du canal. une dépression se propageant
avec une forme et une célérité constantes, et constituant
une onde de franslation négative. A cet effel, on onvre
et ferme presque aussitdl une vanne pour laisser écou-
ler une pelite portion du liquide contenu dans le canal.
Aprés quelques tourbillonnements, le mouvement se
régularise, un creux se forme. qui se propage sous une
forme & peu prés invariable, avec la vitesse

e ﬁ,r-"lfl,_f;[.ll — 7
h étant la fleche de la dépression.

Cette onde négative est trés peu stable. et par sui'e
trés difficile & produire : tandis que sa partie anlerienre
s'allonge sans cesse, a sa quene 1l se forme une suite
d’ondes plus petites, de grandeurs décroissantes, alter-
nativemonl, convexes ¢l concaves, el situces les unes
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enlicrement au-dessus, les autres enticrement au-des-
sous de la surface libre initiale.

. Bazin a, de 1856 & 1808, refait en grand, sur le
canal de Bourgogne, les expériences de Scoll Russell
el a vérifié 4 nouveau les lois que nous avons énoncées.
Mais il a en outre étudié expérimentalement, sous le
nom de remous, les intumescences ou dépressions pro-
duites par l'introduction ou I'enlévement continu de
liquide a l'entrée du canal. Un afflux d’ean permanent
donne lieu & une onde qui s'allonge progressivement en
s'avancant a la surface du canal : cette onde indéfinie
esl assimilable & une succession d'ondes solitaires iso-
l¢es, et on constate en eflet que la plup.w ation de 'onde
initiale formant la téte du remous s’opére suivant la loi
w=\/g(H--h), mais la hauteur h de cette onde
initiale est environ une fois et demie la hauteur du plun
d'eau qui la snit. Si 'on augmente le débit de Pinjec-
tion, la hauteur de 'onde El]l[lﬂh’-‘ décroit; elle finit par
devenir inférieure 4 celle du remous en arriere, et le
déferlement apparail.

Bazin étudia aussi les ondes solitaires et remous.
non plus en eau stagnanle, mais dans un courant a
pente constante : il constata que l'on peut étendre assez
exactement aux ondes produites dans un courant les
lois trouvées pour le cas d'un quuidP en repos, pourvu
que le mouvement soil rapporté i des axes animés de
la vitesse moyenne des filets fluides. 1l en déduisit
I'explication des phases principales de la propagation
des marées dans la partie maritime des fleuves, el
notamment de la formation de la barre, onde initiale de
grande hauteur qui préceéde la marée, déferle avée vio-
lence aux points du fleuve ou la profondeur initiale
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est mférienre & une cerlaine limite, et produit le pheé-
nomene connu sous le nom de mascare!, dont les effets
sont parfois si redoutables.

« Le caractére commun de tous ces phénoménes
consiste en ce que la composante verticale des vilesses

des molécules fluides y est, & une premiére approxima-
tion, négligeable devant leur composanle horizontale ;
circonstance d’on 1l résulte que la pression varie presgque
hydrostatiqguement aux divers points d’'une méme ver-
ticale, et que les accéléralions dans les sens horizon-
taux, provenant principalement de la pente de la sur
face. sonl presque les mémes en ces points, ainsi par
sutte que les composantes horizontales des vitesses Engen-
drées dans des temps assez courts pour ne pas donner
trop de prise & 'influence des frottements du fond ou
des bords, »

Divers efforls. tentéz nolamment par Earnshaw et
Stokes, pour expliquer I'onde solitaire, avaient entitre-
ment échoué. M. Boussinesq. aprés avoir fixé le véri-
lable caractére qu’on vient d’énoncer, des phénoménes
dont il s'agit, a pu, non seulement rendre comple de
la formation et de la régularisation rapide de celie
onde, donner sa vitesse de propagation et I'équation
de sa coupe longitudinale, ainsi que délerminer les
trajectoires paraboliques (4 axe vertical dirigé vers le
bas) qu’y décrivent les molécules liquides. Mais il a,
de plus. retrouvé, par la méme analyse, les détails les

plus minutieux de la propagation des ondes négalives,

des longues intumescences, des remous indéfinis.
G'est cette théorie, donnée en juin 1871 par
M. Boussinesq, que nous allons exposer '

£

1 J. Boussingsq, 3, passim; 8, p. 280-315, p. 360- 123, p. 4
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2. Formation de l'équation aux dérivées
partielles qui régit la hauteur d’une intu-
mescence quelconque. — Nous nous limiterons
11 an cas 'un liquide au repos, cas auquel on raméne
celui d'un courant. La grande longévité de 1'onde soli-
laire (mot par lequel Scott Russell exprime que I'onde
parcourt e grands espaces sans se déformer d’une
maniére sensible) montre que. dans ces phénomeénes,
les frotlements ont trés pen d’action dés que le mouve-
ment s'est régularisé : il nous sera permis, avec une
approximation suffisante, de les néalizer,

Enfin nous caractériserons les mouvements que nous

voulons étudier par le fait suivant : les vilesses horizon-
lales des molécules fluides sont sensiblement éqgales dans
towte Uétendue f'une seetion normale du canal.

: Rapportons le mouvement & des axes rectangulaires

lixes, le plan xoy étant le fond supposé horizental du
canal, I'axe ox ayant la direction du canal. Ce canal,
de longueur indélinie. a une section rectangulaire cons-
tante. Les vitesses des molécules liquides sont alors
paralléles an plan oz, et ne dépendent pas de y; la
surface libre a une forme cylindrigue,

Les composantes (u, v, w) de la vilesse aux environs
d'une moléeule quelcongue sont nulles avant que l'intu-

170, — De ces recherches, B, de Saint-Venant a tiré un exXpose
tle la théorie de l'onde solitaire [B. pe Samt-Vesasr, 37, el
M. Flamant, sous Uinspiration de M. Boussinesq lui-méme, un
exposé simplifié de la théorie des ondes de translation et des
remous [ A, Framast, 21, Ce dernier exposé a ¢té condensé par
M. Flamant dans son Hydrauligue bien connue, et a été rEpro-
duit par MM. Pollard et Dudebout [Porianp et Dvprsovr,
tome III]. Une exposition différente de la théorie de Nonde soli-
taire a ¢té donnée par M. Maurice Lévy [ M. Lévy, 1re partie,
ch. X1.

Hydraullgue générale. g

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

134 MOUVEMENTS A FROTTEMENTS NEGLIGEABLES

mescence alleigne celle molécule. Diés lors, en vertu
du théoréme de Lagrange et de Cauchy, nous pourrons
poser a tout instani
1) O e
T ol

il =— ——— i == -

O’ iy i‘n_;r : Oz

en désignant par o une fonction de @, v, z et du
ternps [, & laquelle il est loisible, sans modifier ses

trois dérivées u. v, wen @, y, z, de concevoir imph
citement jointe une fonction arbitraire du temps. Eu
égard a nos- hypothéses, nous aurons constamment
v=o0, et la fonclion o ne dépendra pas de y.
Cette fonction o ¢lant, nous le savons, une fonclion
harmonique de (@, ¥, 2). nous aurons :
O O
o+ o =0 (0
De plus, nous pouvons éerire 'équation que nous
avons élablie au chapitee 11, § 5. sous la forme :

P—p. £ 0 / 0o \*? i?_ 2 ‘}

olt p, désigne la pression atmosphérique que je suppo
seral & chaque instant la méme sur toule la surface
libre, et H la profondeur primitive du fluide & T'état de
I'I"'I][]S-,

Désignons par - h la hauleur variable de la sur-
face libre dans la partic en mouvement, sur la verticale
du point (@, v) du fond. La hautear h est une fonction
de a: el de (. Nous nous proposons de former une équa-
tion aux dérivées partielles du quatritme ordre dont
cette fonction fi(x,f) est une intégrale
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La fonction h est introduite par les conditions aunx
limites qu’il faut adjoindre aux équations indéfinies (1)
el (2) que vérifient les deux fonctions inconnues o
el p.

A la surface libre, on a: z=H-4+h, p=p.;

de plus, une molécule sy ment sans quitter la sur-
face, en sorle que, t]ll:'illt! { saceroil de of, & de wdt,
la hauteur H—-h varie de wd{. Nous aurons donc :

e

r
(s} I { ey

| : \ Il'!l,J M
‘r"’l'_|‘:” e Lﬂ—f | ‘_"l /pnm::ll e

'-‘l'j ﬂh‘ = l.\l.;,l_ ﬁ? \ {'}:
0z T da D’

\u fond. les molécules glissent tangentiellement. en

e
sorke f|ll1'_‘ W —0. \insi _1?“_;” pour z=—0. ['1}

Cela posé, nous allons préalablement montrer gue
la fonction o(x, 2, {) peut étre développée, par rapport
A z, en une série enliere convergente dont les coelfi
cients ne dépendent que de la vitesse aux divers points
du fond. Désignons en effet par o, la fonction sl 0, 1),

. : 5 0
valeur de o aux points du fond. Comme =0
pour z=—o0. on peul écrire identiquement :

-

a 1

: 2
?:"{Ju'—,’ rf:l iﬂ

ou encore, en vertu de 'équwation (1) :

Dy — I :.I"_' [ ﬂ:‘J rJ'r:.

] LN

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

136 MOUVEMENTS A FROTTEMENTS NEGLIGEALLES

Ao N
Marquons par le symbole { ] f!:) le résultat de n

imtégrations successives. de o 4 z, effectudes sur la

fonction qui suivra ce symbole. Si nous remplacons

dans le terme final de I'équation (5) la fonction 4 par
L]

le second membre méme de (5) ; nous serons conduils 4

2 ik, (s Rk Dt

L T T 3% (J . d ) Ox*

substituons &4 o, dans le dernier terme de 'égua
Substituc lans le d t le I'éq

. . II.. = ¢ . e iy
tion oblenue, sa valeur (D), el procédons ainsi indéfi
niment. Nous obtiendrons aprés (n—-1) opérations :

e 0*"o : A
St l'on admet que Soaic  pour i croissant mndi-

N H
finiment, n'augmente pas plus rapidement que la puis-
sance 20" d'nne quantité finie M | « c’est ce qui doil
généralement arriver, si l'on fait abstraction d’endroits
ou de moments exceptionnels pour ]rzsqnlﬂs d'aillenrs

la continuité du fluide ne serait pas assurée R I
terme complémentaire, inférieur en valeur absolue &

(M = : :
le_'_i”,‘ . tendra vers zéro quand n deviendra de
[.Illl.]S en plus grand, et 'on aura le {'|t_'“n'E]:.')[]|'}E'illI3]ﬂ de 9
que Fon avait annoncé.

Portons cette expression de ¢ dans les conditions (3)
qui deviendront :
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0, (H4- k) 0%,
gh R T T T T

e Il L‘l'“l:;,, ||—|—J'rf}- 0,

2 = el |

A ) 1‘51"'

. {n+ﬁ

ﬁ.f_ 2

0h Oh f‘lg,
_|_ Of _|_ O { l\!.'..\‘ Ty

Nous supposerons la parlie variable i de la profon-
: . ; 0w,

deur, et par suite la vitesse au fond wu,= 7=, trés
petites. et les dérivées successives relatives & @ de plus
en plus petites, de maniére & assurer la convergence
ires I"Iplrlt" de la série . Dés lors, nous pourrons, en
premiére approximalion, ne conserver dans les équa-
tions (6) et (7) que les termes principaux et réduire

: ) 0,
ces équations a 1 gh —]—% =a,

Lﬁﬂg‘_, 1\# .;.l.
8] I;\_'Il;r::i. -|--' T — (),

L'élimination de g, entre ces équations donne :

et celle de h :
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\insi, en posant r:_—_.\'.-’r,rll ,  nous aurons, sous la
forme la plus générale :

h=VF(x — aty +F, (x| al),

o = [ (& — al) —|—fl (@ —l— atl),
les fonctions I, I}, f, /, étant arbitraives. Mais, pour
vérifier la premiére équation (8), on doit avoir identi-

quement :  [gF —af’'| 4 |¢F, +af)| =o.

. ” s : i T
soul : T l—‘i I#. fi = Ifi I,

en sorte queé nous aurons, en |]I'{‘-!Hll1'ﬂ‘!‘. ﬂi'!]}l‘l'_ll‘.ill't'iﬂiir'il’l :

h=F(x— al) + F (x4 al),

00, = _"f § [

u,— -l\_ll‘ = BN I (o — al) — F|{-f; e r”) : :

Nous nous bhornerons 4 'élude des intumescences se
propageant dans le sens des .« positifs; et il nous sera
loisible d'admettre que Uorigine des axes a été choisie
de manidre que, pour =0, h et u, solent nuls (on
du moins insensibles) pour toutes les valeurs positives
de x; dés lors F(x) et F,(x) seront nuls pour toute
valeur positive de I'argument, et en particulier F,(z-}-af)
sera nul pour toufes valenrs posilives de et de . Toute
la propagation future du mouvement dans le fluide en
repos pour (=0 sera donc délinie par :

D, /9
h=F@—al), e u,= B v i

h.

Revenons maintenant aux équations (6) et (7) pour
en déduire des équations de seconde approximation. A

cel effet, aux termes conservés dans les équations (B)
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nous adjoindrons les valeurs principales des lermes

négligés en égard & leur ordre de arandeur, ce qui
H2 03y, e O &2 j

Y T I'FI) =)
0o, : Lo Ha# %, oh O,

£ = ol T v e v ol i

O

donne :

= )

Mais, dans les pelits termes complémentaires, nous
admettrons que h et o, vérifient les lois de premiére
approximation, ce qui permetira d'éerire les dquations
précedentes sous la forme -

D ;
gh~ 7 + !1” i;i—l— i ‘_”

9
0o, ﬁh =) Li[f 0O h? I )
H = - |=o0

—Y9% 5| 6 v 1

Eliminons », enlre ces deux L":|l_mlin|1:a. Il vient :

0*h O~ gH P - O*h ~
'r’f“ D2 opf qE 2 11;r__"¢[ Dzt + “ l

0 ["H* ot I

o i v s |

J

Dans le dernier des termes de seconde approxima-
tion, la parenthése peut étre regardée sensiblement
comme une fonction de (x—\/gH 1), et 'on rempla-
cera par suite ce terme par

SR L
— Vgl 5= L 6 oxt ﬁ_!'

Dés lors l*{:qualtiun obtenue prendra la forme :

e [ H= 03k 3 hr

m?+ﬂf“ et | 3 W'*':TTI_.:&{'“']J
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Telle est I'équation aux dérivées partielles qui régit
la fonction hi(x,#) el que nous avions annoncée,

Posons :

JEs :‘lf:_ Lf.l c Y ”": .L‘+3ff. 3

G e i e R 6 ox R %

el appliquons au caleul du dernier petit terme de MY
(i

i)
O
fail plus haut). Nous reconnaitrons de suite (qu’'en verlu

la régle

e S : -
=—VgH —— (comme nous l'avons

: 0y
de (10) on a :

§ S e == EX )2

Yaprés cetle équation (11), la fonction & est done
une fonction quelconque de x—-y/gH & Or par hypo-
oh

Of =

thése,: pour ' l==0¢ ‘et >0, ona;

0h

5— =0, etpar suite & =o0. La fonction { est donc

nulle pour toute valeur positive de la variable, el par
sutle pour toute la pmpagutinn future du mouvemenlt
vers les & positifs.

['équation qui régit la hauteur de l'intumescence en
fonction de x et de { prend done la forme trés simple :

Oh e 3 k2 H2 oh
> —+yvgH — _EE+TW+_HH 5F =0 0%z

3. Vitesse de propagation des diverses par-
ties d’'une intumescence. — lLa notion de eélérité
de propagation de l'intumescence va nous fournir une
interprétation élégante de 1'équation (12).

Nous appellerons volume de l'intumescence la quan-
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tité de liquide qui se trouve dans le canal, sur une
largeur égale a I'unité, en plus que celle qu’il y aurail
si le niveau primitif avait été conservé. La partie de
ce volume comprise, 4 I'instant ¢, depuis la téte de
I'mtumescence jusqu’a la section normale d'abscisse @
Ll e
aura pour mesure : g =— f helx,
Je

Imaginons un plan mobile, normal aux @, cheminant
vers les & positifs, de maniére & avoir devant lui le
méme volume ¢ d'intumescence.,

La vitesse de ce plan d'abscisse o & l'instant [ sera
dite la célérité w de propagation de la tranche de I'in-
tumescence ayant pour abeisse & & linstant /.

D’aprés cette définition, quand [ varie de di, = de
wdl, ¢ resle constant, et l'on a dy =0, soil en appli-
quant au calcul de dy la régle de différentiation des
intégrales définies :

0=—"h.wdt | ( /

L'expression de o sera donc :

L

0

I
P
h
Oh
of
tirde de I'équation (12) sous la forme d'une dérivée par
rapport a x; effectuons ensuite I'intégration, et obser-
yons que, pour x=—or, cest-a-dire lrés en avant de
I'intumescence, h el ses dérivées sont nulles. Il viendra
St I ah H® ok ] :
alnsi : o—vgH |1 — 1 —— —|. 13
Vi [ i 4H T 6h 0@ | (13)

Remplagons, sous le signe I e

par sa valeur
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Elevée au carré. cette formule donne sensiblement :

3 plas. 23 H? o>
=g (HA b+ )

Ainsi le carré de la vitesse de propagation d'une par-
tie quelconque de I'intumescence est égal an produit de
aceélération ¢ de la pesanteur. par la somme de la
profondeur primitive, d'une fois et demie la hauteur
de cetle partie de I'intumescence et du tiers de la cour-
bure qu'y a la surface libre, multiplié par U'inverse de
celte hauteur el par le cube de la profondeur primitive.

La comparaison des équations (12) et (13) donne :

0h O fie )
e iy Y

Nous allons déduire de cette dernitre équation la
vitesse d'accroissement de h quand on suit un méme

er ¥ : it :

¢lément d'intumescence, soit la dérivée ;) prise
pour un observateur se déplagant avec la vilesse w le
long du canal. Comme pour des variations corrélatives

di et wdt de ! el de x, h varie de

O 0h
ith :W el —I— Ty il

la dérivée cherchée aura pour expression, eu égard &

1y * B £ j'lll HJ !
I'équation précédente : (-;ﬁ,: \ e —ft%.:j ;

On peut donc éerire identiquement :

h( r”:"') O Ae) 0h

i e AN B et
T{f pram— E\IJ_' 1 .!.I'rn’.fl} l"'.]"" :

X
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Comme. en vertu de ['l.":i}. on a:

1“!"';.’

feamzy'llr}-ﬁ |ji + ,” -|— Sy

O ) : :
2hen f-l_—"_"'-."f” { Ih | JII + h {::{lJ [

1l vient de suite :

dh’ o 1
e L i e
(_,n = Al ok ﬁ,-Tgf' (i‘f e
T e oy B :
‘?:T.,-\_';f"ﬁm )< (14)

4. Distribution des vitesses proprement
dites. Revenons & la seconde des equations (9) du
Oh O(hw)

§ 2. Remplacons-y TR L e elle donnera :

0%, 0 g ; CHE 0k
H o T o [.ﬁr.: _{_ ygH { 6 ot )]

. Celle équation peut s'intégrer. Si l'on observe
0o,
gue:  —A——cgs el queg pour —oc; aoh etises
die |
dérivées s'annulent. il vient :
— (HY Ok R
Hu, = he -+ /g1l ( 6 s —F

d'ot, d'upres

l-J .
i
H,: I[ [h——i b= :
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D’ailleurs, au degré d'approximation adoplé, on a :
2 Om, 2 0y,
e e

Om :
2 Oaxd s o

O,
N i —
e O

g VoM L o/ Al

e L‘ﬁ,.j SR oxrt ' 6 Ox -__:_ﬁ.e_' T 6 oz’

si 'on tient compte de la valenr (15) de u,, 1l vienl :

= = h Se= = - — e
; il Al 5 a2 ) ow |

.ff_ h (H? g, ::-"',J O 2

RN I h N\ oh
= —2=3 —'!Ir-- s e B . 7
. Vo (.,I 31 ) O > (16)

3 4

§o oo 22N\ Oh
el =

Calculons enfin la vifesse moyenne U dans une tranche,
c'est-d-dire la moyenne des valeurs de u sur toule
I'étendue d'une section:; on trouve de suite :

AHAA

¥ I
et dz — \/
S / 3 |

H2 oh”
_|__W et |

On en déduit sensiblement ;
. * 3 h® H2 o
U(H ) = y/gll l_.ﬁ —|——,-I— T - =3 F—] = ho.
JII”l]

Ainsi, on a sensiblement : L S ¢ i (18)

« On aurait pu. trouver directement cette relation,
en observant que le volume fluide (H-=Lh) Udl qui
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passe a travers une section durant un instant df, es
égal & celui fiod! qui se trouve en plus au dela de cette
section au bout du méme instant, en vertu de la pro-
pagation de U'intumescence. »

b. Mouvement du centre de gravité d'une
intumescence; invariants d’une intumescence.
— Proposons-nous d'étudier le mouvement du centre
de gravité d'une intumescence compléte de volume

R

invariable : 0= f_ hila.

e -

Soient (Z. H—-) les coordonnées de ce point. En
supposant le volume divisé en éléments dy = hdx, de

_ LA
centre de gravité (: H —|——}:| on a :

= wdy, A T —IT-/ hly.

Dérivons par rappott & { ces équations de définition ;
dr LR A
notons que TR est autre que la célérité » de la
L

e cdh : ,
tranche d’abscisse & el que - ©st pris en laissant

fq constant, et nous aurons :

> 0 o el
Q-.:ff:/ wely., ’Q___/. EH d‘?

Remplacons o el (ﬂ: \) par les valeurs (13) et (14),

r?r.fr éventuellement par hdz, et tenons compte de ce
Hydranligne générale. b
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qu'aux deux extrémités de l'intumescence ho el
dérivées sonl nulles. 11 vient :

Q) :—I;—:: = 1'l| r?lT

/H® Dh\*=
e e)

aH*1 O

113 hds

D’apres cela, 7 el -I-r" sont constants. Dot cet

énoneeé : Le eenlre de gravité dune imtumescence pro-
pagée dans l'eau en repos d'un canal se maintient
conslamment & une méme hauleur an-dessus de la sur

I’I: I
= a8
il

ce centre est constante. el si on Ilf‘”"iL{L‘ le carre

face libre primitive; la vitesse de propagation

7 ¥ el g et
de 10 devant 'umté, comme on peut ecrire :

@

(%) =g (- 30).

on voil que le carré de eette vitesse de propagation
s'obtient en multi'pliﬂnl le nombre ¢ par la somme de
la profondeur initiale et du triple de la hauteur du
centre de gravité au-dessus de la surface libre primi-
kive.
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Lin autre invariant attaché a une mtumescence en
mouvement est son énergie.

I'énergie totale d'une intumeéscence est la somme
de son énergie potentielle et de son énergie cinéligue.
La premiére est évidemment le travail qu’accomplirait
la pesanteur si 'intumescence venait & disparaitre ; ¢’es
par suite le produit du poids de I'intumescence par la
hauteur de son centre de gravité au-dessus duo nivean
primitif du canal. soit ;gQ%. Quand 4 I'énergie actuelle,
ou demi-force vive, elle est :

H + & - O
: e IR 2
/ / = sdxdz (0 - w?),
- L) - —

ou bien si 'on néglige w?* devant u* el si I'on remplace
qh®
5

1t par la valeur approchée

: i e
négligeons encore 4r devant 'unité. et notons que

hdx = dq ; il viendra :

1 -
5 & hdg ou  ogQmn.

I'énergie totale de I'onde est done 20907, soit le
double du poids :gQ de I'intumescence multiplié par
la hauteur 7 de son centre de gravité au-dessus de la
surface libre primitive. Elle est constante, puisque =
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ne varie pas avec le lemps. non plus que le volume ()
de 'intumescence.

Les principes généraux de la méeanique conduisen|
toul naturellement aux résultats qui préeédent, Mais
M. Boussinesq a reconnu en outre 'existence d'un
invariant bien plus caché, qu'il a appelé moment
d'instabilité de Uintumescence. Cel invariant a pour
eXpression
i‘h": R

M= ﬁ - __ =il “

el

T

Nous verrons ultérieurement la raison de sa déno-
mination. Nous nous bornerons ici & vérifier sa cons-

Al

tance, et a cet eflet caleulons T Il vient :
f

ke “oh
M / o Oh ; l ol ) i e 0h ) ]
T oo 0w HET g\

- g

O O(fiea)
kT TR L TR
gration par parties donne alors. en remarquant que les
lermes tout intégrés sont nuls aux limites :

dM Yy e \ 4 O O (fuw) 15 he O !
I e T ] | TR f".T_ vy

Remplacons o par sa valeur (13); nous aurons :

Rappelons-nous que une inté-

dM SRR |'hh 2 UURK

) Baiae P >z | Dz 75 a h Ox

H: o4 Oh 3h: . H2 azh
_|_ 6 hT1—| “1 h= h,j‘ lh—'—FH . G_}d—lg '?[i i
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Aprés réduction, lintégration indéfinie est imme-
diate. et les -lermes intéorés s'annulant aux limites, on

M
—r“— =

6.Onde solitaire de Scott Russell; sa forme.
__ L'onde solitaire de Scolt Russell se propage-avec
une forme sensiblement invariable: toutes ses tranches
possédent done & tout instant la méme célérité, et on
obtiendra par suite les lois ui régissent cette intumes-
cence spéciale en exprimant que o est constant.

La valeur de celle constante n’est autre que la céle-
rité du centre de gravilé; si donc nous posons

h, = 3= [k, étant une constante comme |, NOUS AUTONS -
== ii,-'llr“ll —|— h._}l.

[ 5

ou encore, sensiblement, si T o8t négligeable de-
gqres =

h,

ey

vant I'unité : ) —_’x'f;l'l._f I

Jealons a celle constante I'expression générale (13)
de w. et nous aurons I'équation différentielle du profil
3h Hz 0% I,

712 Y T Y e -
Oh

Multipliée par AHA——, celte équalion s'intégre
o 5

de I'onde solitaire :

immeédiatement et donne

I — l,l.:l | (_4':}’:)5 — hhz 4 C.

fh ]
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Comme pour x=--cc, h et sa dérivée sonl nuls.
la quantité C est égale & zéro, et 'on a :
H* (mf: A

=l = — ). (1)

o

A . Oh : R
Le coefficient angulaire . du profil & I'instant
O

[ ne s‘annule que pour h—=o r-t h=h,, et la forme
de I'équation {:I) montre que 'on doit avoir partoul
hy >h. Comme h sannule pour &=—oc, on a donc
by = o. H résulte de li gque l'onde est lout entitre en
relief sur le nivean primitif, et que h, est la hauteur de
Punique sommet de la courbe au-dessus de ce plan.

D'ailleurs I'équation (1) peut se mettre sous la forme

0 ( I, ‘) o O, [ I, i ) I
TS ) VSR O T T Y Nl A8
ou encore, en prenant comme fonction :

by

e e e
fi 9

et en posant 34, :_-'j-'-‘ll-":
oK ﬁ
( =k ll _-_[
lon dérive par rapport & , il vient :

(i

e =K,

ce qui exige que K ait la forme : A L'u_mlnp kiin——"¢c),
A et ene dépendant pas de . En exprimant que cetle
fonction vérifie ]vqlmtlfun (que nous avons dérivée, on

S , i
est conduit A '\-:T.
|
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Ainst

1
ch? % k{x—¢),

e

on — sh? —Ii- b (a2 —¢).

La seconde équation obtenue est une solution para-
site; la courbe correspondante a ses ordonneées constam-
menl négatives et elle est asymplote d'une part au
niveau primitif, de Fauntre 4 'ordonnée du sommet.

I|l"‘.

Nous avons done :  h=/h ch™*— (r—r¢).

Le profil se translatani suivant ox avee la vitesse
_constante @, la fonction ¢ du temps doit &re de la
forme : ol - const; par un choix convenable de o
gine des abscisses ou des temps, nous raménerons done
enfin 1'équation do profil & la forme

h="h ch=* —x/ :f, (z— wl). (2)

Cette équation montre gue la surface libre de 'onde
solitaire. symétrique par rapporl a la section normale
x—w! de son sommel, s s'abaisse avec continuité de
part etd’autre de cette section. pour se raccor der asymp-
totiquement, pour @ — wl === £ avec la surface libre
pllmlllw

D’ailleurs, en vertu de 'éguation différentielle ini-
v 02h : 0
tale, o s'annule pour = "jg"rh seulement ; done
la surface libre est convexe vers le haut aux points dont
I'élévation est supérieure aux deux tiers de sa hauteur
totale, et concave aux points plus bas.
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Avant de passer a I'examen des propriétés de 'onde
solitaire, ohservons quon aurait v &tre conduit & la
meme équation en exprimant que la hautenr d'une
tranche quelcongue, pour un observateur se déplacant
avec la vitesse w le long du canal. est invariable :
(" dh

\‘—{-” ) est done nulle partout et toujours, el par suite,

en vertu de U'équation (14). U'expression

y 3 F i X
e B .H_ e { I ‘H":.l

3 K ki os)

a une valeur constante., qui est d'ailleurs zéro & extpé
niité de Uintumescence, On a done. en prenant pour

T

variable, au lieu de #, le volume ¢ de la partie d'intu-
mescence situde en avant de la tranche o’abscisse

sl (2l '

en sorte que hde— Ty e sl Seis Tal (L CONTIe
I"Ifl" =

|
équation différentielle dn profil ¢ Finstant 1.

Celte équalion s'intbere immédiatement ot donne -

s , 3 :
E— A Ly — q°) —|—

Comme poure=——_ e, on a g=o0, h=o, il sen-
suit que C, =o0; comme pour #—-—cr, h est nul et ]
¢ ¢gal au volume total Q de I'intumesecence, on a Y
_ 0 1
C=0Q. Enfin, pour Y=-—-, h alleint son maxi |
o
mum h, — L Par suite :

o thH?

h=th, & (1— g): (3)

Il est aisé de constater (que celte équalion est une
conséquence de (2), [

st
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Si en effet on prend pour variable w=1Fk (x — wf),

e 1 hhe* .
il vient : de=-p du, h=-—5, et par suite :
| (e* 1)

% /_I;,,r.,__-’:h. / de 5k
/! S5 = @R ke t1)

o [ ]

h

. WL hh
En parliculier. pour #=—oc, ona: Q= 'IA._I
= : q. f g ks " (e
Done : 0 [l = ) =TFaE % ch =

Le second membre de I'équation (3) coincide done
avec lexpression (2) de h, si seulement on prend hi,, = #,.

7. Propriétés de l'onde solitaire. — MNous
5 o R
16 W

venons de reconnaitre que by =1h, =

Ainsi la hauteur de 'onde solitaire vaut les trois sei-
ziemes du carré de son volume total, par unité de lar-
geur du canal, divisés par le cube de la profondeur
primitive.

2” Gomme on a pour mesure de la célérité :

= r,r_{ml_ ' (2)
et que (H—-A,) est la hauteur du sommet de ['onde
au-dessus du fond du canal, on se trouve avoir justifié
la loi expérimentale de Scott Russell : le carré de la
vitesse de propagation d'une onde solitaire est égal au
produit du nombre ¢ par la distance du sommel de
'onde au fond du canal.

/

‘3" Comme 7= ._;' , om voit que le centre de gra-
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vité d'une onde solitaire se lrouve au Lliers de sa hau-
teur (comme dans le triangle isoctle).

4° L'énergie totale de londe a pour expression

; h

200070 . soil en remplacant « par ,: et en lenant
i {*, T

e0 v e (A - 5 = | — . )

ompte de (4) < e l ol } e

5" Proposons-nous maintenant de rechercher la forme
des trajectoires des particules liguides pendant le pas
sage de 'onde solitaire.

Considérons une lmrlimllv de coordonnées primitives
(. ¥,). Soienl (i, y) ses coordonndées a l'instanl {.

Comme h et aussi la vitesse au fond u, ne dépendent I
que de 'argument & — wl, el comme, au degre d'ap- \
proximation observé. on peul prendre sensiblement g
c 6 o dz ou,,
h‘l g Tl e i T e et e e
4 | Il by el O
nous pourrons cerive
el 1 0g d log = 1 Ou,
o e B [ T et S e
La chose est évidente pour la seconde relation ; 1
quant a la premicre, il suffit d’observer que de : :
- e 1
ot g ) PT1 I |
f — e, i e Y === 1
I‘I \/ [l » "a ,llrl. i
:"'lr‘;
Sl =) ”H,..
on dédui Y
D'aprés cela, une intégration immeédiate donne
q : z 1", /i
N —r, == < o — == 7 ]
: A ST " H [
]
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. gy Z

Le logarithme népérien de — peut étre remplacé,
<1

eu égard & la petitesse des déplacements dans le sens

-4

vertical, par — — 1,
-
[1 vient done enlin :
. : I
r;:“{_.-"—;{.‘LJ. e _-{:—:,}.

Revenons alors & I'équation (3) du § 6, soil :

w

il

fi—

TERA () — q)-

—

el remplacons-y g et h par les valeurs (ue nous yenons
de donner. Nous obtenons :

R A S e T S e T
R e A =g |

(lette déquation représente une parabole 4 axe verti-
cal tournant sa concavilé vers le bas el dont le para-

2 [1* 2 : 2
métre  esl e Lamplitude horizontale @—x, de
gt

l'arc décrit par la particule. valant IJ; . ne grandit

( 5
que de o & —I;'l- pendant que l'onde tout entiére

passe. et la moléeule. aprés s'étre ¢levée en tout de
e e 3 R

la quantité _l{;”.. dans la premitre moiti¢ de sa
course, sabaisse progressivement de la méme quantité
dans la seconde moiti¢,

Ainsi « les trajectoires décrites lors du passage d une
onde solitaire sont des arceaux paraboliques symé-
triques par rapport & un axe vertical, et dont 'ampli-
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tude horizontale constante est le quotient du volume de
I'intumescence par la profondeur primitive, tandis que
leur hauteur, égale & celle de 'onde pour les molécules
superficielles, se trouve, pour les aulres, proportion-
nelle & leur distance au fond. La distance du foyer de
chaque arceau a sa directrice ne dépend pas de la han-
teur de 'onde; elle est les deux Liers de la In'tal'r}rult?ul'
primitive pour les molécules superficielles, et elle
varie, pour les autres molécules, en raison inverse
de leur distance an fond

6° Nous allons enfin démontrer que, parmi loutes les
intumescences avant une énergie donnée, c'est 'onde
solitaire qui a le moindre moment d'instabilité.

\insi, sous la condition que la guantilé

.--_|__‘.--
g

soit constante. nous nous proposons de rendre minima
Foh ) 33

P'intégrale M= e H

.
wd G

A cet effet, nous ]nmuhnnw CcOomine varia Jlt_ indé-

/ hidae,
o

pendante, au lien de =, la {|1|ﬂn|i|n'= =

o
- " %
variant de o Aa : q:mmi xva de —oc A -Tuf_.
ooy
R "
: u"h vy iy
Comme . pour { constant, e i il vient ;
& ekl
M el I nh'ﬂ Sh },_
M= - — 4.
: _-’ . 0% ) ' ’I
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et les limites d'intégration sont les mémes pour toutes
les intumescences considérdées.

Lorsqu'on passe d'une intumescence a une aulre
infiniment voisine, les fonctions h et M deviennent
hh—+2h et M—+-2M, et l'on a :

il

o o e o
} £ Ok Ok A\ OA H? |||

Intégrons le ]u'mnier terme par peu'l.iﬂﬁi; le terme

o

o e e e L0 ¥
intégré  — —= Sh* sannule aux deux limites de 'inte-
cration, et si, dans le lerme qui reste,

-

PT 1 Oh?

210 Shd,

a 0O)2

LV
on remplace 3h?* par ahdh - (3h?), I'expression de 2M
devienlt par groupement de ses lermes :

ey .ld

~ [ l! _i\l_ll__ j_ = i
N = / ) g ¢ thda

w0

.c.;_

e o f ; a g ey q a1 -

P 0zh E O e

e :f( Oh J' —'% o g s
6 :

Pour que M soit extremum, il faut que M ait un
signe constant quel que soit le signe de la variation infi-
niment petite 2h; ceci exige done d'abord que le terme
du premier degré en 2h soit nul, c¢'est-a-dire qu'on

A SR
LI ¢ (R

ait :
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Ol 2 0h O
(- — =L —n :
Ok h O ﬂl.rj'

s1 I'on introduit la variable

o
;i,r —— / JJHHII.J!'.

g ‘ 02 0| 1
Par suile : ——g
OA* :"‘Ifl‘r-- fi
L'¢équation de condition s'éerit alors :
O 25 r
I'I-rl.r'-'_ I -2”1 =

el nest autre que I'équation caractérisant, comme nous
'avons vaa la fin du § 6, I'onde solitaire.

S1 ¢'est & partir de cette onde solitaire qu’on caleule
la variation 2M, on a, en remplagant

0he 3
oaF Par—
_:,r_i,l FOGRENE :
El-i o -f ( Il.jllf f) II| I-I“' [f\!.llrll} i f‘.g.li.-

1]
et comme pour l'onde solitaire & est essentiellement
positif, M sera posilif pour loute variation infiniment
petite de hi; cela prouve bien que le moment d'insta-
bilité M est minimum pour 'onde solitaire.

i
D’aillenrs la valeur de ce minimum est. en rem
ﬁf 2 0
plagant dans M : —3 par 2 1—?: et dj. par hdg :
] : hlllr 5 ,ijil "
COf ol
1[‘,} = Fl [ ({‘\E } g ‘-HTI h-.'!rl’],r. ‘
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. b ]
ou encore en substituant a fr sa valeur -,,I-*[-_[—ﬂ, Qg —q) :

R .

T = <y

Comme nous avons vu (4%) que pour l'onde soli-

: 5 B : a0,
taare ¢ o ufi_) , il vient enfin, par 1'élimina

tion de Q :

o BTN
n=— 2L e/ ()

Pour juger d’aprés cela de la stabilité d’une intumes-
cence donnée. on évaluera : 1° son énergie £ ; 2° son
moment d'instabilité M (£ et M ne variant pas d'ailleurs
d'un instant & Uautre); 3° le moment d’instabilité M,
de I'onde solitaire ayant & pour énergie. 8i M=M,,
l'intumescence n'est autre que 'onde solilaire, de
forme invariable, et par suite stable. Si M dépasse peu
M.. la forme de l'intumescence. constamment variable,
oscillera autour de celle de l'onde solitaire de méme
énergie, sans en différer jamais beaucoup ; elle ne
pourrait en effet s'en écarter notablement sans que le
moment d'instabilité grandit. ce qui est impossible.
puisqu'il ne varie pas d'un moment & I'antre. Ainsi la
quantité positive M — M, mesure en quelque sorle le
champ de déformation possible de l'intumescence, el
cela suffit & justifier le nom de moment d'instabilité
donné & I'invariant M par M. Boussinesq.
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8. Propagation d'une intumescence quel-
congque. — Quand I'intumescence est, on posilive et
d'un volume ou d'une longueur considérable, ou néga-
tive, il ny a plus de forme stable qu'elle puisse
prendre. Mais la formule (13) du § 3 :

3 ah H: oh-
o=Vl |

qui définit & tout instant la vitesse de propagation des
diverses™'parties de I'intumescence, permet de prédire
les leirconstances qui se présenteront dans la propa-
galion du mouvement.

Examinons tout d’abord le cas d'une intumescence

L i
™ o T 0 7 :
- Th .
e - 230 S St e e B 8 e i e A
E 3 o
i —
:

I

Fig. 6.

assez longue, mais limitée, telle qu'en produirait
Vinjection continue, dans le canal, d'un cerlain volume
liquide y arrivant avec un débit constant pendant un
temps notable.

Au débul, peu aprés sa formation, le profil de I'in-
tumescence comprendra une parlie gy & peu prés hori-
zonlale, raccordée avec le niveau initial par des ares
infléchis suivant of et 2z,

Dans la partie médiane, la courbure est insignifiante,

F
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et la célérité de la propagation a sensiblement pour
mesure

w=1yqgH ( I —|—;:: )

)

% : 1 ro =
o encore. st le carré de ; est neégligeable devanl

e \/lfj.r { H - = f'a.] ;

»

I'unité

Vers la queue de l'onde, en 3, la courbure devient
appréciable, et b va en diminuant ; le troisitme terme,
négligé, de 'expression générale de o prend une valeur
sensible, négative, puisque le profil tourne (jusqu’a
l'inflexion du moins) sa convexité du edté des h posi-
tifs. Ainsi la célérité de la tranche située sous 2 sera
moindre que celle de la tranche située sons v. dans la
partie horizontale qui la préctde. De 1a résulte une
tendance de la queue de londe a se séparer du corps
et & constituer une intumescence distinete (qui se trans
forme en onde solitaire, Dans le cheminement du
gros de l'onde, par le méme mécanisme, le morcelle-
ment se reproduira, et Uintumescence se résoudra en
une suite d'ondes décroissantes, cela, tant que la cour-
bure an sommel de chacune d'elles soil assez forte
pour que la vitesse du point le plus haut n’excéde pas
celle des portions adjacentes,

Ainsi se lrouvent expliquées des observations (ris
précises e Scolt Russell sur le morcellement de la
aqueue des longues intumescences.

Supposons mainlenant gu'on fasse nailre un remous
indélini, en versant continuellement el uniformément
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du liquide & T'entrée du canal. L'onde alors n’aura plus
de (queune. Nous verrons évidemment une nappe liqnidc,
dont la hauteur sera bientdt A peu pres constante,
savancer progressivement : sa vitesse deo propagation
multipliée par sa hauteur sera la mesure du volume
liquide injecté par unité de lemps et par unité de lar-
geur du canal. La courbure de cetle lame liquide étant
insensible (abstraction faite de la téte de I'onde). on
aura comme tout & heure

S e
=Nk
conformément & la loi expérimentale découverte par
H. Bazin.

Mais. & la téte de P'onde, le raccordement avee le
niveau primilif fait prendre & la courbure une valeur
négative sensible ; méme & égale hauteur, la vitesse de
propagation des tranches de la partie en question sera.
d'apres U'expression de o, inférieure 4 celle de la lame.
La téte de I'onde sera par suile comme inondée par
Pafflux de la lame : elle s’exhaussera Jusqu'i ce que son
exces d'élévation compense l'influence du ferme néga-
bl de I'expression de «; et de la sorte se trouve expli-
quée la formation de [londe initiale signalée par
H. Bazin. L’onde initiale se gonflera jusqu’a ce que la
vitesse de son centre de gravité, qui est ValtH=-3),

soit sensiblement celle de la lame méme : coci exige que |
; . i : G ;
l'on ait n=--. Pour l'onde solilaire, si h, est la
Y h, . Pz :
saillie, on a = =-3-; pour 'onde initiale, la partie
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antérieure est plus & pic. et cela reléve un peu le
ceritre de gravilé ; nous poserons done

b (1+42)
Tk 3 A

N

¢ étant une petite qu.‘luiii{: positive. Par comparaison,
nous aurons

oy I

]'.-.-.- = ._!_ fi I——|—: .

