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DYNAMIQUE DY DARROPLANE

INTRODUCTION

Nous n'avons nullement l'intentic 1 de présenter ici un projet méme rudimentaire
d’aéroplane. Nous nous proposons seulement de réunir les enseignements que la méca-
nique rationnélle d'une part et les lois expérimentales de la physique d'autre part
peuvent fournir sur cette question,

Sans doute, ces indications ne fourniront qu'une estimation bien vague du chiffre
réel des efforts et des résistances & prévoir. Elles n’en seront pas moins utiles, croyons-
nous, tant pour dissiper certaines illusions que pour réfuter des prévisions peut-étre trop
pessimistes, et surtoul pour faire pressentit aux chercheurs les voies dans lesquelles il

semble inutile de s'engager comme élant presque certainement voudes T'insucces.

CHAPITRIE 1
POSITION DE LA QUESTION

1.— Les aéroplanes sont des véhicules aériens ol I'on assure la sustentalion an moyen
de surfaces planes légirement inclinées sur I'horizon et animées dans leur ensemble d'un
mouvement de propulsion horizontal.

Voici comment l'on expose actuellement la théorie élémentaire de ces appareils.

Considérons un plan mince de surface S animé d'une vilesse horizontale V, inféricure
4 100 metres.

Admettons que la résultante N des actions de l'air sur ce plan mince est normale a
la surface, et que son point d'application est trés voisin du centre.de gravité. Si l'on

désigne par « langle d’atlague ou l'ineclinaison du plan sur N D
I'horizon, la valeur de N est une expression de la forme : —————

N = K8V (2),

K étant constant pour un méme appareil.

Supposons ce plan mince relié & un corps qu’il s’agit de ,
soutenir, une nacelle, par exemple, et soit P le poids du
systéme. La sustentation sera réalisée, lorsque la composante

verticale de N fera équilibre a P : D

P -

= N cosa. Fia. 1.

La résistance horizontale R est mesurde par la composante horizontalede N: R =N
sin .
Quand au travail & dépenser, 1l est évidemment :

T=R.V,
_ N sins
TOKSS ()

d’otr : T:
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Les angles d'attaque sont toujours trés faibles, on peut donc remplacer le sinus
par I'arc « et le cosinus par 'unité ; alors N=—= P et l'on a :

. ])3;12 > ]

ﬁ-—-—s—jTlx‘)‘

On sait que Navier et Dupré admettent d’aprés la théorie et Pexpérience : f ()
= ) sin® @, ou pour les petits angles : f (a) = 1z
Ilen résulte, pour le travail, la valeur :

Ps P2

S ST (-

5

d’apres laquelle le travail serait le méme quel que soit I'angle d’attaque et, par consé-
quent, le méme que dans le parachute 4 abaissement vertical, On n’aurait dans ces con-
ditions aucun avantage & employer les plans inclinés se déplacant horizontalement. Mais
d’autres calculateurs; et parmi eux Thibaut,ont trouvé que f{z) ne varie pas comme le carré
du sinus, mais simplement comme le sinus de l'angle, c'est-a-dire que pour les petits
angles on doit poser : [ («) = Jo.

La formule du travail devient alors :

P3x P3y

s ™ RS

il est aisé de voir que, loin d’étre constant, quel que soit I'angle d’attaque, ce travail tend
vers zéro avee «. Théoriquement, dans cette hypothése, le travail nécessaire a la susten-
tation, lorsqu’on cherche a 'obtenir par le déplacement horizontal d'un plan incliné, pour-
rait donc étre réduit autant qu'on le voudrait.

La sustentation n'est pas la seule résistance qu'il y ait & vaincre. 11 ¥ a une résistance
qui provient du frottement de l'air, non seulement sur le plan mince, mais aussi sur tous
les organes de l'appareil, cadre, nacelle, agrés. Pour simplifier les calculs, nous admet-
tons que cette résistance R’ est la méme que si tout I'appareil était remplacé par un plan
mince idéal de surface 3, et, en désignant par ¢ un coelficient constant, nous aurons :
R = S VE, .

Clest cetle résistance qui s’ajoutera a celle que développe le travail de la sustenta-
tion Na; l'on aura, en définitive, & vaincre une résistance totale :

R == Nu + 43V%,
et le travail nécessaire pour la vaincre sera :

T = NaV —E— g%\va.
Mais lorsque la sustentation est réalisée, N == P et I'on a: P = K/SV2,.
— P ) - -
TOK'SVr

On en fire : «
. ps
et par suite : T = W+ o8 Ve,
Cette derni¢re expression se compose de deux termes, qui représentent les deux résis-
tances développées par la sustentation et le mouvement de translation. Le premier décroit
jusqu’a zéro quand la vitesse s’accroft a 'indéfini, tandis que le second croit indéfiniment. Le
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travail est infin1 pour les deux valeurs extrémes de V == 0 et oo; done l'expression est
susceptible d'un minimum correspondant aux valeurs des variables qui annulent la dérivée
de I'équalion qui préceéde. Cetle condition est remplie lorsque Von a @ Pa == 345V3, clesl-
a-dire lorsque la rdsistance de sustentation est égale & trois fois la résistance a Uavance-
ment horizontal®. .

Ondémaontre également que la résistance totale R est minimum lorsque la résistance
de sustentation est égale & la résistance & l'avancement horizontal 2,

Entin, on indique que tout en réduisant au minimum les résistances passives qui
seules sont la cause du travail dépensé, on ne saurail dépasser une certaine limite, et que
le poids du moteur ne devrait pas dépasser; 10 kilogrammes par cheval.

Venons maintenant & 'examen méthodique du‘probléeme.

CHAPITRE 1I
ETUDE DE LA PRESSION DES FLUIDES SUR LES SOLIDES

2. —Toutes lesconclusions précédentes 1‘eposent surl'hypothese que la résistance aune
valeur-de la forme KSV? sinz et que Paction de Tair est uniquement normale & la surfuce.
Le fait est contestable ainsi que le montrent les raisonnements suivants. Le premier est
di & Rankine dont la haute autorité ne saurait étre méconnue ; le deuxiéme, plus élémen-
taire, conduit aux mémes conclusions.

Voicl en premier lieu la méthode de Rankine :

Pression d’'un jet contre une surface fiwe. — Un jet de fluide qui vient frapper une
surfuce unie est dévié, et glisse le long de lasurface suivant la trajectoire qui fait le plus
petit angle avec la direction initiale de son mouvement, et finalement quitte I'aréle, sui-
vant une direction tangente & la surface. Pour simplifier la question, nous supposerons
que la surface soit courbée de fagon a forcer le jet, lorsqu'il la quitte, & suivre une direc-
tion délinie. Nous supposerons de plus que le frottement entre le jet et la surface est
insignifiant. Ceel étant admis, comme les moléeules de fluide en contact avec la surface
se meuvent le long de cette surlace, et que la seule force sensible qui s'exerce entre elles
el la surface est perpendiculaire & la direction de leur mouvement, cette force ne pourra
ni accélérer ni retarder le mouvement des molécules, mais seulement le faire dévier.
Soient alors v la vitesse des molécules du fluide, Q le débit par seconde, 5 la densité, et
z l'angle dont la direction du mouvement se trouve déviée,

Qv

g
1. On a en effet pour le minimum :
af _ _. I® + 3gBV?2
dav o T RSV R
d'oti BpEVEI— TPy Q.QF D
: i K'sve =
2; On a, par un calcul analogue au précédent :
I).‘
= oy + 98 VE,
R=ggwm +9°
dR 2P
ol 1 = o - 208V =0,
don: av K5V
}11
‘ot endin ©EVE = . 3
d’ol1 enfin : oG V2 = AT C.Q.F,D.

Droits réservés au Cnam et a ses partenaires



— 4

sera alors la quantité de mouvement de la quantité de liquide qui est déviée par seconde.
Concevons aussi un triangle isocéle dont les cdtés sont égaux tous deux a la vitesse v, et
font entre eux 'angle «; la base de ce triangle, qui a pour valeur,

. &€
2vsin ; ;

5

2

représente alors le changement de vitesse qu'éprouve chaque molécule du fluide, de telle
sorte que la variation de la quantité de mouvement par seconde est :

F:2 sin =, ; €3

c’est aussi la grandeur de la pression totale qui s'exerce entre le fluide et la surface,
suivant une ligne qui est parallele & la base du triangle isocéle mentionnée ci-dessus,
c'est-d-dire qui fait des angles égaux dans des directions opposées avec la direction ini-
tiale du jet et sa nouvelle direction. -

La force représentée par F peut étre décomposée en deux composants. F, et F,,
respectivement parallele et perpendiculaire 2 la direction initiale du jet. Il existe entre la
résultante et ses composantes les relations :

. F .
2sin - - —2sind &
7F B sin 5 F 2 sin 3 ,
F, 1T—cosa sin o (2)
d’oti T'on tire pour les valeurs des composantes :
Fy, = Qv (1—cos a); Fy= @sin a. (3)
g g '

Si la surface que le jet vient frapper a une figure symétrique autour de la direction
initiale du jet considérée comme axe, la quantité de fluide Q qui frappe la surface par
seconde, s’étale et glisse suivant dilférentes directions distribuées symétriquement autour
de I'axe et faisant avec lui des angles égaux g, de telle sorte que les forces exercées per-
pendiculairement & 'axe par les différentes parties du jet qui s'étale se font équilibre, et
qu’il ne reste que la somme des composantes paralléles & 'axe, dont la valeur est F, et est
donnée parla premiére des équations 3,

S5i l'on remplace Q par Aw, A étant I'aire de la section du jet, les forces peuvent étre
exprimées en fonction de cette aire.

Comme cas particulier, supposons que la surface soit plane. Le jet, en frappant la sur-
face, s'étale et la quitte suivant toutes les directions perpendiculaires & sa direction
initiale, de telle sorte que : & == 90°, cos a == 0, et

p, —pQu__pAv? (&)
qg g .

Gette force représente le poids d'une colonne de fluide qui aurait pour base I'aire de
la section du jet, et une hauteur double de la hauteur due & la vitesse. L’expérience con-
firme ce résultat.

Dans la méme hypothése x = 90° on trouve F, = E‘%) , ce qui semble absurde. Mais
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il convient de rappeler que dans ce cas le jet se dédouble en deux jets symétriques,
comme il a été dit plus haut, ce qui entraine la conclusion F,== 0.

On voit aisément que la normale N & la surface et la composante F, sont symétriques
par rapport & la résultante R et ont par suite méme valeur. On a donc hien pour N une

2Qu pAv?

sing ou &

valeur théorique égale & sin #, comme il était admis dans 'analyse

exposée au début. Mais on voit aussi que 1'on aurait di dans cette analyse faire intervenir
également la composante tangentielle T égale numériquement a F,.

Les formules qui précédent nous semblent pouveir étre établies un peu plus simple-
ment en raisonnant comme il suit :

Considérons un élément gazeux arrivant au contact de la paroi : le mouvement de
cette derniére n’éprouvera aucune modification si I'élément recoit une impulsion telle qu'il
glisse de lui-méme le long de la paroi.Or, dansce déplacement le mobile descendra d'une
quantité v sin adf : il avancera vers la droite d’une quantité v cos adf, mais comme pen-
dant le méme temps la paroi aura marché de wvd¢ vers la gauche, le déplacement final
devra étre v (1 — cosa)d! : les deux impulsions devront étre en conséquence mvsinad? et

A

mv (1 — cos a)dt, et, en remplacant m par la masse de toute la colonne gazeuse ==, on

s

retrouve les valeurs :

P, = 2% gin F,— P (1 cos ),
g g
indiquées par Rankine.

Dans les raisonnements qui préceédent, on a traité I'air comme un fluide incompres-
sible et 'on a admis: que le courant s’appliquail exactement contre la paroi guide. On sait
quil n’en est rien. Cependant aux vitesses relativement faibles que l'on doit envisager
dans les problémes actuels, la premiére hypothése s'écarte peu de la vérité et I'on peut
appliquer la formule de Bernouilli, ce qui a été fait implicitement.

La deuxiéme objection semble plus sérieuse. )

La présence d'une « proue » gazeuse en avant des corps en mouvement a été signalée
depuis longtemps. Mais si l'on reprend le premier raisonnement, celui de Rankine, on
voit qu’il ne suppose rien sur le détail du contour suivi par les filets gazeux. Il tient compte
simplement de leur déviation finale. Peu importe que les filets se soient déviés le long de
la paroi ou le long d’un autre contour, pourvu que la déviation résultante soit la méme.

Si donc nous envisageons le jet gazeux pris & une distance suflisante, en avant de
la « proue », ce jet contournera cette « proue » pour s'échapper & hauteur de la paroi solide
suivant la direction de cette derniére, et par suite les formules établies seront bien appli-
cables. ’

Mais la section A du jet, dans le cas qui nous occupe, n'est pas connue, ni aisée 2
déterminer théoriquement. Tout ce que 'on peut dire en premiére étude, c'est qu'elle
doit étre sensiblement proportionnelle & la surface de la paroi et varier avec l'incidence
du jet de telle sorte que I'on peut écrire :

CA= p
g A= K5/ (a),

f(a) étant égale & T'unité pour o == 90°.
Le coefficient K est connu; il est sensiblement égal & 0,085. Cela revient & admettre
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que le jel gazeux qui va se répandre autour de la « proue » pour contourncr la paroi

mobile a une section sensiblement égale aux deux tiers de la surface de ladite paroi.
C'est une hypothése admissible en premiére approximation. On s'elforcera de serrer

la vérité de plus prées dans la suite de ce travail. Provisoirement on derira done simple-

ment .
F, = T = KS (1 — cos a) v*f («) -
Fy = N == KS sin « v*/ ()
R = 2KS sin § v/ (2)

ou : K = 0,085,

les unités étant le metre et le kilog.

Dans tout ce qui précéde, nous avons supposé la paroi en marche dans un air
immobile. Supposons . maintenant que Vair ait une vitesse propre; deux cas sont a

considérer :
3. —1ecas.— La surface a un mouvement de translation paralléle a ladirection inifiale
du jet. — Désignons par v la vitesse de ce mouvement, positive si elle est dans le sens

du mouvement du jet, et négative en sens contraire, et par v, la vitesse initiale du jet;
v, —u sera alors la vitesse dujet par rapport a la surface. La composante qui agit entre le
fluide et la surface solide, dans la direction du mouvement de cette derniére, est donc :

F, ==Y (1 — cos a); ()

elle représente dégalement la force égale et opposée qu'il faut appliquer au solide pour
que son mouvement soit uniforme; el I'énergie transmise par seconde est :

Fo = G—Q—D—&j (1 — cos a), (2)
p ,
qui, si v est positif, est transmise du fluide au solide, et, si v est négatif, du solide au
fluide.
1’énergie ainsi transmise par seconde est égale a la différence des énergies actuelles
du volume Q du fluide avant et aprés son action sur le solide. Soit v, la vitesse du fluide
aprés le choc ; cette vitesse étant la résultante de v et de v, — v dans la direction déviée,

son carré est donné par 1'équation :
vt == v* + (0, — v)2 4 20 (v, — v) cos @ == v — 20 (v, — v) (1 — cos a). (3)

4. —2%cas,— La surface aun mmwem(’ntde translation dans unedirection quelcongue,
avec la vitesse v. — Dans la fig. 2, BD représente cetle direction et cette vitesse, et BC
la direction initiale et la vilesse v, du jet. DC représente alors la direction et la vitesse du
mouvement initial du jet par rapport a la surface. Menons la ligne EF — DC tangente &
la surface au point B, ou le jel quilte ¢ette sur face | cette longueur représente la vitesse
relative et la direction surv flut laquelle le jet quitte la surface. Menons FG paralléle et
égale a BD et joignons EG; cette derniére ligne représente la direction et la vitesse
absolue avec lesquelles le jet qultte la surface, puxsqu ‘elle est la résultante de EF et de FG.

On pourrait déterminer la force totale qui s'exerce entre le fluide: et la surface en
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oherchant la variation de la quantité de mouvement du fluide Q, due soit au changement
de direction et de vitesse absolue, & savoir, de BC 4 EG, soit au changement de direction
et de vitesse par rapport a la surface, & savoir, de DC a
EF. Mais la force qu'il est le plus important de déterminer
est celle a laquelle est due 1'énergie transmise, c’est-a-dire
la force paralléle & BD, que nous représenterons par I,
Cette force est égale & la variation dans une seconde de la
quantité de mouvement composante du fluide dans la direc-
tion BD. Désignons par 3 = DBC l'angle que fait la
direction du jet avec celle du mouvement de translation
du corps ; la composante, dans la direction BD de la vitesse
initiale du jet est alors :

v, cos 3.

Soit w = DG la vitesse du jet par rapport a la surface; alors :
w? = ¥ - v,* — 2oy, cos 3. (6)

Représentons par v le supplément de I'angle EFG, I'angle quune tangente a la
surface a I'aréte ol le fluide la quitte fait avee la direction de la translation. La compo-
sanle, dans la direction BD, de la nouvelle vitesse du jet, est alors:

v -} w cos v}
et la variation de la quantité de mouvement dans cette direction pendant une seconde est :

e

Fy ="= (v, cos 3 — v — w cos v), (M
7 ) \
qui donne pour 1'énergie transmise par seconde :
Fo = <y (vy cos 3 — v — w cos v). (8
g 0

»? dtant la vitesse résultante du fluide apres le choc, on a :

v = vt w? 4 2vw cos . (9

On peut. retrouver et compléter les résultats précédents a I'aide du raisonnement
élémentaire qui suit :

Imprimons a tout le systéme une vitesse — v égale et de signe contraire & celle de la
paroi. Pour que cette derniére reste immobile malgré le courant gazeux, il faut que
celui-ci soit dévié de maniére a s'écouler librement le long de la parei. Il faut a cet effet
lui imprimer une vitesse tangentielle v, el une vitesse v, normale a la paroi telles que :

1° La vitesse tangentielle finale soit égale a la vitesse w relative du gaz par rapport
a la paroi, cc qui donne la condition :

v, — v cos vy -+ v, cos (3 v) = w;

20 La vitesse normale soit nulle, ce qui exige que l'on ait :

vy - vsiny v osin (3 — )= 0,
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el les impulsions correspondantes ont pour valeur :

eQ F eQ

I?L == Uy n =~ Un.
g g
On on déduit, suivant la direction du mouvement et sa perpendiculaire, les deux

composantes :

. \ . 2 .
F, =T, cos v 4 Fysiny = Q (v, cos 3 — v — w cos 7
g

. = (w sin y — v, sin &),

F, == Fysin v -} F,cos y

et I'on a toujours : .
w? = v, 4 v* — 2oy, cos 3.

Si I'on suppose la paroi rectiligne, on aura enfin y = o - 3, « étant I'angle d'inei-
dence du jet sur la paroi. i
Enfin le débit gazeux Q est égal iei a la section A du jet, multiplié par la vitesse

relative w du courant par rapport a la surface ; done :

0

Fy==5 Aw (v cos 3 — v — wcos )
g

Fy,= :; Aw (0 siny — v, sin 3).

5. — Dans I'établissement des formules précé(.lentes, on admet implicitement que le
courant gazeux prend la forme indiquée dans la fig. 1, c¢’esl-a-dire s’infléchit tout entier
dans le méme sens. Mais on peut remarquer immédiatement que si la créte de la paroi
s’abaissait au-dessous de B, une partie du jet remonterait vers la gauche pour s'éecouler
par-dessus cette créte.

Le courant gazeux se partage done généralement en deux fractions Q' et Q" : la
premigre qui descend comme Uindique la figure; la deuxiéme qui remonte, c'est-a-dire
qui subit la déviation = 4~ o au lieu de la déviation a.

S 1'on forme en (‘.()1]5(’3(][1(31](}9 les expressions des COIHI)()S'&IILPS FX/, F}" COI‘I’eSpODdRDL

a'la déviation = - o, & l'aide des expressions (3}, el si 'on éeril :

Qr + Qii — Q Qf . Qfﬂ _ A,

on obtient par addition les composantes définitives :

A ) .
F,=%5(Q — Acosa)w Fy = € Av'sin a.
g q
1. On a en effet :
F o= &\ (1 — cos a)
q
¥ = &‘ sina
q
¥, = Fi')-i (1 - cos a)
g
F," = e sin «,
i 4
d'ot ; Fee= Ty By =220 4 @) — 2 (Q — Q) cos &
g g

Fy = K, —F," = %1' Q' — Q" sin «.

Droits réservés au Cnam et a ses partenaires



R’ S

Lorsque le jet est normal & la surface, la composante T, doit s’annuler comme nous
'avons déja fait remarquer; de plus la différence entre les deux jets inférieur et supérieur
doit évidemment croitre lorsque la paroi s'incline de plus en plus, au détriment du jet
supérieur ; nous écrirons donc A = 1Q cos «, % étant une fonction moindre que sec «, et
on aura, en substituant ;

Qv (1 — % cos® 2) F,=¢ Qui sin « cos a.
: [’

La résultante R a pour valeur :

fol 0 < 15 3
R =t Quy/sin® 2 4 (1 — 1)? cos? a,
g
et son inclinaison sur la direction du jet est donnée par la relation :

% sinz cosa
ig‘ 6 — T -
1 — % cos?x

Ce systeme de formules comprend comme cas particulier le systéme indiqué au début
de ce mémoire. Si I'on [ait effectivement % = 1, on déduit :

R =" Qusina O Qo sint« F, = £ Qu sing cosa,
¢ Iy

et comme nous savens que le débit Q a pour expression Av et que £ A est de la forme

KS/ {2}, nous retombons sur les formules habiluelles.
6. — Nous ferons done dans tout ce qui va suivre usage des formules ainsi dérivées de
celles de Rankine, puisque ces formules, déduites de la théorie, comprennent, dans le

cas particulier ott x == 1, les formules de Loessel habituellement employées. Ces formules
générales sont :

Fy = KSv* (1 — & cos?a) [ (a) et Fy == KSv%\ sinz cosaf ().

Nous avons indiqué plus haut que 'on prenait en général / () =1 et K= 0,085 ou
0,125, les unités étant le metre et le kilog. Nous ferons, selon le cas, usage dans les
applications de I'une ou l'autre de ces valeurs, afin de faciliter les comparaisons avec les
résultats trouvds par d'autres auteurs. Mais nous nous réservons également d’employer
les formules générales, comme aussi d’essayer de tenir compte du frottement.

CHAPITRE 111
ETUDE D'UN AKRONAT AVEC ACTION VERTICALE DU MOTEUR
7. — Avant d’entreprendre la théorie générale, il semble convenable de traiter au

préalable lo cas tres simple d’un aéronat & plateau moteur agissant verticalement, en consi-

dérant ce plateau moteur indépendamment de la maniére dont I'énergie produite sera
transmise au systéme,
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Les éléments de la question sont alors les suivants :

P,, poids de la nacelle, de I’équipage, des agrés, etc., y compris s'il y a lieu,
une force ascensionnelle supplémentaire P’

S, surface en metres carrés du platean sustentateur;

d, poids moyen de cette surface par métre carré ou densité transversale, suivant
une expression souvent employée.

Ce poids spécifique d fleu't d’abord étre considéré comme fixe, dans I'étude d'un
appareil déterminé. Pour une étude plus approfondie, on peut admettre qu'il est propor-
tionnel a la racine carrée de leffort supporté par élément du plateau, soit, en I'espéce, &
sa vitesse V.

P, = 8d, poids du plateaun suslentateur ;

V, vitesse dudit plateau ;

Y, composante verticale effective de l'effort total du moteur, évalude en
kilogrammetres ;

F = YV puissance utile du moteur, en kilogrammaétres ;

I1, poids total du moteur ;

T = ;Ti poids du moteur par kilogrammaétre utile de puissance ;
P, =P, - I, poids de 'aéronat, moins le plateau ;
K, coeflicient de la résistance de I'air. Ce coeflicient est théoriquement pris égal
a 0 kg. 125; dans le cas particulier des surfaces planes et normales 2 la
direction du mouvement, on admet 0 kg. 085.
On emploiera selon les cas, dans les applications, I'une ou l'autre de ces valeurs.

L’effort produil par I'air sur le plateau a pour expression :
Y = KSVz.
1 doit équilibrer les différentes actions verticales qui sont :

P,, Poet 11,
de telle sorte que l'on a:

KSVe=P,+4 P,+1I
et que la relation générale entre les divers éléments s’écrira :
P, +dS -} F =KSV: =Y. (1)
D’autre part, on a :

F —=KSV:, (2)

On peut combiner ces relations d'une foule de manitres, selon que 1'on éliminera
entre elles I'un des éléments: F, S ou V.
On a ainsi les deux relations qui suivent :

P, dS -+ KSV2 (zV —1) =0 (3)

Y =P, 45F+ds=KS" F". W

1o Parachute.

8 — Lorsque P’ =0, les différentes forces se font équilibre, I'aéronat monte et descend
avec une vitesse uniforme qui n'est autre que V si l'on néglige la résistance de l'air aux
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éléments autres que le plateau sustentateur. Si 'on fait en méme temps =0, on aura
le cas du parachute :
P, dS — KSV:=10. (3 bis)

20 Aéronat & puissance mintimum du moleur.

9. — En général, ce n'est pas la vitesse V du plateau (qu'il ne faut pas confondre
avec celle de 'aéronat) qu'il est nécessaire de considérer : elle ne parait dans les équations
que comme figurant le mode de transformation de 1'énergic du moteur. C'est done
I'équation (4) ol figure ce dernier élément qu'il y a le plus souvent lien d’envisager et
dont la discussion est particulierement intéressante.

On peut I'éerire en effet, en éliminant S:

3 K 2
Vgl

[ — Py— ] = 0. (% bis)

Cetle équation a toujours une racine négative. Elle ne peut en avoir de positive qu'a
la condition d’avoir:

ou .

(5)

Le second membre donne le maximum de peids utile que l'on peut enlever avee un
moteur de puissance donnée, connaissant son poids = par kilogrammétre (ou par cheval-
vapeur) et la densilé d du plateau suslentateur au métre carré.

Si Ion pose, pour abréger I'éeriture :

WK
aT "

on trouve pour le maximum de P, l'expression :

PO == Lr‘l —_ ‘K) F,

auquel correspond la valeur tirée de I'équation (& bis), donl Y est alors racine double,

K 3 .
- P D ~F — T — _ 4F
\"}o‘*‘[s-i-“r*\/-gdl ;72(11,

ou enfin, toutes réductions faites
T’S — = alf.

D'autre part, on a trouvé :
} k]
Py + F =al.

Par conséquent, les conditions les plus avantageuses sont réalisées lorsque le poids
du plateau est la moitié des poids réunis de la nacelle et du moteur.

. N U .
La vitesse du plateau a pour expression g ¢ est-a-dire, dans ce cas :
AY 2
T 3a’
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Réciproquement, pour produire un effort vertical déterminé P,, il faut faire usage
d'un moteur ayant une puissance au moins égale a P, : (2 — =).

Mais bien que l'on travaille ainsi dans les conditions de rendement les plus avan-
tageuses, il peut se faire que d’autres élémeunts du probléme ne permettent pas d’adopter
cette solution. Or, pourvu que la condition (5) soit satisfaite, 'équation (4) permet de
déterminer Y et par suite de résoudre la question posée.

La solution graphique qui suit, outre qu’elle parle aux yeux, présente I'avantage d’étre
plus expéditive que des résolutions d’équations numériques.

Construisons a cet effet la courbe :

Ys — KF2S =0, (6)

entre les éléments Y et S du probléeme, pour une valeur donnée de la puissance F du
moteur,

Cette courbe jouit de la propriété que, sil'on meéne la tangente en un point donné,
S,, ¥4, l'ordonnée a V'origine de ladite tangente a pour valeur les 2/3 de l'ordonnée y, du
point considéré .

D’autre part, les divers éléments sont reliés par la relation :

Y = P, Il 4 dS = P, + dS. (1)

Par suite, si l'on construit la courbe de 'équation (6) et que, par le point d’abscisse
zéro et d'ordonnée P, on meéne une droite d'inclinaison d, les points oli cette droite
coupera la courhe donneront, par leurs coordonnées, la surface et leffort vertical qui
répondent a la question.

La droite (7) coupe la courbe en un ou trois points: l'un de ces points est toujours
dans la région négative et ne convient point. Les deux autres, s’ils existent, conviennent
et donnent les deux solutions. Pour qu'ils existent, il faut que la droite correspondante
soit au-dessous de la tangente menée par le point P, & la courbe, c’est ce qui correspond
a la condition t*)) indiquée par I'algébre.

Ces deux solutions, I'une a faible et 'autre a forte surface pour le plateau, corres-
pondent & des efforts par élément superficiel qui varient en sens inverse des surfaces et
I'on devra s’assurer si la densité d est suffisante dans chaque cas particulier.

3o Aéronat & effort du plateau minimum.

10. — Il est donc intéressant d’examiner comment varie 'effort supporté par le pla-
teau pour fournir une force verticale déterminge P,.

]

Soit « le rapport %’ I'équation (&) s'écrit :
dY? — KF* (1 —x) Y ++ KaF*=0;

Tou: _ KFY — KaF? — dY?
ou. Xr == KFEY

1. L'équation de la tangente au point Sy, est en effet :

KF?
Y —y = m (S — s,
et pour 8 = 0,
KF* 2 -
Y:ya—--‘,}y—,Engsyl. C.Q.F.D.
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Ce rapport, qui mesure le rendement de I'appareil relativement a la fatigue du

plateau, s’écrit en remplagant I par VY :

KV: — KnVs—d

[

Kv2 !
il passe par un maximum pour V* = 2d : Kx et prend alors pour valeur :
3d 3P,
B i o
On a donc dans ce cas:
P,=Y — 3P,,
ou, aprés réduction :
I1 =2P,.

Ainsi, I'effort ascensionnel, c'est-i-dire la fatigue du platean pour enlever un poids
déterminé P,, est minimum quand le poids du moteur est le double de celui du plateau, si
la densité transversale de ce dernier est imposée a l'avance.

Mais si I'on admet que cette densité transversale soit proportionnelle a la vitesse V,
ce que l'on traduit en écrivant d == d,V, on se trouvera dans un cas qui se rapproche bien
plus des conditions de la pratique, car pour résister a la flexion, I'épaisseur d’une plaque
doit étre proportionnelle & la racine carrée de l'effort, soit précisément ici & la vitesse du
plateau; d, représente alors le poids moyen du plateau pour résister a 'effort K corres-
pondant & 1 meétre de vitesse, c’est-a-dire soit 4 85 grammes, soit & 123 grammes au metre
carré, selon la valeur admise pour le coefficient K.

Dans ce cas, les équations fondamentales étant toujours:

Y = P, + «F 4 d,V8,
Y — KSVe,
F = YV = KSV,

on en déduit, en substituant Y et $ dans la premiére relation :

R d,VF
g =Pt aF B0
ou: (B, 4 F) Ve — BV - 20,

dont les racines sont réelles a la condition d’avoir :
KF — 4d, (P, + =F) > 0,
K
ou : P <<4—~n)F.
° =\ lid,
On pourra done enlever un poids quelconque P, & la condition d’employer un moteur

suffisamment puissant et dont le poids par kilogrammetre utile soit moindre que 7[0": les

K
o

divers éléments auront alors pour valeur :

Po:(EKd—o ~—7:) F,

N

[1 = =F,
P,:Z};—F:PO-J;—I'I,
F 2d
J — o =0
\—"2P5 K’

Y = 2P,.
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b Aéronat & surface de plateau minimum.

