ccham lefnum

Conditions d’utilisation des contenus du Conservatoire numérique

1- Le Conservatoire numérigue communément appelé le Chum constitue une base de données, produite par le
Conservatoire national des arts et métiers et protégée au sens des articles L341-1 et suivants du code de la
propriété intellectuelle. La conception graphique du présent site a été réalisée par Eclydre (www.eclydre.fr).

2- Les contenus accessibles sur le site du Cnum sont majoritairement des reproductions numériques d’'ceuvres
tombées dans le domaine public, provenant des collections patrimoniales imprimées du Cnam.

Leur réutilisation s’inscrit dans le cadre de la loi n® 78-753 du 17 juillet 1978 :

e laréutilisation non commerciale de ces contenus est libre et gratuite dans le respect de la Iégislation en
vigueur ; la mention de source doit étre maintenue (Cnum - Conservatoire numeérique des Arts et Métiers -
http://cnum.cnam.fr)

e laréutilisation commerciale de ces contenus doit faire I'objet d’une licence. Est entendue par
réutilisation commerciale la revente de contenus sous forme de produits élaborés ou de fourniture de
service.

3- Certains documents sont soumis a un régime de réutilisation particulier :

¢ les reproductions de documents protégés par le droit d’auteur, uniguement consultables dans I'enceinte
de la bibliothéque centrale du Cnam. Ces reproductions ne peuvent étre réutilisées, sauf dans le cadre de
la copie privée, sans |'autorisation préalable du titulaire des droits.

4- Pour obtenir la reproduction numérique d’'un document du Cnum en haute définition, contacter
cnum(at)cnam.fr

5- L'utilisateur s’engage a respecter les présentes conditions d’utilisation ainsi que la Iégislation en vigueur. En
cas de non respect de ces dispositions, il est notamment passible d’'une amende prévue par la loi du 17 juillet
1978.

6- Les présentes conditions d’utilisation des contenus du Cnum sont régies par la loi francaise. En cas de
réutilisation prévue dans un autre pays, il appartient a chaque utilisateur de vérifier la conformité de son projet
avec le droit de ce pays.


http://www.cnam.fr/
http://cnum.cnam.fr/
http://www.eclydre.fr

NOTICE BIBLIOGRAPHIQUE

Auteur(s) Koenigs, Gabriel (1858-1931)

Titre La statique et les méthodes graphiques appliqguées aux
machines et aux constructions : 1929-1930 : notes
prises par les éléves au cours de la session 1926-1927

Adresse Paris : La circulaire modéle, 1930

Collation 1vol. (146 f.-1f.depl.) :ill.; 22 cm

Nombre d'images 159

Cote CNAM-BIB 4 Da 18

Sujet(s) Constructions -- Méthodes graphiques -- Manuels

d'enseignement supérieur

Machines -- Méthodes graphiques -- Manuels
d'enseignement supérieur

Mécanique -- Manuels d'enseignement supérieur
Statique -- Manuels d'enseignement supérieur

Thématique(s)

Histoire du Cnam
Machines & instrumentation scientifique

Typologie Ouvrage
Langue Francais
Date de mise en ligne 20/05/2021
Date de génération du PDF 20/05/2021

Permalien

http://cnum.cnam.fr/redir?74DA18



http://cnum.cnam.fr/redir?4DA18

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

Droits réservés au Cnam et a ses partenaires

e B



http://www.cnam.fr/

AT AR E e e Y T T

#Daif

Conservatoire National des Arts et Métiers

(]
Lo
L
1
&2
(=
[l
Fs)
e
*
o
'
4
)
=

PAR M. KOENIGS |

Membre de 1'Institut

=] r%ﬁﬁ‘;‘@",ﬁ
g !

lv/ |

x\‘?\.‘:;}l' - | ;'

el /N

S
h

f
{
:-%.a
-
R

LA STATIQUE ET LES METHODES GRAFHIQUES f
APPLIQUEES AUX MACHINES ET AUX CONSTRUCTIONS

v s e

llotes prises par les Eléves au cours de la Session
1926 -~ 1927

——

DEUXTIEME EDITION

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

tenaires

ases par

Cnam et

eserves au

Droits r


http://www.cnam.fr/

lide dont 1

oun moins gra

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

mouvement, on

“ces ret

[

Lorces

on dit que

autres forces

Droits réservés au Cnam et a ses partenaires

dit

agqulell



http://www.cnam.fr/

une

gui

rece F, appliquée 4

n x U (n pouw

et il

pueur invari

e un
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firotation de

losange est en équilibre.

ux for

s concourantes.

—
P 1

2 forees quecleongques

nontrons d!abgpd résultan

gonale AC du :‘-ELrﬁ_l]_:-l_

uit sur AB et AD.

ons (Fig.I) que les 2

AD. On

14°

f. Introduiso

(A"

. .
dens le sens opposé :

ar la

gquilibre 2

du parallélogramme ABCD. Or, on woit que chacun

4 forces gul, d'aprés ce gui

2 -~

i Toutes les forces en équilibre peuvent et
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==3=

donc la résultante. On voit gque

2 vecteurs gquelconques
it

(figs 7) . Par un point 0 quelcongue menons un veeteur 0 L

que, daens le parallélogramme construit sur O L et L M

et 5

s on a dona
OM = 0P + P

Dlou ¢ lb somme géomdtridus de 2 vestours est indépendante de 1'ordre

dans lequel on Juxtapose ces vecteurs.

2" plusisurs wve i
Y U nscatiooin U ol
st des vecteurs guelconques. , Me-

égquipollent s

R e 2

A B . Le . vecteur OL  est la somme géométrique
e = n i

HligamebaB Dy Dlaprés le cas précédent, on pout

& nn N

5 : G :
42 vecteurs conséeutifs dans le polygone des vec-

ar ‘vaie dtSehanpse cnbieles veabilny Aonsbmbits n peut
°U4, par vole d'eéchange entre les vecteurs consécutifs, on peut

intervertir 1'ordre des veoteurs d'une menidre quelconque.

o B

POLYGONE FEEME . Si le polygone des veeteurs se faerme, la somme géomé-
trique est nulle,

s

THEOREME - Dans un polygone ferme, le vecteur opposé & 1'un guelgongue

est_las somme géométrigue de tous les autres.

Bn adjoignant & un ensemble de vecteurs un vecteur égal] et

3 taéme fermd
opposé & leour semme géométrique, on obtient un systéme ferms.

2k 3 y " 1, systéma
Theorédme -I - La projection, sur une droite ou sur un plan, d'un systenm

N Ml 5 ~odscoti 2 la somw
o5t un systdme fermf. D'ol Théordme II - La projection de la son

plusieurs voeteurs sur une dreite ou sur un plan
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ections des veoteurs sur

jection de la.somme géométrique

héordme III - La mesure de la pro

sieurs vecteurs sur un axe est la somme algébrique des mesures des projec-

tions de ces wvechkteurs.

APPLICATION DE CES THEOREMES AUX FORCES.

-

Fig,9). La résultente de plusieurs forces

- Polygone des forces (

concourantes est égale 4 le somme géombtrique des vecteurs qui représen

Théoréme II - Toute force, appliquée en un point A, peut &tre décomp

2 autres ayant des directions quelconques AX, AY, issues du point A.

Ce théoréme s'applique dens l'espace : toute force .psut 8tre décompo-

-

sée en 3 autres formant trigdre.

Théoréme III - La projection de la résultante de plusieurs forces sur une

droite ou sur un plan est la résultante des projections de ces forces sur

la droi

ou sur le plan (Fig

thooreme IV - Pour qu'un systéme de forces mppliquées en un point ait une

résultante nulle, il faut et il suffit que le polygone des forces

IIT - FORCES
plerelidei i i S R e,

Le composition des forces paralldles se reméne, par application des
précédents, au cas des forces concourantes.

FORCES PARALLELES ET DE MEME SENS (Fig.II)

ces 2 forees. Introduisons en A et A' 2 forces

es ot opposées, et dibigées suivant AA'. Les forces 4 L

i ™ - e A » s =
G ¥ peuvent 8tre composées on une force uniq A M, de mBme A' F' ot
ST

5 : 3 — ——
foree unique A'{'. Le systéme (AF, A'F!') est équivale

ol

s A'M'). Soit 0 le point de concours
T

es 2 forees au point O en OMI et O

cunc d'elles cn deux autres, dont 1'unc sora portde par

par
mence par O, et l'autre/la paralléle 34 la direction
— T
et A'F' menée par 0. Or, et
0L = :
I
» - G
les deux forces O LI et L!
i

opposees. Il resté alors les 2 forces

01“1=hF =% ol o Tl

mo direction st de
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imettent une

follens ot

) ST O

dloll on

AB

or T

proportionnels g 2 forces AF

RUCK

et de sens, A F

le cas précédent une résultante

. Congtruisons

et opposée

dire que A'F!?

tent elors pour résultante la force

= (AF + A'F') = AF + A'R'

sultante
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d®appli

droite

d'vw ecorps p

exercent sur

O L

L= g

systéme
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e e et e

T
|

d'elles.

séns con

traires

m T 7 e - ! e N
1 A - - U 4o v U

a été
On appelle

A paralléle
/

couple (Fig.I3)

introduite en mécenique

De méme AF et

droite

Soit (A

ation d'en

I%4) le couple (AF, A'F'). Soit

en leu

passant

T F o

our d'un point &

de deux

r milieu 0.
me sens, A

en 0O,
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ication directe

ou ltob

COUPLE
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3
& s
) On & amené les

A avoir leurs forces paralléles et

appliguées aux points

leurs lignes d'a

pendiculaire commune, et que :

L]

°) On & amend en cidence les points miliecux des bras

viers. Considérons donc le couple (AF,A'F') (Fig.I9).- Introduisons

thése, respectivement

forces AF et A'F!, et

de grandeur telle qu'e

ou

x Gﬂ:[ 5

Les forces AF et AI sens contraires) admettent

une résultante R

1 @ppliquée en un point B de la droite Aﬁ{ tel que

AD x AF =

‘
o)
o+
s
5
b
1
x
o
-5
5
]
s
=
L)

x 0A

o1
O
jo.
(e]
-
&
M
o
=
1

i
ES
L cofncide avee 0.

De mfme, le résultante R' de A'F! et A' ! est
X I I

contraires et direc

cft

ement

2 couple (A_F AZFY ) S
k oup ( o .‘*II l') qui est

1 au couple (AF,A'F').

£k = . :
eoreme V - Un couple reste équivalent

plan paralléle-3d son plan.

18

couple
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eu 0.

Les forces AF et

Deux couples quelcongues

est la somme géométrigque des axes des

Soient 2 couples quelconques

s

on a amené 1

tre perpendicul

d la droite d'intersection de

e
appliguées en des

oints d'epplication A et A' des forces de l'un

ceux des forces de llautre

longuesur. L

concourant

me AF'" et A'F? . 5 T :
ne AF' et A'I 1 ont une résultante A'R!'. Les Torces

léles, égales et de sens contraires : elle

I

othése AA' = I, on a :
axe du couple (A

axe du couple (AT, A'F') = AJ
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en 0"). Mais c'ést une faute de 1

qu'une

guelcong

dont 1'une des et dont

dit résulter de

Théoréme II - d'un sys

un couple peut se faire de fagon te

culaire & le ale.

"réduction canonigue".

téme de forces dont les éléments de
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au

adjoint

done elest le
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la direction principale est null

1101

[EIITS PAR RAPE

La notion de moment = &t

T D'UNE FORCE -

Gonsidérons une force AF (Fig.26) et un

abais

perpendicule

/ o s e 3 A i
/ e OAF. Par def cion,
| ~ / : :
S 0 le produit p x
| /(' -~ AT £ -
/ /‘ 50 tance 0 i AF, ce produ &t ou n -

| tif suivant

sens direct

bout en 0 sur

du moment.

FIG.27
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couple est

suivant que le

AF tend 4 tourner dans le

sens direct ou rétrograde. On a

v). = m®

axe du couple (A F, A! 2

I y L =9
/ ‘ A | et le vecteur A'G représente soit 1l'axe

/ oy iy / du couple (AF, A'F'), selon Poinsot 1t
f —2X. !

f A 2 m
/ f & le moment de AF par rapport 4 A', sulvant

Cauchy.

Remarque IIT

géométrique

5 p - P
deux wvecteurs égaux et opposés.

On appelle moment résultant

vecteurs

toutes les foraes du

I - CAS DES SYSTEMES DE FORCES COMPLANWES

recourentes -

_résultant d'un complanes concourant

un point A, pris par plan, est égal

la résultante des

fo A
{ D

En effet, uons d'abord qu'on a :
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queleongque de leur plan

Ax perpendiculaire

le plan

mesures

et soit X la mesure de

i
m§ 2l 0 x % o
2 F
&
m = B o 5 i
o OA x x, ;
et I E R Ea . Sl X = AR

n feisent la

la somme

la mesure

En réalité, Varignon n'avait dé

ns le cas de 2 forces.
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yoint guelcongue de l'es]

]

3R o aux forces concours £
T
m. CR = + o)
[¢]

o

or

g

oOc

l'exe de ce

le moment.

ion un couple

te opéeration se

3UY 88

modifient
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sorte gue la 11

le point O. On a alors

du couple. Donc, on a : 2
couple. = axe du

FORC

BS CONCOURANTES®

doréme de

systéme de foreces concourantes quelcongues est égal au moment
34) un systéme Fooo Fo oy v Fppoy

concourantes en un point A. Seit AR la résultante

| E,
|
|
|

3

/”f 2 : ] d'autre part, G

&

ces forces ne char pas le

gaux et oppo st

et : AT AT et OF! i b
(.LI,;MH et t._g, <.+ AT et OJH’JULQ,

dont les axes sont respectivement édgaux ayx moments des

I1 reste

2 1 =
moments par rapport 4 O sont nuls. Or, AR est 1 ta
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COLQUES

CAS DES

3 £ - 1 1 - = A ‘factuo
Considérons un systéme de forces quelconques, et effectuo

tion 4 une forece unique et un couple en un point 0 guelcongue. Le

Z o dei £ = anmd Ayt

par rapport a4 O est égal au moment résultant du
, ® =>>

la force unigue 0 R et le coug

dtaxe 0°G ,

1 par rapport 4 O est nul.

anr]

valents. Or, le moment de O

Donec, le sultant d'un me d ; par rapport
0 de l'axe 0O G du couple adjoint en O.

un poi

d. Projetms

et prenons le moment de

: le vecteur mome
.\\ .
i on remasrque qu'il {

en grendeur et sens quand O varie le

projections d'un

tenr suf 2 P

quel cong

Théoréme -

sur cette droite, du moment de la for

1:_3._ _d_r_oite;_.

Fig.36 = p.24) 0 G le moment de

le moment de AF par rapport 4 d

pport 4 0, 0GY' ¢ dextrorsum par
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0G est _doxtrofsum

1e 3

initle

=

du plan OAF.

(OAF)

= 2 aire (OA'F!')

IT aire (QAF) =

congue de la

el
8 L7

A UNE FORCE UNIQU

L une force
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1'axe 0G du

srinecipale.

DE FORCES
A UN COUPLE

Considérons un systéme de forces se r

Un couple restant équivalent i lui-m8me guand on 1

ation queleconque dans 1'e
q s 1%es

>, 1'axe du couple adjoint reste égal i 0G qua:

ectue la réduction em wn point Q' quelcongue.

.34L) OR et 0G les éléments de la réduction en 1w poi

unique O'i' équipollente 4 OR, 2°) un cou-

=

t ¢ l'axe 0!'G' équipollent i 0G, et 1'a

A O'I du couple résultant du transport de OR en

O'i'. Or, par hypothdse, le couple résultant de

WG; 0'G' et de O'F est égal & 0G 3 donec : O'F = 0,
|
o dfou : = 0,

! QR =

ot En remarquant que 1l'axe 0G est &

a le résultet suivent :

> et suffisante pour gu'un

ur couple est que le moment résult:

repport 4 tous les points de l'espace.

somarque : Un systéme de forces constituant un polygone fermé, plan o

réductible i un couple, puisqu'il a une résultante nulle.

Considédro 8 e " : :
; Considérones (L:__.SQ - page ?_G) une droite ‘' d traversant le polygone p

_| normel & d en un point 0. Projetons le polygone I 2 3 surl] suivant

o €
123

polygone, 1le

0O ou elle
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Cons

la ré

ts de

quilibrer,
couple 8 u

Done, pour

%
i

le

ITIONS D'EQUILIBRE

JE FORCES

forces Soient OL et OG les

- | -
systeme

duction en un point 0 ; la foree unigue doive s'é-
rement dit la forece unique est 1'équilibrante du couple ; or, w

tante nulle, donc OR est par suite 0G

1 équilibre,

nuls

soient

H
o
=]
@
4

stéme de .forces appliqué

il

es

riangle, le corps

nul en

B
o]
L ¥
(55 ol U - S o1
E et
8

nul

5i

r rapport aux 3

Q 2 4=
DO1T

ligne droite.

plan ADC, et

par

= D
E

‘D}. 1—10

ar hypothése, d'ou 0
par hypothése, d'ol pro, p, 0,
AL e = 0.

ltaut uy 3 axes
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e adjoint est

Afy Soit (Fig.4I) OR, la force unique.

0 e OTZ‘I « Ory, O;I' est nul par hypothdse, donc OR est

nille: Le ¢ouple adjoint et la force

unique

tous les deux, le corps est en éaquilibre.
»  ; i

de forces appligu

rapport aux 3

3ot B B rapport 4 3

les foreces de X! e moment r
st donc ég

points

et opposd 4 celui de XVaux

ot

A ALORS UN SULTAITT WUL PAR RAPPORT AUX 3 POIHTS (formant

1t

(% DROITES DE MONENT WUL

d"un

par rapport a

du momnet résult

A par rapport i w

out gue cette projectiom
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I1 résulte que toute droite de moment nul est i tous les
moments résultants relatifs ks points.
out point 0 il passe des droites de moment

le plan]Tjiu couple adjoint relatif au point 0. Ce plan

dit le "plan polaire du point 0".

En effet, soit OG le moment résultaut en un point 0 ; on sait que 0G re-

présente aussi l'axe du couple adjoint quand on effectue la réduetion au point

0. Or, toute droite de moment nul passant par 0 egt perpendiculaire i 0G j;elle

est donc dans le plan du couple adjoint.

Corolleire - Si deux droites de moment nul se coupent en un point P, len

w
=
2w ]
i)
=]
=

est le plan polaire du point P.

En effet, les deux droites,étant de moment nul, sont perpendiculaires au
moment résultant relatif 4 1'un quelconque de leurs points et,

~

e
au moment résultent P G relatif 4 leur point de rencontre P ;

- At
nent alors un plan normal en P 4 P G : cl'est le plan du couple adjoint en P,
c'egt-i-dire le plan polaire du point P.

Théoréme II ~ Toute droite d coupant 4 angle droit l'axe central est une

droite de moment nul.

En effet, considérons duction canonique dont les &lémenks sont ©

—
et 0 Gy . La droite considérée d étant perpendiculaire & l'axe central, la

=By

0 GO st nulle. D'autre part 4 coupant l'axe ¢
3 il L . Done, le moment ré tant par rapp

moment de O Ry, par rapport & d est nul/ c'est une droife de

projection de sur d

ciprogue I - Toute droite d de moment nul qui coupe l'axe central

perpendiculaire.

.l

In effet, d coupant l'axe central, le moment de Q rﬁ par rapport & d

nule Or, d est, par hypothése, de moment nul, il faut donc que le moment

. ~ 3 s - - >
du couple adjoint par rapport 4 d soit nul, clest-i-dire O GO soit

eculaire 4 d.

pPoque II - Toute droite d de moment nul, qui est rectangulaire av

l'axe central, le coupe.

guleire avec l'exe central, la projection de
d est, par hypothése, de moment nul. I1 faut
e le moment de O Rg , par rapport & d soit nul, c'est-i-dire que d

iz =2 2
golt denz un méme plan avec O Iy : done, d coupe l'axe central.
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Leg plans polaires relatifs aux différents points d'une méne
Wﬁfﬂllt1€ i 1a direection principale sont paralléles entre eux.
En effet, on sait que les wlx_ent de la réduction sont les mé@mes en
tous points d'une paralléle & la direction prineipale. Donc, les plans polai
res, gqui sont les ans des couples adjoints, sont tous paralls

planTT‘PLL le plan pola

- Tout

I:l

poi

entre

2UuX.

ce point pouvant 8tre rejeté & 1'infini, ce qui a lieu quand [ Tlest
i 1'axe central (en particulier quand il contient 1'axe central).

¥°) Cas ou_II coupe 1l'axe central.

Soient (Fig.42) ARO et ﬁGO les éléments de la réduction en un point A
de 1'axe centwal. Soit Il un plan quelconque coupant l'axe central en A.

Soit Ax 1'intersection dellavec le planIT o hormal en A

1'axe central : Ax
est une droite de moment nul d'aprés le théordme II précédent.
Soit U un point quelconyue de II ; d'aprds le théordme I, If & un plan polaire

passant par M. L'intersection JH de ce

pre

moment nul. Deux cas peuvent alors s

e

Ax se coupent en un point P.

plan avec le planll est

senter :

une

droite d

@

D'eprés le corollaire du théordme I, le plan qu'elles déterminent, c'est-d-
dire le plan-rf, le ‘plan polaire du point P. Done,ll a pour pdle le

b) My et Ax sont paralléles.

Ax étant par construction rectasngulaire avec 1l'axe central, 213,
si, et com elle est de moment nul, elle coupe l'axe central en un point A
d'aprés la réeiprogue II du théordme II. L'axe central ayant alors 2 poi
A et A' dans || est tout entier contenu dans ﬂ-. Toutes les perpendiculaires

[ A vy i - A 1§ &
1'axe central situées dans L1 sont, d'aprés
moment nul ; comme elles sont paralléles,
Jete & 1'infini, donc, le pble de Llest re-

2°) Cas o ITe

"
sté

le

théoréme

a Lrinfing,

d l'axe central.