L'observation, difficile daillenrs. de Uonde initiale

wy
" 4 \ 3
a donné a H. Bazin &, — =

Coonsidérons arritre de 'onde initiale. Son raceord
avec la lame se fera par une partie concave, descen
dant sous le niveau de la lame: en effet. d'apres le
raisonnement fait au début de ce paragraphe. le terme
fonction de la courbure rendra la célérité de la partie
concave de I'onde iniliale supérieure & celle de la lame -
il se ercusera donc un vide entre 'onde initiale et la
lame. Toutefois le creux formé ne saurait alteindre le
niveau primitif, car alors, au point bas, h deviendrait
négatif el @ y serail inférienr & la célérité des tranches
sutvantes, de la un afflux exhaussant de suite le nivean
en ce point. Le méme mode de raisonnement montre
que la concavité qui suivra l'onde initiale ne pourra
se raccorder a la lame (quan moyen d'une partie con
vexe en saillie sur la lame. el ainsi de suite |voir le
trait ponctué de la figure 6]. « Ces convexités el
concavilés auront des hauteurs décroissantes de 'une
a l'autre, el bientdt insensibles. & cause sans doute des
[rotlements intérieurs du fluide. La forme de 1'onde
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n'aura acquis un pen de slabililé que lorsque toutes
les parties plus haultes que la lame placée & 1'arridre
seront convexes, el toutes les parlies plus basses con-
caves, de manitre gque les points d'inflexion du profil
longitudinal se trouvent 4 peu prés sur le prolonge-
ment de la surface libre de cette lame. »

Examinons enfin les ondes négalives limitées. Par
une ¢jection momentanée d’eau du canal, on produil
une dépression présentant, au début de sa propagation,
une partie concave se raccordant par deux parties con-
vexes avec le niveau primilil. La forme de la dépres
sion, lanl que son altération n’est pas trop grande,

montre que l'on a sensiblement -n:—-—.-,’-hm (h,,

étant la valeur absolue de abaissement maximum )
la vitesse de propagation du centre de ,f._\;rrwir.é sera done

:1+_1{}-|:l|l—|—ir}—'-,rrj(|| ;

et cette loi est trés sensiblement conforme aux expe
riences d'I1. Bazin,

Mais l'onde se déforme trés vite, comme I'indicue
d'ailleurs notre formule, Partont h est negalif ;e

; . Oh g

plns. sutvant =4 et dz, e est positit; suivant *h
il est négatif (fig. 7). Dés lors, le fond du creux se
propagera moins vite que les deux |:au'IiL" voISines ;
'avant va donc s'allonger. tandis qua Parritre la pente
s'accentuera, puis une ﬂjilm s’y formera engendrant une
onde positive. L'onde positive ainsi engendrée a la quene
de I'onde négative aura & son arritre, pour se raccorder
A la surface libre primitive, une partie concave qui ne
pourra subsister, et par la répétition du raisonnement
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fait plus haut. on se rendra comple de la génération
d'nne suite d'ondes alternativement positives et néga-
lives ;. ces ondes iront en décroissant, leur énergic

i B o =
lotale ;:g' hde  étant conslanle el finie.
ef — 20

Dans les ondes négatives, le volume ¢ d’intumes-
2
crnee I hdz ne varie plus. d'apres cela, dans un
[ Xp= i

sens constant quand on recule de la téle de onde

la queue. Il y a intérét & introduire ce que M. Bous
sinesq appelle la vifesse de propagation d’un élément
d’énergie, vitesse d'une tranche qui se déplace de
manitre 4 avoir constamment devant elle une méme
fraction de I'énergie tolale de I'onde. Celle vitesse o

e N
sera la valeur de I caractérisée par

o
” :/ h*dx = const.,
;

o
TG
— h3dm - 241 h _:}]:_ de—o0.
, : " 0h
On a done : w= o h s .
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Comme nous savons que

Ok g =
= =

il vient. par une intégration immdédiate :

L e \! _{*_ H= 2 02N I ok )
O fe— "n,‘r_.f” } 1 —|_'|| "l_T B e e h‘:('ﬁ:;.:} —| i

fod. SRS H2 02h
Cani i e

%,

N
L'écart entre la célérité de volume el

la célérilé
’énergie est done :

. ==\ h  H:[ 0 Oh\*] )
) —-m—\."_t'l'll j_’i]i_'_ﬁﬁﬂ _FII- W}‘J_-(_i:l._r_‘ ] 5’*
; 1 o SHE ¢ oy
ou W—e=py ki i L 0
I q‘ph) /
(7 0/
% i E D 1
Comme Ei}j_ S e T il vient :
: I ff_; ; X =OERT
) —--~m»:-_!i \/ i .F.I.I.l --}—-3 Il"Wﬂ—_ .

et l'on reconnail que cette différence ne s'annule.
comme il était évident. que dans le cas de I'onde =0
taire, senle doude de stabilité.

Y. Propagation d’'une longue intumescence
a courbure insensible. — « La (e d'une onde
négative, s'allongeant sans cesse, finil par n'avoir plus
une courbure appréciable, et il en serait évidemment de
méme de tout le corps d'une dépression sans fin, dont
la_profondeur croftmit de plus en plus & mesure qu'on
s'éloignerait de sa téte. L’étude de telles intumes-
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cences & courbures insensibles en presque tous leurs
points présente un intéréi particulier pour la pratique,
parce que l'expérience montre que les crues des
rivieres, 'introduction et le retrail de ces crues dans
les parties inférieures de leurs affluents, la propagation
de la marée le long des flenves on des canaux qui
communicquent avec la mer, se font en général d'une
maniere assez graduelle pour ne produire que des
ondes de cette espéce’. »

On aalors : o=\l (1 _Ir,_“_’IJ

et comme nous avons vua au § 3 que

v O ﬂ{:ht-ll}
iy

.

R oh e e TR e
"_' 1] : —— i ( — - —_——
il vient Y —+\/gH ez ) S
Celle équation anx dérivées partielles du premier
ordre admet pour intégrale générale
3h

a _EEIHT (I| + =1 ) t==11h), (1)

L

f (k) étant une fonction arbitraire. De la cet énoncé? :

« Lorsquune intumescence de (rés petite courbure
se propage au sein de l'eau en repos d'un canal rec-
tangulaire horizontal, et qu'on peut faire abstraction
des frottements, la surface libre change, d'un instant
a I'autre, de maniére que chacune de ses ordonnées h,
comptée au-dessus du niveau primitif, se ftransporte

1 I.-Bovssinesg, B, p. 411,
2.J, Bovssixesg, B, p. 412
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(en apparence), en conservant sa qrandeur et dans le
sens de la propagation de l'onde, avec la vitesse

Z=tal f Jh
VI {3+ g
celle vitesse esl conslante, pour lordonnée considérée,
tant que la profondeur primitive H est elle-méme. o
Supposons qu’il s’agisse de la propagation des
marées, considérée comme graduelle et bien continue.
le long d'un canal horizontal débouchant dans I'Océan.,
Nous aurons (& peu prés), & lentrée du canal, pour

i e L

i S

II—I—.-’;.:r{[l—I—L'sin il (2)

a, k, T, H étant des constantes données. Alors. en
comparant (1), pour & =—o, (2). on trouve, par 1'éli
mination de {, la valeur explicite de S (), et par suile
on obtient comme équation de la surface libre 4 tout
istant { :

e Gt e L Bk e]

La vitesse moyenne U dans une tranche a d'ailleurs
pour mesure ;

el e AR L h N oA :
L ,_“—_H_\yil (l — 'HT,) m (3)

L'influence des frottements atténue I'intérét pratique
de ces résultats.

Au bout d'un certain temps. et assez loin de I'em-
bouchure, la marée devient insensible, la profondeur
constante, et le régime du canal se régle de telle sorte
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£
que lafflux total durant une période, I (1= h) Udt,
LEA]
soit nul. 8i l'on remplace U, puis h, par leurs valeurs
lirées successivement de (3) et de (2), il vient, par un
calcul trés simple, sous réserve de négliger, vis-a-vis
a— H

du pmit terme S et des termes de 'ordre--de
i

- 3
;__n'nrlr]mu' de son carré¢ : H :rrLt R fi2

Ainsi le niveau moven de la mer sera inférieur

a

w) - . s
de ?rrﬂ'-' A celui de la surface libre du canal, dans
o

les parties ot les oscillations des marées sont devenues
insensibles et la hauteur H constante.

B. de Saint-Venant' est parvenu. par une analyse
tres différente de celle-ci. aux formules

z— [3VGEIER) — 3 VGH | t=fh).
U=2\g(HJ-h) — 2y/gH .

Ces formules reviennent sensiblement & celles de
M. Boussinesq, comme on le reconnait en dévelop-

ST I ; ; .
I.]ﬂ"t \/‘.JI,”_ LI .:_, I—) simvantl les }-jﬂ_lti?‘_:nﬂ"l:{-_‘."" Crois-

santes de f.

t B, pe Samvt-Vexant, §, p. 237,

Hydraulique générale. B
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CHAPITRE 1V
ONDES D'EMERSION ET D IMPULSION

1. Définitions; équations générales qui défi-
nissent le probléme'. — Les ondes par émersion
se produisent en ummergeant légérement un corps
solide dans un fluide au repos et en 1'enlevantl ensuite
brusquement : le ereux formé par le solide sera aussi-
tHt comblé et tout le fluide se mettra en mouvement.

Les ondes par impulsion sont engendrées par des

pressions variables exercées a la surface libre durand
un lemps lrés court. comme il s'en exerce a 'endroil
de la surface d'un bassin ot éclate un coup de vent.

Comme le ligquide est supposé s préalablement en repos,
initialement le tourbillon (£, =, £) est nul en chaque
point, et par suite, a toul instant ultérieur. il existera
un lmh-iliif"] des vilesses o verifiant |'1?1{1|;Lli4}|'1 de
Laplace _\U:H. (1). .

De plus, la seule force extérieure active étant la
pesantear, si Paxe des z est dirigé suivant la verticale
descendante, nous aurons (1™ 8, Ch. 1, § 5)

1], Bovssixesg, 43, p. 378,

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

ONDES IVEMERSION ET D'IMPULSION
p Oy - T 00 ) (Ha \2
Az — ) = i
'|: L” ﬁl: :1 - k ‘\I'ﬂ Fy _|_ .Y 1\*“’ ¥
O _..
+(32) | + 7).

Nous supposerons que les mouvements éludiés onl
assez peu d’amplitude pour que les carrés des vitesses
soienl insignifiants devant les termes conservés: et
comme il nous est loisible d’inclure dans la fonction o
une fonection arbitraire du temps sans changer les com-
posantes des vitesses, nous aurons simplement la

: 0 :
seconde équation -— gz — ﬁj : (2)

Nous appellerons h 'élévation. sur la verticale (i, v)
et & I'époque 1, de la surface supérieure du fluide, et
9, la valeur que la lmlclmn o y recoit : h et o, seronl
des fonctions de x, v, Toute 1'étendue de cette sur-
face supérieure esl ﬁupisr::m*c libre et & une pression
constante, dont nous prendrons la valeur pour origine
des pressions. — saul dans la région restreinte et
durant le temps trés court de la génération des ondes.

Primitivement 1'ensemble est a l'état de repos. et
p . (410}

=—gz;; SOIt. <=0, en meéme

I'on a partout 5

-
-

temps que les trois dérivées de o par rapport aux
coordonnées sont partout nulles. La fonction o se
réduit done & une constante qu'on peul prendre rr;.rrfﬁ
a4 zéro.

Ce régime cesse quand on enléve le solide ou qu'un
coup de venl souflle ; soit zla durée (rés bhréve de l'en-
l&vement ou du coup de vent : c'est la fin de cel
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intervalle = que nous prendrons pour origine du temps.
Nous allons analyser le phénoméme qui se passe de-
puis {=—: jusqu’a {=o.

1° Ondes d'émersion. — Durant 'instant ¢, les ordon-
nees de la surface ne varieront pas sensiblement ; elles
seront nulles & l'extérieur de la région en conlac
avec le solide. et égales 4 celles de la surface limite du
corps dans la région de confact; nous désignerons
par F(x, y) la petite ordonnée h (au-dessous du niveau
libre) de la surface du corps dans cette région, F
étant une fonction supposée donnée. Pendant U'enléve
ment du solide, dans la région de contact. la pression
passe de la valeur F.’f';’ a celle de la pression atmos-
0o
i
croitra de 0 a gh. Comme o est initialement nulle, sa
valeur au bout de I'intervalle ¢ sera de I'ordre de gran-
deur de ghs, et sera négligeable dans les calculs on A
ou ses dérivees partielles interviendront au premier degré,

D'aprés cela, les conditions initiales des ondes par
émersion (pour [==o0) sont :

phérique o ; par suite. en vertu de I'éguation (2),

g = (O h:F{.]‘Z‘, }'.:]. {?l}

2* Ondes d'tmpulsion. — Durant le bref instant ¢, a
un moment donné, sur la verticale (x, v), la pression
superficielle, d'abord nulle. a la valeur p.i en vertu
de (2), & cet instant, s d'abord nul. a une valeur

. . I,E "
qui est au plus de l'ordre de [ . les: witesses

~
ke

superficielles seront du méme ordre, et les chemins
Poc’

-
]

parcourus de l'ordre an plus de

; en particulier,
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I'ordonnée z—h de la surface libre, d’abord nulle,
sera au plus de ce dernier ordre, et par suite elle sera
insensible devant le premier et le dernier terme de
I'égquation (2). Nous pourrons donc écrire :

pn Ej Do o I /A F?
A = DL
5 iR Sy !

: : I :
Le second membre mesure, au ftacteur ——— pres,

0y

I'impulsion 1otale subie par I'unité d'aire de la surface,
au point situé sur la verticale (2, y). Nous supposons
cetle impulsion donnée en fonction de (x, y) 4 la fin
de la période de génération des ondes. Nous aurons
done comme conditions initiales des ondes par impul-
sion {pcmrf:n] : ?,,:FJ (2 )s h=—10n; (4)
F,(x, y) étant une fonetion donnée.

Examinons maintenant la période de développe-
ment des ondes, de linstant =0 & celui t =--o¢,
et formons les équations de condition relatives 4 la
surface libre. Comme on y aura constamment p=0
et z=—h, il s'ensuivra :

1 09
B e n
q 0l
Une :aimpliﬁcal.inn in']pm*lnnlu peut &tre introduite
h'rj % . &
en observanl que >i trés sensiblement la méme
valeur au point considéré de la surface et au pied (z, )
de la petite ordonnée h sur le plan z=o0 de la surface
libre primitive. Nous aurons alors pour équation de la
; 1 ‘O
surface libre h— — == your 2 —0).
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Une molécule fluide ne quittant pas la surface libre,
et son ordonmnée h dtant fonction de x,y.l, nous

O Oh Oh
aurons : W= U0+ -,
Qe - Oy o 0f
ou, i des fermes prés du second ordre de petitesse e
toli bl ; O/
negligeables : e =,
; ;i Og : :
w n’est dailleurs que . qu, pour z=Hh, est sensi-
blement le méme que pour z—o0; nous aurons donc
|| Oh 0o
T a— O - i
Y _L'ﬂ; (por 0)

e

Par élimination de h, nous reconnaissons que la
fonction o aura & vérifier, pour. z=—o, et pour loule
valeur positive de /, la relation

I [
-

e -mi-:u (pour z=o0). (5)

Enfin, le long des parois du bassin. les molécules
se déplaceront tangentiellement & ces parois, el I'on
do .
aursa : — 0.
8 an ()
Comme o, == olx, y. h, I) se confond, sauf erreur
négligeable, avec ole, v, 0, 1) el que
1 Oo(x, vy, h,t)
r'lﬁ ey
7 0

1 Oolx, y, 0, 1)
e nous
i (41

pouvons résumer ainsi la mise en équations.

se confond de méme avec

|
|
|
|
H |
|
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Il s'agit de déterminer une fonction o(x, y, 2, #) véri-
fiant I'équation Ao=—0,

el satisfaisant aux conditions suivantes :

prE 0o 1 0%t :
'I"Iﬂ]“l B _ﬁ: _d:'_'J'TfE'__‘]’
: dy 1
aux parois, - —0: |
dn .
i (i Toe) .I1 | ]| e : _
t O, -t =gl (2, ¥) (emersion).
pour :=—o0 | Ol LR S
et f—nf e i : : lsion! ,
\.-_?.-_..l A5 %) S0 (tmpulsion). L‘
. Unicité de la solution. — Le probleme ne '

Lﬂl'['I]_}UI Le r|u nne solution. Si en ellet deux fonctions o
et oo vérifiaient les 1quﬂ|mn-. établies, leur diffé-
L ]

rence o satisferait partout et mu‘!nm. i :
_"-.?":n, (=)
el 1'on aurail :
O’ 1 0%y ®)
R : ot N = .-?_:“:
pour z =0 5 7 o 8!
b i
aux parois, _rﬁq_ “
' hﬁ]l 5
SRR == Sk s L — 0. |
pour z=—=uo el =0, o 0, 5 i:
= o ) s ¥ Oy h':]r Ay |
Multiplions 'équation (8) par — e dv.  en dési- !
1|
[

gnant par dp un élément de volume entourant le point
(@, v,z) & I'instant / et sommons pour toute I'étendue
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du volume fluide. 11 vient évidernment, en posant
DN DN A
j :( i]J ) -I_(\:‘F) .,+. (\ 1‘.!:)
S A doeg (YD (08 By | B (D¢ Dy
df i f O ( O ﬂf_)—'_f‘l_*y( Oy Ol

o Al T 1 Fiig
Fli St il \ 0
+%e\ 5 ,)é”r“ 2

EH vertu {IL"- Iil f!'l'['IﬂTlIE': l-l.OHli'”‘Jl'ﬂfIHk\: ¥ [1:‘ HEC{-”][]
o 3
s de'

membre n'est autre que -~ —L v btendue A
LT

toute la surface r[ni limite le volume fluide ; mais. sur
i rj.r
_____ L —o0:; de
n
plus, & la surface libre, nons pouvons prendre
il O’

i = Oz

1 0% ;

— Lo mapsuite.-le
rI; 0

second membre de (9) a pour valenr, en dLalﬂ'nﬂnl par
dz un élément de la surface libre -

1 o O 7 0ol\®
—gay\or)

ou encore, en vertu de (8).

L’équation (9) est donc intégrable et donne :

} - |
Sdl.; ,dv - ‘j S [ﬁj dz = const. (10)

Cela posé, revenons a l'équation (7), multiplions-la
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par 20'dv, et intégrons dans le méme domaine, en
remarcguant que
26/ Oy 0 ( , 09" ( 09’ )"
20— == —— — ;
T Dol O \? ﬁ;r:) Do
Il vient par application de la formule d'Ostro-
II'IF,_.I

'-"‘ra[]hk\, H_S 9 sz_ s i— N f,:: L.

Par suite, comme la premiére intégrale est nulle
pour toute la paroi, et qu'a la surface libre, pour

=0, o'=0, on voit que pour {= o, S._I"v.j’_'irfl'ri‘:l_l.
= 1]

: : : 0o’
Comme d'auntre part, au méme instant, > =0 a

la surface libre, la constante de D'équation (10) est
nulle.

Or le premier membre de cette équation (10)
ne peut étre nul que si 'on a partout :

Oa' O’ Ve 0e'
i :‘-}‘ _4__:”. i:D, _l? :{_h
O (% 0z 0

c'est-d-dire que si la fonction ?" est nulle en tout point
el a tout instant, comme elle 1'est pour {—=o a la sur-
face libre !.

3. Cas des ondes superficielles *. — Considé-
rons spécialement le cas d’ondes assez courtes pour ne
créer gquune agitation quasi-superficielle : le phéno-
meéne n'est pas alors influencé par les circonstances du
fond, en sorte qu'on peut faire abstraction du fond et
supposer que le liquide s'élende indéfiniment vers le

1 J. Bouvssingsg, 8, p. 327-349,
t J. Bovssixesg, 13, p. H82-580,

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

T e —— ax-we IRy =T T -

178 MOUVEMERTS A FROTTEMENTS NEGLIGEABLES

bas. Admettons de plus que le bassin ait des parois
verlieales.

A une grande profondeur. soil pour z—oc, les
vitesses seront constamment nulles. o aura une valeur
constante qu'il est loisible de prendre nulle,

Dans ces conditions. Je dis qu'en tous les points du

fuid 0o I ﬁi{; _
e on a oz _F 57 — 0.

Soit en effet = le premier membre de cetle équation.,
A la surface libre, on a =0, ainsi gqu'au fond. De
plus 'équation Ap =0 entraine : Ar— o,

Multiplions- cette équation par a<dv. do éant un
¢lément de volume du liquide, et intégrons dans tout
le domaine occupé par le fluide au-dessus d'un plan
horizontal de cote Z. 11 vient comme au paragraphe pré-

' I"JFT
cedent : (e T e ely —S Ao oy (r1)

Or, d'une part, on a +=0 sur toute I'étendue de Ia
surface libre.
D'autre part, le long des parois verticales. on a par-

el

“ : oL :
tout et constamment —f': —7a i par suile, s1 l'on

o :
prend une méme variation on en erandeur et en direc-
tion le long d'une bande verticale, soit A toute profon-
deur, & tous les instants, on a

d Do d 0y
dn %z 2 noop—%
] dr
et par suite : T =0

D’aprés cela, la premidre intégrale de 1'équation (1 1)
I | £ q .5 1
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n'est & appliquer qu'a la section horizontale Z ; comme
1A dn=—dZ. sis estla surface, I'équation (11) don-
nera (si = n'est pas indépendant de x, y, z)

Ozt s 2 -
Oz g =T S5,

supposons que le mode de déeomposition de s en ¢l
ments soit indépendant de 7 : nous aurons :

Oz ds R s s
0 s —'.w’,(' s )’

o i) ds

a

el par suile 7 el

Or ST* ”:\ est la valeur moyenne de = sur la
section ; celle moyenne ne sera pas nulle si 7 est
quelque parl différent de zéro, et d’aprés cette inéga
lité, elle eroitra avee Z el ne pourra s'annulera I'infint.
On doit donc avoir partoul T=—=0.

La relation T==0 ainsi établie entraine cette autre

0T S
= = 210
0z —I_ (f OfF
on encore. en tenant compte de la valeur de ©:
o e
e e = e = )
(= 7 OF
Eu égard & As=0, nous voyons ainsi gue la
fonction o vérifie les denx équations indéfinies
L
H‘J":’_‘.I { 1".|:!.-r-‘ |1|£g‘-.
— =gt -——‘,—{---—-—‘—,-}:{l. (1)
O At (e ok Oy -
li'l":"_:,l | |"!|f.-‘] |_"!|1.-‘- kY i
'—[—1'——‘:|:u (13)
T it YR Ve o R R 7
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4. Ondes superficielles produites par ’émer-
sion d’un cylindre plongé dans un canal rec-
tangulaire. — Dans le cas des ondes que fait naitre
au sein de I'eau en repos d'un canal rectiligne quasi-
indéfini, & bords verticaux et de largeur constante,
I'émersion dun solide cylindrique. & génératrices hori-
zonlales et normales & la direction du canal, occupant
toute sa largeur, — les mouvements s'opérent dans des
plans paralltles & celui des 2 et de la méme maniére
dans tous; alors la fonction donnée F ne dépendra
que de @, et la fonction 4, et par suite les fonctions
ps = hone dépendront pas de y.

La fonection o satisfait aux équations indéfinies
déduites de (12) et (13) :

s PR 0% 0y

— L — T = — ' A
o T par =0 e T =0 (1h)

O

et aux dgquations de condition

ﬂl'j I r‘flﬂrr'.I
ﬁ* e g A — O pour z—g,
i ? .
ar =09 aux parois,
(1) x
0 = 0, ﬁ} _.r)r|1|[r} poilp 2 =0 =10,

Nous supposerons, pour abréger I'écriture, que les
unités soient choisies de telle sorte que l'on ait g=—1.

A l'intégration de ce systtme différentiel sapplique
une méthode féconde due &4 M. Boussinesq !.

' J. Boussixesq, 41; 412, Notes 1 et 2. — J. Bovssinesg, 13,

p. 319 & 356, 357 & 664. — J, Bovssivesq, 23, tome II, complé-
ments; 47¢ et 480 legcons, notamment pp. 488 & 515,
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Le principe de cette méthode est dans une curieuse
propriété de l'intégrale définie :
/ A ) ,Ff M
_— i e
? '""'tl / { 9 ) id ( 22t sz’
on [ et & désignent deux fonctions arbitraires et { un
paramétre variable ; elle consiste en ce (ue

=7 (o )

[ B} y.

et dans cette expression ne licurent que les dérivées
[ i)

premiéres de [ et L prises par rapport a leur argu-
mendt.

Prenons :

I.-' 13 '\._I < Fd x: "._ g ..r Iﬂ N
f(x—j- ,] _ r-‘F'(.J.-'— ;'. I] ~+—-—i‘ [.\J.' —+—T . I),

la fonction arbitraire 7 de deux arguments étant seu-
lement assujettie a ce que sa dérivie premiére en @
s‘annule pour ¥—_tsccC.

| o | Vg ;

On reconnailb que otk == ! Dl

: il or T ot = ( + 4

4 (s : 5 .
Soit v largument . dont lli_'perld Y i prenons
: 901 - -
pour & l'intégrale de 1'équation différentielle du second

. 1 e
ordre W =—, (1)

3 2 a}\‘u
s‘annulant ainsi que sa dérivée plemiére pour y=o.
Le second membre de I'équation précédente deviendra
alors :

3 o Y & N i
L gl - S W T | g o
Fila—Z )t g (o2 2) [a(2),
tya | 3 Ry ok ) 2
. \ ; :
Hydranlique générale, &
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1 ; . A p . =
- =" = e i
o ...f'(.'r' — :)_.n'“(.:-;——,:\ ;
AV \ _|_ WAL : 9 /
’ h ! &=

ou enfin zéro, puisque F (+=oc, z)==0.
Nous satisfaisons donc & la premiére équation indé
finie (14) en prenant :
\ e

?:/ -—T(I—%‘C)—'—?(I—l—éi‘!’ r:,(.-!ué- Jda,

¥ % £

v

ou ligure une fonction arbitraire de deux variables dont
nous allons disposer de fagon & satisfaire aux auntres
conditions.
La transcendante (v) définie par I'équation (10)
peut se mettre sous les formes suivantes :
Ay Ny
"HT)— SLIL I cos mdm — cos ~ I sin medm,

oo g O

i IR e
L \/-— (sin-y L‘-HS‘.-’]I-}— , e WY cos mdm,

2

gy e ! " 2

1§ (Vay) (Vom )
s Bt e
1 & L 1_||l

1#" ] 1.2 I

et. pour v trés grand, on a, & fort peu prés :

'y Vi s T3
Tr{,]'— 5 hIIt[‘*]-——I,I'-).

Revenons & la fonction = : un caleul de dérivation.
- " * ¥ v
suivi d'un changement de variable, donne :

gl

O A 2 ,
{n'"':': / e (—; z)
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et I'on a pour =0 :

{ —}n"x soit —"_:_ F(x,2).
9y
Par suite, la |*Piﬂlmn ,}.?:n. dérivée par rapporl
a 1 et spécifide pour [=o. donne :
0:F . 0LF
3 o T
la fonction J (@, z) satisfait & cette ¢quation indéfinie et
A deux autres équations de condition ; d’abord, comme

0e
pour z==0, l==0, ona: -—= Fix)  [g==1}.
nous devons avoir ;@ F(»r, 0)= _""_ () 5
ensuite nous avons : ~ J (4 oo, z) =o0.

La théorie connue du potenliel logarithmique four
nit une fonction 5{_:!.'. ) ;-z_'-.;'}rmdunt 4 ces conditions, a

Pl g™

SAvVOLr o g, 2= - =,
il o *’" f—l—{’—;l"

ou, en faisant le changement de variable == - 27 :

e

,_T:{‘,,,*:}:%/ Fot-zn) 5

- 1 ——n
& — o0
-~ . -
A cette valeur de F (&, z) correspond, aprés une mnter-
versionde ordre {lrw mtvumlmm la fonction o suivante :

-1 I ‘ o ;
ﬁ'* ch il o L o
i 1 ni/ [l* (J ‘I*?—F—n)
; S

+F (r—-'..;_ +a1) [4a) i GO

U(+) ¢tant la transcendante définie plus haut.
| ]
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[l se trouve que la fonction o ainsi obtenue satisfait
a toutes les conditions du |1mb]+-|nr- ainsi que le
montrent des caleuls directs.

A cause de I'unicité établie de la solution, le pro-
bléme est ainsi complétement résolu.

De lexpression de » se déduit immédiatement
I'équation de la surface libre, soit (en faisant F==r):

O

h— 5; bour z=o.

PDur z=o0. l'intégrale double qui définit o se réduit
1 produit de deux intégrales simples, dont I'une

+ oo
g
- est égale & =, et il vient, en dérivant
I —I—- N

—
par rapport 4 [ :

i 2 e
pas / F(z— o)
T ; Ao

=0

P T

+F (ot o) |9 (%)

Décomposons cette intégrale en deux, et posons :

bl

@ I?_—_:u r=|c—al|, dy=F(a)da;
comme la substitution de la variable @ & 'ancienne =
donne :

' 2 = tela
&=—=, di = R e e
\Var 3y ar

nous aurons :

{ s F {a}ffﬂ { (N dq
h=— 4’( F)== | Wl==0)

T A ry r ([ o .i"t‘.-"r

— a r
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II est entendu que la fonction I est nulle en dehors
de la bande d'immersion; quant & F(a)da = dy, c’est
la dépression élémentaire produite initialement sur la
bande superficielle comprise entre les abscisses a.a —da.
Cette dépression élémentaire engendre & toule dislance
sensible » de cette bande la dénivellation :

{dy (@Y
h. il N e :
} ot ‘LI. r '-"I ( !H‘ ."}
ou, en utilisant le développement de {'(+) en série :
= If..' ' / j‘i oA +
] dy [ a7 } ( ar } it
L s N HEA S

3

e :
et, dans le cas on P est tres grand :

I % 1 G -
b=l o KL
(7 '\,';:F'ﬂ \ \/ e Cos ( i 7 )

Ces deux derniéres formules coincident avee celles
obtenues, au début du xix® siécle. par Poisson et par
Cauchy ', au moyen de procédés non senlement tres
pénibles, mais aussi d'un emploi des plus délicats,
sinon incertain.

Nous allons sommairement déduire des formules
¢tablies quelques conséquences susceptibles d'une inter-
prétation physigue.

Soit 2/ la largeur de la bande d'immersion suivant

les @ l'origine étant choisie au milieu de cette bande,
ctudions le mouvement du edté des @ positifs, en des

1 5. D Porssox, 4, po 112 ef 118. — A, Cavony; b, p. 99,
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points dont I'abscisse & est trés grande en comparaison
de la demi-longueur immergée { (on rappelle que les
unités sont choisies de manidre que g=r1).

Pendant une bréve période initiale, tant que le rap-

a

port 7R o e trés petite valeur, le mouvement est

régl par des lois trés \Jl]]p]t'”: données par Poisson.
LF“:‘ seules valeurs de « & considérer sont celles de

, ; GE'
Pordre de petitesse de ¢, ou pour lesquelles = est
trés petil vis-a-vis de l'intervalle 2/, d'ott pourra ne
pas sortir la varviable donnant a F des valeurs diffé-
rentes de zéro. et, dans ces conditions, la valeur de 0
peut étre réduite &

ol [ Rt 1 1 ok
Uit RRSE oo s SR Ty AR N e

la dépression élémentaire dg="F(a)da corres-
pond done dans o I'élément :

_ ldy z
Wl == o :£_|_ (x—a)®"

Ein posant : #—a=g¢sinf, z=;zcosf, on obtient
comme ¢léments correspondants des vilesses u et v :
!rfrj.r .Frfr‘f ;
i, —— > sin 2. W, ———3 €05 2f).

J'ul [
i i

Ainsi : « chaque molécule fNuide prend tout d’abord
un mouvement uniformément accéléré. dont 'accélé-
ration. inverse du carré de la distance ¢, ala grandeur

u’,r

et la direction opposée a celle qul fait l'm'igle 2f)

F
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avec la verticale. Si I'on congoil, menés par la généra-
trice immergée w=a du solide dont I'enlévement donne
naissance aux ondes, les deux plans rectangulaires qui
sont inclinés sous 'horizon de 45", le fluide compris
au-dessous on dans I'angle de ces plans se soulévera pour
combler le ereux initial. tandis que le fluide qui leur
est extérienr ou supérieur s'abaissera. Dans les denx
cas, les molécules se rapprocheront du plan vertical
bissectenr de l'angle des deux précédents, ou mené le
long du sillon erenx de la surface. On voil encore :
1° que les vitesses produites au-dessous du méme sillon
décroissent sensiblement, pour des couches de plus en
plus profondes, comme 'inverse du carré de la profon-
deur; 2° que la (éle de l'onde concave naissante est
animée d'une célérité trés grande. En effet, les ordon-
nées h de la surface. & la distance @ —a=rp. seronl

4] A g
données par la formule h= | wadt, soit, en égard

iy

A la valeur de w, prise avec 26 —r (pour [ trés pelit) :

i __l'l f‘r :
e, a=l *

or cette relation exprime que chaque ordonnée trés
petite h se transporle, le long du canal, avec une celé-
rité constante, inverse de la racine carrde de sa hau-
teur h et, par conséquent. infinie pour la éte h=o.

« 11 suffirait évidemment de r'(.'-r]“][b]m‘.ﬂl‘ ra’:‘.' par
e | .
g=| , Bla)da,  pour ¢tendre les mémes lois au cas

Jrfflf'fllf

d ol

| pe=Ti

doae)

~|o

réel d'un sillon creux initial ayant une largeur finie 2/,
Seulement on devra smpposer alors la distance donnée s
de ce crenx aux points o 'on étudie le mouvement
beaucoup plus grande que /, afin qu'on puisse regar-
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1 i
der  — et 6 comme les mémes pour tous les élé
rl'
ments g !
Proposons-nous maintenant I'étude du mouvement
pour les époques el pour les points queleongues, qui

ne donnent pas toutefois an rapport —,— ‘une valeur
o

[ Sl

trés grande, en nous limitant aux couches superficielles
pour que : soit trés minime devant =, ef i la 1 région
située du cdté des o positifs par mp]mll au sillon élé-
mentaire initial.

’ . . i 2 12
Dans lexpression (16) de 5. F (r—LT+¢J

sera négligeable, eu égard 4 la grandeur de x. Nous

poserons alors :  x—zp — , =% dou:
— = deé
dy = —— —, ou ———,
Va(r — 2+ z7) V2
sensiblement. Par suite :
4 -4 : e
e 2 3 ‘irﬁ e [1 ,_.:I rl I ju
TR 2 A8 o By P eyl 15
e AERE B S T i fla— —l—=‘r.|_
A une dépression élémentaire cor-

: [
respond, puisque le rapport -

i {:——E+ )

vaut a

1 ! rr r
peu prés T ¢l reste fini, 'élément
gif;f o B
L
=\z Nk

! J. Bouvssivesq, 43, p. 612-613,
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On en déduit comme éléments correspondants des

7 oy r"JrT) E"JEQ ;
vitesses, en notani que S o
05, ey o LB k] I,( & \
S T g:_ u( fl5}+ 3z "\ /¥
0%, dy B R B
PAINE Ve U( he ) TR ( he )

Ces expressions, aux grandes distances g, sont de

; : I sates ,
I'ordre de petitesse de ——=, el décroissenl moins
FNP
vite que dans la premiére période, ont elles étaient de
. ]
I"ordre de =

Enfin, on a pour l'ordonnée h de la surface la dér

o, 9% feifid .
vepe S 5 & Dour =0, S01f :

e pécifiée pour 0, S0

tely N Bdg.f 2 .
e hmr e () b — N T
h_'_.k e Tf{-. ﬂ:)_ - fake (B v |
J.'_..- " _I.- W 8w’y = -
i : : o
en posant v =———. Les diverses ondes sillonnan! le
1] I;:.'

fluide a l'instant { seront constiluées par des parties
saillantes comprises enire creux : les positions des
creux et sommels successifs s’obtiendront par la con-

O ali i 2
o By 3 g T R s e
dition 5, —0, ou v l_g{;] -3

Famt] 3 1,

Si l'on a égard au développement de 4 (y) en série,
on est conduit a I'équation transcendante
I 22y )

(n——1) (2v)™ et
= RS e +"*I'1.:i.':=‘,.‘m'n

e =
1 L. 9.0
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La plus petite racine est ~=1,037 (Poisson); la
suivante est +==14,18 (CGauchy). Pour les racines sui-
vantes, v est déja assez grand; et I'on peut substituer

/ v

a '(y) Pexpression approchée -\-'T COS LT—- z ): les
H i 3 | y

O A
valeurs de + annulant e sont alors définies par

1 ( 7 ) 3

i | s —_— | —

= ! " )— *
x LY

b

Celte équalion se résout par approximations succes-
sives: les racines en nombre inlini deviennent bientdt
équidistantes entre elles de =.

A la premiére racine correspond la premiére onde
creuse, et l'on a ;

R AL SR .”;if_:q_m.aﬂma dy.;

N /] Yl 5
i

a la seconde racine correspond la premiére onde en

relief et 1'on a :
i il ot I
p=10,120 . h— — £, 70 f! — — 1,000 :fi
i

aux racines sensiblement équidistantes correspond une

valeur de ¢'(v) égale & peu prés a4+ \’:— et l'on a:

SRR Lele
h— =k - #"I =i !
U 22V TE

cetle hauteur croit, en un méme endroit, d'une onde
a celle gqui suit.

Pour conclure, « toul se passe, a quelque distance
de la dépression initiale. comme si la surface s'était T
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couverte instantanément. dans cette région, d'une infi-
nité d'ondes on de rides, dont les fonds ainsi que les
sommets et méme tous les points prendraient, le long
du eanal. lors de 'émersion du solide. des mouve-
ments apparents de transpori uniformeément acedlérds,
aver vitesse initiale nulle. mais avec des accéléralions
;f = .,1, . variant de I'infini & zéro pour ces diverses
parties élémentaires d’ondes; d'ailleurs, chacune de
ces parties décroit en hauteur, 4 mesure qu'elle pro-
aresse. inversement & la distance parcourue ou am
carré du temps écoulé, et apporte anx couches fluides
superficielles des vilesses, tant horizontales que verti-

cales, mversement |'}1‘np{}rlirjmmlles an cube du méme
temps )

L'extension de ces lois au cas d'une dépression linie
se fail sans peine sous la méme réserve que pour la
pe sriode initiale ttlldl&i’ fantal.

M. Boussinesg a punuutu cette élude et détermind
les lois des ondes venant 4 la suite d'un nombre con-
sidérable d'autres, et pour lesquelles le rapport :ﬁ

4p
est trés grand. 11 a aussi envisagé le cas général d'un
hassin indéfini el d'un corps immergé de forme quel-
congue *.

Dans ce qui précede, nous avons envisage surtout
la propagation du mouvement dans le sens vertical.
Tout récemment M. G. Rousier® a appliqué avec suc
cts les mémes procédés & I'étude de la propagation

1 J, Bovssizesq, 13, p. 618,
2 J. Bouvssixesa, 13, pp. 619-639 el 6i0-648.
i (x, Rovsien, p. 29-41.
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dans une direction quelcongue et il a obtenu des résul-
tats ¢élégants.

2. Ondes superficielles produites par impul
sion. — Les lois régissant les ondes produites par
impulsion & la surface du licquide en repos d'un canal
se déduisent de ce qui précéde. Les équations indéfi-
nies et aux limites sont les mémes, mais les conditions

O

d'état initial (pour z et # nuls) =0, w5 = F(x)

- 05 :
sont remplacées par o =F,(x). - —0. Or il )

suffit de prendre la dérivée o, par rapport au temps { '

de la fonclion o relalive aux ondes démersion pour
avoir I’expr{-ssimn de la fonction o convenant aux ondes

par impulsion, sous réserve d'y remplacer F par I,.

- =0 alo) s . \
En effet, la dérivie B =3r déduite de (16)
vérifie, comme o, I'équation indéfinie Ay,=—o0, Ia
: 0o, 0%, by : : .
relation B — o Spéeiale & la surface libre

; o, ; AT
et la relation - =0 relative aux parois. Si F

est remplacé par F,, pour z et { nuls, g, coincide
By et b B0 o il ident t
Ay A ) e s al ' 1cle e
avec I'(x); e o1 572 S annule identiquemen
81 2=—0, =o. |J.—
Il est aisé de conclure de la les propri‘¢tés des ondes
d'impulsion. dont fous les traits généranx sont les |
mémes que ceux des ondes d'émersion. ‘|
s
4
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DEUXIEME SECTION

PHENOMENES DE MOUVEMENTS BIEN CONTINUS
OU LINFLUENCE DES FROTTEMENTS EST SENSIBLE

CHAPITRE 1

ECOULEMENT DE L EAU DANS LES TUBES FINS

1. Equations générales d'un régime gra-
duellement varié dans un écoulement bien
continu. — Nous nous proposons dappliquer les
eiquations de Navier a 1'établissement des lois générales
qui régissent I'écoulement lent, sans tourbillonnements.
de l'ean dans un tube fin, trés long et bien calibré.
Nous envisagerons une classe importante de cas anx
quels convient le nom de régime graduellement varié';
pour ces cas, conformément aux observations d'Os-
borne Reynolds, les filets liquides sont presque recti-
lignes et paralléles sur de grandes longueurs, et ils
ne présentent pas entre eux, & la traversée d'une section
quelconque, des inégalités de vitesse trés différentes de

L. Bovssinesg, 2, p. #82-403, — J, Bovssivesg, 40, p. 335-346.
— J. DeLEMER, passin,
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celles qu’on observerait dans un mouvement uniforme.

Nous donnerons i 'axe des » la direcltion de 'axe
du tube et le sens du courant. Dans ces conditions.
les composanles transversales ©, 0 de la vilesse d'une
molécule seronl. comparativement & la composante
longitudinale u, des quantités Irés pelites que nous
regarderons comme étant du premier ordre de petitesse
et dont nous néghgerons les carrés et les produits;
leurs dérivées seront supposées du méme ordre quelles,
el en vertu de 'équation de continuité, la dérivee de u
par rapport & @ sera aussi de cet ordre.

: O (W17} 5= A
\u contraire, —— et — seronl [inies : tandis que
0y 0z
la vitesse d'un méme filet flnide ne change guére entre
denx points donl la distance est comparable au ravon
du tube, la variation de vitesse qu'on observe en pas-
sant, dans une section normale, du filet central & ceux
de la paroi, est considérable.

[Yapres ces hypotheses, les aceélérations latérales o', '
seront néghgeables vis-d-vis de 'aceélération longitu-
dinale u'. De plus, la petitesse du coefficient = de frot-
tement intérienr du fluide permet de ne garder. dans
les équations de Navier (Introd.. ch. u, C. § 2).
parmi les termes dus aux frottements, que ceux o
figurent la composante principale u ou ses dérivées

. ¢galement finies en y et z.