11. — Lamarche & suivre est toujours la méme.
L’équation fondamentale (4)

P, 4 dS + = = K5V2,
s'éerit, en posant P, = Sw, et divisant par S :

xz +d -+ KeVe — KV2 = 0,
1 1., ,
ou : V—“(d—{-x)-ﬁvk—}hrfo,

dont la condition de réalité pourles racines positives est :

— I

Ti. T2

ce qui donne :

Il suflit que le second membre soit positif pour que le probléeme admette deux solu-
tions : ces deux solutions se confondent pour donner le rendement maximum lorsque 1'on

prend :
. Lo
iK
=i 0
3 (d -+
avec ; Vi 2L + !,
I
ce qul entraine :
2
Vo
3

On en déduit successivement les valeurs des autres éléments en procédant comme il
suit :

2 .
Remplagant V par — dans Ia valenr de Y, on a:

a7

_ AKS
R R
de méme :
SKS
Fe— YV o2
27 =3

et enfin :

12. — Nous sommes ainsien possession de trois solutions du probléeme de la susten-
tation par plateau avec moteur & action verticale et densité transversale constante :

La premiére correspond au minimum de puissance du moteur.

La deuxiéme au minimum de fatigue des organes du plateau.

La troisieme au minimum de superficie du plaleau.
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On peut dire que ces trois solutions enclavent toutes les solutions pratiques du pro-
bléeme. Nous réunissons dans le tableau ci-aprés les formules des différents éléments
nécessaires i enlever un poids donné P,.

VALEUR DES EL}Q‘ME‘LNTH F Y S
pour le minimum de : | PUISSANCE DU MOTEUR EFFORT DU PLATEAU SUBFACE DU PLATEAU
Vitesse de régime V. ... me \J/W 2:3x
—P:S;s;mce dl;;loteut' F.. 3dSV 2dS ;1 = S§KS : 27x%
Effort total Y...... . -L 3dS Fv £KS @ 972
Poids du plateau Ps. .. .. ) ds dS ds
Poids du moteur II. .. .. 3dS=V . 2dS SKS :27x?
Poids enlevé Py .. ... ... Y (1 7;? :V) g_ P.

Nous avons fait une application numérique de ces formules au probléme suivant :

Rechercher les conditions d’enlevée d'un poids P, de 100 kilog., le poids du plateau
étant de 4 kilog. au métre courant et celui du moteur de 3 kg. 230 par cheval utile, le
coefficient de la résistance de T'air élant 0 kg. 125,

Ces résultats sont reportés dans le tableau qui suit :

Données du probléme :

Poidsaenlever. .. ... ... ... ... .. ... ... ..... . P, = 100 kilog.
Poids du plateau au meétre carré. ..., ... ... ... d = & kilog.

Poids du moteur par chevalutile. . ... ... ... ... 5% = 3 kg. 230,
et e m—— e
POUR LE MINIMUM DE ! PUISSANCE EFFORT AU PLATEAU SURFACE DU PLATEAU

Vitesse de régime. ... .. 9 m. 80 11 m. &% 13 m. 50
. 4.000 kgm, 4.320 kem, 7.0 Lo,
Puissance du moteur.. ., *_,, ) kgm ¢ ‘,3 0 legm <680 kygm
53 chx 4 58 chx 102 chx
Effort au plateau.. .. .... 408 kilog. 377 kilog. 495 kilog.
Poids du plateau ., ... .. 136 kilog. 92 kg, 6 66 kilog.
Poids du moteur ....... 172 kilog. 186 kilog. 332 kilog.
Poids a enlever......... 100 kilog. 100 kilog. 100 kilog. !
Surface du platean. . . ... 3% m? 23 m? 2 16 m? 6

II. — Détermination de la densité transversale du plateau d'aprés la vitesse de régime,

13. — Ainsi que nous l'avons précédemment indiqué, la densité transversale du plateau
ne saurait étre logiquement fixée a priori. Elle doit étre déterminée d'apres les conditions de
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fatigue imposées & cet organe. Sa surface doit étre considérée comme travaillant a la flexion
4 la maniére d'une plaque circulaire encastrée On est done conduit & lui attribuer une
épaisseur proportionnelle a la racine carrée de I'effort, soit, en Uesptce, proportionnelle &
la vitesse de régime. La quantité constante d employée précédemment doit donc étre rem-
placée par une expression de la forme d = d, V, d, étant une nouvelle constante et V la

vitesse de régime. L’équation fondamentale :

Po 4 P, 4 11 =KSV: =Y, (7)

s'éerit alors :

P, + d,VS -+ zKSVs — K8V, (8)

et 'on peut & nouveau chercher les conditions de fonctionnement correspondant au mini-
mum soit de puissance du moteur, soit de fatigue ou de surface du plateau.

10 Puissance minimum du moteur.

Posant P, = KSV?z, il convient, P, étant donné, de rendre = maximum, en substi-

tuant dans I'équation (8) et écrivant par suite, toutes réductions faites :

%+(n+m) ViV — 0.

Ce qui exige que I'on ait :

soit, dans le cas du maximum, les deux valeurs :

K
X = ————7
&d 1
° X = e — W 9
v _ 2 Y ®)
K
Formons alors Y = KS8V? F —= K8V3, P, = d,8V, IT = zKS8V? on a successive-
ment : g
hd 28 5 2d,2S 8rSd,? ) Sd,?
[ — i — e = = — .
Y= Pi="% =" K
el comme 2z = P, : F, il vient, toutes réductions faites dans (Y} :

F = 2VP,: (1 —2zV),

et par substitutions successives :

S =KX :8d2?

I ==F
2. F /

P5 — K b*‘g—’,‘:‘-f—Po—%‘—li
F

[ —— —2P

Y v P,.

On a ainsi tous les éléments en fonction des paramétres initiaux et du poids & enle-

ver P,.
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2° Effort minimum du plateau.

14. — La méme méthode, en posant P, = =Y, donnera 1'équation :

(Iz%—"—ﬁVQZ(] —z) V,

1mm:\/4}d€w,

qui dans le cas de la réalisation du maximum entraine le systéme :

do
V:\/K’m

z=1—2zV.

et la relation de condition :

On formera de méme progressivement :
Y=P:2; F=VY; Il =«F; P,=Y—P,—II;S =P, :d,V

ce qui donnera les expressions :

Y=P,:1 — 27V
F=PV:1i— 2V

Il = Po'xV A — EmV
Po=11

S = Po'.': M (’1 —_ QT:V)(ID.

3° Surface minimum du plateau.

15. — Ici la marche du calcul est un peu plus délicate. Voici comme il convient de
procéder :
Posant P, =S, substituant et divisant partout par S, on aura :

=KV — KzV?® — d, V.

On voit que = est d’abord nul, puis négatif lorsque V croit pour devenir enfin égal a
» P 8 q 8
— oo. Pour que I'on ait une solution, il faut donc que la dérivée de = s'annule. S'il en est
ainsi, x prendra deux valeurs, #, minimum et x, maximum, correspondant aux vitesses v,
et v, etil faudra en outre que w, soit positif : sinonl’aéronat descendra au lieu de monter.
On prend donc d'abord la dérivée, que I'on égale a zéro, soit :

9KV — 3zKV2 — d, = 0,

qui exige la condition de réalité :
: K2 — 3Kdy = > 0.

Si cette condition est satisfaite, nous pourrons poser :

3rd,
K’

sin?d =
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, .
et I'on aura les racines :
1 —cosd 1 4 cos3

- vy =
3= ! 3

v, =
La seconde racine z,, la seule qui nous intéresse, nous donnera :

2y == Kv? — Kzv® —d,v,,

qui, toutes réductions faites, a pour expression :

Ku,
@, = (1 - cos3) (2eosd —1).
Pour que #, soit positif, il faut donc que l'on ait cos 3= 3 en méme temps que sin®?
3nd, . X ..
=y, ce qui donne finalement la condition :
K
(I’O < "l—’n‘

Si cette condition est satisfaite, on formera comme d’ordinaire la série de valeurs des
¢léments par les formules suivantes :
sin?3 = 3rd,: K
V= (14 cos?): 3=z
Il = P, (1 + cos3):(2coss—1)
P, = 3P, (1 —cos8) : (2cos5 — 1)
S=19=zP,(1 4cos3)d,
Y = 3P, : (2cos3 — 1)
P, {4 cosd

P

T XECOSB—’[

48. — Toutes ces formules sont récapitulées dans le tableau suivant ot les éléments
sont placés dans l'ordre des calculs & faire : le résultat trouvé pour S doit en outre satis-
faire & la vérification : S =P, : d,V.

Si le poids P, n'est pas connu a priori, on prendra P,= 1 et par simple proportion
on raménera les résultats & concorder avec la donnée initiale (puissance, eﬂ‘ortJ sur-

face, ete.).

VALEUR DES ELEMENTS F Y S
pour le minimum de : | PUISSANCE DU MOTEUR EFFORT DU PLATEAU SURFACE DU PLATEAU
Angle auxiliaire 8....... » » sin?d = 3nd, : K
Vitesse de régime V. ... 2d,: K Y, Kx (1 4 cos3d):3n
Effort total vertical Y, .. 2P, : 1 — 2xV Py (1 — 2zV) 3P : (2cos § — 1)
Puissance du moteur F .| YV YV YV
Poids du moteur II..... =F =k =F
{ — cos B
Poids du plateau Ps . .... Y:2 I 3P, oo —1
K*F , © 27P,m?
o o . S —2 el L
Surface du plateau S.. .. 540 =Py (1 —2nV)do KT T eos ) @ cos 51|
Poids morl enlevé...... Po P, P,
|
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Application.

On a repris a ce nouveau point de vue le probleme, traité aune [12], de 'enlévement
d'un poids mort de 100 kilog. dans les conditions les plus favorables, en prenant pour do
la valeur 1/3 qui correspond bien & la valeur d = ¥ indiquée pour la vitesse de 12 métres
intermédiaire entre les vitesses de régime déterminées au n° [12].

Donndes du probléme.

Poidsavenlever....... ... .. ... .. .... P, = 100 kilog.
Poids élémentaire du plateau. . ........... ... .. ... do = 1/3
Poids du moteur par cheval utile. ... ............ 5= =13 kg. 230,

POUR LE MINIMUM DE |

PUISSANCE

EFFORT AU PLATEAU

SURFACE DU PLATEAU

Vitesse de régime ... ...

5 m. 34

7 m. 90

14 m.

Puissance du moteur.. . .

1.976 kgm.

26 chx 3%

2,470 kgm.

33 chx

6,760 kam.
90 chx

Lffort au plateau .. ... ..

370 kilog.

312 kilog.

483 kilog.

Poids du plateau........ 185 kilog. 106 kilog. 92 kilog.
Poids du moteur........ 85 kilog. 106 kilog. 292 kilog.
Poids a enlever.,,...... 100 kilog. 100 kilog. 100 kilog.
Sm‘fatj‘e du plateau.. ... 104 m? 40 m2 3 185 m?
Poids du plateau au m?2,. 1,78 2,63 4,666

III. Plateau dont la densité transversale croit avec la surface.

17. — Nous avons examiné successivement le cas des plateaux & densité transversale
(poids par unité de surface) soit constante, soit proportionnelle & effort probable exercé.

Il reste & traiter un troisiéme cas, celui du plateau correspondant & la famille d’hélices
recommandée par le colonel Renard, plateau dans lequel cette densité d est proportion-
nelle au diamétre générateur, ¢'est-a-dire & la racine carrée de la surface, ce qui se traduit
par la relation :

d = d,8",

(Voir I'’Annexe n° 1.)

On verra que ce type de plateau se comporte d'une fagon absolument différente des
précédents.

L'équation fondamentale est ici, comme toujours :

173 23

Y =P, + =f + 487 = K" (k)

Si l'on pose [ == — on obtient I'équation du troisieme degré en ¢ :
[
.

(P, + duSm) & — Kl,r:ssu:zq’ + -
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dont la condition de réalité des racines positives est, toutes réductions faites :

4K

32
S — dS"

P, £

(8)

Le second membre varie avec les dimensions du plateau; il atteint son maximum

- 8K Tt
§ = [swcio

L\ Ko
PM = (ﬁ) 'rdor

On remarquera que ce maximum Py de la valeur P, qui peut é&tre enlevée par un
plateau de ce type ne dépend pas de la puissance / du moteur, mais seulement de son poids

lorsque l'on a :

et a pour valeur :

spécifique =.

Done, avec un platean « type Renard », il ¥ a un maximum de poids enlevable,
quelque considérable que soit la puissance du moteur employé, ledit maximum variant en
sens inverse de la sixiéme puissance du poids spécifique dudit moteur.

(Par poids spécifique, on entend le poids par cheval-vapeur utile.)

Ce résultat limitatif distingue d'une fagon absolue le plateau « type Renard » des
plateaux antérieurement étudiés, ‘

Lorsque I'on donne & P, une valeur inférieu_rc & Py, 'équation donne pour ¢, et, par
suite, pour la puissance [ du moteur, deux valeurs, que I'on pourra obtenir soit algébri-
quement, soit par une construction graphique, De cette valeur f; ou f, ainsi choisie, on
déduira la vitesse de régime v, ou v, par la relation :

1/3,

szlf:z: K%S :

I'effort supporté Y=/f:v;
le poids du moteur I ==f;
et enfin le poids du plateau Pi=Y —P, —1IIL

o . .. . 3/2
Comme vérification, ce poids Py devra étre trouvé égal au produit d,S

Tous ces éléments, f, v, Y, 1T, P dépendent de la valeur attribuée arbitrairement au
plateau S, valeur astreinte seulement & satisfaire a 'inégalité (5), ce qui exige simplement
que P, soit inférieur & Py. On peut donc, dans ces limites, disposer de S de maniére &

satisfaire & quelque autre condition,

18. — Poids maximum & enlever avec une surface donnée. — Cherchons ainsi le
poids maximum P, pour une surface donnée S.

Dans ce cas, l'inégalité (5) se réduit a une équation entre P, et S. Cette équation
étant satisfaite, la valeur de ¢ est racine double de I'équation (4), ce qui donne, toutes
réductions faites :

. el . 217 . .o
T . KS z?dl‘ S—K-S fA SKS‘.‘QI‘W",

DI Qo

o=
7

et comme f = KSV? V étant la vitesse de régime :
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et, de la, successivement :
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enfin P, et S sont reliés par la relation :

LKS 3/2

Po=grm—d5"

Sil'on donne a P, et 28 les valeurs correspondant au maximum et indiquées page 24,
les autres éléments prennent les valeurs suivantes :

[=8K :5dp V=2
—3
K —s
Y=14% %— : 31‘:"(}02 11 zﬁf
v
Ps e guﬁ PM.

SiTon met partout le terme Py en évidence, le systéme devient :

2
/=== '
,‘ =g
fM — GPM IT
My = 6Py (AN
XJ':[ — 9PM I)M - (fﬁ‘) Ke 'stiog'
Ps =S 2PM
81 =2
Sy = —— Py
k

Ainsi, avec ce type de plateau, lors méme que l'on disposerait d'une puissance F
supérieure & [, on ne pourrait enlever un poids supérieur a Py.

Cela nous conduit & examiner la question de 'association des plateaux, autrement dit
a résoudre le probléme suivant. .

19. — Association des plateaur. — Etant donnée une puissance de moteur F, trouver
lIe nombre n de plateaux le plus avantageux i faire actionner par ce moteur,

1
Si n est le nombre de plateaux, chaque plateau est soumis & une puissance f — —,
n’

et si s est la surface de chaque plateau, chacun d’eux souléve un poids p, donné par :

—1/3 2/3

po=Ko [

nf — ds,
et par suite I'ensemble du systéme enléevera le poids P, donné par :

SRS VB Y
Po=nKe [ — anf — dng,
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ou, remplagant c par S: n, fpar F: n

1/3 J2/3

P, = KS — o — dS.

Si d est indépendant. de S, comme dans les deux cas précédemment traités, on voit
que P, reste constant pour une surface donnée totale S, sous la seule condition de négliger
la perte d’énergie due a la multiplicité des transmissions.

Mais si d varie avec ¢, ce qui est le cas du plateau type Renard, la question prend
une autre tournure. On a en effet ;

1/3—1/3

P, — K s "R 11 — nd” — Y — 11 — P,,

et pour tirer le meilleur parti de la puissance F, nous disposons de n et de ¢

«

Remplagons pour un moment l'exposant g par « pour laisser & la question toute sa

généralité, et cherchons le maximum de P,. On aura :

dP,

1 lﬂ-—n] B2
dn~ 3n

[K"%F" —8ndy™] =0  ou Y —3P,=0 (n)

‘Z—P*J ! [K e B — 3andy| =0 ou Y —3aP,=0. (o)
g

Si « est égal & 'unité, c'est-a-dire si d est indépendant de S, les deux équations sont
compatibles et reviennent & la condition Y = 3dS précédemment formulée. Si « differe de
I'unité, les deux équations sont incompatibles.

On peut, dans ¢e cas, se donner soit la surface totale S, soit le nombre n de plateaux,
soit la surface g, c’est-i-dire le type de plateau.

Examinons successivement ces trois cas, pour o = 7'

1° SilYon se donne S = ng, on aura de suite :

o KPP — g™

\/n

Le rendement sera d’autant plus élevé que le nombre de plateaux sera plus considé-
rable, mais croitra lentement.

2° 5i l'on se donne le nombre n de plateaux, 'équation () donnera :

9
Py=np,=7Y : 3a ou nps = (Po -+ IL -+ nps) : 9
d'ot le poids de chaque plateau :
2P, 410
P=g

3° Si on se donne au contraire la surface du plateau, I'équation (n} donnera :

p_ Y _PAII4P,
3 3
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(Po 4~ 1I)
(Po+4-110) : ps

ou npg =

Q
1
T2

Quelle que soit la combinaison adoptée, il faut toujours que le plateau présente une
résistance suflisante, ce qui est en somme la signilication mécanique de l'équation (4),
c’est-d-dire que l'on ait :

iK L2
TP S g7t '

Le premier cas, 4 surface totale constante, ne présente pas d'intérét : le nombre de
plateaux n'a d'influence que sur le dernier terme qu'il fait déeroitre lentement, ce qui ne
compense certes pas l'inconvénient de la multiplicité des transmissions.

Dans le deuxiéme cas, ou l'on se donne le nombre n de plateaux, I'équation de condi-
tion (¢), sous sa premiére forme, donne la valeur de 5 :

3[\i/t 6/7 F 37 (o
= 9(1n y (ﬁ (')
3 3/1 G/
o s e (2 (B
et enfin :
Tn T 317 2\ e .
Py 1T = o p, =5 K do(gd) 2B (o)

Ainsi, dans ce cas, le poids enlevé (moteur et poids mort) est proportionnel & la puis-
1 . . ’ s
sance = du nombre de plateaux, et ce, & la condition de déterminer la surface ¢ par I'équa-

tion (¢') afin d’avoir le rendement maximum.
Enfin, sil’on se donne la surface s, on peut déterminer n par I'équation (n) qui donne ;

A1/3 59
K (S 7
n=—=1\++— F
(,%d., ) d

et & cette condition, le poids P, == P, 4 Il aura pour valeur:

P, =P, -} 11 = 2K'"F : 3%d,"%'",

il sera d'autant plusélevé que 1'on aura fait choix de plateaux plus petits

Applications.

20. — Toutes ces considérations ont besoin d'étre rendues tangibles par des exemples
numériques. C'est ce que nous allons faire en donnant aux constantes des valeurs corres-
pondant sensiblement aux chiffres attribués par le colonel Renard & ses hélices couplées,
dont le plateau que l'on vient d’étudier n’est que la représentation schématique. On a dfms

ce cas d, == 1, et, si F est exprimé en chevaux, K = 8,85 : nous prendrons K —9 ou
729, ce qui a I'avantage de simplifier beaucoup les calculs.
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Soit denc a traiter les questions suivantes :
1o Etudier les conditions de fonctionnement d'un moteur de 64 chevaux, pc‘;ant
3 kilog. par cheval utile. L'équation, dans le cas d'un plateau unique, sera :

(Py= Py 6k < 3) -0 =95 >< 16 — 1k o',

P, = 14k — "
On forme ainsi le tableau suivant :
5 = 1 k& 9 16 19,5 25
P, = 143 221 272 300 302 296
P,=— 49 -+ 29 80 108 110 104

maximum

29 Avec un moteur de 512 chevaux pesant 1.536 kilog., on edt trouvé de méme:

(P, = Po-- 1.536%) 4 o”* = 14k 5° 3¢ 8 = 1.152 5

et formé le tableau :

¢ = 64 m? 84 10Q 113 12 m? -
P, == 4.097 kg. 4.236 4346 4.3 4.369
P, = 2.561 kg. 2.700 2.810 2.835 2.833

maximum

3¢ Avec un moteur plus lourd, de 640 chevaux par exemple, pesant 1.920 kilog., on
elit eu un moindre maximum, comme l'indiquent les formules et comme le vérifie le tableau

suivant :
G 49 m? 64 72,7 81 126 144
P, 2.102 kg. 2,166 2.249 211 2.094 1.776
P, 182 244 329 251 T4 — 144 impossible
maximum

En se reportant au premier tableau, on voit immédiatement que si l'on eft attelé
le moteur de 640 chevaux sur 10 plateaux 2 64 chevaux, le poids P, se fit élevé a
1.100 kilog., et effectivement, si I'on se donne n=10, la formule (¢") de la page 27
redonne une valeur de P, égale a 3.014 kilog., d'ott 1.094 kilog. pour P, tandis que
I'équation (¢*) redonne ¢ = 19 m* 5

24. — Mais si, au contraire, on part des équations de condition dérivées de I'équa-
tion (n), on obtient des résultats tout différents, et pour une méme valeur de n ces résultats
sont plus faibles. Le fait était a prévoir analytiquement par suite de l'incompatibilité des
deux équations dérivées.

Reprenons en effet la question, en laissant en place I'exposant «, pour plus de
généralité.

En traitant d’abord la question par équation (n), ot I'on suppose fixe la surface o,

on trouve :
_ K" (F)@
T 3d,

u]v—
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et comme Y=P, 4+ P;=3P; ou P, =2P;
et que P, = rjw’us“;
on trouve immédiatement, en substituant & G' sa valeur:

S1/3, 2 a—1 2
P, 9d (I\ ):}'u-—ln:ﬂz—l Fia=i1
n o « .
! 3d,

Si I'on partait au contraire de 'équation (s), on aurait d’abord :

.L {Ki/:i (F 2/3
¢l ==
o 3d, \n)

et comme l'on a dans ce cas Y = 3zP; ou P, == (31 — 1) P, on trouvera de’ méme par
substitution :

1—3 K3 3% a1 2y

N (N vy T oy PRy |

PJ)U:(?)X—i) o 3o '(Io (__) 3o — 1 nfm i F Ja l.
' 3d,

o1
et 'on a bien : El—ﬁ:&f—_—"—iaﬁ~
P 2z ’
" valeur supérieure & I'unité dés que I'on a o >> 1, comme il étail annoncé.

Ainsi I'hypothése de plateaux a densité transversale croissant avec la surface conduit
& des singularités.

11 semble done que la méme hypothése, appliquée a des organes dont lesdits plateaux
sont la représentation schématique, ne puisse pas etre admise d’une facon absolue. Sans
doute les nécessités de la construction ont pu conduire &4 des renforcements locaux, &
raison surtout des elforts centrifuges, mais on peut espérer que ces renforcements ne
devront pas croitre dans la méme proportion, au dela de certaines limites.

Cette analyse montre également que la multiplication des plateaux, qui se traduit par

a—1

un terme n°* ', n'a pas de valeur si z =1 et par suite est alors & éviter comme étant une
source de complications.

Elle montre enfin qu'a partir des limites ot 'on pourra admetire a = 1, les formules
établies dans cette hypothése étant applicables, les poids enlevés croitront comme la
puissance du moteur, sans limitation due au poids spécifique de ce dernier.

Conclusion.

29, — Il résulte pour nous de cette discussion :

1° Que, pour de faibles surfaces de plateau, on peut faire usage des formules
relatives au plateau a4 densité transversale croissante (type Renard), les seules, croyons-
nous, dérivant d’essais méthodiques (Annexe n° 2); _

2 Mais que, pour de fortes surfaces, on devra adopter les types de formules a
densité constante ou méme proportionnelle a la racine carrée de I'effort ; lesdites formules
permettent de compter sur des rendements plus avantageux que ceux signalés par_la
communication du colonel Renard (Annexe n° 1);

30 Que la multiplication des plateaux n'est qu'une source de déperditions et de
complications, et que I'on ne doit y recourir que dans des cas exceptionnels.
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ANNEXE No 1

Nole de M. le colonel Renard, sur la possibilité de soulenir un hélicoptére en employant. les moleurs

2 explosion dans [eur élal actuel de légérets,

La sustentation permanente d'un appareil plus lourd que Pair-au moyen des hélices et des moteurs
thermiques, pratiquement impossible avec des moteurs pesant 10 kilog. par cheval, commence a étre
réalisable avec les moteurs actuels dont le poids est descendu &5 kilog. par cheval et méme & un chiffre
inférieur. Elle deviendra trés facile avec des moteurs pesant 2 kg. 500 par cheval, réalisables aujourd’hui,

Mais il faut pour eela employer des hélices d'un poids (rés réduil. Nous avons exdeuté, a 1'établisse-
ment de Chalais, au moyen d'une machine spéciale, de nombreuses expériences sur les hélices susten-
tatrices et nous avons trouvé un type d’hélice qui permeltra, quand on le voudra, d’enlever un appareil
de § chevaux avec un excédent de force ascensionnelle de 8 kilog. & 10 kilog.

Les propriétés de ces hélices sont résumées dans les formules suivantes :

Soient @ le diamétre de Phélice en métres, » la vilesse angulaire en tours par seconde, A la poussée
verticale en kilog., T la puissance dépensée sur I'hélice en kilogrammaétres.

Ona: )

A =0,026 p2t, (

T = 0,01521 nizh,

—

S

)

Le poids d’une hélice de 1 métre de diamétre de ce type est de 0 kg. 500 et I'on est conduit pour
des raisons d’ordre pratique (rigidité, etc.) a les faire toutes géométriquement semblables, de sorle que
si p est le poids d’une hélice de diamétre =; ona

p = 0,5 @? (én kilogrammes). (3)

Enfin Teffort qu'elles peuvent exercer sans danger de rupture est de 10 kilog. pour I'hélice de
1 métre el il varie comme le carré du diamétre, de sorte que cet effort limite est donné par la relation :

B =10z (%)

Des formules (1) et (2); on déduit facilement, en éliminant n, équation suivante qui donne la
poussée I d’un systéme & deux hélices en fonction du diameétre x de ces hélices et de la puissance
dépensée en chevaux y : -

H = 8,85 2° %7, (5)
{(on a supposé dans cette formule que le rendement du mécanisme de transmission était égal 2 0,9).

Pour que l'appareil s’éléve, il faul que la poussée I soit plus grande que les poids réunis du motem
et des deux hélices. . :

Soient 71, le poids spéecifique du moteur (poids par cheval), =2 le poids spécifique des hélices (poids
de I'hélice de 1 métre de diamétre) et Z le poids utile que 'appareil pourra soutenir en Iair.

On a évidemment :

7 = 8,83 w?,/Jy?;s — 2mox® — myy. (6)

Il est facile de démonirer avec cette formule qu'on peut enlever actuellement un hélicopidre de
5 chevaux par exemple, avec un poids utile de 8 kg. 4, suffisant pour le béti, les transmissions et 'ap-
provisionnement de combustible pour une heure.

On peut done, dés & présent, réaliser avec nos hélices et les moteurs ordinaires d'automobiles,
Iintéressante expérience du soulévement prolongé dun hélicoptére. Cette expérience fondamentale aura
une grande importance, mais on ne pourra 'étendre au dela des poids utiles de 8 kilog. & 10 kilog. qu’au
prix d'un nouvel et important allégement des moteurs.

La fonetion Z (poids utile) peut en effet s'éerire, dans le cas général ol on laisse aux poids spéei-
fiques =1 et =2 du moteur et de I'hélice leur généralité,

7= .'z.lcz"g_zﬁf3 —2mox? — my. (M

Si a, my et my sont considérés comme des données expérimentales, Z apparait ici comme une fonction

des deux variables @ et y (diamétre des hélices et puissance du moteur). Une analyse facile démontre
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que, pour les valeurs positives de = et de y, le poids utile Z a un maximum unique foujours positif
donné par 'équation ‘

Ty =

4 9
il = 0,00012043 —r

812 mybmy? N

3 (8)

Le maximum du poids utile soulevé est donc proportionnel & la neuviéme puissance du coeflicient a
qui ne dépend que de la perfection du type d'hélice el sur lequel on ne peut guére espérer d’amdlioration ;
il esl inversement proportionnel au carré du poids spécifique des hélices et la sixiéme puissance du
poids spéeifique du moteur.

On ne peut pas beaucoup gagner sur le poids des hélices, mais il n’est pas de limite qu'on puisse

assigner A l'allégement des moteurs et de ce coté on peut espérer une rapide augmentation du poids
utile maximum Z,, des hélicoptéres.

L'équation (8) donme, pour le cas o@ nous nous sommes placé plus hautf, c'est-d-dire pour
a =885, % =5, ma== 0,5 :

Zn = 10 kg. 3.

Si I'on donne au poids spécifique (poids par cheval) du moteur des valeurs variant de 10 4 1, on
obtient pour Z les coefficients suivanls :

Valeur depoids parcheval.  10kg. 9kg. 8kg. 7kg 6ke bSkg 4kg 3 kg 2kg. 1 kg
Valeur de Z, (maximum
du poids utile)........ 0Okg.160 0,302 0,646 1,36 3,4& 40,3 39,2 220 2506 460.000
w

Ce tableau fait bien ressortir I'énorme influence du poids spécifique du moleur. Avee des moteurs
de 1 kilog. par cheval, on pourrail soulever 160.000 kilog. Ce poids utile tombera & 220 kilog. pour des
moteurs de 3 kilog. par cheval, 10 kilog. pour les moteurs de 5 kileg. et enfin & 160 grammes pour des
moteurs de 10 kilog. 1.

L'importance de ces données numériques en ce qui concerne I'avenir de Vaviation nous parait trés
grande et ¢'est pourquoi nous avons cru devoir les faire connaitre immédiatement.

ANNEXE Ne 2
20 note de M. le Colonel Renard.
Sur la qualité des hélices sustentalrices.

Nous avons éludié plus haut U'influence du poids spéeifique my du moteur, nous nous oceuperons
aujourd’hui de celle du coeflicient K qui dépend de la perfection de I'hélice employée.

Cette perfection de Uhélice ou plutdl d'une famille d’hélices géométriquement semblables peut étre
mesurée par un chiffre unique auquel nous proposons de donner le nom de qualité de l'liélice susten-
tatrice,

La notion de cette gualité résulie des considérations suivantes que nous donnons sous forme de
théorémes :

Théoréme I. — Dans un appareil sustentateur quelconcue utilisant la résistance de l'air, Ie rapport {}1
du cube de poids soutenu (poussée) au carré du travail dépensé par seconde est un nombre constant..

Cela résulte immédiatement de la proportionnalité des résislances au carré des vitesses. — Le

A3 .
rapport = est la puissance de sustentation.
Théoréme II. — Dans un sustentateur orthogonal simple constitué par un plan mince de surface S/
s’abaissant verticalement, la puissance w est égale au produit 8’ du coefficient de la résistance de 'air

par la surface,
Ici les équations de la poussée A et du travail T sont :

A = K82v2 T = KS'V3,
d’oll en éliminant la vitesse verticale V:

A3

Tz = KS’ C.Q.F.D

1. Nora. — Pour les poids = inférieurs & 4 kilog., laufeur de la note ne tient pas comple de la condition (4).
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Théoréme III, — Un sustentateur quelconque est l,([l'l”‘-ll(’]lf (au point de vue de la rclallon qu1
existe entre la poussée el le travail par seconde) 2 un sustentateur plan & mouveinent or Lhogon’ll d’une
certaine surface. . .