Dans ce cas, une paralldle & 1'axe cnetral mende par un point de TIC:t
tout entidre contenue dens I1, Soit alors AA' une droite meI}_rallélc A
1'a; D'eprés le théoréme III les plans polaires de A et A' sont pa-
ralléles : leurs traces (droites de moment nul) sur Il sont paralléles ; leur
point d'intersection est alors rejeté a 1'infini, donec le plan [Ta son pdle

g TYinfind:
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v et PITIRC 7T
: par PLUECXI

dyname tout systéme de foreces appliquées 4 un corps solide.

»

eoréme I - Tout dyname est éguivalent i un systéme de deux f

3 3 = : 1 . * 1 i~
une droite arbitraire, pourvu que celle-ci ne soit/

ni une paralléle i l'axe central.

Soit, en effet

(Fig.<%)une droite

d soumise 4 cette
double restrietion.
Prenons un point
quelcongque A surget-

: e
\\\ te droite, A G 1'axe
x

résultante de

coupe le j

as une droite de moment nul n'e

LL. pe plus, puisque d n'est

]iELT:-.ll-i-l‘-’j 3 la

ag sur d, on pourra

r AR en deux forces, une
: : s >
ivant d et une autre A ;EI (ou (r\ : ) suive

.
(oud; ) la force directement oppos

lo. droite Ax.

a (5 o+ Le couple adjoint

st ll'axe peut &tre

I et par une force

r unc droite

b id

présanté par

et directement

reg=

wx forces F,$ |,

lo droite d et

avec la conjugude de d

une droite de

droite

un mé
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le droite x est dans un méme plan d I 1 avec
par rapport & x des ces arément, done
dyname par r a

eat une droite soit dans un m8me
i <
F par rspport & x

il faudra gue le mo-

aussi nul afin que le moment résultant par rapport 4 x le scit

=

Per suite, x et @ sont aussi d

un méme plan.

Théordme III - La droite 8§ conji

D, si 1'on méne

at, par suite, B, oll se coupent ces deux droi

édent, le pdle du plan ADD menéd par d.

8i 1'on méne un plan quelecongue

de d, des droites ques AL et AC de ce p

moment nul
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n efTet, eetbte perpendiculai est une droite de

moment

coupe deux droites conjuguées, de plus, elle

normale au

d'apreé:

eédent, mener par l'sxe central, paralléle i la fois A

d et 8. Donc,

antérisure

nt, cet

Coreollaire II - Les projec ns de 2
1'éxe central sont paralldles.

iEn effet, dlaprés le thiorsd
E

ent 4 lleaxe central sont parmlléles. Ils sont done coupés par le plan normal
i 1'axe itral suivant deux droites paralléles.
8i 1'on considére un ensemble de droites 4, 4!, da"... d ! ur

A, leurs conjuguées &, &', 8" ..+ sont dans le plan polaire g du point

résulte de la

ption des droites oconjuguées.

Il est, de mBme, aisé de sonstater que :

-~ B8i un plan 1T

par un point A, le plan polaire a de

ue de 4,

uisque A est

=

de &, dans le plan a polaire de ce point, est une droite de moment nuls

une droite de moment nul x est dans le plan, elle passe donc par

de ce

=, x aussi dans le plan d, on voit bien que le plan g
] B, -
Théoréme VI - S8i 1'on méne par une droite d un plan a paralldle &
Egﬁjifectiwn prineipale, les droites de moment nul contenues dasns ce pli
toutes parallgles & la droite 8§ conjugude de d, le pdle du plan a e
fini sur 8.
_ In effet, le point A, ol un plan mend par d coupe &, pBle de ce plan et
Yo

toutes leos droites de moment nul

dans ce plan vont passer par

. eae point.

sque le plen est le plan a

glement 4 la direc-

. Eior

princi

1 1'infini. Das 1c

~ Tout plan & | paralldle & 1

quelle

fini, dens une direction & 1:
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ont pour conjugu

direction prinei

& la direct

Mais, dans ce cas, on

sulte intuitivement de la remarque

Un dymame reste identique 4

Les

-

1'une

ion principale.

- Si 1'on considére une

Juxtapos

les droites conjug

ares gui i

articulés plans.

UILIBRE DES

Action mutuelle de deux corps 1'un

ons montrer que les deux plens a, a' menés par d et 4

ylan B paralldéle 4 la direction prindipale car alers ce

mhrer gue 4, 4' s

suivante @

&, 8' étant paralléles et dans un
peut les

direction principale dans les con

On reconnait, de plus, que d, 4!

t paralléles. Cela ré-

suivant

ne par une tran

superposer 1'ume

4 l'autre par la

ersement.

central

méthodes de

igue graphique d

autre.

plusieurs corps

suivant des surfe

tent

cen
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T ) S e & B 3
taine mobilité utres. Ces corps devant res-

er en contact, 5 seu Y uts possibles s ceux dans lesquels 1
en contect glissent les unes sur les autres.
Considérons alors 2 corps A et U en relation par contact,et anxquels

appliques des systémec de forces. Soient §p et 83 les’ surfaces de contact

tangentes en chague point de conbact., Soient (F.4E

un point de Sﬁ, et 3 7

tant considéréd, cofncide avec Lh,‘

Irces & iquées aux 2 ﬁﬁrps, coux~-ci tondent 4 pron-
drz un m 3 t de glissement de issement 1'un par
rapport, i 1'autre. Dans oo glissement, SA exerce sur

o

une aoctio o B . exerce réciproquement sur S

—_
action rﬁ,; les deux forces sont érales ot opposées, mais non

=

e : R
liguéos au méme point 3} BP est

8

ot I, &tant cn cofricidonce 3 l'instant considéré.
oy e o T S S AR A , S
8i los surfaces 8; et S, sont parfaitoment polies, elles n'opposent au-
cune résistance au glissement de 1'une sur 1l'autre.

-

resistance opposée est appelée frottement.

o 1
Décomposons la force F, en 2 aubres : l'une I, portée par le normale a
A

-3
o o LT — i
la surface Sy en U,, 1'autre Tf portée par la tangente. représente la face
.

= —
de frottement. Si &l : et Dot
de frottement. 8§i Ty" = o, Fy  se réduit 2 U, @ dono t da cas de

aement sans frottement, 1'action et la rédaction, égales et opposées, scnt nor-

Fy st

males aux surfaces au point de contact considéré.

EQUILIDRE D'UIl CORPS ASSUJETTI A TOURNER AUTOUR D'Ull AXE FIXE,

Le guidage d'un corps A assujetti ) tourmer autour d'un esxe fixe A par
repport 4 un autre .co 3, est réalisd par uno surface de bévolution R,
I3
@taxe A) solidaire corps mobile et embcftée dans wweaubtre surface de
révelution kg e solidaire du corps fixo.
direcctement appliquécs au corps mobile
réactions oxorcédcs par la surf c Tév
lution fixe sur la surface mo posons le corps en équilibre. Le
résultant des

alorsg nul ;3 on a en g i pour l'axe A :
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¢ 1 o B
(m!_‘. FI + ,'ITI.;.'5 5 ¥ ves ¥ :nz}-n) & ("12 KI N

* L 3 . r .
Si 1'on suppose qu'il y a glissement sans frottement les réactions
normales aux surfaces de révolution em contact 3 or, toute normale 1 une sur-
face de révolution est dans un méme plan aveéc l'axe de révolution A ;

done ¢

dlod il reste

Montrons que cette condition est suffisaente pour gu'il y ait équilibre.
Effectuons la réduction du systéme des forces F, en un peoint 0 de l1taxe 4.Par
hypothése le moment résultent par rappert 4 A Gtant nul, l'axe 0G du couple
adjoint est normal 4 A, c'est-d-direque les 2 forces du couple sont deas un

méme plan avec A. Le systéme des forces F.

; est par c nséquent réductible i un

systéme de 3 forces qui coupent l'axe A en des points auxquels on peut les
supposer appliquées. Ces 3 forces sont donc détruites par les réactions de
1'axe fixe. D'ol :

La condition nécessaire et suffisante d'équilibre d'un corps assujetti i

tourner sans frottement autour d'un axe fixe A est : B mg Fo = 0,
1

EQUILILRE D'UIl CORPS ASSUJETTI A GLISSER SUIVAIT UME DROITE FIXE OU EQUILIDRE

DU COUPLE PRISMATIQUE

Le pguidage d'un corps A assujetti a glisser suivant une droite fixe d'un
corps D est réalisé par une glissidre rectiligne prismatique : un prisme Py sc-
lidaire du corps A peut glisser dans un autre prisme P3 solidaire &u corps D
on remarquera que les profils des sections droites des 2 prismes ne sont pas
nécessairement identiques ; il suffit de trois points de contact entre les
profils pour réeliser un bon guidage, i condition toutefois que les 3 norma-
les en ces points ne soient pas concourantes comne on le wverra plus loin.

Soit A la droite fixe. Supposons le corps A en équilibre. La résultante
des forces directement appliquées et des réactions est alors nulle, c'est-i-
dire que la somme des projections des forces et des rémctions sur une droite
quelconque est nulle, et, en partioculier sur l'axe A :

P s
A I pr“\ Fz * see * Dr& RI + prﬂ HE
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PO
Or, on suppose que les frottements sont nuls, c'est-i-dire gue

tions sont normales dux feces des prismes, done rectangulaires aveo

Pr. R -
A L e 0 7 Py Hp
D'ol la condition nécessaire pour 1'8quilibre

nr

T S 2 U

ou & BT, a1 i ),
ops] £ gl v 3
Cette condition est suffisente. Etablissons d'abord le théoréme suivent :

Théoréme : Toute force située dans un méme plan avec un triangle guslconque

est équivalente i un systéme de 3 forces agissant suivent les 3 cOtés du

(Fig.46) ADTC un triangle quelconque et F une force situde
dans son plans Soit il le point d'interseetion de la
ligne d'action de F avec l'uh des oftés du triangle. Appliquons F en I, et
décomposons cette force en 2 autres FI et F! portées par le ofté UC du trian-
la droite AM. Appliquons F' en A, et décomposons 1d en 2 forees I, ot
pu? les cftés AC et AD du triangle. On a ainsi décomposé la force
forces portées par les é0tés du triangle AIC.
Hontrons intenant que si 1'on
s AR L)
e rectiligne est en équilibre.
la. réduction des forces F; en un point O de Ylaxe fixe Ay L
projoction de OR étent nulle, OR est perpendiculai-
re & A, eTest- ~dire située dans un plan de section
droite des prismes. Quant au couple adjoint :
est paralldle & A les' 2 forces du couple sont si-
tuées dens un mBme plan de section droite avec OR 3
si, au contraire, OG n'est pas paralldle d A, le
plan du couple et le plan de section droite se cou-

pent suivant une droite Ox nermale & A, et on peut toujours par rotation du

A

couple dans wn plan amener les 2 forces 1 8tre paralldles 4 Ox, olest-i-dire

4 8tre chacune dans un plan de section droite. Considérons alors les 2 pro-

fils des sections droites, et soient (Fig.47 = page 37) L, U, II trois points
de contact’ Les rémctions s'opérent normalement esux profils en L, M, Il et sont

contenues dans le plan de section droite. Soit L', M', 1I' le triengle gu'elles

fornent.
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- 37 =
D'aprés le théoréme précédent, on peut décomposer

dans leurs sections droites respectives les deux for=-

ces du couple et la force OR en 3 forces portées par

les cBtés du triengle L'I?' ', On peut donc ramener

le systéme des forces directement appliquées 4 un sys-

téme de forces portées par les mémes droites que les

réactions. Donc, si la liaison permet sux réactions de
se développer dans les 2 sens sur les normeles sux points de contact, il y &
toujours équilibre ; si, au contraire, la liaison permet aux réactions de se
développer dans un sens unique, ou bien il ¥ a équilibre, ou bien le couple
est dissociéd (Fig.43)

Remarque - S5i les profils n'ont que 3 points de &on-

tact L, I, Il, et s1i les normales en ces points sont

concourantes, la décomposition des forces du couple

et de la force OR en 3 forces portées par les cBtés du

// triangle L'MN'II' est impossible. llais dens ce cas 1le

Fig.46 3

corps n'est plus assujetti uniquement 31 glisser sui-

vant A me vbation infiniment petite peut s'effectuer autour du point de
concours I des normsles 3 on a vu, en effet, dans le cours de Cindmatique
que dans ce cas I est un centre instantané de rotation.

: La condition nécessaire et guffisente d'équilibre d'un corps as-

sulvant ume droite fix A est

:E: prp Py = 0.

EQUILIBRE DU COUPLE VERROU

Le guidage d'un corps A assujetti 4 tourner autour d'un axe fixe
per rapport 4 un corps B, et & glisser suivant ce méme exe, est réalisd
par un eylindre de révolution CA d'exe A, solidaire de A, et emboité dans
un cylindre égal CE’ de méme axe, solidaire de B.

8'il y a équilibre, on a

: N
25 PrAFy #)ipr R, = 0,

A

et ) m® g, 0
f O S

Or, on suppose que les réactions sont normales aux surfaces cylindriques

en contect, donc elles coupent l'exe A & angle droit. D'ou @

JoPE Ry w 0 o6 .o, w3

3

P h
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Il reste :
2o PR Ty

Hontrons que ces deux conditions sont suffisantes pour 1'dquilibre.

Effectuons la réduction du systéme des forces Fi en un point O de d'axe
A . La projection de OR sur A étant nulle, OR est perpendiculaire ﬁ_ﬁ. De
méme, le moment résultant par repport 4 A &tant nul, 1'axe 0G du couple ad-
Jjoint est perpendiculaire 4 A, c'est-i-dire que le plan du couple contient
A : on peut alors choisir le couple dans son plen de telle fagon que s £
forces soient perpendiculaires i A et eppliquées en deux points de cet axe.
Done le systéme des forces Fi est réductible 4 3 forces perpendiculaires d
A et appliquées en des points de A : par suite, il y & équilibre puisque
les réactions coupent A & angle droit.

En résumé : Les conditions nécessaires et suffisentes d'équilibre d'un

corps assujettl 3 tourner autour d'urde droite fixe A et 4 glisser suivant

cette droite sont :

oo B R : 3
> e 5 0
7

EQUILIBRE D'UN CORPS ASSUJETTI A TOURNER AUTOUR D'UHN POINT FIXE OU EQUILI-

BRE DU COUPLE SPHERIQUE.

Le guidage d'un corps A assujetti i tourner autour d'un point fixe 0
par repport 4 un autre corps B est réalisé par une sphdre de centre O soli-
deire de A enboltée dans une mutre sphére de mfme rayon solidaire de B.

8'il y a équilibre, le moment résultant des forces directement appli-
quées et des réactions est nul par rapport & un point guelconque, et, en

particulier, par rapport 4 O :
S IME I RET N E PE
- . Bl B 5

Or, on suppose les réactiones normales aux surfaces sphdriques en con-
tact ¢ elles passent done par 0. D'ol :

>om® g
8] 1

Iy gte

t

> m° F, Q
0 I

ilontrons que cette condition est suffisante. Effectuons la réduction

des forces F. au point fixe 0. Le moment résultant en O étant nul, le cou-

-

ple adjoint en O est nul ; le systdme se ré.duit alors 4 une force unique

passant par le point O : cette force est équilibrée par les réactions pas-

sant par 0.
En résumé : ndition nécessaire et suff'isante d'équilibre d'un
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4

tourner autour d'un point fixe 0 est
Tt
0
D'UlT CORPS ASCQ{EE?} A GLISSER SUR U PLAI] FIXE OU EQUILIBRE DU
COUPLE DU

agsujetti &

Le couple plan est un cas particulier du couple sphérique : celui ol
le rayon des 2 sphéres en contact devient infini.

Solt E un plan sur lequel un corps est assujetti & glisser. Si le corps
est en équilibre, la résultante des forces directement appliquées et des ré-
actions est nuble, c'est-i-dire que sa projection sur une droite quelconque

est nulle, et, en particulier, sur 2 droites de [l mon paralléles Ox et Oy :

et
e F + oY R =
o P F Gl LR e e

et

™ o 5
Zpro__f Byt amh, B =0

De plus, le moment résultant par rapport d une droite quelconque est nul,
et en particulier par rapport i une droite Oz perpendiculaire i T}:
e R ¢ i i G
b R [ A <ol L
Oz i 0z 1

Or on suppose que les frottements sont nuls, c'est-i-dire que les réactions

sont normales 4 II , d'ol

}; Frog Ry = 0
et

Il reste

.lontrons que ces trois conditions sont suffisantes pour gu'il y ait
édquilibre dans le cas d'une liaison bilatérale. Lffectuons la réduction en
un point O guelconque du plan 11; les projections de OR sur 2 droites quel-
conques de ITétant nulles, Or est normale & JI; d'autre part le mouvement
résultant par rapport 4 une droite normale iIT-étant nul, l'axe 0G est con-
tenu dans JI, c'est-d-dire que le plan du couple est normal a]]:, et on
peut alers représenter le couple par 2 forces perpendiculaires a IT. Ainsi
le systéme des forces Fi est équivaelent 4 3 forces perpendiculaires ﬁIT .

Il y & donc toujours équilibre puigue la liaison bilatérale permet aux réac-
tions de se développer dans les 2 sens sur les normales & TI.

Bn résumé : Les conditions nécessaires et suffisantes d'égquilibre d'un
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8¢

(0x et Oy étent 2 droites quelconques de llnon paralléles, et Oz une per-

pendiculaire 4 [ L ).
Remarque - Dans le cas d'une lisison unilatérale ou le couple est disso-
ciable, les 3 conditions précédentes sont nécessaires mais non suffisantes.

iTous allons étudier un cas particulier d'une limison uniletérale,

Probléme - Chercher les conditions d'équilibre d'un corps pesant reposal

sur un plan horizontal par 3 points formant triangle.

Soient (Fig.49) A,B3,C les 3 points d'appui du corps en équilibre sur
le plan horizontal.

Les réactions HA’ RB* Rc qui se développent res-

ectivement en A, B, Cesont portées par les verticales ascendantes.
tivenment A » C t 1 + le sendante

sultente By des 2 réactions R, et R, , forces paralléles et de méme
. =9
49 R

Figs

est appliquée en un point D de AL situd entre
B, et est portd par la vertieale ascendante, de mé-

_~
9]

me la résultante R de HD et R, , qul est eelle des
3 réasctions en A, [, C est appliquée en wn point G!
de DC entre D et C, clest-d-dire intérieur en trian-

C
= gle ABC, et est portée par la verticale ascendante.

P aloe
L

Or le corps étent en dquilibre, son poids P est ézal et opposé A la réac-
tion R, donc est porté par la werticale en G', ce qui peut s'exprimer de

la fagon suivante i le centre de gravité G du corps se projette sur le

plen horizontal en un point intérieur au triengle ABC dit "de sustenta-

tion".
T llontrons que cebte condition est suffisante pour qu'il y ait équi-

libre. Soit G' la projection du centre de gravité du corps sur le plan
horizontal ABG. Soit D 1l'intersection de G'C avec Av. Décomposons le
poids P en 2 forces verticales appliquées en D et C 3 le point G' étant
compris entre D et C, les 2 forces fbet P, sont de méme sems gque P ; dé-

-

composons maintenant PD er 2 autres forces verticales appliquées en A

et B : P, et Py sont encore de m8me sens que P. Le poids P est aingi dé-

composé en 3 forces werticalss de m8me sens que F appliquées aux points
A, B, €, c'est-i-dire portées par les mémes droites que les réactions

et en sens contraire. Il y a donc équilibre.
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Déterminons les réacti R, aux 3 points d'appui. Ces ré-

G

actions sont égales et opposées respectivement aux composantes PA ¢ sl
= b
PU du poids P. Or, on &

P,
C

de méme, on e @

d'old on tire :

AT 1 QU Bg'DBE8 D UHAILSS

PRELIMTIIATRES

ORIENTATION D'U TRIEDRE DE COORDONUEES (Fig.50).

On adoptera pour sens direct d'un triédre de coor-

données 0 (x, ¥, 2) le sens défini de la fagon sui-

vante : l'axe Ox doit, pour se superposer o Oy, tour-
ner de 90° de droite {4 pauche pour un observateur per-
sonnifiant 1'axe Oz.

COORDONNEES DYUN POINT M - Btant domnés (Fig.5I) un

triddre direct 0 (x, vy, 2z) et un point I de 1l'espace,
on appelle coordonnées du point M les mesures algé-

3 Al =y
brigques x, ¥y, & des projections du vecteur 0 II sur

les axes Ox, Oy, Oz.
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v z les coordonnées du point d'application M de
la force, et soient x', y', z' celles du point M!
extrémité du vecteur représentant la force.
Dens le triangle OMM', on & :
e e e
oM* = OM <« MU',

En projetent sur l'axe Ox, on a :

— —=- —
mes pra. QI' = mes pry, OM + mes pra. MUY
y e :

On a donc en posent mes . MMt = X :
g o R
d'ol T i gt e

et par projection sur Oy et Oz, on a de méme !

T [

R et A

JOMENT D'UNE FORCE PAR RAPPORT A L'ORIGINE DES COORDONNEES

Soient (Fig.53) x, y, 2 les coordonnées du point M dtepplication de
la forece P, et soient X, Y, Z les projections des vecteurs TF'" représen-
Eapt X L Le moment de F par rapport 4 O a pou
}.4{,'35 2 projections sur les 3 axes Ox, Oy, 0z, des

vecteurs qui sont les moménts respectifs
de F per repport 4 ces axese Cherchons
alors le moment de I par rapport & 1'un

des 3 sxes, Oz par exemple.