Les équations de Navier se réduisent alors a : 1
. Op pe O :ﬁﬂnf)
& O '\_”—i_g(q‘wﬂ 25
L Op . duill T T
; ‘\':P' o 0z |
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Les deux derniéres équations montrent que la pres-
sion p varie suivant la simple loi hydroslatique aux
divers points d'une section quelconque normale & 1'axe

0O (p 2 _ 3
des @ ; S ( J) est done constant sur toute I'étendue
d'une telle section.

Soit 1 linelinaison de Paxe ox sur 'horizon ; comme
la composante longitudinale de la pesanteur rapportée
a Punité de masse est X =g sin i, la premiére équation
peut s'éerive :

h5F ( 02 {.‘ | RV ) gl (1)
;:ﬂ' : ﬂl..r,_ ﬁa— _—|_ ER L] l 1
; i)
€1 Pﬂ-‘:‘i“ll- g I — "_ulll T ?T (,.I_,:f):
\ B

la guantité 1, qui a la méme valeur en tous les points
d'une section droite du tube, est dite penie motrice.

A l'équation aux dérivées partielles (1), nous devons
adjoindre, comme unicue condition limite (7nl., ch. 1. E,

§ 2), l’équﬂlinn =0 a la ||m*ni.
le fluide ne présentant pas de surlace libre.

Cas d'un régime uniforme. — Supposons
toul d'abord que le fluide ait pris un état permanent
dans lequel toutes les molécules soient animées d'un
monvement vectiligne el uniforme ; les équations

O 1 f_‘l yit ?Irj.ri Sl (2)

=0 (a la parvei),

=

déterminent la valeur de u en 1.‘!1{11111& point d'une sec-
tton 7. s1 toutefois 'on se donne la valeur constante
de I pour cette seclion.
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La solution u est unique ; car la différence uy de deux

. i ; 0%, 0%y,

solutions, vérifiant les éoalités ——

’ ; 5 0y? o 022

W=o (a la paroi), satisferail, en verty de la formule
de Riemann. i g condition

"By N2 o, \* | il
S [( _["b:}_:) _f"(_ﬁ:j_) o =9,

laquelle entraine 1a constance de u, sur toute la sec-
tion, et par suite sa nullité (puisque u, est nul A la
paroi),

Avant de déterminer la fonction u dans quelques cas
particuliers de section, nous signalerons un résuliat
simple que fournissent d’élémentaires considérations
d’homogénéite,

Imaginons un tube coaxial au fube donné, de section
droite homothétique & celle de ce tube et ayant pour
surface l'unité: s (. ) sont les coordonnées du point
homologue au point (y. z) de la seclion primilive.,

—0; el

les formules de passage y=—=u\/z, ::E’J&_ trans-
forment 1'équation indéfinje (2) en
O [ err” e gl
| —— —] I =0,
O _Fg[:_l+ 0L | p¢ :l+

tandis que I'équation 4 la paroi s'éeril

<
gl

;'-:'IT}I'-‘--:{L

Ces équations montrent (ue est, pour tous

il
eyls
les tubes 3 seclions lmmf:lhi-ln]uea-, une méme fonction
de = et £; d'ou -

o B R) e
=17 l,_f(f.;, —)
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[ étant caractérisée par la forme de la section. Ainsi
aux points correspondants de deux tubes de méme forme,
la vitesse longitudinale est proportionnelle au carré des
dimensions transversales, proportionnelle a4 la densité
et & la pente motrice, inversement proportionnelle au
coeflicient de frottement &.

Quant au débit, ou volume fluide traversant une

section dans I'unité de temps, ﬂ:SF uds, il a pour

s

valaup': Q== F'”El: ’.f' f(—T \:;.:) dy dz

ogla® n
== '—! . [‘ _ﬂ_?‘,. "':}ff?‘l”"‘-::'
comme lintégrale est un coefficient numérique K
dépendant de la forme de la section, on a :

Q=K ¥ L

-

3. Section circulaire. — Lois de Poiseuille.

Si la section droite est circulaire, w est, par symé-
trie. fonction de la seule distance r de la molécule a
I'axe ox. Transformons 'équation (2) en coordonnées
polaires dans le plan de la section droile; comme :

O O ol - e A 1
it =t )

on obtient I'équation indéfinie

v ode  odaey agl
? J;-* (]' 1 )+_E— =0).

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

198 MOUVEMENTS BIEN CONTINUS A FROTTEMENTS SENSIBLES
Cette équation s'intégre immédiatement. On a suc-
: flu a1
cessivement @ P - — L A,
i e = e rt - A

e _jf'.(ﬂ r*+Alogr4B.

Pour déterminer les constantes A et B, nous obser-
verons d'abord que dans un tube circulaire plein de
liquide la vitesse est finie mdme pour r=o. ce qui
exige que A soit nul, — puis que pour r =R, R élant
le rayon intérieur du tube. u doit sannuler. 11 vient

a

ainsi : e FJ;;{l (R — r2),

el par suite :

ARG ) (38 i e\
Q= I.’.'lfe = / (I 5 ;{ﬂ.)d‘(u%):

- {r]

(£

-

g

i

._
|
9

ol

i

Le régime étant uniforme, le débit est constan| pour
toutes les sections, et comme les sections sonl d'égale
surface, la pente motrice I est constante tout e long
du tube. Il est aisé d’obtenir Pexpression de cette
penie. .

Soil & la hauteur, au-dessus d'un plan horizontal .
d'un point quelconque de Taxe du tube: on a

e O 0 ( o)
SN { =— — D ° ol l=— D \Ji_FE:)‘

Cette dérivée en o étant constanle. si nous désignons
par L la longueur de la portion considérée du fube.
par hy et p,, hy et p, les valeurs de h et poa entrée et
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a la sortie de cette partie du tube. nous aurons sim-

|11:?r11ent i = II— {'ﬁl_._ ;!“_ui__{h:_f.’]i),

pg~

En tenant compte de cetle valeur de I et en rem-
=1 : el

plagant s par AP D est le diamétre du tube,

nous obtiendrons I'expression suivante du deébit :

i B N
g m B PR

128 L o)

IR i 4 T . | R

Des expériences trés précises du docteur, Poiseuille !
sur des tubes circulaires trés fins avaient, antérieu-
remment & la théorvie?, conduil aux lois exprimées par
cette formule,

Les recherches de Poiseuille, entreprises comme
introduction & I'étude de la cireulation du sang dans
les vaisseaux capillaires, el conduifes avec un remar-

!
|
!
:
i
1

quable souci de la riguenr (mesure exacte du diamétre
des sections. calibrage du tube. mesure précise du débit
et de la différence de charge aux deux bouts du tube)
se résument en eflel dans les résultats suivants connus
sous le nom de lois de Poisenille® :

Le débit est proportionnel :

| Porgermee. Ce beau Mémoire est remarvquablement résumdé
par M., Brillouin [Brinrows, 2, t. I, p. 115-120,

2 J, Bovssinesq, 4, p. 46.

3 Voir aussi les expérviences antérieures de, Girard [Ginanp,
p. 241} et de Hagen [Annales de Poggendorf, 1839], « Je ne crois
pas, dit E. Duclaux, qu'il soit juste d'associer, comme on I'a fail
quelquefois, le nom de Hagen & celui de Poisenille, 4 propos
de la découverte de la véritable loi de 'écoulement des ligquides
dans les tubes capillaires, » [E. Durcravx, p. 439.]
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1 A la différence de charge aux deux bouts du tube
(loi des charges); :

2° A linverse de la longueur du tube (loi des
longueurs) ;

3" A la quatriéme puissance du diamétre (loi des
diamétres),

Y,

Sil'on éerit: Q=m. LI— pr,r{.-':,,——hj_}—l—p@—pl_ ;

le coefficient m est @ 1 — —

La valeur du coefficient m est connue dans chaque
expérience de Poiseuille ; on peut done en déduire la
valeur du coefficient de frottement intérieur . m et par
suile = dépendent de la température et varient trés
rapidement avec elle; les variations en ont été étudides
par Poiseuille entre 0,5 et 45". A la température de
10", 0N 8. e=0.01303 (unilés CGS);
4 une température = estimée en degrés centigrades 4
partir de 10°, on a :

0,01303
:tlltﬁ:iﬁgﬁﬁ;_—|—?{l{_i;i 188 72

. Sections elliptique et autres. — Dans ses
expériences, Poiseuille mesurait chaque extrémité
de ses tubes deux diamdtres rectangulaives  dont il
prenait la moyenne. L'étude du cas de I'éconlement
dans les tubes peu elliptiques montrers que I'on peut,
sans changer I'expression du débit, leur attribuer la
forme circulaire et faire le rayon de la section fictive
égale & la demi-somme des demi-axes,

) - -E * L w = 5 o
L'expression A7 Eoft doit satisfaire & 1'équa-
iz
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. - [ I {\’Em ﬂ'ir'j ] 5
tion indeéfinie B . Py ~+1=u0, el s‘annuler a la

paroi, Si b et ¢ sont les demi-axes de I'ellipse section
droite, la fonction

. e & 2t
Tl — 7 —
K bh* i
satisfait 4 la derniére condition quel que soit A, et pour A
constant, elle satisfera & I'équation indéfinie s
iy I

— )r(b"—}-ﬁ)—{" =1

Ainsi :

D’aprés cela, les courbes d’égale vitesse sont des
ellipses semblables a la section du tube ; leur équation
oénérale est :

e o
ES= i Ty

le paramétre ¢ variant de o a 1.

L'aire de la couronne elliptique élémentaire comprise
entre les ellipses d’'égale vitesse o et o - do est zbe . do.
L'expresion du débit est :

' agl bc?
Q:/ e 1 — ). wbe . do

3

gl be 7
— fe b4

Si l'on pose b=ac, le coefficient K de I'expression
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§ A i 2 I Sani
générale du débit est _5'|_'¢x3_j—__l} o A dgalitd de sur-
face de section, le débit est maximum pour z= g

! 2T d :
(comme on le reconnail en écrivanl = —0), ¢ es5l-
5 .

a-dire quand on a affaire & un cercle: alors

I

]x:—:{'h{‘rﬁ”".
&% 4

Soit R la moyenne des demi-axes b el e: par défi-

nition

b=R(x1+40), e=R{1—8f);

st oy === H% fen 4 2

AT e € e ) l
b el
‘fi—f'

Supposons que 20 =—p—  soil assez petit pour

(ue son carré soil négligeable devanl 'unité, i Wordre
d'approximation admis; on pourra remplacer
(1 —6)° :
- S === L
= '
par l'unité. et I'on aura le rvésullat énoncé tout #
I'heure,

Notons encore que la vilesse o est maxima pour le
lilet central et que sa valeur y est double de la vitesse

(=

moyenne

5

M. Boussinesq a encore envisagé diverses autres
formes de sections, en particulier la forme rectangu-
laire. Sans développer le calculs nons donnerons
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I'expression du débit. 81 ab et 2¢ sont les dimensions
du rectingle, on a! :

avec. ;

A . P
il .|'r|' varie par valeurs entiéres.

[ 1
Pour —=— 7T, iy s 5 A,
5
2] & B PP o S
ona : p=0,0703, 0,0710,* 0.0731 0,0747.
5 10, =

00707, 0.0786. 0,0833.

Dans le cas d'une section carrée, on a b=r¢, ¢l
le coeflicient K de Pexpression générale du débit
vaut o.03brT.

Enfin dans le cas d'une section droite en forme de
triangle déquilatéral, on trouve, en prenant pour axe
des z une des hauteurs de la section, pour axe des y la
base correspondante, et en appelant 2¢ le cdté :

S ol 7y e T L e
tI:q—-"’r B A = [{ [ ) T
] \ Al

i
-
[

= ' e,

20\/3 . =

en sorte que le coefficient Ik vautl o. 0289,

1 J. Bovssingsg, 2, p, 389-394; — p. 424,
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2. Cas d’un régime graduellement varié!. —
Dans les {“(pf"t‘i(‘ll(:ﬁ.ﬂ de Poisenille, le liguide §'écoule
hors d'un réservoir par un orifice circulaire. passe &
lravers un ajutage approprié. el pénetre dans le tube
fin étudié. Les vitesses des hlnt: liquides & 'entrée du
tube seront bien toutes sensiblement ¢ ‘gales el paralléles,
mais n’'engendreront ]j'h un régime uniforme. Toulefois
les conditions d'un régime graduellement varié se
trouvent réalisées. Puis sous 'influence des frotlements.
ce régime tend a devenir uniforme apres - le parcours
d’une certaine longueur du tube. Nous allons étudier
les lois de ce passage d'un régime & 'autre.

A I'équation indéfinie (1) :

5

u e
oy Lf\v2+tﬁ"-]+]__ (1)
5]

L) J " .
ot I=—(h| L ) nous devons adjoindre la
oz £9 ) '

condition de nullité de la vitesse & la paroi. Nous nous

proposons de déduire de I une relation entre la pente

¢ . ”’4
motrice | et la vitesse movenne U— T
3

sa dérivée en .
Multiplions & cet effet ler{matmn (1) par l'élément
d’aire s entourant le pmnt (y, z) de la section &
d’abscisse x; intégrons a travers toute la section o et
divisons par o ; I'application de la formule de Riemann

£ du , o :
donne : v /”,” ;—I—I_—— /-u'—? (3)

-

1 J. Boussivesg, 44, notes 1 ef 2.
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-

v étant un élément du conlour y de la section o.
Eliminons I entre les équations (1) et (3) et introdui-

sons la vitesse moyenne U ; nous obtiendrons :

O s e R I e
)+ ()% f an(B) e

o
o] 1 ! I"lFﬂ
=t (uf _— 7] j, (4)
el g
- L
I ; : u s
-=—o0 & la paroi, — —1
L L 7

Si le régime était uniforme, o' serait nul, et en

ces dquations deviendraient

posant 0= T
L“‘r'-'-] | O 1 S re";, i S
5 L . / 0 =%
5y (5)
. iz
0=—0 a la paroi, ==

= T

La fonction o, qui ne dépend que de la forme de la
section. est, dans le cas d'un tube circulaire :
y: =+ 2* ) e )
; -1 =2 ( L — ]
y _ Ry,

Si le régime est graduellement varié. soit :
11
STl e
I'écart entre les deux régimes de vitesse longitudinale.
En retranchant les diverses relations (5) de leurs cor-
respondantes (4), nous aurons :

Hydrauligne genérale. "
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|
|
i
—
o
et
—
e
=
=t
-
(o

o—o0 a la parot, /nrf::u,
. _||

Multiplions les premiéres équations des g groupes (5)
, et (6) 1e~»pmtn’ sment par — oz el ods. ajoutons- les
| el mlwmm a fravers toule la h!”ﬂllﬁl‘l 71 les dérivées
! - du second ordre donnent les intégrales

[ 0 Oy (i o /

| —- = ﬂ = __T-_ —— f :_

: Oy, 2) LY My, 2) 0. z)

i S T i JE)
| total 12 h)f tité null
! otl, au tolal, — ¢ nantité .
|E a (? “;” ”1'” . Y quantite noile
!:- puisque o el m sannulent & la paroi; il vient alors :
[ (s 5

i e

: e = 5l o — 1)u'ds.

| S = o=

| : =

Il

5 - i :

I 51 nous remplacons  par T — % el si nous
H .

[4 ~

I ; do

| JOSOTS e iy, -
o ; dn "7 (7)
It Y

cette équation nous donnera :

it : !
- _-——]lU—-'- (o — 1\'ds.
dn @=1
I = :
Substituons I'expression ainsi trouvée dans le premier

s

i

I__"_ RS
|
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terme de I'équation (3), et nous aurons comme expres-
sion de la pente motrice .

Soutess g ey s vl
‘l_-.-rH ?; q—-j—? [{:JH T s {bj

ot il ne reste plus qu'a évaluer le dernier terme, soil :

y . -~ :
e : \
: L i ds — U mu’rf:Ji
gUs X :

A partir de 'entrée du tube, Us devient bien vite
fort petit par rapport & w, el, dans une premicre
approximation. nous négligerons le second terme vis
a-vis du premier, quitte a pousser ltout a D'heure
I'approximation plus loin,

Pour évaluer le premier terme, remarguons que

E Ii Su 1. HEH
"1 s = f b et
3 1111 E-L‘

du étant la variation. pendant le temps 5., de la
vitesse © d'une molécule, et 8x lespace qu'elle a
parcourn pendant ce méme temps dans le sens des .r,
Si l'on note que ?\J[u,:f::]:u. en vertu de la conser-
vation du débit d'un méme filet. on pourra éerire :

o wels S 1 o(mtds)
il g —— e L
9 da o o oaw

et par suite :

R 1 I 0 i O i F j
ARE SR (et P T
/ el e / Wil — o (\ A alU?*s ),
T S - ]

en posant, suivant une notation traditionnelle chez les

12 ut ds :
hydrauliciens : 2= i e (9)

a
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Comme Ugz est constanl (conservation du débit). le

| o I
dernier terme de 1'équation (8) s'écrit : {\:l ( x:;! )
et I'équation (8) prend la forme suivante, eu égnhrd i
" ; ; * 0 i : i
| .| ce que | a pour expression = [ h - e ) ,

SR Regint -
—Jd gty (10)

29/ 89 o

0

On peut donner & la parenthése le nom de hautenr
totale de charge du courant dans la tranche d’abscisse .
En effet la charge en un point du filet es (d'aprés la
définition donnée & propos du principe de D. Ber-
noulli, et en notant que la vilesse se confond sensi-
blement avec sa composante longitudinale) :

b+

-
-
b

— ey o ——ars

bl [

el ]
- Multiplions cette charge par le débit g = udz du filet,
i divisons par le débit total Q) et intégrons A& travers

. - i 3
toute la section s; il viendra. h - "._ restant cons-

of
1 [
| tant sur toute la section :
*‘ p I o . P [
h - : - / — s ot b R R
! = i =T | = : T é T = .
| o e 9 f 9¢
fi L.j T ...'I E".J" .Jlr
v |l 3 ! .
Plagons-nous dans le cas d'un tube circulaire ;
firy A Tty e 5 .
comme —t—-——=_ ilvient X =8 =, ot le dernior
dn I
Szl
terme de (10) sera —p .
=gl

Comme nous aurons l'occasion de I'établir en détail
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I'occasion des écoulements par orifices, & I'entrée du
tube consécutif & un ajutage moulé sur la veine qui
jaillirait librement, les filets onl une méme vitesse, el
la charge totale a la méme valeur qu'en un point du

h —I—L

e B
h, et p, étant Paltitude et la pression relative & la ._";1:”'-
face libre duo réservoir. Si donc nous multiplions
I'équation (10) par dx, et si nous inlégrons entre les
limites o. PﬂII(“-]‘PGlli_idltl 4 la section initiale doude de
la propriété signalée, et L, correspondant & une section
quelconque du tube ot h, et p, sont laltitude et la
pression. nous aurons : .
[z 8:UL _

+ ;ﬂ—n-ﬁ —

réservoir otl la vilesse serait nulle. soil

[ J:‘—-}“
binshostst F'rfj Fage

Si I'on prend pour = la valear gqui correspond au
regime uniforme. en posant t=mp:. OnaAa
]

o i ’ t{[l — Z.}:"ﬂ'lt fe—

L]

2,

et par suile

Ef‘:HI + ,_;,,,_;,14_*“"'_’““!... (r1)

St L est assez gmnd le second terme du premier
membre est insignifiant devant le lummm : I'équation
réduite traduit exactement une série d’ i_'s.llérie-ni_‘es de
Poiseuille relalives & de longs tubes et que ce physicien
appelle sa premiére série; ce sont les expériences qui
I'ont conduit aux lois qui porlenl son nom.

Mais ces lois cessaient d'étre vérifides quand les tubes
étaient de faible longueur : Poisenille a fait cependant
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sur de tels tubes un certain nombre d’expériences dont
il a scrupuleusement noté les résullals sans les inter-
préter, expériences qui constituent sa seconde série.
C'est & M. Boussinesq, el aprés lui, & un de ses éléves,
M. J. Delemer, qu'est due Finterprétation compléte de
cetle seconde série !,

Id'éf[llélti"iﬂ (11)donne a tres pei prés ['inl,ﬂrpn’:ialinn
voulue. Cependant une légére correction est encore
nécessaire, due & ce que nous avons. dans le dernier
terme de Véquation (8). négligé le lerme

A

1 O
o T @ =

fj,l' 67

ahe b

e

0. Interprétation des expériences de Poi-
seuille relatives a4 des tubes assez courts. _
Nous allons montrer que I'imtégrale négligée aceroit

sil'n[n[mneni le terme en g d'une faible fraction de

sa valeur, ce qui est conforme & un fajt reconnu par
M. Couetle dans sa thése.

\ cet effet, il nous faul préalablement revenir sur
la détermination de la tonction rr. an moyen dn sys-
leme (6).

Le tube étant circulaire. Ia symetrie du régime fai
queé w, comme u. est fonclion de r seul. of I'on a

2 Oy O 10 O
d’abord : T,JIF—}- 0 — o ! —'«},_._)~

i 1 T . ; O
Si l'on considére I'expression de 1', comme 37 =0

1 I. Bovssinesg, 14, notes 3 ef 4. — J. Derpsun , thise, — Ce
travail a éLé mis 4 contribulion pour la rédaction do présent
chapitre,
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en désignant par W la petite composante radiale d'une
molécule qui ne peul se mouvoir que dans un plan

O . D
FioE e - N
mertdien du tube, on obtient : o' —u N —.
O _l_ 0y
Enfin 'équation de continuité devient, ainsi qu’un
O 0

tres simple caleul le montre :  r— r'W)=o.
ottt s e e R Gl

lhrmplu:;num dans I'expression de w, W par la valeur

o o ; : I ou

tirée de celle dernieére équation, —— ] ~——rdr,
ol

et w par U (o -+ m); négligeons les termes du second

ordre par rapport a m ou a ses dérivées. et substituons

@ N

Ex 4
). Il viendra :

El. i . | 'Ir’:-'l]f‘:l:l]‘ ) (i _-Hﬂ

20 qu. 5 £ i
i =—=231j" (l—;—{)—:l?—ﬁ—/ %r!('l’{f,} S CIE)

Dérivons par rapport a r la relation (12) el la pre-
miére équation (6), et entre les équations oblenues :

O’ o ( N\ O
— — -|_ _F'— I T = —
Or \ I J O
0 S 0 ]J . Ou
~—f — r—,_ =———,
or roOr ar sl Or
pllen Ou R ey
Pélimination de e donne I'équation aux dérivées

partielles gqui définit .
Nous y prendrons pour variables :

e Az

S T \:';l_ R
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» - ﬁ"’.ﬂj 5 (] ki LI} i
et pour fonction d=—¢ 7 (ette équalion s'écrira
e
O3y L= Ol

A AR < (3)

Les conditions aux limites vérifides par la fone-
tion W'(&, X) sont les suivantes :

Eh
4(0,X) =0, / (&, X)de = o,
d{L,0)="72t, dEec) =0

on les dédnit bien simplement des secondes equations (6),
de la définition de ¢ et du double fait suivant : dans
la section initiale. tous les filets ont méme vitesse
(sauf aux petites distances de la paroi of u déeroit
trés vite pour 'y annuler), en sorte que

i
[-.I--':.letmzl—-?:?f—li

d'aatre part, dans les sections éloignées, le régime est
uniforme et 5 = o.

L'équation (13} est analogue & celle qui régit le
refroidissement d'une barre prismatique & conductibi-
lité constante. On formera son intégrale générale par
la superposilion d’une infinité de solutions simples,
produits d'une fonction de X par une fonction associée
de . Posons :

R Ll G
m élant une conslante positive. Pour chaque valeur
de m, cette fonction Y, satisfera a (13) si W', est
choisi de maniére que

V() +-m(1 —)Wa(e)=0. (14)
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La fonction

TR
m

ol les C,, sont des constantes arbilraires, el on la som-
mation est étendue & diverses valeurs de m, sera une
solution de I'équation (13).

Nous chercherons a disposer des constantes C,, asso-
cites aux quantités m, de maniére a4 satisfaire anx
équations aux limites.

D'une part, pour X=0oc, tous les W, sont nuls.
D’autre part, comme nous pouvons prendre pour 17,
la solution de (14) qui satisfait &

Yiloy=o~ A (6} =T,
nous aurons  ¢,(0.X)=o0. Enfin nous détermine

rons la constante m de maniere que l'on ail ;

[, (2)de =o.

P

Dés lors, il ne restera plus qu’d satisfaire & la con-

dition dfzi0)=Y C . W.(z) =ac

Cherchons le développement de ¥, en série de puis-
sances, soit :

Vi) =ct—Ae+Be —Cef+ D — ...

Hi

les coefficients A, B. ... sont liés & m par les relations

”",i- (B A);

I

I

2

.HJ‘

i

—(C-B):
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et ces coefficients sont tous positifs si m est positif. On
peut établir la convergence du développement, ¢ étant
compris entre o el 1,
La condition qui détermine m s'éerit
1 A B2 Gt

= e T el e

a SRR Sl i

M. Delemer a trouvé, pour les deux premibres ra-
cines de celte n'-quntiﬁn transcendante :

hy—8,0%, my=—23.9.

et 1l a déwlﬂppé les solutions particuliéres COLTESpon-
dantes 1" (z) et LA
Quant & la fonction ., elle est donnée par |

Pl

: d ;
m“‘_\}:—/ . —=—¥C,e—"b;(2),

-

e

en pasant ;
Pl

fos s A
'rI"l,"{E_:I-'“—_/ ","m[,z} ::E ;'U-_f-\—[—_z' fﬂ'—‘n_i""—|—....

; A B ¥
H e et
[l veste & satisfaire 4 la condition
o(2,0) =— ¥ C, Pu(2) =2t — 1= .

On ne peut la vérifier avec un nombre lini de cons-
tantes (I,. Aussi M, Boussinesq propose -t-il, généra-
lisant une méthode de Gauss. de déterminer seulement
les constantes C,, de maniére que la somme des carrés
des différences entre les valeurs du développement et
les vraies valeurs de r, en chaque poinl soil minima,
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Cette somme, pour foutes les valeurs de ¢ comprises
enlre o el 1, est represenice par

1
/_ (5, ¢, P, 4 ea®, 4~ )Mz

En exprimant la nullité des dérivées par rapport i
Cyy €3y ..-» ON Oblient un wilz-me 1l=-i.|untmr1- hm*me
pour déterminer ¢;, ¢y, ...

M. Delemer a é1é ainsi unuimt a 1'&rx1'a!*P55ir.111 sui-
vante de w7 :

o= — 6,606e— %X W () + 18,2e X Wy( £),

fui vérifie tris sensiblement la derniére condition.
Comme en fin de compte il s'agit d’estimer

e =]
— / dx / (—mude,
rjlr - L} - 0

on déduira de la formule (12) la valeur de &' en fone-
tion de x, z, en y remplacant les dérivés de © par
leurs valeurs déduites de 'expression de w qu'on vient

: : 22 .
d’obtenir et en notant que X = U/ on rempla-
cera ensuite dans l'intégrale & évaluer et o' par les
valeurs trouvées. M. Delemer a effectué ce calcul et a
trouvé pour expression du terme correctif, dés que L
a une valeur sensible,

BE
o. 13462 —.
g

En résumé, le terme néghgé au lnmﬂmplu_‘ ]'!I‘LLE—
dent conduit & remplacer le coefficient de 2y (ui

est I'unité dans I'équation (11) par 1,1346.
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M. Delemer a vérifié en détail la concordance de
cette conclusion avec les résultats de la seconde série
des expériences de Poiseuille, et expliqué par des consi-
dérations de physique expérimentale les dearts auxquels
donnent lieu quatre de ces résultats.

L
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CHAPITRE 11
PHENCOMEXES DE  FILTRATION

. Ecoulement permanent de l'eau a tra-
vers les milieux poreux. Généralites'. — On
entend par filtration V'écoulement lent d'un fluide &
travers les pores sensibles d'un milieu pulvérulent. Le
phénoméne type nous sera fourni par la filtration de
I'ean & travers un tas de sable.

Les équations de Navier permettent de formuler.
sur ce phénoméne, des lois controlées par I'expérience.

Considérons une masse poreuse imprégnée d'eau, el
supposons que le fluide, occupant les interstices des
grains de sable, posstde. dans toute région un peu
étendue. de lents mouvements suivant une certaine
direction générale. L'écoulement se fait dans les inler-
stices contigus. alignés sensiblement suivant cette
direction générale, formant par leur continuilé des
tubes de fmmpwn.fmn Les p.urm de ces tubes fictils se
rnmpuwnl partiellement de la surface des grains de

1], Bovssixesy, 8, p. 1
tion, — J. Boussixesg, 20,

Hydraullque générale.

-5 = Nt }If sur les phénomeénes de filtra-
B84 el 2,
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sable, partiellement du fluide & peu pres immobile qui
remplit ceux des interstices anx issues desquels il se
trouve soumis & une méme pression. Le fluide mort
(qui remplit ainsi les interstices latéraux, s'ouvrant sur
les tubes de transpiration, a pour role. durant la filtra
lion. de « [ransmettre la pression d'un tube & Vautre »,
et de « rendre solidaires. an point de vue de la pres-
sion, les tubes voisins qu'il sépare .

D’aprés ce que nous avons vu au § 1 du précédent
chapitre, dans une section d'un tube capillaire traver-
ste normalement en moyenne par les filets Nuides, la
pression suit la loi hydrostatique, tout comme dans
le Auide mort, Si done h est Valtitnde, au-dessus d'un
plan horizontal fixe de repére, d'un point (x, y, z) o

la pression est p, on a, le long de tout chemin perpen-

diculaire & 1'éconlement ra"}u:_. sqilh,
§ !
o ff( h —5—!—)::_}
L : I:-f;
J
La hauteur de charge o—h —f——fj—. constante dans
qc 7

o
la section normale d'un tube de }_II.'HI’I.":'»IJEI'HHUI]. clanl
aussi constante 4 travers un pore rempli de fluide
mork, on voit que [‘beoulement geénéral se fail, & tra
vers loule la masse, normalement & la Jamille des sur-
JSaces d'éqale charge o — canst,

A un instant ql.teh:‘m]r_iue- « ces surfaces d'égale
charge, censées suivies 4 travers le fin réseau fTuide du
milieu poreux, presentént d'innombrables irrégularités
locales, ou sont comme hachées d'imperceptibles
encoches, donl une 3 chaque bouche de tube. mais
restent cependant continues dans U'ensemble. »

5

|
|
!

e
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Dans un élément de tube de transpiration, la pente
molrice sera :
|l’|‘r_;j
dn

(i étant la normale inlinitésimale a4 la surface d’égale

charge ut‘:r'rr:t:[‘u:uh]unlu. dans le sens de 1'éconlement :
le débit de cet élément de tube serait., si le régime
était uniforme
orfls?
=K==,
7 ¢tant la section du tube, : le coefficient de frottement
intérieur du Muide, et K un coellicient NUILErIue

" : 1
dépendant de la forme de la sechion = g= pour
e

"

2 3 : 1 ; :
une section circulairve . R pour une seclion lrian-
20V .

culaire :iqlli]:‘llﬁl'zl]u

Pour un écoulement quelconque, lapplication de
celle expression du débit est encore justifiée pour des
tubes aussi fins et ot les inerties du Nuide restent
négligeables. « Cependant, & raison de extréme irré-
gularité des tubes dont il s’agit ici et des changements
relativernenl rapides en rvésultant pour les petites
vitesses qu'y prend le fluide, les termes o ligurent
les inerties dans les équations du mouvement peuvent
bien étre, en chaque point, du méme ordre que les
autres, dus soil anx frottements. soil aux variations de
la pression. Mais ils ont leurs valeurs moyennes nulles
dans toute petite étendue sensible, comme les accéléra-
tions mémes. de sens divers: ce qui, on le concoit,
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doit réduire & zéro leur qﬁ'f'f général, tant sur le débit
des éléments plans. que sur les variations, entre 1'{*giiim:~'
voisines, de la pression et de la hauteur de charge. Il
doit en étre de méme pour les termes compliqués,
mais de signes également divers, exprimant les parties
des frottements dues aux irrégularités locales des vi-
lesses, c'est-a-dire aux différences, nulles en moyenne,
des vitesses vraies, d'avec leurs valeurs correspondant
4 un régime uniforme sur la seetion que I'on considére
el dans le voisinage'. » )

Considérons alors un faisceau de tubes de transpi
ration découpant sur la surface d'égale charge o une
région assez restreinte pour que la pente motrice I soit
la méme partout. En faisant la somme des débits de
tous les tubes qui forment le faisceau el divisant cetle
somme par celle de leurs sections intérieures sur la
section 5. on aura la vitesse moyenne U de lranspira -
tion du liquide dans la région considérée

les sommations s'élendant A tous les petits tubes qui
s'ouvrent dans cette région,
Nous poserons :

5 ¥Yi(ks).s o -
5 SO N L_ o movy. K=
TSR ¥ AT

cette quantité est ce qu'on appelle le coeflicient de
dépense du milieu, pour la région envisagée. Nous

aurons alors : Iz:;,l,_i,

1), Bouvssinesg, 24; t. I, p. 325.
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Rendons-nous compte de l'ordre de grandeur de .,
en supposant que le milieu poreux soit homaogene dans
toule son étendue, que ses grains soient sphériques,
et que tous les tubes soient de méme forme et de méme
section.

D’aprés cette derniére hypothése, on a :

itk

I
4= g Ko

Associons les grains sphériques de maniére que trois
d'entre eux soienl tangents dans le plan d'un élément
d'égale charge; le plan des centres y découpe un
triangle curviligne assimilable 4 la section droite du
tube de tmn::pi-rn!imu le flaide mort remplissant les
intervalles entre les sphéres prises en files longitudi-
nales. Menons les tangentes aux milieux des cdtés de
ce triangle curviligne : elles forment un triangle recti-
ligne équilatéral dont I'aire est, en fonction du rayon R
des sphéres : \.-"'.Tf [;—ﬁ\fﬁ_]li* ou o.124R* (ainsi que
le montre un caleul élémentaire); les parties d'aires
voisines des sommets non comprises & la fois dans le
triangle curviligne et dans le recliligne sont relative-
ment négligeables. Prenant alors pour K la valeur
0,029 relative au triangle f‘(flli].‘ité‘l‘ﬂl. et pour s la
valeur o,124R?, on trouve :

e e e s r
v 0,0009 . zg(2R)

Si 'on prend pour unités de longueur et de temps
le motre et la seconde (comme le font les hydrauli-
ciens). on est conduit, pour des grains d'un millimétre
de diamétre (grandeunr supérieure a celle des plus gros
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grains). a une valeur de u. voisine de 6oo. Ainsi y. sera
supérieur 4 Goo et d'antant supérieur a ce nombre que
le sable sera plus fin.

Nous comparerons tout & I'heure le résultat de cet
apercu (héorique aux observations de Darey.

Si I'écoulement est permanent, le débit lotal & tra-
vers laire =, de la région considérée d'une surface
d'égale charge est :

Q=maU,

en désignant par m le rapport de la somme des seclions
vives des tubes suivant lesquels coule le liquide a la
section fluide apparente 5,. Ainsi

m i s et i
{:} -— gy = — r: o nlr”(h—';— ;"f]
Les hydrauliciens. au lieu d'introduire le coelfi
cient m. ont préfére introduire un autre coefficient m',
rapport de l'espace occupé par les pores perméables
du milieu & son volume apparent tolal, rapport évi
demment supérieur & m, & cause des pores non dis-
posés suivant les trajectoires des molécules fluides ef
oft le liguide doit rester sensiblement stationnaire. Au
coefficient w, ils substituent alors un coefficient :J'.’
: .

v . o i m o Al o
défini par Pégalité = -, de maniére a cerire

i
hJ'. I

I'équation précédente sous la forme

: ' 7 PR, b
{é:— I :'_.'I_If—e—"""),
L '

A vue, il semble gu'approximativement soil le
double de m: par suite, u' serait le double de u et
vaudrait done au moins 1200,
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Vers 1840, Darcy el Ritter! ont institué & Dijon des
expériences sur la filtration. en constituant le fond
horizontal d'un bassin par une conche épaisse de sable
ils ont reconnu que le débit par métre carré de base
d’une couche poreuse homogéne est proportionnelle i
la pression qui produit 'écoulement et en raison in
verse de I'épaisseur de la couche. Ces deux lois ont
¢1é vérifies ensuite par Duclaux®, et la premiere l'a
été en oulre par Bazin? et par Beequerel *; mais la
verification la plus précise a é1é faite par J. Brunhes®
en 1881.

Dans ces expériences, ot le sable est aussi homo
gene ue possible, et ot les deux faces de la couche
liltrante sont horizontales, les surfaces d'égale charge
sont des plans horizonlaux; h ne varie pas le long
dune de ces surfaces, et le déhbil par unité daire sera
par suite :

: ' i n"lp

p g dn

Si l'on suppose le régime devenu uniforme, la cons-

: tp :

tance de 2 entraine celle de la dérivée T prise
suivant la verticale descendante, et la valeur de cette
dérivée est le quotient de la différence des valeurs de Ia
pression & la sortie et & I'entrée de la couche, P, et P,.

- H. Dancy, &, p. 590, L

EE. Ducravx.

8 H, Bazin, 1, note A.

4 BECQUEREL, p. 5.

i I, Bnusnes. Cé mémoire a été récemment résumé par
B. Brunhes [B. Brunhes]. Une critique faite par M. B. Brunhes
{p. 201) sur la validité d'application de la loi de Poiseuille ne
parait reposer que sur un malentendu,
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par I'épaisseur E de la couche. On peut donc éerire :
s
L Ps=1%
S  F— f . hl .
e gk
et cetle formule exprime bien les lois de Darey.
D;lr:::f el Ritter ont oblenu pour un sable assez gros-
sier, tel que m' ait pour valeur 0,38 :
P
Q=0,0003 —=—;
' gk
pour ce sable, on aurait done @y’ = 12066.
D’apres Dupuil', aux sables trés fins cm]ﬂn}fﬁs pour

les filtres correspondraient les valenrs m'=0,30 et
P o
:.f.- —- i'"""'

Considérons encore le probléme de 1'écoulement par
un tuyau ou par un canal déconvert rempli de sable;
ce probléme est important soit dans la théorie des
filtres, soil dans 'étude de la marche des eaux souter-
raines.

Prenons un axe longitudinal des abscisses s dirigé
le long de l'axe méme du tuyau, ou, quand le canal
est déconvert, suivant le profil longitndinal de la sur-
face libre (d'ailleurs cachée par le milien poreux). En
chaque point M de l'axe, d’abscisse s, menons une
section normale donl nous supposerons l'aire 5 exprimée
en fonction de s. Les parois du tuyau ou du canal,
sensiblement eylindriques, obligeront le fluide & couler
parallelement & I'axe; les surfaces d’'égale charge coin-
fl

cideront avec les sections normales, et la dérivée er

11, Dvporr. Le huitidme chapitre (pp. 229-293) n'est que la
reproduction d'un mémoire présenté en 1857 4 UAcadémie des
sciences [Rapport de Combes, C. R., t. LIL, 2 juin 1861},
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o

ne sera autre que la dérivée —- prise suivant I'axe.
f

i)

o
2]
o

Le débit & travers la section = sera done :

: R G ] )
Q=— ? o (\h—'— :_{Ij’
h et p étant laltitude et la pression en M.

Si nous supposons élabli le régime permanent entre
une section initiale z,(h,, P,) et une section finale
5i(hy, Py). le débit Q sera constant, et I'on aura, i
partir de M :

—d(h4-L

on en déduit :

):{} I'J—, f;x;

I &

L]
P,—p v, ds
hy—h 4" =0Q i el
o i e FaeT.s
) i
celle équation fera connaitre la pression p dans les
diverses sections, dés gu'on connaitra Q. Or si l'on
integre en particulier tout le long de I'are L qui sépare
les sections extrémes s, et 7, on obtient pour expres-
sion de ce débit :
g A
IJ“ et ]Ff] —|— T
o SR

al |

~L *lJ... rf.\'
—
i o

L

Q:

Dans le cas o la section normale et la nature du
sable sont constantes le long du tuyau, le dénomina-

g Vg (> T I
teur serédnitda “— .~ , ouencorea “——. OUn
L m &

donne a4 ce dénominateur le nom de résistance tolale
du luyauw i I'écoulement.
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». Débit d'un puits; d'une tranchée. — La
formule générale du débit permet d'expliquer diverses
circonstances relatives aux filtrations qui se font toul
autour des puils. ordinaires, absorbants ou artésiens',

Considérons un massif poreux reposant par une sur-
face horizontale sur un sons-sol imperméable, argileux
par exemple: le massif a ses couches nféricures impré-

anées d'eaun. mais ses couches H]Il'H"!'IlII"_,E'll'{".‘-i sont son-

Fig. 8.

mises a la pression atmosphérique constante de air
superposé a l'ean.

Supposons qu’on y ail ereusé un puits circulaire ver
tical de rayon R, : I'ean s'accumule dans le puils d'ot
on 'extrait, et ot elle présente un niveau libre A, d’al-
ttude H, au-dessus dn fond, et la surface limite du
floide dans le milien perméable viendra rejoindre le
bord de la section du puits 4 ce niveau libre. Eun égard
a 'homogénéité du ferrain. si le massif est indéfini
ou de révolution autour de l'axe du puits, la surface

VoCes résullats ont ébé donnés pour la premidre fois par
Jd. Dupuit, qui les a &tablis d'une autre maniere [J. Dureurr,
ch. VIII].
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limite et les surfaces d'égale charge seront de révelu-
tion autour du méme axe.

Imaginons ¢u'on ait atteint, jusqua une cerlaine
distance du puits, un régime permanent (par enléve-
ment continu de 'eau du puits, et par apport conlinu
exlérieur, soit que le massif soit indéfini, soit que,
limité par un cylindre paralléle & Ja surface du puits,
il constitue une espeéce d’ile circulaire au milien dune
nappe d'eau & hauteur maintenue conslante). Nous
nous proposons de déterminer la forme de la nieri-
dienne AMB de la surface limite ainsi que le débit dn
puits, en admettant que, le long de la courbe AMB,
la pente soit assez faible.

Les filets liquides dans ces conditions ont aussi une
faible pente, et l'on peul regarder les surfaces d’égale
charge comme élant des cylindres coaxiaux au puits.
En fait. la méridienne de ces surfaces, sensiblement
verlicale, se recourbe vers le haul normalement & la
surface libre: mais cetle courbure. de 'ordre de la
courbure de AM, ne se faisant senlir qu'a une fres
petite distance, peut élre considérée comme nulle.