C'est une conséquence immédiate des théordmes I et 1. Si S est cette surface du plan orthogonal
équivalent, sa puissance sera KS' tandis que celle du sustentateur est w, on aura done pour quil y ait
équivalence :

K —w dou S'= Iiz donc :

ThéorémeIV. — Un sustentaleur quelconque est équivalent & un plan orthogonal d’une surface §/
égale au quotient de sa puissance par le coefficient de la résistance de lair.
La surface S/ est la surface éguivalente du sustentateur considéré.

Théoréme V. — Dans une famille d’hélices semblables la puissance est proportionnelle au carré du
diameétre.

Cela résulte de 'examen des formules A = a,n2z* et T =v,n?z5 qui donnent la poussée et le travail
par seconde ; les coefficients a, et v, étant les mémes pour toutes les hélices semblables.

Corallaire. — Dans une famille d’hélices semblables, la puissance est proportionnelle i la surface du
cercle déerit par 'extrémité des ailes ou surface d’appui S de I'hélice, donc :

Théoréme VI, — Dans une famille d’hélices semblables, la surface cqmvulcntc S’ est proportionnelle

a la surface d’appui S.

En d’autres termes, le rapport = de la surface équivalente A la surface d’appui est un nombre

S

constant,

C’est ce nombre constant %;—: Q que nous proposons d'appeler la qualité de I'hélice sustentatrice.
Sa signification est trés elaire: une lu-hcc de quahlt, par exemple est équivalente au plan mince

-
orthogonal d'une surface double de sa surfacc " npme . La qualité est indépendante de la grandeur
£

de I'hélice, elle ne dépend que de sa forme. Elle est indépendante de la densité de P'air.
Au point de vue de la forme, le nombre d'ailes, la fraction de pas lolale et le tracé du contour des
ailes ont bien une certaine mﬂuemu sur la qzml;lc, mais celle-ci dépend plutot. du rapport j du pas G au

diamétre & (f est le pas relatif).
En prenant K — 0,083, le tablean qm‘.me donne les valeurs de Q mesurées a ‘Chalais pour une série
de 6 hélices de | métre de diamétre ne différant entre elles que par le pas relatif.

No des hélices..,.......... 1 2 3 & 5 6
Pas des hélices.......... . 0m.25 Om.30 Om.7% 41m.00 1m.25 4m: 50
Qualité Q.......couveennns 0,48 1,01 1,14 0,76 0,52 0,38

Le maximum de Q correspond & I'hélice n° 3 dont le pas est les 3/% du diamétre, Q descend trés
rapidement de part et d’autre de ce sommel. :

Nouvelle forme de Péquation en Zm. — L'équation (1) en Zm devient facilement en y introduisant Q
{lequel est proportionnel a K%) :
27.100 Q3 ‘
m= - . (2)

Le poids utile maximum augmente donc comme le cube de Ja qual!té

1l y a done le plus grand intérét & améliorer la qualilé mais on ne peut le faire indéfiniment. On
peut démontrer en effet que Q est plopmhonnel au carré du rendement p de I'hélice considérée comme
un ventilateur et que le coeflicient de proportionnalité est trés voisin de 6.

Ona done Q = 6 et comme p ne peut pas étre supérieur & I'unité, Q a une limite supérieure égale
2 6. En passant de notre qualilé optima 4,14 a cette limite supérieure de 6, en multiplierait le poids utile
maximum par 200 environ et on passerait de 10 kilog. & 2 tonnes pour les moteurs de 5 kilog. par cheval.
Sans aller si loin, on voit qu'il reste beaucoup & gagner sur la valeur de Q, nous croyons qu'on peut
attendre beaucoup de I'emploi pour les ailes, de profils courbes analogues a ceux dont les avanlages ont
été mis en évidence par nombre d’aviateurs pour les adoraplanes et notamment par le regretté Lilienthal.

Nous serions heureux que cette note ait pour résuliat de susciter de nouvelles expériences sur les
hélices sustentalrices qui sont loin d'avoir dit leur dernier mot. :
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i CHAPITRE 1V
ETUDE DE L'HELICOPTERE
1. — Généralités.

23. — Aprés avoir examiné le cas théorique ol la puissance de sustentation serait
demandée au mouvement d'un plateau lancé dans I'atmosphére, il convient de se rapprocher
davantage des conditions de la pratique, en demandant cette puissance au mouvement
d'une série de palettes, en nombre pair et diamétralement
opposées, tournant autour d'un axe vertical sous une inclinaison !
choisie convenablement d’aprés les indications de I'expérience,. |

Considérons d'abord une palette ABA'B’. tournant autour B A
d'un axe Oy et éprouvant en chaque point une résistance pro- ,"’:f i

H
C

¥

1o

portionnelle & sa surface élémentaire dedy et au carré de sa X7 py

vitesse » = wz. L'effort élémentaire dR aura pour expression, B A

\
1
K étant le coefficient de résistance : k.
- i
i
'Y

dR = Koxtdxdy,

et I'effort total R sera donné par :

Si 2h est la_hauteur de la palette, on voit facilement que R a pour valeur:

R= 2 Kt (3 — o).

Si l'on veut aveir la position du point d'application D de la résultante, on aura
évidemment Y == o, et, en prenant les moments par rapport & Oy :

4+ T ah i
RX = Ke* [ dy [ ade =5 Kho' (b —a)
S—h @ -~
_3h—a 3 (bda) b ay
dott : X=ip 22 Ffabta:

D'aprés cette expression, le point D se trouve au dela du centre. de figure G, en
venant de l'axe, et & une distance DC ayant pour expression :

e (ba) (L —aF (b +a) (b —ap

(b —a) k(b fab+ay
Dans le cas particulier out le coté AA!. coincide avec I'axe de rotation Oy, on aura
a = o0, ce qui entraine : :
3 b 9

X :';é;b o et DC-= i R= 5 I.(hmﬂb“.’
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Si a la palette AA'BB’ est associée une palette symétrique, rien ne sera naturellement
changé & la position du point d’application ni aux efforts exercés sur chaque surface. .

11 peut y avoir intérét & mettre en évidence la surface de la palette; on écril dans ce
cas :

R— K + 2k (b — g o2 212012

= KSu? —“r_lﬁ + :if + a‘-”

et I'on voit que tout se passe comme si la palette possédait un mouvement rectiligne
animé de la vitesse d’un point F ayant pour absecisse FO = f :

I‘O—\/bz db+a~

et il est aisé de vérifier que le point F est compris entre le point D et le point C : on peut
P'obtenir graphiquement en pm‘Lant sur la verticale du point C une longueur Cf égale a

a) \{%

subie par la palette, résistance dont la résultante passe par le point D.

Pour les discussions expérimentales, il est préférable de mettre en évidence la posi-
tion du centre C de la palette et les dimensions de-cette derniére; on a déja introduit la
surface, il reste 4 introduire la longueur AB = 2. On aura donc, en posant oc==2c :

(b

. Le point F sert ainsi & évaluer la loi de la résistance

b+ta=2c b —a= h=ec¢+41 a=—c¢— L

La longueur DC devient :

12

< nl Al lz
sz et 1G—C\/1+@.

On voit que pour pouveir sans erreur notable prendre pour vitesse du systeme la
2

vitesse du centre de figure C ainsi qu'on le fait d’habitude, il faut que 3 soit trés petit.

Supposant cette condition réalisée, il convient de remarquer encore que lors du mou-
vement d'une palette dans I'atmosphére, le phénoméne est loin de présenter la simplicité
supposée exisler dans 1'analyse précédente. Il y a lieu de tenir comple de l'inertie des
molécules gazeuses, ce qui correspond & un certain frottement. 1l y a lieu de remarquer
également que, si, d'une part, la force centrifuge lend & rejeter le courant vers la gauche
de la figure, il y a par contre une diminution de pression vers la droite, puisque la vitesse
de circulation va en décroissant dans ce sens. Il est bien difficile d'introduire ces deux
causes modificatrices dans 'analyse; il semble seulement possible d'admettre qu'elles sont
numériquement comprises dans l'inertic du systéme, en procédant comme il suit :

Soit I le moment total d’inertic de 1'appareil autour de l'axe Oy, ¢ la distance DG
du point d'application & I'axe : I'effort qui produit la rotation des palettes en dépit des
résistances ambiantes et des résistances passives peut éire supposé appliqué de méme au
point D, puisqulil ne s'agit que de rotation autour de I'axe, I'expression de son moment
sera Eg. Les résistances seront en premier lieu la résistance R du milieu au mouvement
des palettes dont le moment sera Rp, et la résistance de ce méme milieu au mouvement
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des autres organes, résistance dans laquelle nous devons supposer comprises les actions
perturbatrices signalées plus haut et que nous ne saurions évaluer directement : cette
résistance peut, de méme que la force motrice, étre transportée au point D et mise sous
une forme KHgw?, de telle sorte que I'équation du mouvement sera :

I ‘%’ + Rp + KHptu2 — Ep = o.

A vrai dire, le moment d’inertie I devrait étre augmenté d'une certaine quantité Al
correspondant & l'inertie des molécules gazeuses, mais comme dans le régime permanent
dw o o o
= 0, on peut éviter celte rectification et écrire simplement :
6

Ry -+ KHg?w? — Ep = 0.

D’autre part, nous avons admis :

R = KSu?/?,

de telle sorte que I'équation finale sera :
K (szf'z ~}— 11;%)5) —_— E - 0.

Dans la discussion relative au mouvement rectiligne, on a signalé que l'on devait
envisager non la surface S de la palette, mais la section A du courant gazeux. De méme
ici la quantité d’air brassée par la paletie est au moins =b*h; ce n'est donc que sous
réserves que le facteur K déduit de la relation qui précede pourra étre appliqué dans les
études de mouvement rectiligne.

Le facteur H n’est pas encore connu non plus, et rien ne permet d’affirmer en toute
sécurité qu'il soit indépendant de la vitesse .

Toutes ces difficultés montrent que I'emploi de palettes tournanies pour I'estimation
de la résistance de 'air au mouvement rectiligne peut malaisément conduire & des résultats
exacts. ce qui explique le désaccord des chiffres trouvés par les expérimentateurs et les
difficultés d'interprétation; il convient toutefois de noter que les chiffres se groupent on
deux séries autour de 0,085 et de 0,125 ; c’est pour ce motif que les applications numériques
semblent devoir étre faites avee l'une comme avec 'autre de ces valeurs. Nous nous en
tiendrons pour le moment i cette indication et a ces réserves.

Lorsque les palettes tournantes, au lieu d’étre dans un plan vertical, ont re¢u une
certaine inclinaison «, le phénoméne, abstraction faite des eflets centrifuges, est analogue
aux faits étudiés au début de ce travail, et on peut appliquer aux masses gazeuses actionnées
par ces palettes nos raisonnements antérieurs; dans chaque iranche cylindrique autour
de 'axe de rotation se produisent les courants Q' et Q’, compensés dans celte tranche
comme il a été indiqué. Comme l'inclinaison « est la méme en fous les points du plan, les
observations faites sur la position du point d’application par rapport a I'axe subsistent
intégralement; d’autre part, la comparaison des valeurs de Q et Q" montre qu’il
doit se trouver au-dessus du plan moyen. Mais en ce qui concerne l'étude immé-
diatement en cours, il y a lieu de remarquer que la position du point .d'application
n'intéresse que la résistance des éléments constitutifs de la palette, et que, pour le
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travail produit et utilisé, on peut supposer l'effort transporté au centre de poussée,
de méme que les efforts résistants, tant ceux réels que ceux représentatifs des actions
centrifuges.

Nous prendrons donc comme formule pour I'estimation des composantes verticales et
circulaires celles que nous avons déduites des théories de Rankine. En y faisant % =1,
nous retombons sur les formules énoncées par Lossel & la suite des essais déja rappelés,
c¢’est-2-dire pour la composante verticale :

KSv?f («) sin « cos « ou KSwie*f («) sin « cos a,

et pour la composante tangentielle :
KSe*f(a) sin® « ou KSwp*f (a) sin®a.

Si 'on fait en premiére approximation f ()= 1, on obtient les expressions simples
traitées par Jarolimek et que nous allons étudier directement.

II. — Régime de planement d’un hélicoptére a deux palettes.

24, — D’aprés les raisonnements et les conventions qui précédent, relativement au
transport de toutes les forces au centre de poussée de chaque palette, 'équation du mou-
vement de rotation du systéme moteur, sous sa forme la plus générale, devra s’écrire :

1 (({T(;f) = Ep — KSuw?%f(«) (1 — hcos?a) — KHp%w?sin g

ol Ep représente le moment de l'action effective du moteur et ot H, terme représentatif
des résistances passives et centrifuges, est une fonction inconnue de .
L'équation du mouvement vertical dans le sens de la chute sera de méme :

P d*
Y T g de

= KSw??*/ («) % sin « cos « — HKw?? cos a,

dw

sera nulle.
dt

et lorsque le régime sera établi, la valeur de
nfin la puissance effective du moteur, transportée & I'arbre, aura pour expression :
Enfin la y ffective d teur, transport 1 , P
T = Epo.
Les trois équations du systéme de planement, une fois le régime établi, seront done :

F =B
E'= Kp%?* [Sf («) (1 — A costa) + H sin]
Y = Kp"c_u2 [Sf (cc) A Sin g — HJ COS .
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Si nous admettons la simplification A = 1, ce qui représente la loi généralement
admise, et si I'on pose pour abréger l'écriture :
H = Sf («) sin 2 tg? §,
on aura les trois expressions :
E = Kp®w®Sf (o) sin? « (1 - tg? §)

Y = K0S/ (o) sin « cos « (1 — tg? )
Y = F: potg a sec2p,

d’ott 'on déduit entre F, Y et les éléments de I'appareil :

73

F2 = XS sec® ¢ cos? 3 >< sina : [ (2) cos?2B.

On voit que cette relation ne differe de la relation fondamentale établie dans 'étude
des aéronats & plateau que parce que le coefficient K de la résistance de lair s’y trouve
multiplié par le facteur : ‘

cos® g

. [ (2) sec? B cos® 2.

On pourra done écrire cette équation sous la forme :

Y? — SIPK (o, ) =00,
a la condition de poser :
cos®a .

K (m) = I, Sina f\ot) 1,
K (2, p) =K (2) sec? § cos® 2§

On a toujours, comme.dans I'étude précitée :

Y =P,  dS -+ =F.
Enfin la relation :
Y=F: putgasec}
revient également & la formule :
Y =F . V,
a la condition de poser :
V = putg asec2p.

Par conséquent, le mécanisme a palettes inclinées se comportera comme un plateau,
animé de la vitesse verticale V, se mouvant dans un milieu dont la densité sera multi-
pliée par le rapport K (a, §) : K,.

Toutes les formules du n® [11] sont done applicables, sous la condition de ces deux
substitutions, & V el & K,, de wp tgxasec23 et de K (a, f).

Et si I'on admet en premiére approximation, comme le font la plupart des auteurs, que
les formules des paleties peuvent servir pour les hélices d'inclinaison moyenne , on voit
que les formules du n° [11] ainsi transformées s’appliqueront a Uhélicoptere.

Mais avant d'aller plus loin, il convient d’étudier la fonction expérimentale K (a, ).

1. Nous éerivons dorénavant K, au lieu de K, pour supprimer toule ambiguilé,
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25. — Discussion de K (a, 8). — Ce parametre dépend : 1° de l'inclinaison « de la
palette, ce quirésulte surlout de la présence des termes trigonométriques ; 2° de la forme de
la palette, qui tigure dans le terme /() et 3° des agencements des organes, des « chicanes »
et des frottements modifiant I'action de l'air, ce qui est traduit dans la formule par la
présence du facteur sec?® B cos® 24.

1o Il 0’y a rien & remarquer sur les facteurs trigonométriques, si ce n'est que d’ordi-
cos?

73
- par cot a.
sin «

naire l'angle o étant assez petit, on pourra remplacer le rapport
2° En ce qui concerne le terme [ (a), les expériences de Langley ont permis d'en
faire une évaluation,
Un sait que ces expériences ont porté principalement sur trois plans d’égale superficie,
P'un étant un carré de 305 millimétres de coté, le second un rectangle allongé transversa-
lement de 762 millimdtres sur 122 millimetres, le troisiéme un rectangle de 610 milli-
meétres sur 152 millimétres. Le centre était & 9 m. 150 de I'axe de rotalion, ce grand
rayon ayant pour but d'atténuer les actions dues & la force centrifuge.
Langley a trouvé, pour le premier cas, une valeur :
. 2
M) =1 mm

déja donnée par Duchemin pour la palette carrée.
Pour les deux autres cas, il n’a pas été établi de formule ; mais M. Rodolphe Soreau
a pu traduire les tableaux numériques en une formule unique,

Posant & cet effet: = m, il éeril, avec nos notations':

[— 7
(R
1 —mitga

2m

1
[ = T 8 28

3° Enfin le terme en { représente linfluence des agencements des organes, des
frottements sur les palettes, de la courbure de ces derniéres si elles sont cintrées, etc.,
en admettant que la résultante de tous ces ellorts soit disposée normalement & la

1
surface, sielle est plane, ou a son plan tangent d'inclinaison « en son point d'application.
? ? =l
Cette valeur de # ne peut étre déterminée a priori avee quelque approximation : il faudra
la demander a P'expérience pour chaque appareil ou plutdt pour chaque type d’appareil.
1 1 Pl J

Dans ce qui va suivre nous admettons d'abord § =0, ce qui revient & envisager le cas des
palettes planes comme celles étudices par Langley, et pour lesquelles 'influence du
parameétre  s'est trouvée traduite par les valeurs trouvées pour f (x).

FORMULES PRATIQUES AVEC = o.
1° Relafions fondamentales.

26. — On voil par ce qui précede que les formules des plateaux sont applicables, & la
condition d'y remplacer K par K (a) et V par pw tg «. Nous les reproduisons donc dans le
tableau qui suit. L'emploi de ces formules et relations ne présente aucune difliculté si
Yon se donne a prior: 'angle «; le mieux dans la pratique sera d’opérer ainsi : L’emploi
d'un paramétre auxiliaire a simplifie les formules el les caleuls.

K(a) =K, cot af {z) V=jputga
Y="P,+dS 4=zl Y =K (a)SV? F=YV=K{(2)5V
P,=dS a*=4K (a): 27d [N==F

. Voir les figures p. 37.
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R'7. —2° Valeurs des éléments nécessaires pour enlever un poids mort P, sous Uinelinaison a.

o Y scca S
AVEC LE MINIMUM DE
PUISSANCE DU MOTEUR EFFORT DES PALETTES SURFACE DES PALETTES
V vitesse auxiliaire de 2 2 2
régime . ......... 3a 3=
F puissance du moteur. F 2228 : 7
R, . 3 . . .
Y effort vertical, ... ... - aF Y ' 3a2dS : n?
. 1 1 .
P; poids des palettes., ., 3 aF 5 =K dS
Il poids du moteur . ... =F =F ‘
=\ 2 |
. . . 7\ 2/y
P, poids mort,......... (a—m)F Y [1 - () / ]
a

On connait a priori I'angle =« et la forme des palettes : on peut done former K (« 1) et
calculer a. Cela fait, on se donne ou on calcule, suivant le cas, F', Y ou Set I'on applique
les expr essions du tableau. L'effort normal total supporté par les palettes, el qui fixe leur
épaisseur est Y sec a.
En examinant la derniére ligne du tableau qui précéde, on voit que 'on pourra tou-
jours déterminer les éléments nécessaires i I'enlévement d’un poids P, a la seule condition
d’avoir a

= >0, ou en remplacant a par sa valeur et résolvant l'inégalité.

4K,
tg o <C o7 dn = [ (a) cos?a.

Cette expression se résoudra par approximation, et dennanta «, dans / () cos® & une
valeur provisoire x,. Il est bien entendu que a reste toujours petit, conformément aux
indications de l'expérience.

3° Valeur des éléments nécessaires pour enlever un poids mort P,
. - - ’ F
avee une vitesse de circulation donnée [U = pu].

28. — Au licu de se donner a priori 'angle d’'inclinaison « des palettes, an peut se
donner un autre ¢lément, par exemple la vitesse de régime . Il y aura, dans ce cas, lieu
de reprendre les discussions analytiques faites précédemment, en y considérant cette fois «
comme une variable & déterminer: mais il conviendra, sous peine de se heurter a des
difficultés inextricables, de traiter la question de la méme maniére que l'inégalité précé-
dente, c’est-a-dire de donner & x une valeur , dans le terme [ () cos?a. Si la valeur «
trouvée pour « differe trop de a,, on substituera a, & «, dans les constantes, et I'on resserrera
ainsi approximation.

Nous ne donnerons pasici le détail des caleuls algébriques, mais seulement le tableau
des formules analogues aux précédentes : ces formules revétent le caractéere maximum de
simplicité par l'emploi d’un parameétre b, analogue & a el dont I'expression est:

b

= Kon (a) cos?o: dnd ol U=— pu.

On voit par ces formules que le probléme ne sera possible, c¢'est-a-dire P, positif,
que sil'on a b >1, ce qui correspond & :

brmd sec?z
;
V>R w
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F Y S
AVEG LE MINIMUM DE
PUISSANCE DU MOTEUR | EFFORT ASCENSIONNEL SURFACE DES PALETTES
tga (x, inclinaison des
palettes). .,...... 1:2h22U 1 : 2bsU 1: 220
F puissance du moteur, ¥ Y: 2bn b2S =
Y effort ascensionnel .. 2bh:F Y 25243
P poids des palettes . . . b=F Y:2b ds
IT poids du moteur, . ... =F Y:2b b3S
1
>, poids mort . ......... (b2 — 1) =F (i - B) Y (b —1)dS

Des exemples numériques vont permettre de se rendre compte de lemplm et des
conséquences des formules données dans les deux tableaux précédents.

Applications.

Incidence de {°.

29. —Nous reproduisons d’abord les résultats trouvés par Jarolimck sous une incidence
limite de 1°. Sil'on admet qu'il s’agisse de palettes planes carrées, pour lesquelles [ (2) a

pour valeur , il conviendra de prendre K, = 0,0625 pour retrouver la constante

2
I sin® o

1
de résitance 3 admise par cet ingénieur. Nous conserverons cette valeur de K, dans Loutes

les applications qui vont suivre.

Tableau des ¢léments nécessaires & Uenlévement de 100 kilog. avec une paire de palettes carrées
sous l'incidence de 1°.

SURFACE TOTALE
AVEC LE MINIMUM DE PUISSANCE DU MOTEUR EFFORT ASCENSIONNEL
des paleltes

Vitesse de circulation du

centre de poussée . .| 64 m. 2 71 m. 9 114 m. 6
Puissance du moteur.... 5 chevaux 5 ehx 63 11 chx 6
Effort ascensionnel ..., 340 kilog. 313 kilog.
Surface lotale des pa- 438 kilog.

lettes...o..oovus., 37Tm28 23 m? 5 15 m?22
Poids total des palettes.. 113 kg. b 71 kg. 2 45 kg, 8
Poids du moteur........ 126 kilog. 142 kl]og‘. 292 kilog.

Ici, nous admettons avee Jarolimeck d == 3 kilog. par métre carré de surface et

=== 25 kilog. parcheval.
Incidences pratiques.
80. — Mais cette étude de la question sous 1'angle de 1° ne peut étre considérée que

comme théorique: en premier lieu,iln’est pas certain que les lois observées soient applicables
sous des angles aussi minimes ; en second lieu, une telle inclinaison ne saurait étre admise
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sans danger dans un appareil, puisqu’il suffirait d'un eourant atmosphérique descendant
sous l'inclinaison de 2¢ par exemple, pour que la vitesse relative change de signe et qu'il
en résulte la chute de tout le systeme.

Pour ces raisons, il semble que I'angle o ne puisse étre utilement inférieur & 5° : nous
allons reprendre la question pour la valeur simple tg «=0,1, qui correspond & a=5° 43,
En outre, pour nous rapprocher des conditions industrielles dans. lesquelles se peuvent
aujourd’hui établir les moteurs, nous admettrons un poids de 6 kilog. par cheval utile
travaillant sur I'arbre : ce chiffre est certainement encore supérieur au chiffre réel.

Enfin nous considérons trois types de palettes planes : en premier lieu le type dressé
en longueur, dans lequel cette longueur est égale & cing fois la largeur, d’ott pour f () la
valeur 1,13 ; en deuxi¢me lieu le type carré déja étudié; en troisieme lieu, le type allongé
horizontalement, dans lequel la longueur est cing fois la hauteur, ce qui entraine pour
/ () la valeur 3,03. Nous avons ainsi les trois modéles :

: 11l oy
h h

l

fla)=1,13 f(a) =2 f (a)=3,03.

Si I'on recherche les conditious de fonctionnement de ces trois appareils, pour 'enlé-
vement d'un poids de 100 kilog. avec le minimum de puissance du moteur, on obtient les
résultats suivants :

VALEUR DES ELEMENTS I. PALETTES ETROITES ) HI, PALETTES LARGES
o \ 1. PALETTES CARREES
pour a = 5°43" et 11920 el allongées et courtes
Vitesse de circulation du 35,8 =~ . 26,9 24,8
centre de figure .. .. 125,4] [19] [13,35]
Puis 1u moteur 12 chx 6 7 chx 92 5 chx. 88
uissance du moleur.. .. 126) m . [9,70]
_ 263 kilog. 221 kg. 203 kilog.
't a 3 L..... . iy v
Effort ascensionnel . [a84] 276] [237]
. _ _ 29 m? 3 2% m? §
Surfacetotale des palettes [42,66] 130,66]
. 87 kg. 8 73 kg. 8 67 kg, %
Poids total &, . ......... [128] [92] [79]
. 7 kg, 6 471 kg. 6 35 kg 3
Poids du moleur........ 156,4) (84 fSST?j

Nous avons fait les mémes calculs pour une inclinaison de 11°20’ correspondant &
tga==10,2: les résultais sont portés en seconde ligne et entre crochets, pour éviter toute
confusion, dans le tableau précédent.

Ces résultats ont ¢été obtenus avec une valeur de 2K, égale & 0,125, soit le chiffre
le plus favorable. Si on avait pris la limite inférieure 0,081, on elt obtenu des résultats
moins avantageux. Il semble inutile de recalculer tout un tableau comme le précédent.
81 . . 2
135 ost sensiblement équivalent a 353 Fapport de /' (z) pour les palettes

- . )
carrées et les palettes larges et que ces derniéres sont les plus intéressantes, on se conten-

Comme le rapport
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tera de remarquer que, dans cette hypothése plutot défavorable, les chiffres convenant aux
paleties larges deviennent précisément ceux de la colonne II dans les limites d’approxi-
mation que 1'on peut espérer.

Enfin, pour pousser I'étude encore plus loin dans le sens de 'allégement de 'appareil,
nous avons refait les caleuls précédents dans I'hypothése de d =1 soit 1 kilog. au métre
carré pour les palettes.

On trouve ainsi, toujours pour P,==100 kilog. et pourles angles « = 5° 43" et 11° 20/,
les chiffres suivants:

Données générales.

P, = 100 kilog. = = 6 kilog. par cheval ou 0 kg. 080 par kilogrammaétre. d=1.
VALEUR DES FLUMENTS 1. PALETTES RTROITES ) 1Y, PALETTES LARGES
R T ) . o Il. PALETTES CARBEES N
{pour a = 6°43" [a = 11°20') et allongées N et courtes
Vitesse de circulation du 20 m., 7 15 m. 55 - 42 m. 55
centre de poussée | . [14,7 [11,15] [8,9]
. ) i 5 chx 50 3 chx 83 2 chx 97
Puissance du moteur. . .. [9,06] [5,08] [4,53]
- . . 200 kilog. 184 kilog, 177 kilog.
Effort ascensionnel ..., . (232 [204] o1]
L 66 m? 6 61 m? 59 m?
Surface totale des palettes (77,2 . (68] [64]
36 ke, 6 kilog. 59 kilog.
Poids total des palettes. 66_1:“' 6 b1 ]'Ilog 9 | ll%’
[77,2] [68] [64]
. 33 kg. 3 23 kilog. 17 kg 8
) . S <) =
Poids du moteur... .. ... [534,4] [35,9] [27,2]

Tels sont les résultats qu’il semble que 'on puisse obtenir avec des palettes planes
type Langley, en air calme et en planant. On peut les considérer comme une indication
sullisante pour apprécier en premicre étude les elfets d’hélices analogues.

Comme exemple d’emploi de la deuxiéme sériec de formules donnée n® [28], et &
titre de comparaison, nous avons réuni ci-dessous les diverses solutions du méme pro-
bleme que plus haut, enlévement d'un poids de 100 kilog. avec un moteur de 6 kilog.
par cheval utile, en se fixant cette fois la vitesse de circulation du centre de poussée,

précédemment trouvée de 11 m. 15, sous 'angle de 11°20’.

Tableau des élémenls nécessaires a lenlévement de 100 kilog.

[Palettes carrées, 6 kilog. par cheval. wo = 14 m. 15, d=1.]
,,,,, S g s —— e
To 367 110 20/ 150 18’ 290 16 I
* F miNimum ANGLE ARBITRAIRE Y minivum S MIiNmMuM
F (puissance). .. ... 5 chx 2 5,08 7,92 21,8
262 kilog. 204 195 262
Py (palettes), ... ... 131 kilog. 68 &8 3
- 5 m. 05 3,91 3,45 2,97
L N 2m. 24 2,85 3,23 3,75
N (de tours par mi-
nute) ....olel 20,6 27,2 30,8 35,8
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On admet que la distance du bord de la palette i I'axe de rotation est de 1 métre:

Les résultats pour S minimum sont un peu trop avantageux, par suite des termes en
« négligés. Du resle, ils ne sont donnés que pour mémoire, car un angle de 29° ne serait
jamais employé. ’ ‘ ' )

I11.'— De la troisicme dimension (épaisseur) des paleties de Uhélicoptére.

31. — Si, dans I'étude des plateaux, il était loisible de supposer I'épaisseur uniforme,
puisque tous les éléments étaient animés de la méme vilesse et supportaient par suite le
méme effort (sauf ceux de la périphérie, comme I'ont montré les expériences de Marey), 1l
n’en est plus de méme dans le cas d’une palette tournante, puisque les vitesses sont propor-
tionnelles a la distance de I'élément au centre de rotation el que, par suite, les efforts,

’ l bl ¥
qui varient comme lecarré des vitesses, croissent comme les carrés de ces distances. Mais,
d’autre part. les épaisseurs croissent sensiblement comme la racine carrée des efforts ; elles

part, :
seront done proportionnelles aux distances elles-mémes, et par suite : .
Pour deux palettes de surfaces semblables, les épaisseurs seront proportionnelles,
dans les points homologues, & 1'épaisseur nécessaire déterminée pour le centre de figure
P gues, I £ 2
de chacune d’elles.
Ainsi I'on aura une relation de la forme :

.

d, d,

T
d,, d.,

en admettant bien entendu que les deux palettes ont la méme inclinaison a,
Par suite, les poids Py des deux paletles seront proportionnels o leurs surfaces et aux

épaisseurs respectivement nécessaires aux centres de figure, épaisseurs qui seront elles-

mémes proportionnelles aux racines carrées des efforts normaux en ces deux points.

Or les efforts normaux sont proportionnels en chaque point, trés sensiblement, & la
résultante normale totale divisée par la surface, c¢’est-a-dire au produil Y sec« : S ou,
avec les simplifications admises, & K (2) g0 tg®asec a== K g*® sina /' (2).