Menong par M des axes I.ExI > I'.'I_VI 2 !'Ez.i,

paralldles sux axes Ox, Oy, Oz. Soient
Sk
x ! -"‘-y s MM = les 3 vecteurs projections de 1A sur ces nouvesux

axes. D'aprés un théordme sur le momént résultent d d'un systémé de vecteurs

coneourents on a en valeurs algébriques puisqu'il s'agit de moments par rap-

port i un axe i e —>
el 2 o L = —
mg, Mt = mOz L'M'x + mbO - LE\-‘I'V + mt M
o 2 A

n méme plan avec Oz, on &

wt e = mb i + mt o
£ Oz Oz x Oz .

Or, JF;{ étant perpendiculaire 4 0, , sa projection sur un plan per-

pendiculaire & cet axe lui est égale, on 2 alors @
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m. ¥ ¥ X ot ° L
‘ 0z b o

s e B it de remarquer que si y et X sont

Pour déterminer si
et donc son moment

simultanédment positifs, le vecteur
négatif, dlolt @ g
m LuA!
Oz

(on verrait que si 1'un des

T
2 faeteurs chenpeait de signe, ou tous les

simultanément, le moment est tonjowrs égel & =~ y X).

On a également ¢

or, si x et Y sont dextrorsum, on a done

dtol :
_g# 1
6z
Par permutation eirculaire, on a

—
mt B
G

mt JIy
-0y

LOMENT D'UNE FORCE PAR RAPPORT A UN POINT QUELCONQUE

Soient (Fig.54) donnés la force F de projections X, ¥, &, eppliquée au
point 1 de coordonnées x, ¥, %, et le point II! de

coordonnées x', y' , &' par repport auguel on cher-

che le moment de F.

M' menons des axes M e M!
Par M' menons des ¢ W RS R PEOL

pectivement paralléles aux axes 0x, 0y, Oz ;

cherchons les nouvelles coordonndes du point

Dens le triangle OM'M on & :
v e T
O = OMY + M'M

En projetent sur M! 1 paralléle & Ox, on a @
X
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YI =Y 1! et

En appelent L', M! i' les projections du moment de F par rapport a

% El

Ltorigine ¥ des nouvelles coordonnées, on &, d'eprés les expresgsions trou-

vées pricédemment @ 4
L! (v.=y') 2 =LY
(2 = gt) X (x= xV) 2

Or, on a ¥Z = gY

en appelant L, I, W les projections du moment de F par rapport

Dol 3

COORDONIEES B'UN DYNALE

Congidérons un dyname, c'egteisdire un systéme de forces ¥
W 2 o

Fn ayent pour projections respectives (”I i ZI) “o Kh

appliquées aux points (xI T4 4 ZI) o ey
La projection de la somme géométrique &tant &gale
Jjections des composantes,
Z

X

S oy
Eal b
~ 3
§ v 2%
De m8me pour le moment résultant av point O, on & :

= LI + L2 e A T Ln = AdLi

=20 M,

L'ensemble des projections ﬁ:,‘tj, 5— de la somme gSométrique et des pro-

jections £ ,J1C,9C du moment résultant par rapport a4 l'origine, est appe-

COIPOSITION DES DYNALIES

Four composer deux dynames, on fait la somme géomStrigque des forces
du premier dyname, celle des forces du deuxiéme et enfin la somme géométri-

z L

que de ces sommes géome st de mBme pour les mo-

triques partielles ; 1 @8

ments. En projection on a done
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i 5 i %
et ‘-‘? = . :ﬂFt,: 91

Done, pour composer des dynemes on-ajoute les coordonnées de m8me nom.

REDUCTION D'UN DYNAME A UNE FORCE UNIQUE ET UN COUPLE

I - Réduction & l'origine des coordonnées.

Soit donné le dyname L Y ,rév o | (A7 [

La force unique, égale 4 la scmme géométrique e pour projections I, Y, %,
et étant appliquée au point 0, elle a pour moment par rapport au point O

0, 0 , 0 .Le couple a pour projections (ré.sultant;e nulle) : 0 , 0, 0 ; et
pour moment (l'axe du couple adjoint étant égel au moment résultant eu méme

peint ) & I 00,

II - Réduction en wn point i* (x' , y' , z') quelconque.

Soit toujours donné le dyneme o, C‘y, :5,, R JU . la force unique
appliquée en M' a pour projections X ,'}j s % et pour moment, par rappert
B0l T o @ Ny IV PRV e YT )

o o

Le couple a pour projections o , 0 , 0 ; et a pour axe le moment résul-
teant par rapport au point II' :

G (L + Y2' - y'2)
Lo gt of

94-,:{-}12'

J?”.L+ 3)’3{‘
D)L,'_ Iy'
#t- w If-b(’sz‘
%! % e (T4 ’5 %!

e (%+Iy‘ 2

=

dont le somme des moments par rapport & 0 de la force unique et du couple

fak 3 = gt

adjoint est égale. au moment par rapport & O du dyname.

REDUCTION CANONIQUE

Dans la réunion casnonique, l'axe G-O du couple adjoint et le vecteur
unique R, étant portés per la mfme droite, ont leurs projections propor-
tionnelles. I , '};J A '} étant les projections de la force unique appliquéas

en un point M' (x' , y' , z') de 1'axe central, et £ , JW1 , JL ' tant

celles de l'axe du couple principal ou moment résultant en M', on a daic
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or, on sait que si on a

n étant fes nombres quelconques)

b ¢ al + bm + en

b! ot a'l ¢+ b'm + c'n

iultiplions elors les 2 termes du ler rapport

, ceux du 3éme par % , et additlonnons

on du numérateur ¢

s ot T Atant constants, ( LX +
0

Posons

T ] - 3 ires. le marateur
L %, 9L &tant des moments, donc homogdnes 4 des aires,. le numer pteur

wopéne A un volume, par suite est homogéne 4 une longueur ;

3 e rakall 7 SR
du dyname j et l'expression 5 F +JJ(,'2j & LY

"LV INVARIANT" du dyname.

pelé le "pas"
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5 =i 1 i 1A
per un axe & . Boit v la mesure alge-

pe.
cosinus de 8. E

la, projection
i -
Y'. Soit @ 1'angle des 2 axes § et §.
— —> .
Ve g sont les vecteurs projections

e

1t er

=341

XE CENTRAL

T

PROJECTION DU COUPLE ADJOINT SUR L!'AXE

On
CcOneg-~

un couple adjoint quelconque sur

liontrons-le par l'enalytique.
1 14mind A + a moment
L'axe G  du couple adjoint un po: etant le moment
. - Oyar -
résultant en ce point, & pour projec R, Oy, 0z @

o R J

-
J-Iti. = JT{."'% !
T

D'autre part, la force unique I

g pour cosinus

x " 3 Y 2
Le. projection de direction principale a elors pour valeur,
sxpression trouvée plus haut 3

DI'eE
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CONDITION POUR QU'UN DYNAUE SOIT REDUCTIBLE A UNE FORCE UNIGUE

51 le dyname est réductible 1 wune ] unigue, le mom
tout point est rectangulaire avec l'axe central ; sa projection sur celui-ci
sot done nulle, c'est-d-dire qu'on a :

%2 "3 SRS g€ = 0

et réciproquement siF= [’,I + :ﬂ'(.’\‘j + -« UG

tible & une force unigus.

CAS D'UN SYSTE!ME DE FORCES FARALLELES

Cn a vu sur le chapitre reletif i la
qu'étent données 2 forces

te passe par un point O du

suivant que les 2 'es sont de sens
point dépend de la valeur 4
rection commune.
D'une manidre générale, étant donné un systéme de for
en des pointe A. | i‘xz 3 A il existe un point

constamment psr € quand la direction commune des forces varie
"gentre des forces paralléles".
iquement que ce point-existe et cherchons

directeurs de la direction commune

T e
i€

F a pour valeur
F F + F B il P = i e
i E-’ n z +
projections

on a
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et, de méme

et 1llon a; de

- Tlw

de méme

Posons maintenant

£ i : :
cocrdonndes x_ définissent wn point c. llontro
passe par ce point.

Pl

En portant ces veleurs dans expressions

6 F
Y B

a ¥

gui exprime que le systéme des fore équivalsnt
appliquée au point de coordomnées x, on velt que
indépendantes de a, B, Y, le point C est indépendant de

Dans le cas sont paralléles

rapport & Ox d'une force F, se réduit

moment de Fi par

rapport au plean zi

coordonnées du centre des forces parallél

voit done que le moment de la résultemnte F par rapport 4 un

plan est épal i

la somme des moments des composantes par rapport au'méme plan.

ne pl Clest le théo-
reme desg

e

s moments par rapport & un plan.
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EUE - ut corps, est attiré vers le

dite de pesanteur.

sensiblement constante

Cet

ureusement

pesanteur passerait censtemment par un point fixe, cent:

tre ; mais la pesanteur est la résultante de 1l'attraction de

force centriruge.

isieurs forces

CENTRE DE GRAVITE ET FOIDS - On sait gu'étant donn

couple

qu'elles ne soient équivalentes 4 un

paralldles” auquel est appliqué la résult

ntation des forees. Or, les forpes de pesante

eh

gquand on les considére suffisamment rapprochées les unes

réduct o5 4 un couple puisug'elles ont toutes le méme &

ne un eentro des forces paralldles de pesanteur qu'on appelle

3 : ) g de l'ensemble ds¢

senktre de gravité ; la résultante est appelé

SPECIFIQUE Considérons un corps gueleongue =t con

petit volume v

poids

volume v

#

matidres différe

g o
a5 gul

des es du centre
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e est indépendant du

ométrique du eorps.

CORPS ADUETTANT
de symétrie son
dans ce plamn.
11 - Plus généralement, si un corps homogéne admet un plan diamét
pentre de gravité est dans ce plan.
Un plan ' est dit diamétral si les éléuents du corps peuvent &tre
de fagon telle que la droite joignant 2 &léments corsespondants
e et son milieu dans IT.
un corps homog3ne admet un axe de symétrie, ou, pl généralens:
sur

un eorps homogéne adnmet un centre de symétrie n de gra-

vitd cofncide avec ce centre de symétrie.

NTRE DE GRAVITE DE SURFACES ET DE LIG

méme qu'on
considérer
centre ds gravité.
surface pesante est un solide dont une dimension est infiniment
ligne pesante est une surface canale dont le rayon de ls
petit.
Un point mebériel d'une ligne pesante est pesant : il coincide avee
contre de gravité.
¢noncées plus haut relativerent au centre de gra-

5 au cas des lignes

QUES CENTRES DE GRAVITE

% poids égaux placés aux sommets d'un trie

s & triangle
le point de concours des médisnes du trisngle. En effet (Fig.55 - p.52) soier

{=1d ¥
y @

B ¢ Q. les poids placés en A, B, C. La résultente Qp 4 ¢ des poids
3 C

ot Q. est appliguée au milieu A' de EC puisque Qp = QC . Bt la résu
1%

de Qo vt Q st appliquée en un point de A A' , médiane du tris
B !

ABC, tel : GA
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i=-dire egt &u point

R.:é'QA.-l§ QJ\: {F

plecés gux sounets d'un tria

ls aux c6bés opposés.

centre de gravité du cercle inserit

(Fig.56), par hypot

Q

a

A(Q.4)

Le. résultante de Qg et

appliquée en un point ﬁi

PR

2 qui montre que Ay est le pied de la bissectirce de l'angle

QE 0 et @ est dlors appliquée en un point G
* A
: A

par le méme raisonnement que G est sur la bissectrice
velle de llangle © il est concours dee
s

egt-il-dire dans le triangle

~
Y ngL

Homogéne d'un ngle.

du cercle inserit dans le

-

cdtés du triangle deané.

donné ABC. A'

la ligne pesante BC,

a L3 A - 3 = oo
périmetre homogens

sont done proportionnels &

EE03 S y B! €' étant les milieuxdes
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sommet s
pottionnels

L'ATIRE D'UN TRIAHGLE HO.IOGEWE

est au point de copcours des médianes

infiniment

netite paralléles au odté BC 3 le centre de rravité de

chacune des bendes est en son milieu, clest-:
1o médisne AA' 3 le centre de gravité de 1l'ensemble 25%

done sur AA' . O, voit de mlme gqu'il est sur les

nes BB!' et GC' ; dome il est 4 leur point de ceoncours.

V - CENTRE DE GRAVITE DE L'EIRE D'UN TRAPEZE HOIOGENE

Le centre de gravité est sur la droite qui joint

parclléles, ecar toute corde paralldle aux bases LC st AD & son milieu et,

. .3 3 — A\ - ~
suite, son centre de gravité sur cetts ig.59). Pour de

e B s ; 7

"igi 58 : % sur BF, partageons le en 2 triangle

nent la diagonsle BD. 81 G. et G, sont les
& = “

de gravitd de ces/triengies le centre de

trapéze est au point de rencontre de

ER THEOKEIE DE GULDIN

,‘noneé 1 L'mire engendrée par un co:

guelconque, tournant eutour d'un exe si
- ) 1 3

¢t ne le traversant pas, est égale au produit de la longusur

1

par la lonTueur de leg circonférence décritepar le centre de

2 me1s

CAS D'UN COl POLYGONAL

Pour démontrer ee thoréme rappelons dlabord que
segment de droite AB tournant aubtour dtune droite
un mfme plen gque lui et qui ne le
duit de la longueur
son milieu. En effet (Fig.60) aire engen
tronc de cone, et on sait que le-ci a pour egrpre

les rayons de ercles de base @
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rayon du trone de

le mi

de AB.

snant un contour polygonal tournent au-

truverse

i
my ( istances de i,
Lt engendrée par le contour est

AB 2 x om 4 BC ¥ R

RareEy
ontour supposé homeg

sont proportiomnels 4 leurs lon-

gusurs. Soit G le ¢ ré do gravité di

du: contour et d sa distence 4 llaxe. On

i R L

por rapport J

En posant AB + BC + CD 1'expr i de 8 devient alors

2o A yoet 2

CAS D'UN CONTOUR QUELCONQUE

Inscrivons un sentour
le eontre do

ltaxe A

pendrée par ABCD...

si on augmente in

le nombre des cdtés du contour polygonal inse:

tend vers la longueur de 1l'arc de courbe donnée,

de cet arec, donc d_ tend vers 4,

S engendrée par la courbe donnée. On a donc encore !
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-

B5

i et (S T S

montre

qui ne les

APPLICATION du Ier. théoréme de Guldin & le détermination de gquelgues centres

de gravité et au calecul de quelques sires.
g 1

et e e

I - CENTRE DE GEAVITE "N ARC DE CERCLE

cercle AB de centre 0. Le diamétre OX 1
son milieu &tant un axe de symétrie de llare,
centre de gravité G cherché est sur OK.

Pour déterminer la position de G sur OL appliguons

de 1!

% : — = e
la corde AB. Scit AB = I et AB [ L'aire engen-

ETo
drée par AB est celle d'ume zone sphérique de haut

e e e e e i e e S S
e e e e e e e

¢ . On a done, dlaprés le théoréme de

=

A A il Frmog ok

A% ok
1701

done 4éme proportionnelle ontie. £l
corde
1I - AIKE DU TORE
ire du tore
srence de
Le centre ds

évidemment son centre méme. Scit

tre C du cercle i 1'axe A de rotation et

rayon du cercle. La longueur de la circonférence est 1 2

gueur de la sirconférence da C est 2 = & . Done llaire
valeur S : axd

ENDREE PAR LE PERLIETRE D'UN TRIANGLE

vu que le centre de gravité du périmétre d'un triangle
centre du osrole insorit dens le triangle ayant pour sommets les
obtbs du trisngle ABC. Si d est la distence de G & llaxe
rimétre du triangle, l'eirs engendrée est :

S R Tt o
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]

e

b

Ui

2
¢
A
ST e
dont les rayons
-
s

E AIRE QUEL

-

;

QNG

de

SO U
Fip. R7
FlEaG |

airs

la traversant pas

génératrice par la circonfé

de gravité de 1

CAS D'UN

tour d'un axe parallgéle 4 1'u
ln distance du centre du rec

de

1'axe

a et b
g5t la différence volumes de 2 cylindres de ré-

volution de méme

« On's done

S de
nent autour d'un -

te aire en rectangles, en menant des

et des perpendiculaires. 8

me des aires des rectangles

aires telles que MNPQ . 81 8 est l'aire d'un rec-

angle et d  la.d nee de son centre 4 A, ce rec-
tengle engendre, d'aprés le cas précédent, un velum

2

par

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

1ya
parelléles

rapproche
On & done

oreme de Guldin, on déduit le thdoréme suivant

i égquivalentes et ont méme gentre de gravité, elles e

équivalents par rotation autour d'une droite quelconque de

plan ne les traversant pas.

APPLICATION du 28me théoréme de Guldin 4 la détermination de centres

calecul de volumes.

TORE

in reprenant les méms notations que dar ; 3 du tor
“.'
cas limite

c'est-1-dire ol on &8 d

IT - VOLWLIE ENGELUD BAR UN TRIANGLE tournant autour d'un axe ne le trav

ialt

pas. Le cenktre de gravité de lleire est » point de concours des médianes.

d est la distance 1taxe du point de ; des médianes, le volume eng

per le triangle est

DE GHAVITE DE VOLUMES

AT T A T
Ul TETRAEDEE

rons un plen paralléle

3'(’;'3' s Bodt il Tel mil:
médiane du triangle BIC'D! ;
du trian paralléle & B'C!
DIgE? o ors
sur la méd

est un plan dismétral

chaecun des
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LD et Done, G est.le point d'intersection
arquons un parallélopgramie ; en effet : d
ot cbtés AB et AD, on a donoc @
lus, et L sont les milieux des ¢
BC et CD ; on a donc : = 7 BD 3 dloll IN = (I . Un trouve de -

WL. Done, le centre de pgravitd est le point de rencontre des diagonales du pa-

e jeint wn

au quart

B, DE GRAVITE D'UN . RISIE

e centre de

raux on trouve g

moyenne est celle gui pass

GRAVI

emide ou du cone

on tre de gravité est au guart, 4 partir de la base, de la
te gui joint le sommet au cen de gravité de l'aire de la base.
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g <
e

statigue

i R e b R A
% e e e e

e e A A

ICULATRES

qutun syctéme de forces complanes

B

riasultante

|
|
[

forms le polyzone

rayons po La

grbitrairement

du
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et

ulaire;

olygones.

e
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cCOMposarn

eotion

o1l

ai

L'ensemble d

2 forces extr8mes f'. et

éme sulvant i

forces complanes e

rarier la

o)
2
-

invaliable,

mad T
point L

TOIT 1mmeclaten

et [, paral

est leur somme.

on connue, i

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

plus nette st celle de & droites perpen

E

e
e ==

0 sur le percle ant ab comme diamétre (1

0 du dynamique se

cbtbs, sur le

IIT -~ 81 l'on change l'ordre des forces sur le

”.T!lif']‘.l*':'!: on # un

re différent, m on sait que

ne chenge pas, et

|

|

la droite dui porte la

ltante fixe,

end que de:

elles-mémes.

e e

1'on weuille seulement la ltante part

s, consboubives ou non, (si elles ne le sont pas,

on peut toujours 1'ordre) dans la construection du dynmmique, par

gt ¥z , Il est clair gue le portion du i

P S
mémes propristés que

m. m, et m, m, seront les cbtés extrémes de

i est un point de la ligne d'action

gqul est égale ot paralldle i p q (Fig.78),

CAS QU

d.-un coupl bicn elles gsont on Squi-

libre.

I°) Condition pour que

l8le & ob, Gone o &t B eux., Donec, leur point d'inter

tion, par ol passe la 3 ANinRind.

is a po

qud 1l'on & un couple.

2°) Condition

ur gue le s0it sn éguilibre.

le couple soit nul.- C'est ce qui al

o - T 30
eu quand les coOtés o

¢Oté a passe p

~—

néralement ouvert
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Pour que des forces complanes se fassent équilibre, il faut et il suf-

fit que :

£°) le dynamique soit fermé ; :

b 9 . . » ~ . ] A #
2°) 1e funiculaire soit fermd (c¢test-a4dire que le premier o0tG passe

par le paint m). Bn résumé ¢

OUVERT : il y = wme résultante.

POLYGONE DYNAMIQUE o funiculaire ouvert : il y a un couple.
ERUE s ey
funiculaire fermé : il y & équilibre.

APPLICATION DES POLYGONES FUNICULAIRES A L& RECHERCHE DES CENTRES DE GRAVITE

les funiculaires permettent de déterminer facilement le centre de

gravité.
Supposons que l'on ait un ensemble de masses, dont A;, ﬁa sia

centres de gravité, et soient PI i % (Fig.79) les polds de ces masses. Repro-

gentons ces poids par des vecteurs vertivaux. On peut construire le polygone

dynamique de ces forces paralldles, dont la résultente, de direction verti-

sele, passera par le point I dtintersection des cdtés extrdmes du funiculaire.

llais on peut faire tourner la figure de 90°, ou, ce qui revient au méme,faire

tourner seulement le dynamique, et mener par les centres de gravité AI s ﬁ?,_,

des masses, des forces horizontales égales i PT' P ... On obtient aminsi une

2
nouvelle résultante dirigée horizontalement, et passeant par le point I', qui

-

résulte du nouveau funiculaire.

Le centre de gravité G cherché est sur la résultante passant par 1,m

on sait gqu'il est indépendant de la direction des forces paralléles, dme 1
r E - Ed
& résultente passant par I', c'est-d-dire 4 1'intersection

ainsi obtenues.

de fagon analogue lorsqu'on détermine expdrimentalement le
centre de gravité d'un corps, en le suspendant success¥vement par différents

points.
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{ICULAIRES

DEUX

Elles sont fondées sur un thiordme important énoncé plus loin.,

o peut d'abord faire les remarques suivantes

Solent un sy ne de forces, son dynamique et son funiculaire (Fig.