Calculons le débit & travers une de ces surfaces, de
rayon R, et de hautenr H (du sous-sol & la surface

libre). L'aire de cetle surface est : s=—2zRH, etlla
pente motrice évalude en M est :

. dn i

S EEET TR |

Le débit demandé est done :

: H m' dll®

M I T R
Q:?,}!:HHW_" _:;.“ dlog R
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Le régime étant permanent, le volume. de 'eau com-
prise entre surfaces d'égale charge reste invariable:
Q est par suite le méme ponr toutes les surfaces d’égale
charge, et en intégrant I'équation précédente i partir
de R,, rayon du puits, il vient : 1

[}

n
7

: R
'l}h‘lﬂ' e
SN
et cette relation entre R et H définit la courbe AMB. 1
Si, en particulier, on connait la hauteur H, de la
nappe au-dessus dn fonds, 4 la distance R, de l'axe %
du puits, on aura comme expression du débit : '
m o H— 2
r'l‘_ ] —_—— S— 1
. i |
v Log<- ¢ '
SR |
Faisons croitre indéfiniment le rayon R, du puits.
en laissant invariable la génératrice A’A : le puits
dégénérera en une tranchée dans un lit poreux. Or si

, I

a \
nous posons, en général, T:I——i—-ﬁ—. nous :

(0 — H),

_E:I-.

pourrons écrire :
oy A Gy i R
e = 28 |{;h(f+ Hn,)
g 6 : X2
T 4" axR, [\_E_ 2R, +|
0 |
—2_—‘H— est le débit du puits par unité de longueur

de sa périphérie. Si done nous supposons que R,

et s (8] sl
croisse indéfiniment, —ﬁ tendra vers le débit q
de la tranchée par unité de longueur ;» X tendra vers 3
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la distance d'un plan d'¢gale charge au plan de la tran
chée, et la relation précédente donnera
AL RIS
H? — H; = - ¢X.
m

Le profil AMB de la surface libre sera donc une

Fig. .

i':ﬂrahﬂlﬂ a axe horizontal, ayant son sommet sur le
m' H?

2 :I.l.'l rrr

fond de la tranchée. & une distance SA' — de

la paroi, extérieurement au massif.
Les mémes caleuls s‘appliqueraient & un puils arté-
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sten, dont la nappe liquide d'alimentation serait forcde
entre deux couches imperméables horizontales et dont
le tube. coupé au niveau de A, viendrait déverser 'ean
dans un massif perméable : les filets seraient décrits
en sens inverse du précédent,

Dans le cas d'un puits absorbant, la surface libre
anrail encore une équation de méme nature. mais Jo
sens de sa concavité serai changé.

3. Mouvement quasi uniforme des eaux
souterraines'. — L'ean qui s'infiltre & {ravers |es
pores d'un terrain perméable descend en filets & peu
prés verlicaux jusqua ce quelle ait rencontré une
couche impermdable qui I'arréte, Elle s'amasse sur cette
couche, et, en méme temps, elle chemine, avee une
pente plus ou moins forte, vers les points bas, C'est #
celle masse coulant sur une nappe imperméable 4 tra-
vers un ferrain perméable qu'on donne le nom de
nappe aguifére. Une telle nappe peut se diriger vers
des points qui lui donnent issue au jour, ou bien elle
peul senfoncer dans le sol et ne reparaitre an jour
quen des points trés éloignés de son pomnt de forma
tion.

Nous allons étudier le mouvement non permanent
d’une nappe aquifére, en supposant que le mouvement
se fasse par filets & peun prés rectilignes dans un lil
sensiblement prismatique, et méme, pour simplifier ,
dans un lit 4 section i peu prés rectangulaire ef de
longueur constante ! Le mouvement se fait pareille
ment dans tous les plans verticanx paralléles an profil

' J. Boussivesg, 8, p, 252-260: note sup le mouvement non
permanent des eaux souterraines,
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longitudinal , et nous pourrons ne considérer (que ce
qui se passe dans I'un d’enx.

Le mouvement se faisanl sensiblement suivant la
direction ox du lit (incliné d'un angle ¢ sur 'horizon),
les surfaces d'égale charge seront trés sensiblement
des plans normaux & ox. Considérons une section nor-
male 5 ou MM', et évaluons pour elle la pente motrice
en M. A cause du parallélisme des surfaces d'ézale

do = e
charge. on a [:_T.IF;T' dey désignant la différence

de charge aux extrémités M et N d'un filet élémentaire
de longuenr dx. La section normale M, M, passanl
par N a pour haateur. au-dessus de MN,

; P By )

NM, = ——dr.

: [ Ox

lLa charge est la méme en M, el en N: nous sommes
done conduits & évaluer la différence des charges en
M et en M,. ol la pression p n'est autre que la pres-
sion atmosphérique constante. Dés lors, 1 est le quo
tient par di de la difffrence des altitudes des points
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M et M, el cette différence s'estime en projetant sur
la verticale le contour MNM,, ce qui donne :

MN sin i — MN, cos 1.

Nine: | s cos i Oz
1151 RN — 5 —,
: I dax
Par suite, le débit de la section MM’ aura pour l
5 Q m ( et COS 1 E‘}:)
expression : —-—alEini— ————
]: F_L‘I & : =1 f i‘j;‘]’_‘_ ;

Quant le mouvement est permanent, ou que le
débit () est constant, cette relation, considérée comme
¢quation différentielle en s, permet de déterminer ¢ en
lonction de =, pourva que les coefficients .qui y
figurent soient connus dans les diverses sections, el
que l'on sache la valeur de 5 dans une section parti-
culiere. Notamment quand tous les coefficients sont
constants, l'intégration se fail aisément sous [orme
finie. Le profil du niveau libre est ainsi déterminé.

Dans le cas o le cours d’eau & débit constant serait
trés long, s serait sensiblement constant sur une grande

longueur el 'on aurait : Q= = esini.
.
Supposons maintenant que le régime ne soit pas per-
manent, par suile de ploies continues. ou par suite,
au contraire, de sécheresse. Nous aurons & adjoindre a

équation précédente qui fournit Q) I'équation de con- 1
tinuité que nous obliendrons ainsi : entre denx sec-
lions normales voisines, d'abscisses x etz dr, le
volume d’eau est m's i ; de U'instant £ a U'instant { - di,
_ O(m's) :
ce yolume varie de i dxdl; mais d’autre part. !:

i 1
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Q étant le débit & l'instant ¢ dans la tranche o,
o)
([J_F_i\l:ﬁ Ff.f.)

era le débit dans la tranche e —daz, et I'excédent de
| cau entrée par une face du velume considéré sur 1'eau

! 00 .
sortie par |'autre sera — H diedl, entre les instants {
el {—dt : la condition de conservation des volumes
Om's) 00

"HIHI{_‘.‘E donnera IIﬂHL‘. o

G5~ v e
O(m's) e N i e COs I ﬁ:\%
— — < SN — —— =0,
0l f'}f‘ w ( U e iy

Telle est I'équation aux dérivées partielles qui régira
les variations de =z, fonction de x et de /.

Si nous supposons conslants les coefficients o/, m',
cette 1’=-f|1|;1ﬁr:m |}0111‘:m §'écrire

L e Cos [ h-:)
fH _l_ Dx T(I b ey R s 3 e L

U'

La quanlité %:; qui n'est autre que l'ineli
naison de la surface libre sur le fond, sera générale-
ment, sauf en des points et & des instants exception-
nels, beaucoup plus pelite que sin7, et 'on pourra
réduire a sini la parenthése; I'équation simplifice

s sin i Og

Nl

admet pour intégrale gf'.-m'?mlr-

o sin f
[ s:_f(ﬁ;—Tf),
; ;
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J ¢tant une fonction arbitraire, qu'on déterminera aisé-
ment par la condition que, pour =0, 5 soit une
fonction donnée de . Ainsi le régime de la NAppe soi-
terraine sera déterminé si l'on connait, & toute ¢porue,
son épaisseur, et par suite 5. prés de extrémité du
anal qui la conlient.

Ce cas esl réalisé dans les crues ou décrues lentes ;
les accroissements ou  déeroissements d'eaun se font
alors assez lentement pour que la surface libre soii
paralléle au fond. :

Le résultat obtenn peul méme &tre élendu an cas o
la section du it n’est pas tout & fail reclangulaire el
constante. 1l donne lieu & 'énoncé suivant - f,'a"m-";m'

valeur de ¢ et la valeur correspondante %f,-:.cm r
U,
du débit Q se propagent d'amont en aval, avee ln célé-
rildw —= ;HI -
EL

Pour |1umwnuird{* lerrains permdables, on adniet (que
m' est voisin de 0,20, el ' de 3000, en sorle que
est tres faible.

La méme méthode permettrait d'étudier le régime
lentement variable aux alentours d'un puils,

M. Boussinesq a envisagé d'autres cas de simplifi-
calion de I'équation (1); mais les résultals en sont un
pen compligqués !, !

i- Mouvement varié d'une nappe agueuse
quelconque a travers un milieu perméable. —
Dans les problémes quon vient de fraiter, le (quasi

b Bovssineso, 8, p: 257-258, l
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parallélisme des filets fluides entrainait la connaissance
de la forme des surfaces d'égale charge. Nous suppo-
sons maintenant qu’on me sache rien & priort sur ces
surfaces , et nous nous proposons d’établiv I'équation
genérale qui régit les phénomenes de filtration.

Dans un petit pore avoisinant un point M (., v, 2),
le débit de transpiration par unité de surface et de
lemps esl

m dso
SRR

do dtant la variation de la charge quand on se déplace
de «dn dans le sens de 'écoulement. normalement a la
surface d’égale charge passant par M. 81 «. &, y sont
les cosinus directeurs de I'axe dn du pore considéré,
on peut encore écrire

m 0o F ﬂr_:; g L
'r; ( % da ~+ & "ﬂy e il T:)

g=—

Cela posé?, « déerivons aulour du point M une sphere
de surface unité:; soit o un élément d'aire de cetle
sphére. Associons tous ceux des tubes de transpira-
tion dont la direction de I'axe dn reporiée en M cou-
perail @, et supposons que le rayon moyen de I'aire o
on que F'axe moyen du groupe de tubes aif pour cosi-
nus directeurs (z, [, v). Menons maintenant par M un
élément plan, dont la normale ait pour cosinus direc
teurs o, [, v;- Il ¥y aura, évidemment, d’autant plus
de tubes du groupe coupés par I'unité d'aire de ce

plan, que celle-ci aura sa projection plus grande sur

un plan perpendiculaire & tous leurs axes, plan ou

11, Bovesisesg, 24, 61, p. 327-328,
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leurs sections normales se trouveront distribuées d'une
certaine manieére, dépendant de la constitution du
milieu poreux, et généralement variable avee la direc-
tion (z, &, v). Si donc on appelle 2/ un certain coeffi
cient, uniquement fonction, pour un méme milieu,
de a; B, s le nombre des tubes du groupe qui auront
forme et grandeur données. de chaque espéce existant
dans le milieu, et que conpera l'unité d'aire de la pro-
Jection considérée du petit plan, pourra &tre exprimée
par 2uo. Or il suit de 14 que ce nombre sera 2/w cos V
pour 'unité d’aire méme de I'élément plan donné, V
désignant angle que fait la normale & 1'élément avec
la direction =z, §, Y du groupe.

Pour obtenir le débit QO & travers ['unité d’aire de
élément plan, nous n'aurons, aprés avoir remplacé
cos V par (az ~+ B8+ vvi). qu'd faire la somme,
d'abord . des volumes fluides g débités par les tubes
du groupe traversant I'élément el qui ont formes ou
calibres divers, et, ensuite. de toules les sommes ana-
logues pour les groupes qui correspondent aux élé-
ments o dune demi-sphére, ayant son pole sur la
normale & I'élément plan. Celle dernitre sommation
pourra dtre dtendue 4 la sphere entitre, & condition de
remplacer 2/ par i3 car chague tube appartient égale-
ment aux groupes de deux éléments o, symétriques
par rapport au centre de la sphére, et fournira méme |I
apport dans les deux groupes. Indiguons alors par
le signe ¥ des sommations étendues tant A toules
les natures de tubes qui toute la sphére, »

La valeur totale' du débit de T'élément plan. par
unité de surface, =era:
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&
A — \ e il P D= \1 it i,
j ’ |t |
Lﬂ ,:-" dmd | !
0 (AL2 ) g0 p O 100
A S R T R ) _x_\ Dr

B2 D ‘“ 2 _(|:: 8 in g S
e Oy —'_ ik FliaV ol :‘lj.f {*'I‘ ik

Les coeflicients de 2. ?,, v, sonl les débils & travers
les éléments plans menés en M perpendiculairerment
AUX axes 0x., oy, oI et orientés vers ces axes : nous
les désignerons par Q.. Q,. Q..

'l-."n'

L'équation indéfinie que nous nous proposons d’éta-
blir ne sera autre que qunailﬁn de continuité traduite
comme 1l suit. Considérons un élément infinitésimal e
ayant la forme d'un parallélépipede rectangle de
centre M (i, y, z), d'ardtes dx, dy, dz paralléles aux
I' axes de coordonnées. La somme algébrique des débits
a travers le couple des faces du parallélépipéde nor
males a4 ox, est, entre les instants ( et  ——dl

Y a0
X oI e da, ddl,  soit —~Z e dll.
' O O

Par suite, la somme ellgéhl'ir{lm des débits a travers
toute la surface du |:;lrzili{-h'~l1i|rifdv esl
e al) )

(B Ty )
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Dautre part, soit NUdr le volume fluide contenu i

Vinstant ¢ dans le volume apparent ds du milien

poreux; sa variation entre les instants / el 14t
'}! i

sera En égalant les denx expressions. on

obtlient liiqnnlirm indéfinie

Oe T 0L, .00, 0(). 5
0 — Va t‘u iy ﬂy_—|__l'1: : \2)

\ cette équation, il faut joindre, comme condition
aux limites, que’, sur tous les éléments de la surface
imperméable, le débit Q) est nul.

Les six coefficients A, B, C. D, E. F dépendent de
la contexture de I'dlément du miliea poreux entou-
rant le point M; ce sont des fonctions des eoordonndées
de ce poinl el du temps.

Lorsque le milien homogéne considéré est i stpne-
ture identique dans toutes les directions autour d'un
point quelcongue, |+_\.. coeflicients A, B, C onl une
méme valenr K =— \1 ”—f i, el les autres sont
nuls; en sorle qu'on a .~_~un|}|nnmnl -

“Dm O ) |"I
—_— - I\ =
[t{ﬁr 11+1‘w"—|—ﬂ- e AN *
dN délant une normale infinitésimale 3 I'¢lément plan
d’orientation (x,, &, )
Les débits & travers les éléments plans normaux
aux axes de coordonnées deviennent alors :

. i T 06 09
Yt i o — . L = — i EeF
[& r A O {\ i K “]Il.- ! {'} h 0z

Ammsi, U et K éanl des fonctions données e
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r, ¥, 2. t, on aura pour déterminer la charge o

I"équation indéfinie

O | D [ do7, Df, do
O “Vite BEUL R Ty
. O) ] OG- ¥
S Oz y oz } T H
tls

les

avec la condition limite N =0©. pour tous]
éléments plans de la paroi imperméable.

A la surface libre soulerraine, supposée soumise A
la pression atmosphérique constante, la charge o se
réduit & I'altitude de la surface libre k. fonction de
x, ¥, el de f, dont la valeur initiale Az, y) est don-
née, en sorte que o |x, y, k, (z, ¥), o] =h, (=, y)

M. Boussinesq a tiré parti des ¢quations que nous
venons de former, équations susceptibles de simplifica-
tion dans le cas d'un terrain A capacité aqueuse U
constante, et d'une nappe de pelite épaisseur, el de
faibles pentes au fond et & la surface libre. Nous ren-
verrons le lecteur & son beau Mémoire! et nous nous
bornerons ici 4 une premiére approximation. dent les
¢qquations peuvent éire élablies directement.

0. Cas d'une nappe agqueuse n’ayant que de
faibles pentes tant de fond que de superfi-
cie®. Envisageons done une nappe aqueuse n'ayant
quune faible épaisseur relativement 4 ses dimensions
horizontales, et ou le sous-sol imperméable, tont

! J. Bovssizesg, 24, p. 363-304.
2 J. Bouvssixesq, 20, p. 13-15.
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comme la surface libre, n'a que de faibles pentes sur
I'horizon. Dans ces conditions, le courant aura une
direction & peu prés la méme le long d'une verticale
quelconque, du fond & la surface libre: les filets fluides
seront par suile sensiblement horizontaux, comme le
sont presque ceux qui glissent sur le sol. Alors les
surfaces d’égale charge qui sont normales A ces filets,
pourront étre confondues avec des eylindres verticaux.
La charge . & un instant {, en un point (x, y, 2),
sera alors la méme qu'au plug haut point mouillé de
la verticale (x, y), point ol la pression se réduit 4 la
pression- atmosphérique constante, el ot la charge se
réduit & altitude qui sera le z==h de la surface libre,
si I'on prend pour plan woy le plan de repére des
altitudes. Nous admetirons encore de plus que le sol
a méme structure sur toute verticale : la capacité
aqueuse JIC du sol et le coefficient spécifique K seron
deux fonctions données de = et de y.

Enfin nous appellerons 11 la profondeur de la nappe
impermdcable au-dessous du plan zoy ; H sera une
tonction aussi donnée de x, y, comptée posilivement
vers le bas.

Soit dw=drdy la projection, sur xoy, dun ¢lé-
menl plan de surface de la nappe; considérons le
prisme vertical indéfini dont de est la section droite
le troncon de ce prisme compris dans le milieu poreny
entre le fond imperméable et la surface libre, 4 l'ins-
tant f, aura pour hauteur (H—--h), si 'on convient de
compter le z de la surface libre positivement vers le
haut, et son volume (M4 h)de contiendra un volume
réel de fluide égal & INU(H --h) dw; durant 'inter-
valle di conséeutif & l'instant f, ce volume fluide
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subira un accroissement U %'Ir: dwdl, DT et T ne
dépendant pas de 1.

Nous allons exprimer (que cel accroissement provient
de 'excés des débits d'entrée sur les débits de sortie A
travers les faces latérales du prisme, puoisque nous
supposons qu'il n'y a pas d’apport extérieur (s'il y
avait apport exlérieur et que cel apport superficiel
ftit une fonction connue (=, y, f), par unilé de
surface horizontale et de temps, il y aurait lien d'ajou-
ter ydwdl aux termes que nous allons décrire). Les
faces paralleles an plan zoy, d’aire (H - h)dy, débi-
tant respectivement Q (H —- h)dydt el

| i :
(Q (1 A4-m)+ = j Q(H—A-h) { de ) dydr

d'oti I'excédent restant dans le prisme :

s ;
& {*:i:' l_QI(H +,ﬁ_;_| dwdl.

. -
Or Q. n'est autre que — N '{gj'_;'l—. el o sur loute une

verticale a la méme valeur & qu'au plus haut point
mouillé. L’excédent trouvé aura donc pour expres-

b -
sion : -E:‘;—:l_ﬁ{]l—kh;-ﬁ%Jn’mdL Les faces paralleles

au plan zox donneraient de méme comme excédent :

5 0| E‘.‘Ihl
—a}—' LE\{:“ '-+- h} E':}_’] I"-‘I{-]f”.

Hydranllgne générale,
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Par comparaison, nous obtiendrons ['éguation :

L Oh 0 e O
I Y, = e I\{” —-I— h} o I
S O =
+ 10 [ K(H 1) o (3)

Celte équation détermine les variations de la cole h
de la surface libre dans le milien perméable. cote fone
ion de @, v, /, dont la valeur pour { =o est suppo-
sie donnde. ,

Il y a lieu dadjoindre & celte équation des condi-
tions aux limites que nous allons définir et traduire
analytiquement.

Soit G une courbe fermée du plan xoy, telle que
loutes les généralrices du cylindre vertical de base €
rencontrent la nappe aqueuse, découpant sur le fond
une courbe I'; soit 1", une portion de ce contour I de
la mappe imperméable, portion que nous supposerons
arasée  horizontalemen. Supprimons le milien per-
méable extérieurement au cylindre précédent ; entre

les génératrices extrémes du contour Ty, laissons i
nule milieu poreux, et revétons d'une paroi imperméable
le reste de la surface cylindrique. La nappe fluide
enclose entre le fond et cette paroi s'écoulera par la
bande ouverte; la facilité de 1'éconlement & I'air libre,
an-dessus de I'), comparée & la lenteur forcée de +
I'écoulement & travers le milieu poreux. aura hienldt
abaissé¢ brusquement la hauteur de la nappe agueunse,
jusqu’a la rendre insignifiante sur I',. — Nous aurons
ainst constitué une source dont I, sera le seasl d'écon-
lement, et nous nous proposons d'étudier les variations
du débit de cette source.
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4

Nous prendrons pour plan woy le plan du seuil I, ;
la courbe € dans ce plan comprendra 'arc I;. que
nous appellerons le confour libre ; le reste G, sera dil
le contour parei. A proximité du conteur libre. la hau-
teur h de la surface est néghigeable vis-i-vis de ce
qu’elle est 1d ofi la pente de cette surface est modérée
el ou 'équation (3) est- validement établie. Nous
aurons donc, i trés peu prés. comme premiére condi-
tion limite : h=—=o0  sur le contour hbre I';.

En lous les points de la masse fluide projetés a
proximilé du contour paroi, le liguide circnlera paral-
[&lement & ce contour: a lravers toul élément plan
vertical paralltle & €, méme pris un pen dans l'inté
rieur, I on vant 'équation (3), le débit sera nul. el
si I'on désigne par op une petite normale horizonlale
A C,. nous aurons comme seconde condition limite :

i:' fi

— o sur le contour paroi C,.
in .

Nous estimerons enfin le débit QQ de la source & Lra
vers une surface cylindrique verticale paralléle & T',. ef
un peu distante de celte courbe vers I"intérienr du
massif., Soit (H—- k) la hautenr mouillée d'une génd-
ratrice traversant un ¢lément u’w de la trace de ce
cylindre sur le plan woy, trace trés voisine de I,
Nous aurons évidemment

Q= / K(H ) ﬁ by,
- l--||

Comme h est insignifiant pres du senil, nous pour-
rons réduire & H la parventhése (H—h). & moins que
L]

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

2% MOUVEMENTS BIEN CONTINUS A FROTTEMENTS SENSIBLES

H ne s'évanouisse en moyenne & proximité du seuil de
la source.

L'analyse permet d'aborder le probleme de calcul
intégral anquel on se trouve ramené: mais on n’ob-
tient de résultats, relativement simples que dans deux
cas |

t* Lorsque la dénivellation & de la surface libre au-
dessus du seuil est négligeable vis-i-vis de la profon-
deur H de la nappe sous ce méme seuil (seuil trés
haut) ; 2 Lorsque cette dénivellation & est au contraire
lrés grande vis-d-vis de la profondeur H (seuil trés
bas).

t. Régime d’'une source en temps de séche-
resse'. — On a affaire au premier cas en temps de
sécheresse et avec un sous-sol concave. Dans 1'équa-
tion (3), la fonction inconnue h sera alors négligeable
devant la fonction connue H, et l'on aura A intégrer
Péquation lindaire aux dérivées partielles du second
ordre :

Oh Oh

0 0
oA L '_ TLME g, M T
L ey l 11 topn | KH

i (1 . f

oy

Celle équation a ¢é1é rencontrée naguére par Fourier,
dans sa Théorie analytique de la chaleur, en traitant
le probléme du refroidissement d'une mince plaque

lane, — el précisément, eu égard 4 certaines condi-
I 8
lions imposces a cette plaque, avec les mémes éuations
aux limites que nous avons obtenues ici.

Envisageons d'abord le cas ot la nappe forme une
bande cylindrique quasi indéfinie, comprise entre

1), Bovssinesq, 20, Mém., p. 16-19,
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deux bords paralléles, =0 correspondant au contour
libre, =1L correspondant au conlour paroi i per-
méable, et ott JIU, K et H sont des constantes.
L équation précédente se réduira a
JIL Oh Ozh
KW of — o

Cherchons-en une solution de la forme
h:]_.!f’—at,

L' étant une fonction de & et 2 une constanle pwaitive.
[1 viendra, pour déterminer U, 'équation différentielle :
d*U Na

det-—"" KH

dont I'intégrale générale est :

JIT. .
} sin (—“ﬁ- o=k [:,),

C et C, étant des constantes arbilraires.
Voyons a satisfaire aux conditions aux limites, par
un choix convenable des constantes :

elh ak!

h—o0 pour x=—o, ————=—0 pour x=—L.
I g3 O e ok

i ol
ou U=—ao pour £=—0, —=— =—0 A TaTeE g — B
Ox

; Gl I 2L
Il vient ainsi : G;,—o0 el cos ___.IEE.EI._:U,

el nous satisferons a toutes les conditions en posant :
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Le probléeme serait complélement résoln si la sur-
face libre initiale avaii pour équation

Tl

h,=C sin (0 =mx=L).

2.
La solution particuliére (que nous venons de donner
porte le nom de solution simple fondamentale, On
peul élablir qu'avee une surface libre nitiale quel-
congue, l'expression de i se réduit plus ou moins rapi-
dement & cetle solution fondamentale,
Le débit par unité de longueur de seuil est alors -

R 39 Bl
rI,' = I\H ( ﬁT);z,':n:_)I:_- : ':.at' 3

ou encore, en désignant par h,, la dénivellation maxima
qui se produit & la ligne de Saiter =1, :

= h,
.'II,r:—J KH. _[-,_'

Le coelficient 2 du temps ¢ dans Pexponentielle
sappelle coefficient de tarissement de la source, et on
qualifie de bonne une source pour laguelle ce coefficient
est rés petil.

Peux sources sont cqalement bonnes quand elles
admettent méme coefficient de tarissement.

Daprés U'expression de 2, dans deux telles sources,
admettant méme structure de Teuy nappe d'alimenta-
tion. la profondeur H est proportionnelle au careé de
la largeur L, de la nappe.

A cgalité de dénivellation maxima initiale, los débits

gi= (rl\\f”{% -'I',.;\:)‘-."I I,
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de deux sources également bonnes de méme constitu-

tion. sont entre eux comme les racines carriées des pro-
fondeurs des nappes.

Envisageons maintenant le cas géneral ;

on cherchera
A satisfaire & I'équation aux dérivées partielles en posant :

ALY o

% etanl une constante imsiliwr. ¢l U une fonclion de
(., ¥). Les équations L[lli définissent U et « sont alors :

; oz (KH = — - (|~.|| e )——wlix[_y

hr
dll

!I!L.:u sur- Iy, o

) ===() suk: Gy

Une telle solution est dite solution simple fonda-
mentale de Fourier, et on peut encore établir que
l'expression cherchée de h se réduil, plus ou moins
rapidement, quand U'influence des données initiales cesse
de se faire sentiv, a cette solution fondamentale!.

La terminologie précédente étant conservée. deux
SOUTCes f‘"ﬂimuuli bonnes, dans le cas général, auront
des {]thlw par unité de longueur de Hcml proportion-
nels anx racines carrées des profondenrs de leurs nappes
d'alimentation. =i I'on passe d'une nappe a lautre en
multipliant les dimensions horizontales par un méme
nombre & et les hauteurs verticales I par le careé A
de ce nombre.

En effet, K étant supposé le méme en tous les points
du milieu perméable. si l'on multiplie dx., dy, dn par
et 1L par A2, les équations précédentes restent iden

1 Sur les propriétés de cette solulion, on consultera avanla-
geusement J. Bovssivesq, 24, 1 T, p. 252 el suiv,
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ligues & elles-mémes et engendrent les mémes valeurs
de U et de . L'expression de & sera donc la méme sur
deux verticales homologues. Mais alors le débit total Q,
commnie son elément KH-:—::? dv,, se trouve mulfiplié
par A2 et le débit par unité de longueur de seuil par
kr, soit par la racine carrée du rapport des profondenrs
homologues.

Voici une conséquence intéressante de ce résultat.
Pour les deux sources que nous venons de cansidérer,

h

le rapport [ Sera en raison mnverse de H ou du

débit total (). Si done I'une des sources a un débit
tres grand, ou, comme on dit, est trés forte, le rap-
h : :
port Y sera incomparablement plus faible que
dans 'autre, supposée i débit modéré, Par suite b sera
bien plus vite négligeable devant H dans la forte source
que dans l'autre. Autrement dit, il semble que les trés
Sfortes sources, qui sont celles que 'on capte pour l'ali-
mentation en eau des villes, doivent généralement étre
régies par les lois indiquées, peu de temps apres la ces-
sation des pluies.

M. Maillet, qui a étudié les lois expérimentales du
débit des sources de la Yanne (captée pour I'alimenta-
tion de Paris), a reconnu que la source de Cérilly
ohéissait & ces lois de juin & octobre; pour elle, le
coefficient de tarissement est z=—o0,1066, si I'on prend
le mois pour unité de temps. La source d"Ain-Zeboud)a,
captée par la ville d'Alger, est dans les mémes condi-
tions de mai & octobre et correspond a o =o0,264.
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7. Régime d'une source en hautes eaux. —
Pendant-la période des fortes eaux, si la surface du
fond est trés peu ereuse, la plus grande partie de la
nappe liquide est au-dessus du niveau du seuil, et I'on
se trouve dans le second cas signalé.

Les équations a traiter deviennent :

r pj]‘._i‘ﬁ'_ O -1.; l\"tj_'_‘_ﬁ (;.; {l‘&_)
\ 5 dt = O ( Ox Oy oy )
' 3 dh .
/ =0 . 881 - D ;=0 sur g

L'équation indélinie n'est pas linéaire. et 'intégra-
tion générale ne semble pas abordable.

Aussi M. Boussinesq! s'est-il borné i chercher la
forme vers laquelle tend la surface libre quand, ainsi
que 'expérience donne lieu de 'admettre, I'écoulement
acquiert un régime, la fonction h temlant & devenir indé-
pendante des données initiales. Mais méme alors il n'y
a pas généralement conservation de I'écoulement ; autre-
ment dit, h n’est pas en général le produit d'une fone-
tion de x et y par une fonction de ¢. Toutefois il en
est ainsi lorsque la nappe aqueuse repose sur un lit
horizontal, avec rebord vertical (saul au seuil de la
source). Alors h varie en raison inverse dn temps =
compté & partiv d'une certaine origine; le débit de la

source est inversement proportionnel au carré de 7. Ce
régime est méme remarquablement stable, les petits
écarts qu'il comporte étant de l'ordre de linverse de
la quinzitme puissance de <.

Enfin M. Boussinesq® a cherché 871l existe pour le

L], Bovssnusg, 20, Mém., p. 22-38,
2 J. Boussixesg, 20, Mém., p, 40-61,
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sous-sol imperméable des formes courbes rendant pos-
sible un mode 'écoulement susceptible de conserva-
ion. au sens que nous avons donnd & celle expression.
Lela a lieu pour un lit ot les fonctions A et Il sont pro-

P Kt
: __iu—li":

ot k est un coeflicient mesurant le degré de concavité

portionnelles. Dans ce cas. A varie comiie

du fond. Le débit de la source esl alors proportion

f.' A R

nel A quantité qui se réduil sen-

sinhyp . —

; 2
siblement & je — pour les valeurs assez grandes de ~.
La stabilité de ce régime est s grande dans le eas
d'un lit concave.

Nous nous bornesons & ces indications. ef NOUs ren-
verrons le lecteur au Mémoire original. ainsi qu'aux
Essais ra"'H_‘rwh'run'fr;f{r' soulerraine el fluviale de M. E. Mail-
let', ingénieur des Ponts et Chaussées. ou la question
du débit des sources est étudide au double point de
vue théorique et expérimental, surtoul pour le bassin
de la Seine. D'ailleurs, la matitre est loin d'dtre épuisée.
el les jeunes physiciens trouveraient ajsémen L, aux alen-
tours de ces difficiles recherches. d'intéressants sujels
d'étude.

b E. Maier,
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I MOUNEMENTS DE ROTATION

1. Mouvement permanent par filets hori-
zontaux circulaires et coaxiaux'. — Apres le
mouvement d'un fluide par filets rectilignes et paral-
leles. le plus simple est celui qui se fait par filets cir-
culaires  horizontaux ayant tous leurs cenires sur une
méme verticale.

Soil oz celte verticale dirigée vers le haut: r la dis
tance d'un point quelconque (x, y.2) & l'axe 02 V la
vitesse de Il moléeule qui passe par ce point el dont
les composantes sont alors :

Y e
=" 1I||I J:-:—\_ ===,
] i R

L'équation de conlinuité se transforme en :

O\ . OV e,
L B
d’on : V=fla>1-9 ) =Fir.2).

11, Bovssivese, 2, 8 11, p. 407,
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; o R il RS
Nous aurons alors : AN ===T7 W_‘_ qA

et un caleul tout simple donne :

an:_%f(ﬂ_f{). _\r——Tkl\ —,ij Aw=o0.

'G('}I]lﬂlﬂ le mwuvement est l.]'E‘l'lIlIlIlEIlt. OIl 4 -

Ol O

) ] )

et par suile :

H'J:u,

Les équations de Navier deviennent ;

hﬁ-—-— : Ve *"_'_:'}(_\"1, il %_\)!

i AR 5 I
hp_ V2 g fi AN
el e e 3 )

v

Multiplions ces équations repectivement par dux, dy,
dz; ajoutons-les et introduisons comme variables les

; : . ¥ :
coordonnées semi-polaires r, f=arctg a2 Nous

dUrons -

rfp:g \—,- dr-er ('_‘\\-’ T--T\_) df — F_:;re’:. (1)
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La premiere condition d'intégrabilité consiste en ce

58 B s | OV
que 0z ';_.r-_ ==y 0] F: 0. '[')}}

Le coefficient de df ne dépend pas alors de z: comme
celui de dr ne dépend pas de §. le premier e saurait
df'-pmu'irf- de r et se réduit par suite & une constante ;

d ot : f'Ll\'—

TEAY 1 dV
_r.:'fT_I_T 7 T

Par suite de la premiére condition. la section méri-
dienne du fluide doit étre espace illimité inférieure-
ment, compris entre deux droites verticales. En effet,
si les verticales du fluide rencontraient une paroi, on y
aurait V=o0, d'aprés la condition relative & toute
paroi mouillée, et alors la vitesse serait nulle partout.

Yar suite de la seconde condition, on a :

. A\ cr r
V==
A et B étant deux constantes arbitraires. Dans le cas
particulier ot la constante ¢ serait nulle. l'équation (3)

admettrait pour intégrale V —=Ar - -Ij—% , et les cal
culs qui suivent se simplifieraient en conséquence.

En exprimant que V s’annule sur les deux verticales
qui limitent la section méridienne du fluide et qui
sont & des distances respectives r, et r, de l'axe, on

Hydraulique générale, 8
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détermine les deux constantes A et B, et I'on obtient :
l —
cr "

) r
Ve=—1lop—— . —— _lgp L |. (
o Oy . S r (1)

On déduit de 14 :

ff“! [

:h" :?

positive pour r—r,, négative pour r=r, cette déri-
vée ne sannule (u une fois {ilmml rova de r, 4 r,.
Ainsi la vitesse, nulle & la paroi intérieure. croit jus-
qua un certain maximum et décroit ensuite pour s an-
nuler & l'autre parol.

L'expression de dp devient alors :

Ve
dp=1 =P dr - cedh — zqdz,

et ceci donne, en passant, la signification de la cons
I E‘J!n

Fande: o == T par quurll'altlll'r-s. 1l vienl

fer
Ve

: :i ch— gz 4 / T{h'—:-—ct_ul::ﬂ..

V devant étre remplacé par sa valeur (4).
Proposons-nous de caleuler 'action tangentielle

exercée par le fluide sur un élément de paroi. Suppo-

sons qu'on ail fait passer I'axe des x par le centre de
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cet élément: les coordonndes de ce centre étant @ =r.

v=—o0, on a (Introd.. ch.u, G, § 1, fine):

A C O O
l. o E{\{\ﬁ_lﬁl" _|-|.|'}_“r'-}‘

e d TN 59
=t ey LJ__

Posons -—+=—1—rv; en fasant r=r,, puis

| o=,

ii—— il frouve :

ze | log{xr —m)
LI;T.. — 7 3 -"'. 3 g —l— IJ

e

ec | (1 —) log (x—2x) | l
=i e . | el

0 Lf 1:5 ?
R s |

2

On reconnait que la premiére expression est plus
grande que la seconde : ainsi la paroi concave ou
extérieure est soumise 4 un frottement moins consi-
dérable que la pa rol convexe ou intérienre.

Caleculons, pour terminer, la vitesse moyenne dans la
sechion méridienne :

."._I'E
» I ;
L) = Vdr.
ry—r,

L]
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: s e £
Ennotant que r log restla dérivée de it ]O.'.H'—-‘—) ),

il vient :

_ Py =1y
Introduisons le rayon moyen R:% et la

v li“1 ==
demi-largenr = ——» el nous aurons :

R (Re— . Rod\®
he [‘ s (\‘?m_ log g —7)

o rf 42
e e

2. Mouvement permanent dans un tube
dont 'axe est horizontal et circulaire!. — I
mouvement précédent ne peut se produire que dans le
cas on il m'y a ni fond ni couvercle. Nous nous pro-
posons maintenant d’étudier le mouvement permanent
bien continu d'un liquide dans un tube donl I'axe est
horizontal et civculaire, et dont la section, de gran-
deur constante, est un rectangle 4 base horizontale
ayant une de ses dimensions trés petite par rapport 4
I'autre.

Décomposons la vitesse d'une moléeule fluide suivant
le prolongement du rayon r, suivant la tangente au
parallele de rayon r et suivant la paralléle & l'axe oz ;

' J. Boussivesq, 2, § 12. p. 4135 — 0, p, 41.
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U, V, w étant ces trois composanles, nous aurons :
4 2 .Y L
=0 ——V =, =1 = V—
r 2 P 5 r

Comme le mouvement permanent est élabli, nous
admellrons que la vitesse est la méme en deux points
correspondants de deux sections méridiennes. ce qui
revient a dire que U, V, w ne dépendent que de r el z.

Alors
v

a

An—— = (_I._'*.I — —-:—{j."u _';_)

("_'_n 3

et

iy

Ot T 0w O

MW= +3 o T o7

AU et AV se déduisent de Aw par la substitution de
UetV aw.

Le mouvement étant permanent, les dérivées par-
tielles de w, v, w par rapport au temps sont nulles. Par

e, 1S
ar
AT a ol 1

suile :

o+ o
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On déduit alors des équations de Navier :

UA
2

{_\L —

e R M T e

e

Les coefficients de dr el de d= ne dépendant pas de 6,
celut de df ne doit dépendre ni de r, ni de z, et par
suile se réduit & une constante ¢: d'oy :

f _. V3 /Ay VA &V ] 2 :
3(“ '_7-:'_.}‘|‘ P [ - (.__W ‘I"T,H‘T l: P D)

L3

1
Ay

Les conditions d'intégrabilité se réduisent alors 4 une
seule :

D U "y U oU )
h: E E(.ll_’ —T)+FLTFI Tﬂ" _“IT:JS

Q. ik . Ow Qu &
— F J’ -_..EHJ— I_:(‘l H —|— T —0‘_- ) ._;1
Enfin I"équation de conlinuité devient :

Ol WSisl A

ar A Oz

(6)

S
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0 : o
ou = [rU] -+ v [rw] = o. (7)

Les trois équations indéfinies (5), (6) et (7) déter-
minent les fonctions U, V. w de r et de .

M. Boussinesq a intégré ce systeme dans I'hypothése
ou la section méridienne, de forme rectangulaire, a sa
hauteur verticale 2k trés petite vis-i-vis de sa base
horzontale. .

Prenons pour plan des @y le plan de 'axe circulaire
du tube. La vitesse s’annulant contre les parois supé
rieure et inférienre. U, V et w0 s‘annuleront pour les
valeurs de z trés voisines. h el — h: « chacune de ces
fonctions sera alors trés petite pour les valeurs inter-
médiaires de z et aura par suite : 1° sa dérivée pre-
miére, par rapport & z, qui sannulera une fois de
moins, beaucoup plus grande qu'elle-méme; 27 sa
dérivée seconde en z, qui sannule encore une fois de
moins, ou méme ne sannulera pas du toul, beaucoup
plus grande encore. Il est dailleurs évident que les
dérivées successives de V, U, w, par rapporta r, seront
au contraire comparables & V, U. w, excepté pour les
plus grandes ou les plus petites valeurs de r, c'est-a-

dire aux |-mi:m: trés voising des deux bords, convexe
ou concave, du tube: je suppose dans ce qui suit que
I'on fasse abstraction de ces points. » ]..‘t"t‘{l.la‘llir}rl de

ATl e e =T D
continuité (7) montre d’aillenrs que —— est de

{ 0z

lordre de petitesse de U d’ou il suil que w est négli-
geable devant U. « Et I'on peul enfin reconnaitre de
différentes manieres que U est beancoup plus pelit que
V: voici la plus simple. Considérons fe volume com-
pris a 'intérienr du tube, entre deux sections normales
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ou méridiennes infiniment voisines, puis coupons cetle
tranche par un plan vertical perpendiculaire aux sec-
tions méridiennes; les parties correspondantes & celles-
ci fournissant par hypothése des débits égaux. la sup-
position de I'incompressibilité du fluide entraine I'an-
nulation du volume fluide total qui traverse dans un
sens déterminé le plan vertical ainsi construit, ce qui
revient & dire que la valeur moyenne le long d'une ver-

A+ h

ticale est nulle, ou qu'on a l Udz: =0. Donc la

iy :
vitesse radiale U s'annule non seulement, comme V,
aux deux limites =4, mais aussi dans l'intervalle,
et elle est tres pelite en comparaison de V!,

Revenons alors aux équations (5), (6), (7) et négli-
geons, (aprés ces remarques, les termes qui sont trés
petits par rapport a d'autres. Il vient :

n:\: "
‘¥E ()
D [ o v o
T L R

Quant & I'expression de dp, elle devient :

(-0l Vi)
n’!.'; == (3 ["T s e ) r.fr—|— ool — l’_.'tfj,rr.l'r,:.

L'équation (5) s'intégre et donne. puisque V doit

sannuler pour z—-+}:
. ch? / 28
V — AR |
227 ( : h? J' (8)
L J. Bovssisesq, 9, p. 41-42. I
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En tenant compte de la méme condition et en dési-
gnant par A une fonction arbitraire de r, on déduit de
I'équation (6")

) ',
' -

RAt z 25
e ;‘_L A(\_\I—-Jr )—3—(1_?)

5

Udz=—o0. on trouve :

el par suile :

:r"-'h'f' ( '
=t | ] —
120847 \

oy T-5)

L’ équation {_;'} devient alors intégrable en z: d’on

oMt o e AN

A ; : 3 A5 Cr
T;r-' LDt ?E-Ll 't_) (J“_T) ey

Enfin I'expression de rr"n donne

===

J: (.'--h

f,:fl’j—Fy:— e —{-Cﬁ'ﬂ*-nl (_]I}

Il est entendu que ces valeurs ne sonl pas ﬂppli—

cables aux points situés prés des bords verticaux du
tube.
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Suivons une méme molécule fluide, il vient :

ir U dz
e
okiid dr ol z
d’o b il
r row
: eTi 2]
* Il l~|,"' - N '[ e A - * __. -
Or, d'apres (7) et (9), 5. West aulre que —=;
HF}‘ I 1-"!“1
done ) — —— —— ¢z —0,
r Hur 0Oz
; !|' > :E A i :ﬁ Y
o1 dlog r* =« E”g‘}'}‘ ['.! — T} [.:J“_- I I

Cec1 donne

3 a

== W( I _"},7:'] (:: f} ou  rfw=consl.,

1

en eégard a la valeur de w. Ainsi la vilesse verticale w
varie en raison inverse de r*; elle est la plus grande
pres de la paroi intérieure. En méme temps, on cons-
tate que les molécules ne vont pas jusqua la paroi
supérieure, car pour z=-h, r serail nul, et il ne
peul étre inférieur a r,.