; On aura done, A étant une constante dépendant de la matiére employée pour l'exé-
cution de la palette, et si, conformément aux notations admises, nous écrivons :
pw == Veola,
la relation :
P, = ASV \/f(a) sinz cot® a,

et nous pourrons appliquer 'analyse déja faite pour la recherche de I'épaisscur des pla-
teaux et les formules énoncées par suite n° [14], & la condition d’y remplacer K par K ()
et d, par A \/,Ta) sin g cot? a.

On voit immédiatement, par la formule qui donne P, que si l'on se fixe a priori la
vitesse angulaire v, on sera conduit & des poids P proportionnels au cube de la dimen-
sion linéaire, en envisageant des palettes semblables ; c'est le cas des hélices Renard ; ces
derniers propulseurs correspondent donc plus spécialement au cas d’'une marche & vitesse
angulaire v indépendante des dimensions.

Si au contraire ¢’est la vitesse V que L'on détermine, ainsi que nous I'indiquent les
formules du n® [11], les poids Py ne varieront plus que suivant le carré de la dimension
linéaire, et I'on obtiendra ainsi des moteurs & rendement plus avantageux, comme il étail
prévu au n® [22].

Reprenant donc les formules du n° [11] en y mettant en évidence les nouveaux
éléments et nous bornant au cas ol I'on s'attache au rendement maximum du moteur,
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nous dresserons le tableau suivant o p représente la distance du centre de poussée a 'axe
de rotation,

Vitesse : po = % : \/mm ou pw == EEI%
Y =2P,: 1 — 2zputg« Y = 2P, sec?y == 2I1 cosec? y
F—Yootga : F =gy
g 1= tgto
P,=P,:1—2rpwtga ou % Py = P,sec? vy = Il cosec? y
S= g&, Ycosa S = %&1

Si T'on se rappelle I'équation de condition donnée n° [14] et qui permet de poser

drd . . s y e .
120: sin®y, on obtient par substitution les formules portées & la droite des lignes du

tableau précédent, I'angle v étant défini par la relation :

i Az sin
K, cos?a {a)”

-
SISy =

Fuvaluation de A. — D'aprés Uéquation (A) de la page précédente, le parametre A
est le poids de l'unité de surface de la palette marchant normalement, c'est-a-dire pour
o = 90° & une vitesse de circulation du centre de poussée égale a 1 métre.

Or les palettes servent surtout ici a figurer des ailes d’hélice, et, si l'on considére des
hélices de surfaces semblables, ces hélices seront caractérisées par une méme valeur de «,
ainsi que de /(«). La constante A se déduira donc des essais de- résistance faits avec une
hélice de la méme famille et construite avec les mémes matériaux.

IV. — Solution générale.
32. — Toutes les formules pratiques qui précedent ont été établies en faisant § = o,

¢'est-a-dire en négligeant les frottements, les pertes dues a la compressibilité de Vair, &
I'énergie propre qui lui est communiquée, ete., ou plutét en admettant que les valeurs de
K, et de f(x) déduites des essais de Langley et des autres physiciens en tiennent suffi-
samment compte.

Malheureusement, il n'en est pas ainsi avee les grandes dimensions nécessaires dans
la pratique; il est donc indispensable de rétablir dans les formules cet angle §. Il n'est
d’ailleurs pas obligatoire de faire de mouveaux caleuls; il suffit, dans les formules des
n°s [27], [28] et [31], de remplacer K, par K, : cos® § sec® 28, et w par w sec 2. Clest-d-dire
que 'appareil travaille comme le ferait une palette théorique de méme angle «, qui mar-
cherait, & une vitesse o sec 23, dans un milieu gazeux dont le coefficient de résistance,
au lieu d'étre K, ¢'est-a-dire 0,085 ou 0,125, serait K, cos®§ sec® 23, On fera donc toujours
usage des formulaires des pages précitées, car la méme analyse s’appliquerait aux formules
générales qui sont données au n® [24]. La seule condition est donc de substituer au
tableau de notations, fait pour § = o, le tableau suivant :

53
K{a, p)=K(a) sec® g cos®2j K@ K %5”1) V=(wtgusec2?
Y =P, dS}=F Y =K (a, ) SV? F—=YV
{ 2 290
P,=dS M=rF a* =K («, §) : 27d ba:‘“"ﬂei%ﬂs =
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L’angle « peut s’'estimer d'aprés le tracé .de la palette avec une approximation suffi-
sante. L’angle § ne peut s'apprécier qu'a I'aide d'expériences faites soit avee la palette
elle-méme, soit avec une palette réduite, dans des conditions de similitude mécanique
aussi bonnes que possible. On I'évaluera en mesurant la puissance I disponible sur le
moyeu et I'effort ascensionnel Y, et substituant dans la formule :

cos 26 = Ypowtga ; I,

cos 23 est le rendement de 'appareil employé; s'il n’y avait ni frottements, ni recul, etc.,
F serait trouvé précisément égal & Yoo tga. s

Les termes en-f ne sont certainement pas indépendants de la vitesse, par suite de la
"mobilité et de la compressibilité du fluide dans lequel travaille le systeme. Il en est donc
de méme du facteur K (&, £) qui mesure l'efficacité de la surface de la palette ou de 'aile
employée, c’est-d-dire qu'un tracé convenable et reconnu tel pour marcher a de faibles
vitesses ne doit étre accepté que sous réserves avec des vitesses supérieures. Ce coeflicient
dynamique, que 'on évalue souvent par la relation K (2, 3) = Y* : S, n’a qu'une valeur
relative et spéciale dans les environs de la vitesse expérimentée.

V. — Régime de I'hélicoptére en marche.

33. — Nous n'avons examiné jusqu’ici que les conditions de planement. Il convient de
jeter un coup d'ceil sur ce qui se passerait sil’hélicoptéere, aulieu de planer en cédant d’autre
part & U'entrainement de la couche guzeuse dans laquelle il reste suspendu, était animé
d'un mouvement propre par rapport a cette couche. Ce mouvement propre donnera lieu &
des efforts de deux espéces. Il y aura d'une part l'action de la résistance de l'air au
déplacement du systéme, action dépendant essentiellement de la forme de la nacelle et de

! ) ’ 1
ses organes accessoires. Celte action est analogue & celle du venl sur un navire & voiles;
son étude est du ressort de la théorie de la navigation aérienne, en ce qui concerne la
el H
translation de Pappareil et sa stabilité. Mais il y aura d’autre part i envisager les nouvelles
pp J 1
conditions dans lesquelles se trouvera fonctionner le svstéeme d'ailettes ou d’hélices pro-
q & I

pulsives. Nous écartons actuellement le cas ott U'appareil serait muni d’ailes sustentatrices,
comme dans le type de 1'aéroplane sur lequel nous reviendrons ultérieurement. Voyons
done comment se modifie la marche du propulseur lorsque 'appareil est en mouvement
par rapport & l'atmosphére ambiante, que ce mouvement provienne d'un déplacement
propre de cet appareil ou de l'action d'un courant aérien indépendant. Le cas général
serait d'une complication extréme, mais on peul aisément traiter les cas de translation
uniquement verticale ou uniquement horizontale.

1o Régime d'ascension de U'hélicoptére.

34. — Supposons que I'appareil soit animé d’'une vitesse ascensionnelle w. Les palettes,
dans leur rotation autour de 'axe avec une vitésse v, se rencontrent avec un air dont la
vitesse relative — v doit se composer avec la vitesse pw. En appliquant les formules du
n° [4[, on voit aisément que la vitesse tangentielle du courant gazeux aura ‘pour expres-
sion !

V= .\N‘v [1 — COSs (cx —_ E)},
en posant pour simplifier ;
J2 — 2 ~2..2
W? = w? + o
w

=tge.
et . g
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On trouvera de méme pour la vitesse normale :
vy = Wsin (¢ — ¢).

La méme discussion que celle du n° [5], relativement & la combinaison des-deux
courants gazeux au contact de la paroi, conduira & énoncer pour l'effort normal résultant R :

R— % AVegin (& —¢) == KSV?sin (a — ¢},

Cet effort donnera les deux composantes déja traitées R cos (x —¢) et R sin (« —¢). Tout
se passera donc comme dans le régime de planement d'un jeu de palettes d'inclinaison
(o — =) & la condition de prendre, dans les formules définitives, pour V, au lieu de wgtga,
wptg(x—e¢) et pour K, K sec’s.

Resterait & tenir compte des frottements et efforts latéraux, qui sont représentés dans
nos formules par un angle 8. Comme la stabilité de I'appareil exigera que w soit faible
par rapport & wp, on conservera provisoirement pour 8 la valeur trouvée dans le cas du
planement, et la valeur définitive de V sera par conséquent :

V = wptg (a—¢) sec 2.
Du reste la valeur de 8 doit toujours étre vérifiée expérimentalement.

L’examen des relations qui précédent donne lieu aux observations suivantes.

La vitesse verticale w peut étre due, soit 4 un mouvement ascensionnel voulu et dont
on peut prévoir I'intensité, soit au contraire & I'action d'un coup de vent descendant. Il
sera prudent, lors de I'étude d'un hélicoptere, de se fixer a priori une valeur pour w, assez
élevée pour n’étre jamais dépassée quelles que soient les circonstances atmosphériques.

D'autre part, il y a avantage & avoir un angle & assez petit pour que le rapport
sin(a —¢) ,, e . T
i 8 écarte peu de l'unité. Cela entraine pour wp une valeur considérable et pour «
une valeur également assez élevée, ce qui justifie I'angle minimum de 5°43" que nous
avons indiqué précédemment,

Enfin le paramétre § semble devoir actuellement, méme avec les hélices les plus
perfectionnées, étre pris égal a 30°. Clest sensiblement le chiffre qui correspond aux
derniers essais des propulseurs Hervé destinés au Méditerranéen (voir Annexe n° 3).

20 Régime de marche horizontale de Uhélicoptére.

35. — Comme nous l'avons énoneé, nous examinons ici non Ia conduite horizontale du
systéme sous l'action du propulseur, mais simplement la maniére dont se comportera ce
dernier s'il est animé d'un mouvement relatif de translation horizontale par rapport &
'atmosphére, ce mouvement étant dd A des causes extérieures et nullement & son énergie
propre : tel serait par exemple le cas d'un hélicoptére se soulenant dans I'air par 1effet
de son moteur, mais remorqué comme D'est actuellement un ballon captif militaire. Quelles
sont les conditions de fonctionnement des palettes ou hélices ainsi déplacées ?

Désignons comme précédemment par w la vitesse relative du systéme par rapport a
T'air ambiant, supposée dirigée suivant l'azimut zéro ; la palette, 2 un moment quelconque,
se trouve disposée suivant Uazimut §, et les vitesses relatives de l'air par rapport 4 ladite
palette ont respectivement pour valeur:

V== cos 0,
vy = wp -} sin .
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L'effort tangentiel horizontal sera donc KSwu,® sin® « et le travail élémentaire
correspondant KSv,% sin? ad0, lequel travail évalué par quadrature pour un tour entier de
Pappareil, ¢’est-a-dire en faisant varier 6 de o & 2z, donnera :

w?

97 KS (7 + mﬂpe) sint a,
. . foL W\ L . L .
ce qui correspond a un effort moyen KS (w2} < ) sin® «, comme si la palette était ani-

. . . L. g WE . i~ .
mée en D de la vitesse de circulation /culp" -1 5+ ou, sl I'on préfere, de la vitesse angu-

wr
. ' D
laire -_7(.)\/1 —}— 5 23
) p

Cet effort additionnel & fournir pour assurer la rotation des palettes n’est pas le seul
qui résulte du mouvement de translation de 'hélicoptére. Leffort sur les deux paleties,
dirigées dans un azimut 0, donne en effet, au cenlre de figure, c'est-a-dire au pivot, une
force égale 3 2KSwpw sinOsina, S étant la surface totale des deux palettes : cette
force est en effet la différence entre les deux actions KSv,? sin? 4 et KSv," sin? ¢, otl’'on a
comme il est indiqué plus haut v, =wp -~ sin 6, v, = wp —w sin .

Cet effort correspond & deux composantes, I'une paralléle & la direction w, et qui
s'éerit: :

d*x , . .
e 2KSupw sin® § sin® «

M

et I'autre normale a cette direction, et qui s’éerit :

d*y

M

=2KSwgw sin® a sin § cos 0,

M étant la masse de 'hélicoptére.
La premigre relation se met sous la forme :
dx’ . . . dh
M —— =2KSpwsin?a sin® § -
dt ¢ di’
laquelle, intégrée pour la durée d'un tour complet, ¢’est-a~dire pour un accroissement de §
égal & 2z, donne :
M (@' — @) = 2xKSpew sin? a.

Or Paccroissement de la quantité de mouvement qui figure au premier membre est le
{ 8
-
- . . - .
produit d'un effort moyen X pendant le temps considéré —; on a done tinalement, toutes
o

réductions faites :
X = KSuwgw sin® « = KSaw?*%?sin® z tg =

et T'on vérifiera aisément que le caleul donne une valeur nulle pour 'autre composante Y.
Ainsi la vitesse relative w correspond & un accroissement o’—w de la vitesse angu-
laire, c'est-a-dire qu'il faudra fournir aux palettes Veffort d'une vitesse o’ pour qu'elles
puissent conserver la vitesse o, et en outre, du fait de la marche de ces palettes susten-
tatrices, il devra étre fourni par l'appareil propulseur une puissance supplémentaire Xzwo.
Nous en resteronsla pour le moment, nous réservant d'utiliser ces remarques et ces
formules lors de la discussion du probleme de I'aéroplane.
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ANNEXE Ne 3

Extrait d’'une note de MM. Hervé et de la Vanlx sur une nouvelle hélice aérienne.
C. R. Séance du 29 juin 190%,

Le travail disponible sur Iarbre était limité par des motifs de poids ¢t de durée de fonctionnement
du moteur. Le diamdétre maximum de I'hélice étail donné par les proportions nécessaires de la suspen-
sion et par Iobligation de manceuvrer le propulseur en tous sens sous des angles considérables. L'emploi
da mélal pour les surfaces des ailes ful adopté dans le but de réduire les résistances directes et de frot-
tement. Or, le diamétre pouvant atteindre 7 m. 30, et cette dimension devant étre acceptée afin d’utiliser
avantageusement linertie du fluide en agissant sur une colonne d’air de grande section et en réduisant
la vitesse de rotation, il devenait indispensable de choisir un mode de construction capable d’assurer la
permanence de la forme du propulseur dans les conditions de Iégtreté requises, ce qui fut oblenu par le
couplage de quatre ailes, réunies en deux paires au moyen d'entretoises.

Afin d’étudier isolément le role de chacun des éléments principaux de ce type d’hélices, nous fimes
construire en 1902 une machine d’essais permettant de mesurer simultanément, sur des hélices

réduites a i le travail et la poussée, non seulement au point fixe, mais en avancement.

« Les résultats suivants sont relatifs & une série d’expériences effectuées sur le grand propulseur an
« point fixe, en lieu clos, et en suslenlation. Cette derniére disposition était facile & réaliser grace au
« mode de calage variable des ailes sur le moyeu. On remarquera toutefois que I'hélice n’a pas été
« spéeialement construite en vue de cette application et quelle étail expérimentée dans des conditions
« défavorables. »

Nombre d'ailes.........
Nature des surfaces actives.. .

4 couplées
P

aluminium poli, bords

tranchants
DIamelre . ... e Tm. 30
Surface propulsive développée. , . 3 m? B4
Longueur d'aile (partie active).. s 2 m. 40
Largeur variable.............. . 0m, 35 & 0 m. 45
Rapport du pas au diamétre, .. 0,36
Surlace couverte.... ....... e 4% métres carrés
Rapport de la surface couverte i la surface alaire projetée. 23

Fléches des surfaces actives

5 a la base 1/13
{ au sommet 1/23
( &la base 0,81
i au sommet 0,H

6o
2m, 63

Fraction de pas totale..................... P 0 m. 184 ou 0,07 du pas
Vitesse angulaire............. e e 132 tours par minute .
Vitesse tangentielle du centre d’action.. ... .............. 36 métres par seconde
Puissance F absorbée par le propulseur............... .. 18 chevaux
Effort axial Y. ... oo e cerieas 180 kilog.
Poussée par métre carré dlailes............. .. .. e &7 kilog. ¢
Efficacité ou poussée par kilogrammeétre................. 0 kg. 133
Rapport :Tz du cube de T'effort au carré du travail. .. ... .. 3,2
Poids moyen (avec une partie de l'arbre, sans roue, ni

frein) . .....iennn e e e e . 90 kilog.

« On voit que les caractéristiques de ce type d'hélices s'éeartent notablement des données habi-
« tuelles. Les expériences préalables sur la machine dynamoméirique avaient permis de eonstater: que
« la forme des ailes et surtout leur profil courbe sont avantageux & divers points de vue; que le recou-
« yrement nul ou incomplet est trés défavorable; qu'un espacement un peu inférieur & la largeur des
« ailes assure leur indépendance, ete. Il ‘demeure enfin démontré que cette construction se préte &
« I'établissement d’hélices aériennes métalliques légéres et indéformables de grand diamétre. »
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Observations sur les résultats ci-dessus.

Nous allons déduire du tableau précédent les diverses caractéristiques de I'hélice en
question, dans les conditions de marche indiquée.

Vitesse angulaire v =—=2,2 >< 2= —13,8

Vitesse fictive V=F : Y =T m. 50,

Vitesse virtuelle d’ascension wp tg z== 36 tg x == 3,78
sec2p =V :uwptga=1,98%,

28 == 59°44’ soit 60° en nombres ronds,
K (2, ) = Y : SV2— 0,835,
K(z)=K (1, £) cos® § sec? 25 =15,01,
Kof («) =K (o) tg a = 0,527.

Ainsi, dansles conditions de I'expérience, I'hélice Hervé a fonctionné comme un plateau
éprouvant de la part de I'air une résistance spé mhqug égale a 0 kg. 527 au lieu de 0 kg. 125
ou 0 kg. 085, chiflres ordinairement admis, et animé d'une vitesse de T m. 50.

Si on admet pour K, la valeur 0 kg. 125, on en déduit pour /() la valeur £,21.

Mais ce mode d'appréciation de 1'hélice ne vise que ses qualités de surface, d’aména-
gement superficiel. Un aulre élément est Velfort utile de 90 kilog. qu’elle fournit au
systéme, déduction faite de son poids propre, lequel est ici de 90 kilog. également. En
appelant Kog () cet effort, on obtient :

o (2)=2,105.

C’est 1a la véritable caractéristique de 1'hélice Hervé.

Ce paramétre g (x) est effectivement ce qui permet d'apprécier lé parti que I'on peut
tirer d'un organe ascensionnel comme ceux que nous étudions. Il ne servirait de rien
d’établir un propulseur dont la surface savamment ménagée donnerait un rendement consi-
dérable, soit une valeur de f («) trés élevée, si par contre les nécessités de la construction
de ladite surface imposaient & L'outil un poids absorbant presque toute la force ascen-
sionnelle.

Nous eroyons que pour le moment les valeurs de § et de ¢ (2) que nous venons de
déduire ci-dessus sont les plus avantageuses qui aient été réalisées, et nous admettrons

dans les applications ultérieures :
20 =600 [la)=421 o (o) =2,10
pour le rendement des hélices sustentatrices et provisoirement pour celui des hélices

propulsives.
Les formules du n° [32], prennent alors la forme trés simple :

K (a,ﬁ)::—.ili (2) V=2uwptga.
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DEUXIEME PARTIE

Etude de l’aéroplane.
Considérations générales.

86. — Nous avons défini I'aéroplane, au début de ce travail, comme un véhicule aérien
dont on assure la sustentation au moyen de surfaces planes ou presque planes, légérement
inclinées sur l'horizon et animées dans leur ensemble d'un mouvement de translation
horizontal.

Pour 1'étude schématique qui va suivre, nous considérerons donc I'appareil comme
composé :

1¢ D'une nacelle, renfermant le personnel, les divers mécanismes ou organes de
manceuvre, les provisions de toutes sortes, la machine molrice, dont l'effet est d'imprimer
au systéme, par 'intermédiaire d'engins convenables tels qu'hélices, une vitesse horizon-
tale V. Le poids de ladite nacelle et de son chargement, moins la machine, sera comme
précédemment désigné par P, ; le poids de la machine motrice et de ses organes sera I1:
et si I'on désigne par F sa puissance en kilogrammétres et par = son poids par kilogram-
meétre utile, on aura évidemment Il == zT.

2° De deux ailes absolument identiques, planes, placées de part et d'autre de la
nacelle : tout l'appareil étant completement symétrique par rapport au plan vertical
méridien de cette derniére : les deux ailes sont montées sur un axe horizontal, perpen-
diculaire au plan méridien, et relié invariablement au bati de la nacelle. La surface totale
des deux ailes étant S, et leur densité transversale d, leur poids P, aura pour expression
P, =dS.

Lorsque le systéme se déplacera horizontalement en air calme, il sera soumis :

{¢ A Taction de la pesanteur, appliquée au centre de gravité commun et ayant pour
intensité ;

P= P0+]'[+ pS;
2° A la résistance de 'air au mouvement de la nacelle, résistance ayant une expression
de la forme :
B, = I(GVE/' (G{)
oit K est le coefficient de résistance déja employé dans les chapitres précédents, ¢ une
surface plane équivalente au contour de ladite nacelle, au point de vue de 'estimation
relative de la résistance, et V la vitesse de translation du systéme;

3¢ A laction de l'air sur les deux ailes. Celte action comporte principalement un
effort normal N, que nous avons étudié précédemment et ayant pour expression :

N = KSV: sin of (a);

o étant (fig. 1)I'angle d'inclinaison des ailes sur I'horizontale. Mais & cette pressionN,
qui serait effectivement la seule i considérer utilementdans le cas de surfaces de faibles
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dimensions et réellement planes et polies, il convient, pour les applications, d'adjoindre
un effort tangentiel de frottement T, car les surfaces des ailes seront en réalité quelque
peu infléchies. Cet effort tangentiel T aura pour expression:

T= ¢SV,

¢ étant le coeflicient de frottement de I'air sur la paroi considérée.

Nous ne reproduirons naturellement pas ici les raisonnements déja énoncés sur la
division du courant d’air en branche ascendante et descendante : ces raisonnements, comme
Fon sait, ont abouli & justifier la forme donnée a I'expression N, el nous supposerons que
le paramétre g les traduit numériquement.

Ces efforts appliqués aux ailes donneront une résultante située dans le plan vertical
de symétrie, et dont le rdle sera par suite, d’abord de fournir une composante horizon-
tale X, ayant pour expression :

X=Nsina—-+ T cos a.

Fre. 1.

puis une composante verticale Y, qui transportée de méme au centre de gravité, devra
satisfaire & la condition : :

Y=P
et aura pour valeur:
Y = Ncosz— Tsina;

mais dont le role sera aussi de fournir un couple de basculement autour du centre de
gravité, a raison de la distance du point d’application de ladite résultante au centre de
gravité en question.

Distance du point d’application au centre de l'aile. — D'aprés des. expériences faites
par Uingénieur de la marine Jeessel a Indret, avec des plaques rectangulaires immergées

dans I'eau, le point en question est toujours dans la région amont, et & une distance du
centre de figure donnée par la relation :

d=0,62a2(1—sing);

a étant le demi-c6té du rectangle dirigé dans le sens du courant et a l'angle d'incidence
de celui-ci sur la plaque.
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M. Vingénieur Soreau, & la suite d’essais faits & Argenteuil, donne, également pour
T’eau, la relation :
. :

d=10,5a:(1 4 2tg a).
Il a rapproché cette relation des résultats obtenus par Langley dans les expériences

que nous avons déja relatées, et trouvé des chiffres assez concordants, comme le montre le
tableau ci-dessous.

d .
. vaLeEur de ~ donnée par
INCIDENCE a

o

0,6 (1 — sin «) 0,5 :(1 4+ 2tga) 0,325 cos? « Langley
900 0 0 0 0
8o < 0,001 0,048 2 ne ) 0,042
6703 0,047 0,087 convient 0,084
5508 0,104 0,127 pas 0,126
4o 0,176 0,166 0,163 0,166
3508 0,249 0,205 0,209 0,208
280 0,318 0,243 0,253 0,250
2005 0,390 0,287 8,286 0,202

De notre cété, nous hornant i 'examen des résultats de Langley sous des incidences

inférieures & 45°, chiltre bien au-dessus des inclinaisons & considérer dans la question
actuelle, nous avons été conduit & écrire :

d = 0,325 acos? a.

Cette relation, inexacte au-dessus de £5°, mais suffisamment précise en dessous, et
d'un maniement facile, sera provisoirement adoptée dans les discussions ultérieures.

Le tableau ci-dessus “donne les résultats numériques des diverses formules, et
justifie 'emploi que nous ferons de la relation du cosinus carré dans le présent chapitre.

Désignons maintenant par D Ja distance du centre de figure de l'aile & I'axe horizontal
sur lequel elle est emmanchée. Le moment de la poussée aérienne par rapport a cet axe
aura pour valeur :

(D + d)N = RSV sin af () (D1 0,325 a cos* a).

La fatigue de cet axe, toutes choses égales d’ailleurs, doit évidemment étre réduite
aulant que possible: ce qui conduit & admettre pour D une valeur négative, c’est-a-dire
qué I'axe d’emmanchement des ailes doit étre placé au-dessus du centre de figure ; comme
I'angle « est toujours trés pelit et par suite cos « trés voisin de l'unité, on voit qulil y

aura d’ordinaire avantage & prendre pour D une valeur absolue égale en nombres ronds a

1
0,3 aoui - a.
3
La facilité de la mancuvre, surtout en ce qui concerne les changements 4 faire subir
&' Tangle d'inclinaison on d'attaque =z, conduit & place le centre de gravité de laile
précisément sur l'axe d’emmanchement. :
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Enfin si le centre de gravité des deux ailes, qui se trouve par suite & l'intersection de
I'axe et du plan vertical de symétrie, est en méme temps sur. la verticale du centre de
gravité de la nacelle, il en sera de méme du centre de gravité général, et 'on se trouvera
ainsi dans les meilleures conditions de stabilité, les moments pertubateurs étant réduits
au minimum,.

On voit donc que, d’'une maniére générale :

1° Le centre de gravité de la nacelle compléte devra &lre placé aussi bas que possible ;

20 L’axe d'emmanchement des ailes devra étre aménagé au tiers environ de la
longueur au-dessus du centre de figure;

30 Il devra soutenir le centre de gravité des deux ailes, et les trois centres ainsi
définis se trouver dans un plan perpendiculaire au plan de symétrie de Uappareil.

Ces principes supposés vbservés, nous allons maintenant étudier le fonctionnement
en régime normal de 'aéroplane ainsi défini.

1o Etablissement des équations générales.

8'7. — Considérons l'aéroplane en marche en air calme, animé d'une vilesse de
régime V. L'action de l'air sur les ailes donne naissance & une composante Y qui doit
équilibrer le poids de T'appareil, de telle sorte que I'on a les deux relations connues :

Y = N cosa— T sin gz,

Y =P, + dS + =F.
En outre, il se produit une composante horizontale X donnée par
X = Nsina -4 Tcosa,

a laquelle s’ajoute la résistance R = K'sV* opposée au mouvement de la nacelle, et
comme tout l'appareil se déplace avec la vitesse V, il faudra que le moteur fournisse une
puissance I donnée par la relation :

F=(X+R) V.
Nous avons indiqué d'autre part que dans le cas d’ailes planes, on avait :

N = KSV?sin «f («) T = oSV?
et, par suite, en écrivant K/ (a) == K/,

Y = K'SV*(sin a cos « — ¢’ sin «),
X + R == K'SV? (sin*a - ¢’ cos a4 ¢'),
F—(X+R) V.

Si nous joignons & ces relations la formule bien connue :
Y =P, + dS+ <F, 1)
on se retrouve en présence d'un systéme analogue & celui du probléme des plateaux traité

au chapitre II1 et comportant les mémes solutions analytiques, sous réserve de quelques
précautions.
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Mais avant d’entreprendre ainsi la discussion du cas général, nous allons, de méme
qu’il a été fail pour I'hélicoptére, traiter d’abord des cas plus simples, dont la discussion
éclairera sur 'importance relative des divers paramétres.

CHAPITRE 1
Cas d'ailes plates, type Langley, avec moteur directement appliqué.

38. — Supposons peur commencer que les ailes plates puissent étre assimilées aux
plateaux de Langley, ce qui revient & admettre le coeflicient de [rottement ¢ comme
négligeable. Supposons en outre que la surface fictive de la nacelle, ¢, ne soit pas négli-
geable devant la surface S des ailes et que I'action du moteur s’applique directement a

I'aéroplane.

39. — M. l'ingénieur en chef de la marine Henry a donné dans ce cas une solution
géomélrique trés élégante que nous allons reproduire.

L’équation fondamentale (1) peut s’écrire :

P, + =RV =N (cosa — =V sina) — dS; (1 bis)
le premier membre est indépendant de l'organisation des ailes de l'appareil; reste a
discuter le second.

Sans faire d'hypothése sur la forme de la fonction N, remarquant seulement qu’elle
dépend de 'agencement des ailes et de leur angle d’atlaque , on voit de suite, au simple
examen de I'équalion, que, toutes choses égales d’ailleurs, il y a une valeur de « qui rend
maximum le second membre; ainsi, si I'on prend plusieurs aéroplanes ayant méme confi-
guration, méme surface S, méme poids dS, des axes d'emmanchement différents, mais
paralleles, et s'ils sont construits chacun de fagon que son centre de gravité soit sur cet
axe, il y aura 'un de ces aéroplanes auquel correspondront une position de son axe et une
valeur de a pour lequel le poids utile transporté sera maximum.

Considérons la courbe joignant les extrémités des forces N en position, données par
les différents aéroplanes dont nous venons de parler, le maximum cherché du second membre,
soit, sur la figure p. 47, de OA — OB >< =V, s'obtiendra géométriquement en menant &
la courbe une tangente faisant avec I'horizontale un angle 3 ayant pour cotangente =V, et
si M est le point de contact ainsi obtenu, 'angle MOA est la valeur de x la plus avanta-
geuse pour la grandeur du poids P, dans les conditions indiquées plus haut. Le maximum
ainsi obtenu géométriquement est OT; il sera d’autant plus grand que le tracé des ailes
relévera davantage la courbe des N.

51 T'on admet, comme il est d'ordinaire, que N est de la forme nSV?, la courbe des n
ne dépendra plus que de la configuration et de la direction de I'axe d’emmanchement.

Nous allons appliquer cette méthode aux cas de palettes carrées type Langley, avec
axe d'emmanchement paralléle & son ¢oté.

Dans ce cas particulier, soit, pour n, la valeur (v. n° 23) :

sin g

n=10,12 m

= Kysine : (1 4 sin® o).
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La courbe polaire dont on vient de donner I'équation est une ellipse ayant pour lon-
gueur d'axe 0 kg. 06 et 0,06\/2; ces axes sont horizontal et vertical; 1l'origine est un
sommet du petit axe.