80). Isolons 1'une des forces : f2 par exemple. Si elle existait seule,le
dynamigue se résuirait & la force 2 et aux rayons polaireso(I.2) et o(2.3).
serait
billarts : et s i 0y
Le funieuleire/formé par les cBtis my et . En isolant f1, on aurait
de méme un funiculaire réduit & « mp et My My ete. On voit que les fu-
niculaires de 2 forces voisines auraient wn c¢8té commm. Considérons un de

s, + . {1z T * . 3 .
ces funiculaires (Fig.8I) et soient : f la force unique, et m 1le point d'in-
A

tersection des 2 cdtf le pble étant en 0. En prenant un 2&me péle, o', on

aura wi 2

dont les cOtés ne seront pas parallédles A ceux du
Ier. : done ils se rencontretont.

o m et a m' se rencontrent ena ,

pmet [ m' se rencontrent en p

Je dis que af} est paralléle 4 co'. En effet : a m et m § sont paral-

1l3les sux rayons a o et ob, et dans le triangle a ob , ona @

- ——p A=
(7 I o S

Fig. 82
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elles auront pour résultante une force b a égale et opposée & f, donc el
font équilibre aux froces i et W, dont le résultante est f.

On en conelut gque les 4 forces ;f b L AN e sont en &qui- .

e e et et St et

I
- . ¢
libre, llais on peut leg grouper autrement : é? et g& ont une résultante

R, qui passe par leur point de rencontre a ;

.~—-rv——-w e e e e T e g e e e i

g et W _ont une résultante K. qui passe pa

i 8

leur point de remcontre §.

i

e s

Les 4 forces du systéme &tant en équilibre, R et R, gqui les remplecent doi-

?
|
! ]
i

vent &tre égmles et opposées, et portées par la mme droite. Or, elles pas-

3T

sent par a &% par [, donc la droite qui porte R et R. est a B .
4 oo', En effet, dans le triangle a o ¢! :
> b ety
- a =
e o .o+ &,

Cette droite est paralléle
SV LTaats

Q

[+

-8-dire que o o' représente précisément ls résultante E des forces -@

et GEI . Or, cette résultante est, sur le funiculaire, portée par a B .

Pour que cela soit, il faut, d'eprés la propriété fondamentale des funicu-

T4
laires, qu

2]

o B et 0 o' soient paralléles,
On peut &tendre cette propriété 4 un funioulaire de plusieurs forces:

Théordme : Si 1'on construit, avec un méme dynamique, (forces dans le mfme

ordre),. 2 funiculaires différents d'un systéme de forces (Fig.83) les pointe

de rencontre des c8tés de mfme

rang de chacun des funiculaires

sont alignés sur une droite paral-

léle 4 la droite gui joint les po-

2

Clest préecisément ce qui +rient

d'8tre démontré pour une seule

force : « est le point de rencon-

tre des cbtés correspondants (Iler

=Ty rang} des 2 funiculaires cons =

e e truits ewveec les pbles o et o

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

rang

maintenant un 1eurs

urs forces; e

t 2 funiculeires

de pol o

. D'apres ce qui précdde, on peut considérer la partie de

chacun des funiculaires correspondant & la force fI :

les c8tés de reng I se rencontrent en a ;
les de rang

s& rencontrent en P_ . On

Ier rang de

son funiculaire s¢ confondent avec les cdtés de 2éme rang du funiculaire

de £ , et se rencontrent en p . Les cBtés de 2dme rang

me

sm, m, 6t mL.m

2 s

se rencontrent en un point p, , et Pr p, paralléle
2 P, 1

la remarque précédente. Donc : o p. et

ralléles et ont un point commun : Py Flles so

donc portées par
droite A. On démontrerait, de proche en proche, qu'il en est de méme pour
tous les points d'intersection des cBtés o

es correspondants. Ce théordme est la

base de constructions importantes.

Remarque - Soient toujours 2 polyzones funiculaires relatifs & 2 pBles 4

Pérents. Considérons les points P, P

et supposons que l'on prenne un 3&me pdle o" sur o o! méme. Les odtds &

= 28 au

o sves alignés sur A parallile & o o

er funiculaire (relatif & o), seront coupés par A en des points p_ up,,

»

: 1 A o ) . . f PR T EY Y 1 -~
aussl sur les coteés du 2éme funiculaire (reletif & 6. fais les cb-

{7
>s du 3éme funiculaire (reletif & o") passeront égal

1t “par

car le point o' est quelconque sur la direction o o' paralléle & A. Or, o o'

n

et o o', clest la méme droite. Donc, on peut indifféremment remplacer o!

0", ou inversement.

Il en résulbe que les points p_ , Fg o déterminés par les int:
B
sections de A et des e8tés du funiculeire relatif A o, sont les pivots des

est appelée : ligne des pivots.
Autrement dit, lorsqu'on prend des pSles sur une mfmpe

déterminent en construisant la paralldle & la

paralléle coupe les obtés du premier funiculaire. Les
sont les pivots.

APPLICATIONS

1 - Construire un funiculaire tel qu'un cbté de rang donné passe par

un point L, et qu'un ¢6té d'un autre rang passe par un autre point

E 1. Sout
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les forces intermédiair
e 1'on appellers f: (régul-
Tragons, eh partent du point L donné, le funiculaire re-
menons par ce point L une droite guelcongue A (non con-
(Fig.B4).
Construisons les pivots
, en prolongeant les cBte
niculaire jusqu'a leur rencontre
A, Le dernier c&té P pas
I1 faut que ce c8hé passe par
cela, joignons m p, : le c8té

coté m',
est construib.
Dtapr Le Po us précédente, les points p z P

L, appartisn-

nent au ler. :t gu funiculaire passant i ce funiculaire
sur une paral
terminer la const

doit le point de rencentre awvec la

P

68 de remg don passent bien par les points donnés : L et

Eemarque - La droite A est arbitraire, d'ol une infinité de solutions. Il
est alors intéressant de chercher le lieu de o

‘aisons abstraction du funiculaire relatif 4 o. A peut varier, mais
L et Il sont désormais 2 points fixes de funiculaires relatif i o' . Or
premier point d'intersection des cBtés de 2 funiculaires (1'un relatif
o' , 1l'autre relatif 4 un pdle queloongue o") sur A sst [ o dernier
d'intorseetion est L jue les ¢btés extrénes de

st un second point

peut ainsi

Dlautre part, o' o" doit 8tre parslléle &

a donc le résultat suilvant :

Le point o' décrit une paralléle 4 L IL.

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

5

les réactions des appuis d'une bortant

b

I

1'on

des charges verticale

veub, repri:

On a A& considér réactions

sont des forces ascendantes) Soit 5 foroces.

soit en équilibre, il faut que la somme des forces

g

appliqut la. somme des réactions (Fig.85). Construisons le fu-

nieculaire en partant d'un poiat kc » @& la verticale passant par A. (& Seh

v}

B : appuis‘de la poutre). Ce funiculaire abou-

» Sur la verticala pass

nt par B. On sait que 1'équilibre est ré-

-

i ; N : . :
alisé quand le dynemigue ot funiculaire sont fermés & la fois

A Pour que ls dynemique soit fermé, il faut gue la somme

s réactions

s0it égale & ba.

Pour que le funiculmire soit fermé, il suf-

fit de joindre ko ]:4 , gui est la ligme

meture.

@

lais ¥y lo, , qui est le dernier coté du fu-

:
niculaire, doit correspondre & un rayon polai-

truire e

re du dynanique. Donec, pour ¢
E

rayon, il suffit de

ner par 0 une

11374
paralléle

iND Or & lto 1,-;4 -

I1 evst slors facile de voir que :

br = rbaction en B
réactions cherchies.

.

éaction en A

roa .

-

STRUCTION GRAPHIQUE DES MOMENTS SUR LE POLYGONE FUNICULAIRE

Solt & constraire le moment d'une force A F par rapport 4 un

donné i (Fig.86).
P

0 7 Construisons le dynamique et le

du point I, abaissons la rpendiculaire I & cette

foree. Son moment est

Bl o En menant par le point I la paralléle & AR ct,par

iy s m, la paralléle 5 on & une autre expression de

e/
o

ce moment N . AR e oagn HoxD e

D'aubre part, les eftés du funiculaii

PR

gés, coupent la paralléle

-

a A Fen 2 points @ et B,

Sur la dynamigue abaissons du point 6 la perpendiculdire OD 4 la force
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Le mome 1, est égal au produ

de la distence polaire par le sl qu'interceptent les 2 cftés du funi-

o2

ETUDE GENERALE 1D R e ¢ R

.
5

Les corps dont on veut étudier 1l'éguilibre s

, d'une part, soumis &

des forces extérieures, et, d'autre part, supportés par des

pénéral consiste & csleuyler les réactions de

rfice auxquelles le corps considéré e

maintenu en Séquilibre.

Ces réactions peuvent 8tre aveo ou sens frottement. On n'étudiera,ici,

que les appuis gdométriques, o'est-i-dire sans frottement.

s

les rémctions so males sux surfaces en contact.

4=

en contact, on peut distinguer 3 types

g des noms différents, des considérations

] =

un corps lixe; constitue un aj rotule

(Fig.B87).~ Les réactions sont normales aux s

faces de contact, et ont une résultante O R, ap-

joFy
o
e
of
1=
o
&
e
i}
ct
o
o
=]
I

pligube en o, sur l'axe

2°) 1tangle 8 qu'elle fait avec 1

tale, par exsmple.

R sur 2 axes con

des projections
passant par o ¢
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ls ‘couple sont

On peut done,pour cela, Gerire gque la somme

forces est nulle, sur deux axes rectar

8, Crok o1, fmetion PR est normale

et le 7

1 plan tengentdly , comun aux 2 surfaces, au point

de cont

aet Py B

de 1'autre.
Ces plans H’-_":. H'

orizontal

&5 par des 63

. Clest un appul 4 mou-

sistance, normale aux _'.'.-lan.','l_[ et H' -

o

réaction qui se déve-

BElle ne dépend gque d'un sen
ivant la normsle en P au plan ”'

S a
~aaction elle-meme.

pénétre dang 1'intérieur du

Fixe Cl. enrobée

sutre chose

magonnerie. (Cela 1

dans un massif

d'agsemblage par emboitement ). On

gu'un couple ¢

20U-

a vu que des forces quelconques, pliquées a4 un corps

A4

vaient 8tre réduites 4 une foree wnique et & un couple.

o

forces sont complanes

s donc la force uniqu

unigue

dépend d'un pa

: 2 param

souvent, dans les constructions,- des
on exprime gque 1'équilibre existe entre les forces

gui se développent x appuis,

projections des réac-

ulaires, ainsi gue la

par re

ort 4 wun point

projections
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la combinaison d'ap-

gl clest un encastrement, on a 3 variables et 3 equations,

lution est possible, le probléme est déterminé ;

si 1'on a 4 la fois 2 appuis 1 rotule, cela falt & inconnues pour 35
édquations, et les considérations de la stetique pure '(qui suppose les corps
indéformables) ne suffisent plus. On est alors obligé de recourir 4 la théo-
#ie de 1'élasticité qui, en introduissnt 1'hypothése gue le corps est un peu
déformeble, fournit les équations voulues.

I1 peut aussi arriver que 1'on ait plus d'équations que d'inconnues. On

tire slors les inconnues de trois des équations et on les porte dans les équa-

tions non utilisées. On arrive ainsi & des relations entre les forces les

.

quelles doivent dés lors satisfaire 4 certaines conditions de possibilité.

I'équilibre de 1'appui I rotule en est un exemple. Bn effet, sl O est

: ; = - ) S o .
le centre de la rotule, le moment des réactions par rapport d

nul, il faudra que la résultente des forces passe par ce point. C'est 14 une

condition imposée aux forces.

LES BIX CAS OU LA STATIQUE GRAPHIQUE SEULE PERIIET DE DETERIINER LES REACT

Rappelons que, pour les forces complanes, les équations de 1'équ

ge résulsent 4 trois, savoir :

Sommes des projections des T 2 axes rectangulaires, séparé-

ment nulles ;

Homent résultent des forces par rapport & un point arbitreire du

Si les réamctions ne présentent pas plus de 3 inconnues, elles

-

on général, 8tre déterminbes par 1la statique graphique seule, C'est

&5 6 ces suivants, gue l'on étudiera successivement :

t-d-dire ol la rdaction sere portés par une

point dlappui. Il

qu'uns incon-

nue, c'est la valeur

2 conditions pour
les 2 forces.

0o

2°) 2 appuis simples - 2 inconnues : les réactions, et une seule con-

dition pour les forces.

ou

bien

zéaction, et e condition pour les lorces.

% dincornuss

ctionsg portées
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: »
3 normales donnges,

minéd, sa dans les cas

tion on les forles sont

8 une condition, ce qui

tervenir 1'8lasticita.

I appul simple

rotule et une pour

% inconnues. Pas

conditions pour lcs forces.

nt - 3 inconnues

re

, comue on 1'a wu, et 3 équations.

Remarque - TI1' y a, dans

reletives aux appuls, une con-

dition gqu'il ne faut pas perdre de vue : le sens des réactions. Il faut

jours s'éssurer que le sens ou elles pe

I - CAS D'UN SEUL APPUI SIIPLE (

On &, au point d'appui, une normale qui doit porter la réaction.

Soient P, le point d'appul, FN la normele, fT g e fz 5 v-+ les forces ap-
Tt % » . - ax s sm " == »
Fie. 60 & pligquées, Pour qu'il y ait &quilibre, il faut que TE-

sultante des forces appliquées soit égale et opposée
b1 g e 4 iy | -0 Y e gt -3
la réaction, et portée per la m8me droite.

T

Ly

X per

Anelytiquement, cela

1}

proj,. . g,

fI proj.,
qui est e des deux conditions auxquelles doivent satisfaire les forces.

D'autre part, la résultante passe forcément par le point P, done son moment

par rapport A ce point doit &tre nul. Or, le moment de la résultente est la
somne des moments des forces. D'oll la 28me®condition : Le somme des m

de toutes les forces, par rapport au point P doit &tre nulle :

3?"‘"1‘.7 +%t gy %tf, o R
- B L R

£

On peut vérifier cela graphiguement (Fig.9I)
On sait gque 1'égquilibre existe si le dynamique et un funiculaire se

ferment :

Le dynamig

la rédsultante des forces ab, en grandeur et ens:

sur le dynemique, et portée par PN, sur le funiecu-

w

2
agte

& extrémes du funicu-

L Tar S
PI{, et les o

aral a PN, e%

ent; e Ccoup
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58 rencontrent
alors

tante

le

pazssant par I',

a1
11

dynamique, ls

Il n'y

qu'une seuls con-

dition

puis

STl CBB |

(]

un peint I. Les réactions, portées par PN

une force unique, gui doit faire

en dquilibre 4 la r

ppliquées.

-

o résultante soit

que cette dernisé égale et opposée i la

par suite, passe par I. C'est la condition & laquelle doi
les forees. Traduisons cela graphiquement (Fig.93). Par le
sommet & du polygone des forces, me

nons une parilléle 4 la normale
et, par le sommet b, &

tion O de cgs 2 paralldles comme p

imée sur le dynamigue, lacon

dition que la somne des forces et

des réactions est nulle, signifie

ecelui-ci se ferme et -qu'alors : ao

’

a etant la

o

5 réactions,

Construisons funiculaire :

sont parallél

funiculaire se ferme sur 1

ur point de rencontre 1!,
est

‘orces/ab, celles des

résultente des réactions

ilairs, ces 2 résultentee sont portées par la mfme droit

@t

paralléle 4 ab.
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e A

CAS PARTICULIER OU LES NORIALES N ET N' SONT E

o
E
E

2
B
=
75

rejetd & l'infini (Mig.94). Les 2
Aig;fj portées par deg paralléles, leur résultante sera aus-
une paralléle aux normales. Done, la résultante
forces qui doit 8tre égale st opposée, sora por-
per une paralléle sux normales d'appui. Le somme
5 forces sur une droite x pe -

pendiculaire aux normales, doit 8tre nulle puisque celle de la résultant

des réaetio

est nulle. (C'est ce qu'on a vu dans 1l¢ eas de la poutre reo-

.

puis, dans laquellc les forces appliquées étalent

o 5 (Fig.95) les réactions br et ra pour fermer le dyna-

~

migqua, de sorte que « ¢t B sont les sommets extri

g du funiculaire, corres-

pondant & br et ra. Or, faub que le funiculeire se ferme, donec on doit

omiets. Si'les forces ne

pas paralléles, on obtient unse

>

précédent (I'ig.96).

doit toujours 8tre paralléle aux normales d'appuis, puisqu'elle porte les

réactions br et ra ;3 or doit encore -8Lre paralléle i af 3 pour que le Tu-

sensable que la poutre ait une forme rectili-

1 soient pourvu que les réactions

soient verticales.

III -~ CAS D'UNE ROTULE DE CENTRE €

La rotule n'est uutre chose gu'un couple rotoide. Iy n'y & qu'une ré-
ne

gction, gqui ig dont on/connalt ni la direction, ni.la gran-

deur. - Done,2 incomnues

ce qul entralne une condition pour les

forces.
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La réaction (Fig.97) doit faire éguilibre sux forces appliquées, donc

1 ¥ ar a 25,

la r¢ passe par C. [l en rés

tant de toutes.les forces, par rapport 4 C, doit &tre nul. D'ou la condition:

Le sommne des moments des forees, par rapport & C, doit &tre nulle. (Anal

quement: Exi ‘r'i = V3 };'.l) = Ola

I1 n'est pas nécessaire ici d'envisager la configuration du funiculai-
re &.le dyn;mquz; donne la réaction en grandeur et en direction, et il suf-
fit de mener par ¢ une paralldle 3 ab.
Meis il faur se rappeler que la réaction ba doit appuyer le bras dans

se cavité, ece qui impligue un sens domné.

IV - CAS DE 3 APPUIS SILIPLES

Chaque appui peut domner lieu i une réaction et le probléme est par-

4

faitement détermind, sauf pour les cas d'exception traités plus loin..

=

Cas le plus général : les 3 normales se coupent 2 4 2. Elles forment alors

un triangle ;.soient PI ) PE ’ PS les points d'appui ; AT S ) AS , les

somiets du triangle. AI étant le sommet opposéd 4 Ps HI PR v R

Op a vu, dans l'8tude de la stabtique, que : sl un triangle et une
foree sount dans le mBme plan, cette force peut &Stre décomposée en 3 forces
appliguées aux 3 sommets du triangle et portées par les c8tés de ce triangle.

"

i conduit 4 un systéme Aquivalent 4

On sait faire cette construetion q

celui des forces appliquées, mais il n'est pas meuveis de le rappeler ( Fig.

.
. Ay . ; : Ry :
08). 3 Soient le trisngle AI A Ag et la force T (qui peut
/ . e & =
Fig. 8tre la résultante des forces uppliquées). Cette force

yeralléle A la fois aux 3 c®bés du triengle,

=]
o
i
i
)
@
+

donc elle en coupé un en A, et on peut la décomposer
L, ; ; 5o b
5 guivent ce cfté et une droite joignant A an sommet op-

u L=

A
a

posé. Cette derniére force peut, 4 son tour,8tre décomposde suivant les 2

o0tses issus du somaet.

On peut réduire (Fig.99) les forees appliguSes i 3 forces agissant

43

chacune suivant une normale, saveir

1 » portée par A, A, (ou P
(=

I It

3

b 85 (ou P

-

AL A, (ou PB

iqullibrées par des réactions

39: i¥s + {5020
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Pour il suffit de prendre les moments par rapport
I Pl
5 ; A L B = Y
d aux sommets A_ , A, du triangle. Les moments des fnrces~f s P 5
I 2 ; 2 9

qui passent au point AI sont nuls ; il faut donec, pour 1l'équi-

A

ot

libre, que les forces f I et fT portées par le cOté opposé A AE aient

2 ;
nts égaux et de signes

contraires. Il faut done que ces deux forces,

r
R

me droite, soient égales

moment s par rapport 4 A,
les réactions suivent les normeles d'appui doivent avoir un SENS donné 4
1'avance.

CAS PARTICULIERS - I°) Deux des normales d'appui

léme est encore détermind, mais A est 4 1'infini.

la force F n'est pas paralléle sux 2 normales paralléles, elle en

coupe une en A, et on peut la décomposer suivant AA et AA_ (Fig
3

force portés par AAS peut, 4 son tour, se dbécomposer sulvant ESBZ et A, A,

ce gul donne bien encore 3 composantes portées par les 3 normales.

S8i la force F était paralléle aux 2 normales peralleles, la construe-

)

tion ne serait pas en défaubt, car on pourrait alors décomposer I' en 2 forees
portées chacune par une des normales, mais la 32me normale (AZ AS), ne por-
terait rien, Cela signifierait que la réaction sur 1'appui correspondant est

Done, on aurs & sur AﬂEI une force f p » SOMIS de tou-
[

tes leg forces £, , sur AgBy , une force f z » Some de
& - o
toutes les forces f. et enfin sur AjA, une force
i ot S A

.

somne de tous les ;

Les réactions sont portées par les mBmes droites, et

-~

doivent €tre respectivement égales et opposées & ces

e

forces.