Le temps employé par une molécule pour passer
d’un niveau z, 4 un niveau z s'obtiendra par la formule

/: iz
i —_—
L 8

1

en 'y 1'Pmi1|at:a.nl, = par sa valeur r[ui csl fu"r;zpr_':r—

tionnelle a z f] 2l :iY [T' s )
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Quant au mouvement de circulation, il est défini par

iy : ety
' —%, - = A\W) - s

comme riw est constant pour une méme molécule, il

; a g =2
viendra: (rfw)h=c : / ( ey = } az.

2L

Ainsi nous avons évalué, en fonction de 1'altitude z,
le temps / et les coordonnées polaires r, 6 de la mo-
lécule.

Nous allons interpréter mécaniquement les formules
auxquelles nous sommes parvenus.

Comme U est pair en z et w impair, il y a symétrie
du mouvement par rapport au plan des x», y: nous
pouvons done n’étudier le mouvement que dans la
région des z positifs,

»

U est positif de z=o0 a

::..-fr.\/z— —1_1 = O,a1h;

')

négatif au deld. Les molécules sitnées sous le plan
:—o0.431h s'éloignent done de l'axe et se dirigent
vers la paroi extérieure; celles situdes an-dessus de ce
plan s’approchent au contraire de la paroi intérieure.
La vitesse U présente deux maximums, correspondant

PR P 28 o -3k
A z=—o0 st "_h\/.';'.“'\/ijﬂ ==0,734A.

La vitesse verticale w esl toujours positive; les mo-
3 lécules montent. Sur une verticale, cette vitesse est
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. O . A=
maximum pour ——=0 ou U=o, c'est-d-dire pour

2=—0,;431h.

En résumé, « en méme temps que le fluide avance
dans le tube avec la vitesse V, il est animé d’'un mou-
vement transversal beaucoup plus lent, symétrique par
rapporl au plan horizontal médian : la masse ne s'avance
quen se tordant sans cesse. Dans la moitié supérieure,
les molécules les plus éloignées de la parol, ¢'est-a-
dire celles qui ont la plus erande vilesse, se rapprochent
du bord concave, tout en s'éloignant petit & pelit du
plan de symétrie. Arrivées & la distance 0,431k de ce
plan . elles reviennent vers le bord convexe, el conli-
nuent dailleurs & s'écarter du plan méridien et & perdre
leur vitesse. 1l est évident quapres s'dtre suffisamment
approchées du bord convexe, elles repassent dans les
régions moyennes ofi la vilesse est assez grande, et ¥
recommencent un trajet pareil. Mais nos formules ne
sappliquent plus a cette partie du mouvement, toul
comme elles ne peuvent pas sappliquer & la totalité de
la premiére partie : elles n'ont é1é établies que pour
les points situés & une distance finie des hords laté-
raux!. »

4. Expériences de M. Maurice Couette;
nouvelle détermination du coefficient : de {
frottement intérieur de l’eau. L’entrainement -
d'un liquide compris entre deux cylindres verticaux
indéfinis concentriques, l'un fixe, lautre animé d'un
mouvement de rotation, fournit un nouveau moyen de

1 1. Bouvssixesg, 2, p. 419

)
|
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déterminer le coefficient =3 ce moyen a ¢lé signalé par
Marqules', et plus récemment M. Couelle en a tire
parti avec beaucoup de précision. Il y a concordance
avee la valeur donnée par Poiseuille, si toutefois la
rolation n'est pas trop forte. ce qui est naturel. les
équations de Navier n'étant valables que pour des mou-
vements lents et bien continus.

Le mouvement se transmet par communication laté-
tale d'une couche aux couches voisines, et lorsque la
vitesse de rotation € du cylindre extéricur a pris une
valeur constante, les conditions du mouvement perma-
nent étudié au § 1 semblent devoir 8tre réalisées, pourvu
qu'en méme temps le liquide qui se trouve au confact
immédial des parois y adhére sans aucun glissement.

Nous allons évaluer le couple de frottement qui prend
naissance sur la paroi du cylindre intérieur,

Par raison de symétrie, la force tangentielle de glis-
sement a une valeur constante sur tous les éléments
superficiels égaux d’'un méme cylindre limile, et sur
un élément dsz, distant de r de l'axe, elle a pour

d [V
mesure (§ 1) : & —f--L— dz; son moment par rap-
3 i

B 5 d [V
port & l'axe o0z est &1? Spl = is.

r

I hypothése de lidentité du mouvement dans tous
les azimuths entraine e=—o, el par suite

V—=—Ar + —]} %

! Dr Manaunes, p. 588-602,
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A et B élant denx 'constantes que nous déterminerons
par les conditions

a0 ) NN e N R [l 3 o pour: | Fe==;

I I

AR e

Alors Gy il wm e
I 1 I

r, TREE
Le moment élémentaire de frottement (sur 1'élé-

ment ds) est done
2Qszrir! ]

{J_T_—J'_:)Tf:-‘.
Si I'élément est pris sur la surface du cylindre de
rayon r,. le moment ftotal de frottement sur une
tranche de hauteur éeale & I'unité sera :

L

Le probléme expérimental qui est de mesurer C a
été habilement traité par M. Couetle’, & l'aide d'un
appareil formé de deux cylindres de diamétres trés pen
différents. Le cylindre extérieur tourne autour de son
axe qui est verfical, sous l'action d'une dynamo. Quanl
a la parol fixe, c'est un cylindre un peu plus petit,
possédant une certaine mobilité antour de son axe,
suspendu & un fil d'acier : il est maintenu en repos en
équilibrant le frottement du liquide par la torsion d'un
fil ou par des poids; pour qu'on puisse regarder la
surface de ce eylindre inlérieur comme découpée dans
un eylindre indéfini, M. Couette la prolonge par des

1 M. Coverrs, 4, p. 388-301: — 2, p. 6-35.
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anneaux de garde absolument fixes, et donne au
cylindre tournant une hauteur supéricure 4 la hauteur
totale des cylindres fixes.

Tant que la vitesse de rotation n'excéde pas 53 tours
par minute, I'expérience confirme la formule précé-
dente, et donne & 16° centigrades la valeur moyenne

F— 00T '_»:5:}‘,
eu égard a I'imparfaite réalisation des conditions théo-
riques, nous devons ftrouver li une vérification trés
satisfaisante.

Si l'on fait eroitre de plus en plus la vilesse angu-
laire , le régime s'éloigne de plus en plus de celui
auquel s‘appliquent les équations de Navier; aprés une
période de transition, on arrive & ce gqu'on appelle le
réqgime fr_wh'mn’r}‘.rm‘ on a mouvements furbulents, dont
nous allons nous occuper dans la Section suivante.
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TROISTEME SECTION

PHENOMENES DE MOUVEMENTS TURBULENTS

' CHAPITRE 1

MOUVEMENT PERMANENT UNIFORME
DANS LES TUYAUX LARGES ET LES CANAUX

1. Equations générales du mouvement gra-
duellement varié. -—— Dans les cours d’eau et dans
les tnyaux & grande section. les écoulements cessent
d'étre bien continus: ils deviennent tumultueux el
tourbillonnants, ou. suivant le mot anglais, furbu-
lents. Nous avons analysé, dans I'Introduction, le pas-
sage du régime régulier au régime hydraulique ou
turbulent, et nous avons établi les équations qui
régissent ce dernier, au moins pour les mouvements
qui se produisent dans les tuyaux ou canaux découverts
4 axe sensiblement droit, & lit & peu prés c}'lindrir[m*.
— el qui sont graduellement variés.

Rappelons quun mouvement est dit graduellement
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270 PHENOMENES DE MOUVEMENTS TURBULENTS

varté quand : 1° toutes les molécules, censées animées
des vilesses moyennes locales. se meuvent de facon
que leurs trajectoires ne fassent, avec la direction oz
de T'axe du courant, que de tres petits angles; 2° les
mémes circonstances qui se produisent dans une section
normale & ox, se produisent presque au méme instant
dans les sections voisines ou méme un peu plus éloi-
gnées, de manibre que les dérivées en » de toutes les
quantités A considérer soient petites,

Dans ces conditions, la vitesse longitudinale u a

(17} .
seule une valeur notable: S 57 sont des quantités
Ox, Of

pelites, %:% sont d’ordre de petitesse supérieur et
par le fait négligeables.

Eu égard en outre 4 la petitesse du coefficient = de
turbulence, nous avons reconnu que les denx équations
indéfinies du mouvement o figurent les composantes o',
w' de I'accélération latérale, se trouvent débarrassées
des termes en :, et ces équalions expriment que la
pression moyenne p varie, i Uintérieur de chaque sec-
tion normale & T'axe des @, comme dans un fluide
sgns froltement; puisque v, w' sont du second ordre
de petitesse, p varie dans s suivant la loj hydrosta-
tique.

Soit alors p, la pression moyenne au point ot l'axe
ox perce la section 7; I'équation indéfinic du mou.
vement qui renferme I'aceélération longitudinale
s éerit

0./ dud R A o j
“{E (': l-{ﬁ;) + K (3 {_}z_,) _"“ (\F\‘_T.L-) =11

(]
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Si nous appelons ¢ 'angle que fait 'axe oz du canal
ou du tuyau avec I'horizon, en supposant qu'on aille
de 'amont vers l'aval. la composante X de la pesan-
teur sera gsini, et la derniére parenthése s'écrira pgl,
en posant :

gt

| —=sin{— — ==

oy Oz

Soit h, l'altitude du point de = situé sur ox et ou la
pression est p,. au-dessus d'un plan horizontal arbitrai-
O

rement choisi: comme sini= — = il viendra :
e
0 P )
== l:\'l.r-_'-{ h'n + s ;i {I}

La quantité T, dite penle moirice, est indépendante
de y et de z.
La précédente équation. divisée par zg
Q[ 5. 0n) O & Ou

u'
)+ 5= T:_jjui:?, (2)

0y \ pg Oy,

sera |'équation indéfinie qui déterminera u,

Nous appellerons  laire de la section normale
Sluide, et  le contour mouillé de cette section, portion
de son contour total o occupée par les parois. En un

point (v, z)de la section 5, nous aurons pour expres-
sion de =

. o

5 Yy  yz ‘
e :-!:{'\.“— ri_.F[ j“—, f—\. {3}
L] ? . J:
I étant une fonction posilive de deux arguments, la

méme pour toutes les sections semblables; u,. la vi-
fesse & la paroi an point le plus bas de 55 A,, un coel-

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

.%
I
1
|
1

T ——————

272 PHENOMENES DE MOUVEMENTS TURBULENTS

ficient spécifique de I'état de la paroi en ce point le
plus bas.

Soit sgBV? le frottement extérieur. c'est-a-dire la
résistance qu'oppose a I'éconlement du fluide 1'élément
de paroi conire lequel passe un filet fluide de vitesse
longitudinale V. Si l'on désigne par B, la valeur que
prend le coefficient B au point le plus bas de 7. nous
avons vu que l'on peut poser :

B :
A, = % : (3")
: étant un coefficient variant seulement avec la nature
du fnide, et ne dépendant pas comme B, de 1'état de
rugosité de la paroi.

A l'équation (2), il convient d’adjoindre des condi-
tions aux limiles.

Pres d'une paroi, en exprimant que la composante
tangentielle de la pression sur la paroi est égale au
frottement extérieur, nous avons lrouveé la condition

it ¥ yz . ;
g -;}H_——FgB ,{("; ‘Lj, [sury| (4)

f élant une fonction positive de deux variables, définie
par la relation

M=z 2 o

]

valable sur le méme contour mouillé 5

Pres de la surface hibre, le fmttmnrnl étant nul . la
fonction u vérifiera la condition

du | lib
T =0 [sur le contour libre|,
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et p égalera la pression constante donnée de l'atmo-
sphire superposée.

Nous examinerons en particulier deux cas usuels, le
cas d'une section rectangulaire trés large, théorique-
ment infinie en largeur, et le cas d’une section circu-
laire, — en supposant dans les deux cas les rugosités
uniformément réparties sur tout le contour de la paroi.
D’aprés cette dernitre hypothése, la vitesse & la paroi
4 une valeur constante wu,, et le coefficient B est
partout le méme; la fonction [ se réduit alors &
Punite.

Dans le premier cas, si 2h est la hauteur de la sec-

-_

tion, le ravon moyen — est h; de plus F=1
w W Ed

et I'on a: £ :-‘G!% "#H_ u,h.
(3

Dans le second cas, si R est le rayon de la section,

le ravon moyen — est ——; de plus on a:
: ! 7 9
1 I S rj
S ghil T
=R+ ®)
ol r=y\y*—+:2* etotdestune fonction trés petite,
en sorte (qu'on peut prendre sensiblement
i, ooy SR e Py
e=5L VB, u,— . —.
: by e T

5. Transformation et propriétés des equa-
tions générales. — Nous allons mettre I'équation
indéfinie et les conditions aux limites gu’on vient de
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rappeler, sous une forme valable

pour toutes les see-
tions semblables. Nous e

serons & cet effef -

e t=4 ;
Cette transformation entraine
0 Lol 0 ) o 7 il
:‘Il‘} = Wf‘i_ 3 QT _: _f‘IT: : _;m:_-;r_f.r_

dy étant un élément de normale

au contour transformé,
mené au point (v, ¢) |

mologue (e (¥a2).

|
1R |
]
i
!

. e W e
Comme A = }T_ u,b (g, 1),
F I‘-::f 1
| i les équations (1) et (2) deviennent aprés division par
il B
’ £ u VB,
L g l'llr'
! Ak i
:.: |l. & J-IIF i () (T,f”_ ,] D 1 i) ( f—.-'l;
-ﬁ.ﬁ W “J_i“q R —|_ﬁ {GHJ_E -
':-f .l".' g 1 ; G- ;
_|J__-'___'_::_f—_'____"2- (6) |
] 'l.." l-iu ,1': ”lr l'l;lli" ){ .rf”'l.'l
i e A o
| Fix, 0= (\F-)_—-_——I. VB, f(n. 7). [sur le contour|,
La condition (7) sera applicable & tout le contour
de la section, si I'an suppose seulement que la fone- |
tion  f(+. 7), qui n'est définie que sur le contour

mouillé de la section .

prenne la valeur zéro 4 la sur-
face libre.
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« Cette derniére condition relative & la surface libre
sera satisfaite d'elle-méme si 1'on peut former la solu-
tion pour le cas d'un tuyau plein ayant sa section
composée de la proposée et de sa symétrique par rapport
@ son bord supérieur (ou profil en travers horizontal
de la surface libre), avec symétrie de structure des
parois de part et d'autre; car la fonclion de point @ y
prendra naturellement mémes valeurs de part et d’autre
de celte droile sur laquelle s’annulera dés lors sa dérivée
suivanl le sens normal, continue dans tout 'intérieur
du contonr total ated.

Les équations (6) el (7) sont indépendantes du choix
des axes dans le plan de la section 5 : les seuls termes
qui paraissent dépendre des axes sont les deux premiers
qui, développds, s'écrivent sous la forme

e . i .
J.‘i f_[‘n‘ _l_'lijl1 -.31"}_!_:'_605 -ir\g

en appelant & I'angle des deux courbes F —const.,
i 02 ik

g A S SV T ol S

w, —const.; A est le symbole o Tom e A,

1 bol ( AT 0 IY | {
Ty sl gl ol o o i .

e symbole o ) —|—( 3T ) el tous deux resten

invariants vis-a-vis de tout changement de coordonnées
rectangulaires.
Le systeme des équations (6) et (7) définit une seule

s '“I F " Ll t Lo | -
fonction e réduisant 4 'unité au point le plus

o

bas de la section. En effet, s'il admettait deux solu-

! J. Bovssinesg, 48, broch,, p. 25.

Droits réservés au Cnam et a ses partenaires

i
|
|
|
|
.I
|
|
|



http://www.cnam.fr/

276 PHENOMENES DE*MOUVEMENTS TURBULENTS

tions distinctes, leur dillérence ?(r, ) salisferait aux
PN 0 .FE - ] hg =
fquations. .5 5 | o7 == 0y

e |
=20  (surle contour),

@=0 (au point le plus bas).
Multiplions I'équation indéfinie par ods et inlégrons

a travers toute l'aire o; il vient, par app]lr:'ltmn de la
formule de Riemann,

43 tle & T ﬁr_,'i _
./? I)ITI‘;!___/‘ nr)'{“( ot i 1

La premiére intégrale est nulle, el comme F est
essentiellement positif, cette relation entraine la nul-
lité des dérivées de o, par suite la constance de o, et
alors o, nul au pornl, le plus bas, serait nul pmtmll

Puisque ce systtme définit complétement le rap-

”' . 3 ¥ #
port s la vitesse u sera déterminée en lous les

points de la section dés qu'on connaitra u,. Or, si nous
multiplions tous les termes de 1'équation (6) par

ds — 5 e, et si nous intégrons  travers loute la
section, les premiers termes donnent

= i
7 [1 7.,';( )”f*

Lo
ou, en lenant compte de (7),

—f\lin,/‘f{r‘ 0)
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L'équation abtenue pourra- done s'éerire :

. . = o' re’:. .
lanu’ﬁ . r'r:_ T =l I-__ /_ D . H
_/i"'“}z T Ly e el

L'intégrale qui figure dans le premier membre sera
une constante pour toutes les sections de méme forme :
elle peut étre regardée comme donnée. On déduira
donc de cette relation (8) la connaissance de @, deés
que la pente motrice | et la moyenne des accéléra-
tions 1’ seront données.

3. Lois du régime uniforme dans des lits
semblables. — Nous étudierons tout d'abord le cas
on les accélérations u' sont nulles,

L'équation (8) se simplifiera et donnera :

Ii,,u';j/ f{-q,:}—_-.:-s—l. (9)

5 THATR
Revenons alors a 'équation (6) et remplagons-y
. g : 3 A ek
par zétro, — 1 par le premier membre de (9): il vient :
V4
= s _ A
0 (— ) : 0 (— )
0 SANT A 0 : u, |
K ! i _|_ = I .-
3 ﬂl?; g l\i-'__, t"l.__

—|—L-\,-'I_§:/f$=l_}.
L

La forme de celte équation, celle de I'équation (7)

: u e e ~
et le fait que e réduit 4 l'unité au point le

o

plus bas du contour, conduisent & faire un change-
ment de fonction, et & prendre comme nouvelle fone-

Hrydrauligne générale, B
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e : i P '
ion inconnue, au lieuw de —. la fonction F,(q, ?)

définie par

t

—7 —I— [ \ |.5-..- l“:{_'r;. 4 8 (ro)

i,

Cette fonction F, sera déterminée par les cuations

d [ dF, J v d [ OF, S dy
slEs [ Sl

dF,

iy

= —f (sur le contour),

F

5

Fi=o0 (au point le plus bas du contour).

Nous reviendrons tout & I'henre & ce systéme,

Nous allons préalablement déduire des ¢quations (9)
el (10) la loi des variations de la vitesse moyenne avee
la pente molrice.

La vitesse moyenne dans la section 7 a pour expres-
sion, par définition

]
; iz
l_ e / It —:

e T

St donc nous multiplions I'équation (10) par

que nous inlégrons & travers =, nous aurons :

I
—=1-+kyB, MF,, (12)

i,

JLF, étant la valeur movenne de F'i{-r,.-fj dans I'étendue

d'une section.
La relation annoncée entre I et U s'obtiendra en éli-
minant u, entre les équations (9) et (12). Si nous dési-
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enons par JIUY la valeur moyenne de f(+, {) le long du
contour anouillé de la section. nous avons :

st ey LR
TR NS

el par suite

== < shgt=d .
\ VB, Vo7 g LY %

I 1 . ROTLF, ) / [. (13)

Si l'on désigne par —— la parenthése constante
Yo
du second membre, nous pourrons écrire cette dqua-
tion sous la forme

a8

Cette formule a été signalée vers 1770 par De Chézy,
et porte le nom de cet ingénieur® : en langage ordi-
naire, dans des lits semblables. la vitesse moyenne est
proportionnelle a la racine carrée du produit du rayon
moyen par la pente motrice.

I Ginanp, p. 231 [ d'aprés les Mémoires manuscrils de I'Ecole
des Ponts et chaussées)., « Il parait que, vers lannée 1775,
M. de Chézy, directeur de I'Ecole des Ponts et chaussées, rechercha
le premier, & 'occasion du canal de I'Yvette,..., une formule au
moven de laquelle on pat établie les rapports constants enlre la
pente d'un aquedue, les dimensions de sa section lransversale et
le volume deau qu'il doit amener... I exprime la condition
d'uniformité du mouvement par une ¢quation de deux termes,
dont le premier membre est le produil de la pente du canal par
la surface de la sectinn perpendiculaire & la direction du mou-
vement, et donl le sccond membre est le produil du périmétre
des parois mouillées du canal, du carré de la vilesse du fluide
el d'un coefficient constant. Il détermina ce coefficient par I'expé-
rience.., » P, 222, « Bossul le conclut de ses experiences sur le
mouvement de 'ean dans les tuyaux de conduite. »

&
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Le coefficient de proportionnalité
1 I I 9 14 U

V& VB, Vg T

f
T Y 7 AR

dont 1'nxpressiml se reduit a

1

= “ L mP,

lorsque le degré de rugosité est le méme sur tout le
contour el que par suite f=1, varie d'ailleurs peu
avec la forme de la section, ainsi que nous le recon
naitrons par l'examen du cas de la section circulaire
et de la secltion rectangulaire trés large : il dépend
surtout des rugosités de la paroi.

Les différences de vitesse absolue entre les divers
points d'une section sont au contraire indépendantes
des rugosités de la paroi.

Appelons en effet «, la vilesse maxima & travers la
section et soienl w,, {, les coordonnées du point ol
elle se produil; en retranchant I'équation (10) de
== — 1 L kB, Fi(n 0,

(i}

a . “m_ 5
il vient : oo -—=kyB, [I s L) — Filn, ?.f}].

b

Or = ”"

Done

w, —u K

Uyt yomf

Ftﬂ\'ﬁqn E’_-u} =R

Comme d'aprés la loi de De Chézy, U2 est indé-
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pendant du degré de rugosité des parois, comme k
et LS. il se trouve que la différence des vitesses absolues
aux divers points d'une section est indépendante du
degré de rugosité des parois. C'est un fait auquel
H. Bazin a été conduit par I'expérience en étudiant le
mode de variation des vitesses aux divers poinls
d'une section : cel ingénieur a opéré dabord sur
des lits trés lisses (par exemple. & parois en bois
poli ou en ciment uni), puis sur des lils extrémement
rugueux (i parois tapissées de pelits cailloux pointus,
ou.garnies de lattes clouées en travers).
Enfin si nous posons
%

R = —= | Fi(n.. L) — INF, |,
,‘lrt"]'n:}llﬂ l[ 1{rr"t. .Lr} -h..l -|

£ . s TR, iz e
I'équation (15), multipliée par — et intégrée a tra-
= !

vers la section, nous donnera :
u, —U

\'htiﬁ
ou u,,,:lj—l—K\/Tj 3 (16)

Le coefficient K ‘qui figure dans celte relation varie
tres  sensiblement avee la forme de la section, a
l'opposé de ce qui se passe pour b,

L'utilisation des formules que nous venons d'élablir
suppose la connaissance de la fonction F,, c'est-i-dire
I'intégration de I'éguation (11), intégration que nous
ne savons pas effectuer en général.

=

4. Cas d'une section rectangulaire trés
large. — Le premier cas particulier que nous envisa
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gerons est celul d'une section rectangulaire trés large,
a grands edtés horizontaux et & parois homogénes.

Soit 2h la hauteur intérieure s'il s'agit d'un tuyau,
h la profondeur s'il s'agit d'un canal découvert. Le cas
du tuyau se ramene au cas du canal. vu la syméirie
des vilesses par rapport 4 la médiane horizontale de
la section. Nous supposerons donc qu'il s'agisse d'un
canal et que la trace du plan yoz sor la section o seit
au niveau libre : z aura & varier de o 4 h et S_fh
sannulera pour z2=o.

La grande largeur du canal permet d'admettre que
le mouvement est le méme dans toute section verli-
cale paralltle & ox; dans ces conditions, F, ne dépend

pasde y. Comme d'ailleurs f=1, F=1, —=—h,
Y 4
dv=df, le systtme (11) devient :
*F, I
'”,:—_ —|— L=
dF, : 52k
Pia =1 &l &y=—0, pOUEr Zz="h, §0it L=1,
dF, TS
iy pomr z=—0, SO0 (—o.

On en déduit :

s I telaNE =)
MF, == (1— [ pdt)=1.

L
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La relation (14) donne alors

I 1

Vo T yB, 8

La vitesse u, maximum en méme lemps (que
alteindra sa plus grande valeur u, pour [-—o0;
relation (10) donne par suite

. — 1 :

= —HE_ .'T ——— th'

Uyb
Enflin on a :

d'on, dapres (16),
Uy - ,
3 R
La précédente éguation

!1' Z

U= U — o oy Lh

coincide avec la relation fournie jadis par I'expérience
a . Bazin!

U=, — 20,6 % VIR

5. Cas d’une section circulaire. — Supposons
en second hieu qu’on ait affaire & un tuvau circulaire
ou & un canal demi-circulaire entiérement plein (cas
qui se réunissent en un seul), les parois étant
homogénes.

L'origine de la section sera prise en son centre. Par

1 H. Bazov, 1, p. 230.
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symétrie, les vilesses seront les mémes en tous les
points situés & une méme distance de ce centre.
R '

2

Comme , si 'on pose

' AT I ! | w3
e e e AN i

I 4 2 g
onaura =2z, F, ne dépendra que de ¢ et I sera

Iinverse de ¢ w(z). Par suite, la premitre équa-
tion (11) s'éerira :

I CdF; 1 I W | e
]. : ll* f{;?—| —E—I:O.

- 2 T A 2'. .
3 Rl e
ou plus simplement :
I ool e dE,"
o ey T P I —=0.
he @t | o) T | T
CGomme la normale v coincide avec un élément de
rayon, les conditions aux limites s'écrivent :
I I dF, ’]
o S e e |
2 1) de b opour z=1.

l*', =10

{les éqtmlimnﬁ donnent successivermnent
Fa dF,
7 =0,
ey e T

e % (1— ') — 2[ tb(2)de,

ou, en posant
&
‘I"(r}:z/ b 2)de,
o

Fy = (1 — 2 - W(x) — W(2)
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On en déduit [:[_misqne —ri-: = A;{h :ﬂfra) :

- 1
OMF, = = + W(1) —> [ v

La relation (14) donne alors :
1 i = e
_:k?—kb[ 3‘—'—”{[}—*2.[ L‘LI_{[:I'I"!:-l.

La vitesse maxima se pl'i.ullliﬁ':!nl par raison de symé-
trie sur l'axe du tuyan, oli &=0, nOUs aAUronNs,
d'apres (19) ¢

o, — i

rJ k
— | = & My T,

Enfin on a:

A I e i
N :!’.'l TI’T —[—r/ ol i i'wl"'"rf_l-

d'ot, daprés (16).

i

i 1 .._ - I-"I I ¥
=1+ fey'b 55 -+ 2..-[ cW(e)de 1

Dans le cas oii, en premi¢re approximation, on
néglige (). on aura a faire W(¢) =o. Ainsi. sen-

9
siblement : = =t
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L'avant-derniére équation s'éerit, en tenant comple

" T IR
de la relation de De Chézy [hl_ 1] 7— ----- ——’:

ol SRR
H—=u,6 — ‘T J'r; _l.-{g \/ [ T s

el elle coincide avee la relation obtenue expérimenta-
lement par H. Bazin'® :

SRR
H:”.m—ﬂ]’i"i_.) 'n_g lTJ- -

6. Comparaison de la théorie avec 1'expé-
rience. — L'expérience, comme nous l'avons dit. a
fait connaitre depuis trés longtemps la relation

PUs =12,
£
b étant un coefficient peu variable avee la forme de la
section. Dans le cas d'un canal découvert notablement
plus large que profond, Tadini® et d'autres hydrauli-
ciens ont méme Lronye quon satisfaisait assez bien A
un grand nombre d'expériences en faisant simplement
b=0,0004 (les unilés de longueur et de temps étant
le métre et la seconde). Dans le cas des luyaux cireu-
laires & parois rendues rugueuses par des dépits,

. R. de Prony, d'Aubuisson, ,.. ont été conduits & des

formules qui reviennent presque. dans des limites
étendues, 3 poser  b=o0,00036.
D'un autre ¢dté, H. Bazin a représenté ses expe-

1
2

H. Bazw, 4, p. 242,
AL Tanisi
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riences de mesurage de vitesses & diverses profondeurs z
an milien de canaux rectangles par la formule

i)

=, — 20,0 i-; VI ;
mais comme les largeurs de ces canaux n’étaient que
de b & 7 ou 8 fois la profondeur d'eau (en sorte qu’on
ne pouvait négliger l'influence retardatrice du frotte-
ment des bords). . Bazin conclut d'un raisonnement
qu’il reconnait lui-méme manquer de précision qu'il
faut, pour représenter ce qui aurait lien dans un canal
rectangle de largeur infinie, multiplier le coefficient 20,6
par la racine carrée de I'unité plus le rapport moyen
des profondeurs aux demi-largeurs, c'est-a-dire par
1,15 %, ce qui donnerait pour ce canal trés large :

(1]

w==,— 23,7 ;“._:--1'”: :

La comparaison avec la formule théorique que nous
avons ¢tablie donnerait : A=—2 X} 23,7 = 47.4.

Un nombre ainsi corrigé peut paraitre moins stir que
celul qui se déduit sans correction des expériences de
mesurage des vitesses. a4 diverses distances r, dans un
canal demi-cylindrique, faites aussi par Bazin qui les

4 i ":E -'l‘ . z ;-i-:l- I.H
IEPI'EEHEI'H.E parla relation® wu—un,—21 VZ w5 _

R i
Par comparaison avec la formule théorique . nous
2 7 G3y 2
av s it e deat BT
avons : 3 k=21y2, ki 5~ —44,55.

' H. Bazix, 4, Introduction, p. 26, et Mémoire, 3 partie,
e 35 et 37, p. 230 el 233.

* On notera que Bazin prend la formule de De Chézy sous la
forme bU2—RI, en sorte que son coefficient h est double du
natre,
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Un ensemble d'inductions qui semblent assez 1égi-
times ont conduit Bazin & forcer ce dernier chiffre, ce
gqui revient a donner A L la valeur 48,

Admettons cette valeur £ = 48 que nous justifierons
tout a I'heure.

; I 1 A
Il en résulte : —=———116 pour les sec-
\ b vB,
4 £ : I 1
tions reclangulaires trés larges, —=—— 19
: \ b o B,}
pour les sections circulaires,

La forme de la section influe done effectivement peu
sur la valeur de b.
Dans le premier cas, & b=0,000/ correspondent :

V- ”I ] H:|r i) IJ,, =
B,=—0,000865, {0 —0.08. t_! =1,10, —=—0,b8.

anl

Dans le sccond eas, & b= 0.00036 correspondent : L
. 2= i, % u i, ) |
B,=0.000884, U= 0,04, I—’“: 1.2, —=—0,b1. J

il

Trente ans plus tard, H. Bazin! reprit cette étude.
Les nouvelles expériences furent eflectuées pres e
Dijon, sur un tuvau en ciment lisse de 0™ 80 de dia-
méire et de 8o métres de longuenr. tuyau o le régime
uniforme éfait parfaitement établi sur le milien de la
longueur. Une série de dix expériences, correspondant
i diverses valeurs de I et de U, a conduit & une valeur
de notre coefficient b sensiblement constante et ¢gale en

! H. Baniy, &, p. 1-27. Ce mémoire a 616 présenté a I'Académie
des sciences le 1¢v juin 1896 voir le rapport approbatif de
M. Boussinesq, dans le C. R. de I'Académie du 29 juin 1898
(k. CXXII, p. 1250).
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moyenne 4 b=—=0.,000166. Les nouvelles observations )
ont confirmé la proportionnalité approchée de (1, —u)
o

« La formule indiquée est celle qui correspond le
mieux a4 I'ensemble des faits: elle doil &tre admise, en
y ajoutant un terme correctif pour Fadapter & la partie
centrale, on 'dcart n’est pas du reste bien considérable.
Cetle correction n'étail pas nécessaire pour les canaux
a ciel ouvert, ot les mouvements confus qui ont lieu
aux environs de la surface libre s opposent & la décrois-
sance régulitre des vitesses !, »

L'écart observé n'est sensible que vers I'axe du tuyau,
la méme ot nos formules donneraient au coeflicient de
turbulence ¢ une valeur infinie. A une seconde approxi-
mation, il faudrait faire entrer en compte la petite
fonction ¢(z) d’abord négligée, et dont le rdle devient
prédominant dans la région du désaccord, La précision
des observations d'H. Bazin a permis & M. Bous-
sinesq * de rechercher les lois de deuxiéme approxima-
tion du régime uniforme.

Nous ne développerons pas les calculs COrrespon-
dants, et nous nous bornerons i signaler qu'ils ont
conduit & admetire comme définitifs les résultals sui-
vanis : i = 48,60,

1 1

5 =B, THk  =t412.0616.
s e ]

Dans son Cours d'h;«'drnulirpm de I'Ecole des Ponts
et chaussées (1905-1906), M. Rabut? estime gu'au

-H. Bamw, 4, p. 26.
J. Bouvssivesq, 48, nole 7, broch., p. 40.
Cu. Ranvr, p- 129-131.

Hydrauligue géndrale.
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T ——a"

g —

 lien du coefficient de turbulence adopté par M. Bous-
sinesq, il faudrait prendre :

i it W
[og— rlrll‘_"" Bu ?\/T r

Si Ton reprend dans cetie hypothése la théorie pré-
cédente, on est conduit & la formule

b, (¢\E /R
“:“.u_':]"f'f(FJ 2—

Comparée & l'ensemble des expériences d'H. Bazin,
cetle formule ne rend pas mieux compte des faits,
comme je I'établirai en détail dans une publication
ultérienre, et elle ne permet plus I'usage d'un méme
coeflicient &, quelle que soit la forme de la section.

Quant aux expériences de J. Freemann!' faites
‘en 1888, pour déterminer la distribution des vitesses
dans les jets sortant d'une pompe & incendie, sous
forte pression, il ne saurait en étre question ici; le
diamétre du tuyau est trop petit pour que le régime
turbulent s'établisse : on a affaire & un régime inter-

médiaire entre le régime continn et le régime hydrau-
lique.

7- Régime intermédiaire entre le régime
continu et le régime turbulent *. — Dans le cas,

! J. Freexans, Amer. Soc. of Civ. Engineers Trans., nov, 1880,
t. XXI, p. 411, cité d'aprés H. Bazs, 4, p. 23-25,

* Citons & cette occasion les belles vecherches d'0. Reysoins
(2], Prenant le mouvement turbulent tel qu'il existe & un instant
donné, il a cherché & établir un critérium pour décider si Tagi-
tation Lourbillonnaire augmente, diminue ou reste stationnaire
quand la vitesse moyenne en un point du fluide augmente. Mal-
greé l'exposé simplifié donné par H.-A. Lonexre, nous n'avons pu
faire état de ces vues dans cet ouvrage.
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fréquent d’ailleurs dans la pratique, ot les dimensions
de la section ou la £t randeur de la vitesse moyenne
sont trop petites. le régime tubulent ne peut s'établir
complétement : Pagitation ne mascue pas compléte-
ment les effets du frotterment régulier. La relation entre
la vitesse moyenne U, la pente motrice 1 et le rayon
moyen ne sera ni la relation de De Chézy. ni la rela-
tion de Poisenille.

D'aprés la premiére de ces relations, la quantité

4 : 1 ] ¢
? it serait constante, tandis que d'aprés la seconde,

pour les tuyaux circulaires, cette méme r_[unnliié varie-
rail pl'npm'rmnnellen'mn1, A —- eba L . Dans les

L
: T ; 1 i
cas intermediaires qui nous occupent, i croitra

avec les deux wvariables 53 el —‘i; el si les valeurs

qu'elles prennenl sont. assez pelites, son développe-
ment de Mac-Lavrin, réduil aux termes du premier
degré, donnera (m, n, p étant trois coeflicients positifs) :

- l i A
Cm=rltritry )

Les hydrauliciens ont arbitrairement supprimé
des deux derniers termes de la parenthese.
K. de Prony ' adoptait la formule

I—=m*~ U(U —+ p),

! Ry pE Promy, p. 70 et R,
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avec m=0,000174, p=0,09,

ce (ui revenail & faire n—uo.
Darcy et Bazin ont trouve []lll"lt ‘rable Ll&* faire p—n.

et ont c-tdnlﬂv la formule |—-m L l'-( 1 —|—H 4 )

g )
en supposant que m et n (.‘-I'[H:~:1E'HI. avec le degré de
rugosité de la paroi.

———

NATURE DE LA PARD m i |DBSERVATEURS

Tuyaux en fer &livé ou cn

fonbe liss¢ . . . .. . s 0,00025 00063 | ( Darey ).
Petlits canaux & parois lvés
URIES 4 i er s ) as e nl o 0500095 0,03 {

i (Bazin).

Petits canaux & parois cn
fBrre. . ol e e ul ) Opho02E 1,23

————
E————

Les valeurs des coefficients numériques qui précédent
supposent que les unités de longueur et de temps sont
le métre ef la seconde.

8. Coefficients = et n. — Avant de quitter I'étude
du mouvement uniforme, nous calculerons deux coef-
ficients qui inter wviennent dans 'étude de I'écoulement
graduellement varié : 1 -+, rapport du carré moyen
des vitesses & travers une section au carré de leur
moyenne U, et o rapport analogue du cube moyen des
vitesses au cube de la vitesse moyenne :

o /(lﬂ: “"’[(;;:)M_j
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: 1
D'apres nos formules 1 7=

Dans le cas du rectangle infiniment large, a

) Fe = e I = ilz .
l‘li-;i]—;-}, J]L]‘,_T, = :—}.“-—::L‘,
Par suite :

| 1. 3
| i . i i " 1 .1||r
1 _-T_ n— : - II{T =1 _'|_ _.il ;—.'- ]I';. }y
[ o £

i

dg =1+ = kb

!- =5
= k*b=0,020,
D

Ainsi
e 3 —Y =y = 1,008,

Dans le cas de la secltion circulaire, on a :

F.— 3 ([ — MY = — ds et ETI’H:J‘ —azde.
ol 4 D - Tk

Par suite :

; W Ll .I. ¥ A ] l
L= s 3) | aede=1+4—=Fb;

)

3

; i
aede=— Gy i 2b
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A e e e— A — - ==
T e e e e

partenaires
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CHAPITRE 11

MOUVEMENT GRADUELLEMENT VARIE
DANS LES TUYAUX LARGES ET LES CANAUX
(PREMIERE APPROXIMATEION)

1. Retour sur les équations fondamentales
de l’écoulement graduellement varie'. —
Reprenons le systtme d’équations établi dans les
68 1 et 2 du ]_JlL(‘i‘dFIil chapitre :

0 0 " % a8
D {[[f Sl "‘l‘ ‘ ", £) h}'(_)]
I8 T ;

, L' T Sl o 2
B B g {

{ \ ==t ,
| hris": {% }:-— kv B, f(r,0) (surle contour). (2)

Nous en avons déduit déja une importante relation :
: G M u'
Bnus.ﬂ‘ll._f:‘—(l'—-—k ] (3)

: & Piwler

en désignant par JITf la moyenne des valeurs de f(r. Q)

1 J. Bovssmesg, 19, p. 712,
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le long du contour mouillé 7+ et par T’ la moyenne
des valeurs de ' sur toute I'aire s,

Dans I'hypothése o le régime est uniforme, nous

, i =

Glpra e R ) R e VB, Fo(e, [
avons elé conduits & poser =1 “+kyB, Fy(x, 1),
la fonction F, étant définie par les équations
d [.. dF, O [ OF, .
i A i A Fubith F ‘-} .:T i r
O [I . g 0% Gt T ILf 0,{4)

K ,,’I'IJ' =—/ (surle conlour),

-

=

—_—

=4
N

(5)

M s O 1 point le plus bas du contour), \

)
Dans le cas général, nous poserons, en introduisant

cette fonction F, et une nouvelle fonetion inconnue

Fy(n, ) ;

st =1} fa\fﬁ: Fy(n, )+ —IIIII_— &5 Faln, 1), (6)

i, avBiud oy e
Retranchons alors des quations (1) et (2) respecti-

vement les équations (4) et (5) mulliplides par /\/B,

et mtroduisons la fonction I, définie par (6); nous

obtiendrons I'équation indéfinie :

i T U s 5 [ e - s S
L o I+ e~.'f=:'[""i>1ﬁ:'i 91— LB f=u.

¥

ou, en lenant comple de (3) .

0 PSR ) 1 N e o S Ry u
B E E—I—J-EP* 1,,-]-}:—‘:—]—“1—:3}&”_1::0. (7)

Quant aux conditions aux limites, elles donnent -

Gy sur le contour 8
Jy =0 (sur le contour), \ (8)

F.—o (au point le plus bas du contour),

!
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l.a connaissance des accélérations 1’ aux divers poinlts
d'une section entraine dés lors la détermination com-

: . oS 1 ey
pléte et unique de la fonction —, moyennanl 'inté-

'

aration successive des équations (4-0) et (7-8).
D | y F

». Relation entre la vitesse moyenne et
la vitesse au point le plus bas. — Prenons la
moyenne des denx membres de 1'égalité (6) qui défi-

. i - - O
nit oy v Sar toute la section envisagée ; il vient :

].-l — lrlt' = 2 |
= — 3 LB IUE, L ————dF: (O]
i, A 52 qgyB, u; 7 2

Or on peut donner une expression simple du dernier
terme de cette relation.

Multiplions en effet I'équation (4) par F,, I'équa-
tion (7) par F,, puis retranchons-les membre a
membre ; nous obtiendrons :

S ey v O oy O Dy OF, 5 4 OF S
o ,] o 'ﬁT,_"] o ﬁq_l+ﬁ|Fl Y —F,1 ot l

4+ F,NUf - Fy(u' — dlu)=o.