En ce qui concerne la détermination de 'angle «, le plus favorable par la construction
géométrique exposée plus haut, on trouve par le calcul que l'angle 3, avee I'horizontale de
la tangente en un point quelconque de la courbe est 1ié a 'angle « que fait le rayon polaire
de ce point avec la méme direction horizontale par la relation :

1 —sin®a
tg‘ B: ztga e
1 —3sina
Cette formule montre que quand x est petit, I'angle § et sa tangente sont sensiblement
le double de I'angle « et de sa tangente, ce qui revient a eonfondre la portion de courbe
avec le cercle osculateur au sommet. Voici les chiffres correspondants :

a=4° 3 =28
o ==8° 3 = 160 20/
% =120 3 = 2o,

(Silon avait n==0,12 sin«, les angles 3 seraient exactement le double des angles .)
Done, sous la réserve de se tenir a de petites valeurs de «, on calculera cet angle

par la relation :

tgo ==

DOl =
-
oy
o7
I

In supposant l'angle z ainsi déterminé et assez petit pour que l'on puisse négliger
sin?¢ devant I'unité, prendre tga = sina et cosa =1, 1'équation fondamentale (1 bis)
devient :

Py 4+ Py =1/2K,SV2sin a cos a — KoonV?,

. S
et, comme l'on prend sin 2 = tga = 57 ! il vient :
AT
Ksv .
Py 4 Py = vl Kpox V3,

On voit que = étant donné, le second membre passe parun maximum pour une valeur

de V donnée par :

ou : d = 12% e —_ -g“q (2)

valeur qui augmente avec S, toutes choses égales d'ailleurs, de telle sorte que cette relation
donne aussi le minimum de S lorsque d, =, s et P, sont fixés.
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L'angle «, correspondant & ce maximum de d ou au minimum de S, prend alors

tga:\/-—s—.,

En résumé, si on se donne les poids élémentaires d et =, on voit que pour pouvoir
sustenter, en plus du poids des ailes et du moteur, un poids utile P, il faut une surface
minimum S donnée par la relation (2), dans le cas d'ailes carrées, montées sur axe parallele

au coté. La vitesse de régime V et I'angle o sont définis par :

pour valeur :

S 1 3
1 201:2 et 1g‘ fr =] ;VT B

'V’E —_—

On remarquera que la valeur de tg o en fonction des éléments = et V est la méme que
celle que nous avons trouvée par une voie toute différente, en cherchant I'inclinaison o
des ailes de T'hélicoptere de surface minimum pour une vitesse donnée (voir n® 27).
Clest qu'en elfet, le probléme est le méme, et la concordance des résultats vérifie le bien
fondé des deux méthodes d’analyse.

Toutes les formules précédentes se calculent aisément, & I'exception de la relation 2,
mais il est facile de résoudre celle-ci graphiquement.

Application.

40. — M. Henry a fait des applications de sa méthode & la recherche des conditions
de sustentation d'une nacelle chargée & 500 kilog., moteur non compris, pour différentes
valeurs de d et de =. Cette nacelle était supposée avoir une section maitresse de 4 meétres

. . 1 .
carrés et des formes telles que sa résistance axiale ne fit que le 0 de la résistance plane,
e
ST 4 s . - .
c'est-ii-dire que ¢ == W= 0,1. Ce sont a peu prés les conditions de la nacelle admise
1

pour certains sous-marins. Pour K, l'auteur admet 0,12, de telle sorte que la résistance
de la nacelle en kilogrammes est 0 lig. 012V?* et celle d'un élément d’aile carrde, a I'incli-

naison o, 0,06 -—J—b—lﬂf—— SV2, ou, en négligeant sin®«, 0,12 sin 2 SV2,
1 4 sin® 2
On voit de suite que si sin x==0,1, ce qui correspond & une inclinaison de 5° A EY
résistance de la nacelle est égale & celle des ailes; or la résistance de la nacelle n'a pas,
comme celle des ailes, la compensation de contre-balancer l'effort de la pesanteur; le
travail qu'elle réclame du moteur est dépensé sans aucun profit, et comme ce travail est
proportionuel au cube de la vitesse de régime, les grandes vitesses préconisées pour
I'aéroplane par certains auteurs sont, comme les tableaux numériques le metlent en
évidence, beaucoup plus & redouter qu'il ne semble devoir I'étre au premier abord. Aussi
éludierons-nous une autre solution que celle qui vient d'étre exposée.
Dans ce chilfre considérable de chevaux nécessaire & la marche de I'appareil, I'influence
de la nacelle est loin d'étre négligeable, comme le montre le tableau ci-dessous :
Puissance totale : 378 310 258 233 220 208 201 189
—  exigée par la nacelle : 93 68 60 B8 B B3 Bl 48
utilisée pour lasustentation : 285 232 198 175 165 155 150 141

Or, la puissance nécessaire & la nacelle varie comme le cube de la vitesse de marche
il v a donc le plus grand intérét & réduire cette dernitre, et & coté de I'étude de surface
minimum qui vient d’étre faile, nous allons rechercher, comme pour I'hélicoptere, les

conditions de marche avec le minimum de puissance.
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Tableaun dornant pour un aéroplane carré emmanché parallélement au c6té et avee les constantes de Langley

pour diverses valeurs des poids d el = ;

1° Le minimum de la surface S en metres carrés néeessaire pour sustenter une nacelle pesant
500 kilog., en plus des poids des ailes et du moteur, la nacelle étant du type indiqué plus haut;

20 La vitesse de régime V correspondante;

3¢ L’angle « correspondant & ladite vitesse ;

4° La puissance F correspondante en chevaux.

VALEUR VALEUR DE 7% PAR CHEVAL [ VALEUR VALEUR DE = PAR CHEVAL
de — — de T — e OBSERVATION
d fak | 12 10 8 Gk d {4k 12 10 8 Gk
‘ S 108 | 54,2 ‘ S Onn'ains-
12 ) \% 89 8% R v . erib que les
| 3 | 4016 ? a 20387 3012 |: valeurs de S
- F 378 \ comprises
- 92,4 47,5 © 8 125,5] 18,5 ) lentre  34m?
10% 5 v 82 | 78,6 4k \ Y 63,8 ,U ¥,3 ebdh0m?; on
, a 30 46| 4033 I o 20 481 Fo 20/ n’a inscrit
. F 310 i\ F aucun chif-
( S 132,51 80 42,6 3 146 (110,5] 84 §ifre lorsque
ge | vV 79 [7606' | T4, 4 3 VvV o[59,3) 60 | 61,7 S sortde ces
( o 20447130 307 | 42 &Y ( a {2035 [2058" (3030 " limiles.
F \ F
\ S 107 70 /8 81,51 34,2
ok ! A\ 2 S ) 9k \ Vv 61,2]66,7
| e 302" | goger| 3o ? « 021" 5021
. F 233 I 189
| |

Recherche du moteuar minimum.

41. — 5i dans I'équation fondamentale :
Y = P, 4 dS - F, | (n

on remplace Y et F par leurs valeurs, et si on pose P, == Fz, on obtient I'équation du
3° degré en V :

(= = @) K’ (s 4 S sin?s) V¢ — K'SV sinacosa - dS =0  (2)

dont la discussion va donner successivement les indications cherchées.
La condition de réalité des racines exige d’abord :

. AR sinda cos® o

A 2 S l
(m4ap £ 37 d <U—}_Ssinis:)’

et le maximum de z, ¢’est-a-dire le minimum de moteur pour un poids P,, s'obtient lorsque
les deux membres de 'inégalité sont égaux. En méme temps, V doit étre la racine double
de I'équation (2), ce qui donne la valeur :

2 —3d : K'sinacosa.
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Nous avons, dans I'étude de I'hélicoptére, introduit utilement les deux parameétres
costa .. cos® g . _cosy
flo) =K' ——— el &= 4K («) : 2Td = a" —

s1n g S11 ot

, ce qui conduit aux

K (a) =K, S a

relations :

2
V= _—cota

3a déja obtenus dans le cas de I'hélicoptére
Y =3P,
et x—{—:x:asin?o:—é.——.
o Ssinta

Bl
-

Si la nacelle était & résistance nulle, on retrouverait la troisieme relation r=(a -
formulée précédemment puisqu'il faudrait poser ¢ = o.

Puisqu’il n’en est pas ainsi, on peut chercher & disposer de «, sur la valeur duquel il
n'a été fait aucune hypothése pour rendre = 4 # maximum maximorum.

A cet effet, supposons que o reste toujours assez petit pour que I'on puisse négliger
les puissances de sin = ou de tg « supérieures & l'unilé, et que, dans les limites consi-
dérées, les variations de f () soient également négligeables, c'est-a-dire que K’ reste

constant; on a alors la valeur simplifiée :

LK s :
(ﬁ+£) gmmn*a(m),

/
qui passe par un maximum lorsque l'on a :
S sinfa = 3Jq,

d’oti la valeur, toutes substitutions faites :

ﬁ‘i’mtga,

ce qui veut dire que :
Avec un adroplane aux surfaces données S et s, 'angle d’attaque le plus avantageux
est donné par :
tg?z ousin®a = 3o : 5,

et la vitesse de régime correspondante par :

ou a5

&l o

La relation qui donne = 4 « se transforme en :
3 .
P, = (-7}— a—=)F,

P, 4 1T = 2P,.

et I'on vérifie aisément que l'on a :

L'ensemble de ces formules permet de résoudre le probleme de I’établissement de
aéroplane 4 moteur minimum ; pour en rendre le calcul aisé, on fera usage d'un angle
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auxiliaire 3, défini par la relation tg? 3= tg «, et tous les éléments sont alors reliés entre
eux par ce parameétre, a I'aide du systéme de relations :

S = 3¢ cottd

tg o= 1tg?3
: 2
V:%-,-coto
.8 .
}‘iB—"%,PSth
P, =2P, —II.

Dans ce systéme, on connait a priori la surface fictive ¢ de la nacelle et son poids
complet P,; on ne peut, il est vrai, résoudre le probleme directement en fonétion de ces
deux données, mais on y parvient en se donnant deux ou trois valeurs arbitraires de & ou
de 3 et en tragant graphiquement la courbe des valeurs correspondantes de P, et d'un
autre élément, tel que S, « ou V. Cette courbe donnera, pour la valeur cherchée de P,
la valeur correspondante de I'autre élément, ce qui donnera par un calcul facile I'angle 3
et, par suite, les autres éléments cherchés.

Les deux formules :

[

P.):"——T;.(a’coLE—.N)F
8d
et F =" cots 3

serviront de vdérification aux valeurs ainsi déterminées.

42. — Nous avons fait diverses applications de cette méthode au cas de d 2= 5 ef
= == 6 kilog, par cheval, avec ¢ = 0,1 traité précédemment par la méthode Henry
pour la recherche du minimum de surface. Le tableau qui suit résume les résultats
obtenus.

Tableau des éléments d'un aéroplane & paletles carrdes.

Poids de la nacelle compléte : variable. — Surface fictive : 0 m, 1,

K' =0,12 d—=15 % = 0 kg. 080 par kilogrammetre utile.
a fe28" [ 2047 | 2052 3e 3o 9 30487 | 3o 20 3o 2 4° 026" | He® Be 437
v | 7om 56| 40,9 | 48,9 | 47,7 | 46,6 | 463 | 46,1 | &2 | 401 35.3
F 220 P 113 80 T4 70 65 63,5 62,7 48,6 51,3 28,3
I 1.320x 678 480 b4k £20 390 381 376 202 248 170
S | 46tm2 | 489 | 120 | 109 | 99 | 906 | 88,1 | 86,5 | 61,4 | 498 30
P | 2.305% | 946 600 545 £9% 453 40,5 32 307 249 150
P, 3.200% | 1.244% 720 646 576 517 500 489 322 250 130

Avant d’entamer la discussion des résultats ci-dessus, rappelons hautement que ces
chiffres ne sauraient étre considérés comme donnant des bases définitives a un projet
d'aéroplane, mais seulement comme des renseignements sur la valeur relative des divers
¢léments.

La premiére colonne, ott x == 1°28', est donnée & titre de curiosité, pour étre rappro-
chée de la solution Henry. On voit que, avee un moteur de 220 chevaux, a 6 kilog. par
cheval utile, on peut :
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Ou, marchant & 70 metres de vitesse, sous l'incidence de 5° 8/, avec une surface d'ailes
de 37 m. 6, soutenir une nacelle de 500 kilog. ;

Ou, marchant également & 70 métres, mais sous I'incidence de 1°28', avec une surface
d'ailes de 461 metres, soutenir une nacelle (de méme résistance & l'air) chargée &
3.290 kilog. ;

Et, par conséquent, obtenir, par des variations entre les limites, les solutions inter-
médiaires.

I'angle de 5°8', signalé comme convenant 4 la marche & 70 métres, avec surfaces de
37 m. 6, pour la nacelle de 500 kilog., peut aussi, avec une surface équivalente, mais en
marchant & 37 m. 4 seulement, convenir pour une nacelle de 174 kilog., en se contentant
d’un moteur de 33 chevaux.

La nacelle type de 500 kilog., soutenue & 5°8', comme il est dit plus haut, avee
220 chevaux au moteur, peut 'étre également sous I'angle de 3° 20’ avec un moteur de
63 chevaux seulement, avee 86 métres de surface d’ailes.

La méme nacelle, chargée & 250 kilog., soit moitié du poids primitif, exigera un
moteur de 41 chevaux, avec 50 metres de surface, et une incidence de 4° 26, ¢'est-a-dire
au moteur des 2/3 du moteur précédent.

Toutes ces indications ne valent que par les présomptions qu'elles conduisent a
formuler: il est bien certain que I'on ne fera pas usage de palettes ou d’ailes carrées, ete. ;
essayons done maintenant de nous rapprocher d'un peu plus prés des conditions de la
pratique.

Négligeant la question de la surface minimum, sur laquelle la discussion précédente
a fourni des indications sullisantes pour pouvoir étre reprise en cas de besoin dans chaque
cas spécial, nous nous attacherons spécialement, comme dans la discussion de I'hélicoptére,
a la réduction au minimum du poids du moteur.

Supposons d’abord qu'au lien d’ailes carrées pour lesquelles [ (&) = 2, nous fassions
vsage, comme dans U'exemple du n°® 30, d’ailes larges et courtes pour lesquelles f ()
= 3." 11 conviendra dans ce cas, si nous admettons qu’il soit fait usage de la méme
3
5 ’

rapport de la nouvelle valeur de f(z) & 'ancienne ; la valeur de K’, au contraire, est 2
] 1 ) ¥ b

nacelle, d’attribuer a celle-ci une section fictive ¢ égale non plus & 0,1 mais a 0,1 :

multiplier par ce rapport.
Sous 'angle de 5° 43/, déja employé pour I'hélicoptére et pour les ailes carrées, nous
obtiendrons successivement :

S=20m? V=28 m? F=15chx 4 et P, = 108 kilog.

Si, au contraire, nous gardons la méme surface 30 métres carrés pour les ailes, en
faisant varier les autres éléments, les formules nous donneront :

o = 4o 40/ V=32 m. F =21 chx P, = 175 kilog.,

c'est-a-dire que nous obtenons le méme résultat que sous l'angle de 5° 8 (avant-dernitre
colonne du tableau) mais avec un moteur de 21 chevaux au lieu de 33,5.

Enfin admettons, a titre de curiosité, que nous puissions constituer les ailes 2 I'instar
de- celles de Thélice Hervé dont nous avons déterminé les caractéristiques dans 'annexe
n® 3 (p. 45), lesdites caractéristiques étant K'= 0,527, d'ott f(a) = 4,39, si K, = 0,12
et d =90 : 3,84 ou 23,%; mais prenons seulement d = 20 pour faciliter les calculs; ce
chiffre serait d’ailleurs encore trop élevé dans la pratique, car une aile se déplagant en
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ligne droite fatigue moins qu'en tournant et demande par suite une moindre épais-
seur.

Dans ces conditions, en conservant aux ailes la surface totale de 30 meétres carrés,
remarquant que ¢ prend la valeur 0,1 : 4,39 et substituant en conséquence, on trouve :

o= 20435’ V =49 m, F =176 chx et P, == T46 kilog.,

et enfin, si l'on admettait que le poids d pit 8tre maintenu a 5 kilog. comme dans les
exemples précédents, on obtiendrait :

o= 2045 V=2im.5 F=9chx 4 et P, = 244 kilog.

Nous arréterons la ces applications numériques dont il convient de retenir surtout
l'avantage qu'il y a, contrairement 4 une idée souvent émise, 2 marcher & des vitesses
relativement faibles. Cette nécessité sera rendue encore plus palpable si nous examinons,
comme il a été fait pour I'hélicoptéere, la détermination de U'épaisseur ‘de l'aile d’apres la
vitesse de régime. C'est ce qui va faire 'objet des développements qui vont suivre.

Détermination de Uépaisseur de Uaile d'aprés la vitesse de régime.

43. — Ainsi que nous l'avons fait remarquer dans l'étude des plateaux et dans
celle de I'hélicoptére, I'épaisseur de l'aile semble devoir étre prise proportionnelle & la
racine carrée de I'effort normal qu’elle supporte, et s’éerire par conséquent :

d=d, /NS,

et comme nous avons admis pour N la valeur:

N=K’'SV2 sin ¢,
on aura successivement :
d == d,V \/m
P, = d,SV /K sin 2,

et pour I'équation fondamentale, en posant ¥ —=¢+ S sin?a:

P, 4 d, SV y/

sin ¢ -+ K'z¥V* = K'5V? sin « cos a. €3]

Cherchons, comme précédemment, le rendement maximum du moteur et soit a cet
effet P, == Ilo. L'équation (1) divisée par V deviendra :

K'z% (1 4 #) V2 —K'SV sin « cos 2 + d;8 \/K’ sing=10, (2)
ce qui donne pour condition de réalité des racines:
12 < Ssin z cos* o \/K sin « : bed, 3.

Le maximum de # s’obtient en transformant cette inégalité en égalité, et le maximum
maximorum en disposant de o de maniére & rendre le second membre maximum. Le méme
caleul que précédemment donne I'équation de condition :

3

Ssinfa=30= - I,

&
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en admettant toujours que x soit sullisamment petit pour que 'on ait sans erreur sensible:
sinz ==1tg « et que f (2) reste constant, afin qu'il en soit de méme pour K, et I'on obtiendra
par substitutions successives :

14 2=3yK sinaxcos® a: 16 =d, sin«
V =2d,: \/K’ sin ¢ cos? a (racine double de I'équation 2)
Y = dd*Ssec «

F f-,/; YViga
II=x=F
Py==Fz

Py=d,VS {/K sin a =2d,2S sec o == §

Ces relations deviennent beaucoup plus maniables si I'on remarque, ainsi que I'on
a lait dans le cas de I'hélicoptere, que = étant forcément positif, on doit pouvoir poser:

16 = d,sina

3\/1(’ sin g costa

9K’ sinty

d'otr : Sin g = ot
256 =2d,2’

ce qui donne le tableau des formules, analogue & celui du n° 31 :

\ . . 6o
P, = bd s cos*y:sin®a ou sing=d, \/F cos?y
o

V- 3 sin? v cot «
- we

a7

Y = 2P, sec*y == 2]l cosec® v,
F=Ptg’y:=

I1=P, tg?y

P, == P, sec?y =2d*S.

La différence entre les valeurs de V pour le cas de I'hélicoptére et pour celui de
'aéroplane tient & la présence de la surface ¢ dans ce dernier cas.

Avant de passer aux applications numériques rappelons les théoremes fondamentaux
qui semblent résulter de cette analyse et pouveir étre énoncés comme régles essenticlles
i suivre.

1° La « surface portante » S sin® « doit toujours étre le triple de la surface fictive de
la nacelle.

20 Lorsque la densité transversale des ailes est fixée d'avance, le maximum de ren-
dement du moteur, directement appliqué, est obtenu lorsque le poids des ailes est la moitié
des poids réunis de la nacelle et du moteur, c’est-a-dire le tiers de l'effort ascensionnel
total.

3* Lorsque L'on peut disposer de ladite densité des ailes, le maximum de rendement
du moteur directement appliqué est obtenu lorsque le poids des ailes est égal aux poids
réunis de la nacelle et du moteur, ¢'est-a-dire & la moitié de I'effort ascensionnel total.
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Dans ces théorémes, nous entendons par moteur directement appliqué un moteur
supposé produire tout son effort sous forme immédiate de poussée horizontale. Nous
verrons en effet plus loin que dans les cas réels de la pratique, ot le moteur n’agit pas
ainsi, ces régles ne sont plus admissibles.

Applications numériques.

44. — Conservons toujours notre nacelle & surface fictive 0,1 dans le cas de palettes
carrées ott K/ = 0,12, autrement dit a résistance R = 0 kg. 012 V2. Nous avons trouvé
pour enlever ladite nacelle, lestée & 500 kilog., avec d =15, une vitesse V=46m. 3 et un
angle «— 3°20’. Ces conditions, supposées admissibles, entrainent pour d, la valeur:

®

. R o A0 90 v
do = g /0,120 3 20" =1,296.

k)

Cela posé, on commence par déterminer l'angle v par la formule:

sinty  256xd? /b
cosy 9K P,

(on dresserait & cet effet, en cas de besoin, une table donnant en fonction de y la valeur
du premier membre).

Connaissant ainsi y en fonction des données du probléme, c'est-a-dire des constantes
=, do et K', et des éléments g et P, relatifs 4 la nacelle, on obtiendra aisément toutes les
inconnues par les relations du n° 43. A cet effet, ayant obtenu directement P, Il et I, en
vérifiant que L'on a bien en méme temps Py = P, - II, on calculera 5, « et V par les
formules plus simples :

S—=P,:2d2,
sin o == \/30’ : S,

V=4 sin®vy: sin g,

T 8=

les expressions compliquées du n° &3 pourront donner des vérifications.
Conservons toujours notre nacelle & surface fictive ¢ == 0,1 dans le cas de paleties
carrées ou K/ = 0,12, autrement dit & résistance R = 0,012 V2. Nous avons trouvé pour

enlever ladite nacelle, chargée & 300 kilog., avec d = 5 une vitesse V=46m. 3 et un
angle o = 3° 20’, ce qui suppose pour les matériaux de laile une valeur d, == o
46,

: \/(T),Tﬂ sin 3°207 = 1,296. Nous avons trouvé d'autre part, pour des ailes supposées
conslituées comme 'hélice Hervé, d == 20, aux vitesses V == 49 et un exemple g == 2% 35
ce qui donne d, = 2,59. Dans ces deux cas, la densité transversale la plus favorable
d =2d,? prend la valeur 3,36 et 13,%. Nous avons caleulé a titre d’exemple les nouvelles
conditions d'enléevement de la nacelle précitée.

Le tableau qui suit reproduit les différentes solutions obtenues, toujours simplement
a titre d'indications car, d'une part, les formules théoriques ne peuvent jamais étre
adoptées sans controle expérimental, et, d'autre part, le poids de 6 kilog. par cheval-vapeur
utile est certainement trop faible, ainsi que nous I'établirons au cours d'applications plus
proches de la pratique.
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Tableau d’enlévement de la nacelle de 500 kilog.

Moteur & 6 kilog. par cheval. — Ailes diverses.
PLANES ET CARREES CINTREES TYPE HERVE
s | T T OBSERVATIONS
48 min. {4 F min.] A& Fmin.et [&F min.| & F minet
d=1% d=5 |d=2d2= 13,36 d =20 [d =2d,> =13,%
o Ho 8 30207 2087 3o 20y AN La densité d = 2d,2 est celle
v 70m 56,3 39 45 38 signalée par les formules ci-
it 220 1P 63,5 37 58 34,5 dessus .comme la plus avanta-
I1 1.320% 381 223 350 207 geuse, Elle a été détermince |
S 37m2 6 88 215 21,25 52,8 pour la colonne (3) d’aprés les
Py 188k 440 723 &35 107 chiffres de la colonne (2) et pour
Pg: F 2,3 7,9 13,5 8.5 14,5 la colonne (3) d'aprés eceux dela
i 1) (2) (3) (%) (5) colonmue (3).

I1 ne faut pas s’étonner de voir les ailes Ilervé donner des résultats aussi voisins de
ceux des ailes carrées. Il faut remarquer que nous leur avons laissé la densité transver-
sale de 20 kilog. (d'olt 13,4) qui correspond a une marche circulaire de l'organe, alors
qu'en réalité cette densité efit di étre beaucoup moindre a raison de la marche rectiligne.
Rappelons seulement qu'avec d == 5. pour ce type d’ailes nous avons trouvé n° 42 une

] ) , . P
enlevée de 244 kilog. pour 9 IP%, ¢’est-d-dire un rendement "170 égal & un peu plus de 25.

=

Pour terminer 'étude de l'aéroplane & ailes planes ou se comportant comme telles,
sans frottement, il reste d examiner la dépendance de ces éléments et de ceux du moteur
supposé hélicoidal. De méme que nous sommes passés du plateau a I'hélicoptére, de méme
il nous faut venir du moteur a effort directement appliqué au moteur a effort transformé
par un organe spécialement interposé,

On ne sera pas surpris d'arriver & des solutions différentes, parce que dans le premier
cas le moteur se gouvernait indépendamment de la vitesse de marche de 'aéromat,
n'étant astreint qu'a fournir la puissance nécessaire, tandis que dans le cas dont nous
allons nous occuper ladite vitesse de marche est solidaire du régime du propulseur, qui,
lui, est actionné directement par le moteur. La présence de cet intermédiaire modifie
naturellement les conditions de fonctionnement.,

CHAPITRE II
De la dépendance mutuelle des organes de Uaéroplane et du propulseur.

45. — Dans ce qui va suivre, nous appelons plus particuli¢rement aéroplane 1'en-
semble de la nacelle, avec son chargement défini comme précédemment, et des deux
ailes inclinées ; nous conservons les notations précédentes, en y affectant seulement d'un
accent les lettres déja employées dans la théorie de 'hélicoptére. Nous désignerons done
par :

P, le poids de la nacelle chargée;
d' ou d, la densité des ailes;
a' angle d’attaque des ailes;
S’ la surface des ailes;
V' la vitesse de régime horizontale.
Le poids total de I'aéroplane ainsi défini a pour valeur :

Q = P,/ -+ d's.
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Le propulseur, genre hélice, est assimilé aux palettes inclinées comme dans le cas
de T'hélicoptére, dont les équations lui sont applicables. Son poids sera dS, et 'on a vu
qu'a sa vitesse de rotation w on substituait utilement une vitesse V == up tgx sec 2f.

Entin le moteur, de puissance I' et de poids élémentaire =, a pour poids Il = zF.

Lorsque le systéme est en marche de régime, il est soutenu par la composante ver-
ticale P de la résistance de I'air & la marche des ailes de 'aéroplane, et cette composante
a pour valeur l'une ou l'autre des expressions :

P =Q -} dS + =F, ‘ ()

P = K'S' sin o’ cos o« V2.

11 éprouve, d'autre part, une résistance & la translation ayant pour valeur X 4 R,
déja définis au chapitre précédent et ayant pour expression :

X = K'S' sin? o’ V72
R = K's V,

et cette résistance est équilibrée par la composante, suivant I'axe horizontal du propulseur,
de l'action de l'air sur ce dernier. Cette composante a pour expression (voir n°® 32):

Y=K (a, g) SV=.
On a done I'équation de condition : ’
Y = (X 4 R) d’olt Y =K' (¢} 5 sin?a!) V72,
et en remplacant V' par sa valeur en fonction de P :

¢ +-S'sin? o’

T S'sing’ cos o

en posant :
W2 = S'sina : (G -+ S’ Sln'lm") seca’.

Le facteur 2? est la mesure du rendement del'aéroplane puisqu’l donne le rapport de
Ueffort de sustentation P a I'effort horizontal Y fourni & cet organe.
Si maintenant nous portons la valeur de I, soit 2*Y dansl’équation (1), il vient :

WY =Q | dS 4=,

et, en remplacant Y et I par leurs valeurs

TC\T . ' 'x\f\
Q + dS = 1Y (1 _7z_>:;gx1 (s, 6) SV2 (1 — .

7', WK («, p)= K, on obtient la formule bien connue :

™
En posant — =
2

Q4+ ds =xKsv: i — o vy,

que nous avons déja employée dansI'étudedes plateaux puis dans celle de hélicoptere, et
toutes les expressions déja obtenues pour ces deux types d’appareils pourront étre adop-
tées pour P'aéroplane, en y écrivant d’abord Ket = en place de K (=, §) et de =, puis, cette

T

substitution faite, en y remplagant K par &K («, 3) et =’ par 5

{ On obtient ainsi le sys-

teme de formule du tableau suivant, pour les trois cas de puissance du moteur, de surface
ou de poussée du propulseur minimum. Les fgmieres lignes du tableau sont établies
comme il vient d'étre dit : les derniéres, relatives aux éléments particuliers de I'aéroplane,
reront discutées plus loin. :
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Notations fondamentales.

cos® o

46. K=»K, — [ () sec? § cos® 23 3= S'sind : (s} Ssin?a’)
s o
K = »K (2, 0) a'= 4K («,8) : 27d
V = wp tg x sec 22 a* = {K : 27d»®

Simplifications.
Admettons provisoirement que I'on puisse fixer & 30° la valeur du paramétre § qui
caractérise l'appareil propulseur employé, et que I'on puisse négliger les puissances, supé-
. Vs " . IS
rieures & l'unité, de tg 2. La valeur de K prendra la forme plus simple 5 K, f{a) cota. Pour

des palettes carrées K, = 0,12, f{a)== 1. Pour des palettes Hervé, K, /() = 0,527.
D’autre part, le facteur %* qui mesure le rendement de I'a¢roplane, prend son maxi-
mum lorsque S’ sin? 2’ est égal & 5, et ce maximum a pour valeur 1 : 2 sina.
On aura donc les expressions simplifiées :
-

K= é 12 K, cotaf (a) 2=S5 sin o : (¢ - S'sin? &)

/== 2up tg a* =—=2 K, cotaf («) : 81d

que l'on emploiera concurremment avee le formulaire suivant :

4%. — Formules des éléments nécessaires pour enlever un aéroplane de poids Q
sous linclinaison o
F S Y
AVEC LE MINIMUM DE
PUISSANCE DU MOTEUR |[SURFACE DU PROPULSEUR EFFORT AXIAL
2 2A2 2 /a\%/,
V vitesse auxiliaire de régime. e = —{=] "
vitessc °8 2 ak 3n Ja\=
. ; 2Y /a\?/y
I puissance du moteur. ...... F ~—(*> fa
3a\=w
e - 3 -
Yeffort axial.......... ... .. 5a\F Y
. 1 i 7w\ 2/;
Py poids du propulseur...... 5 alF dS -3~Y<—) /o
2 a
_ . 2 2o [T\ 2/
I1 poids du moteur,......... =F 22 Py 08 =Y - &
=2 3 a
2P
L effort ascensionnel......... g ail 32°D 26 Y
2 72
: 4 R a? 3 =\
Q poids de l'aéroplane....... (ad —m) F (__3 N6 — 1) Ps 22— : Y
T
. . 3 o . al ., . —
V' vitessse horizontale. ..., .. \/3 aiil : K' S'gina' \/3 = Psd: K'S'sina’ \/)3 Y: K'S'sina’
Ly charge de la nacelle...... Q—d'Ss Q—d'¥ Q—ds
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Application.— Errear & redouter,

48. — Les formules ci-dessus ne peuvent étre employées que sous certaines réserves,
et une application numérique rendra la discussion plus aisée.

Nous avons déji traité le cas d'une nacelle chargée & 500 kilog., mue par un moteur
a action directe, dans chacun des deux cas de surface des ailes sustentatrices ou de puis-
sance du moteur minimum. Reprenons le méme probleme dans le cas actuel de moteur

actionnant un propulseur hélicoidal type Hervé.

Détermination des éléments de Uadroplane. — Nous avons {rouvé que le rendement
ascensionnel le plus avantageux correspond aux relations S sin? 2 == ¢ doll 32 =1 :
2 sin o

Si nous prenons of = 3°20’, et il ne semble pas que l'on puisse descendre au-dessous,
et ¢ = 0,1, comme il a été admis, on obtient les valeurs S’ = 30 maolres carrés et
22 =8,50.

Adoptant cette surface de sustentation, et la densité 5 kilog. pour les ailes, nous en
déduirons, pour le poids de I'aéroplane, la valeur Q == 500 4~ 150 = 650 kilog.