Le somae des moments par rapport 4 un point quelconque doit aussi &
nulle. Prenons le moment par rapport 4 33 : les forces -fz # Fl . f; e

n ¥

F - ont un moment nul puisqu'elles passent par Lz . Restent f o et F

seules forces dont le moment résultant ne soit pas nul. Or, il

feut qu'il le soit, et elles sont portées par la méme droite &4, B_ , dme
o

I

elles doivent Stre égales et opposées. On aurait le mBme résultat en prenant
le moment par rapport au sommet A, . Quand au 33me sommet, il est & 1'infini,
b 3 [

ik

mais on peut considérer les projections des forces sur une perpendiculaire x
I

(4]
—

e

i
oa

.

o

—
—

Vil aux directions parellile

Les projec

@
s
oo
(e}
ct
-
0o
-
=6
P
(]

et P% *, seraient nulles.
8
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la somie des project:

droite, doit Btre nulle, ce qui er

In réevnd, soit que les normales dlappui

vrai triangle, soit que déux d'entre elles

bre les forces données.

1 Ff; Seulement, il ne faut p

appuis impligue un

2°) Tn cas, viri

s

concourantes ou paralldles. Dans le cas olt

en un point I, les réactions admettent rasultante issue du
I »

e

es forces appliquées doivent avoir, de leur cfté, une r

r

posée, issue du mBme point I . Telle est la condition imposée

ilais, pour répondre au probléme, il faudrait équilibrer

¢
te des forces par trois foreces portées respectivement par une

-

devient

d'appui. Or, le

soumis aux forces et

,._
oS
Hy
o
5 |
o
=
e
o
B
o
=]
a
o
=
=]
@

dération de la d

C'est en cela qgu'il est excepbtionnel. Le cas

paralléles, au

s

4 la direc

@
H
[41]
o
[~]
&
il
—
o
—
m

des foreces doit

doivent

normeles d'appui. Telle est alors

{fordes

yligud ilais cefte condition ndcessaire Gtent rempl

I bl

e de placer sur les 3 normeles éq
la résultante des forces se

par la comsidération do

3°) CAS PARTICULIER DU COUPLE

avons, dans tout ce qui précéde, supposé que le cor

I git dlappuyer était soumis 4 des foroes possédant une

las
128

ce gui arriv si les forces liquées

a) le pr n'e pas de solution, a8%'il n

un couple n'ayant pas de résultante n'e

Droits réservés au Cnam et a ses partenaires

5 perdre de vue que 1'5

pour ces réactions d'aj

8tre concourantes, donne lieu & des remerques du

zgul tante.

forment un

solent paral-

1

léles, on pourras débterminer sur chacune d'elles une réac
’ L

tion de manitére que l'enzemble ds ces réactions équili-

normales conconrent

point I. D&

o]

&2

ultante op-
aux forces.
cette résultan-

des normales

dterminé, Sa solution dépend alors de la

aux appuils.

pul seraisnt

tion commune

varifier 1

ie, le pro=-
uilibrant

régoudre o

ps gqu'il s'a-

caminons

.
a un cou

a qu'un ssul appui, car

plus d'équilibrante et une
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1les sur

ori placent dex

B s

& celui qu'il slagit d'éguilibrer. Comme le brag de le-

des normales d'appui, la gran-

actions est 1la

deur des réactions se trouve rarfai

nant que 1'on
beer lo couple.
Reprenons la considération du trisngle A A A formé par les norma-
i 2
aque foree du couple donnera lieu 4 ©

ois composantes, sui-
vent les trois cd

28 de ¢o triangle eb; on composant ehtre elles les forces

porté

par ne edté, nous aurons finalement trois forces f I T? fﬁ
4 b

par les c8tés du triangle, dont 1l'ensemble est équivalent au couple

portées
qui actionne le corps que 1l'on veut &quilibrer.

Il est aisd, a priori, de définir 135 trois forces f o P f
I 2 5
nortées par les c8tés du triangle AI AE AB qui constituent un couple,Puis-

qu'elles constituent un couple, leur moment est le mBme pour les trois som-

mets du triaengle ;' pulsque les forces f G

o
&

moment, par rapport A ce sommet, se rdsuit au moment de ?1_, en sorte qu'en
L
appelont h_ la hauteur du triangle issue de A , le moment du couple en 4
I g

sera hy ‘FI . De m8me pour les deux autres sormets. Ifous aurochs done, en Gori-

vant que o¢es nionen

sont égaux

le de l'aire § du triangle a ses expres-

8. 5 B, , o désignent les eoftés du tri

On en conclut gque les forces fT & fE i f . sont properticnne

I~ faut ajouter gue ces forces doivent avoir sur les cBtds du triangle,

ordre de circulation (Fig.IUE, par exemple). le sens de cireulation

»

e T Az (ou le sens opposé). Ce sens doit 8tre naturellement celui di

-

couple qui est équivalent 4 ce

forcess Quant aux réactions, ell

seront respecti

ot opposdes aux forces f f f . 11 fau-
o -I r 2 » 3

dra, “tr fois, que la disposition des appui

pernette le développement de

ces réactions.
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” paralléles

51 deux des trois normales d'appui

1a formple oblique aux deux aubtres ne nortera aucume

action et il faudra trouver sur les deux normales pa-

rolléles des réactiong et de sens contraires for-

mant un couple opposé au couple donné. La possibil

lo. solubion est, ici encore, conditionnde par la disposisd

tion des appuis.

8i les trois nornales concourent,

rénctions concourantes se o

poseraient en une seule qui ne saurcit équili-
brer un couple.

Enfin, si les trois normales 4!

ralléles, le problane

de trouver des rénctions Squilibrant le couple domné serait indéterminé.

V -~ CAS D'UNE ROTULE ET D'UN APPUI SI:PLE

Supposons d'ebord que les forces aient une résultante., La normale dlap-

en un point I cette résultmte et comme la réection de 1l'appui
I PP

le résultemte des forces doivent &tre on ' équilibre avec la rémction déve-

par la rotule, il est ndecessaire que cette dernidre passe par le point

o

U passent les deux premidres forces.
Il suffira done de décomposer la résultante des forces en deux forces

sulvant la normale de l'appui simple et suivant la droite 0I, d'on

centre de la rotule.

ns seront les deux foreces égales et opposfes 4 celles-1A.

@

toutefois, que les dispositions de 1'appui et de la rotule per-

développement de ces forces de réaction.

81 la résultante

des forces était paralléle & la normale d'appui, le

.

té & 1'infini. I1 faudrait ‘prendre-le bras de la rotule

serait rej

parallele & la normale d'eppui et décompossr la résultante en deux Forces

portées, l'une par lua normale d'eppui, l'autre suivant le bras de la rotuls.

éos & celles-14 seraient les réactions. Fncore

de lu rotule et de l'appui simple permette la

réalisation de éactions.

Lorsque les forees n'ont pas de résulteante ot se réduisent & un cou-

8tre paralldle & la normalé dtapp

ple, le bras de la rotule devra ¢

g
i
.
o
51
&

deux droites devant servir de ligne d'action & deuz forces égales ot desens

contraires, de facon & constituer un couple opposd &

t=il que la disposition de L'appui et de

cors Paudr

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

1~

i

) 3

B i

Loppement de

VI - 'CAS D'UN ENCASTE

soin axe, et dont une extrémité est en-

). On peut se représenter 1'encastrement

comie un sppul cepable de déwelopper au point 4, ol

la po

du mur :

o ; z : g
1°) une force, soit 2 inconnues, qui sont ses pro-

Fig.103 2°) un couple, soit I inconnue. : son moment.
ki On sait que toutes les forces appliquées 4 un

corps peuvent se réduire 4 ces deux éléments. Ici, les forees sont compla

nes et la force et le couple sont dans le plan des forces. Il peut done se

5e

développer en A une réaction égale et opposée A la force unique, et un cou-

de réaction égal et opposé au couple résultant {m'est le couple dlecas

T CA5-
trement ).
La force unique s'obtiendra, comme d'habitude, au moyen du dyna-

migque, et on l'appliguera au peint . A , en changeant son sens. On prendra

ensulte, sur le funiculaire, le smoment résultant de toutes les forces par
repport au point A. Ce moment, changé de sens, sera le moment d'encastre-
ment:,

Exemple - Bupposons une telle poutre soumise a4 3 forces verticales
i b

(Fig.I04). Consbruisons le dynamique et le funiocu-

laire, la réaction, appliquée en A, est épgale et

Priss A7,

opposée i la résultante ab.

4€j Cherchons

8 ces : on salt que le moment, par repport 4 A, d'une

le moment résultant de toutes les

B

A

a
\\\
__F'-'

force, est le produit de la distance polaire h , par

=»® le segment interceptd sur la paralldle i la fores,-

3

: £
— 3

menée par A - par les 2 oBtés du funiculaire réduit,
construit avec cette force.

On aura done successivement

t e -
Mg, Ty m B
4R R e k2%

I
(ﬂt“ f W i B
= 7 Tl
A ¥ 2ed

"
=3
—
=}
3
|
&)
+
=
7]
w0
N
I

I
=
b
=

T

Le somme

est le moment résultent gui, avec la résultante

ab, constitue un systd guivalent aux foreces données,
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sneastrement

h x a p°, changé de signe.

On n'a, jusqu'iei, envisagé qus les rémctions entre un corps soumis

1 ¢es forees et un corps fixe gui le maintient en équilibre.  Dans les

témes

onn & i considérer & la fois plusiesurs corps formant un

teme cinémetique

=
[

(1]
o]
O
L4/]
P
=7
@
@
Hy

assemblage, sur lequel sont app forces.

s

articulation généralement coustituée par une surface de révolution,dans

sa Torme en ecreux, et telle que les déplacemsnts le long de l'axe ne soie
pas permis. Clest un couple rotoide.

Considérons 2 tipes AB , AC , articulées en

ble (Fig.I05). A

joutons 2 autres barres CD et BD,

té 8. A o
3 et S o o g

Le quadrilatére ainsi constitué est déformable, et

Fig, 105

ses angles dépendent de ¢ . Mais si, en des points

A C quelecongues M et 1l de 2 barres contigies, on articule
une 6éme barre, le guadriletdre devient indéformable
(Fig. 108). n'en reste pas moins gque la base de ces
B 1]

linisons est l'articulation, d'oll 1e nom de ays
articulés.

On. appelle noeuds, les points dlarticulation.

A un méme noeud peuvent aboutir 2 ou plusieurs bar-

ent. On suppose toujours les char-

T res qui s'y articy

ges appliquées i des noeuds.

> Le suivant @

@

Le probls

Btant donné un systdme articulé (exemple la poutre Warren ci-contre

Fig. 107 (Fig.I07) qui peut 8tre assimilé A

- B,
By | un corps solide - en raison de son
I indéformabili = il fleut déterminer
A B non seulement les réasctions des ap-

ES
o5
?

. . . ¥
puils, mais encore les efforts gue

m 3 subit chague barre.

On remarque que sgi, densg le trian-
gle Bl B2 BE par exemple, on coupait
une barre, ls systeme nlexister

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

Clest barees ; soumises 4 certains efforts, qui p snt
8tre de deux sortes : ou bien ces eflorts tendent & allonger la barre,

gui est slors un tirent ; ou bien ils tendent i la comprimer; et c'est un

3 i
arbalétrier.

la grandeur et la nature de ce

le plus courant (méthode des s

couper la poubtre par une ligne imagineire, et A chercher ce qui se passe a

gauche de cette section (Fig(IOS). Il v & slors deux méthodes :

droite et

de Culmenr, qui applique dans le cas ol la section ne cou-
e -

pe que 3 tiges formant triangle

le procédé des moments de Ritfer.

Elles sont mises en défaut dans les mémes cas, et il faut alors recou-

rir i une 3éme méthode :

3°) méthode de Mexwell, ou

JETHODES DE DETERIIINATION DES EFFORTS DALIS LES DIVERS ELEIIEINTS

Géndralitds.- Lo systéme indéformable le plus simple est constitué par 3

Fig.109).

barres articulées. Clest une chafne d'assemblage (

C ' » 3 o . T g
Fig. 109 5 Appliquons une force i chague nosud. Un tel
i systéme est assimilable & un corps solide, donc

les forces appliquées peuvent se faire éguilibre,

condition qu'elles scient concourantes et qu'el-

les aient une somme gdométrique nulle,

1 -

Grephiquement, cette derniére condition est

remplie si le dynamique se ferme.

Il est intéressant de connaftre les efforts gque subit chacune des 3

barres. La détermination de ces tensions est immédiate, en appliquant le
réme relatif 4 la décomposition des forces complanes suivant les cOtés d'un
triangle. Ces 3 composantes représenteront les tensions cherchées (ees ton-

gions pouvant 8tre aussi bien des efforts de traction que des effo

&
o
o
e
a
q

pression, Dans l'espécc, AA' so décompose en AL portée par AC , et AA_

2 :
portée par AB.

L'équilibre veut que DB' donne sur AB une composeante opposée 4 AA_ ,et
ainsi de suite pour les deux autres cdtés.

Congidérons maintenant un quadriletdre articulé (Fig.IIO - p.83). Il

indéformable que si un angle donné aq est rendu Invariable par une bar-
re supplémentaire EF. 8i 1'on ajoute une autre barre GH, il est indéforma-

et 1'on peut slors primer 1tune ou l'autre de ces 2
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1déformable. Un tel systome

dit ¢ a4 liaisons surabondantes.

Y

enfin un systéme articulé quelcongue :ABCDE

-]

LIII) sur lequ

se appliquées a des noeuds. Si, d'autre part, ce

sur des corps fixes, il s!'introduit des 1

sactions pourront &tre déterminées par les

précédemment & 4 propos des corps

Le probléme se ré uil slors i la recherche des

dans les divers éléments qui constituent le

six,

I - UETHODE DES SECTIONS.- Qui prend elle-méme deux for

gt celle de Ritter.

I°) Héthede de

: Scoient 3 barres, formant un triengle

coupées par une section entre des nosuds. Cstte section divise le
parts : gauche te (Fig.I112).
Soit F le systeéme des forces s'exergant sur la par-

tie de geuche (G). Ces forces seront équilibrées

'exergant dans les barres I, 2, 3

florces de F

tuons, pour chacune de

suivant la barre I .

forces suivant la bar-

5 suls

re 2% fﬂ = résultante de toutes les fores

Ces trois résul

etbdme équivalent & F . U

ltaction de la partie de droite sur 1

posantes triangulaires

tie geuche, seront et opposédes & T i f g \fq . Soient 1,
8% 9 L
R ces actlions. S8i va de gauche (~—~9] ; la barre 1

a4 gauche, la barre 2

2 des barres sont paralléles. On a
cela
egarder/comme

Le pro

vu que ce nlést pas un cas dlexcep

angle dont le 3& sommet est a4 1'infini, décomposition en 3 forces,

guivant les 3

que la section cimaginaire coupe une barre (Y
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uis 3 barres concourantes '(2,3,4) en un point &

I' dsg forces rencontre la berve I

en un point X,.on

t toujours, en joignant AX, décom-

poser F suivant I et AX.

On a ainsi gur I une oampoaante~PI et, par su
qul est l'eetion qu'exerce la partie de droite sur la
partie de geuche, dans la barre I.

Comme précdédemmnent, si . va, de gauche 1 droite,

I est tiranb.

=

g composante

vant AX peut 8tre appli-

gquée en A el €tre consic e i gon tour comme une iorce

appliquée au noeud A. ilais clest un auwtre probl

T4) peuvent tout aussi bi

Les forces 2,3,4 (Fig.I

8tre paralldles; sans que cela change le maniére d'opé-

rer : le point A e

4 1'infini, donc AX est parall

Il suffit alors de décomposer F suivent I et une pa-
rallele & 2, 3, 4, menée par X.

En résw thode 'de Culmenn exige

n puisse englober chaque ba

re dens un 'svs de 3 forc

formant : soit un triangle, soit 2 paralléles

et une séocante, soit encore un itéme groupant la barre I avec d'autres,con-

courantes ou parslléles.

2°) lithode de Ritter ou des moments : C'e une autre manidre d'arr

ver au méme résultat.

Reprenons le cas ol les 3 barres forn

nt un triengle ABC, pouvant
8tre coupé par wne mBme section (Fip.I1IS).

Supposons que l'on ait fait la décomposl¥ion triaenguleire et fait la

]

somme des forces sur chacun des cBté: prenons le moment de toutes les for-

ue

ces du systéme I, par rapport au sommet A, par exempls 3 on aura @

REob

I

ok -

s

h etant . 1le hautesur du triangle.

(Les deux autres composentes triangulsires ont des moments nuls par

rapport & A . On

£ =T st s
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et L. en prenant L

By pude parr sommet C.

Aingi, pour obtenir lez tenslons 'T.] "

las momentas

’I'}Z ? ‘T,. dans les

il suffit de prendre successivemsn

par rapport sux sommets opposés aux barres I, 2, 3 et de les divie

hau corresnondantes-t h. triangle formé par

Si 2 barres sc

Vintéressentes, ne sont pas au

vell, gui conduit du reste i de remarguables solutions a

mécanique.

QU DES NOEUDS

repose sur la construection suivente : Solt

3 un méme point B qu'il s'agit d'équilibrer au

directions donndes, appliquies au méme point. On co

forces donn par ses exbrémités, on ménere desg

données, supposbes différentes. Ces deux droites

paralléles entre elles se couperc

bleg seront

les deux raj

données.

a I poingon.

uno poutre AC, portanmt une charge verticale appliqu

renforcer cette poutre, 'on placer en B un poingen BD et 2

en Q.
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parres

ltant de toutes

ar

G | h.] i
}‘-ELl'F:LJ_l':]_L' il

nlét

en un point 0. En prenant 0 comme

une

au

ant p

et 1,, mais non T_ , qui doit 8tre calculé
3
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- 45 =

amique per cai Pour qu'il

que le dynamique formé avec lep forces apissant

AC, donc oc est peralléle 3 la ligne I, ou perpendiculaire a ab.

On peut ausci savoir si la barre AB est un tirant ou un arbglétrier : ic]
la force I agit en se dirig

sant vers le noeud A considéré, donc AB est un arba-

On metbtrae le

gre + aux tirants el le signe - pour désigner les arba-

144piers. DPar contre, AD est un tirant. En appliguant le méme raisonnement au

idérer le noeud B ou le noeud D, indifféremment.rPre-

sone B : On conmaft les forces I eb 3, qui sont &gales et opposées, puis-
gque portées par la méme droite. D'autre pert, la charge qui s'exerce en B est
ab, done la tension qui egit suivent BD eut ba, d'aprés le dynamique. Elle @&t
dirigée vers B, et ED eat wm arbalétrier.

montye Euffisamment 1lesprit de la méthode de laxwell.

POUTRE AR EE A 2 POINCOWS, PORTANT DEUX CHARGES VERTICALES EGALES (Longeron

s points d'application des 2 charges @ CE et
DF les deux poingons. La déterminabion des

réactions d'appui est immédiate : en

de la symétrie, elles ont m8me valewr gui
est épale par checune i la moitié de la som-

o me des charges. Appliquons la méthode de

llaxwell, en commengant par le noeud A

la résotion oce est connue, les tey

i et T sort iuconnues. Construisons encore le dynamigue partiel
T )
L 4

menant par ¢, une parslléls 4 la barre 2, et par ay une rallédle & la bar-

ro I (Pig.119).

Leur point de rencontre 0T détermine, comne on 1'a

et T? , en grandeur et en sens.

T tire sur A, done la barre AE sst tendue (tirant)

1 repousse A, done la barre AC est somprimée (arbalétrier).
G
ra

Passons au noeud B (Fig.120). Une force comnue : oelle qui agit suivans

AE. Comme oette barre est tendue, on doit avoir sur E une traction égele et

opposée & 1:I o HLio &dsentée sur le dynamigue partiel (B) par O, &,
i & &
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T, repousse B, done b

HOEUD C.- La forece connue sst la qul agit suivant

on & aussi dane ce

et se détrulsent.

f <

ent connue. Or, pour gue le noeud C soit en &quilibre, il

Taut que T.,: ot T, soient gales ot est dono déterminde sans

mme qu'il soit besoin de construire

ensuite, par symétrie, les tensions dans les aubres barr

POUTRE DE WARREN (Fig.I12I).

On procédera de la méme maniére que dans l'exemple ci-dessus

D&

&

rmination des rgactions eux appuis, puis, pour chaque noeud, ca struc-
tion du dynamique partisl, en cheminant de proche en proche.
Ces dynamiques partiels s'appellent : polygones de Cremona. On peut les

grouper en une fig

Toien i\ A f X = u-
e Soient ) ’AS shy 5 By By 4 By les noeuds de la poutre ; P ,P. ke
: I > ; E 1t ;

deg charjzes égales appliquées en BI ,EB? ‘BS’ Rt et R' les g Spales

dans le cas

suppose détermindes p:

tuel.
Hota : TPour faciliter la lecture des figures, nous figurerons en traite
mixtes, dans cheque Cremone, les forces connues. »

Woeud Ay - T1 n'y a sucune difficulté : le Crémona obtenu en menant des pa

I et 2 et & le réaction, fournit les tensions T . st T

23) - 3 barres s'y articulemt, mais & forces v agissent

tensions dans les barres et la charge P, connue, On connalt ’[I , auil va de B

¥
vers ﬁI, donc la tension gui lui fait Bquilibre et s'exerce sur 'ﬂT,
B

I On peut con ces deux forces avec leur sens :
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des
Remarquens que none de A_, chan-
gé de sens.

satifs des tensions dans

0=, sait, d'autre part, que les

lea bar 3 et ¢ doivent 8tre pare ces barres, On peut done 1

par O, la perslldle & la barre 3, et par 1, la parallile & la barre

4. Leur dntersection h est le point de fermeture du polygone des forces. Le
sens des forces kh et hO est naturellement celui dans lequel on parcourt le po-

tire sur BI, et 3 est un birant.

repousse By, et 4 est un arbalétrier.
{

Noeud 4, (Fig.I24). Pas de charge ni de réaction, mais 2 tensions comnues et 2

2
inconnues : T

Construisons toujours le Crémona, en portant les for-

5
ces conmnues CO, égale et opposbe & 1. (du Crémoma ﬂl) et Oh, égale et oppos

A r[q (du Crémona
L¥

ralléle A la barre 6

par h, la paralldle & la barre 5, et par O la pa-

qui est le prolongement de c0). L'origine du polygone est

»

tre maussi le point de cldture, done TG est représer

le point ¢, ce doit ¢

par ge.
T_ repousse A ,'5 est comprimée.
Nt 2

’[r tire sur A 6 est tendus.
6

28

1 tenir 14 et obtenir les tensions, dans le res de la pou-

On pourrait s
tre, par symétrie, mais nous econtinuerons jusqu'au bout, on verra plus loin pour-

quoi.

toeud B ( B

:2125),~ On connait T, et [_ , et la charge Pz = el Il oy e et
‘x o}

tout 5 forces, Le Orémons est un pentagone, mais la construction est toujours

in mBme : porter les forces connues, puls par l'origine et 1l'extrémité du poly-
P 2k : £

gone incomplet, mener des paralldles aux barres dont on cherche les tensions.