Aprés avoir multiplié cette nouvelle équation  par

i

=, intégrons & travers toule la section, et apph-

-

quons la formule de Riemann pour transformer les
deux premitres intégrales de surface en intégrales
curvilignes; l'une des intégrales curvilignes obtenues

Sut [FI*‘, i“'*-"'-ﬁ est nulle en vertu de (3). tan-
i FL’ ':_{
dF,

dis que lautre, ’l B —k - ga réduit A
| f.'r‘J x
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. i G = ; St
= I,r"[ "'f. d'aprés (5). L'équation obtenue s'éerit
oo 7
done :

J]k.j.J]Li"ﬂ—i—ﬂll.{l*,u]—~J|‘uFJ.JILH:/jbj L,
b'd £
U (F ') étant la valeur movenne de Fy(n. 2)id dans
1 . . BRI
toute la section considérée. Le second membre de cette
équation « égale évidernment le produit de IS par
une valeur de F, intermédiaire entre la plus petite el
la plus grande que prenne cette fonction Je long du
I 5 aias que ] 2
contour moutllé +. Or, si les vitesses

- aux divers points
de la paroi, étaient réparties dans le

mouvemenl varié
comme dans le mouvement uniforme. on Y aurait,
d'apreés (6), Fa=o0. Sans avoir besoin d'admettre qu'il
en soit rigoureusement ainsi, il est clajr, par analogie
avec ce qui a lieu dans le régime uniforme, que les
ecarts relatifs de vitesse. propres au mouvement varié,
seront bien moindres le long du contour mouillé (e
dans tout I'intévienr de la section. Aulrement dit, la
fonction F, se maintiendra, le long de 7+ beaucoup
plus voisine que dans I'aire 5 de sa valeur zéro réalisée
au point le plus bas. Donc le second membre de I
derniére équation est négligeable devant le

premier
terme du premier membre !y,

ol AT JIUF, M — I (F
D'aprés cela, INF,= : T L Tath)

: : lid, L
Naous pouvons done mettre Fexpression (6) de —

0

¢ 8] / B.OS
sous la forme = \/ —
)

! I. Boussivesq, 489, broch., p. 13,
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k1

g r—i—f:\/ b 5 OWE,JMw —Fu) | o

IS + gB NS
en nous souvenant de la relation (14) du précédent
: ; BINS : e e
chapitre, qui donne : \/ b / — 1 - AyBILE -
Nous étudions ici un régime oi les vitesses diflerent
peu de ce qu'elles seraient en régime uniforme; les
accélérations 1 sont alors faibles. et le second terme A
de la parenthése dans (9) est trés petit devant I'unité.
Si done nous élevons au carré la relation (9), ce qui

blU®
T. _i_ ;1!. }i §

donne : BN — 2

nous pouvons remplacer le second membre par
bUN 1t —2A); don:

A 4 S ) 2L AR o
B(.uﬁ;ﬂ EJ" — bl — 2 (-B._}szri.l.f;__} vl \/ :_]H
s INF, M — INUF )
50 e
Cette d¢quation  esl susceptible de simpli!icﬂtimm.
Tout d'abord la parenthése qui figure au dernier terme
aurait pour valeur Funité si le régime était nniforme :

A cause de la petitesse du dernier facteur. 1l nous sera
loisible de remplacer cette parenthése par 'unité, 11
vient ainsi : BN f = bUI*

G e (A L B
10y Mk *JJ““—J“U‘\/W .
_- B

Or k& NS F, serait, dans le régime uniforme,
I :
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nw—u, ; : : ;
— @ enégard a la petitesse de o', le remplace-

ment de la premiére guantité par la seconde sera per-

; : : 1
mis; la parenthése deviendra, au facteur T
1

| Mt — I M — [’ — M|,
soil Uonu — - on(u?),

en appelant () la valeur moyenne, dans la sec-
tion, de la dérivée tolale de u® par rapport au temps,

-

En fin de compte, nous obtiendrons la relation :
By = L2 ' £ M) — o0 ] )

Le premier membre n'est autre que le froltement
moyen extérienr de la paroi sur le fluide; car le frotte-
ment sur un ¢lément dv du contour est Buﬂrf}:, ou
d'apres la relation (4') du précédent chapitre, B, uifiy ;

3
ACEN L :
sa valeur moyenne sera donc : Ili,,u;j_—‘{. soit
1 o - lI J’{
Bu; .
Nous avons déja l'expression (3) de ce frottement
moyen extérienr; en les dgalant, nous obtenons 1'im-

portanle relation suivante, extension de la relation de
De Chézy :

= b %L %amuf)'—mu;']. (11)

3. Expression du frottement moyen exté-
rieur et équation gémérale du mouvement
graduellement varié. — Nous nous proposons de
transformer les expressions obtenues pour le frottement
moyen extérieur et pour la pente motrice, de maniére
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a n'y laisser figurer que la vitesse moyenne U et ses
dérivées,

A cet eflet, nous commencerons par établir un
lemme.

Soit P une fonction continue de x, y, z, (; sa dérivée

compléte @' par rappout au temps, dérivée prise en sui-

vant durant 'intervalle de temps df la particule fluide

ocenpant a I'instant ¢ |I]_‘H‘th!}l1 (x, ¥, 2), sera, comme
nous 'avons va dans |'Introduction :
b o o o o
= —— i —— 1 —— i E
Of L gl Oy Oz "’
. ou bien. en lenant comple de i't’_'qunliml de continuité
(A7) ATl O
e+ e =0
5% Oy 0z
ade L
P == { ——' i — (D).
5 o (ud) 5y (0d) - :U )

'#Iultlpllr}lh celle égalité par rf— el IIIIL‘—"IUI!HJJ. lravers
toute la section =3 il \-1{‘11[-

[:i!: F=— ’ Pelz —|— I ubdz, (12)

les autres termes étant nu;.{ilgeu}_r!ca, eu dégard aux
hypothéses faites sur le mouvement graduellement
varié gue nous ¢ludions ici.

En prenant successivement ®—=1, d=u, ®=u?,
nous déduirons de cette formule les relations
8 ﬁ{L %) XS
e e whe e, (13)

p o(Ue) TR S,
e e ‘}1—_J whd

"b!l ] 'Ii t]
s d(1?) = FTE [ u‘-’n’:—l—% I utds.

—

)
|
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Posons, suivant une nolation consacrée -

cbn=[(g) L, e f(B) 2

A
Je\ U/ 5

Les deux dernitres relations précédentes 'éerivont -

- O(Us) 0 <
s’ — —m_ _4__ (x4 )z,
40
M) = "'|||f +r}[- 1 i ..ll_:!'[ B
Dérivons (1 L +)Uss, puis zl'% en [es: regardani

respectivement comme étant les produits (1 - n]l_ s

et al®*.Us: nous obtiendrons . apres réduclions évi-

i Gk L | D
dentes : I/ :LrTf_l_l _r;f (1)U —y [; :‘N ;
Ozl S

j]L'[“}_"—- I—'l'" —r-[_' :r—a—gx—.|_r"_;__

B

St on a égard & ces expressions, Brr?TLf el
prennent les formes suivantes -

Bu*ﬂhfzirl +-2(a—1—7%) j R : )r;

S S o
Foplnianl :l:‘
l:ffL:il—lf“M'_'I_" ﬂ:r -. LJr; z |

e 't”’i-‘l%?—“‘??” o \ G
+%{U_{}{Ta:ﬂ+ ot | )
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Ces formules ont été données par M. Boussinesq
en 1872 '. Elles peuvent, dans une premiére approxi-
mation, étre notablement simplifiées.

Les coefficients 2(x— 1t — %), ..., {(2—m),n, pour-
ront en effet étre réduits & leurs valeurs & peu pres
conslantes de régime uniforme dans tous les écoule-
menls assez graduellement variés pour que les vitesses
different peu de ce gqu'elles sont dans ce régime, puis-
qu'ils sont multipliés par des dérivées de U ou de g
qui sont du premier ordre de petitesse; les quantités
négligées sont au moins du second ordre. En outre,
dans les écoulements envisagés, les changements de
forme de la section s capables d'influencer les valeurs
de z et n velatives an rvégime uniforme se produisent
trés lentement; « les petites parties variables de ces
coefficients seront, comme celle méme que contiendra

le rapport ;{T et d'olt elles proviendront, de l'ordre

des dérivées premidres de U ou de z: et leurs dérivées
en & ou en [ atteindront, par suite, comme les dérivées
secondes de U ou de 5, le deuxiéme ordre de petitesse.
C’est dire qu'a une premidre approximation, le dernier
terme, double, de chacune des équations (14) et (19).
sera négligeable®. » Enfin comme les coefficients

sont trés petits

(1~ 3n—a) el (x—1—27) de %f-

f
£ 12 ] )
par rapport aux coeflicients de S kg—yj el de i

les quatriémes termes des expressions de BuiLf et

1 I. Bovssixesg, 8, § 40, p. 521; — 19, p. 17.
2 J. Bovssizesq, 19, p. 18
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de I seront trés peu sensibles. Les formules (14) et (15)
se rédmiront done & -

@ 4 g - g ‘. .. o
BN/ = U2 4 o(z — 1 — o) - o:ut ( :Ef,:)

S 3y & OU

1 ; T (Iﬁf}
g L Ok
[:f)[;'"%-—l—{zx—-l—utqj-— ( )

Dz \ 2g
I +2q OU SNy
_IL j_"_f_ o ! {1']}

Pour rendre ces résultats plus concrets, nous don-
nerons les valeurs numériques des coefficients dans les
deux cas de parois homogénes (Uue nous avons envisa-
gés antérieurement.

Section rectangulaire large

: o I R h ol
0,462 U*-87,35 > (U2} 45,42 OU
U;=0,462 U*--8- 8} = ( 29 )—;—’H'J g oL’
= o A N r.ofo ol
AU B S o R k. sl
I= 0,000/ e e 1,090 O ( 29 )_r_ ) ot - ’
Section cireulaire -
S G Ty SO A VR T
uy=o0,ho7 U4 =2 4R T ( 2 J—|—._"rj.l g oL
| =o0.000~: Lj_ ' i : ( L 1066 _Ej_l:i_
= 0,00072 i == I.I ﬁr_. —w )—r ."f_ of " 45 ;

L'r:xprvsﬁinn de #® montre que, i égalilé de vitesse
moyenne U, la vitesse & la paroi croil quand le mou-
vement s‘accélére soit d'amont en aval, soit sur place.
L'une et I'autre aceélérations tendent par suite 4 iga-
liser les vitesses A lravers chaque section, conformé-
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ment & une observation ancianne de Dupuil & propos
de 1'étude du mouvement permanent.

LC‘X]'}I'(‘thHII de I montre que la -pente motrice est
la somme de rois termes : le premier mesure la pente
moltrice nécessaire 4 vaincre le frottement extérieur
dans I'hypothése d'un régime uniforme; le second
est la pente nécessaire pour acceélérer le mouvement
d’amont en aval en accroissant la hauteur due & la
vilesse moyenne _‘Z.fj :  le troisieme est la pente néces-
saire pour accélérer le mouvement sur place.

Voyons le parti qu'on pourra tirer de l'expression
;;_'1'-lwmlu de la pente motrice et de I'équation de conti-
nuité prise sous la forme (13).

Dans le cas d'un tuyau plein, 'aire s et Paltitude h,
de son centre sont données en fonction de . Nous
avons alors, pour déterminer la vitesse moyenne U et
la pression p, sur I'axe. en fonction de @ et de f, les
deux équations aux dérivées partielles

o] 3 Po i EE R 1 —,—"J.r" ol =
O h”_|_ I,-;_r “{‘_1 24 _._LL _|_ Of s
O{clU)
5 -f\_'|,L.‘ _ﬂ"
posant g —2x—1—r.

Dans le cas d'un canal découvert, si ( est I'imclinai-
son moyenne donnée (inclinaison du fond. par exemple)
sur 'horizon, et si { est la largeur du canal & la sur-
face libre dans la section d’abscisse x. on a

cos{ 0Oz

I=sini—-—F— .

I E. Durorr, p. 632,
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Comme, dans une section. [ durant le mouvement
est sensiblement invariable. nons pourrons regarder /
et | comme donnés en fonction de . Les équations
aux dérivées partielles :

oy EOSE Oa L B
_‘5””+_{ = ~+z S —;j-)—{—hl n
1 —+ay 0olU Oz {zl)

] 2 s 3 Sl (ool B 0 bbbl £F
| i o A i —|_ o

déterminent la vitesse moyenne U et l'aire 5 de la sec-
tion en fonction de x et de /.
L'état initial du courant fluide étant connu, ces
équations permettront d'en déduire ses étals successifs,
Si le régime est supposé permanent. les équations
établies deviendront des équations différentielles ordi-
naires,

4. Propagation des ondes et des remous
d’une médiocre hauteur le long d’un courant.
Premiére approximation. — Nous allons appli-
quer les résultats obtenus au paragraphe précédent a une
question qui a donné lien & une importante vérification
expérimentale, & savoir & la propagation de I'intumes-
cence produite par une varialion rapide, mais momen-
tanée, de la hauteur d'eau et de la vitesse moyenne i
une extrémité du canal. Cette onde est dite descendante
quand elle prend naissance & 'amont el se dirige sui-
vant le courant ; elle est au contraire ascendante quand
elle prend naissance & I'aval et que la vitesse du cou-
rant ne suffit pas a arréter sa marche vers l'amont.
Nous nous proposons de calculer, dans 'un et Uautre
cas, la vitesse de propagation d'une telle intumescence

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

MOUVEMENT GRADUELLEMENT VARIE 307

et de comparer les résullats de la théorie aux observa-
tions d'H. Bazn : nous verrons que l'accord est
remarquablement précis,

Supposons 'inclinaison 7 du fond constante et trés
petite ; bornons-nous au cas d'un canal rectangulaire
de trés grande largeur constanle, et admeltons qu’avant
la production de l'intumescence, le régime du fluide
soit uniforme, avec une profondeur d'eau H et une
vitesse moyenne U,, censées données.

Nous désignerons par I - £ et par U=U, - U’ les
valeurs que prennenl, dans une tranche & un instant
donné, lors du passage de I'intumescence, la hauleur
d'ean et la vitesse moyenne, h et U étant de petites
fonctions de @ et de (.

Avant le passage de l'onde, la pente motrice est

L2

mesurée par --l-_l‘—'. d'aprés la loi de De Chézy; durant
le passage. chaque section se releve de fi, en sorte que
la pente molrice prend pour expression

| | | P
bU:? Oh

H- = ox"

D’autre part. en vertu de la formule (15) dans
laquelle nous négligerons seulement le dernier terme,

double, et en notant que ‘;r = -Hﬁ. Nous avons ;
e e e Vi . : == U pe
1=b _H—'i—h_ —|—{.12— B 1) i Oae
I+ OU  (a—1x—2g U+ U Dk
+ q E T A i H — ¥R

Egalons les deux valeurs de I, et négligeons dans
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I'équation obtenue les termes non linéaires en U', en
h, ou en leurs dérivées partielles ; en outre, comme Je
coelficient b est trés pelit, nous n¢ gli"{‘lﬂll‘: aussi les
termes contenant en facteur bh ou bl Nous ohtien-
drons ainsi équation :

(O/f s v Uy oU'  14-0y dU
oy T 22— 1 —n) gobe T g B
a—I1—ay) U 0k 3
& _r;____ll i (16)

Quant a I'équation de continuitd

0( “—f—:’r}+ﬁ!' Th) U, 4-U) |

[\]J{ 3 [] ; Bt

elle se réduit, au meéme degré d'approximation, j

Ok :‘}L" -k
T —|—[[ : ﬂ_:ﬂ [I";}

On serait conduit & des Cquations  de premidre
approximation exactement pareilles dans le cas d'un
canal sensiblement prismatique, mais de forme quel-
congue.

I suffit done rlmturtm les équations anx dérivées
partielles lindaires & mef'llucrlh conslants (16) et (17).

Eliminons U’ entre ces équations, A cet effet déri-
Yons par rapport a @ I'équation (16), mulliplions-la par

O Lo DAL

I, puis remplacons-y H - D etH 307 Tespecti-
vement par
0 -0 02k 0h
Irf'h.l'{'ﬂ.- " Ot ]F[_-[__M*_%_L”EE_ :
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expressions déduites de (1 7). Nous oblenons ainsi

OEh

il —r—a]——gH ; Y

; O O
—+(3z— 1 —'r,}L'..E\”‘f{_lﬁ—z'ﬁjﬁi—:u. (185)

L'équation de Dalembert & lagquelle nous sommes
ainsi conduits admet pour intégrale générale, avec deux
s 5 1 = =} X 5
fonctions arbitraives F, et J, :

b= :F-i (2 — ey 1) :I":z (2 — wal), ( 14) .
en désignant par o, et w, les racines de I'équation
(o) — (3 —1 — v) wll,
~+ (200 —1 —3)Ui—9gH =0.

Or nous avons établi au précédent chapitre (§8) que,
dans le cas d'une section rectangulaire, on avait

2, \ a7

=13 —2

L'équation caracléristique en « peul done s'éerire

w_

Y

w* — 2w, + U: — ¢H
+ (202 — Sl _|_ all?) el fe—is 7

2y -"'5':"
4. 20890 (305~ Sy, N
7 ]
i " [ - “ 5 | e
Si 7 était nul, on aurait : o= U,+\/gll.
Développons donc @ en série snivant les puissances

de \'rn sous la forme

o =U, %= Vgl 4 Aq*— By Cr* + ..

En substituant cette expression dans ['éqguation preé-
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cédente el en annulant les coefficients des puissances
successives de \,r, . O0n trouve immédiatement :

A— 0
: g2 e H
B=2lU,-+ VgH __—_'3_;_ -
s 2y gH
! V5 U, [.-5 :
C=— S Boeelmr——
Tooil o N

Rappelons-nous d’ailleurs que, pour le régime uni-
forme et dans le cas d'une section mcldnwuidue tris
large, nous avons trouvé :

1 :ﬁ J'rflir,l et _t[f_:nT: I —J—«%Jﬂ\,?j_

[l s'en suit que

4 fu,—U,\?
e o e

Si tiu:rm, nous négligeons les termes d'ordre supé-

I"l'DLll i cn 7, NOous aurcns @

lo|l'.~

L — -29H 7] (u, — U, )2
o=Vl +5 [.—)U Vol S

8 Uai \ (as—L)
30 (3_ "r"'.ff”) U3 ; |

L

(20)

Eu égard & ce que 7 est inférieur A ]'unEI,L,, on
reconnail que l'une des racines o, est supérieure & U,
tandis que 'autre o, lui est inférieure.

L'expression (19) de h transforme I'équation (17)

(}.

5 | (Ue—00) F 4 (U, — 0)Fad-HU' | =0 ;

en
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en_désignant par ¢ (¢) une fonction de ¢, nous aurons
donc :
ok )y — -[_5.. -
=t E L o)

| I'.'AJ*;—[

— Tl ?{\.L—u f}—‘—u{

Mais s1 'on porte cette valeur de U’ et la valeur (19)
de h dans I'éguation (16), en tenant compte de qulm—
tion dont @, et w, sont les racines, on reconnail ue
cette :_'-r[naﬁnm {16) ne saurait étre vériide qu‘autanl
que 4(f) se réduit & une conslante. Comme il est loi-
aib]e sans Lhanrvm IP\.PIE---mn de h, de remplacer
-rl el I‘ par - ,—|—— A el F,— A, A étant une constante
ﬂl'].'l!ilﬂl]‘:’h nous choisirons A d{: maniere a faire dis-
paraitre la constante qui se lrouvait explicitement dans
la valeur de U’. Nous aurons done :

. XL,
‘-‘-1--“— F (. — w,1)

U

|

powe— U, o
= S - Fal i — t,1). (21)
Les intumescences & étudier peuvent se propager

dans le sens du courant ou en sens conftraire. Nous
placerons 'origine des abscisses en un point tel que,
pour { = o, les ondes n'aient pas encore atteint les sec-
tions ¢ui ont des abscisses positives dans le premier
cas ou des abscisses négatives dans le second. A l'ins-
tant { — o, nous devons donc avoir :

h — 0, U'=—o0, soit r'.ﬂ{JJ‘J =0, :FJz{T} =0

pour & = o dans 'hypothése des ondes descendantes,
wour x<_ 0 dans le cas des ondes ascendantes. Si
I =
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doncnous ne considérons que des abscisses =z supérieures
4 wyl dans le premier cas (% — @yl > 0). ou inférieures
& ! dans le second cas (#— o < 0). nous aurons
fs =0 dans le premier cas. ouf, =o dans le second
Cas,

Les expressions de h et de 1 se réduisent alors 4 la
forme h—= F(x— ).

[ e n‘-]—l..,, L lr.‘

LN v SN2 — wf) = (o—1,) i

en appelant § 'une des fonctions Fot $i. ot o Tine
des racines u, et w,, définies par les expressions (20),
et dont celle, w,, prise avec les déterminations supé-
rieures de signe, correspond & des ondes allant vers
l'aval el l'autre, o, . prise avec les déterminations nfé-
rieures, & des ondes allant vers 'amont.

Gomme toutes les parties de 'onde voisines de sa
léte auront bientdt atleint des abscisses supérieures A
@l pour les ondes descendantes, el inférieures i wy/
pour les ondes ascendantes. nous pouvons nous en
lenir aux dernitres formules écrites.

Ces formules montrent que les ordonnées h de I'in
tumescence, en saillic sur le niveau primitif, el les
exces de vilesse U' produils par le passage de I'intu-
mescence, semblent se déplacer le long du canal avee
la célérite .

Ainsi, des ondes ou remous de faible hauteur, pro-
duits dans un canal ot existe un régime permanent
uniforme, avancent, au moins A une premibére approxi-
mation, sans se déformer et avee une vilesse de propa-
gation «, vers les & positifs, donnée parla formule (20)

il
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0. Comparaison de la théorie avec l'expé
rience. — Avant que M. Boussinesq eiit édifié la
théorie précédente, H. Bazin avait étudié la propaga-
tion des ondes d’intumescence descendantes el ascen-
dantes provoquées dans un -couranl par projection
d'eau, et il avait été conduit empiriquement par ses
expériences (faites sur une rigole parallele au canal
de Bourgogne, puis sur le canal de Bourgogne méme)
A la loi approximative : o= U, ygH.

C'est que, dans ces expériences, la quantité =« en
général ne dépasse pas 0,02 & 0,03, et que le rap-

U : i
port —ir est assez laible : alors les deux der-
HIers [.Ni*me:-: de la formule (20) ont de minimes
valeurs.

Toutefois, lorsqu'il s'agit d'ondes qui remontent le
courant avec une ;.m’.i'.{c pifesse . la valear absolue I| (G
observée par Bazin! est inférieure & \/gH — U,.

Ceci est d'accord avec la théorie ; pour A= 0,9 par
exemple et n=—=o0.02, on esl conduit par la formule
(20) a

| )3 i:(\'ﬂ_ﬂ_ A=y | } - - 1':,“51 [',,;
la valeur des termes négligés atteindrait le vingtieme
de la vitesse fournie par la loi de Bazin, et I'écart a
bien le sens indiqué par I'expérience.

D'autre part, dans le cas d'ondes descendantes le
long d'un courant trés rapide a fmuf Jort ruguenr
7 et U, peuvent prendre des valeurs considérables, el
mettre en défaul la loi de Bazin®. Ainsi. en opérant sur

1 H. Bazix, 2, ch. 1, nes 21-27.

2 -H. Bamix, 3.

Hydrauligne géndrale,
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la rigole de décharge du réservoir de Grosbois, rigole
en magonnerie établie suivant une forte pente (0,101
dans la partie supérieure o a éi¢ faite la premiere
experience, 0,037 dans la partie inférieure ol ont été
laites les deux autres expériences), H. Bazin a oblenu
les résultals suivants :

H U, U, \gH wobservé  Eeart
o™ 110 3,785 4,824 6,25 143
0", 100 2,744 3,957 4,32 0,37 .
0,205 3.481 4,999 5,75 0,75

La loi de Bazin n'est plus valable. Mais le mesu-
rage de u, a permis I'évaluation directe de ¢ et le cal-
cul de la valeur théorique de w. On trouve. en désignant
par @; la valeur de w, déduite de la résolution com-
plete de 1'équation caractéristique en o :

i, n — T 5?‘; fidy r.:l
iy
2,01 0,166 0,043 6,511 6G,1%
3.49 0,009 0.00%9 h,327 .91
1,95 0,070 0,013 0,580 2.00b

Dans le cas de la premiére expérience. m a une
valeur trés grande, et alors la formule (20) est insuf-
fisamment approchée, Dans tous les cas, les valeurs )
ne different guére des vilesses observées, lesquelles com-
portent des erreurs possibles de 3 pour roo envirom. I
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CHAPITRE I

MOUVEMENT GRADUELLEMENT VARIE
DANS LES TUYAUX LARGES ET LES CGANAUX
(DEUXIEME APPROXIMATION)

1. Calcul préliminaire des composantes de
la vitesse transversale. — L'étude que nous
venons de faire a conduit & une vitesse de propaga-
tion identique pour toutes les parties de l'intumes
cence : pour mettre en compte linfluence de la lente
déformation de l'onde sur sa propagation, il faut
recourir & une approximalion supérieure. el ne plus
négliger dans I'expression (15) de la pente motrice les
. O — 1) Oy
termes en — Sy T e

D'autre part, les expériences 'H. Bazin sur la
distribution des vilesses dans un long tuyau de
80 métres de longueur et de 0".80 de diamétre onl
montré que le régime wuniforme se trouvait bien
établi dans la seconde moitié du tuyau., mais qu’il
ne régnait pas dans la premitre. Dans cette partie,
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316 PHENOMENES DE MOUVEMENTS TURRULENTS

le fluide avait un mouvement graduellement varié,
lransitoire entre son mouvement 3 filets ¢panouis con-
sécutif & la rapide contraction de I'entrée, et le régime
uniforme établi dans la partie aval, La théorie de co
régime transitoire et des conditions de sa transforma-

tion en régime uniforme, faite complétement par

M. Boussinesq. exige aussi une approximation plus
élevée que celle dont nous nous sommes contentés au |
précédent chapitre.

Les deux problémes que mnous venons de poser 5
exigent une évaluation de laceélération longitudinale u'
dans laquelle on ne peut plus négliger les termes qui
contiennent en facteur les composantes transversales »
et w de la vitesse, Nous allons donc préalablement
étudier comment on peut déterminer ces fonctions o
et w,

Nous avons, pour les définir, I'équation de conti-

O O Vi 0

nuite W T T (1)

et la condition d'intégrabilité de Iexpression de dp
dans une section transversale,

dp =5 (Ydy - Zdz) — g (vdy 4-w'dz),

Oy’ Oy’

A ces équations (1) el (), il faut joindre la condi-
tion exprimant que les particules situées A la surface
limite du fluide & l'instant ¢ et animées des vitesses
moyennes locales, s'y (rouvent encore & [Iinstant
I—dt. Quoique nous n‘ayons en vue que les cas
usuels d'une section rectangulaire trés large et d'une
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section circulaire, nous admettrons que l'équation du
contour est de la forme

F
h -

A ( ¥aro . i ot ) — I;('.r;_. Y=y (3)

b ' C

en appelant b el ¢ deux parametres de crandear de la
section, lenlement variables avec @ et 1, oy, el z, les
coordonnées d'un point particulicr de la section, tel
que son centre.

Exprimons que la relation (3) reste vérifiée quand,
i partir des valeurs actuelles de (., iz, y, 2, ﬁnlisf'ni::ant
a (3), on fait croitre ces variables respectivement de

dt, wdt, vdl, wdi, ou sensiblement de df, Ugdi, vdt,

) : . )
wedl, en appelant g 'expression de -~ dans I'hypo-

thisse d'un l'égime uniforme & la traversée de la section
d’abscisse x. La condition obtenue

() U O 0 o

O ¢
e _||_, | e 2H e e
S Ug - —+t o ~w 5y —©

rit, en posant :

o) R 0 “0h RN
By __J‘;'f . [.? H J|_ N (W +L'? O ) :

/

0z, 0z, e T A vt T
Wi = Us i (w—r"‘ Uo o)

O ol
Bk e Wt

La forme méme de cette relation suggére lidée
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de faire un changement de fonctions: soient L et M
deux nouvelles fonctions inconnues que nous substitue-
rons & v et w, el introduisons deux fonetions auxi-
liaires, arbitraives pour le moment, I'une P ne dépen-
dant que de » et de ¢, Vautre G que de v et £, en
posant : :

. O L
.‘.!‘:'!'t—f—&il:t\p = —|—]_L). :
e e %)
W=1w, ¢ {kP ﬁ;— +UM). \ ,
La relation (4) séerit :

P

Oy 0G|, DY DG
Oy O T o ]
Usons de 'indétermination de  fonction G pour
annuler le coefficient de P, posant :

d 0G| 04 DG

M i

LT s A
alors la condition (4) se réduit i
Od . O
s L4 0 M==o0. (7)

La relation (6) exprime que G(rn, 2)=o0 représente
une courbe coupant orthogonalement le contour

b

. {)==0: si donc oy est une normale clémentaire
A celle dernidre courbe, ONn aura :
(s 2
- —0 [sur le contour). (8)

Portons maintenant dans I"équation de conltinuilé
(1) les expressions (5) de v ot 1w, aprés avoir posé |

i
1:D+U ()
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: i ; Hard e
o étant la valenr de -~ dans I'hypothése du régime

uniforme, fonction de » et 7 : = sera le lerme correc-

tif, fonction de r. de 7, de = et de ¢, représentant le

pt}lil deart di & la varation du régime. Nous obtien-
drons :

1 [Obe — abel ol oM
5 \3r+ Y35z )+ s, + o7 )
. . ol M)
--PAG -5 S e s

apres quelques réductions simples. Nolons que I'aire
de la section varie proportionnellement & ¢*, en sorle

] - fobc l Obe
SRS E{ st 19 5 |
; N AR . g
n'est autre chose que —-( 1 1Ts—1), et tenons
= A e R ' ﬁl.:_'l

LY
h Qo | O(zl0)
compte de la relation connue : -

— e —— . — {'I:_
O o
la somme du premier lerme double el du dernier terme
5 : o 1 Os -
de I'éguation précédente vaudra — 2 U o). En
Ol
outre, dans le second membre, le terme = A o

négligeable au degré d'approximation que nous obser
verons. En fin de compte. 'équation de continuité
prendra la forme :

I O oL , OM}
PAG — — o (p— 1)} U ( g n:'_)
. Doy
——1U Py (10)
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Comme on déduit des formules (10) et (12) du
chapitre 1, § 3 :

u—U kyB,
P—I1=—p—= —

< —[F, (D) — ME],
CFkyB, OICE, | ) |

il nous suffira de choisir la fonction P de & et de ¢,
laissée jusqu’ict arbitraire, par la condition :
I_‘ |’I1' \. B,, 1 '[\HF {. }
= 11
1 ~+~Jrl1 \r B.. :-"I“Ll;i g 0! h :

pour faire prendre & I'équation (10) la forme nouvelle

P} AG —[F,(q,))—INE,] {

f 0L | OM | op |
SRR e
O OL o
La fonction G n'est astreinte encore qu'a la condi-
tion (8) relative au contour; imposons-Ini de satisfaire,
i travers toute la section, a I'équation :

AG =F (0.0) —MEF,; (12)

cetle équation (12). jointe & (8), détermine comple-
tement la fonction G(«, (), & une constante additive
pres, qui disparait dans les dérivées de G figurant
seules dans les composantes (D) de la vitesse.

Dans ces conditions, 'équation de continuilé prend

; ke 0l oM lilo; it
la forme trés mmpla ﬁ;‘ _|_("1._: —|— -;\E:G. (13)

. Ors gt

La dérivée =5 st 1l négligeable, a4 une pre-
a e

miére approximation, comme se trouvant de l'ordre

des dérivies secondes de U et de 5, tandis que v, w et,
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par suite, les parties de L., M a dvaluer actuellement,
sont comparables aux dérivées premitres des mémes

S iy . o oL oM
quantités. L'équation réduite 5= +_ﬁ:_:0 (1h)

entraine l'existence d'une fonction (1w, 2, x, 1) telle

o od
T e e 1||. —_—— 3 '_
e I Y M o (15)
Cette [onction @@ a une valeur constante sur le con-
: 3 t\‘llﬂ'lJ O "
tour: li, en effet, on a: == el +_"'-‘i_ i =0,

ou. en tenant compte de la relation (7) :
Ldi—Mdys=—0; (16)

la forme trouvée (15) de L. et M montre gue sur le
contour d'une section db—o, ou 9 = const. Il est
loisible de supposer nulle cetle constante, car on peut,
sans changer L et M, et par suite v et w, adjoindre
% & une constante additive arbilraire.

Cette fonction &, petite, de l'ordre de grandeur
de L et M. nulle sur la surface limite du fluide, est
méme identiquement nulle dans les deux cas que nous
avons en vue.

(" Pour une section rectangulaire trés large, ¢ et F,

ne dépendent que de ¥: de plus, le mouvement se
verticanx

faisant pareillement dans tous les plans
paralltles & o, v est identiquement nul et w ne dépend
que de L. D'aprés (12) et (8), G ne dépend plus alors
aussi que de L. En recourant aux équations (5), on

nul et que M est fonction de ¢

i : = = . oM
seulement. La relation (15) se réduit done a -z =0
5

reconnait que L. esl
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322 PHENOMENES DE MOUVEMENTS TURBULENTS

en sorte que M est une constante, et par suile est nul
paisqu'en vertu de (16). M Sannule sur le contour.

Puisque L=M =0, on a aussi b =o0.
2° Pour une section circulaire, ¢, ¥, et G ne
Flaagltd S -
dépendent que de c=—- Va4 de plus, le

mouvement se faisant pareillement dans tous les plans
menés par l'axe des @, v et w sont les produils res-
pectifs d'une méme fonction de ¢ par 7 et 25 par suite,
les équations (5) de définition de L et M montrent
que L et M sont aussi les produits d’une autre fonction
de ¢ respectivement par 7 et 7. Cela revient 4 dire
que L el M sont les dérivées relatives & 4 et & 7 d'une

fonction de z, soit @, qui daprés (14) satisfait a

AP, —o0. Dis lors ﬁff“, :i T:};I M :if
0 ¢ 2 &

A étant une constante. Mais 'équation (16) ne saurait
étre vérifice en tous les points du contour que si A =o.
On doit done avoir = M==o. et par suite aussi $ = o.

Ainsi, dans ces deux eas, nous aurons simplement -

f.‘}"l",, : i\l'j’“ .{\h{; _ IWI; ﬂ](j \
P T afﬂlgm ‘H'?EIH‘P o | (17)

nb, L RE RO s [ Ol
v=r5r +Up s +il 7+ Vome ) H P37

Si l'on désigne par J, une différentielle prise en
saivant, durant 'instant Jdf, une méme particule dans
son mouvement local, la seconde relation qui lie v et w,

: S d, [ ov Oupr'
soit (2), s'éent « ——(

dl f'l_?_: __W ot
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et avec les valeurs précédentes de » et w. elle est
identiquement vérifide.
Dans le cas le plus général, il faudrait adjoindre
awx valenrs (17) de v et w respectivement
aip _ ﬂ"li"

fh 14 Bk ot P Ak

LU
et 'on aurait pour Cl[r‘-ff‘-["mfﬂt"l‘ a fonction &P I éepua-

tron T’ (UAD) —o0.

Expression de l'accélération longitudi
nale. — Nous pouwvans maintenant aborder le caleul
de 1'acedlération longitudinale #'; comme nous avons
posé u=—U (o4 )

: r!l A9+ )
Nous aurons :  u = (g |n = e -+ U —u"f—'
Rappelons que y el z (ou % et {) ne figurent pas
dans U, et gue les termes non linéaires par rapport
a4 v, w, o, el aux dérivées de u, U, o en x el f. sont
négligeables, comme d'ordre supérieur de petitesse.
il

Remplacons T! par

0) (]
el ] ) S
5i T{219) - “‘s - "‘ L
nous obtiendrons. aprés ]'L‘i'llll‘.llml au degré d’approxi-
mation énonce :

all i i l\r S O
(ars ?_i_ : lw'l'.r" ? 9"+ U '- h.._" T L?f‘}m_‘f_g Oy

w5 ) 4+ U (57 +Uaoz).

u" —
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« A une plpmlew ..i]__]['llﬂ"lll'l'l-"ltllf}ﬂ du calcul de o',
on pourra méme, ici, supprimer le dernier lerme
double, oit figurent les deux dérivées de w en x et £
En effet, dans le régime graduellement varié que nous
considérons actuellement, la perturbation, w, apporiée
par la variation de I'écoulement an mode de distri-
bution des vitesses, est censée lie aux changements
de ¢ et de U avec x el {, au poinl de n'étre pas d'un
ordre de grandeur plus élevé que les dérivées pre-
mitres de z ou U en « et £; ce qui réduil les dérivées
analogues de & & l'ordre de pelitesse supérieur des
dérivées secondes de ¢ ou de U

['expression ainsi réduite de

all M / Om 0o

J+‘(m4 Vo 5

O 1_ )

+ogt g

devient, apres substitution des valeurs obtenues pour v
et w, dans le cas le plus général, et aprés quelques
réductions simples :

ol ol (oG O 0G 0
L ’ 2 1 A AL
Lt e s (m; s h“'}

(:‘}I[} 0 O0d h:p)

0 0 om oL )

Le dernier terme est nul dans les deux cas qui nous
préoccupent. De plus, méme dans le cas le plus
général, il est sans influence sur les valeurs moyennes

], Bovssinesg, 19 p. 28.
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J'Ii.'.:;“‘u,' prises a travers une section. el cela fait dispa-
raitre P de I'éguation générale du mouvement
S [ Ity :
Gt W S (B e SRS TR
S gL U ;
En effet, le dernier terme de @' donne dans IMie™u,
4 un facteur constant prés :

*
i

C O ﬁ? S b 0 o™ S T i
(4] (‘ 0 :— 0 " 55 [\!rl'- 0 :., ) £
e : "'Il e AT L G St Bl 4
L f j (_'ra-; (_? ot ) ot Hen 'E_) ; ds,
o N : .

expression qui se transforme en

] oy
‘o 0 }
41 xithedy 3 Lror s - oy o -
1. pH1( 5 it &) ou @ ttdd;
t.}: L * 4 ‘._1
elle est nulle, puisque ® est constamment nul le long
du contour.

Le terme qui dépend de G donne dans la moyenne
- ’

PU "roG dom+t | oG h_:?_’"_'-i"|rf_
(m—+1)s | | oy ¢71-.-'+{‘:1; TR

o

( G {'} . mwe + 1 n[_; \
PU & T (2.
(m+1)s / ) s AL b R 25

| /

Les denx premiers termes fournissent I'intégrale

e :
curviligne "‘”E(—r iy’ et cette intégrale est
gl , ? ol A . :
ot
Hydranligune géndérale. 10
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nulle en vertu de (8). De plus, d'aprés (8) et (12).

I Og
on a: PAG = — — (¢ ]
Jo=ean vl aas
L'expression précédente dr-.wienl par suile
_—I_E {,.EJI—E Ju—l}ﬂ_'_
(m—-1)s :w ? - 21
Eun égard & ces divers 11’9suitats. nous obtiendrons la
relation
o 9 ol : -
J]L{?mu ) — : -')]Lﬁ- W+ l_l_ ___:”Lgm_
l.' 0z

mo+ 3 5 N =]
(11 - T {}?LG _"J]":‘ )-

Pour m=o0 et pour m=1, les valeurs HOYennes
de 9. de o et de o' qui s'introduisent ne sont autres
que 1.1 A-Q—r, el o, ces dernibres quantités étant évaludes
pour le régime permanent. Comme (u*) ou anu a
pour valeur approchée o ou, I'équation générale

T AL e Mz
[=bUr £ L~ {3000 — Jltu §
v ] { 2 \

se lransformera en

[-.l
I =l "{—|—I+—)T m—{—{.az 1—1)-

ﬂ’:‘ zq

a—I1—2ay U Og
e
(est précisément 1'équation simplifice dont nous
sommes partis pour étudier la propagation des intu-
mescences, et dont nous avons ainsi une démonstra-
tion nouvelle.
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Revenons au cas particulier ot ®=—o0: on a alors

simple i | — hE_ g iy I ﬁL a
simplemen W=—-—-o+U 5o
_I_ .";:\r"l'i,,_ : _[__ Oz _f‘_ﬁf. u‘E 0G 0o )
1+ VB, ONF, o 0Ot ( O Oy SN D _ﬁh)
Comme
ky B
O—T—— Yt IR IMF,l
t t—L &y B, JLE, [Fix, 9) LF,]
% L : ol ol
il vient : = o U =
R T B, ‘\}i U 0z { oG oF, , oG oF, )
Jr(1+ﬂ'~.-l.s.. INE, ] o DL \dq g T ¥ BL S

Evaluons le dernier terme dans le cas particulier du
reclangle trées large. Nous avens & inlégrer

dG

A=~ 7.-=—0 (au contour),
"

avec les valeurs

| o 1
[ :E {] s :I'r l'j‘l{.-l j__':l'
OF, oF, :
== e
O, 00 ;

I'équation différentielle
2G5 T I

¥ el RS i
S £ (s _
Jointe a la condition j- =0 pour {=—1, donne:
=
dG Lol -
e e L TRy
d: Gok &) &
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Il vient par suite

,__ U U
e et T

' fiy/B, Ul @
—Hx_ 1 VB, INF, } ERE G

J. Lois de seconde approximation pour
la distribution des vitesses a travers une
section'. — Revenons, puisque nous avons I'expres-
sion de @' :

: ol ol oG O 06  On
fice ey b p e Dol
b= e Uy U 3g By T OF av)’

aux équations (7) et (8) du chapitre précédent

0 oF, O [ v OF,
= ryffescs I I |8 Lo X = f YT
wpfn]'m[“mi—“‘J”=

dF,

— i :ﬂ ] ad 1
¢ ) (sur le contour),

Fy=o0 (au point le plus bas),

equations qui serviront & caleuler la fonction F, et A
faire connaitre par suite la loi de variation des vitesses
longitudinales aux divers points d'une section, par la
formule

k

I | i o
——'L B Fn ) — LR ).
T 1 \ 7 £) _‘,r";"lu-- @ z{'ﬁ ) I

], Bovssinesg, 19, p. 42-44.
™
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' soit de

Formons 'expression explif:ite de u' — T a

olU | . 3[ . ol A
‘{’:; [.:li _t” —|—[ 1 = ?J—Q}TL {?i}
U 05 / I'rl"l.,, B, AR

_|_::_ O ( ,_|'_,r- B. MLF )
\ v D, Tl Ly
3G DF, | 3G OF\ |
( On Oy 20 Of - OE (
St S L | £ ] e
P (:ﬁ-.: O, =5 DL OL J'\

Eu égard a l'expression de o:
Jr‘- "BH_ B P
\ — _{Iql_l'.“ill..]‘:L]"r

AR B E T

X

on obtient :
o ||r'! ‘...T;_
— Lo -
= T kyB, OUF
k 1.,-'U.

{:iﬂ‘—"‘:jl-k-'.-i: : _.._I ¢ P
i 4 (1 kB, ‘“’]Ll'ﬁﬁ
X}z{l*‘, MUF) -+ kB, (F L"']kF”IE

La forme sous laquelle se pre:aenhz. alors le second
u— M de I'éguation & intégrer nous

= |-|

membre
conduit & poser :

hL_ 7

f \ B,
“l|'L |_-‘!} Of

{1—-—4’1]’.