Venons maintenant a l'organisation du propulseur. Si on prend les constantes de
I'hélice Hervé, on en déduit pour a la valeur 0,0807, pour === 6°, et sile moteur avec sa
transmission pese 6 kilog, par cheval, on aura pour 2 une valeur 1,009 ou en nombres

T

ronds 1, ce qui simplitiera beaucoup les calculs.
Examinons d'abord le cas intermédiaire de Y ou effort axial minimum. On aura

. . = _ 650 - ,
successivement, puisque = 1,Y =Q: 2 —1 011-%-15;6 = 87 kilog. D'ou P, :§
= 29 kilog. I1 = 58 kilog. et comme conséquence F = 9 IP 666, soit 10 chevaux,

2
S = P;: 20 = 1,45, et enfin V = 5= 8§m. 26, d'ott wp==41 m. 3. De méme, si I'on

voulait faire usage du propulseur de surface minimum, le corps d’aéroplane étant consti-

tué comme précédemment au poids de 630 kilog., on caleuleraitd’abord P,=0Q : (n0—1),
ce quidonnerait 1 kg. 06 seulement ; puis I1 = 2.°P, = 1.228 kilog., ce qui correspond

O~

. , 2
4 208 chevaux, et enfin V = T
=

=T1 métres, ce qui enlraine une vitesse de circulation wg
== 355 métres.

Ces résultats semblent extraordinaires, et ils sont en effet illusoires. Les caleuls
numériques qui les ont donnés sont exacts, mais 'application des formules n’'était pas
licite, et si nous avons commis sciemment cetle faute, ¢'était pour attirer sur ce point
Patiention du lecteur et combattre une erreur qui est peut-étre la cause de bien des illu-
sions dans 'esprit des chercheurs d’aéroplane.

Dans I'application erronée qui vient d’étre faite, on a en eflet supposé tacitement que
le propulseur fonctionnait comme s'il était immobile, au lieu de participer & la marche de
Paéronat : et le sens des résultats obtenus est le suivant:

1er cas. — Une nacelle chargée au poids total de 587 kilog., montée sur deux ailes de
30 metres carrés de surface tolale, pesant 150 kilog., peut étre soutenue en marche par
un moteur de dix chevaux, actionnant un propulsear immobile, au point fixe, de 1 m. 45
de surface, & une vitesse de circulation de 41 métres au centre de poussée : I'effort dudit
propulseur étant transmis & l'axe du systéme sans perte ni surchage du fait de cette
transmission.

Le deuxidme cas donnerait lieu & une interprétation analogue.

Et si Ton veut revenir & la réalité, il faut ajouter 4 I'exposé numérique du premier
cas la réserve suivante:
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Sil'on calcule la vitesse horizontale V' résultant pour T'appareil de l'action du pro-
pulseur, on trouve qu'elle atteint 40 m. 7; or le propulseur ne peut fournir qu'un effort
résultant de la composition de sa vitesse propre de circulation avec ladite vitesse V' :
1a solution est donc illusoire.

49. — En réalité, I'analyse précédente doit étre reprise et complétée comme il suit :
Désignons par 0 I'inclinaison réelle des palettes ou hélices, que nous appelions » dans
la théorie de L'hélicoptere. Nous avons indiqué [n° 34] que si cet appareil était animé
d'une vitesse verticale de translation suivant son axe, les formules de marche luirestaient
applicables & la condition de prendre pour valeur de l'angle d’attaque « mon plus la

valeur § provenant du tracé, mais la valeur § — ¢, ¢ étant un angle de réduction défini
Tt
7

) V . e .
par la relation tg ¢ =—. Par contre, la vitesse auxiliaire V, qui figure dans le tableau de
I 8 o > » q g

formules, conserve son expression :
V = wp tga sec 28,
mais l'on doit y prendre : a=0—c
Sous ces réserves des nouvelles valeurs de o et de V, les formules du n° [47] rede-
viennent applicables.
Mais on voit de suile que pour que « soit positif, il faut que ¢ soit moindre que 0.
Peut-étre I'énoncé des formules ainsi transformées a-t-il besoin d'étre justifié : c’est
ce que nous allons faire. bridvement, en reprenant les expressions du n° [24] et en effec-
tuant leur transformation. '
Ces formules doivent s’écrire en effet :
F=Epw
E =K, (V2 4 p0?) Sf(a) sin® « (1 4 tg? §)
Y =K, (V’Z —|— p"zmg) Sf(a) sin « ¢os « (1 — tg® ﬁ),
I'angle 8 restant 'angle expérimental défini comme précédemment et I'angle = devenant
égal & 0 —c.
Pour ramener ce systéme de formules au systeme habituel :
F=YV
Y = KSV3,
nous remplacerons d’abord V' par pw tg =, ce qui nous donnera :
F =K, p"‘(.)3 Sf(:z) siny sec? ¢ U -+ tg® B) ’
Y = K, o*0* Sf(2) sinz cos « sec® ¢ (1 — tg? f),
d’ott en divisant membre & membre :

¥
?::V = pw tg o sec 2§,

soit la méme valeur que précédemment, mais olt «, au lien de représenter I'angle § de
I’hélice, ne représente plus que§ — s.

lgalant alors les deux valeurs de Y et réduisant, il vient :

K =K (a, §) sec®¢,

et par suite, pour le parameétre -auxiliaire a employé dans les formules, la nouvelle
valeur a sec e.

On voit que le tableau de formules du n°® [47] doit étre employé & la condition de
donner & « la valeur b — ¢ et & a la valeur a sec ¢, a restant le paramétre défini préeé-
demment en fonction des angles o (nouveau) et f.
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Association des éléments du corps d'aéroplane et du moteur-propulseur.

50. — Ainsi nous avons ramené au type ordinaire de calculs et de formules le probléeme

d’enlevée d'un aéroplane déja établi, par I'emploi le plus avantageux d'un moteur et d'un
]

propulseur hélicoidal diiment combinés. Il ne reste plus qu'a faire encore un pas en avant,

en faisant entrer dans cette détermination les éléments eux-mémes du corps d'aéroplane,
soit la surface S’ et son angle d'attaque «'.
Pour cela, reprenons la relation bien connue :

P =P, + dS + d'S' - =F (1)
AS = dS +d'S'; (3)

et posons :

nous retomberons alors sur la forme habituelle :
P =P,/ 4 AS 4 zF,

et nous pourrons appliquer le tableau des formules du n° [47], & la condition d’'écrire
P," & la place de Q dans la septiéme ligne de ce tableau et de modifier convenablement
le parametre a. '
Ce parameétre, qui avait au début pour expression :
a? = 4K («, )1 27d,
a d'abord pris la forme :
a sec ¢

ay ==

pour tenir compte de I'influence de la vitesse V' sur la marche de 'hélice; mais il faut
également y introduire en dénominateur A au heu de d, de telle sorte que 'on écrira
finalement :

¢* = a’sec’e —
/

A

en introduisant la lettre ¢ au lieu de a pour éviter toute confusion.
Reste & déterminer A. A cet effet, on tirera S’ de la formule :

K'S'V2sin o' = 12KSV? seci:

et on substituera cetfe valeur de S' dans la relation (3), ce qui donnera, toutes réductions

faites :
R g —tg)
A=d-d [ (&)sing’sin?e °
51. — Nous arrivons ainsiau tableau définitif des formes de I'aéroplane lorsque les

épaisseurs d et d’ des ailes sustentatrices et propulsives sont fixées a priore. Rappelons,
d’abord les notations et relations de définition.

1o Eléments du corps d'aéroplane.

s, surface fictive de la nacelle; S°, surface réelle au maitre couple;
P,/, poids de cette derniére (équipage, provisions, ete.);
S/, surface des ailes sustentatrices; :
d’, leur poids au metre courant;
o', leur inclinaison ou angle d’attaque;
K' = Kof(5), leur coefficient de résistance sous ladite inclinaison et & leur
vitesse de régime V'
V', vitesse de régime horizontale en air calme.
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2 Eléments du moteur-propulseur.

F, force en chevaux;

II = zI", poids du moteur;

S, surface de I'hélice;

d, son poids moyen au métre courant ;
6, son inclinaison moyenne ;

@, son angle de rendement défini précédemment; ~
¢, distance du centre de poussée a l'axe de rotation ;
w, vitesse angulaire de régime;
K,, le coefficient de résistance de l'air, soit 0,12,

3° Paramétres.

& sina' . ’ .
W= ——————, facteur algébrique de transformation ;

T o -F 8 sin?e”’
[ / ~ 9 1
(J.:GZS sin®a’, — — 7 \Z:W;
. (]
g, angle de réduction tg e = o ;
a, angle réel d’attaque de I'hélice =0 —¢;
2 » —to?
A, densité auxiliaire A =d | d’ A f(a),tgfx(’l, - tf’ £) ;
[ (o) sina/ sin®e
A — A = Af («)sind sin®e : 23 () tga (1 — tg°B);

V, vitesse auxiliaire de régime V = wp tg asec2p;

. e g . cos®af(a
¢, paramétre auxiliaire ¢ = 4K, —L() sec? B cos?2f sec?e 1 27A,
sinx

Tableau des formules définitives.

o S DU PROPULSEUR ET .
POUR UN MINIMUM DE T pv moTEUR o Y EFFORT AXIAL
S’ pES AILES
V vitesse auxiliaire de
9 2
régime........... 2:3 e 222 3 . :(E) 3
wA\C
06 2Y [x\?
F puissance du moteur. F 2 C—J AS 2Y (’_:) /s
3 3z \e
. 3 3et)*
Y effort axial......... 3c)\F ou 21 p_, AS Y
2 2w w2
.2 9 o\ 2
I poids du moteur,,, aF 2-:—215'.\5 3 Y (:T) fs
AS poids de I'hélice et L ’ : 1 e
des ailes, ,....... =-=-I1 ou 3 A2Y AS Y ()
2 3 3 e
d'S' poids des ailes. . ... (A —d)S {(A—d) S (A—d) S
P, poids de la nacelle ) . o\2/
montée et chargée [_% A — 1] II (1“_3 A8 1>AS [11 — (E) 1:I Y
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On remarquera que les formules de la seconde série, qui correspondent au minimum

de 5, peuvent également sappliquer a la recherche du minimum de §’, & la condition d’y
remplacer A par A, A" ayant pour expression :

/(&) sin & sin®¢

N=d +d- _
+ W[ (o) tga (1 —1g7p)

et de changer les accents de S, S/, d et d’ dans le tableau,

52. - - Toutes ces relations ont été élablies par la seule discussion de la réalité des
racines de I'équation du troisiéme degré. On peut donc dire que la sustentation d'une nacelle
de poids P,’ est toujours possible pourvu que les facteurs de F, de Soude Y dans la derniere
ligne du tableau soient positifs, ¢'est-a-dire pourvu que l'on ait = < ¢A®. Si, ces facteurs
une fois déterminés, on donne a P, la valeur correspondante, il n'y a qu'une solution a
la question; si on lui donne une valeur inféricure, il y a dans ce cas deux valeurs conve-
nables pour V; on prendra sans doute la plus faible. Ces deux valeurs s’obtiendront par la
résolution graphique ou numérique de 1'équation’du troisieme degré, dont il a déja éLé
donné des exemples.

Il faudrait done, pour continuer 1'étude méthodique de notre systéme, passer a la
discussion analytique des facteurs variables de la derniére ligne, lesquels facteurs com-
prennent encore plusieurs éléments.

Mais 1'on se heurterait 2 de grandes complications algébriques si 'on voulaif traiter
la question dans toute sa généralité, et comme il ne s’agit en somme que d'une étude de
mécanique appliquée, il convient de profiter des indications déja fournies par I'expérience
pour simplifier le probleme.

Dans ce but, on peut d’abord mettre les expressions du tableau [51] sous une forme
plus maniable, & I'aide d'un angle auxiliaire v, qui se préte non seulement aux calculs
proprement dits, mais a la discussion des formules.

Si l'on pose en effet :
cos v = ! 7:)‘/“
T=3\g,

et que T'on effectue dans les expressions les substitutions correspondantes, on remplace
le tableau en question par le suivant, ot tout est rapporté au poids I = I du moteur.

;—P()UH UN MINIMUM DE F S kT S v
2 9 9
v 3 3 cos 3y I 22 = X2 cos? ¥
AS = A'S’ ]:I?,;ee:r ¥ 1_; coshy lé}
Py’ . IT (sec? yfi). %1(1 — cos® ¥) % AI g2y

Les autres ¢léments sont reliés entre eux par les formules de délinition déja rappelées.

L’angle semble bien étre une fonction du paramétre %, mais, dans les applications, on
doit remarquer que l'on peut se donner séparément ces deux paramétres et déferminer
ensuite pour chaque cas particulier les valeurs & attribuer aux angles «, «/, aux densités
d, d’, aux proportions des surfaces s et S, etc., de maniere 4 bien oblenir pour i et v les
nombres reconnus nécessaires.
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On peut également limiter comme il suit la discussion des valeurs & donner aux
divers éléments.
Données expérimentales.

53, — 19 Eléments du corps d’aéroplane. — On a trouvé, pour le facteur 22, qui corres-

. , . . 1
pond au rendement de cette partic del'appareil, la valeur maximum ism dans le cas d'un
sin 2

moteur & action directe et e dans le cas de l'interposition dun propulseur. Lorsque
£ o

le facteur K’, qui caractérise le rendement des ailes, devient considérable, le terme ¢ devient

. TR 1
de plus en plus négligeable, et & la limite, il vient pour 3* la valeur —— . Ge sont ces
; sin x

trois valeurs qu'il convient d’employer de préférence dans les applications.

L’angle o' a déja été employé avee les valeurs 3°20' et 5° 43’ dans le cas du moteur &
action directe ; on peut joindre & ces deux valeurs celle de 11°20” ou 12° qui semble étre une
limite supérieure.

20 Eléments du moteur-propulsenr. — L’angle d'attaque réel « devrait, d'aprés
Drzewiecki, étre pris égal & 1° 50", Ce chillre est peut-étre trop faible & raison des varia-
tions des effets du vent. Il semble admissible de le fixer & 5°43’ (angle dont la tangente
est 0,1), ce qui est d'accord avec les essais Hervé au point fixe.

La discussion des mémes essais nous a donné pour I'angle § la valeur de 30°.

Enfin Tangle de réduction ¢ pourra, pour la facilité des calculs, recevoir la méme

x . . . ; w
valeur 5° 4, ce qui correspond & la relation V = T(—E; ; on le changera du reste au cours des

applications si cela semble opportun.

Puisque I'on conserve pour § la valeur 307, il convient de supposer que les surfaces
d’hélices seront semblables & celle employée dans les essais qui ont donné cette valeur.
Comme I'on avait dans ce cas g=—=2 m. 60 et S = 3,834, on déduira larelation S=0,566 ¢*
ou, en arrondissant, S = 0,6 p2.

Enfin nous adopterons pour les ailes de I'aéroplane le méme coefficient f (') que
pour celles de I'hélice, soit 4,21 avee K =10,12, c'est-a-dire K' = 0,527.

Les valeurs ainsi déterminées pour les divers éléments el paramétres semblent assez

plausibles pour se préter & I'établissement de prévisions acceptables.
Pour le poids du moteur, nous admettons = == 0 kg. 03, ce qui correspond a 3 kg. 750

par cheval; il ne semble pas que l'on puisse descendre au-dessous d’ici longtemps, le

cheval étant mesuré sur le moyeu de 'hélice.

Applications.
54, — Discussion d’un aéroplane aux atles inclindes de o/ = 5043,
L’angle o' étant donné, le paramétre 3* variera avec le rapport p., depuis ou 10
° ’ ’ sin of

pour p.= 0, jusqu'a des valeurs de plus en plus faibles & mesure que I'on fera croitre p,
¢'est-a-dire le rapport de la surface résistante ¢ a la surface utile S'.

$a: 15 gy - . 1
®Gi I'on donne ainsi & 3 les valeurs 2,2,5,5,9 et 10 qui correspondent & p.=14,3, 1, §
t

el zéro, on en déduira d'abord les valeurs de ¢, puis les valeurs de  que l'on utilisera &
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I'aide du tableau [52], et l'on passera de la 2 la détermination de tous les éléments.
Nous donnons ci-dessous le détail de la marche des opérations pour i?
un tableau d’ensemble des résultats pour les différentes valeurs traitées.

Les données communes sont, comme il a été indiqué : a==543', o’ == 5043, ¢ =50 43/,
0 =11°26', puis d=20 et '=1. On admet pour f (2) et f (') les valeurs expérimen-
tales £,21 trouvées pour I'hélice Hervé et étendues aux ailes sustentatrices.

Tous les résultats sont proportionnels & la puissance I : nous prendrons, pour ne pas
avoir de trop faibles chillres, F = 100 chevaux, ce qui entraine IT = 375 kilog. Il s’agit
donc d’apprécier 'effet d'un moteur de 100 chevaux, commandant une hélice Hervé,
avec ailes sustentatrices de différentes dimensions inclindes a 50 43,

= 2, et ensuite

9 2 L6
On calcule d’abord : A =204 20032 _ 460

B
puis : 1—><—0(‘)(;‘£Z sin® 5o43’; fb(‘i](j = 52,:‘565] A
et de Ia: cos®y ;T; A8 dowt : y=32°18
Ensuite : P,/ =375 (sec’y — 1) = 2£6 kilog.
AS = A.’S’ = —3 (P41 = ‘375);;—%'6__ 3105 d'ott 1 S=2 m?024
= A_Uq()__\ﬂ et par suite : 5’ =270 m?
Enfin : e=uS sin* ¢’ =10,04 = 10 m28.

Il ne faut pas oublier que - est la surface fictive de la nacelle ; si cette derniére est
du type déja employé dans nos applications, la surface réelle devrait étre égale & 4 metres
carrés pour g == 0,1 : 4,21 et par suite la surface réelle de ladite nacelle serait 40 >< 4,21 5,
soit en l'espéce 1.820 meétres carrés.

Ce chiffre parait fantastique, mais il faut s’attendre & beaucoup de résultats de ce
genre dans l'étude qui nous ocecupe.

| 0o

La vitesse auxiliaire de régime V= —32cos’y=16 m. 10 et par suite la vitesse

€

A

horizontale de marche aura pour valeur 8 m. 05. La vitesse de circulation wp du centre de’
B

poussée de I'hélice sera 16 m. 10 : 0,2 = 80 m. 5.

%

O

0,5
91

¢

Sil'onprend ¢*=1,85,ilvient p=1m. 9 w= = 42,15 et par suite le nombre N

[,

de tours par minute devra étre 60w : 2z = 403.
Si au lieu de rechercher le rendement maximum du moteur on et demandé les
surfaces minima, on edt trouvé un poids P, égal a 119 kilog. et une vitesse V=26 m. 74.
Par contre AS=A'S" =68 kg. 500. ' =159 m?6, c==2,38 et la surface réelle de la
nacelle 400 métres carrés.
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La surface de I'hélice tombe & 0,446 et ¢ & 0 m. 90, d’out pour » == 148 et N
=1.360 tours par minute, avec une marche horizontale de 13 m. 365.

Enfin la solution intermédiaire que donne la troisieme colonne du tableau de formules
donnerait pour P, 225 kilog. et une vitesse V de 19 m. 05, résultals assez voisins de ceux
correspondant au minimum de F.

Le tableau ci-dessous résume les résultats des calculs faits d’aprés les diverses valeurs
atiribuées & p. et par suite d % et & vy, les autres données restant conslantes.

7 & 3 1 1/9 ZIRO
32 2 9 10
— i ——— e —

¥ S Y F S Y F S Y r S Y I S Y

P | 246k 11y | 225 | 412 |124,2) 359 |[1.242 [177,4] 920 |2.573 | 4184 [1.628/2.920 | 185 [1.823
s 270 (59,6 163 | 351 » » 763 » »n o |1.423 » » M. 647 » »

g 10,8 2,38 | 6,52/10,53 » » 7,63 » » 1,50 » » zéro » »
Se 11,820 | 400 {1.095[1.77% » n {1355 » » 258 » » - » »

S |2m202| 0,4%060 1,23] 2,11 | » » 12,20 » » | 2,38] » » | 2,471 » »
VoHA6m 126,66 19,05 15,9 (33,33]20,34[15,5  [66,67|25,18[15,3 120 (30,12{15,2 133 |31,40
p ¢ 1,001 0,90 | 1,49 1,95 » » 2,03 » » 07 » » 2,1 » »

o 4322 148 67 408 » »n 138 ,3 » » 37,10 » » 36,1 » »

N 403 1.360 | 636 390 » » 365 » » 252, » » 343 » »

Vo 8,05 113,365 9,92 7,95 [16,66110,17| 7,75 |33,33[12,50| 7,65 | 60 |13,06] 7,60 |66,6 15,70

L'examen de ce tableau donne lieu aux remarques suivantes :

La série de gauche, correspondant & p =4, ne figure que pour mémoire et per-
melttra de tracer plus nettement, si on le désire, les courbes représentatives des diverses
fonctions.

La série suivante (p = 3) correspond & la solution théorique indiquée dans le
résumé fait au début du présent travail, ot il était énoncé que le travail était minimum
lorsque la résistance de sustentation est égale & trois fois la résistance & I'avancement. On
voit que cette asserlion n'est pas fondée dans le cas actuel : elle ne I'est que dans le cas
trait¢ au chapitre I, lorsque l'effort moteur horizontal est obtenu sans prendre point
d’appui sur I'air ambiant.

Les trois derniéres colonnes sont plus intéressantes: la derniére correspond & un
cas limile p.==0, celui oit la nacelle n'éprouverail aucune résislance. Elle définit done
un cas de maximum impossible & atteindre.

Auatre remarque. — A T'exception des éléments correspondant explicitement a la
vitesse, tous les autres, soit F, I1, P/, S et S’ sont proportionnels entre eux. Par exemple, si
pour F == 100 chevaux on a Py’ =2.573, pour F = 30 chevaux on aura P’ =772 kilog.,
S = 4275, 8 = 77,4 et ainsi de suite. De méme, si S au lieu d'élre pris égal & 2 m?* 38
élait pris égal & 1 m217 seulement, il ne faudrait monter quun moteur de 50 chevaux
el des ailes sustentatrices de 712 métres carrés pour soutenir 1.286 kilog. dans une nacelle
de 129 métres carrés, en continuant 2 marcher a raison de 7 m. 65 et ainsi de suite. Mais
le rayon p ne serait pas 2,07 : 2 ou 1,035, il serait 2,07 : \,/27 oul m. 46 ; v aurait
pour valeur 524 et N attendrait le chilfre de 447.

Enfin les vitesses considérables de rotation dans le cas de S minimum ne pourraient
étre réalisées sans un renforcement de 1'hélice, ce qui diminuerait encore le rendement
spécifique P, F.
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55. — 20 Recherche d'une vitesse de marche déterminée. — Dans tout ce qui préceéde,
nous avons considéré I'angle y comme défini par la connaissance de tous les éléments et
fait varier seulement le paramétre %, mais, comme nous I'indiquions au n° [52], on peut
également se donner une valeur de y et s’en servir pour déterminer un autre élément.

On peut, par exemple, se donner la vitesse de marche V' concurremment avec le
facteur % du tracé de l'aéroplane. Prenons ainsi ) de fagon & permettre un rapprochement
avec des résultats déja trouvés, mais proposons-nous de réaliser une vitesse de marche
de 15 m. 30, soit le double de la vitesse obtenue. Cette vitesse V/ de 15 m. 30 correspond
a une vitesse V de 30 m. 60 d’aprés les formules admises, et, par suite & un angle ~/
donné par I'équation :

> 30,60 ;

. 3=
Cos” vy =

232

soit pour v la valeur 39° 22’ a porter dans les formules qui donnent P, S, ete.
Mais pour que v' puisse prendre cette valeur, il faut que ¢ soit de son coté égal &
2

7 1 APcosy’ ou i 5o, clest-a-dire &

P < 2 g
ava 3 et comme nous savons que ¢ a pour

2
=5<30,6:9

expression :

cos®a
i

¢ —= b K,/ (a)

sec?f cos*2fsec?s 1 2T A
S x

Nous en déduirons, en conservant I'hélice type Hervé o
) yp

A= 3548 :27¢,

c'est-a-dire :

en admettant que pour les ailes /(') ne change pas.
Silon conserve & d et d’ leurs valeurs, cela donne pour @' == 1° 24 et pour P,/ = 095

kilog., mais avec une valeur de p== 3,5k beaucoup trop forte.
Admettons maintenant une autre régle initiale et posons & titre d’essai p. == sin &, de
telle sorte que 2* prend la forme 1 : (1 + sin o) sina’. Il en résulte d'abord pour A et A’

les expressions :

A=d+d ;;_(i,)) (1 —tg?p) tg «: (1 4 sina') sin?a’sin* e
&%
fe)
et _ Al=d 4 d (1 + sina’) sin®«'sin®e 1 (1 —1g* ) tga.

/()

Les angles «, o et ¢ étant toujours trés petits, on pourra souvent, dans le calcul
numérique de ¢, négliger le terme d de A devant le second terme, et la substitution
donnera la nouvelle relation :

AN L s 2 2
€ == —— tg®esin®a’ (1 -sind) 1 tg%a sec? 25,

21T
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Le rapport o7 caractérise le corps d’aéroplane ; nous 'avons désigné aune [41] para’,
: a
D’autre part la relation qui donne V dans le cas de rendement maximum du moteu
s’exprime & l'aide de ¢ et de % et donne, toutes réductions faites

2
wp == 37 col s cotl ¢

2

3

ou V= cot 2.

[

C’est la méme relation que nous avons trouvée dans le cas du moteur a action directe,
mais avee cette différence essentielle que I'on aici p = sin o’ au lieu que I'on avait p == 3,

Par conséquent, pour obtenir, avecle moteur a propulsion hélicoidale, la méme vitesse
et en général les mémes conditions de marche qu'avec le moteur direct, il faut que la
résistance ficlive de la nacelle soit réduite dans le rapport de sin &’ & 3.

Pour quil puisse en étre ainsi, comme, somme toute, la forme de la nacelle est a
peu prés imposée par les nécessités déja reconnues expérimentalement, il est indispensable
que le facteur K’ des ailes soit considérablement augmenté. C'est cette amélioration indis-
pensable du facteur K’ qui a fait I'objet des études de Lilienthal et de ses disciples, que
nous examinerons plus loin.

Nous limitant pour l'instant aux valeurs de K’ employées, nous allons revenir &
Papplication déja essayée d'une vilesse de marche horizontale de 15 m. 3,

Comme l'on a : :

AR k< 0,527 2,108

{—— ——— S—

27d' T 274 T 2T

ou a’ = 0,279,

on en tire pour & la valeur :

tg3=0,153,
qui donne pour tg o' = tg23 la valeur 0,0241:

o == 1023,

angle évidemment inadmissible au point de vue de la stabilité sous l'action de vents
obliques. ) .

Cependant cette vitesse V' de 15 metres n’étail pas bien exagérée si P'on veut tenir
compte qu'il faut, dans Ia pratique, étre 2 méme de marcher, non en air calme, mais dans
un courant atmosphérique d’une vitesse voisine de 10 métres, si I'on veut rester maitre
de ses mouvements.

Si I'on remente pour V & la valeur de 20 métres, on obtiendra pour o’ un nouvel
angle de 52’ encore plus insuffisant comme tenue dans lair.

Ainsi, dans les conditions actuelles, il n’est pas possible d’obtenir une vitesse pratique
sans compromettre la stabilité en recourant a des inclinaisons d’ailes trop minimes.
Voyons cependant ce que 'on obtiendrait en améliorant 1'hélice.

56. — 3° Emploi de langle d’'attaque optimum. — L'angle d’attaque optimum,
d’aprés Drzewiecki, serait dans l'air, comme nous 'avons rappelé, égal & 1°50'. Voyons
donc ce que 'on obtiendrait en donnant & « la valeur 1° 50 ou en arrondissant & = 2°.

Cette valeur de 2 peut sobtenir : 1° soit en laissant a 6 sa valeur déja adoptée
11020’ et en donnant & s une valeur de 9°20'; 2° soit en conservant 4 ¢ sa valeur de 5°43’,
ce qui conduit a donner & I'hélice I'inclinaison absolue § = T°43. Dans le premier cas, la
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. . . 1 . . .
vitesse horizontale V' est environ le - de la vitesse de circulation du centre de poussée de
I

6
Ihélice. :

Nous conserverons a » la valeur de 5° 43’ déja employée et justifiée par des considé-
rations de stabilité ; nous laisserons également a d et d’ leurs valeurs égales respectivement
a20etad.

Il y a lieu d'employer le procéds de calcul adopté pour la premiére application en
donnant a %* les valeurs extrémes 9 et 10 pour se placer dans les conditions les plus avan-
tageuses, et a ¢ d’abord 9° 20’ puis 5° 43'.

On formera ainsi A, puis ¢, qui auront pour valeurs :

A= 101 100 231 254
* == 0,0684% 0,035 0,0140 0,0147

c2

En se bornant au cas de rendement maximum du moteur, on aura immédiatement
pour V les deux valeurs :

V = 3,60 3,55 5,64 5,49,

ce qui donne pour wp, en admettant que 3 conserve la méme valeur 30° malgré le change-
ment de l'angle « :

wp=V:2tga=2>513 50,5 80,4 76,4
avec : V= wp tg 9° 20 = 8,44 8,31
ou : wp tg 50 43/ == 8,0k 7,64

On remarquera que ces valeurs de V' sont fort peu différentes, bien que les conditions
de marche de I'hélice soient notablement modifiées. In tout cas, ces vitesses seraient insuf-
fisantes pour permettre de se diriger dans I'atmosphére, et la solution ci-dessus serait
impraticable.

Ge n’est done qu'a titre de renseignement que nous indiquons les valeurs correspon-
dantes des autres éléments.

Pour ¢ = 9°20’, avec le moteur de 100 chevaux dans les conditions de rendement
maximum, on trouve une surface d'hélice de 62 metres carrés et une surface d'ailes por-
tantes de 5.000 metres; il est vrai que le poids soutenu s'éléverait a 12 tonnes. En
revenant 4 des dimensions plus raisonnables, on obtient, pour un moteur de 4 chevaux,
2 m? 47 de surface d’hélice, 2!i0 métres carrés de surfaces d’ailes, et un poids soutenu de
485 kilog., chiffre trés voisin du chiffre 500 kilog. que nous avons pris comme type normal.

Ces résultats s’appliquent & p==sinz’, ce qui donne une section maitresse de
33 metres pour la nacelle. En admettant 'amélioration de cette derniere jusqu'a p == 0,
les chiffres des autres éléments ne seraient guére améliorés. La conclusion de cette
remarque est qu'il est inutile, dans l'étude actuelle, de se préoccuper des dimensions
théoriques & donner a ladite nacelle. '

Si, au lieu de rechercher le moteur minimum, on et recherché la surface minimum,
les surfaces fussent devenues trés faibles, il est vrai, mais, d'ure part, le poids soutenu

, II . . . . .
n’elit pu dépasser -, ce qui, pour les 500 kilog., elit nécessité un moteur d'un poids supé-

rieur 2 1.000 kilog., soit plus de 270 chevaux, et, d'autre part, la vitesse V se fit élevée
& 100 métres, et, par suite, le nombre de tours a des chiffres absolument fantastiques,
5'7. — Entre ces deux solutions aussi inadmissibles 1'une que l'autre, on peut encore
étudier un type intermédiaire en se donnant d'une part une vitesse V/ voisine de 20 métres
et, d'autre part, la solution de moindre effort dans le sens de la marche, ¢’est-a-dire en
employant les formules de Y minimum.
On trouve ainsi que pour soutenir un poids de 525 kilog., il suffirait d’un moteur
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de 10 chevaux, avec 150 métres carrés d'ailes, soit deux ailes carrées d’environ 9 métres
de coté, chilfres moins extraordinaires, et en marchant & une vitesse horizontale de prés
de 27 métres, tous chillres trés satisfaisants. Mais de fels résultats ne sont réalisés qu’avee
une hélice de faibles dimensions, et, par suite, animée d'une vitesse trés considérable,
dans ce cas, le chilfre 20 adopté pour sa densité d se trouverait beaucoup trop réduit et la
solution reste encore illusoire.