On a einsi TT |

(5]

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

T . repousse B 7
7

on - place, come d'habitude, les for-

barres 9 et I0. Les tensions 1. &t

s a dVinconnue g
o

par un Crémona ana-

J (5] | c
R e

N T logue aux préecéde:
1 Nocud A (Fig.128) -

rifier que ‘T._ ierme bien le polygone. C'est ce gul doit arriver si la cons-

truction a été

obliques sont alternativement des tirar
Foe
Supgricures 2
cs horizontales/sont toutes comprimSes,ban-

ures sont tout

s des tirants.

S3 1'on counsidére un noeud bien

la condition d'égquilibre est,

comme on 1l'a wvu, qus le polygone deg vecteurs

5 A
4s fait pour les 7 noeuds de le poutre qui vient d'a

toutetoia r:

wrquer que les Crémona, uiie fols constr

des veeteurs - comme dans les dynamiques hubituels -me

s de droites. En efiet, un méme

figure

et tantdt la réaction. Aubrsment dit, son sens

rattache.

des forces appliquées et des

ions

tost la souche d'un dynamique cemplet
laguelle

ts qui représentent les tensis S

tir du point

5 ootés oH, .80, oc du
libre (A

]_.) ; puis, en partant du peint o, on portera les segments 08,
st ho, du polygone (B._), ete.. On mettra ainsi successivement en
: : T/

2
£
i
=
e
=
e
@
e
£
by

‘on avait coastruit séparément, étant
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gue, mis en pl

perposer en partie ou en totalité, Le dy-

namique complet D est

Il représente les charges et les réac-
I 12

tions qui sont orient

bensions ui ne le sont pas:
]

ELATIONS ENTRE LA CONPIGURATION DE LY'OUVRAGE ET LE DYNA IQUE

.

Le. méthode des noeuds est due & Maxwell, meis Crémona en a achevé la mise

t tiré les comclusions suiventes (Fig.I29).
81 1'on considére la poutre (A), on voit que certaines barres en limi-

tent le contour. Ce sont les barres extérieures, auxquelles correspondent, dang

le dynemique (D), des sepgments qui leur sont parellcles. Ces segments sabt ditas:

(]

ignes principales.

Les barres 3, 6, 7, 9 au contraire, sont appelées barres de remplissage.

Remarquons que, au lieu de construire le premier triangle d'équilibre,cao,
on aurait pu, tout aussi bien trouver les tensiong ’[I et "[2 s Bn construi-
sant le triangle oc'e; sans rien chenger (Fip.I30) i 1l'équilibre. lais 1fasseme

b ’ 5 5

\
blage des polygones d'équilibre n'efit pas donné un ensemble simple.
i

B 160

U R R Tl _

Pour orienter les constructions successives, imapginons qu'un observy

sty A
e

3

décrive le contour extérieur de la poutre, dans le sens direct AI’B’ o B

& i, clest-d-dire en laissant 4 sa droite 1'intérieur du contour. En par-

tant de A., il trouvera les barres I,4,5,11,10,6 et 2, comprises entre les for-
IJ FEPSAY L} 1 3 i
ces appliguées (charges et réactions) : R, P. , P, P s R'. Considérons une
I 2 3
barre principals, par exemple le barre 4. Elle aboutit 4 2 noeuds : .ZHT et B,
4 g

et on a constrult pour chacun de ces noeuds une Crémona.

Pour 51 = dans (A), 1,3,4 et PI aboutissent en B 3,

sur (D), le polygone d'équilibre correspondent est : a I h o,

Pour B, - dans (A), 4,5, 7 ot PE se rencontrent en B
sur (D) , le polygone est k k' h' g h , avec h k = B
4

i 1l'on suppose que tous les Crémona sont mis en place, on voit que 1 ,
=

commun & 2 Crémona :
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{428
o

pout By il egt juxtapos

pour E?, il est juxtaposd A k' ;
g

¢'est dire que dans les 2 cas, 1l passe par icisément le point

«

de juxtaposition des forces extremes : P

T

et P sont aux

fab]

deux extré de la barre 4. Le mBme raisonnement stappliquant & toutes les
barres principales, on en donclut gque : A toute barre du contour de (A) cor-
ond dens (D) une ligne principale gqui part du point de juxtapositien dans

(D} d

chaque extrémité

vecteurs représentant les forces ou réaetions appliquées dans (n) &

de la barre principale considérée.

Par exemple, & By D, correspond une ligne principale peralléle : h, par-
tent du point de juxtaposition k des vecteurs a k et k k! représentant les for-
ces PI et PE appliquées respectivement en i; et By s

On peut construire la soucu® : clest le polygone fermé formé par les
vecteurs représentant les forces et réactions que 1'on siat construire ou cal-

culer, o'est-d-dire dans l'ordre : ca, alk, kX&', k'b, be. En suivent le méme

ordre sur le cont

ir de 1'ouvrage, tragons les lignes principales (Fig.I

Barre AI3I - Le point de juxbaposition de R et Py est a. Par a, menons une

parslléle indéfinis & AI BI . Clest une ligne principale.
Le point de juxtaposition de P

T et '2 est l. Par k menons une pa-

Le point de juxtaposition de P, st P_ est k' , Par k' menc

2 3

Darre o - D_ et R' se juxtaposent en b. llemons par b une paralléle

o -.: =5 5 A A
A et AoA=
LArYe s A;A3J ﬂBA?f— #h A, on a la réastion R', mais en Az aucune force n'est
g Lo, — ) iy &

appliquée, Continuons : En A2 pas de fores, enfin en A_ on trouve R. Le point
de juxtmposition de R' st R ext . Dono, de ¢ doivent partir 3 lignes princi-

pales portant les tensions : TIO’ 1‘6 et 12 . Or, ces lignes sont toutes pa-

ralldles. Elles partent du mfme point ¢, donc elles sont confondues en
seule. Il suffit, par conséquent, de mener par ¢ une paralléle commune aux bar-
res 10, 6 et' 2, Donc :

5'i1 n'y a de force appliquée qu'a l'une des extrémités d'une barre
principale, continuer én parcourant les barres suivantes jusqu'd ce qu'on trou-
we une sutre force, et chercher, sur la souche, le point de juxtaposition des
forces entre lesquelles se trouvent placées les barres principales congidérées.

Par ¢e point, mener la ou les paralléles 4 ces barres.
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Toutes les lignes principales sont ainsi construites.

Barres de remplissage.- A ces barres corpegpondent des lignes secondaires.

Remarquons que l'ouvrage est constitué par & triengles et que, sur la figure (D)

les tensions relatives aux o8tés d'un de ces triangles sont représentée

segments issus d'un méme point. Par exemple : au trisngle formé dene (&) par les
« 7 3 X - - " - "
erres I1,2,3 correspond dens (D) le sommet O dlol partent les segments @
TI’ To s lz .

On peut former un tableau des tri

de l'ouvrage et des points de con-

cours correspondants dems le dynamigue.

1

Ainsl, 4 chaque triangle se rapporte un point de
(A

e % concours des droites gqul portent les tensions s'exer-
trioangles somme

F
£

gant suivant les cBtés de ce triangle.

Il est, dés lors, facile de construire les lignes
gecondaires

Soit 4 déterminer T 3 ¢ Le barre 3 fait partle du

S R0 1 o triangle 1.2.3. Le point de concours relatif & ce tri-

engle est 0, ou aboutissent déji le
les 11 et 7. D'aprés ce qu'on
]
2

doit aussl y aboutir ; donc de ce point O mener une paralla)]

De m8me pour Tz sommet relatif au triongle 3.4.5. est K, oll se rencontrent

M. et L, . Donc, par h on minera une paralldle & 5. r[5 est déterminé, Fn
te, par g, quil coresespond au triangle 5.6.7, mener une paralldle & 7, ce gui don-

ne Puls, par g' (triangle 7.8.9), mener la paralldle & 9, ce qui détermine

T
AT
Enfin, le sommet relatif au trismngle 9.10.1II est O, d'od partent rlj =
¢
Lo} ! 2 . A L 4 » 3 .
Lig o Tq1p - T g et hlIi sont déji déterminds.- '110 doit se juxtaposerw,

dtune part & ca et dlautre part, elle fait partie du triangle 9.I0.IT1 qui =&

pour sommet correspondent

s
@
et
=]
o
e
=1
ot
<O
-
f=h
]
o]
o
=3
@
tn
o

En rosumé : Construire les lignes principales, comme il a &t& dit, puis

considérer successivement tous les triangles qui comstituent 1'ouvrage. Ces

triengles donnent tous les sommets du dynamique.

"PLICATIONS. - La méthode §tent maintenant établie par les remarques successi-

veg faites sur une construction simple, nous pouvons nous la rendre fomilidre

par gquelques applioations directes.
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FERME POLONCEAU A UNE

ucture., Elle porte 3

res en parcoursnt 1'um

i1 faisant 1 les barres

cipales ¢ I, 4,

Fformons le les & mesure

Tiarres Lignes s 4 ;
Larres 4;@?3: Détail des opérations
pples.

i a 1 Comprise enktre les
oa et al, elle part
point a.

& m Comprise entre al et ldc!
part du point k
8 kim! Comprise entre et
part diu point k'.
S Ll
1T o Comprise entre k'b et be

part du point b

comprises entre be et ca
partent toutes du point e .

Formons maintenant le tableau des s, des triangles do

elles tachent.

et des points de concours qui s'y

Barres Lignes Points de
segondeires dans

Le point de concours
est celui de

3 1m i Tt 2 5 0 8 dad
5 ! m o 3 et 4 - m
|
1

-hode est extrBmement repide. Elle fournit sa pro-

par le dernier triangle, non utilisé, et gui doit confirmer

wltats obtenus.
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FERME POLONCEAU A 3 BIELLES, PORTANT 7 CHARGES VERTICALES EGALES
=4

On se bornera leci A la construction des figures (Fig.I32) et & 1'établia-
sement des tableaux directeurs, toutes les sutres explimetions &tant supe r-
flues si 1'on a bien sulvi les 2 applitations précédentes.

Hous développerons cependant les parties de la construction pour lesquel-
les la méthode se trouve en défaut, et ol il faut recourir i la méthode des

momants de Ritter.
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= - e :
i
- 9L =
o s
Triengles Darres Lirnec
4 3 ol 3
dans {L) coneours |secondaires
dans (D)
f
4 - -
I a il L.2.o 3 1 1 m
: le.m 3.4.5 5 m mr
i I 5.8 o 5
ton 5.6.7 i r r q
I2 lezp 7.9.10 9 en défaut
r 1 g g T T
I k,p 8.9.11I II =
I8 lecn! Tr.I2. 18 13 -
b k.m' I6.16.17 I8 -
2 o [ B 17.18.19 It -

—
o3}
Q
(& ]
[ B A
o o™
oo oo
Oy Aaf
(ot oo
-]
Do
Log
2]
':I_

2 Az B, Ay |I0eb20 len défaut

Formons le tableau des triangles et de leurs points de conoours corres-

pondants

Triangles

correspondta

Triengles

Points de
coneours

correspondvSs-

I

I6.16.17

pl

3i4d.5 m 17.18.19 n!
T r 1920021 q'
78+ 10 q 2T, 2daes r!
1 B n 23.24.256 m'
I.12.33 p 10 13-I6 20-

; T4 -w':'[}

On & =in tous les somimets du dynamique et, par suite, tous les segment s.

~

i déterminer la nature des tensions ; mais on peut retrouver:-

—d

4
Il reste

dang ce graphique tous les Crémona relatifs aux différents noeuds.

Par exemple au noeud Ar, on a la charge : R = ca, et le dymemique est ea,

al, le, aveec

el =

-FLI:IO = *Tg
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On peut résumer toubt cela dans un autre tableau
Woeuds Crémonas
£ ce al Dy
4
R “T1 +‘T2
& kg degm m 1 la
S s EaSe
g r[’- r[n‘.‘ Tl 1
|
A [ I
2 1l m mr r e Onpart de c,
3 T car A, est com-
Tz T e PN pris entre
o = "
1)2 ]CI]-E2 k,n ng qr rm m kI
Pg -~ 8 i i T e g B e i 4
A B rq

B e A e
o TR B S S
¥ kg R XpBiC Tovpl B

Lyo,

On aurait, par symétrie, ce qui dens 1l'aubtre moitié de 1'ou-

Vrage.

Remarque.- §i 1'on ne tenait pas compte de le propriété des slexer-

gant sur les 3 c8tés d'un triangle de concourir en wmn point dynamique,

il feudrait recowrir 4 la méthode des moments de Ritter.

Appliquons cette héthode 4 la recherche de la tension dans la barre 9

au moeud B,, . on a les forces et tensions Pg i T 74 Tk dont
u & 9 &

=y
o

les trois derniéres sont inconnues.

lais on peut faire (Fig.I33) une section coupant les barres 8,9,10 et

considérer @

s meoments per rapport au sommet B,, de toutes

res comprises entre cetbe section et le sommet R
'z
2°) les moments, par rapport au méme point, des fore
aux tenslions qui s'exercent dans les barrss coupées. Iei,

laa

1 G

ag

e85

5

1Ee8
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forces extérieures se réduisent & celul de P (P, passe par le point B ),qui

est connu, clest d.Pz ; - ceux des tensions T, et F

moment de 'L _ ne llest pas, mais la distance e egt connue. Or, il doit ¥

avoir édaquilibre entre le moment des forces extérieures et les moments dss

tensionsg, done

o
.
o
i

@

.
=

d'ol i3 =

Il ne reste alors que 2 tensions inconnues et l'on peub revenir a

thode de laxwell-Crémone.

RELATIONS ENTRE LES FIGURES RECIPROQUES

0o a Tu; 3 1'4tude des dynames, gu'd une droite d correspond

dtant telles que le dyname pui

une autre droite & , ces 2 droites

réduit 4 2 forces portées par d et &.

lons aussi que :

Rapy

12 le moment

lLe dyneme peut se réduire & une force et 4 un couple, et g
de ce couple per rapport 4 un point se représente par mwn vecteuwr UG issu de

.

ce point. Le moment du couple, par rapport i une droite passant

est la projection MG' de MG sur cette droite (Pig.134). lLes droites de mo-~

3

ment nul sont celles pour lesquelles MG' est nul, ce gui emtraine que

normal 4 la droite. Il s'ensuit que le droites de
plan normal en I au vecteur - moment MG, Ce plan est le plan polaire du point

1

M, et réciprogqu

M est le pBle de ee plan. D!autre part, § est le lisu

des pbles des plans sant par d, er si une droite g‘cnupe d et 8, une

=t

a

7]
i

droite de moment nul 3 donc le plan décrit par cette droite E est le plen po-

laire du point IL

81 2 droites sont concourantes, elles ont pour conjuguées

courantes.
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A treols droites

lawr somm

settes correspond un

.
L

chact

triangulaires; ¢

o

sonjupuées sur un plan prin-

que : si llon projette

sont 2 droi

cipal (normal 4 1'axe central), ces projsc

e D! de

la figure D, on a un en

tos de la premidre figure. On peut donc, en réglant d'une fa-

er pour que certaines des droites so

ivenable le systéme A, s

4

les lignes dlaction des forces extérieurses, et il se trouve que dans la

nts représe glexercant suivant les barr

A suxquelles

Nous admettrons ici ce thiordme gqul est utile pour les proc:

e
SS8&11T0

des de dessin qu'il introduit, notamment par la remarque que les forces

par des segments concourants du

amique.

laire d'une fagon particuliére les

Le thioreme de Crémona &

awell-Crémone) : Supposons gue les droites de 1

5 ey dpnt iy P sont les projections, soient paralléles dans

1t

: les conjugudes de droi paralléles sont de

GEDACCES

salt q

plan paralld 1taxe central, de sorte que, en proje

11, toutes ces droltes conjuguses coincide

.
@

st pourguol tou

formes sonb superpos sur la souche ab, quand elles

pace.

facebte) il

dro d'un trianpgle (4)(formant

s s 4 e
triddre dont le somme®t est le pOle

et dont Lles

concourantes.

1 est la projection d'un triddre dont les
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un autre pole O

00'. On remargus

T de llespace, et le dynamique comme la

’

ormé par les droites conjugudes de T.

s ]
=

iomologues des ‘igures sur le plan prin-

Les cftés du funiculaire sont, par construction, paralldles aux rayons
polaires ; ab est aussi, per construction, paralléle & la force f. Donhe,les
odtés restants : «f et 00' doivent 8tre paralléles

Remarque - On & vu en statique que le paramétre d'un dyname est, si 1'on fait
oG

la réduction canonique : h = si 1'on chengeait k, on multiplierait

les forces du dyneme par un méme nombre, mais les lignes conjuguées reste-

raient invariables. Donc, & n'intervient pas dans la concéption du dyname,

gul 1ns nd que de son pas : h,

§i 1'on changeait h, toutes rojections sur le plen se transforme-

»

étie, et seule 1'dchelle du dessin serait différente.

raient par homot

FORCES ELASTIQUES DANE LES PIECES CHARGEES

On apprelle généralement poutre, tout prisme homogéne dont les dir

longitudinales somt trés grandes per rapport 4 ses dimensions tremsversales,

pogsédant un plen de symétrie ; on suppose, de plus, cet ouvrage soumis 4

des efforts symétriques 2 4 2 par rapport & ce plan. Cette dernisre condition

2 forces symétriques ont une résultante dans le plan de
;s randne & un syst forces A A
semble de forces com.planoD gituée’s dans le plan de symétrie. On

sidére a po a me un solide engendré r mme sectl
dérer la utre comme un solid ngendré par une section

génératrices. FPlus généralement, si un profil plen, de diame-

d—
y
el
e
o

tre relativement

de pgrandeur constante,

son centre de gravité décrive une courbe gauche

mal, ce profil engendre une ocertaine surface qui limite un solide. 2 la
définftion la plus générale de la poutre en arc.
POUTRE RECTILIGNE

On le suppose en &quilibre sous 1'influence ot des réactiong

mais slle peut subir des déformations, toujours extrBmement faibles, mais pou-

ventcepdndant &tre décelées au moyen de certains instruments de précision.

Ceg déformations sont de treis netures :

1°) si elles cessent en méme temps que l'amction des forces, le corps re-

prend son &tet primitif. On dit alors que les déformations sont élastiques.

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

L

) 81, au contraire, les diformations subsistent aprds énldvement des

sont dites : permanentes.

Dang ce cas, il feut remarquer gulune fraction seulement de la déforma-
tion totale persiste aprés cessation des efforts : lp déformation élastique
e -~ s 3 “ . A 3 4 = 4
disparalt. Si 1l'on applique & nouveau les mémes forces, il se produit de nou-

-

velles déformations, £lastiques et permanentes, mais ls marge de ces dernid
res est plus petite qu'avant l'applicetion primitive.
Le but de la résistance des matérisux est de calouler les pidces de tel-

le sorte que les déformetions permenentes ne soient jamais etteintes.

CONDITIONS D!EQUILIDRE (FIG.IZG)

Coupons une poutre par un plan normal aux génératrices, et sidérons

—
Lo
1]
s
Q
I~
Q
L}
tn
oy

.gissant sur la partie de gauche de la sestion : elles

tibles & une force unigque GR, pouvent 8&tre appl de au centre de

iqu
la section, et & un couple dont 1'axe GV est normal su plen de symétrie,puis-

que toutes les forces sont dans ce plan.

Le. force GR sitube dans le plan de symStris, peut 8tre décomposée suivant
la no%ﬁﬂle N 4 la section, et suivent la perpendiculaire U & cette normale dans
le plan de symétrie.

g

La composente G est 1'effort normal
3 : Dans la seotlon faite par un plan
GU — 1'effort tranchant normal issu de G.

Llaxe GV du couple est le moment fléchissant.
L'effort normal peut avoir 2 effets différents :

S
s'il est dirigé vers la droite, c'est un effort de traction,

gauche compression.

Ao ) n - et '] 3
Ainsi : FF! F ... &tent les foroes gul s'exercent sur la partie i gauchs de

N
o= Zproj‘ I et P
i

2 G

1o gection @

i

z:projN o SRR

U
4 v

P+

v

LOI DE HOOKE - MODULE D!'YOUNG

On fait 1'hypothése suivaente, de Dernou 11i :

8i 1l'on prend une section droite dont le centre de gravité déerit la 1li-
gne moyemne, le licu de ce centre de gravité roste, aprds déformation, une
courbe & laquelle la section considérée reste normale,

Autrement dit, les molécules constituant cette seetion en font encore par-

tie aprés déformation, et cette seoction reste normale A4 la courbe déformbe.