1{.‘-" :]

F,—

-+*|‘r|“ H', t ]L rl'h

3 ( 1 1 kB, LE, )
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330 PHENOMENES DE MOUVEMENTS TLRBLLE\T*-.
el & déterminer les fonelions rl' T - par les équa-
tions
0 ﬁjl 7 () f\ﬂ ?
= =2 e i)
f\f'r II —|_f"1" | E"l‘ l_"l ]"l
0 f‘!ﬁi §] o {"Jrr
F,,I[ +m; : ")u — INE,)

—I—fa.",,-'ﬁ., {["—— I Fg}.
ELLI“ :‘L’F e 0 i ﬁ}r'

O o |7 E ﬁ"- (18)
il w : : &)
_(- 0G oF, . oG aF,\ :
T A0y O0m - DL 0 )
ot ,”__ ( [\|[T 1}] _‘1:1!:" ﬂiij ..)i
. [“j-,- [‘j-ﬁ s B iy
&5, 9,
Gty F_’*} =0 (surle conlounr),

—_—

tly
(7. 5. 9)=o0 (au pomt le plus bas).

La fonction mmpium ntaire 5 se trouve alors d
minée par les fr[u.itlr:rm

¥ ﬁ,.j OF "1 ?"
ﬂ'r F JT'.']? ; T o

n'rl‘

s =0 (sur le contour),
l"Jl.r

tler-

i; PR (an point le plus bas),

i

1, d'apreés ce que nous avons vu au chapitre I,
p. 276, cetle fonction F est ulmthuemﬂnt nulle,

\uppm-.unw pour un instant qu on atl 1n|ugif les
équations (18);

1-

la fonction F, se tronvera déterminde,
et 'on aura par suite le mode de distribution des
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vitesses. Si. dans le coeffictent du petit terme en I,
on remplace w, par la valeur approchée

L .
1 - k\/B, JIUF, '
il vient : — — 14 kyB, F,
L 25 e et S e oL
_i__':llll_l‘_".l—|—.|'lq'|HI ”. tﬂI]LI."L"'p'j{f;.:} -lr_,— [I‘Hl
Vs _ \ (19)
il SO A S =
NS ey
iy U O
|'r|‘:" ‘,_'I I i,, - & I 0 g
+? e LS T

Revenons au systeme différentiel (18) el intégrons-le
dans le cas d'une section rectangulaire trés large. La
variable ¢ cesse alors de figurer dans nos équations.
Comme on a de plus

£ . 1 3 s 58
Fer,, B=-(—0% —p=glr—)

les équations & intégrer prennent la forme

27, DT ; A >
D6
f.lrf'.TT'd‘j I o Fin \ H_\ ..,. 5 7 |
e e o ey s N S e 4 it
d*F, I 2. i i
PRy . 7 e e il
elr2 (i {\_“ = + Id ) 1
rj".’irll“fi-'ji} : : R e i[ |
= -_’E =), potr e— 13 [ il
(3.3 &y =0 pour [=T1. ! |
i
e
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332 PHENOMENES DE MOUVEMENTS TURBULENTS
On obtient bien simplement

a

i L
*f A i ' B Pl '!:
! 2 { )

s i Jlrl' Ii_ .
h=— = —ppp

o R 120
F-._. ! (‘ u--'d'-i':ju-n
EATSIR0G N ) =)

La loi de distribution des vitesses a done

]][HJI'
expression, h étant la hauteur de la ‘section et *

=

valant -

h*
AR i e ey i S
I“]+_:I'*H'-“_'f'}—ﬂ;g—[g—{l--;}'

ik e
5(x 45 VB )} 5

L T /0 T C.TI ll
X )+ [ro 3y (3]
T v 8 A (R
| fi ..T lill (_"‘i— ‘:PI.) E_ _‘,\'-lr_

(20)

Dans le cas d'une section circulaire, les fonctions 7,
s, &, ne dépendent de 2 et de n que par I'mtermé-

il 4 . N I
diaire de ¢. Comme on a sensiblement F =— a
i

premier membre des équations (18) prend la forme

L R
?Il? r”,{_— En partant de
- _i —
Fl_ 3 {I & ]'
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et en notant que les fonctions 7, F,. F, et leurs déri-
vées par rapport & ¢ doivent s'annuler pour =1,
on déduit de suite des deux premiéres équations

= 4 :

&le_ﬂ_{f}‘{i_rllj;'

= = shyB, S 1
Ly o i) e o 1l S i

Pour le caleul de F., nous observerons que le second
membre de I'équation correspondante vaut

r \ dG dF, e dG gy p
T 3 & — T\ T &)

i

et que la fonction G satisfait & I'équation

N R e £ i
e —F __L'I I T
.’icmrl\‘ L"lz_} Fy Ik,
sa dérivée sannulant pour ¢=1. On trouve
- G T _
d’abord d% = ib elr — &3
15 .-.P.=--;_— — (D — 2).
puis 4 o5 (1 ol VI )

La loi de distribution des vitesses a donc pour
expression, R ‘étant le rayon de la section et ¢

- l I .f'_
valan K
i 9 A . I 2 R i
o = B =) —gap s au )
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Lo e
36 (\‘: +—i kyB, ]_[i jf

T ol
. +[_,_|_ .MH 11|=“~”1"_ Or
» 1 OR
—~+ 4kyB, (2 —5eY) B Of . |

Le dernier terme de I'accolade disparait dans le cas
d'un tuyau rigide.

i. Propagation des ondes et des.remous
dans un courant, le long d’'un canal rectan-
gulaire. Lois de seconde approximation' —
Nous allons appliquer les généralités qui précedent a
la recherche de l'influence de la déformation des intu-
mescences (ui se propagent le long d'un canal rectan-
gulaire, sur leur célérité,

Conservons les notations du § 4 du chapitre précé-
dent. L'équation exacte du mmlwmen! est e

|'I E{F..—I—l]':*
H-4h

U, ——[ ot
{2d——1—u]- g T
bU:z Oh e P27 oU
T iy R
(z—1—27) L, u}— Wy Fﬁ
el 9 H-h o
(8 —I—L f‘l(x n) O
e e

1], Bovssinesq, 8, p. 425-147; — 18, p. 44245,
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Aux termes CONSEerves en I]T‘E]'l'lili‘.l"f‘ H‘}‘f"?l'ﬁ'iilﬂﬂliﬂl]

Oh _ S ] 3 _ ot )
H Y T+ (22— 1—n)U, Qi = (1 - 2m) ot "
: U, dh \

\ w8 ey

nous devons ajouter :

Ok i Mt - EE
= - (2a— 1 — ) (UH =T,k e

hy

U’ =
—|—.. { I _{- er}l‘i'l' Of — {2 — T —0 }E ﬁf_

b D) 5, o ]
—+U,H E 20 Qo LT q

Les valeurs de premiére approximation oblenues au

. = w—U, =
chapitre IT, U __—_Th. h=— F(x— wt),
peuvent, sanf erreur négligeable par rapport aux
termes mémes de seconde approximation, étre substi-

tludes dans ces lermes; E’-'IPI]D'[U]]:%—HO'I.I:'* en outre que

(v —1U,)* est trés sensiblement égal & gll.
Nous obtiendrons hien simplement :
Yo W, T 3 ; VgH }
ST GRRE: o Vi o T I O o B S
| A LJ} Oxr H [:\ ‘Ld & _|_ '—.. _|_5‘ﬂrH
4 UHITY, O(a—2y) | On (

TR T

Il nous faut calenler maintenant les parties variables
de 1 et de =«.

Si 1, et o, sont les valeurs de % et de x dans le cas
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du régime uniforme, nous pouvons écrire, en négli-
geant les termes d’ordre supérienr de pelitesse :

-
_ - ds ;
1—}-7;: / 1\!;:)-{-?7;}-—-6—:[—{—'{;,-;—2{"“.?5.

e a
& . (g -
g {?—u}— (‘T)F—: :'Xl—!—Rt}iL':l}ﬂﬂ
e T s

: u
Calculons done @ = —9, et pour cela revenons

d I'expression (20) de , bour une section rectangu-

laire trés large; remplacons-y & par H + 4, U par
U0, o par 1 —aF,; en posant :

=f oy ke 1 DU
(1438 ) 1 5

% # H o e ]
A= B ooy
3 o sl T

B ﬁﬁ H,al . a2 dk°
SO by U, ]ﬂ—?TTi" ol |’

Nous obtiendrons -

i

— =1 --JI— |f‘|.' \( B-.I_ F‘Il + %Pf -I_ R F‘:.

i,

et nous en déduirons -

I-' S o Fi L] N A
=1 kyB, DF, 4 AITF: L B,
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Réduisons la valeur correspondante de .
_ 1+ kB, F,-AF: -4 BF}
1 EyB, OIUF, - ADICF} - BILF:
- kB, F
SRS R e 3 O
4 sa partie linéaire par rapporl aux trois  petites
dérivées premitres de U' en & et de U’ et fi en ¢, soil
4 sa partie linéaire en A et B; il vienl :
. AF— eoWE) -+ Bk QINLES)
1 4 kB, NF,
On en déduit immeédiatement

o
i Ao el
i o r 4+ kyB, OILF,

5 =

A [N (o] — MG ONLF]
B[O (gF?) — Mg I]
3
1+ kyB, ONF,
A [MU*F3) — IMg oLk
B[ ON(4*F2) — IMNgtonFy]

Le calcul des coefficients de A et B dans ces expres-
sions de 7 et de x ne présente aucune difficulté & partir

X

R L

X

: 1 e 1 i o
de : l*,:TU—f_'}, J]Lh:?. ﬂ.'LI‘T—_—'I:j—-
9 . 19 = =)
IMCES == Il = %35 )[R U f]';izﬂ :
o o B 0 T )
et de : He—— e
: v I ky B, ILF,
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Ainsi' le eoefficient de A dans £ a pour valeur :
Wiy B,
= A v [ I

.’51,-_':-( 4 —-MH } (__‘ ri— kB, )

En posant k=48, H,,:u.mm;ﬁiiﬁ. ces coeffi-
cients se déterminent nunu%ri({unrnent. Soit donc

=1, 4\ -+ dB,
a=—a,+eA -} [B.

Nous sommes & méme d achever maintenant le caleul
des termes de seconde approximation de ['équation
générale du mouvement.

Comme ona tres sensiblement =134, quon
s'en tient aux termes du premier ordre et qu'on peut
estimer ces lermes en usant des valeurs de premibre
approximation de U" et de h, I'ensemble de ces termes
s éerl ;

{ N 6] i
Ln{m—i_ ](-’.-rll_l_ ___’I“ ) O _h

U, y/gH | ox I
L 1L H(U, '—m}'%}.
O Rlelig
= kyB,
A — {:f; (- 4+ (1o 6kyB,) [\jm —2’;"
k {c_li_
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[ H 3 1 3
Bo=— o ( = i"-____. e

e

J,\ l-%_ B < (5 -3k B)5rs )

Fer L L :
.l'_ / ot 3_}‘_ ([ = w3 _:"'t A\ “ J

J,r,. 1
|~ il \ B. S— \
Les termes de seconde a]mwnninmlirm prendront la

Tk —|—

forme
0 h: Ol
tal tn— . Y S N H == —t .I'J‘“—g

Nous aurons done enfin comme équation compléte
du mowmvement :

ok -
G T Ly

l.,. Ok 0 .
— =1 Grhele—U) 5 ) @)

all’
_|_[I_|_‘j'rr| S

1-;' i_ — 1t ﬁh— 'J — 0
imE e (=

et nous devons lui adjoindre I"équation de contimuité
crulsl']h}I[FP par les termes de seconde allnftx-r':\:l.ilizil-mn

1‘hh ol . oh
I_‘” o _-["1‘1.;.J_tﬁ-L"ﬁ}[H) £

(22)

Eliminons U’ entre ces équations (21) et (22). A eet
effet dérivons la 1:u'r=1uii‘~rt par rapporl A . la seconde
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successivemenl par rapport & x et A . puis mulliplions
les équations obtenues respectivement par 1,

SR R

el ajoutons-les membre & membre. [l vient, en rem-
placant la dérivation par rapport & ¢/ du dernier terme

TRy B
de (22) par l'opération — o
L
[gH — (22, — 1 — 'ﬁ:]E-'nJﬁ';‘G?
0% 0¥

o : L ] SR
— UGt —1—n) s — )55 ¢ (33)

I o
Folo—Uy) 5 (m 1y +nH 5 =0, f

en posant :

My=m—~ 1424, — (20, — 1 — ) ——[I-f—
U.+-vgH

L’ équation (23) s'intégrera en introduisant les vilesses
de propagation O des diverses parlies de I'intumescence,
comme on I'a fait dans I'étude de I'onde solilaire.

Soit Q la vitesse (lictive) d'une section <e transpor-
tant d'un instant & lautre le long du canal, de manitre
A avoir devant elle constamment un méme volume
d’intumescence. Elle satisfait. comme on sait, a la rela-

O(h0
on _ﬁ:’l. ¥ j{l’L....]:_ 4

TR
en sorte que. si I'on remplace dans I'équation (23
; q | 1
Oh O ALY) ; 0h = 0*(hL))
o S R R v i L B
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cette équation peut &tre intégrée par rapport a . Il

vient :
: et el
I [_’J’”_('-!Il gaodk '_""ii]"--'n-l r ey
: _O(hLY) O(hLd) :
+ (32 — 1 —n)Us ‘M —+ (X - 2m) ‘},, (24)
) h? Oh
+ (e —U,) 61\ Iml Irl nt —‘ *_ ==

L.a constante additive arbitrairve se réduit a zéro; car,
aux endroits du canal ot 'onde n’est pas encore par-
venue, h el ses dérivées sont nuls, et par suite L'expres-
sion intéarée doit 'dtre aussi.

“(Celte {qumiml peut  étre lrzmﬁi'm-lm;ﬂ Posons en

Ny
eflet ; f.r{kf'! H—m}—-,\if}{!h‘, ” —|—HH 1h )
M m—[ln
avec pa— e
. ! —|—.f‘| i ‘I i
e _.I.—l—- TET.| [:U

|
Dérivons . cette expression W' par rapport a f, en
notant que le dernier terme est assez petit pour gu’on
puisse, sauf erveur négligeable, remplacer sa dériva-

: e T M 0
tion par lopération —w =—3 remplacons dans le
i [
; i YN O (hld) O hE2) R S
résultat —or par — = = et e b SR et

taée de (24). Dérivons aussi 1° par rapport a a et for-
mong 1'expression
oq” i r oy — 3oy . |OF
Y R R e ba, : —lﬁ :

On reconnait, par un calcul bien simple. que. en
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égard A I'équation caractéristique dont o est racige
cetle expression est identiquement nulle.

S'il s’agit d’ondes descendantes, =, el Ia paren-
thése coincide avee — Gy T comme on a

oy : o
B b D~ s

W est une fonction de »— i,

8l s'agit dondes ascendantes, o= ¢,; Ia paren-
thése n'est autre Gue —wy, el alors W est fonction
de &L— wnl. :

Avec les conventions faites. lops de l'éiude de pre-
miére approximation, sur la position de V'origine de
L, etsur la région ot I'on étudie o mouvement, on a
identiquement, dans I'un el Faulre cas, W' —,

Alnsi

8= : 1—+M f ml{i; - n ;} ::? } E (2D)

Cette formule permet d'éradier 14 marche des parties

peu courbes d'une onde ou d'un remous, pour les-

Oh L 3
quelles or oSt neghgeable; — de chercher I vifesse

de propagation, & un instan donné, du centre de gravilé
dune intumescence : — d’aborder divers problémes
qualitatifs analogues & ceux Jue nous avons examinds
a propos de I'onde solitaire,

5. Mouvement graduellement varig qui se
Produit prés de I'entrée évasée d’un tuyau de
conduite.' — Envisageons le mouvement permanend

P J. Bouvssingsg, 19. broch., p.g.91. M.-G. Grawpigax,
Passin.
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craduellement varié qui se produit dans la partie amont
d'un long tuyau rectiligne & section circulaire cons-
tante, apres le mouvement a filets épanouis qui suit la
contraction de ['entrée, el qui améne le régime uni-
forme régnant ensuite sur le veste de la longueur du
luyan. Pour plus de simplicité méme. nous suppose-
rons que l'entrée soit assez bien évasée pour que la
contraction 8’y fasse entitrement. sans épanouissement
ultérienr. Les filets fluides seront plus sensiblement ree-
tilignes et paralléles dés la premiére section de la partie
cvlindrigue du tuyau.

Dans ce mouvement, 7.+, U sont constants. Les
termes qui prédominaient tout a 'heure disparaissent
et laissent leur influence & des termes plus complexes
antérieurement négligeables.

Les formules du chapitre 11 subsistent, il est vrai,

jusqu’a (15); mais elles ne contiennent plus tes termes

que la théorie du régime uniforme permettail d'esti-
mer. Notamment la formule générale (1d) gqui sert a
définir le mouvement longitudinal se réduit a

A
| —&12 “r —l—[ —{'-Tﬁ;l r\].

Revenons au caleul des vitesses transversales. Posons :

p—=—UL, w=-—=UM,
s L

prenant L et M comme fonctions inconnues; Comme v

el w, par suite de la syméirie du régime, sont respecti-

vernenl les produits par y et par z d'une meéme fonc-

tion de & et de r, elles sont les dérivées partielles par

rapport & y et 4 z, ou 4 % el & { d'une méme fonction
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T it
v B e iy ' . 1 i .
dexzetde ¢= S Vo' 42, fonction que nous pren-
: 0Ll :
drons sous la forme =ik () dépendant de = et de &
020} 020
Ainsi ¢ .— — ¥ :—h:“ ! 96
\insi Oy a0’ 12b)

Sans changer L el M, on peut ajouter & £ une fone-
tion arbitraire de % et £ : nous choisirons cette fonc-
tion arbitraire de maniére que dans la premitre section
x=o0, ou la valeur de 7 sera censée donnée, on aitl :

() :
AQ+m=o0, ——=0 (surlecontour). (27)
¥

L'équation de continuité, sous la forme (13), et la
condition (8) deviennent. eu égard & ces valeurs (26)

de L et de M :

0 ) [ dQ"
dr (AQ +-w) =0, Ef:r'_ k{;h )=l.} (sur le contour).

Il en résulte que les équations (27), vérifides dans
une section, seront vérifices dans toules les sections. Si
done on connait () dans une section, € sera défini
par les équations (27), & une fonction additive pres
de =.

L'expression de I'accélération longitudinale 1’ com-

: s O "
prend maintenant un lerme “?ﬁ* anlerienrement
négligé (p. 324); elle s"éerit :

' . f\}ﬂ {\':' 1 la [‘ﬁr.f
=1 (!' oy %“ 3 0z ) 4 ] s Oar

b3 W
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ou encore, en observanlt que » ne dépend pas de x :
0o 00 oo 00 >
=13 T o= pAD ¢

:“,1 I O Oy 0F O v \

Substituons a o sa valeur:
L]

[ — L ——— ([, — O, );
0=1— l—|—f1'-,‘]"in*ﬂLF (I ML)

notons que I, et Q) ne Llf‘pf‘ﬁdﬂ‘tl de % et de { que par

I'intermédiaire de ¢= \k w:1-7*, en sorte que

0L oF, 0Ll f}l", 1 ok, 00

O, _:;}-.rJ ﬁ_f DE T Dz oc '
nous obtiendrons:
: WEUE 3
w—=— T
1 | kB, NF, ox
' OBy Yok 2
£ T Ee L i 28
{;1 oL ]J‘“ BT E {22
Nous allons porter cette valeur de w' dans I'équa-
X o [ v oF, ( 2 ﬁl j
tion o { (F A }—|— ﬁl, I —u' — I,

* . = I z : . :
soit, puisque F= " et que F, ne dépend que de ¢:
L 5 ) S : e ;
o T e Iy, (29)

équation a laquelle il faut joindre les conditions
oF.,

e l_!l..
Or

Comme J1lu’ ne dépend que de x el de /, I'équa-

Fo=1 pour t=1.

Droits réservés au Cnam et a ses partenaires

T A T T T e LT frl-w_-g.



http://www.cnam.fr/

346 . PHENOMENES DE MOUVEMENTS TURBULENTS |
- , I 0%F, : _
tion (29) entraine = 5m — U | =o. (30)

0 | e o2 ' 2

Inversement cette équation (30), jointe & la condi-

: ol
l1on —‘—\'_—' =0 “DORE ===y {r{nnaul a(29); car son
& :
intégration donn o SEERE ) [
micgraion donne : ——_%_ ' . s et en
gration ke o (.1)

prenant la moyenne {||=- deux membres § travers toule
la section, on obtient F—_ I ',

Cest dans cette équation (30), que nous remplacerons
u' par la valeur cale ulée (28). Nous ¥ remplacerons
aussi I, par son expression en fonction de Q ef de F;
(ue nous allons former.

Soient 0o €l @, les valeurs de o el de 5 sur le con-
tour : nous avons :
u Y1 e s e
= ST | !'P\H..Ij—r _:"__f'g'
W o, +o, gyB. @y

nous en déduisons pour le cas du n-;_.rmn-_' 1It'lll{}|'|]li-?.'

R

t':: |‘rﬂﬁ];]:“

Par différence, il vient

Tl A
p— (RN S S i | - PN
wWB.u T e w, | Do
: D Eor :
Remplagons ™ par sa précédente expression, par
95 :
b

PR
— A0 (en vertu de 27). o, 4, par ~ - Nous obte-

nons <

Fy—=—{AQ | o, (1 4- i/B F)) 3
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Nous pouvons lrés sensiblement v remplacer le fac-
teur u, par sa valenr de r{'.ginw unilorme, ce qui donne

el Rk B, U?
S gr— (1 T .-'FL'\ E:ﬂl |;,I }
¢ f_’ [AQ -, (z - &ky/B, F,)]. (S1)

Substituons enfin dans 'éguation (30) les valeurs
(28) et (31) de «' et de F,. en notant que
1'.!7'-1‘J ez

A e
R A

i) '5 q 1 0? Fa
0z { & " 2Rz -"rf”_ut“‘*

( 1 <\ GAQ - D {OF, 08
= B i) oo e v o e 7
Nous obtenons ainsi une éguation aux dérivées par-
tielles en ). du cinguitme ordre par rapport & z.
A celte équation indéfinie. nous devons adjoindre
certaines conditions aux limites,

} i:n. (32}

Tout d’abord, au contour, nous devons avoir

DAL Y
e s

Fy étant donné par la relation (31), I, élant
g o
£ 5 Senr e,

et la valeur i, de o au contour valant — AQ d'aprés (27),
nous aurons done la condition

C}
00 | kB AQ=o pour ¢

o [:33 )
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En second lieu, d'aprés la seconde équation (27),
nous devons aussi avoir :

00 :
5y =0 pour z=1. (34)

Enfin, comme par raison de symétrie et de conti-
nuité , les fonctions Q et — . — AQ seront maxima ou
minima au centre de chaque section, nous aurons :

0L 0ALQ
YR i S

La fonction I, s'annulera identiquement a la paroi,
comme on le voit sur I'avant-dernitre expression de
cette fonetion, B0 — T,0 sannulant au contour.

Nous allons satisfaire aux équations (32), (33), (34).
(35) en prenant une somme de solutions simples dont
chacune sera le produit d'une constante C par une
exponentielle décroissant quand x croit et on figurera
un coefficient positif d'extinction m constant, et par
une fonction Q, de ¢ seul.

Autrement dil, nous poserons :

Q=3Ce™ 1 x*Q,.

=—o pour t=o0. (35)

En exprimant que chaque terme de cette somme
satisfait & I'équation (32), nous obtiendrons, pour
déterminer la fonction Q, correspondant & une valeur
donnée de m, I'équation différentielle ordinaire du
cinquiéme ordre :

o 1 F!lg -lﬂ: 3 .
de ) he de* (o) e kyB, BAl,
1 dF, dQ, P
o o =i, (o6)
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('est une ¢quation lindaire, sans second membre, a
coefficients varables,

On en déterminera une solution particuliére vérifiant
les trois conditions

dQ dAQ, \
ek e e S el
I"!ri-__"! ( {ld?'}
i —T % pour =1, \

puis on déterminera m comme racine, astreinle a étre
positive, de I'égquation transcendante :
€, — ! P50
o —alkyB, A —0, ol  r=—1. (38)

En fin de compte, c'est le mode de distribution des
vitesses qu'il nous est utile de connaitre ; il est défim

i .
par T :(?-'—E‘b’:.'?—.l{.l;
i 7 o
» 1 ¥ F" N N o EJ:- E 7 v ,
c'est-d-dire par T=9 — Y Ce AQ.. (39)

Les coefficients € sont encore indélerminés, et il
nous reste 4 exprimer que, sur une section 1nitiale,
2 — o par exemple. la fonction © prend des valeurs
w; () données & travers toute la section s. Les constantes
C devront donc étre choisies de maniére que l'on ait :

o 3 CAQ, =o.

Comme on ne peut effectivement prendre, dans cetle
somme. ordonnée suivant les racines m croissantes,
gquun nombre fini de termes, on devra tolérer des
écarts mm, -+ ¥ CAQ, ; seulement on s'imposera de rendre

Hydraullque générale. §0”
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minima la moyenne de leurs carrés anx divers points
de la section. Cela revient & rendre minima l'intégrale
: | (mi+ 3 CAQ, ido.

\

o

« Il est clair que, & la limite ot le nombre a des
termes deviendrait infini et on la somme ¥ CAL) serail
susceptible d'exprimer la fonction donnée — ;. L'inté
grale précédente admettrait la valeur minima 2610, que
donne I'égalilé alors possible ¥CAQ, — — & annulant
chacun de ses éléments: en sorte que la recherche de
cetle valeur minima fournirait les vrais coefficients €.
[l semble que si on détermine les coefficients (. méme
quand n esl fini, par cette méme condition de mini-
mum, ilsdoivent bien tendre vers leurs vraies valeurs
limites & mesure que lear nombre s'accroil. »

En exprimant ainsi que la somme des carrés des
erreurs commises sur la valeur de m; dans les divers
éléments (équivalents) de 'aire 5 est minima par Fannu-
lation des dérivées de Fintégrale par rapport aux para-
moétres C 4 déterminer, on obtient. s'il y a n solutions
particuliéres, le systeme de n équations linéaires :

E(‘.-_,-Ij'_\ﬂd[];-{f?: — .f'mii'ljf o

AL, désigne la partie de AQ qui correspond i la j¥me
racine de 1'équation transcendante en m.

ek 1} : o l A
Revenons A I'expression (39) de 7 Quand 2 croil,

les termes de la somme s'évanouissent successivement,
& commencer par les plus éloignés. A une distance
de l'entrée égale 4 un nombre assez faible de rayons
moyens, il ne subsiste guére, comme influent, que le
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premier terme de la somme. correspondant a la plus
pelite racine positive de I'équation (38) : =, dans chaque
section. variera alors proportionnellement a 1'expression
correspondante de ALl

Abordons maintenant le détail du calcul. Nous pren-
drons comme inconnue auxihaire :

- I dt)
VM EEE ho
T {h0)
nous aurons alors :
: 1 f|“'l_. l!"'
A — s — - A1)
! r e e E !

L'équation (36), divisée par m, devient, apres
quelques calculs simples de remplacement de F, par
2 @ ), :
= (1 — %), de e el de AL, par leurs expres-
. i %
sions en fontion de W', enfin de

1 1

g

el - ] G e ‘I",}

o
Lt

!

-
-

hy/ b

e | Sl

1 et e ”I'

. gy
£ e . ; - = = — ;1]1 . Y | Ar
y l_ Jrl'h‘. IrJ _|_ .; rl :} S : :I f.lrz [ i :l b [ — 0. ( 1-;5}

Quant aux conditions définies. elles prennent les
formes suivanles
¥ (o)—0; Fli)=0, '

_,e‘_{_ .‘EJ:H s b
FeNE (43)
- 1 PR G i : e 5 3
5'*"1"\. B. de ( s ‘__)—?— z_:“ pour = I.
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Cherchons & satisfaire formellement 4 ces tquations
en prenant pour W(z) une série de puissances de ¢,

D'aprés la premitre Cquation  (43), ce développe-
ment ne contiendra pas de terme indépendant de ¢

La valeur (41) de AQ devanl restée finie au cenire
de la section, ot ¢ = 0. ¥ ne saurait contenir de terme
du premier degré en ¢.

Il n'y aura pas davantage dans W* de terme en 2*. i
cause de la troisitme condition (43), ni de terme en ¢
qui donnerait dans le premier membre de (42) un
terme irréductible avec aucun autre.

Les premiers lermes du développement seront done
un terme en ¢* ¢t un terme en ¢,

Les exposants des termes suivants seront 8, 11, 1

car un terme en r°, substitué dans (42), engendre trois

=75 — 3 : F o
termesg en p* ", P T r*, & coefficients différents de

#ro pour a2 > 5 et dont les deux premiers ne pour-
ront se réduire qu'avec d'aulres issus de méme des
deux termes de 1" ol & était moindre soit de 3. soit
de 6 unités. Par suite, la différence des divers expo-
sanls o est ftoujours un multiple de 3.

Comme W' n'est déterminé qu'a un facteur cons-

lant prés. nous prendrons — 1 pour second coeffi-,
cienl, et éerirons :
‘I"{;‘}__iz.'e—r"'—|—3‘v.,—,z“—f\,iz“—f—e\,ir""—,,. (44)

Par substitution dans (42) et identification. on est
conduit & une loi de récurrence quon met aisément
sous la forme : '

qm

e TR ey
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2(3n — 1) f 4 i
.i{:i;]‘_—:—fl} -"\:In @ —|'— (1 .Iqulll'l,f _|_-__T._-.-J') -!:!.’.u +1) 8 i}

el

Cette relation fournira les coefficients de ¥ de proche
en proche, en fonction de A.

Quant & A, il sera donné par la condition ¥ (1) =o,
soit par la relation

A=1—A+A, —Au—+...

M. Grandjean a démontré que la série W est con-
vergente, et méme absolument convergente.

La quantité m est alors fournie par la derniére des
équations (43). Le développement de cetle équation
serait trés compliqué. M. Grandjean a cependant
explicité le premier membre sous forme de série
double.

Nous ne ferons la recherche effective des racines i
que dans le cas d'une paroi assez polie, ou, plus préei-
sément, d'une valeur de b assez petite pour que, dans
I'égquation (42), le coelficient du second terme soil
réductible & sa valeur moyenne inverse de Vb, alors

grande comparativement a son écart ('\'Ft'l‘iﬂ.h!.ﬂ entre

.-"; 2 g
- et = d’avec cette moyenne.

Le troisitme terme 2% de I'équalion (42) se lrouve
alors encore plus négligeable que la petite partie sup-

E

Al o L R, =
primée du terme en - (—- ); car ¥ sannulant
LS /

aux deux limiles =—o0, z = 1. est, en moyenne, dans
I'intervalle, au plus de I'ordre de grandeur de sa déri-
vée premiére W, qui, tenue elle-méme de s’y annuler
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une lois, y est & peine comparable & sa dérivée 1"
Done 2" disparaitra devaul le terme négligé en

£
Tl ~—‘r.
Posons alors
d /9 hm
e W L 1 AN b
= (L) n=tr
L'écuation indéfinie (42) se transforme en
d 1 d9", - .
T(E_ft_]_r—hql’-—n (46)

Clest une équation du second ordre dont lintégra-
tion se raménerait aisément 4 la recherche d'une inté-
grale particuliére d'une équation de Riccati et & des
quadratures.

Portons dans cette équation (46) le développement
en série de Ja fonction W', déduit, par I'opération
indiquée (45), du développement (44) de V. soit :

Wy=—3.0 1 6.8A28"— D11 A8 ...
L'identification en ¢ détermine de suite les coeffi-
cients successifs A, .'51“.... et I'on est ainsi conduit & :
h:'.'z-ll
Y=As—¢ —e—
—|— h 6.8.9, 11
Kegtt et
T 6.8.9.11.12.14. 1D, 17 S i

En exprimant que ¥'(1) =0, on obtient :

T [ : _ €
St gl T ot T N VTR

-+ 5\‘
6.8, 9.0 12, 14 T
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L équation qui dott fournir les valeurs de m se forme
alors de suite : c'est

”I' TN
T,i_ﬁ_ s ( i ]"I—— =0 pour =1
so1t o
H.ﬁ
I 3.5 E 6.8. 'i oo BB T T R
. '.'-!.'rl'-,r'lj.}: al\ 3Kz ) g == |‘,_]
Rl 5 { Sl T A T e

ou encore, en désignant par f{K) la série figurant a la
premiére ligne :

AK) — 6k B, f(K)=0.

Dans le cas des expériences d'H. Bazin, on a

b= 0.000166, VB, = 0:0170b, B, = 0,801
L' équation numérique (47) admel alors pour la pre-
miere racine K, = 29,995, soil 30; pour seconde

racine  K,=—100.80), so0il 100,
Les valeurs correspondantes de m sont :

My == My 0,
g 2
Les exposants — m RS ont done les valeurs
! , ar . a
successives — 0,03%0 i : — 0, 1312 R

= 1 %
Les Ll*.‘-'\'EI"'lJ]'H’.‘]lI(*I'I|S correspondants AQ), on = W),

se caleulent facilement. M. Grandjean a trouvé :
AQ, = 1,0686 — 5 &'+ 4.9991 ¢ — 2,0826 ¢°
-+ 0.4732 ¢©*— 0,067 ¢** 40,0066 2'*— 0,000] £

Droits réservés au Cnam et a ses partenaires

i
i

i

I
i |
|
|



http://www.cnam.fr/

358 PHENOMENES DE MOUVEMENTS TURBULENTS

AQ=0,2016 —5 ¢#* + 16,8008 £ — 23,5293 &
+ 17,9634 ¢'2— 8,628 ¢ + 2,806 ¢* — 0,6817 ¢

+0,1245 2 — 0,0179 ¢¥ 10,0021 ¢
—0,0002 %L,

En appliquant la méthode des moindres carrés,
comme nous I'avons expliqué, & la recherche des coef.
ficients C, un ealenl tres peénible conduit 4

Ci=0,20199 C,=——0.95311.

Finalement, la série des solutions simples qui défi

mt 7, limitée 4 ses deux premiers termes, donnera

— 0800 T n
— 3=0,20199¢ AL,
3 — o181 ;1' _
—o0,20311 0 AL,

6. Etablissement approché du régime uni-
forme dans un tuyau de conduite. Confron-
tation de la théorie avec Pexpérience!, — ¢
résultat auquel nous venons d’aboutir permet de cal-
culer Ia longueur nécessaire pour I'établissement appro-
ché du régime uniforme dans un tuyau lisse,

Quand ¢ varie de 0 4 1 : 1° AL, déeroit de 60,2016
Jusqud un cerlain  minimum négatif égal A environ
— 0.1 il croit ensuite jusqu'a 0,1780: la plus grande
valeur absolue du coefficient de la seconde exponen-
tielle, dans I'expression de — 1, est par suite 0,074 ;

2* AL, décroit de 1,0686 & — 0,603 : la plus
grande valeur absolue du coefficient de Ia premiére
exponentielle vaut alors 0.2159,

! I. Boussivesg, 18, 9 note ; broch.,, p. 69. — M.-G. Grasnieax,
p. 3i-h7. — H. Bazix, 4§, p. 14 et suiv,
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Dés que @ sera supérieur a4 18R, la seconde expo-
nentielle sera moindre que o.1 et le second terme de
— 5 sera inférieur & 0,007 : le négliger n'entrainera
qu'une erreur insignifianie,

Supposons cette condition I‘l‘ﬂllbf‘l‘ Les valeurs ini-
tiales w; dans les expériences d'IL. Bazin ne dépassant
guére 0,1 et alteignant tout au plus 0,15, nous regar-
demﬂs le régime uniforme comme établi lorsque

I'dcart » dit & la non-uniformité sera partout inférienr

A o.01. Il en sera ainsi pour le premier terme dis
gu'on aura

- IJII'I.I:l

el 1 --\.
0,210 e < 0,0%, O’ i - 9.

1{ o

Le dernier terme est alors absolument sans influence.

Ainsi le régime uniforme sera pratiquement établi
aprés un parcours d'environ fo diamétres, a partir de
I'endroil ot les filels fluides commencent a étre sensi-
blement rectilignes et paralléles. 7

Si le tuyau n'est pas muni de la bouche parfaite-
ment évasée que nous avons supposce, les filets fluides
subiront vers I'entrée une convergence brusque suivie
d'un épanouissement rapide avec froltement notable ;
¢’est la une singularité qui sera examinée dans un
autre yvolume. Toutefois ce phénoméne de contraction
entraine comme conséquence que le régime graduelle-
ment varié ne s'établit qu’aprés un parcours égal a
4 4 D diamétres. Dés lors, 'établissement du régume
uniforme dans un tuyau de conduite & parois polies
demandera au maximum une longueur de 45 fois le
diamétre du tuyau.
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Celle conclusion est conforme aux observations de
Bazin.

Dans les expériences déjd citdes, faites sur un luyau
en cimenl lissé de So métres de longueur et de 0,80
de diamétre, les vitesses des filets fluides furent mesu-
rées i travers trois seclions situées an quart. an milien
et aux trois quarts de la longueur. Ces vitesses coin-
cidérent aux points homologues des deux derniéres sec-
tions, tandis quelles présentérent un écarl sensible
dans la premiere. Le régime uniforme était done élabli
aprés un parcours de So fois le diamétre, ce qui devail
étre d'apres la théorie de M. Boussinesq.

[l y a plus: dans la premiére section d’abscisse

r=— 20" bo=—D5H1.25R.

les écarts m observés coincident sensiblement avec ceux
qui résultent de application de la formule ci-dessus,
pour des valeurs de ¢ assez rapprochées. Le tableau
E.‘i-Ci]rl’E‘I‘E résume les résultats.

D’apres expression théorique de ., cet éeart devrait
sannuler pour ¢ = 0,659 : I'expérience indique qu'il
sannule pour ¢ = 0,60 environ. C'est ld une vérifiea-
tion trés précise.

Les différences entre les valeurs calculées el obser-
vées de m osont de l'ordre de grandeur des erreurs
d'observation. De quelques millitmes & la paroi,
I'écart prend sa plus grande valeur au centre on 'ac-
lion régulatrice des parois se fait le moins sentir, el o
cet écart n'alteint pas deux centiémes.

M. Grandjean a méme pu jusiifier, par des consi-
dérations de physique expérimentale, la nécessité de
ces différences (défaut de calibrage du tuyau; degré
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1
S E
(B o Lyifte-
e it L =L S rence des
| L r l =5 R | (BOUrT= observé).| (caleuld), | valeurs
| outo0R), | 21 25 R). de o7,
| |
1
i 1.1675 1:1205 0,0470. | 0,0992 | —0.0198
i 1. 1605 1, 0180 00415 0,02980 | —0,0125
2 =
= 1,1475 1,1065 00410 0,0271 | —0,0139
3 s - A k(i o
& 1,1258 1,0870 0,0288 0.02245 i — (O, 0064
'.El | 1:0023 1,0595 0, D098 0.0142 , = 10,0044
;; 1,073 | 1,0570 | —o0,0007 0,0082 | +0,0120
- 1,0008 1,0120. | —0,0012 | —0,0080 | < 0,0032
i ;
% ,0920 00205 —0,0075: | —0.0158 | —0.0083
}g 0,8465 | 0,8600 -0,0135 | —0,0173 | —0,0037
1 0,7415 0,7500 — 00085 ~0,0165 | —0,0080

de poli de la paroi insuffisant pour que les termes
omis dans I'équation (42) soient absolument neégli-
geables, ete...).

Ainsi laccord est tout a fait satisfaisant entre la
théorie et la réalité. Mais, dans la pratique courante,
on aura rarement des tuyaux de grandes seclions &
parois aussi polies que dans les expériences d'H. Bazin:
peul-ttre faudra-1-il alors pousser un peu plus loin
Iapproximation : c'est aux expérimentateurs qu'il
appartient de nous renseigner.

Droits réservés au Cnam et a ses partenaires

LT T

T TR T el

I T P T S et

i
i
|

e

i DL IR e L ST m——, ¢ A



http://www.cnam.fr/



http://www.cnam.fr/

Baziy (H.).

BECQUEREL.
! Berxovr (Daniel},

Benrin (E.-L.).

Bovssmsesg {J.).

Hydrauligue générale,

INDEX BIBLIOGRAPHIQUE

1. Becherches hydrauliques. 1 Partie :
Hecherches expérimentales sur 'écou-
lement de U'ean dans les cananzx décou-
verts (Mémoires présenlés par divers
Savants étrangers 4 I'Académie des
sciences, t. XIX, n® 1; 1865).

2. Becherches hydrauliques. 2* Pavtié :
Hecherches expérimentales relatives
aux remous et & la propagation des
ondes (Méme recueil, 1. AIX, no 2;
1865).

3. Expériences sur la propagation des
ondes le long d'un cours d'ean tor-
rentueur (C. R, de I'Acadimie des
sciences ; 15 juin 1885, t. C, p. 1492),

4. Exzpériences nouvelles sur [a distri-
bution des vitesses dans les tuyaux
{Mémoires présentés par divers Sa-
vants élrangers & 1"Académie des
sciences, t. XXXII, ne 6; 1902).

Sur Uinfluence de la pression dans les
phénoménes d’endosmose et d'exos-
mose (G, R. de l'Académie des
sciencas, 8 juillet 1872, L. LXXWV,
P ol

Hydrodynamica, sive de viribus et mo-
tibhus fluidoram commentarii; Avgen-
torati, Strasbourg, 1738.

1. FEtude sur la houle et le roulis
(Mémoires de la Société des Sciences
naturelles de Cherbourg, 1869, t. XV,

2. Notes sur la théorie et Uabservation
de la houle el du roulis {Revue des
Sociétés savantes, 2@ série, L, V, 1870 :
p. 150-203).

1. Théorie des phénoménes constatés
par les erpdriences de M. Poiseunille
(C. R. de I'Académie des sciences,
t. LXV, p. 46 ; 1= juillet 1867).

i1

Droits réservés au Cnam et a ses partenaires

e —————— e~
et o B e 3.

p—————

L Sy ——rr—
e



http://www.cnam.fr/

362 INDEX BIBLIOGRAPHIQUE

Bouvssinesg (J.). 2. Mémoire sur lUinfluence des frol-
temenis dans les mouvements régu-
liers des fluides (Journal de Mathe-
matiques pures el appliquées, 2¢ série,
t. XILT, 1868 ; p. 377 & 424);

= 3. Théorie des ondes el des remous qui
se propagent le long d'un canal rec-
tangulaire horizontal, et dont Uampli-
tude est sensiblemeni pareille de [a
surface an fond (Journal de Mathé-
matiques pures et appliquées, L. XVII,
1872, p. 55-107 ; Résumé dans les C, K.
de l'Académie : 19 juin 1871, t. LXXII,
p- 785 — 24 juillet 1871, . LAXIII,
P 256 ; — 13 novembre 1871, . LXXIII,
p- 1210 ; — Completé dans le Journal
de Malhiématiques pures et appliquées,
t. XVIIL, 1873, p. 55-107):

- 4. Théerie des ondes liguides pério-
digues (Mémoires présentés pardivers
Savants efrangers 4 U'Acudémie des
seiences, b XX, 1872 (pour 1569}, p. 509-
15,

- B. lssai thédorique sur les lois {rouvées
expérimentalement par MM, Darcy
et Bazin, pour l'éconlement uniforme
de Uean dans les cananr [C. R. de
'Académie des sciences, b, LXXT,

i p. 38%; 29 aonl 1870).