Le probléme de l'aéroplane simple, avec les ressources dont nous disposons actuelle-
ment, c’est-i-dire avec les moteurs et hélices réalisés & ce jour ou méme probables dans
un avenir prochain, ne semble donc pas susceptible d’étre pratiquement résolu.

CHAPITRE 111

De I'’Aéroplane mixte.

(Association de IHélicoptére avec U Aéroplane).

58. — Les discussions et applications numériques des chapitres précédents semblent
mettre en évidence que la solution du probléme qui nous occupe ne peut étre demandée
& un propulseur prenant appui sur l'air, et imprimant au systéme une vitesse suffisante
pour que la composante verticale de la réaction atmosphérique assure la sustentation.
L’emploi d’un tel dispositif constitue en effet une sorte de cercle vicieux, puisque d’une
part il est nécessaire d’employer une vitesse horizontalé considérable et que d’autre part,
plus cette vitesse croit, plus le rendement du propulseur s'affaiblit, ce qui ne conduit
qu'd des solutions chimérignes.

L'emploi d’'un moteur & pression horizontale transmise directement, étudié au
chapitre [, serait sans doute plus avantageux : on peut méme dire qu’il a regu dans une
certaine mesure la sanction de 1'expérience car il n'est autre que le dispositif des anciennes
fusées de guerre, oit la réaction des gaz de la poudre s’échappant par l'arriére venait
combattre I'action de la pesanteur. Peut-étre cette solution sera-t-elle réalisée un jour,
mais actuellement 'on se heurterait 4 des difficultés de deux sortes : si 'on cherchait a
assurer un écoulement régulier de la part d'une masse de gaz comprimée ou liquéfice, on
y parviendrait sans doute assez aisément : mais on ne pourrait emmagasiner pratiquement
a bord du navire aérien une quantité notable d’énergie sous cette forme particuliérement
utilisable. Si, au contraire, on veut recourir & des explosifs, pour disposer d'une grande
énergie sous un faible volume, on s’expose, enlre autres difficultés, & des risques de
combustions irréguliéres amenant des percussions dangereuses et des a-coups inad-
missibles.

L’étude de T'hélicoptére a permis au contraire d'espérer obtenir des sustentations
suffisantes dans des conditions relativement favorables: il est donc intéressant de recher-
cher si l'on ne pourrait pas, en associant les deux dispositifs, établir les bases d’un
appareil susceptible d'une réalisation pratique.

Conservant toutes les notalions précédemment employées pour le corps d’aéroplane
et son propulseur, ainsi que celles de I'hélicoptére que nous affecterons seulement d'un
double accent ”, nous remarquerons que l'effort de sustentation verticale aura pour valeur:

P =P, + dS -+ d'S + &'8" + = | =
et devra étre fourni par les deux composantes:

Y = K'S'V”? sin o et o Y'=EK'§'V"-
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L effort horizontal Y, demandé a I'appareil, sera toujours :

Y =KSV: =K' (s & sin?a) V2 = )1 Y.

la vitesse V' est la vitesse réelle de marche horizontale: les vitesses V et V” sont des
. vitesses fictives ayant pour expression :
V’!/ I "

V=uwp tg asec2p =0u'"s" tg «"sec2 §

Nous négligerons, provisoirement, dans le fonctionnement de I'hélicoptére, 1'effort
horizontal supplémentaire provenant de la vitesse d'entrainement V’ et que nous avons
étudié au n° [35],

Dans ces conditions, toutes substitutions faites, 1'équation générale aura pour
expression !

YI _l__ X’f/ —_ I)’
¢’est-a-dire :

Py 4 dS - d'S' |- d"'S" 4 =F — 32K (a, ) SVeseer ¢ — K (o, g S'VE=10 (1)
ot: F = I 4~ T". Enfin nous pouvons admettre que les deux hélices sont de surfaces
semblables, de telle sorte que l'on aura K (a, 8} ==K’ (2", §"). Ces prémisses et simpli-
fications établies, étudions la question suivante,

Disposant d'un moteur de puissance totale F, distribuer au micux cette pulssance
entre I'hélicoptere et le propulseur de l'aéroplane.

Ecrivons a cet effet :

K(z, B) SV? = Fcos®o dott: §" =T sin® g : KV?
K (o, g") 8"V = F sin? ¢ 5" =TF sin? ¢ : K"V
et comme précédemment : AS = dS -+ d'S’

et récrivons I'équation (1) en y remplacant les S par leurs valeurs, on obtiendra, en

1 . .
ordonnant, par rapport d g la relation suivante :

1 ¥ costg

d'sivgt .4 N4P, A B
TR v Se gttt — v =0

Les conditions de réalité des racines de I'équation en V" donnent les deux expressions
ci-dessous, aprés réduction,

Ve — 3d"

_"Kffr

Im+Pp, A . WMo, 2sin'g
——F——{—K—Wcos ¢y coste =g —

On simplifie ces expressions en revenant aux notations déja employées :

< o LK
Y T aTA
qui donnent le systéme :
2
__ =
v T 3a"
. cos®y 1 Weostgd | Py 11— a'Fsinto = ;
et ‘Yee v I v 3 =0 @
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On remarquera que ce systéme et pu s’écrire directement en partant des formules
établies dans la théorie de I'hélicoptere.

Si nous appliquons en effet les formules [27], donnant le rendement maximum d'un
moteur de force F'"=T sin® y avec une hélice & paramétre a’, on trouve qu'il est produit un

enlevement de a” I sin® ¢, en sus du poids de I'hélice, en marchant & une vitesse V¥ = Ta
3a

comme nous venons de l'établir directement.

Et I'équation (2) actuelle n'est autre que I'équation (1) de I'adroplane dans laquelle la
force ascensionnelle P, est précisément réduite de a’ F sin? .

On peut maintenant discuter les diverses solutions que l'on peut donner & ’équa-
tion (2). i

59. — 1° Moteur minimum. — En appliquant aux données de l'équation (2) les
formules [31] ou encore en la discutant directement par la méthode habituelle, on trouve
les deux relations:

2
J — .
V= 3eh
et: Py -} II = (€2? cos® g - a’ sin® ¢) F.

11 ressort de cette derniére, mise sous la forme:
Py - 11 == ¢i®F 4 (a" — ex*) I sin® ¢

que, étant donnée une puissance F, il y a avantage a T'utiliser partiellement sur un héli-
coptere pourvu que l'on ait : &" — ¢33 > 0;

[t si cette condition est satisfaisante, le rendement sera d’autant plus avantageux
que sin o sera plus considérable.

On devra donc donner & I'hélicoptére toute la puissance disponible, une fois la vilesse
horizontale V' assurée, cette vitesse horizontale étant en effet I'un des éléments essen-
tiels de I'établissement de I'aéronat.

60. — Surface minimum. — Au lieu de chercher & faire marcher 'aéroplane avec
le minimum de moteur, on pourrait le faire fonctionner avee le minimum de surface des
ailes, puisque c’est I'énorme dimension de ces organes qui s'oppose principalement a la
réalisation pratique du probleme. En appliquant alors les formules [51] pour ce cas
particulier, on éerira :

NG
P/ = g (1 — cos® y) cos® o - (% — 1) IT sin?® o,
en faisant ¢ = 0, on obtient pour P, le rendement de l'aéroplane simple. Sil'on forme la
dérivée, on écrira :
dp,’ cos® v

a’ 1 .
= :(——1 —§+--§——> sin 2 o,

% -

T

d’ou il ressort que P, croit avec ¢ lorsque le facteur entre parenthéses est positif. En y
remplagant cos® v par sa valeur en fonction des éléments constitutils, on obtient pour ce

1r., 3 = \]

2
. - m

et le maximum du terme soustractif a lieu pour — == 1, de telle sorte que le facteur en
e\

facteur 'expression :

question, toutes réductions faites, est toujours supérieur & a" — =,
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D’autre part, I'on doit toujours avoir ¢A* > =, sans quoi 'aéroplane simple ne marche-
rait pas: on retombe donc sur la condition nécessaire et suffisante a’ — ci* > 0.

Dés que cette condition est satisfaite, que 'on se place au point de vue du moteur
minimum ou de la réduction des surfaces, il y a avantage & munir 'aéronat d’un héli-
coptére élévatoire, et & donner & ce dernier toute la puissance disponible une fois la vitesse
horizontale V" assurée comme il a été dit précédemment.

61. — Signification de la condition a" — ¢x* > 0. — Quelle est la signification
mécanique de cette relation, qui caractérise la possibilité de I'emploi de I'hélicoptére ?

Si on remplace a” et ci par leurs valeurs, on écrira I'inégalité sous la forme:

1 x>0
\/'H ‘\]

Les vitesses V" et V' caractérisent le régime des deux hélices : le rapport 32 caracté-
rise le rapport des deux composantes verticale et horizontale de l'action de I'air sur le
corps d'aéroplane en marche, car I'on a:

= Ssing Y
N TS FYeny X FR

L’inégalité s’éerira done:

v Y’ _ Vi XR
V7 XFR o VST

Par conséquent, la condition d'introduction de V'hélicoptére revient a dire que la
vitesse de régime de I'hélice élévatoire puisse étre moindre, relativement & celle de
I'hélice propulsive, que le rapport des résistances horizontale et verticale du corps
d’aéroplane, ‘

Sil'on admet que les deux hélices aient les mémes caractéristiques angulaires, c’est-
a-dire o == o =0 —c et §' ==}, les vilesses fictives V' et V seront & remplacer par les
vitesses réelles de circulation o'p" et wp des centres de poussée.

Mais I'élément de la question n’est pas tant la vitesse wp que la vitesse réelle V/ que
P'on veut imprimer a I'appareil : remplagant done V par sa valeur en fonction de V', laquelle
est donnée par: )

V=uwptgasec2 =V cotetgasec2s;

I'équation de condition deviendra :

mffff[)‘s X I{ . /<‘, T
PV"L’ < ;t ou: < sin o ; (sm“ o g)

Par suite, pour de trés faibles vitesses V', 1l ne sera pas nécessaire de recourir &
I'hélicoptere, ce qui est d'accord avec les résultats des essais de vol plané eflectuds dans
ces derniers temps.

D'autre part, 'équation de condition peut encore se mettre sous la forme :

5

C G .
V> o' tg e (sm- o + §’) : sin o'

Lorsque 8’ croit, le second membre décroit, il en est de méme par conséquent de la
limite inférieure de V.

Il sera donc d’autant plus tot nécessaire de recourir & I'hélicoptere que la surface
des ailes, pour une méme nacelle, sera plus considérable.

Par contre, I'emploi de I'hélicoptére, permettant de réduire cette surface des ailes,
contribuera & la stabilité du systéme.
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Etablissement d'un acroplane mizfe. — Supposant satisfaite la condition 2" — ex* > 0,
nous aurons avanlage, dans tous les cas, comme nous venons de le démontrer, & établir un
aéroplane mixte,_ c¢'est-a-dire soutenu particllement par un hélicoptere.

Quelles seraient alors les valeurs des différents éléments, délerminées pour les trois
cas limites habituels ? Nous nous donnerons comme élément fondamental la vitesse de
marche horizontale V',

62. — 1 Cas. — L'hélicoptére ne soutient qu'une fraction P," de la charge totale P,
de la nacelle. — La puissance motrice nécessaire & I'hélicoptere est alors exprimée par la

f ol
=P, (‘1 — ‘1)
T
et celle du corps d'aéroplane :
II" = (P’ — P,") : (sec® v — 1).

relation :

D’autre part, la vitesse V' est reliée a la vitesse de régime V et par suite aux élé-
ments ¢,k et v par la formule:

tg = cot a cos 28 = V. (%)

7. ¢ 2
\’;Vtgecotacoszﬁ:ﬁ

Dans cette expression nous admettons que nous connaissons ¢, « et 3, ce qui déter-
mine ci : en se¢ donnant diverses valeurs de A, on obtiendra des valeurs correspondantes
pour ¢ et I'on pourra dresser un tableau analogue & celui du n° [54].

Si au lieu du minimum de moteur appliqué au corps d'aéroplane, on eit cherché le
minimum de surface ou d’effort axial, il suffirait de remplacer V dans la relation (%) par
I'une des valeurs[51] :

V= 2 ou v 3 (ﬁ)m/u

3= — i \e

qui donne de suite, selon le cas, X ou ¢, et 1'on poursuivra le calcul en faisant usage des
formules [52].

Nous donnerons d’ailleurs plus loin des applications numériques de ce cas, comme
de ceux qui vont suivre.

63. — 2¢ Cas. — L’hélicoptére supporte toute la charge de la nacelle, la marche de
Uaéroplane n’assurant que la sustentation de ses propres organes.

L’hélicoptere étant toujours censé marcher 4 moteur minimum, on aura d’abord :

N
P, = 11" (“:_ 1),

puis I'équation de définition du régime d'aéroplane ;
dS - d'S' - II' = K'§'V?sin o' = \KSV?,
avec: Il = zKSV3,

Cette équation ne différe de la relation fondamentale que parce que P’ n'y figure
pas. L'analyse faite précédemment reste donc applicable & la condition d'introduire dans
les tableaux [51] et [52] qui en résullent la, condition P,/ =0, ce qui se traduit par l'une

ou l'autre des formes équivalentes :

secy=1, ®— cn =0.

Siw < en?, il y aura quand méme un effort ascensionnel di a la marche de I'aéro-
plane, et si z > ¢)® le systéme descendra, étant supposé bien entendu que les autres
éléments sont calculés par les formules [51] ou [52].
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Soit done = == €i* ou sec v = 1. Le systéme des trois colonnes [31] ou [52] se réduit
& un seul, qui est le suivant :
v 2
3

AS =A'8' = r_t BESV,
2 3
Le systéme est déterminé du moment que I'on se donne V ou plutét la vitesse vraie
V' de marche horizontale de I'appareil, et tous les éléments se calculerant par les rela-
tions :
W =3zV': 2y S'=13%: (1 —¥*sin &) sin o'

P, =A'S 11" = 2P
S=K¢%: (1 —¥sina)K(z, 8) =P, : A,

ces deux derniéres expressions de S donnant une vérifieation numérique.

De méme que précédemment, on pourra résoudre le probleme sans prendre les solu-
tions limites données par les expressions ci-dessus. L'équation fondamentale donnera
deux valeurs de V en fonction des autres éléments, et ainsi de suite. Mais on devra
toujours vérifier qu'il est satisfait & la relation de condition a” — ¢i? > 0.

I1 est bien entendu que dans le cas o la relation )3 = = ne serait pas satisfaite, il
suflirait, pour rétablir I'équilibre, de réduire ou d'augmenter la puissance transmise i
I'hélicoptére.

64. — 3° Cas. — L'hélicoptére soutient fous les organes, & U'exception des palettes
obliques de l'aéroplane.

Ce cas présente de I'intérét parce qu'il simplifie la conduite de I'aéronat : les varia-
tions que I'on sera foreé de faire subir aux inclinaisons o des palettes, par suite des
courants atmosphériques ou de toute autre cause exiérieure, étant corrigées par le seul
réglage de I'hélice propulsive.

La solution se déduit de la solution précédente en y faisant d = 0, comme si I'hélice
était sans poids, et en calculant ensuite [1” par la relation :

a

"
(: — 1) N"="P,/ 4+ ds.

685. — ke Cas. — L’hélicoptére soutient tout le systéme ; la marche de Uhélice propul-
sive n’est réglée que pour vaincre la résistance de Uair au mouvement horizontal.

Ce cas ne peut pas se produire absolument dans la pratique parce que, du moment
qu'il existe des palettes inclinées &', ces palettes transmettront une composante verticale
au systéme, et ce sera la du reste la raison d'étre de ces palettes, parce que cette compo-
sanie verticale tendra & régulariser les mouvements de tangage de l'aéronat.

La conduite de 'aéronat ainsi défini sera du méme genre que celle du hallon dirigeable
actuel, puisque I'hélicoptére soutiendra tout l'appareil, comme le fait actuellement le
ballon a hydrogéne ou & gaz. Les dilférences {iendront & la moindre valeur du couple dd
& la résistance opposée au mouvement de translation horizontal de I'hélicoptére par rapport
a celle opposée au déplacement du ballon. Mais nous nous abstenons d'étudier ici ces
questions de conduite qui ne sont pas de notre compétence, et nous nous hornons a
étudier les puissances & fournir aux divers organes.

Nous supposons done, dans ce quatrieme cas, que 'aéroplane a été préalablement
établi avee ses palettes S’ et qu'il s’agit, sans toucher a ces derniéres, d’assurer les mouve-
ments des deux hélices.
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Celle de I'hélicoptére devra satisfaire a la relation :

s AY
(% — 1) 11" = P, dS - d'S/,

™

oi P, et d'S’ sont immédiatement connus, et ot S est & déterminer d’aprés les conditions
du régime horizontal.

Il sullit & cet effet d’écrire la relation d'équilibl‘e entre la propulsion axiale de I'hélice
et la résistance atmosphérique, ce qui donne :

K (a, ) SV2 =K' (s + 5 sin?* ') V" cos? ¢,

ol S est la seule inconnue, puisque I'on a V' = Vy, ¢ désignant comme plus haut, pour
abréger 1'écriture, le produit tg < cot « cos 28.
S ainsi connu, on aura pour la puissance & fournir & I'hélice de 1'aéroplane :
> [ !
[1' = zKSy—V'3,

et pour celle de I'hélice élévatoire :

/ol
1" = (P, + dS + d'S') : (3 — 1).

(

Cette derniére valeur est un maximum, puisque les palettes de I'aéroplane fourniront
un effort ascensionnel supplémentaire; il correspond au cas limite ot o' = 0.

Dans tout ce qui précéde, nous avons déterminé les conditions de U'hélice élévatoire
sans tenir compte du mouvement d'entrainement horizontal auquel elle participait. Or
nous avons montré [33] que, dans ce cas, la puissance a fournir devait étre augmentée

V2 , w2 tgTe
aNS . '+t de 4 1hé — o =
dans le rapport de 1 - EErE a lunité =1 4 57,7
f
Il y aurail une réserve du méme genre & faire au sujet du rendement de 1'hélice
propulsive lorsque 'aéronat se déplace verticalement : il faudrait multiplier II' par le
ml/-zp!/g Lo o
facteur 1 4 T;:D,‘— .
g

Les applications qui vont suivre permettront de se rendre compte du fonctionnement
des aéroplanes mixtes ainsi organisés.

66. — Applications. — Reprenons dans cette hypothése de 'adjonction d'un héli-
coptére i Uorganisme d'aéroplane 'examen des cas traités au n° [54].

L’hélice élévaloire étant du type Hervé, de méme que I'hélice propulsive, sa caracté-
L4
- a . .
ristique a2’ a pour valeur 0,0806. Le rapport — sera done 1,612, et, par suite, elle sera
=

susceptible d’enlever un poids 0,612 T1"sin®s, ce qui viendra en déduction du travail a
demander & 'effort horizontal.

T wry € cay LR - - g ..
On a trouvé d'autre part [54] = = 52,565 : A, ce qui permettra de former €22, Mais il

est plus simple de prendre ’équation de condition sous la forme %*V’ <V, puisque nous
avons déja les valeurs de V et que V" est connu une fois pour toutes comme ayant pour

2 . .
valeur S = 8,25. On a donc le tableau sunivant :
A= 2 25 5 9 10
BV = 16,5 20,6 41,25 74,3 82,5
V = 16,1 15,9 5,5 15.3 15,2

d’ott il suit que dans les conditions de vitesse V admises, il n'y aurait pas d’avantage a
introduire I'hélicoptére ; mais ces vitesses V correspondent a des valeurs V’ trop faibles au
point de vue de la dirigeabilité de 1'aéronat. Dans le cas traité aun® [55], ot V' =15 m. 30,
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et, par suite, V = 30 m. 60, il y aura lieu d'introduire Phélicoptéere dés que 22 sera infé-
rieur & 30,6 : 8,25, soit a 3,80,
Si.dans ln série (54, on et admis des valeurs moindres pour %2, soit par exemple

2 == 1,5, I'équation de condition eiit été satisfaite, et bien que ce cas ne soit pas pratique-
ment réalisable, car il correspond & une vitesse V' encore trop faible, nous le traiterons
cependant i titre d'indication.

Supposons done comme précédemment un moteur de 100 chevaux appliqué a un
aéroplane simple ayant pour caractéristique %2 == 1,5, et examinons le fonctionnement &
moteur minimum. La marche habituelle nous donnera

P,/ =8l kilog. S=1m*9% & =190mz V—=17m.6 V =8m.S8&.

Cherchons maintenant & munir le systéme d'un hélicoptére donnant un effort ascen-

sionnel P,/ de moitié, soit 40 kg. 300. Nous pouvons immédiatement diviser par 2 toutes
les unnslul}.{es de 'aéroplane simple, lequel, continuant a marcher a la vitesse V' de
8 m. 80, ne nécessitera plus quune hélice de ¢ m. 95 et des ailes sustentatrices de
95 métres carvés (la surface S° de la nacelle serait également réduite de moitié). Reste a
déterminer I'hélicoptere. Les formules 27 | donnent immédiatement, I'hélice étant supposée
toujours du type Hervé :

V=8 m. 25 1" = 66 kilog. "= 171 6 S" = 2 m? 66

Ces chillres sont établis sans tenir comple de la vitesse d'entrainement V’. 8i on
introduit le terme de correction correspondant, on trouve qu'il entraine une augmentation
d’environ 1 p. 100, de telle sorte que nous aurons pour I’ trés sensiblement 18 chevaux.
Ainsi nous arriverons it marcher i la méme vitesse V. avece un méme poids mort P, de
81 kilog., mals avee une force motrice de 50 -+ I8 ou 68 chevaux au lieu de 100 chevaux,
el réduction de moitié des forces sustentatrices.

Dans le cas, lraité au n® [35 Lot V= 15m. 30, Iéquation de condition est satisfaite
. , ca -9yl . T {4 N | o . .
dés que 'on a 12 <7 2V’ 1 V' soitici 312 < = ou 3,70, et ainsit de suite.
k] =~ 8 95 ] b

2¢ Cas. — Supposons maintenant que nous demandions & Ihéhcoptére de soutenir

tout le poids mort de 81 kilog. Ses éléments devront étre doublés, ainsi que sa puissance;
il faudra done prés de 36 chevaux au moteur, avec une surface d'hélice de ¥ m? 32, la
vitesse V restant la méme; le rayon ¢’ se (rouvera mu Itiplié par 1,41 et la vitesse angu-
laire ", ainsi que le nomhbre de tours, divisé au contraire par 1,41. Quant au corps
2

5 , sélévera a4 20 meétres, et V/
h

d'aéroplane, sa vitesse de régime V, donnée par V =

atteindra 10 métres.

N'ayant plus & tenir compte du poids meort a soutenir, puisque cette charge est
supportée par 'hélicoptére, il est loisible de se donner un autre ¢lément, la surface S° de
la nacelle au maitre couple, par exemple. Supposons que cette nacelle soit la méme que
celle étudiée au début, ot S° == 4 métres carrés, et ot 5 prendra pour valeur soit 0,1, siles
palettes sustentatrices sont du type Langley, bOlL 0.1:4.4 ou () ,023 si elles sont du type
analogue & I'hélice Hervé. Conservant langle o égal & 5°43', les équations [63 | nous
donneront successivement :

5 = 1m?76 I = 4 kg. 230 "= 11IP13 S =0 m2106

ou les mémes éléments divisés par 4,4 suivant le cas.

; pour revenir complétement au cas étudié, nous portons P, a 500 kilog., nous

vmons qu il. faudra, comservant les mémes elements pour l'aéroplane, multiplier les

. G o 500 . ]
valeurs des divers éléments de 1'hélice par o ou 6,18, ce qui donnerait une surface
<

6
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hélicoidale de 33 métres carrés, et une puissance de 224 chevaux, y compris celle appli-
quée a 'hélice motrice horizontale.

3° Cas. — Nous venons de trouver dans I'application précédente une valeur dS égale
0,106, ce qui entraine un poids égal & 2 kg. 120, chiffre trés faible, par rapport au poids
81 kilog. de la nacelle chargée. On peut done penser que pratiquement il n'y aura pas lieu
de tenir comple de ce poids dS dans les calculs d'établissement d'un aéroplane mixte.

i® Cas. — Dans le quatritme cas, la surface S’ est imposée par la nécessité de satis-
faire aux conditions de stabilité du systéme, et sa détermination n'entre pas dans le cadre
de la présente étude. Supposons, pour fixer les idées, que S’ soit fixé & 10 métres carrés,
s conservant la valeur 0,1 déja indiquée. On aurait alors pour 3> ==8'sin &' : (¢ 4~ 8 sin? o/
la formule, avec la seule variable ', 3* = sin &’ ; (0,01 4 sin® ). Pendant la marche, il

est & prévoir que N'on sera conduit a faire varier I'angle o', puisque les ailes S’ servent &
maintenir Péquilibre. Il y aura donc & chaque instant variation dans les résistances 2
ainere dans le mouvement horizontal, et on devra calctder S pour la valeur maximum
de o' : si nous maintenons cette valeur au chilfre de 50 &3, on voit que 32 deviendra égal
a 0,1 :0,020u a b et que peut étre dans ce cas de maximum, la relation de condition
a" — 3.} > 0 ne serait plus satisfaite. Mais il ne s’agit pas seulement de marcher au moteur
minimum : il s’agit de soulenir l'appareil dans toutes les conditions, c¢’est-a-dire lors
méme (ue « se rapproche de zéro. Il n’y a done pas lieu de s’arréler & cette objection,

" : nous écrirons done lei :

mais de déterminer S pour la valeur extréme de «
WK (o, 5)SV2 = K/'S'V" sin 5° 437 cos? ¢,

ce qui, avec nos constantes déja employées, s'éerira

Se= o= 5 = 0,003 8" = 0 m203.
8 = rgp7s S = 0,003 8' = 0 m:03
Pour 'autre limite o’ = 0 on eiit trouvé :

S==otgz: {1 —tg* ) =35 otge = 0m2015.

Ces deux chiffres sont minimes, comme ilélait d’ailleurs a prévoir, a raison de laminime
surface présentée a la résistance de l'air. A noter que si la puissance & prévoir pour le
moteur horizontal doit comprendre non seulement celle nécessaire & la manceuvre des
divers apparaux, le poids de cette derniére est compris dans le poids P,'. Nous sommes
donc ramenés encore pratiquement au deuxiéme cas.

(,lopenﬂunt, bien que ¢e deuxiéme cas semble le plus avantageux, et le soit effective-
ment au point de vue purement théorique de la puissance du moteur, il se peut qu'il en
résulte pour I'hélicoptére des surfaces trop considérables, et qu'il ait avantage a demander
une partie de la sustentation a des ailes latérales, e'est-i-dire & rentrer dans le premier cas.
En un mot, la solution théorique consiste en un hélicoptéere soutenant toul le systéme,
mais peut-étre devra-t-on la corriger pratiquement pour éviter des dimensions exagérées.
En tout cas, les formules [62] permettent de se rendre compte des conditions d’établisse-
ment de 'aéroplane dans les différentes hypothéses ot 'on devra se placer.

6'7. — Ailes articulées. — Dans tout ce qui précéde, nous avons considéré des ailes
de surface S’ constante : il en résulte que les variations de vitesse de T'appareil, qu’elles
soient nécessitées par les actions atmosphériques extérieures ou par des raisons de marche
régulitre telles que ralentissement en vue d’accostage, doivent étre obtenues par des chan-
gemenls dans le régime du moteur-propulseur. Peut-étre sera-t-il préférable de demander
ces variations & des modifications dans l'inclinaison ' et dans la surface travaillante '
des ailes sustentatrices. M. l'ingénieur Henry expose le principe d'ailes ainsi congues que

nous croyons intéressant de résumer,
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Pour permettre & I'aéroplane : 1° de pouvoir entre certaines limites étre disposé de
telle fagon qu'il recoive d'un vent relatif déterminé une action dont on puisse étre maitre
en direction comme en grandeur et 2° de conserver le centre de gravité sur I'axe d'em-
manchement, lequel contient également le point d'impact du vent relatif qui lui reste
perpendiculaire, on peut constituer les ailes comme il suit :

|

~

Fig, 1. Fie. 2.

Ailes rectangulaires, dont un des cétés, de Iongueur variable ! (fig. 1), ce qui fera varier
la surface travaillante &', est toujours parallele & 'axe d’emmanchement tandis que 'autre,
de longueur constante L, reste perpendiculaire & ce dernier.

Le point d'impact d'un vent relatif perpendiculaire & I'axe esl & unedistance de I'aréte
d’amont variable avec 'angle o' du vent
avec laile, et si I'on admet pour cette
distance la valeur donnée parla formule
de Jossel citée plus haut [36], c'est-a-
dire L (0,2 4 0,3 sin &'), il en résulte
que (fig. 2) par rapport & la ligne or
(direction du vent)et au point d'impact
supposé fixe en O l'extrémité d'amont
décrit une courbe obtenue en prolon-
geant d'une longueur égale a 0,2 L le

rayon vecteur d'une circonférence ayant
comme diamétre 0,3 L et tangente en O
a la direction or.

11 en résulte la connexion suivante
de l'aile et de 'axe d'emmanchement :
Sur celui-ci est montée, non clave-
tée, une bielle Oa (fig. 3) de longueur
égale a 0,15 L; cette bielle en com-
mande une autre 2b de méme longueur et faisant avee elle un angle ¢ variable 2 volonté ;

en b la bielle est articulée & un point fixe de I'aile silué au cinquitme de sa longueur
& partiv de l'aréte d’amont : dautre part, la direction de l'aile est asireinte & passer

*
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toujours par le point O, l'axe O s’engageant par son extrémité ronde dans un cou-
lissean pouvant glisser dans une rainure longitudinale de 'aile. Dans ces conditions, si
P'on incline la seconde bielle sur la premiere de I'angle 2z, le vent faisant avee l'aile I'angle
¢ [rappera celte aile en O. 7

Ainsi sera régularisée la position du point d’impact indépendamment de l'incidence
(lll ('-()lil'i'lllt S'HZCHX.

D’autre part, les variations de la vitesse V' dues & 'atmosphére seront compensées
en déployant plus ou moins la partie mobile des ailes, sans qu'il soit nécessaire de modi-
fier le régime de marche da moteur-propulseur.

Enfin, pour que le poids de P'aile résiste toujours sur 'axe O, il sera nécessaire de le
composer d'une parlie fixe m qui sera loujours appliquée en D au cinquiéme de L et d'une
partie m, se déplagant automaliquement si possible, & mesure que l'angle ¢ varie, et &
partir du point D correspondant & ¢ = 0 d'une quantité proporlionnelle au déplacement
corrélalila partir de ce méme point D, du point d'impact, comme il est facile de le démontrer.

Dans ces conditions, T'aéroplane rectangulaire pourrait avoir, quel que soit son
déploiement, son centre de gravité en D, pour le poids m. Le poids m, est, dit 'auteur,
une sorte de poids mort, ajouté, el qui constitue par suite un inconvénient, peut-étre capi-
tal, de cette sorte d'ailes qui présente, par ailleurs, les avantages d'une grande simplicité

de construction et d'une grande facilité de manceuvre.