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

- I0I -
Soit done une section @ dont est le centre de pravité, On peut
o 1 Bo ;

ocordonnées aysnt g, pour origine, et dont les axes

prondre un systéme de ¢

re spectivement suivant N, U et V.

Considérons wne section voisine : ® . de centre de gravité g; , et 2

[0

points : my et m; , situés sur une méme paralldle aux génératrices

p

A . . . . Ty .
Aprés déformation (Fig.138) 8o B & pris une forme

ad

incurvée GG, {(on & emplifié la figure pour rendre le

dessin plus net), les axes Bolo ©F Brup , devem

.

o et GIUI so coupent en C, et les perpendiculaires. au
= ¥

5 plan de symétrie sont GV et GTVI { Enfin, les points

M st MI sont ce que deviennent m, et m; aprés défor-

mation. Menons de M et MI les perpendiculeir

MINI : - on forme ainsi un rectangle :

M et

MI ont les mAmes coordonndes (u,v), dens les 2

et
sections.

Cherchons l'expression de 1'ellongement spéeifiique

(ellongement par unitd de longueur), pour un élém

1 queleonque. Fosons @

3 g =
U Bo BT = E ¥
W

Aprés déformation, cette longueur est devenue : GGy, done

m
(=]

Il
78
=P

A
s =B 8

e }' = allongement,

et, par unité de longuewr 3

cela pour la ligne moyenne. };

déformation :

Les sections étant parallsle

mmy = ggr = S,

P

et on a de méme 1'allongement spé

Q
per
4
1
o)
)
a
o
@
-
=
=
fiin

Faisons la différcnce‘g

3

Aprés daf

ormation, les 2 sections #w% et o forment un angle © +x
4it, En raison de la faible disbance des 2 dectionm, la corde NNI peut 8tre

confendue avec l'arc de cercls de centre U et de rayon CN,
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MI{ o e e 51 RS T 5
A FORESAE (ON = 66
Or, ?
CN - GG = GN = ordonnée du point Il = u ,
done : e
s R S = R L
IL
o € #
“ﬂl£—§‘= repport de l'engle de cont 4 1'arc est la courbure et R esb

le rayon de courbure, denc
Ao M
R

gui donne le coefficient de dilatmtion longitudinale :

A , en fonetlon de celui de da ligne moyemne @

A = A+ _3_

On exprime générelement ce résulbat sous une forme plus concrdte : en-

tourons I d'un élément de sebtion ®, et considérons le petit prisme formé

avec }EE comme axe. Clest une fibre.
Soit P le charge supposdée uniformément répartie qui agit sur cette fibre,
1.
—— es5t la tension par unité de surface. 81 1 est sa longueur, 61 est son al-
[11]

longement, et -%l.son allongement spéeifique.

Entre ces 2 quantités (tension et allongement spéeifiques), il existe une
relation (Loi de HOOKE) :

< Bl
1

>

“
qul exprime la proportionnalité des allongements aux charges. E s'appelle mo-
dule d'4lasticité (module A'YOUNG). Ciest un nombre considérable, car si l'on

S gy - Bl e e . = erz
SUppOsalt e I (oe qui signifierait gue la longusur de la fibre a &té dou-

blée) et E =_L_ serait précisément la charge par unité de surface caepable
®

1,

de doubler la longueur de la tige. Mals cela est purement fietif, car la pié-
ce serait rompue depuis fort longtemps.
8i 1'on reprend la formule A = A -b%é, on peut écrire, A et N &tant des
ot
allongements spécifiques :

B RO e N
- 2 1

& "
. P - L . * s s s
g1 1 p =_* o5t la relation enbre 1'allongement et la charge spseifique qui
o
produit cet allongemsnt, on & @
D RN Y

R

e

qui est la relation entre l'allongement et la charge spec fique qui le produit.
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Pour w = 0., on a la charge su centre de gravité.

Four, ¥ ::> 0 , la fibre est au-dessous de la fibre moyemne. Donc, dans

<

toute la partiec située au-dessous du centre de

charg gsont plus grandes qu'au centre de gravité.

Au conbraire, dans toute la partie au-dessus du centre de gravité, u

est négatifi, 81 wu , &tent negatif, 3 + -%— est aussi nédatif, les fibres

spnt comprimées au lisu d'8tre tendues

CAS PARTICULIER DE LA FLEXION SIMPLE

On supposera que toutes les forces appliquées sont dans un mSme plen et
les

-
a

normales 4 la ligne moyenne. Les réactions seront, slles aussi, normales
cette mBme ligne, et la composante horizontale N sera nulle, de sorte gue
les forces se réduiront a l'effort tranchant T et su moment fléchissant I

On peut analyscr les efforts moléeculaires que la partie de droite de la

poutre exerce sur la section Q (Fig.139).

-E T

Cette section peut &tre regardée comme &tent com-

posée d'éléments dlaire ®, infiniment petits, sur chacun desquels s'exerce

un effort. Ce sont tous ces efforts moléculaires qui doivent équilibrer N,T

o

et M (mais N est ici nul). Considérons un de ces &ldments ® entourant un

point m de la section (Fig.I40) sur cet élément s'exerce une force F @ ,pro-

. .

portionnelle a son aire, F étent une force spécifique.

Décomposons F & suivant les 3 axes perpendiculaires : Gx, Gu, Gv.
trois composamtes sonb @

X @ » X @, X. t:

e

0
= 0

s

Fig.I39 R
o U I+ YXa

0 + }: xvu

En remerquent gque la composante suivant GV est nulle, puis

-t

les forces sont dans le plan vertieal G

U. Dlautre part, tou

x
meoléculaires sont symétriques’ par rapport & ce plan, et la derniére équation

ient &vidente.

I1 faut exprimer aussi 1'€quilibre des moments 2 lLes forces agissant dans

@
s
il
i
4
a
m
cr
@

le plan G x 4, les moments per repport & G x et G u sont nuls,

a4 considérer gue les moments par repport & GV. On doit donc avoir : O = M + 22
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G

de toutes les actims mo-

momen

lgculalres

gqueleonque de ces actions : Fa , &

bisn aussi 3 composentes, mais

la composente X @ suivant le p

% o un moment qui n'est pas

nul. Le bras de levier de X @ est

donec :
M 4 EZLX WoAE = el

Ici, N est nul, et ces équations sa ré-

50 37 g 43} Hre oo n, i
e TS (R Y Aan e W kg

Cherchons X @
Clest une composante parallédle & Gx, elle agit dans le sens de la Tibre
et ce nlest pas autre chose que la foree spéeifigue p de la loi de liooks,

doric s

5 S o () U R (5)

ce gui exprime la relation enbre X et N

Remplagons X dans 1'4quation (1)

ou, en développant :

b3 b
o -~
B 1 E W + — L

Fad

0
(@

(E,R et X\ étant des constantes).

'
e S
Mais, 2 @ , clesgt Q , 8t, d'autre part ¢ £, @ un'est autre que Q

en appelant u, 1'ordonnSe du centre de gravité de la section. Or, u, est nul,
163 T

puisque 1l'on a pris le centre de gravité comme origine, done
Z ® Q. ot Yl - reate. .2
e e U AT

. .
n pas
i 2

]

B

i fo
eat /1
8L/

non plus, o'est done N qui est nul. Ainsi, dens les conditions

du probléme, vue la perpendiculerité des charges et des réactions sur la fi-
bre moyenne, celle-ci n'éprouve ni allongement ni raccourcissement. On lui
donne pour cette raison le nom de fibre neubre. Cette conséguence est lige
directement & la condition gue N soit nul. Sous le bénéfice de cette restric-

tion 15quantion (5) se réduit 4 ¢
tion, 1'4quation (5) se rédu v P B

Pt
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&
o TR

10

En traitent de la mBme manidre 1l'équation (£), ona
E u s
i} | ® = - I
1 R
L et R sont les mé8mes pour tous les &léments, ot 1l'on pout faire sortir ces
‘
2 factewrs du signe 2
B

o5
i;!fJH nlest aubre

i 1l'axe GV.

Rappelons en effet que :
m 4 une distence u de cet ax

e

d

cette masse par rapport & 1

(Fig.T41) si 1l'on considére un axe z et une masse
e, par définition : m 42 egt le moment d'inertie
laxe z . Cetbte notion s'étend aisément a4 tnute

gque le moment d'inertie I de 1'aire Q par rapport

1taire {2, en atbribuant & chaque élément @ , une masse proportiommells & sa
surface. Cele s'exprime par
o
P AT LR, SR
Le. section étant constente, cette expression est évidemment la mEme pour
Z
tous les points de la poutre, et 1'égquation (&)
= e % EI
devient finalement : —-——= . M , ou encore :
e )
I I
= = - (6).
t EI
On & la section {0 sans se préoccuper de sa posit par
t de la poutre. 51 maintenant on se donne la distance x
de cetto scetion & 1'un des eppuis, 1'6tat des forces appliquées se trouve
ermind, pour la section envisagfe. Il est alors possible d'en déduire la
courbure de la ligne moyenne ainsi que la charge spéeifique’ d'une fibre quel-
congue. A
De la formule : = 1 | on peut exprimer, en remplagant_L_ par se
Jid I
valeur 3 Ay M
3 BoF
ce qui exprime la déformation spéeifique (allongement ou raccourcissement)de

la fibre passant par le point
S 55
e e o
L
d'od, en remplagant A dans 1!
XL

- - Hu lony
o AT e 5 10,
I

X

—

pour une fibre guelcongue, la charge

m. On avait aussi 1
E A 3 ou ¢+ A= X
dquation précédente @

2

Mix
ST

agissant

dans le sens de cette [lbre.
Clest 1'équation dléquarissage.
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=08

DE LA COURDE BLASTIQUE ET CALCUL DES FLECHES
L =

&lasbique
sourbure

; urs tros f
L 8 gouvent

de connaftre la fléche de cette courbe ,

la déformation maximum.

our la déterminer, d'intégrer l'éguation (8). Pour cela, con-

la tengente on un point geul congue de la courbe [l-‘jj_;,]j.;g) (;.;J:.,.-)

ftant ses coordonn courantes : o a 3

dy

dx 9

tg 9 =

dont la dériv

rapport & x, est
de &

dx cosle

O

L] ; r
dg _ a2 v e
= —t 00s© 8

dx dx~

\

ant par des dens les 2 membres:

gaig
5]

Or, dx dst la projection sur 1'axe Ox d'un &lément infiniment petit

ltarc, qui peut Ztre confondu avec sa tangente, de sorte que :

dx . cos ©
dg

£l

On & done, en r

Comme la courbe s'éecarte tréds peu de la

et cog © est trés de 1l'unitéd ; - cog” © aussi, et 1'on peut, avec
’ I ’

une approximation suffisente, écrire
2 e PR
Ii4 dx

5 IR S I 3 -
et, en remplagant _—_ par sa valeur tirée de (8)

I

¢
14 =
- e o §iie
2 -
dx© BT
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Done l'ordomnée ¥ de la

de x, dont la dérivée scconds est

on auara ¥.

FLEXlON_?IZPLE - ICATIONS

POUTRE DROIT CHARGEE A

extirieures d la force verticale d'appuil qui est
contraire & et le couple d'encastrement

au moment de la charge extrfme. On néglige le poids

£
|

de la tige. On appells 1

g tige. On trouve que

e

la distance x du point d'encestrement, le moment fl&chissant
vertical descendant et ox horizontal) :
Pt

trentielle de 1'2lastique

en sorte gue

d'ol, en

(%

Meis au int oripis v & ) 11
Hels au point origine, S« est nul avec x, done ¢ = 0 et il reskte =

A Yol 5
et ) B 4 11 %,

dx 9FT FI

8 une fois de plus, il vient, en prensmt encore wne fois la cons-

tante nulle car ¥ est nul avee x :

Comme x est positif et moindre que 1, la dérivée de y, gui peut s'és
erire . :
ot ]_?X

dx 2 EI

a5t toujours positive, la courbe &lastigue ne cess pas de s'incliner vers Lo

o
e
—

(x -

"

bas (Fig,I43).

fleche

grand écart de 1'horizonta-

le x =1 et on aureg :
e 0
La. pente de la en ce point y" est nul

en ce point, en sorte gue la courbe
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Remarque - On a trourd pour le

car L'effet B éral 4 la résction au point 0 d'encas-
cAar L 8Ll &) L2 T )3

trement, donc & -p. On peut remarquer alors que !
g = plo=s =Ty ¥

DELIONSTRATION D'UNHE

st de tradui

on

coordonnces *q v.. et de projection X, Y. sur les axes de coordonnses,t’un

S - £ L 8 »
¥ Jy T

moment par rapport au polht P de coordonnées X, y on & 3

»

P est un des centres de gravité de la sec

oL Aura pour

Y7 -
‘ﬂ\" = 2o (x Y, - ¥; %X;) est le moment i l'origine et, dlautre part

)

0onn a4 aone :

wlisons encore plus

MENTS AU MOYEN DU FUNICULAIRE

Construisons un funiculaire des charges et iréactions (

la perpendiculaire oh i

fléchissant en un point G, pg

G, par les cbtés du funieuldire :
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& En effet, d toutes les les
cBbtds du funiculaire et p, 4 sont les intersedtions avec les cBtés exbrémes
funiculaire partiel relatif 4 ces forces
REPRESENTATION ANALOGUE DE L'EFFORT TRANCHANT
On peut aussi trouver graphiquement 1'effort trenchant (Fig. ¢ elegt
la somme des forces (chafges ou réactions) agissant 4 gauche du point consi-

déré. En partant de A, on a : la rdaction ca et les forces p
Menons par ¢ une horizontale jusqu'd sa rencontre avec les verticales qui

portent les charges, Entre A et p_, 1'effort tranchant sera représentéd en

chague point par wn vecteur de longusur constante, puigqu'il n'y & pas de
fovces entre ces 2 points. Ce vecteur est égal & le somme des foreces : R

tegb=d=dire a t t' .\,
o' o

Q

De m8me entre les autres forces.

.

Pour un point G quelcongue, l'effort tranchant est représentd par le

segment compris entre horizentale de ¢ et 1'horizanbale correspondant & la
charge précédente.
A

o

Remarque. M n'est ici une fonction continue de x qu'entre 2 charges, p:

exemple p; et p, , mais guand on a traversé p? » 1'expression anslytique n's
& 3 i M ¥ <

L

plus la méme qu'entre Pr et oy L'expression du moment A gauche de Po
suivante :
M- e sl By

Aprés p,, il faut ajouter des termes correspondant aux charges nouvelles ren-

contrées, Donc, M est une fonetion discontinue de x ot si l'on intdgre 1'4-

quation 2 i
d ¥ 3 _ M

a h,
dxe BT

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

- I10 -

on trouve pour la courbe intégrale une

forme de courbe entre p. st

forme e

et F‘;,_: s BLC., avec chaque fois une constante

intégration différente. Mais il faut évidemment que 2

conti

-

la courbe Elastique ge raocordent, ¢lest-d-dire

un point commufi et une

tangente commune. Gette condition doit suffire A déterminer les bonstantes

d'intégration. On traitera en particulier le cas simple suivant :

71}

Poubre sur 2 appuis simples, Pen un point guel-

conque (Fig.I45),

Seit a l'abeisse du point d'application

| \ : Réactions.- La somme des moments

A . B g8 forces
ll.:I - . I ~ - -
et des réactions par rapport 4 un point quel-
£ x congue doit &tre nulle. Par rapport 4 A, on & 3

a | b :
= pf 2 dtot )
e B %
On calcule de méme : T
o o
I = o
2+ b
Effort tranchent. I° & de s
R e
\ ; g+ b
2%) & droite de P
Tl PR R P‘:J__l, SR PSR
a +'b L+ b
5 e . Y oa ) ,‘
Moment fléchissent. I7) A gauche ds P
on & towjours A
— = R et B = Rx = 0.
dx
et pour x = 0, le moment est nul et : C = 0, done :
- Pb e
&+ b
2%) 4 droite de P :
S S S RN S 2
dx
au point B, x = & ¢+ b = 1, le moment est nul ?
0= {a+ I) (R~ Py 0" diok ¢ 0¥ = Pa ,
puls le moment & est égal &
i Pa il o
M, = < P Pe = gal i . R
b e X + Pa PalI P,
[
I1 est amlors facile d'dcrire les équations élastiques de gauche et de

droite.
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d'oll en

at It co antes arb
4 m i
vhiten g - —x® o I,
eREL 8 + b
P o
y o= - — i RO e O
(S T a+ b

De mEme 4 droite de la

P, 1'élastique a pour équation

d'ou en intégrant, et

e s

a5 2

A B (% o
s &
T BEL R
i 2 = e -
£ - Lox +

11 fan

exprimer que 1l'élastigue au point A(x =

ce qui montre que II' = @ . I faut ensuite que y', v! soient Egaux 4 l'aplomb
de la charge, c'est-d-dire pour % = &, et de méme pour x = 0, on doit avoir
s

Enfin, 1'élastique

passe au second point d'appul par leguel

X = a + be Cela fait & équations déterminent K, X', K I

Le caleul nloffre aucune di

B } 2
gkl =_bat W iabc et ihY T
S K .
¢ . 5
G groes e d D - 8% +28b + b°

CHARGES REPARTIES

couche ¢

Supposons sur une poutre droi

¢ sable AL -

i

tie sous une ¢peisseur variable dans le sens longitudinal. Sur une étendue

longitudinale dx, la charge de sable présente un poids q, dx ol g repr

la charge par unité de longueur. Si g est constant, on dit que la charge est

uniformément ré

artie. OUn peut représenter q par une verticale GR de longueur
q . Le lieu du point Q est une ligne appelée courbe de charge. Cette ligne

est une horizontale dansi le cas d'une charge wniforme (F

. 146 On remarque
| &) F.I146 . : N s
m\—j F. 158 que l'aire comprise entre la courbe et la droits

e totale sur la partie de

AG représente le char
i e
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Ta % ooy !
L8 poutre guli

t 4 gauche du

namique, cette charge

5

-

représentée par le vecteur ag, qui contient aubant d'unités de longueur que
1'aire en question confilent de carrés correspondant a 1'unité de charge (Fig.
&

o\ ¥ » 5 . x s
147 ). De m8me gb représentera 1'aire situde 3 droite de G, de sorte gque ab

=k figurera la ch somme de toutes leg
g dx. Pratiguement, on obtiendra cette représentation gra-
Figaldy en divisant la longueur AB = 1 en n parties, égales ou
non, et en menant, par les points de division, des verticales qui
»-L_E

décomposeront la surface totale en n trapézes. 51 l'on suppose
alors gue la charge représentée par chacun de ces trapézes est con-

centrée 4 son Cg, on p

construire le dynamique et un funiculaire

L b de ces charges isoldes. Quand n tendra vers l'infini, le poly-

&

gone funiculeire ainsi consbruit deviendrs une courbe funiculasire. Si m est

le point ol la verticale de G rencontre le funicu passant par

m est paralléle au rayon polaire Op, et, 4 la limit se confond avee
i o »

1

la btangente & la courbe funiculaire (Fig.I48).

Fig, 1&9
A [ { B
‘ & - B
RE / delaey
I -3
1\ \
1 \ \ &
] S
| i ol @ ;
‘ g 1R 0
b -
7 b
Toutes les courbes funiculhires jouiront évidemment de cette proprigté.

Hemurqguons alo si 1'on méne par o et

=

ar m  des horizontales, 1'angle

&

retrouve sur le funiculaire et le dynamique (FPig.I49), donec

tg © = th

n

est une charge relative & un certain point GI d'abeisse Xp, 0BT :
x

&g représente sur le dynamique la charge J{ g dx , 4 gauche de G,

aH

%

ente sur le dynamigue la charge f I g dx, & pauche de G,
Yo e

I1 s'ensuit que : Hz = aH - ag , représente la charge comprise entre

a_Ad4
i=-01Tre H

Xq X1
fqux—f qu=f g dx
(s} 0 x

W tnh
b 5 @legta
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i
tg @ = j’ g dx
o
h
lais tg © est la pente de la tanpente & la courbe, clest sa dérivée, et
%
"i T
! = = g dx
e e TR
h o
Dérivons cela ; on sait gue si 1'on a une fonetion : F(3) = jﬂ f(x) A% -
: a
A = e R
g8 Afvivee aet b B R
dx
s o 1 A o
[ - 4 ..
Flx.} = q.dx
; %
es 5
d bEgai=y 5
s v(xI) = i\xz) S el

denc 2

On avait obtenu,

42y M
dxe P

On voit done que la courbe funiculsaire ainsi tracée est la courbe &l
2]

agtique

que produiraient les charges :

= 2gibmllinray, g
h BEI

et le probléme se raméne, comme pour les charges isolées & trouver une fonc-
tion y dont on comnaft la dériwée seconde. Ces 2 intégrations introduiront
2 constantes arbitraires, et il y aura une double infinité de solutions. Ilais
cela est bien dans 1'ordre puisqu'on peut tracer une double infinité de fumi-

culaires en faisant varier, soit 0, soit le point de départ du funiculaire.

Exemple - Fn particulier, si g est constant (charge uniforme), on a :

—_— = = + G .
dx h &
- s :
et + Cx + C' .
h 2
C'est une parabole, dont les branches infinies sont teurnées vers les y

négatifs (Fig.IE80).