- 6. Sur le mouvement permanent varie
de lean dans les canauz déconverts
el dans les tuyaux de conduite C. R.
de 'Académie des sciences, (. LXXIIL,
p. 34 et 1015 3 et 10 juillel, 1871),

- 7. De Uinfluence des forees centrifuges
sur l'dcanlement de Fean dans les ca-
naux prismaltiques de grande largeur
(C. R. de I'Académie des sciences,
t. LXXIV, p. 1026 15 avril 1872),

8. Essai sur la lheorie des eaunx cou-
rantes (Mémoires présenlés par divers
savants 4 I'Académie des sciences,
t. XXIIT, nd 1, p. 1-680; 1877).

9, Additions el déclaircissements an
meémoire intifulé . Essal sur la
théarie des eanz conrantes (Mémoires
présentés par divers savants 4 'Aca-
démiec des scienees, t. XXIV, ne 2,
p. 1-64; 1878,
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10. Complémeni 4 nne élude intitulde :
Essat sur la thdorie des eaur coi-
rantes (Journal de Mathémaliques
pures ek appliquées, 30 série, L. 1V
. $36-376: 1875).

11. Intégration de certaines éqguations
aux derivées parlielles, par le moyen
d intégrales definies contenant sous
le signe f le produil de dewx fonc-
lions arbilraires {C. R, de l'Académie
cles geiences, t. XCIV . p, 33; 2 jan-
vier 1882;: — L. XCIV, p. 514 ; 20 fé-
vrier 18823

12. Sur les ondes produites a la surface
d'une ean franguille par Uémersion
d'un solide (C, I3, de U'Académie des
seiences, t. XCIV, p: 71; 8 janwvier
1882 — L 'XEIV, p. 127; 16 janvier
1882 ; — L. XCIV, p. 1505 ; 5 juin 1882},

13. Application des potentiels & Détude
de F‘éqnf{ihrr el do monvement des
solides ¢lastiques, avee des noles
élendues sur divers points de Phy-
sigue mathématique ef d’analyse (Mé-
meires de la Sociébé. des Sciences, de
PAgriculture et des Arls de Lille;
o série, 1. XIIT, 18853 722 p.).

14, Théorie du mouvement permanent
graduellement varié gqui se produit
prés de Uentrée évasée d'un tube fin
(C. It. de 'Academie des sciences ;
t. CX, p. 1160 O juin 1890 ; — ¢, CX,

p. 1238; 16 juin 1890; — L, CXIII,
p. 93 6 juillet 1891 ; — t. CXIII, p. 48
15 juillet 1891},

15. Théorie du mourement permanent
graduellement varié gqui se produtl
pris de Ventrée évasée d'un tuyau de
condnite (C. R. d¢ PAcadémie des
seiences, t. CX, p. 1292 .33 juin 1800},

16. Sur Pexplication physigue de la
fluidité (C. R. de l'Académie des
seiences, f.OXIT, p. 1099 ; 18 mai 1801},

17. Sur la forme nécessairement pen-
dulaire de la houle de mer, guani
a lexpression des deéplacements de
chague particule en fonction du
temps (C. R. de 'Académie des
seiences, t. CXX, p. 1240 110 juin 1895;
— 1. CXX, p. 1310; 17 juin 1895,
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Bovssivesg (J.).

18. Théarie de Uécoulement {ourhil-
lonnant ef tumulluenx dans les [ils
reclteltgnesd grande section. 1 Partie :
Itegime uniforme (C. R, de 1" Académie
des’ sciences, t. CXII, p. 1289
B juin 1896; — t. CXII, p. 1360;
15 juin 1896; — t. CXII, p. 1445;
22 juin 1596: — L. CXIT, p. 1517;
29 juin 18867 — & CXIIL, p. 7:
6 juillet 1806: — b GXIIL, p. 77;
13 juillet 1897 ; — L. CXXIII, p. 141;
24 juillet 1896). Ces notes ont été
deéveloppées, annotées el réunies en
une brochure. Paris, Gauthier-YVil-
lars, 1887, 64 p. in-4o, :

19, Theorie de Uécounlement tourbil-
lonnant et tumuliueny dans les lils
rectilignes i grande section, 2¢ Partie :
Régimes graduellement variés (C. R,
de I'Académie des sciences, t, CXXIV,
P 11965 31 mai 1897: — . CXXIV,
p. 1261, 7 juin 1897; — t. CXXIV,
p. 1327; 14 juin 1897; — t. CXXIV,
p. 1492; 28 juin 1897; — t. CXXV,
p. i; 5 juillet 1807; — t. CXXV,
p. 693 12 juillel 1897; — £, CXXV,
p. 1425 10 juillet 1897; — t. CXXV,
p. 203 ; 26 juillet 1897}, Ces notes ont
¢te développées, annolées eb réunies
eén une brochure; Parvis, Gauthier-
Villars; 1807, 76 p. in-i2,

20, Hecherches théoriques sur l'écon-
lement des nappes deau infillrdes
dans le sol el sur le déhit des sources
(C. R. de 'Académie des sciences,
t. CXXXVII, p. 5; 6 juillet 1003 ; —
t. CXXXVII, p. 101 ; 13 juillet 1903 ;
—t. CXXXIIII, p. 153 ; 20juillet 1903 ;
—b CXXXVIIL p. 117; 18 janvier1904).
Ces Notes ont été développées dans
un Mémoire inséré au Journal de
Mathématiques pures et appliqudes ,
be série, t.(.i'i, 1904 ; p. 5-78.

24. Complémenl @ un mémoire inlilulé :

Recherches théorigues sur ['édeou-

leiment des nappes deau infilfrées

dans le sol et sur le débit des sources

{C. R. de I'Académie des sciences,

t. CXXXIX | p. 387; 8 aoul 1904, —

f. CXXXIX, p. 417; 16 acit 1904; —
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Brunnes (B.)

Bruxues (J.).
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t. CXXXIX, p. 44135 22 aoit 1904). Ces
Notes ont ébé développées dans un
Mémoire inséré an Journal de Mathé-
matiques pures et appliquées, 5° série,
E. X, 1904; p. 363-394.

21. Complément & un Mémoire sur l'in-
fluence des frottements dans les mon-
vements réguliers des fluides (Journal
deMathématiques pures etappliquées,
3= série, t. 1V, 1878 p. 335-376],

22. Lecons synihéligues de Mécanigue
qenerale servant d'introduction au
cours de Mécanique physique. Paris,
Gauthier-Villars , 1889, in-82,

23. Conrs d'Analyse infinitézsimale, en.
vue des applications mecaniques et
physiques. Paris, Gauthier- Villars
2 yaloumes in-g0, 1887-1800,

24. Théorie analytique de la chaleur
mise en harmonie avec la thermo-
dynamique et avec la thdorie mcéca-
nigque de la lumiére. Paris, Gauthier-
Villars; 2 volumes in-8¢, 1901-19(3,

25. Etude sur divers points de la phi-
losophie des sciences. Paris, 1879,
Gauthier - Villars, in-8,

1. Recherches récentes sar diverses
questionsd Hydrodynam fgue. v Par
fie : Tourbillons (Annales de Ia
Faculté cdes Seiences de Toulouse,
1887). Ce travail a ¢té aussi publié
en hrochure, Paris, Gauthier-Vil-
lars, 18901, in-49.

2. Legons sur la viscosité des liquides
et des gaz. 1r¢ Parfie. Paris, Gau-
thiers-Villars, 1907, in-8-. .

Les lois de la fillration & lravers les
colonnes de sable, ef les lois d'Ohm
{Journal de Physique théorique et
appliquée, 4° série, t. V; mars 1907,
P 194-2011,

Recherches expérimentales sur le pas-
sage des liguides & travers les subs-
tances perméahles ef les [‘!mt‘heslﬁﬂ-
{ranies, Toulouse, Douladoure-Pri-
val, 1881. (Mémoires de 1'Académie
des sciences, Inscriptions et Belles-
Letires de Toulouse, 1t série, 1881.)
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Carsny (Mis A, pg), fRecherches théoriques el expérimen-
tales sur les oscillations de Peau et les
machines hydrauligues & colonnes
liguides pseillantes, Versailles, 1880-
83, in-89. La premiére partie contient
la reproduction de Loutes les commu-
nications de lauteur & 1'Académie
des sciences.)

Cavcay [A.), 1. De la pression ou lension dang dn
corps. solide (Exercices de Malhé-
matigques, f. II, 1887; — reproduit

dans les (Kuvres complétes, 20 edrip,
t. VIL, p. 60-69, Paris, Ganthier-Vil-
lars, in-4v}.

— 2, Sur la condensation ef la dilatation
des corps solides [Exevcices de Ma-
thématiques, t. II, 1837; reproduit
dans les OEuvres compléles, 20 sé-
rie, L. VIII, p. B2, Paris, Gaulhier-
Villars, in-49),

- 3. Sur les relations gqui existeni dans
Pétat d’équilibre d'un corps solide ou
flutde entre les pressions on lensions
et les forces accelératrices | Exercices
de Mathémaliques, L. 11, 1827 ; repro-
duit dans les (Kuvres complétes,
2t série, t. VIL, p. 141, Paris, Gau-
thier-Villars, in-iv).

L 4. Sar quelques théorémes relatifs & la
condensation et i la dilatalion des
corps | Exercices de Mathémaliques,
t. 11, 1828 ; reproduit dans les (Huvres
eomplétes, 3¢ série, t. VIII, p. 278,
Paris , Gaulhier-Villars, in-i°).

-- 5. Théorie de la propagation des ondes
i la surface d'un fluide pesant d'une
profondeur infinie; Mémoire cou-
ronmé par 'Académie des sciences
{concours de 1815) [ Mémoires pré-
senbés par divers savanls élrangers
i "'Académie des sciences, b I, 1827 ;
reproduif dans les (Buvres complétes,
1r série, 1. ).

CoveTTE (M.). 1. Sur un nouvel appareil pour Ueétude
du mouvement des fluides (G, R, de
I'Académic des sciences, t. CVII,
p. 388; G aoGt 1888},
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Corverte (M.},

Darcy ( H.).

DeELexER (J. )

Ducranx [ E.).

Duorpoir (J.].

Euvien {L.).

Framawnt [ A.),

Gerstner (I, von ).

9. Ftudes sur le frottement des liguides
{ Thése pour le docloral és sciences
physiques; Faculté des Sciences de
Paris, mai 1590), Paris, Gauothier-
Villars, 1800, in=4°, :

{. Recherches expérimentales relalives
atu monvemeni de lean dans les
fuyaux (Mémoires présentés par di-
vers savanis clrangers & 'Académie
des sciences, t. XV, p. 14l 1858,

9. et Rarren (Ch.). Les fonfaines pu-
bligques de la ville de Dijon. Dunod,
Paris , 1856.

Sur le mounvement varié de Ueau dans les
tubes capillaires eylindriques, évasés
4 learentrée, et sur 'élablissement du
régime uniforme danscestubes (These
pour le doctorat és sciences mathe-
maliques; Faculté des sciences de
Pariz, mai 1805). Paris, Gauthier-
Villars, 1805, in-49,

Hecherches sur les lois des monvements
des liguides dans les espaces ecapil-
luires {Annales de Chimie et de Phy-
sique, 4° série, L. AXN. 1872).

Etudes théoriques el pratiques sur le
mouvement des eaux dans les canauw
déconverts el & travers les terrains
perméahbles. 20 éd., Pariz, Dunod,
1863, in-4°,

Principes généraur du mouvement des
fluides, Berlin, Histoire de 'Acadé-
mie , t. XI, 1755,

4. Exposé sommaire de la théorie ac-
tuelle des ondes liguides périodigques
{Annales des Ponts et chaussées, L, XV,
ir¢ apm,, 1688, p. TT4-809)

2. Des ondes liguides non périodigues
et en p.-rr-ficr;rf;'er de londe szolitaire
([Annales des Ponls et chaussées,
t, XVII, 2¢ sem., 1889, p. 5-48).

Theorie der Wellen. Prag, 1804 [ Mé-
moires de 1'Acad. royale de Bohéme,
t. I; ou encore : Gilbert's Annalen
der Physik, 1809, p. 412]. Traduit en
francais el annoté par B. de Saint-
Venant [ Annales des Ponts et chaus-
sdes, 1887, 1™ sem., t. XIII, p. 31-86).
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GinaRD, Mémaoire sur le mouvement des fluides
dans les lubes capillaires et E‘:’n/iuen ce
de la lempérature sur ce monvement,

- [Mémoires de 'Institut de Franee,
. XIV, 1*esérie; 1813-15 (1818}, p. 249),

Graxpaean | M.-G.). Sur le régime permanent graduellement
varié gui se prodail 4 In parfie amont
des tuyanz de conduite et sur Uéla-
blissenent du régime uniforme dansg
ces tuyauxr (Thése pour le doctoral
és sciences mathématiques; Faculté
des sciences de Paris, 22 janvier 1902],
Paris, Gauthier-Villars, 1902, in-49,

Hanx (I}, Hencrorz (G.) Ueber das Strimen des Wassers in
et Scuwanzscun (K. Hihren und Kanalen |Zeitschrift fiir
mathematik und Physik; B. 51, 1904;

p. 411-426),

Hewymovtz (H.). Ueher Integrale der hydrodynamischen
Gleichungen, welche den Wirhel-
bewequngen entsprechen [ Wissen-
schaftlich Abhandlungen von H.
Helmholtz ; 1882, Leipzig, B. 15 p. 111-
134: Crelle's Journal, B. 55:; 1858,

p- 22-53),
Lagnaves (J.-L.), Mécanigue analytique. Paris, 17873 ||
2 vol. in-40,

Lavy (M.}, Lecons sur la thédorie des n{:tr'ées_.
Ire  Parlie. Paris, Gauthier-Villars,
1898, In- o,

Lonestz ( H.-AL). CEver den weerstand dien een vloeistof
sltroom in eene cilindrische buts on-
derwindt [ Kon, Akad. van Amster-
dam, Verhandelingen; t. VI, p. 28-

40 mai 1897,

Mamer (E.). Essats rl”h_l]fh":’lir“ff!m fluviale. Paris,
Hermann, 1905, In-8e, .

Marey (1.-B.) Le mouvement des liguides éiud:'s:'rp.w la I!II
chronophotographie [C. R. de I'Acad.

des sciences, t. CXVI, p. 915; mai
1893],

Mancures (Max}, | Ueher die Bestimmung des Reibungs
undGleitungs-Coefficientenanusehenen
Be u@g{ung’m einer Flussighkeil (Sit-
zungsherichte dermathematisch-natur-
wigsenschaltlich Clasee der Academie
zu Wien; B, LXXXIII, 2*séric, 1881).
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Mowgno,

Nau (F.),

Navien (E.).

Panis { A.).

Porrann et Denepour.

Poigevinue (Dr),

Poisson (5.-1D.),

Prory (R. pE).

Rapur {Ch.).

Revronns { Osborne).

Levons de mécanigue analyligue, rédi-
gées dapres les méthodes d'A, Cau-
chy. Paris, Gauthier-Villars, 1868,
In-8o,

Formation el extinetion da clapolis
(Thése pour le doctorat ds sciences
mathématigques; Faculté des sciences
de Paris, juin 1897). Paris, Gauthier-
Villars, 1897, In-d4o.

Memaoire sur les [ois du monvement des

fluides [ Mémoires de I'Académie des
sciences, b. VI, 1823 {1827), p. 389).

Sur un trace roulis el un trace vigne

(C. R. de V'Acad. des =sciences,
t. LXIV, p. 731; 8 avril 1867),

Théorie dun Navire. Paris, Gauthicr-
Yillars, 1820-1894; 4 vol. in-89,

Sur le mouvement des liguides dans les
tnbes capillaires [ Mémoires présen-
tés par divers savants éirangers 4
I"Acaddimie des sciences; t. L.X: 1842
[1846); p. 438).

1. Mémaoire sur latheorie des ondes [Mé-
maoires de 'Académie des sciences;
b, I AB81R . p. L)

2. Mémaoire sur Uéguilibre et le mouve-

ment intérienr des corps élasliques
(Mémoires de ' Académie des sciences,
t. VIIL, 18983 p. 357).

Recherches physicomathémaliques sur
la theéorie du monvement! des eaun
couranltes. Parig, 1804,

1. Cours d'hydranlique. Paris, 1906,
lithogr. Gr. in-iv,

2. Nouvelle formule de M. Bazin pour le
caleul dn deébit des canaux décou-
veris. [ Génie civil, 1898.)

3. Etude d'une nouvelle formule pour
caleuler le dehit des canaux deécou-
verts. | Revue générale des sciences,
1898, )

1. Anexperimental Invesligalions of the

Circumstances which defermine whe-
ther the Motion of water shall be
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Reyxorps | Osborne ). Direct or Sinuous; and of the Law
of Hesistance in Parallele Channels
[Proceedings of the Royal Sociely
of London, t. XXXV, p. 84-09; 1883).

e —— T ————

2. An the dynamical Theory of incom-
pressible viscous Fluids and the De-
terminaiion of the Criferion, [Philos,
trans. of the royal Sociely of London;
vol, CLXXXVI, Part, I3 p. 123-164;
1895.)

Resan (H., Traité de Mécanique yénérale, Paris,
Gauthier-Villars, 1874; 7 vol. in-86,

Rigsany (1), Mathematische Werke. Leipzig, 1876,

Rovsien (G.]. Ondes par émersion, [These pour le
doctorat és sciences mathématiques.
Faculté des Sciences de Paris: 12 mars
1908, Parvis, 1008, Gaulhier-Villars,
In-42,

RusseLy (J.-5.). 1. Expériences sur les lois de cerfains
phénoménes  hydrodynamiques qui
accompagnent le monvement des corps
flottants | Traduction francaise par
Emmery el Mary: Annales des Ponts
el chaussées, 1837, 2¢ sem.).

- 2. Experimentfal Researches inlo the
Laws of Certain Hydrodynamical Phe- |
nomend that aceompany the Motion
of Floating Bodies, and have nol pre-
viously heen reduced into conformily
with the known Laws of the Hesis-
tance of Fluids, 63 pp, in-49, 1839, 1

Samvr-VeExant (Barré pe). 4. De la houle el du clapoiis | Annales
des Ponts el chaussées, 1888, 1" sem., |
p, 705-757).

= 2. De la houle et da clapotis [C. IR,
del' Académie des sciences b LXXIII,
p. 5215 28 aoit 1871; £ EXXII, p. 588
4 sept. 1871),

- 3. Mouvement des molécules de Uonde
dite solitaire, propagée & la surface
d'un canal (C. R. de I'Acad. des
sciences, t. CI, p. 1101; nov. 1885;
t. CL,p.1215; dée. 1880 ; 1, CI, p, 1445,
dée. 1885.)
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SamT-Vexvast (Barvé oe). 4 Theéorie du mouvement non perma-
nent des eaur avec application anx
erues des rivieres el 4 Uintrodnetion
des marges dans leur i ({C, R, de
"Académie des sciences, t, LXXIIIL,
pP. 237 24 juillel 1871},

Satrreanx | C.), Sur une gquestion dhydrodynamigne
( Thése pour le doctorab és sciences
mathématiques, Faculté des sciences
de Paris, 15 novembre 1893). Paris
Gauthier-Villars, 1893, In-4e,

Tammwr (AL, Del movimento el della misura delle
acque correnti, Milan, 1816,

Vextun: | G.- B.). 1. Bssai sur les onvrages physico- ma-
thématigues de Léonard de Vinci (lu
a 'Institut ex 1797 ). Paris el Padoue,
an vV (1797 ). .
o= 2. Recherches ecxpérimentales sur le
principe de communication latérale
du monvement dans les fluides, appli-
gqué 4 Uerplicalion de différents phe-
iomenes hydranligues, Paris, 1797,
88 pages in-8¢ [ Une traduction alle-
mande de ce travail a été publige
dans les « Gilbert's Annalen der Phy-
sile, G II, 1790, p. 418-465; t.. HIL,
1800, p. 120-180].

Vmicr [ Léonard pe). 1. Tratiato del Moto e misura dell’
acgue. Insérd dans : Raccolta d'aufort
Italiani che trattano del moto dell’
agua, tomo X; p. 271-429; Bologna,
1826,
— 2. Les manuscrits de Leonard de Vinet,
puabliés par Ch. Ravaisson. Paris,
Quantin , 1889, In-fe,
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TABLE ALPHABETIQUE DES AUTEURS ET DES MATIERES

Aeccélération moyenne locale,
38.

Agitation locale, 39.

Anisotropie, 18.

Avpuisson ('), 286,

Bamx (H.), 71, 128, 131, 281, 286,
ag7, 288, 289, 313.

Becguenren [ H.), 223.

Berazg (pE), 97.

Berxovru (D) [Principe del, 77.

BerTix (E.-L}, 97, 125,

Bovssixgse (J.), 18, 20, 30, 38,
39, 52, 57, b8, 67, 68, 70, 71, 7,
80, O1, 9%, 99 100, 121, 126,
{32, 148, 159, 167, 169, 170,
177, 180, 188, 191, 193, 199,
a02, 203, 204, 210, 214, 217,
220, 230, 234, 235, 239, 244,
247, 210, 951, 256, 259, 260,
284, 276, 9288, 288, 285, 208,
303, 313, 316, 324, 328, 334,
342, 306,

Brituouin (M.), 88, 198,

Browniens (mouvements), 19,

Brunues (1.), 223,

Careyy (pE], 98,

Canaux (mouvement permanentl
dans les), 269.

Capaux (mouvement graduel-
lement varié dans les}, 295-
316,

Caugcny, 3, 6, 10, 15,
Cavany (équations dej, 10,

Caveny {théoréme de), 79.

Célérité, 96.

Charge (hauteur de), 208, 218.

Cugzy (formule de Dz}, 279.

Clapoteuses (ondes), 121.

Clapotis, 121.

Coefficient de tarissement, 246,

Conditions aux limites, 6i.

Conlinuité (équation de), 24, 28.

Coverte (M.), 35, B3, 210, 264.

Daney (IL), 37, 53, 234,

Dancy (lois de), 223.

Débit d'un puits, 226.

Déformation pure, 12.

Déformation infiniment petite,
10,

Deremen (J.), 194, 210, 214,

Dilatation, 13.

Dilatation cubique, 14.

Dilatations principales, 15.

Distorsion, 1d.

Ducrarx (E.), 199, 223,

Dureurr (J.), 224-3035,

Ecoulement, 22,

Ecoulement (dans les tubes
fins}, 193,

Ecoulement (dans les milieux
poreux), 217.

Elastique {état], 20,
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Ellipsoide de dilatation, 15.
Emersion {ondes d') 170172
Yoy, 97, 141,

Evren (équalions d’}, 26,
Evren (vaviables 5 b

Filel fluide, 62.
Filet-tourbillon, RG.

Filtration (phénoméncs dej, 217,

Frasant [A,), 100, 133,
Fluidité, 18-22,
Frepmany (1.}, 200,
Frottement intérieur, 23.

30,
2 —  (coefficienl
de), 35, 50.

Genstyen (lois de), 96
(Giratoires (mouvements), 88,
Glissements, 14.

Gouvy, 19,

LII{ANIIJL.i\ (M.}, 353.

GREEN .I"r_un'n.llv de}, 12.

Hauteur de charge; 208,
Hauteur fotale de charge, 21§
Heivmorrz (H.), Bi.
Hétérolropie, 18,

Houle de, mer, 96, 101, 117,

Impulsion (ondesd’), 170,172,192,
Intumescence (célérité d'une),
140.
Intumescence (invariants d'une),
145.
- (loi de hauteur
d'une), 133,
— (longue), 166,
Irrotationnels [ mouvements},
03,
[sotropie, 18.

Lasnavge (théoreme de), 79,

Lacnawae (variables de), 24.
Lames, 04,

Libre (surface), 64.
Lignes-lourbillons, &5,

Loi de la profondeur, 111

Manrer (E.), 2i8=250,
Mangy, 126,

Manovres, 269,

Maszcaret, 132.

Moiana, 17,

Mouvement bhrownien, 19,

A Mouvements giratoires, 58,
(force de),

Mouvemenls orbilaires, 97,

Nappe aguifére

d'une), 230, 234,
Nav (F.), 121-126.
Navien (équalions de), 34,
Newron (1,), 97.

{ mouvement

Ondes clapoteuses, 121
Ondes d'émersion, 170, 172,
— d'impulsion, 170, 172
— de translation, 1 T
Onde solitaire, 127, 149, 153,
Orhitaire r_:nuuvemcutj. T,
Orthostatiques {éléments), 6.
Osrroarapsey (formule de), 72.

Pente motrice, 195.

Poisernae (lois dej, 197,

Poisermg(secondes expériences
de!, 210,

Possox (équations de), 10.
Potentiel des déplacements, 106,
111, 113, 122,

—  des vitesses, 79,
Poreux (milieux), 217,
Pouls d'un courant, 38.
Pression(sur unélément plan), 1.
Pression moyenne locale, 43,
Pression moyenne en un point,
21,
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Pression principale, 6.
Profondeur (loi de laj, 111,
Prowy (R. pr), 286, 291,
Puits (débit d'un), 226,

Rasur (Ch.), 52, 289,

Reece, 97.

Hégime du fluide, 25,

Bégime hydraulique, 57.

Régime graduellement varic, bl.

Bégime régulier, 37.

Régime turbulent, 37.

Relation supplémentaire, 26, 20,

Hemous (propagation desj, 306,

Hésistance totale & Vécoule-
ment, 2235,

Beymorps (0.}, 35, a7, &d.

Riguany (formule dej, 72.

Ravren, 223.

Rolation i:'tlll:th'L'E'l.'l{"Itl-.‘i de), 201,

Rousien (G.), 191,
Russery (Scott), 129, 140,
Russerw (lois de §.), 127.

Savr-VeENant (B, pe), 97, 100,

133, 169.

lSnlilaim (ondel, 127,
| Source (régime d'une ), 244, 245,

Tanix, 286.

Tarissement {eoeflficient de}, 246.

Terovem (A.), 126,

Tourbillong, 84,

Tranchdée (débit d'une), 226,

Translation (onde dej, 127,

Transpiration (tubes de), 217.

Turbulent (¢tat), 36.

Turbulent (mouvement), 268,

Tuyaux larges (mouvement uni-
forme dans les), 269,

Tuyaux larges (mouvement gra-
duellement vari¢ dans les),
295, 315.

Vagues, 96.

VextToa (J.-B.}, 92

Vaxcr (L. DE); 92, 97,
Viscositd [coefficient de}, 35.
Vitesse moyenne locale, 38,
| Vitesse de dilatation, 31,
Vitesse de glissement,; 31.

Wesen, 9.
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OGTAVE DOIN ET FILS, EDITEURS, 8, PLACE DE L'ODEON, PARIS

ENCYCLOPEDIE SCIENTIFIQUE

Publiée sous la direction du D TOULOUSE

Nous avons entrepris la publication, sous la direction
sénérale de son fondateur, le D Toulouse, Directeur a
I'Ecole des Hautes-Eludes, d'une ExcycrLopinie SCIENTIFIQUE
de langue francaise donl on mesurera I'importance a ce fait
qu’elle est divisée en %o sections ou Bibliothéques et qu’elle
comprendra environ 1ooo volumes. Elle se propose de riva-
liser avee les l.:lus grandes 1_-1|L‘::~,'1'lu||.151.1'n_':-'. étrangeres el méme
de lesdépasser, tout a la fois par le caractére nettement scien-
tifique et la clarté de ses exposés, par l'ordre logique de ses
ciivisions el par son unité, enfin par ses vastes dimensions

el sa Torme pratique.

PLAN GENERAL DE L'ENCYCLOPEDIE

Mode de publication. — L' Encyclopédie se composera de mono-
graphies scientifiques, classées méthodiguement et formant dans
leur enchainement vwn exposé de Lloule la science. Organisce sur
un plan systématique., cette Encyclopiédie, tout en évitant les

inconvénients des Traités, — massils, d'un prix global élevé, dif-
ficiles & consulter, — el les inconvénients des Diclionnaires, —

ofl les articles scindés irrationnellement, simples chapilres alpha-
hétigues, sont toujours nécessairement incomplets, — réunira les

avankages des uns et des aulres.
Du Traité, I'Encyclopédie gardera la supdériorité que posséde

e w Lt i i
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un ensemble complet, bien divisé el fournissant sur chague
science lous les enscignements el tous les renseignements qu'on
en réclame. Du Diclionnaive, 1'Eneyclopédie gardera les facilités
de recherches par le moyen d'une table générale, I'Inder de
UEncyclopédie, qui paraitra dés la publication d'un certain
nombre de volumes el sera réimprimé périodiquement, L'7nider
renverra le lecleur aux différents volumes et aux pages ol se
trouvent trailés les divers points d'une question,

Les dditions successives de chaque volume permettront de
suivre toujours de prés les progrés de la science, Bl clpst par i
que saffirme la supériorité de ce mode de publication sur touf
autre. Alors que, sous sa masse compacte, un traité. un diction-
naire ne peut étre réédilé et renouvelé que dans sa lotalité el
qu'i d'assez longs intervalles . inconvénients graves gu'atlénuent
mal des suppléments el des appendices, UEncyclopédie seienli-
figue, au contraire, pourra toujours rajeunir les parties qui ne
seraient plus au couranl des derniers travaux importants. Il est
¢vident, par exemple, que si des livres d'algébre ou d’acoustigque
physique peuvent garder leur valeur pendant de nombreuses
annces, les ouvrages exposant les sciences en formation, comme
la chimie physique, la psychologie ou les technologies indus-
trielles, doivent nécessairement étre remanids & des intervalles
plus courts,

Le lecteur appréciera la souplesse de publication de cette
Eneyclopédie, loujours vivante, qui §'élargira au fur el 4 mesure
des besoins dans le large cadre tracéd dés le début, mais qui con-
stituera loujours, dans son ensemble, un traité complet de 1y
Science, dans chacune de ses sections un traité complet dune
science, el dans chacun de ses livres une monographie compléfe,
Il pourra ainsi n'acheter que telle ou telle section de I'Eneyelo-
. pédie, str de n'avoir pas des parties dépareillées d'un toul.

L'Encyclopédie demandera plusieurs années pour étre acheyie :
car pour avoir des expositions bien faites, elle a pris ses colla-
horateurs plutdt parmi les savants que parmi les professionnels
de la rédaction scientifique que U'on retrouve généralement dans
les ceuvres similaires. Or les savants écrivent peu et lenlement -
et il est préférable de laisser temporairement sans attribution
certains ouvrages plutot que de les confier & des auteurs insufli-
sants. Mais cette lenteur el ces vides ne présenteront pas d'in-
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conveénients, puisque chaque livre est une @uvre indépendante

et que tous les volumes publiés sont & tout moment réunis par i
I'fndex de I'Encyclopédie. On peut donc encore considérer 'En-
cyclopédie comme une librairie, ol les livres soigneusement :

choisis, au lieu de représenter le hasard d'une production indi-
viduelle, obéiraient & un plan arrété d'avance, de maniére qu'il
n'y ait ni lacune dans les parties ingrates, ni double emploi

dans les parties trés cultivies,

Caractére scientifigue des ouvrages. — Acluellement, les
livres de science se divisent en deux classes bien distinctes : les
livres destingés aux savanks !,-i]_IIL"{‘i.'llim:"S, le E:II.EH souvent incom-
préhensibles pour tous les autres, faule de rappeler au début des
chapitres les connaissances nécessaires, cb surtout faute de défi-
nir les nombreux termes techmigues incessamment forgds, ces
derniers rendant un mémaoire d'une science particuliére inintelli-
gible & un savanl gui en a abandonné 'étude durant quelques
années ; et ensuite les livres derits pour le grand public, qui sont
sans profit pour des savants et méme pour .des personnes d'une
certaine culture intellectuelle.

L'Enecyclopédie scientifigue a 'ambilion de s'adresser au public
le plus large. Le savanl spéeialisé est assuré de rencontrer dans
les volumes de sa partie nne mise au point lrés exacte de 'état
actuel des questions; car chagque Bibliothéque, par ses techniques
el ses monographies, est d'abord faite avec le plus grand soin
pour servir d'instrument d'études el de recherches 4 ceux gqui
cultivenl la science particuliére qu'elle repriésente, eb sa devise
pourrait -étre: Par les savanis, pour les savanis. (Quelques-uns
de ces livres seront méme, par leur caractére didactique, desti-
nés & devenir des ouvrages classigques et 4 servir aux détudes de

I'enseignement secondaire ou supérvieur, Mais, d'autre part, le
lecteur non spécialisé est certain de trouver, toutes les fois que
cela sera ndécessaive, au seuil de la seckion, — dans un ou plu-
sieurs volumes dé généralités, — el au seunil du volume, — dans
un chapitre particulier, — des données qui formeront une viéri-
table introduction le mettant 4 méme de poursuivre avee profit
ga lecture. Un vocabulaire technigque, placé, quand il y aura
licu, & la fin du volume, loi permettra de connaitre foujours le

sens des mols spn-'!['i.'mx.
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Il
ORGANISATION SCIENTIFIQUE

Par son organisation scientifique, I'Encyclopédie parail devoir
offrir aux lecteurs les meilleures garanties de compétence. Elle
est divisée en Sections ou Bibliothéques, 4 la téte desquelles sont
placés des savants professionnels spécialisés dans chague ordre
de sciences ¢l en pleine foree de production, qui, d'accord avec
le Directeur général, établissent les divisions des maliéres, choi-
sissent les collaborateurs el acceptent les manuserils. Le méme
esprit se manifestera partout : éelectisme et respect de Loutes
les opinions logiques, subordination des théories aux données de
Fexpérience, soumission 4 une discipline rationnelle stricte ainsi
quaux regles d'une exposition méthodique et claire. De la sorle,
le lecteur, qui aura éLé intéressé par les ouvrages d'une section
dont il sera 'abonné régulier, sera amené & consuller avec con-
fiance les livres des aulres sections dont il aura besoin, puisqu’il
sera assuré de brouver parlout la méme pensée et les mémes
garanties. Actuellement, en effet, il est, hors de sa spieialite
sans moyen pratique de juger de la compétence réelle des aulenrs,

Pour micux apprécier les tendances varides du travail scienti-

ique adapté a des fins spéciales, I'Eneyelopédie a sollicité, pour
la direction de chaque Bibliothéque, le concours d'un savant
placé dans le centre méme des études du ressort, Elle a pu ainsi
réunir des représentants des principaux Corps savants. Etablis.
sements d'enseignement et de recherches de langue francaise :

feetitul, Conservatoire des Aris el Mé-
Académie de Médecine. tiers,

Ecole d’ Anthropologie,
Collége de France. Institut National agronomigue.
Muséum d’Histoire naturelle. Leole vétérinaire d' Alfort.
Ecole des Hautes-Eludes. Ecole supérieare @ Electricite,
Sorhonne et Ecole normale. Ecole de Chimie industrielle de
Facullés des Sciences. Lyon.
Facullés des Lelires. Evole des Beaux-Aris.
Facullés de Médecine, Ecole des Sciences politiues,
Ingtitutls Pasteur,
Ecole des Ponls el Chanssées. | Observatoire de Paris.
Ecole des Mines. Hipitaur de Paris,
Ecole Polylechnigue.
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111
BUT DE L'ENCYCLOPEDIE

An xviue sidele, « UEnevelopédie » a margué un magnifique
mouvement de la pensée vers la critique rationnelle, A celte
époque, une Lelle manifestation devail avoir un caractére philo-
sophique. Aujourdhui, U'heure cst venue de renouveler ce grand
effort de eritique, mais dans une direction strictement sciegnti-
fique ; ¢'est 14 le but de la nouvelle Encyclopédie.

Ainsi la science pourra lutter avec la littérature pour la direc-

tion des esprits cultivés, qui, au sortir des écoles, ne demandent
guire de conseils quaux ceuvres d'imagination et & des encyclo-
pédies ot la science a une place restreinte, Lout & fait hors de
proporlion avec son importance. Le moment est favorable a celle
tentative: car les nouvelles générations sont plus instruites dans
I'ordre scientifique que les précédentes. D'autre part, la seience
est devenue, par sa complexilé el par les ecorrélations de ses
parties , une matiére gqu'il n'est plus possible d'exposer sans Ia
collaboration de tous les spécialistes, unis la comme le sonl les
producteurs dans tous les départements de T'activité économigue
contemporaine.
" A un autre point de wvue, U'Encyelopedie, embrassant foutes
les manifestations scientifiques, servira comme toul inventaire
4 mettre au jour les lacunes, les champs encore en friche ou
abandonnés, — ce qui expliquera la lenteur avee laquelle cer-
{aines sections se développeront, — et suscitera peut-éire les
travaux nécessaires, Si ce résultat est atteint, elle sera fiere d'y
avoir conlribud.

Elle apporte en outre une classification des sciences el, par ses
divisions, une tentative de mesure, une limitation de chague
domaine. Dans son ensemble, elle cherchera a refléter exacte-
ment le prodigienx effort scientifique du commencement de ce
sidele et un moment de sa pensée, en sorte gque dans Pavenir
elle reste le document principal on I'on puisse rvetrouver et con-
sulter le témoignage de cette épogque inlellectuelle.

On peut voir aisément gque I'Eneyclopédie ainsi congue, ainsi

réalisée, aura sa place dans loutes les bibliothéques publigues.

aniversilaires et scolaires, dans les laboratoires, entre les mains
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des savants, des industriels el de tous les hommes instruits gqui
veulent se tenir au courant des progrés, dans la partie qu'ils cul-
tivenl eux-mémes ou dans tout le domaine scientifique. Elle fera
jurisprudence, ce qui lui dicte le devoir d'impartialité qu'elle
aura & remplir,

Il n'est plus possible de vivre dans la sociélé moderne en
ignorant les diverses formes de cetle activitéd intellectuelle i
révolutionne les conditions de la vie; et l'inlerdépendance de la
science ne permet plus aux savants de rester cantonnés, spéeia-
lisés dans un étroit domaine, 11 leur faut, — et cela leur est sou-
vent difficile, — se mettre au courant des recherches voisines,
A tous, 'Eneyelopédie offre un instrument unique dont la portée
scientifique et sociale ne peul échapper & persanne,

v
CLASSIFICATION DES MATIERES SCIENTIFIQUES

La division de I‘E‘nc.r,r:.-lnpédfe en Bibliolhéques a rendu néees-
saire I'adoption d'une classification des sciences, ol se manifeste
nécessairement un certain arbitraire, étant donndé que les sciences
se distinguent beaucoup moins par les différences de leurs objets
que par les divergences des apereus el des habitudes de nofre
esprit. 11 se produit en pratique des interpénétrations réciprogues
entre leurs domaines, en sorte que, si I'on donnait & ehacun
Pélendue 4 laquelle il peut se croire en droil de prétendre, 1l
envahirait tous les territoires voisins: une limitation assez stricte
est nécessitée par le fait méme de la juxtaposition de plusieurs
sciences.

Le plan choisi, sans viser & constituer une syntheése philoso-
phique des sciences, qui ne pourrait étre que subjective, a tendu
pourtant & échapper dans la mesure du possible aux habitudes
traditionnelles d'esprit, particulidrement i la routine didactique,
el & s'inspirer de principes rationnels.

I1 y a deux grandes divisions dans le plan général de 'Ency-
clopédie : d'un cité les sciences pures, el, de l'autre , toutes les
technologies qui correspondent & ces sciences dans la sphere des
applications. A part et au début, une Bibliothéque dintrodue-
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tion géndrale est consaerée & la philosophie des sciences (histoire
des idées directrices, logique et méthodologie).

Les sciences pures el appliguées présentent en oulre une divi-
sion génédrale en sciences du monde inorganique el en sciences
biologiques. Dans ces deux grandes catégories, I'ordre est celui
de particularité eroissante , gqui marche parallélement & une
rigueur décroissante, Dans les sciences biologiques pures enfin,
un groupe de sciences s'est trouvé mis & part, en tant quielles
s'occupent moins de dégager des lois générales ct abstraites gque
de fourniv des monographies d'élres concrets, depuis la paléon-
tologie jusqu'a Uanthropologie et 'ethnographie.

Etant donnés les principes rationnels qui ont dirigé cetle clas-
" sification, il n'y a pas lieu de s'é¢tonner de voir apparaitre des
groupements relativement nouveaux, une biologie geéncérale, —
une physiologie et une pathologie wvégétales, dislinctes aussi
bien de la botanique que de l'agriculture, — une chimie phy-
sique, etc,

En revanche, des groupements hélérogénes se dislogquent pour
que leurs parties puissent prendre place dans les disciplines
auxquelles elles doivent reveniv. La géographie, par exemple,
retourne 4 la géologie, et il y a des géographies bolanique,
zonlogique, anthropologique, économique, qui sont étudi¢es dans
la botanique, la zoologie, l'anthropologie, les sciences écono-
migues,

Les sciences mdédicales, immense juxtaposition de tendances
trés diverses, unies par une tradition utilitaire, se désagrégent
en des sciences ou des techniques précises; la pathologie,
scienice de lois, se distingue de la thérapeutique ou de hygiéne,
qui ne sont que les applications des données générales fournies
par les sciences pures, et & ce titre mises 4 leur place ration-
nelle,

Enfin, il a paru bon de renoncer & l'anthropocentrisme qui
exigeait une ph:g'siul;_‘:gic humaine, une anatomie humaine, une
embryologie humaine, une psychologie humaine. L'homme est
intégré dans la série animale dont il est un aboutissant. Et ainsi,
son organisation, ses fonctions, son développement, s'éelairent
de toute 1'évolution antérieure el préparent l'éfude des formes
plus complexes des groupements organiques qui sont offerts par
I"étude des sociétés.
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On peut voir que , malgré la prédominance de la préoccupation

pratique dans ce classement des Bibliothéques de 1'Encyelopédie
seientifique, le souci de situer rationnellement les sciences dans
leurs rapports réciproques n'a pas été négligé. Enfin il est &
-peine bhesoin d'ajouter que cel ordre n'implique nullement une
hiérarchie, ni dans l'importance ni dans les difficultés des diverses
sciences. Certaines, qui sont placées dans la technologie, sont
d'une complexité extréme, et leurs recherches peuvent figurar
parmi les plus ardues.

Prix de la publication. — Les volumes, illustrés pour la plu-
part, seront publiéz dans le formal in-18 jésus el cartonnés, -De
dimensions commodes, ils auront 400 pages environ, ce qui repré-
senle une maliére suffisante pour une monographie ayant un ohjet,
défini et important, établie du reste selon Péconomie du projet
qui saura éviter 'émiéttement des sujets d'exposition. Le prix
¢tant fixé uniformément 4 5 francs, clest un réel progres dans
les condilions de publication des ouvrages scientifiques, qui,
dans certaines spécialités, cottent encorve si cher,
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