Remarque importanie. — Laréserve ci-dessus faite par M. Henry au sujet du poids
mort m,, absolument justifiée dans le cas de I’aéroplane simple, perd de son importance
dans le cas de l'aéroplane mixte que nous considérons comme le seul pratiquement réali-
sable dans les conditions actuelles. Le poids m, est & ajouter au poids P,/ et, s'il en
résulte la nécessité de renforeer 'hélicoptére, il ne constitue pas du moins un alourdisse-

ment rédhibitoire de I'appareil.

68. — Adjonetion d'une queue & Uaéronat. — M. Ilenry signale également la néces-
sité d'une queue, d'un empennage, comme 1'a écrit dernierement le colonel Renard, pour
assurer la stabilité du systéme. Il ajoute que théoriquement une queue a surface inva-
riable pourrait sullire, mais qu’il est toutefois possible que I'on reconnaisse plus commode
pour la manceuvre d’avoir une queue a étendue variable, déployable en éventail, comme
celle des oiseaux. Quelle que soit la disposition adoptée pour cet organe indispensable, il
semble qu'il doive étre considéré comme supporté dans tous les cas par I'hélicoptére, et
son poids par suite ajouté au poids P, : les efforts verticaux essenticllement variables
qu’il devra supporter et transmetire au systéme semblent devoir élre alternatifs d'une part,
et d’autre part, n'avoir quune intensité relativement faible (il est, bien entendu, question ici
de leur intensité propre et non de leur moment par rapport au centre de gravité général).

Novs ne nous étendrons pas davantage sur ces questions d'organes de manceuvre, qui
sortent du cadre de notre étude, nous contentant d’aveir indiqué comment il semblait devoir
étre pourvu a leur sustentation et renvoyant le lecteur & I'ouvrage de M. Henry (Elade
du mouvement d’un aviateur-aéroplane, Dunod, 1902).

Mais dans toutes les discussions précédentes, nous avons fait usage des formules
type Langley pour I'évaluation des efforts supportés et transmis par les ailes sustenta-
trices, nous contentant d'infroduire dans certaines applications un coeflicient /' (x) = 4,4
pour tenir compte de I'amélioration que 'on pourrait apporter au tracé de ces ailes, en les
assimilant ainsi un peu arbitrairement aux surfaces hélicoidales de L'appareil Hervé, On
sait que Lilienthal a déduit de ses expériences des courbes et fonctions empiriques qui
sembleraient conduire & un autre genre de solution du probleme. C'est ce qui nous reste &

examiner,
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CHAPITRE IV

Expériences et formules de Lilienthal.

I. — Résumé de Lilienthal.
69. — D'une série d'expériences exécutées pluldt dans le but d’étudier 'aviation
’

¢'est-a-dire le vol d'un homme dans I'air, que la dynamique aérienne proprement dite,
Lilienthal a déduit des principes et formules que nous allons indiquer, d’apres 'exposé
que lauteur lui-méme a rédigé pour I'aide-mémoire de Moedebek : nous reviendrons
ensuite sur ces expériences et sur U'interprétation des résultats énoncés dans ce travail.
Les appareils employés pour la sustentation aérvienne doivent avoir I'aspect d’une aile
d’oiseau déployée : leur action, tant motrice qu'élévatrice, repose sur l'utilisation des

A
<

actions atmosphériques ar

, grice & une disposilion convenable des surfaces portanies ainsi

établies.

Dans de telles conditions, en effet, sous une inclinaison voisine de 'horizontale et en
marche horizontale également, une aile de profil faiblement incurvé éprouve de la part
de Vatmosphére une action tendant forlement & 'élever, toul en n’opposant & sa marche
qu’une trés minime résistance. En vol avant, suivant une Lrajucinir‘c faiblement infléchie,
cette résistance antagoniste devient complétement négligeable, tandis que I'effort de sus-
tentation reste encore considérable. De méme, un courant aérien s'élevant sous un angle
trés faible pourra produire une action sustentatrice sans refouler pour cela 'appareil volant
de sorte qu’une station mementanée dans I'air et méme une marche contre le venl se trou-
veront possibles sans que l'on perde en hauteur.

Les actions des ailes sont le plus avantageuses lorsque ces ailes présentent vers le

. . 1 1
haut une convexilé atteignant de - a =de leur largeur,
e 18 12
Soit une aile de ce profil frappée sous un angle « par I'air animé d'une vitesse v.
Il en résullera une action atmosphérique R qui en général n'est pas normale & la
corde de l'aile, mais qui se compose d'une forcé normale N et d'une force T dirigée le
¥ I gl
long de ladite corde : ces deux forces auront pour valeur :

N =0,13 Sv¥y
T — 0,13 S 20,

S étant la surface de Vaile, et 4 et § deux fonctions empiriques dont les valeurs sont don-
nées par la table numérique ei-dessous. On remarquera que ces surfaces courbes possédent’
encore des propriétés de sustentation pour certaines valeurs négatives de z, c'est-a-dire
alors méme qu’elles sont frappées par un courant aérien descendant, mais sous une faible
incidence.

Les composantes de l'action atmosphérique dirigées suivant la corde, qui font d'abord

P

obstacle au mouvement, se transforment, pour des angles d’incidence supérieurs a 3°, en

. . , " . . 1 .
efforts propulsifs qui, sous I'angle de 15°, aiteignent jusqu’a ) de la sustentation, et ne
2
disparaissent que vers 30°. Un courant aérien s'élevant de 3° au-dessus de I'horizontale,
produit sur une aile convexe horizontalement déployée une action sustentatrice; sans
refouler la surface vers I'arriere. C'est I le principe fondamental du planement des oiseaux.
I
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70. — Table numérique des fonctions de Lilienthal.
-2 n 0 o 7 0

— 9 + 0,000 ~ 0,070 160 0,909 — 0,075
— 8° 0,040 -+ 0,067 170 0,915 -— 0,073
7 0,080 + 0,064 18 0,919 — 0,070
— o 0,120 - 0,060 190 0,921 — 0,065
— %o 0,160 + 0,055 200 0,922 — 0,059
— 40 0,200 + 0,049 240 0,923 — 0,053
— 30 0,242 -+ 0,043 220 0,924 — 0,047
— 0,286 £ 0,037 230 0,924 — 0,04l
— o 0,332 40,031 2o 0,923 — 0,036

ne 0,381 [ 0,024 250 0,922 — 0,031
FENT 0,434 0,046 260 0,920 — 0,026
Jo2 0,489 - 0,008 270 0,918 — 0,021
- 30 0,546 - 0,000 (0,015 — 0,016
bk 0,600 — 0,007 0,912 — 0,012
4 Bo 0,650 — 0,01% 0,910 — 0,008
Lo 0,696 — 0,021 0,906 0,000
4 e 0,737 — 0,028 0,896 4+ 0,010
-+ 8 0,771 — 0,035 0,890 -+ 0,016
- 9 0,800 — 0,042 0,888 |- 0,020
Loqpo 0,825 — 0,050 0,888 40,023
-+ 1ie 0,846 — 0,058 0,890 + 0,026
4 420 0,864 — 0,064 0,900 10,028
S+ 130 0,879 — 0,070 0,930 4 0,030
A4 0,801 — 0,07k 0,960 -+ 0,015
ERES 0,901 — 0,076 1,000 0,000

Sous les incidences de 5°, 32° et 90°, la résistance atmosphérique est normale i la
coride du profil de la surface. )

La table numérique qui suit donne les valeurs des fonctions empiriques v et 0, telles
que Lilienthal les a déduites de ses expériences.

La table numérique qui préedde est Ia seule & nolre connaissance qui ait éLé calcu-
Iée, el c'est & cette table quel'on emprunte les coefficients nécessaires aux caleuls corres-
pondants aux hypothéses de Lilienthal, non sans faire certaines réserves que nous rappel-

lerons en temps opportun.

w1. — Il convient toutefois de signaler encore la représentation empirique que
Jarolimek a donnée des résultats indiqués par Lilienthal dans le cas des surfaces planes,
La résistance de L'air entre les limites de 1° & 15° étant représentée par RSe? ol &

R = 0,007 4~ 0,00225 «,
Peffort vertical correspondant a pour formule :
Y == RS¢?cos 4,
et le travail F == YV ou V = vigi.

L’angle % est un angle auxiliaire dont la valeur empirique, entre les Iimites de 1° a 8°

pour z, est donnée par la relation :

]
= g 1,

Droits réservés au Cnam et a ses partenaires



87 —

ce quu correspond au tableau ci-dessous :

P 0" 1o 20 30 4o He 6o 70 8°
N 900 Y &qe 350 310 280 260 250 230

mais en faisant des applications numériques & 'aide de ces relations qui traduisent sim-
plement en nombres les tracés de Lilienthal, Jarolimek montre que l'on arrive & des
résultats inadmissibles.

Considérons par exemple une surface plate de 10 meétres de colé, soit 5 = 100,
animée d'une vitesse horizontale de 10 métres par seconde et inclinée de 2° ou de 8°, on

aura dans le premier cas R = 0,0115 % = 41¢, et dans le second R = 0,025 et 7 = 23,
ce qui donnnera respectivement :

= 87 kilog. et I = 754 kgm. ou 10 IP
== 230 kilog. et T = 977 kgm. ou 13 IP,

tandis que les formules habituelles indiquent :

Y = 42 kilog. avec F =147 kgm. ou2 IP
Y =167 kilog. avec F =232 kgm. ou 3 P,
pour R, == 0,085 et ces nombres augmentés de moitié pour la valeur K, = 0,127, limite

supérieure du coefficient de la résistance de Dair.

On voit que les expressions de Lilienthal conduisent & des rendements élévatoires bien
inférieurs & ceux que les formules généralement admises permettent d'espérer.

72. — Appliquons maintenant les fonctions » et 6 an cas de la méme surface, supposée
cintrée. Nous aurons deux composantes, normale et tangentielle, ayant respeclivement
pour valeur :

N == 636 kilog. et 1.000 kilog.
T = 410 kg. % — 45 kilog.

Daus le premier cas, la composante T s’oppose 4 la marche horizontale et la compo-

stance de
636 >< sin 2° ou 22 kilog. Il ¥ a done une sustentation de 635 kilog. environ et résis-
tance horizontale de 32 kilog.

sante N, inclinée de 2° vers I'arritre, oppose également & celle marche une ré:

Dans le deuxiéme cas, nous aurions une composante T, accélératrice de 43 kilog. cos 8°
et un ralentissement de 1.000 sin 8°, soil sensiblement 139 kilog. — 45 kilog. ou
94 kilog., avec sustentation voisine de 1.000 kilog.

L’inclinaison relative de 8° elt encore pu étre réalisée avec une surface inclinée de 2°
comme dans le premier cas, mais soumise a l'action d'un courant aérien ascendant de G°.
Les valeurs de N et de T eussent él¢ les mémes, mais la composante de ralentissement
n'edt plus été que 1.000 sin 20 ou 35 kilog., de telle sorte qu’il y efit au contraire accé-
lération du mouvement,

Sil'inclinaison de la surface eiit été de 3°, ce qui eit donné 9° d'incidence relative, cas
traité comme exemple pur Lilienthal, il y et eu équilibre dans le sens horizontal, et la
charge, de 1.040 kilog. efit été supportée purement et simplement par le courant aérien,

'78. — Les propositions de Lilienthal ont donné lieu & diverses observalions relatées
dans l'ouvrage de Mcedebeck.

Les expériences d'Hargrave et de Wright en Amérique confirmérent bien I'existence
de la composante tangentielle T, mais avec une intensité bien inférieure & celle annoncée
par Lilienthal. Voici d'ailleurs comment s'exprime Wright sur ces questions.

La force ascensionnelle d'un grand appareil, tenu debout dans le vent & une faible
distance du sol, fut trouvée bien moindre qu'on ne pouvait I'espérer d'apres les tables de
Lilienthal et nos propres essais de laboratoire : la différerce est moindre lorsque 1'appa-
reil se meut en glissant dans le vent.
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Le rapport de la traction au soulévement pour des ailes bien étudiées est moindre sous
I'incidence de 5° a 12° que sous celle de 3°. ’

Le point d’application de la résultante des actions almosphériques, ou centre de pres-
sion, pour des ailes courbes, se trouve pour « = 90° vers le milieu de la surface, mais se
porte lentement vers l'avant dés que l'incidence diminue jusqu'a une certaine valeur eri-
tique de o : cet angle critique dépend de la forme et du contour de l'aile. Si 'incidence

descend encore au-dessous de cet angle, le centre de pression rétrograde rapidement,
Jusqu’a ce que l'on arrive & un angle limite au-dessous duquel il n’y a pas de composante
verticale.

Enfin deux surfaces de sustentation, placées I'une derricre l'antre, produisent un
rendement moindre que chacune d’elles prise séparément.

On remarquera 4 ce sujel que les expériences de Langley ne sont d'accord avee cette
derniére assertion que pour des distances relativement faibles entre les surfaces en question.
Il serait intéressant de connaitre entre quelles limites d'écartement d'une part et de
vitesse de l'autre, et pour quels tracés d'ailes ces résultats ont été constatés, el de con-
naitre également comment le rendement varie en méme temps que ces divers éléments,

Bien que toutes ces expériences aient eu surtout pour objet I'étude de Iaéroplane
pour « homme volant », elles n’en sont pas moins intéressantes & retenir pour 'étude dyna-
mique qui nous occupe, tant parce qu'elles infirment les chilfres trop- avantageux du
tableau 70 que parce qu'elles font prévoir de grandes diffieultés pour aménagement
convenable des ailes sous des incidences variables.

Enfin Chanute, toujours dans I'ouvrage cité de Mdebeck, conteste également I'exac-
titude numérique des fonctions 4 et 0. Les fréres Wright, dit-il, constatent dans leurs
essais de laboratoire que les coefficients 4, sous les petits angles, sont trop élevés d'en-
viron 50 p. 100 a 0o et 14 p. 100 & 3° : ils semblent exacts vers 5°, De méme les coefficients
f étaient trop avantageux au-dessous de 10°, car les actions tangentielles se manifestaient
comme antagonistes des que l'angle d’attaque était inférieur & 7° et non a 8¢ comme 1'in-
diquent les tables.

D’autre part, les valeurs numériques ne sont vérifiées que pour des formes d'ailes
identiques & celles employées par Lilienthal. Des -ailes affectant la forme d'un quadrila-
tere ou d'un rectangle allongé dans le rapport de 6 a1, avec courbure de 'II—Q’ comportent
de tout autres coefficients. L'erreur de Lilienthal doit tenira des fautes de mélhode, prin-
cipalement & ce que le point d'attache des surfaces & soulenir ne coineidait pas avec le
point d’application de la résultantie. La marche de ce dernier point est essen’ielle & étudier.
Pour des ailes plates. el carrées, il se trouve tout a l'avant lorsque Lincidence est voisine
de 0° : lorsque cet angle augmente, le point recule lentement pour se trouver au centre
sous I'incidence de 90°. [Cesindications concordent avec celles dun® 36.] Pour des surfaces
courbes, il en est tout autrement. Ainsi Spratt, d'apres des expériences encore inédites,

1
12
Parriere sous Uincidence de 0° : il se rapproche du milieu qu'il atteint pour une incidence

le centre dC pi'cssinn se {rouve vers

énonce que @ pour un are circulaire de courbure

de 17° environ, puis il se déplace vers 'avant, et se trouve, pour un angle de 50°, a4 envi-
ron 41 1/2 p. 100 dua bord antérieur. Il recule alors pour se retrouver an milieu lors de

I'incidence normale.

. . . 1
Si au lieu d'une courbure deﬁ ,
2

se trouve & 0 dans la zone arriére : il passe au milieu de l'aile lorsque 'angle atteint
10°, marche vers I'avant jusqu'a T'incidence de 30° ou il se trouve a 37 p. 100 du bord,

I'aile en présente une de TR le centre de pression
3%

puis recule vers le milieu, comme dans le cas précédent.
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11 résulte de tout ce qui précéde que, dans la fixation des valeurs & donner aux para-
métres, doit intervenir non seulement, la courbure mais encore I'examen du contour et des
dimensions relatives de l'aile, comme du reste il a déja été conslaté pour les ailes plates
(formule Soreau) : ces éléments influent non seulement sur l'intensité mais aussi sur la
position du point d’application de la résistance et il est & souhaiter que les données numé-
riques ainsi recueillies par MM. Wright soient prochainement publiées. Comme nous
l'avons dit plus haut, cette question de position est plutot intéressante au point de vue
de la stabilité de route que de Ia puissance mécanique proprement dile, mais il doil néan-
moins en étre tenu compte dans I'estimation de V'excédent de puissance i tenir en réserve
pour la manceuvre des apparaux destinds & maintenir I'équilibre. De plus, ces variations
dans I'action du courant aérien semblent confirmer la nécessité de ne concevoir I'aéroplane
que sous la forme mixte établie au chapitre précédent par 'adjonction d'un mécanisme
d’hélicoptere,

II. — Applications des fonctions de Lilienthal au cas des aéroplanes simples.

74. — Bien que le cas des adroplanes glissants sorte du cadre de la présente étude,
nous donnons cependant ci-dessous de quelle maniére il lui est fait application des
expressions dues a Lilienthal parce que l'on pourra se rendre comple aussi des expé-
riences qui peuvent étre actuellement effectuées et déduire de ces essais des valeurs plus
exactes des fonctions + et 0.

Soient ainsi i 'angle de la corde de l'aile avec I'horizon « l'angle de la méme corde
avee la direction du vent relatil et & celui des deux directions de la marche et du vent
relafif, les autres notations ayant leur signification habituelle.

L'effort vertical Y aura pour expression :

Y = K8V cos i,
en y négligeant la minime composante due & I'action tangentielle T.
Cette derniére action a une inlensilé el un signe déterminé également par I3 valeur
de o, et évaluée suivant la corde & KSV20 () ; son action dans la direction du mouvement
sera donc :

KSV? cos (« - o) 0 (a),

tandis que dans la méme direction la résistance de lair agissant normalement & la corde
avec U'intensité KSV?q («) donnera la composante :

KSV2 sin (o 4 o) 4 (2).

Enfin, 'ensemble des autres résistances passives 2 la marche de la nacelle et des

accessoires aura pour valeur également dans le sens de la marche % = KgsV?, et éven
tuellement une composante normale.
Par suite, la somme des résistances dans le sens de la translation s éerira :

X = KoV* - KSV¥; sin (x + o) &= KSV0 sin (2 -} o).
Clest cette expression que, d'ordinaire, on égale A 'action du moteur,

lei, dans le cas particulier des glissades, la force motrice est uniquement le poids du
systeme dont la composante suivant la ligne de descente a pour valeur :

Psin (o 4 &' - ).
Les angles étant pris avec le signe convenable et dans le mouvement uniforme qui
est celui que I'on s’efforce de réaliser, on éerira :

X —Psin(a o 4 i) =0.
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Exemple numérique. — M. Chanute applique les formules ci-dessus au probleme
suivant :

Déterminer les conditions de glissement en air calme d'un aéroplane pesant en tout
81 kilog., soutenu par un double jeu d'ailes (Doppeldecker) de 12 m? 45 de surface rectan-

. ) .
gulaire {5 m. sur 1 m. 23), avec une courbure de 5" la surface de nacelle ¢ étant de
Bl

0 m. 8% et la vitesse de descente de 10 metres, le coefficient K de la résistance de Dair
étant pris égal & 0,096,

En égalant le poids 81 kilog. & l'elfort ascensionnel Y, et faisant cos i =1, on obtient
d’abord % = 0,678, ce qui conduit a la valeur & == §° d’aprés la table [70], a laquelle
valenr de o correspond Y = 83 kilog. L’angle « est nul, puisque l'atmosphére est
supposée calme ; par suite, la composante tangentielle T aura pour valeur :

T=KSV?cosah (¢) = — 2 m. 50,

La résistance correspondant a la nacelle R = KqV* = § kg. 06, et l'effet de la résis-
tance normale, N sin o aura pour valeur 8 kg. 69. La résultante dans le sens de la marche
sera donc, les signes étant mis en évidence :

X =R 4 Nsing — Tcosa = 14 kg. 28,
et doit équilibrer la composante du poids suivant la méme direction, soit :
81 sin (o - i) = 81 sin (6° - i),

d’olt résulte pour i la valeur 4°8, soit, en nombres ronds, 4°.
Ces chillres semblent bien correspondre & des essais faits par MM. Chanute et Herring
en 1896-97 et justifier U'aflirmation que les paraméires de Lilienthal étaient admissibles

pour z ==6°, il faut dire plutot le rapport de ces paramétres, puisque dans le caleul ci-
dessus on a pris K== 0,096 au lieu de 0,13 donné par Lilienthal.

D'une maniére générale, on peut dire que les propositions énoncées par ce dernier ne
sauraient étre acceptées numériquement; ce sont des indications sur la nature des efforts
produits, et non des estimations suflisantes de l'intensité desdits efforts; le seul résultat
nettement affirmé et établi est la constatation d'efforts de frottement notables et
susceptibles d’effets sérieux sur le fonclionnement des ailes.

HI. — Formules définitives de l'aéroplane.
75. — Voyons done comment il est possible de traiter définitivement la question de

I'emploi des ailes sustentatrices en tenant compte de la présence des forces tangentielles
de frottement. Pourcela, reprenons les équations générales que nous avons écrites au début
de la deuxiéme partie, aun°® [37], en y accentuant seulement certaines lettres pour rester
d’accord avec les notations des chapitres 1I et III. Ces équations sont alors :

Y = Ncosa — Tsina'
X' =Nsinz' - Tcosa'.

Al

Si 'on pose N = 18 % et que I'on remplace N par sa valeur avec les notations de
; :
Lilienthal, soit K,Sr«'V', nous éerirons :

Y = K,Scos (¢ + o) Vg sec o
X = KOS sin (9 + g(’) o' SGC;‘:V’z,
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Comparons maintenant ces expressions a celles que nous avons traitées en faisant
=0, en y mettant, pour éviter toute confusion, un angle 3 au lieu de &'; nous écrirons :

Y’ = K,Ssin ' cos 3’V (3')
X' =K, Ssin?3' f (3"} V?,

et I'on voit immédiatement que le premier systéme se raméne au second en posant :

na €0s (g -} @) sec o == sin 3’ cos 'f (3')

M I . M aly o,
' Sin (¢ - a') seco = sin* 3'f (3');
d’ott 'on tire, en divisant membre &4 membre :

tg 2 = tg (54 o) ¥ =g,

et, par suite, en substituant :

[(3') = i cosgsin(e 4 o).

Par conséquent, toutes les formules que nous avons établies au cours de cette
deuxi¢me partie sont encore applicables dans le cas général, a la condition d'écrire
partout, pour éviter toute confusion, &' au lieu de o', et d'évaluer 2" et f (3') par les rela-
tions qui précedent. Cette conclusion est indépendante des valeurs numériques des para-
melres 4 et 6; elle s’appliquera dans le cas des nouvelles données que fourniront les
expériences en cours pour élre substituées & celles de Lilienthal reconnues erronées, comme
il a été exposé plus haut.

Pour bien faire saisir la nature de cette substifution, et bien que les valeurs inscrites
au tableau 70 soient certainement inexactes, nous avons cependant établi la table de
corrélation entre les fonctions dudit tableau et les nouveaux parametres &' et f (37, calculées
ainsi qu'il a éLé dit plus haut, Cette table permettra la comparaison entre les résullats
théoriquement admis jusqu'a ce jour, d'aprés Lilienthal, et ceux que fourniront les expé-
riences, car il sera plus aisé d’obtenir numériquement les nouveaux paramétres que les
fonclions 4 et 6. Pour simplifier les calculs numériques, nous avons remarqué que l'angle o
restait toujours assez pelit dans les limites de la pratique pour que 'on puisse prendre
cos ¢ = 1. Nous n’avons d’ailleurs dressé le nouveau tablean que pour des valeurs de o
comprises entre les bornes ou 'on devrait les maintenir au cours des applications. .

Ainsi que nous l'avons indiqué plus haut, ce tableau, méme avee sa dernitre colonne
rectifiée, ne doit éire considéré que comme constituant un modeéle pour l'inscription des
résultats d’expériences futures, pour chaque type d’ailes cintrées essayées avec des précau-
tions et minuties expérimentales trop négligées par Lilienthal.

Lorsque I'on aura pu, d'aprés ces indications, dresser une table plus approchée que
celle ci-dessus, on pourra faire des applications numériques avec les formules énoncées,

-~

qui, par l'introduction de I'angle auxiliaire 3, ramenent les problémes relatifs aux ailes
cintrées & ceux résolus pour les ailes plates du type Langley,

11 ne faudra pas perdre de vue dans ces études qu'aux améliorations réalisées sur les
ailes sustentatrices correspondent forcément des perfectionnements des hélices qui seront
du méme ordre, de telle sorte que les discussions et conclusions du chapitre précédent

' q I

semblent devoir étre conservées.
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76. — Table des fonctions de Lilienthal transformdes.
Inclinaison Angle de Anele fieti Valeurs de f ()
, Angle fietif dapres .
o frottement o ._____/I\ Observations
de la corde ? ‘ Lilienthal Chanute
— 30 100 5/ 7o B! 1,8% On rappelle que :
20 70 200 B 20/ 9 38 ¥4 o
ie 5o 20/ §o 20/ 3,32 tgo=10:79
0o 30 20/ 30 20/ 4,87 [ (&) = 7 : cos p sin &
+ 10 20 57 30 5/ 6,04
20 20 55/ 7,20 Pour passer des valeurs de
30 3o 7,88 Lilienthal & celles de Chanute,
ho 3o 200 7,72 on a multiplié¢ par 0,096 : 0,13,
he 3o &N 7,82 soit en nombres ronds 0,75,
Go 40 1 6,96 comme il résulte des ecalculs
v 40 507 6,58 faits au n° 74 et relatés d'aprés
80 Ho 25 5,04 cet ingénieur.
9o ; 6o 5,7k
100 30 30/ 6o 30" 5, 46
110 Jo B 70 B 5,14
120 bo 157 7O 4% &,80
130 Ao 30/ 80 30/ 4,46
140 4o 4 9o 13’ 4,13
150 &o 50! 100 107 3,82,

Résumé.

Ainsi que nous l'indiquions au début de ce travail, nous n’avons nullement songé a
établir un projet méme rudimentaire daéroplane. Nous nous sommes seulement proposé

d’évaluer avee quelque approximation la_puissance dont il faudrait disposer pour soutenir

un tel navire aérien et de déduire des estimations ainsi établies quelques indications sur
la voic o se renconlrerail probablement la solution pratique du probléme.

A cet effet, aprés avoir exposd sur quelles lois physiques reposerait notre discussion,
nous avons traité avec quelques détails le cas d'un aéronat a plateau moteur agissant
verticalement, sans examiner la maniére dont I'énergie ainsi produite serait transmise an
sysléme. Nous avons obtenu ainsi, pour ce cas théorique, et avec le minimum de caleuls
algébriques, puisque toute la diseussion a reposé sur 'examen d'une équation du troisiéme
degré, des formules qui ont pu étre appliquées par la suite & tous les problemes succes-
sivement traités, i I'aide de changements trés simples dans les variables et les paramatres
considérds. Enfin nous avons montré que la multiplication des plateaux, qui figurent ici
les appareils de sustentation, ne semblait devoir étre qu'une source de déperditions el de
complications, & laguelle il ne faudrail recourir que dans des cas exceptionnels, +

Dans le chapitre suivant, nous avons déduit des formules précédentes la théorie de
I'hélicoptére, olt la nacelle chargée est soutenue par le jeu d'une-hélice tournant autour
d'un axe vertical. On remarquera que bien qu’il ne soit 1 question que d’une seunle hélice,
il est probable qu'il en faudra employer deus, tournant en sens inverse, pour assurer la
syméirie des efforts transmis au bati : mais cela ne change rien a la discussion.

Nous avons appliqué ces formules aux résullals donnés par 'hélice du Méditerra-
néen [C. R. séance du 29 juin 1904), ce qui nous a fourni des constantes pour les appli-
cations ultérieures.

Dans la deuxiéme partie, nous avons abordé I'examen de I'aéroplane, navire aérien
uniquement soutenu par 'action des moteurs qu'il transporte & son bord. '
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Le premier chapitre a été consacré & I'examen de la marche d'un tel appareil et de
I'énergie propulsive qui lui était nécessaire pour se soulenir, sans rechercher comment
cette énergie, fournie par le moteur transporté, était transformée en puissance propulsive.
Nous avons retrouvé et complété des résultats déja publiés par M. Tingénicur de la marine
Henry dans son Etude d'un aviateur-aéroplane. (Dunod 1902).

Le deuxiéme chapitre a traité des relations qui doivent exister entre les organes de
l'aéroplane proprement dit (ailes sustentatrices) et ceux de I'hélice propulsive. On y a mis
en évidence l'erreur que l'on commettrait, et qui peut-étre a déja été commise par certains
inventeurs, en oubliant que la vitesse effective de I'hélice propulsive doit étre appréciée
en tenant compte de la vitesse d’entrainement de I'aéronat. Cette considération montre
que les grandes vitesses de {franslation qui sembleraient devoir aisément résoudre le
probléme sont au contraire a4 redouter comme exigeant des énergies exagérées.

Apres avoir signalé ce point important de la théorie, on a établi les équations défini-
tives du régime de 'appareil, entrainé par une hélice (couplée en général) tournant autour
d'un axe horizontal, et soutenu par des ailes inclinées. Bien que le probleme ainsi traité
soit loin de représenter les conditions du régime réel et donne des solutions beaucoup trop
favorables, on n'en arrive pas moins & constater que dans 1'état actuel de U'industrie, et &
moins de découvertes absolument improbables, un tel aéronat ne saurait étre pratiquement
réalisé.

Aussi a-{-on recherché dans le troisieme chapitre 2 quoi l'on arriverait en recourant
2 un aéroplane mixte, c’est-a-dire en associant au mécanisme précédemment étudié un
dispositif d’hélicoptere pour assurer tout ou partie de la sustentation.

La diseussion a montré que la semblait &tre la vérité, et que le navire aérien devait
sans doute étre congu comme soutenu uniquement par I'action d'un hélicoptere, les ailes
ou queue ne servant que de gouvernail ou d’empennage, comme Vindique déja M. le colonel
Renard pour le ballon dirigeable actuel.

Enfin le quatriéme chapitre a été consacré & I'examen des propositions et des formules
de Lilienthal, qui peuvent se résumer en ce fait qu'une aile cintrée en marche dans l'air
éprouve non seulement une pression normale & la corde qui la sous-tend, mais encore
une action dirigée le long de ladite corde et d'une intensité trés appréciable, laquelle peut,
dans certains cas, produire elle aussi un effort de sustentation. Malheureusement, les
valeurs attribuées par Lilienthal a ces actions atmosphériques ont été reconnues trop
élevées. Mais quoi qu'il en soit, nous avons remis en équation le probléme en tenant
compte de I'existence de celte composante tangentielle, et, par un changement de variable,
ramené la solution aux formules préalablement établies, de telle sorte que les discussions
précédentes conservent leur valeur.

Conclusion.

Le navire aérien autonome, c’est-a-dire se soutenant et se déplagant a I'aide des
seules énergies quil transporte, ne semble pas pouvoir étre réalisé sous forme d’aéroplane
simple. Mais il est permis de penser que l'on parviendra a le constituer sous forme
d’aéroplane mixte, la sustentation étant assurée par un méeanisme d’hélicoptere el la
slabilité par un empennage convenable. Ce sera en tout cas le type qui sera le plus aisé
A établir, constituant un aérostat dirigeable, comme ceux actuellement existants, et ot la
sustentation sera réalisée non par un ballon gonflé, mais par le fonctionnement d'un jeu
d’hélices couplées a axe vertical. Si ce n'est pas la le type définitif, ce sera certainement
le modeéle de transition.
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