)

wactions d'appuis. Supposons que l'on ait construit, soit Bar la statique

graphique, soit par 1'analyse, la courbe funicmlaire af. Les réactions se dé-

Lerminent comme pour lés charges isolées, en fermant le polygone funiculaire
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i UL

par une droite joignant a« et B (ligne de fermeture), et en menant par 0 une

-

parallele oc 4 aff. oca et be sont encore les réesctions. On a bien le polygone

fermé : ca, ab, be, ab &tant la somme des oharges ¢

EFFORT TRANCHANT ET lNMOIMENT FLECHISSANT

FORIMNULE GENERALE

et de la réaction
L'effort tranchant est la somme s charges /qui s'exercent au point

A & gauche du point G d'abecisse x. I éaction: est varticale et ascendante,
done négative, tandis que la somme des cha verticales descendantes est

x

étent le point d'application de la charge g d f}

done, pour 1l'effort tranchant :

x
s 3'—-?-‘;+f qda%.
o
2 1 1 des 5 parn rapport au point G d'abeisse x,

est la charge appliquée en Xq - four

on sure ¥ 2 e ione Fx est le moment de la

charge g dg le moment

- x)yd g, d'oll pour le

fléchissant

Rx + f; (‘§ - x) wd E

On suppose une charge quelcongue

g fonction de \E . Cherchens la

dérivée de 1 par rapport 4 x, on a

-.}.‘ ¥4 ‘0
:"*I%xi-f%:.ldg-}:f-_lug
(x) - f( q d \f - q(x} R ; d \i
0 L,
31 R f’( & E‘lf
— R g
ax o

ce gui est une néralisatlon pour le ces:-des-charges reps s d'une formule

déja obtenus.
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- I15 =

POUTRE ngHISE A LA FOTS A DES CHARGES REPARTIES ET A DES CHARGES

CONCEL LES

=3

Soient B et C les verticales des charges concentrées qui s'ajoutent aux
continues (Fig.ISI).
Les charges infiniment petites s'exercant entre A et B sont représentées
ur le dynamigue par le segment ab. Continuons : tout naturellement, la charge
isolée s'exergant en B se représentera sur le ynamique par be, faisant suits

ah-

puls viendront se juxtaposer sudcessivement : ce, correspondant aux char-
ges wéparties entre B et C ,

ef, représentant la charge isoclée en C , enfin :

fg, qui se rapporte aux charges réparties de C & A' ,

za sera, comme toujours,la somme des rédactions.

D'aprds ce qui précéde, la tangente en m, au funiculaire doit &tre paral -
léle i ..oa, et la tangente en my , paralléle & ob. llais, en ce point, la tan-
gente au funiculaire doit aussi &tre paralléle 4 oc. C'est done que les 2 cour-
bes funiculaires qui correspondent gux parties -*AB et BC ne se raccordent pas
sur la verticlae de B.

Ces courbes partent du méme point, mals avee des tangentes différentes.
Cette particularité résulte de 1 e i de la charge isolée en B. Il en

funiculaire est done, dans ce cas,

formé dlares de courbes formant une ligne brisée.

CONSTRUCTION GRAPHIQUE DE LA COURBE ELASTIQUE

CHARGE EIFIEE

a vu que l'éguation d'un funiculaire est de la forme

dly a{x)

a trouvé, d'autre
(2)

On sait aussi trouver les réactions sur le dynamique quand le funiculaire des
charges est construit.

I1 est alors possiblée de déterminer le moment fléchissant en un point
queleonque :

si 11 est un moment fléchissant obtenu en ne consi ddrent que les

en faisant abstraction des réactions ; et T un effort tranchant défini de la
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- Iig -

et effort tranchant exschbs :

[0

2), on voit gue la courbe &lastique et le

la méme forme. On peut done les identifier

De sorte gqu'on

un funiculaire

et, &1 1'on choisit la distance

h = 1, il.suffit de

ges @ p(x) =

On dit alors que la courbe €lastique provient de char

1

chissants

sont des charges fictives &psles eux moments flé

dire divisés par EI.

FOUTRES CONTINUES

Une poutre

dite continue lorsqu'elle repose sur des appuls surabon-
dants.
Solent A, , Ar , ... & , les n points d'appui.

Les intervalles A At , ATﬁﬁ s ver 0tc. sont appelés des travées.

: 2
Les longueurs de nces travies sont tées hori talement. Les réactlons
Les longueurs de ces travées sont comptées horizontelement. Les reactlons

verticales des appuls seront respectivement : R

I it
[ ¢ n

fléchissants aux points d'appui (moments sur piles), se désigneront par I

, et les moments

o3
e i i
L n
On peut se rendre compte que si l'on comnait ces moments, il

L

est facile de calculer le moment fléchissant en wun point quelcongue de 1la

On envisageras d'sbord le cas d'une charge uniformément répabtie
(ol @ est constante), et on supposera que les appuis sont 4 des niveaux peu
diff'érents. r : ;

Les résultats s'étendent aisément aux charges quelcongueg. Con-

sidérons 2 trewées consécutives de rang quelconque : A3 _ . et Aghy

. ”

et un point P de la premiére de ces travées, situé 4 une distance x ds A5 _4.

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

I°) lMoment de la réaection - si

formule déja étoblie .

¥l

Done, en réunissont

Uherchons

W

- M. S
F :

FORIULE des 3 moments).

1 Chst une relation entre 3 moments consdcutifs. Elle permet, quand on

2 de ces moments, de calculer le troisicme.
Si 1l'on détermine, pour chacune des trovées, lao ligne élastique, on ourc

ine, [ L =

des courbes de formes différentes qui aboukiront cl

on admet gue ces 2 courbes

gu'elles ont une tangente commune, sons cassure.

Q
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¥ = i '_:'} »
54 4 2 le coeffici de la tongente, on
o e 2
s R la courbe &lestique gui ve suivent la travée Ag (Fig. 152
T, , 1e cpefficient angulaire sn A; ds la tengente & sourbe. In-

tégrons une premidre f

la. formule : =y BI = M,

i ] A A R : =
par la travée Aj s on seit que

X
iR = f M dx + C

8]

BOUZ X = @ 4 ,[‘ M dx est nul et y! 3B a-
iire le cosefficient angulaire de Hp-
- EI !
=4 0 i
I T |
i dx ET s, =4
% i
T ¥ ) — = ,...._.__"c Ay
G, 1 o
1, 4
b 2
rant
C 2y 3
1 - :
i =1 +i-1l—1—3l :
: : 8 &
gui se simp
'_'53] - .
Reprenons
(9) - e S
2
= - FI § M x
LLD|_1X+A1_1 +
e
+ (M. - N 4+ < 1 £
- T '1 o # >
24
V. X
st ¥ devient w, 2

fok

Le formule : (6) qui a été omise
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gui se simplifie

- 2;11 : 2 q
i e =,
RS
; Y = 175 -
(12).0 < BL @98 = yiofy .
1%
TR 2M, - E
AT 01 3 i _)1 o} S - q 6]
4 et T N
t_ £ L
On peut maintenant &liminer EI Bals 4+ sn retranchent (I2) de 8)
2t -
Sy Sl il s erl [ 2 1. v
Sy R G O L S e L, T o A 43
o i = Dol e - a1 .
1, 6 > o

L'équation (II) e'epplique & la travée 1, , mais on peut &crire
1 ; :

»

SEe TNy - .
éguation pour la travée suivante

(14) = BL (y

By =
% e o
».o BL B2 s ¥ 2 My + ]'.'lj il o o< 1.'
1 a i o | 24 i+4
ou, en divisant par li w4t
T IS et o T E S

SN SR T T S (R Ry i
= TR T + 4 57

o

Mais au point A, , les 2 éléments de courbe se raccordent, c'est-a-dire

ont méme coefficient angulaire, donc on doit ayoir : 8. = t. . Hemplagons

i bl
alors dens (IE) S par t. , et chengeons les signes dans le Ier membre
(16) BT L1 ‘m.fi + 4

: X o 1
s
En 'ajoutant (I8) et (I3), on &élimine t.
]
+ Vs - . Bl .r
5 8 (e Tl N, R Vel S T

iR A :i

I i s - = Nig 1
__:_ 15 1.-il_‘1 + 2 Llj.+‘i+ff ) My % 1s +4mi+,[
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sont nuls et il reste (n - 1 } inconnues. Or, on &

donc le probléme est détermind .

Le méesnigue sans Irottement est une shstraction particulidrement fave-

a

rable sux développements mathématiques et que 1lpn peut considérer comme une

o (R e
premiére approximation, mais le plus souvent le frottement joue un rols trop

egsentiel pour 8tre négligé.

les propriédtés : sur un

Une expérience simple permst

de gravité duquel s'exerce une

horizontal on place un

al 4 Q gque si la poulie n'offre pas de

()]
€

tyraction T 3 (T n'e

P11 guidé par une poulie (Fig.I153).SolG

produite par un poids Q au moyen d'un £

E le poids de ce corps et R la réaction du plan,

4 P. 8'il n'y avait pas de frottement, le

¥ 1 serait pas en éguilibre, Sous l'action de la
Fig.I163 | 3 b L : ;
- Qo ge développe une réaction de frottement I,
fpale et opposée a T.
i o : Done, tent que le systéme est en éguili :
¥ -~ o
i
//lly P ) L
et g L=k
3 N i % \
! AEARAL 3i 1'on augmente progressivement la charge Q, l'ex-
5 1'équilibre persiste jusqud ce que Q atteigne la valeur

un coefficient déterminé qui dSj

id de la nature

gppelle le coefficient de frottement.

Be

substances &r

et qu'on

Ainsi, deans les probldmes oi s'introduisent des frobtements en divers

R flstic ) o e =
nts des corps, l'éguilibre se traduiba par d indgalités de
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vient d'€tre erivisaghd se lige ~dmmédiate
L), assujetti A se déplacer sur une courbe et

irection gueleongue.

dcomposer P suivent une normals

encore ici que + F < f R , s mais on peut

autrement. Soit 8 l'angle que fait la force aved la normele, on a ¢

N = P cos®8

Remplegong:

o i (R e

smgente d'un

ialise cette expression en considérant f comme la

i
T~
o
=
9
@

gle de' frotte

aﬂgle @ anppe ¢ 6t la condition d'éguilibre

B devient

ou comme 8

soumi

n'est pas toujours grand que I. 81 llon

. tourner l'angle ¢ autcur de le normale comme pivet, on engendre un
ofne, dit cBne de frottement (Fig.I55). v a8 é ibre
;

P grande et X Lrop p pour
suffisemment la résultante, il ¥ & arc-boueméns.Ce phé-
noméne se rencontre souvent en mécanique, notamment dans

I1 est trés important.
Pour ion ol interviennent les frotte-
ments, il faut, pout tous réactions tan-
de fpottement & coOté des rédacticns normales.
‘I
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Ces réections tangent

SC produire. f

fte]
=
=
o 2
@
o

mécanique, ne pourrsit aveir lieu sane lsa

o

du frottement, on

les problémes

rroblé

kS pesant, mobile avec frottement sur unecourbe, |

exemple un

Pour que 1'éguilibre ait lieu, il faut gue la direction de la

-

soit & de

dont

ur le plan

gure s'obtlent en sortant

¢ de part et d'autre du rayon passant

par M. peut

mensnt
rayons

i sers

en u, instable

gréce au frotters

certains équil

enalogue si 1l'on a une

d'un cerele :ltarc de cer-

la trace d'une calotte sphé

que,; qui est uns pl

*

Probléme II - Condit d'équilibre

abstraction, en roison

sur le mur (Fig.I58)

inconnues

N régotion du sol,

!

B tement

sur ls sol.
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relations :

G

des 2 projec crees nulles sur la vertiecsle ot 1Tho-

rizontale et nulls aussei la somme des moments per repport & un point.

ction sur OB : R R O T e

projection sur OA R <o i 1 FLI R
Prenons les moments AL 0) Paut queis
. L
A A
ou S50 aeaslA ekl Bae PRS0
ou encore
Yol &L [N sk oo . R

Remplacons N' SRR e Sl T i S

ou / : X

Il faut sussi q

& 1 a
v LUK

o = .
d'ow, en remplacant F

une charge fix

o]

» Supposons maintenant une échelle homogéne

it monter une charge 159).

sur

B Fig, 160

SR
Soient 3

niliew ds 1).

; v

échelle et charge, e

1, la distence de la charge au point A, pour une certaine position
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D'apras le

tance

du centre

FPour que
ge mobile,
car le 28me membre cro

Remplagons do:

Equilibre

position de

détruire 1'indegali

toute sécurité

cerceau.

cercean

ottement

au contact

sSxerce une 1ot

de lg

canne

sol, et une canne appuyée,avec

conditions pour que ces 2 solent

corps

gravité de le canne,

canne du cerceau.

ion normale st une

raaction

11libre du cerceau, condition d'intro-

le canne. Remarguons que réactions norma-

et du cerceau, peuvent 8tre composées sen
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cannes

P! -~ DH'cos & = :
icale 2
q - W g 2 TS
- = o .
rapport &4 A fra
S0 son point de remcont: CD, m 8 o
aveolir
q 1l cos a AR = DH = U

opposée + D' = - DH.
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On peut alors

DH cos @

q DH sin 0

H sin € .

ainsi déterminées en fonetion de 8, mais il

faut auvssi ndamentale du soit verifide.
(e

kg

s sont les angles frottement en A 2

n \
Hy v o0 L

} : normale ,
Au point D, la compossnte/forme svec DH un angle (%
2
plus petit que st-i-dire que l'on ait

& ety
= 2 ‘PD

11 faubt sussi gque

"DH cus B

p+lﬁ::r-i‘ne

Ces conditions limitent llangle €, qui doit &tre tel que les 3

soient

Probléme IV - le 3 barrigues.
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de contmet. Les ques ©

ie, prévoir que les réactions

a8,

et A! les rdaoticns de frottement.

Considérons sépardment la barrique € : sur le centre C s'exercent

b
£

foreces sulventes @
P = poids de la

= reacbion no

; - - de la barrigue C".
i

réactions normales s et

L

f'rottement

la, barrique.

Appli le par rapport & C, pour,l'équilibre
de la barrigue C : moments non nuls, mais ces moments
X ~ S ~ aba Anrie o - = P
ont méme et étre opposes, done 1 I i

Ri =l D Ties foraes. de sont t

¢
+

tions sur l'horizontale ox :

On aurait les mémes Aquations avec C'. Consid

Les moments per rapport & C" sont tous nuls.

ojections sur l'horizontale

o
D

sens contrairss ;

On &

tranchant

Lo |
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B 1
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du

plax. Il £ pente

EQUILIBRI

R f s o N
LYECROU (Fig.I6<)

ouvoelr

ment sur une courbe, et soumis & wne forgce P, détermine par la condition

A

avec la force.

— - @ , dome, il que
o 5 ; n @
:. - B == P en B i ==e s =t
2 2

de construlire la ner-

150NE aue La

i axe vertical, sur ur

[
ke
)
(o]
&r

en|rguer

sur le

4
i_

une foree

par une

2 cas ol l'on attaque 1'éerou au BI0NE
la normale & 1'hélice, et la ‘ratrice passe har

T 1 5 ~ 4 2 rat i ee aTec 1A
3 SR =) ue 1 cetoe g atrice avec 18

,
£
2

{ > ¢ .O0r, 1 =
! ¢ == @ , c'ast 1a conditio

ssible.

force axisle 11 faut tou-

G 5 done "

3 £ =g . le cas de la drille.
o
AR e TRy
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Supposons que l'on ait 4 la fois
( o > ¥
e SR

ge est possible, mais aucune

On & ainel réalisé une vis

A 1e fols

me poussae ra le ohtenir en
cherchant & 178
Eniin, si 1'on a & -
TR
B g :T.;“ ‘f 5
L aent. Clest le

pas suflisamment faible;
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: < o
ibre a4 1t et Q,

par-X. Elte fait dqu

forees. Iour que llare-boute-

ment soit poasi

rient eontisnnent

respectivenent.

helle, qubnd o

STes & h
muss ¢ N,

as. On doit alors

isent
ur avoir une 4Léme cond

de frottement ave

drilatére

ement AF peuvent se

constrult avec 1

rieur Au cBne de fro

BH! et de

pas pouveir se produire.
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(5} 5 i rees 3
PG i R
3 Wl Luliou.e1r e 5

laire : n. per evemnle, FEntre et 1. sl
SnUre n W ax ue autre Tens T
2

bre sous I ence de 3 forces -

® T

i i e g 0,

1.0 Tie
On peut, sur le dynamique exprimer cet par

4

ant tri

: L y 1 w. . of
.0 4
1 fstpean 2
i (Lo )0
1 - - ,
ar: les mBres reisons point m. 3t en
Yoed 1
3 " ™ “ )
3 i A S g et <o T
L £ L [
8~ L} . et 2 " £ -
eu 4 un aubre btrisngle fo
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fourniss par le dynan

] 1585 b=t
Ny
Br ion sur ox -est - T cos ¢ «
+ de & 1g=
Hr 3! 3 LB B8N 1 e:& 1e 5& PULE
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Ainsi, . les 3 tielle
(en mettant € au lieu de ¢ )
b k6
iz 8
CHAINEITE - Soitv un fil homogéne, pesant, acer

e

e i

constante.

I

| .3

F \\k

‘ X

par ses dewus

purbe avee ltaxe

¢ extrém

»
4=

On &

&bant pris dans le
funiculaire deviennent :
une fone

immédiatement, car

on appelle pea

e e < L
eI S
cos ¢
aleur dans 'f!] -
. /
L 41,
Hr
e S dong
dx E
7 e i ds e d
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s termes du produit est l'inverse de 1ltautre

S X = o = -3 ;
v G _"?_-— e _— -a__ = -~ . %
A tol 2 G 2 :
! —{ il X R S
2 e a Q-—-—-—-f— )]
, inbégrant
| L o- X, e S
el i bAoAl T
qui est 1'équati ; Anett
On ut 1 T = ; i o a 4 tels qu i

nuls, ltéguati
B gr e

ragque 1la )

- .

! nett

reduit alox 3
a, % =
T — = oy 2
) e a e B
& »
inet & cet forme, 1'axe x ma droite ppel
e a symetrie d cette

ur -
Vaut: art
ie ques
Ce point

1r? 7 - el
o |V |

e s’ , gui s'ennule pour x = p

4 AESE zontale au 1'15:-']_3"-."6 3y i donnd: »

B Ccourbpe.
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ement sim

-
.

Tra ey
% AR S B = 5 ks
aussi que sl l'on change x en -x, ¥ ne change pas, a
A B s T 1
symétrigque par wrapport A%llaxe
sion de A partir de 8§ ,

constante arbitraire.

les axes a partir du

I
o

A - 3 1 11 - " Avenh 1 4 S =Nl =Rak:
A ot B, auxquels on aceroche un fil pesant,

les paramétres de la chainette ainsi réalisée,

ol la tangente es

courbte, on sait que l'on a

¥r = _8 ( Q a rh e 8y
a J(-{'J __:‘I'J
i 7 6y
g Selp e %)
= 1 . et Sl
dvident que la longueur « 1 du fil est plus prande de

e Y \/mz o TR

pertir .de 8 3

en prenant

la valeur de 8
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On

160 : . = %
F TR Y ol et 7 & - — A
7 - Pa A Q El)
de m8me : X+ Ko
1 ~n = -2 @5** + 2 Qau'
et

ou, en remarquant que de terme entre parenthises est le développement d'un

D nE N

équation ol ne figure que le paramdtre a. Elle admet done une recine et une

seule,

: n
Oz peut po P e S TR o R e S
28 2

D'ol, en rt

o
o
Y
0
o
o
-

(1]
b
i

On peut construire la ecourbe : y = Qz = Q'“

8i, d'aubre part, on porte dens (2) cette valeur, on a

n d'une droite.

a

en coupant la courbe par cette droite, on a wn point de la chal-

nete. (Le paramdtre a s'obtient en résolvant 1'équation transcendants @

Probléme II - Trouver la forme d'équilibre dfune courbe dont chaque élément

est sollicité par une force verticale &gals au poids de la projection de cet
&lément sur l'horizontals, \
Ii ne faut pes confondre ce cas avec celui du pont suspendu, od le Ffuni-

culaire est la forme d'éguilibre d'un fil sollicité par des forc
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eprenons les

1
1

1. \ = m
(T 4 =" p 2
an m SR s ot o ry ¥
ou, T i 58 ciree de i, i

et, en intdgrant une seconde fois

qui est 1'4quation d'une parabole du 2™° i branches ascendant

o]

PRIIICICE DU TRAVAIL VIKTUEL

le travail

force B, appliguée

point Ii, auguel petit ds =
au produit de M' par la I's

gque l'on consi

fagses
Torces
1s

~

des forces composantes.
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T qui sont peprpendie

B e 5 22 %
vl

se réduit a4 celui de

&lémenteire de la f

CoOmpo-
compao

gle 1 avec la direction du déplecement, done:

Frd 6. Or, v ¥

avec le signe correspondant

mentaire dont tourne le rayon R). D'autre

~apport 4. 1'axe Al est la somme des comg

per repport i cef axey de F, et F, sont nuls; denc :

dlémentaire de F —“(_)TL’ F &8 .

T

plusiseurs forces sont appliquées a des points d'un solide

de tourner autour dl'un axe, chacune d*elles produit un travail égal au pro-

P

dult de 1%anpgle 86 éldmenteire de rotakion multiplié par le moment de la for-

ce

i 1'axe de rotatlon et la somme des travaux virtuels accom=-

plis

les forces et égal au produit de 886 par

tant des 1t sur le' corps.

TRANSLATION RECTILIGNE

d'une lorce se me suivant un axe ? s Avec

me amplitude 6x, le travail vittuel est égal au produit de &x par

le somme des travaux

a8 pour valeur le

1'axe § E

mouvement hélicoidal de pas h, su-

tite

oit que 6@ Atant la rotation infiniment p

vi

~tuel résulte d'une rotation &8 aubour de ? et

g ; AT Lo
le long de 1l'axe. En congéquence, en vertu des theo-

précédents, le travail wirtuel des fore dventuelles appliquées & ce

expre

7 i 5 | 6 SRR Zrmjgﬂ F) 5 6

$
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