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PREFACE.

Dans la préface du Cours dlémentaire théarigue et pratique
de Constructior, J. P. Douliot s'était engagé a consaerer I'une
des parties de cet ouvrage a l'étude des lois de I'équilibre,
du mouvement et de la résistance des corps solides et liqui-
des ; aussi, aprés avoir publié le Traité de:la Coupe des pierres,
celui de Charpente et les Lecons de Mathématiques, il s'adonna
tout entier aux recherches importantes que nécessitait la
composition d'un ouvrage sur la Stabilite des Edifices.

A peine ce travail était-il commencé, que des éléves en
architecture vinrent demander a M. Douliot de le publlel
par livraisons, et-ce professeur s'empressa de mettre au jour
les premiers chapitres de son ouvrage, heureux de pouvoir
donner aux éléves cette nouvelle preuve du vif intérét quiil
prenait au développement de leurs études! Mais bientdt une
maladie, peu alarmante dans le principe, vint ralentir la
publication de I'ouvrage, et plus tard, prenant un caractére
plus sérieux, elle forca M. Douliot & renoncer a tout travail ;
enfin, au mois d'aotit 1834, il partit pour Avignon, sa patrie,
dans 'espoir d'y recouvrer la santé, et ce fut en novembre
de la méme année , qu’il y mourut, au sein de sa famille, a
laquelle il laisse un nom glorieux & porter.

Ces explications étaient nécessaires pour faire savoir au
public dans quelles circonstances cet ouvrage a été publié.
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Vi PREFACE,

M. Douliot avait lintention de faire des expériences dont il
aurait donné les résultats a la suite des lecons; ainsi, il y a
lacune sous ce point de vue, mais sous celui de la théorie, le
sujet est traité presque complétement. Un de ses éléves s'est
donc chargé du soin de réunir en corps d'ouvrage les livrai-
sons qui avaient paru du vivant de M. Douliot. A la suite des
notions de mécanique, qui servent pour ainsi dire d'introduc-
tion aux lecons de stabilité, se trouve une théorie nouvelle
sur I'écoulement des liguides, d'une simplicité remarquable, et
qui valut 4 son auteur les éloges des membres les plus distin-
ﬂués de I'Académie des sciences. '

" N. B. Lerrata placé 2 la fin du volume perméttra au lecteur de corriger
de suite quelques fautes d’lmpressmn qui pourraient le retarder dans I'étude
de cet ouvrage.
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NOTICE NECROLOGIQUE

Sux 3.-P. Douliot.

Cetle courle notice est extraite du discours prononcé par M. Belloc, diree~
tear de I'Ecole royale gratuite de dessin, a la distribution des prix qui eut licu
le 21 décembre 1834, i 'Hotel-de-Ville, en présence de M. le comte de Ram-
butcau , préfet du département de la Seine.

« Un jour, un appareillenr, praticien ingénieux, passa devant I'école, et entra dans la
classe de 'mathématiques. "Elevé dans les chantiers de construction que dirigeait sou peére, il
avait, tout ‘enfant, manié 1'équeire et le marteau. Les compagnons I'appelaient la Pensée.
Orphelin 2 quinze ans , employé bien jeune encore aux travaux de magonnerie du Louvre,
il venait prendre sa part des savantes lecons de I'excellent professeur Lavit : il venait de-
mander & la science I'explication raisonnée des opératjons qu'il faisait chaque jour.

» Tl avait gu cette premiére éducation pratique que rien ne remplace, mais son esprit mé-
ditatif et profond éprouvait le besoin daller au-dela. Il entrevoyait déja la possibilité de for-
muler en principes clairs et lucides , appuyés sur des calculs mathématiques, sur des dessins
ingénieux, tout ce qu'avaient fait ses mains.

"» Chargé par M. Caristie, ingénieur des ponts et chaussées, de conduire les travaux du
pont d'Aigues, employé plus tard comme appareilleur par M. Hurtaux, il travaillait a Ia
construction du pont d'Iéna, et d'un des plus beaux hétels de la rue de la Paix , alors méme
qu'il suivait les cours d'architecture et de mathématiques de 1'école royale. Le soir, aprés de
laborieuses journées , ik prolongeait ses veilles , et consacrait une partic de ses nuits a de sé-
véres et consciencieuses études.’ : ! :

» Cet homme , Messieurs, doué d'un amour si passionné pour la science, d'une modestie
si sincére et si profonde qu’elle allait jusqu'a I'abnégation, vous I'avez tous nommé , ¢'était
Jean-Paul Douliot, votre bon, votre cher professeur, votre ami, votre guide, celui dont la
mort prématurée nous a tous consternés , dont I'irréparable perte nous p'longe dans un deuil
de famille. :

" » Il yaunan qu'il était Ia, parmi nous, avec cette attitude calme et grave qui comman -
dait le respect, avec ceite physionomie intelligente et douce qui appelait la sympathie. Per-
sonne ne savait mieux que lui aplanir les difficultés de 'étude , passer des démonstrations l¢s
plus sunples aux plus haittes questions de T'art. Toujours' préoccupé de 'importance de I'en~
seignement qui lui était confié, de Pimmense utilité qu'il'y avait a populariser a connais-
sance des parties les plus essentxelles et malheureusement les plus négligées de I'architéciure’,
il S'éuit surtout attaché i déwontrer la théorie de la! stabilité des ddifices. Sox cours le
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vir NOTICE NECROLONIQUE SUR J.-P. nom.wr.

construction , umque & Paris, était une- des gloires de notre éeote, et-un de §s plus beaux
titres & la reconnaissance publique,

» Cet homme, si regrettable, n’est pas mort tout egtier, Messieurs ; il Jaisse plusieurs ou-
vrages , monumens de son génie, bienfaits qui lui survivent, et qui deviendront des guides
pour achever ce qu'il avait si dignement commencé. Nous possédons de lui une Géométrie
pratique, faite exprés pour 1'école ; il a publié un Traité de Charpente avec 120 planches ex-
plicatives; un Cours de Construction , comprenant ses admirables Traités de la Coupe des
picrres et de la Stabilité des édifices, qui ont, pour ainsi dire, créé une science qui n'existait
pas avant lui, ou qui du moins flottait dans le vagne. En 1833, il présenta 4 I' Académie des
sciences , sous le titre d'Essai d'une théorie rationelle sur {Ecoulement des liquides, un mé-
moire plem d’apercus neufs et profonds. ' '

» On a peine & concevoir tant de travaux dans une carritre si cuurﬁe et dont i} faut re-
trancher les premiéres années d’expérience pratigue.

» Clesta Avignon, dans son pays natal, ot les médecins 'avaient envoyé avec l’espoir que
I'air et le soleil du midi rétabliraient ses fnrces épuisées par 'étude, que Jean-Pard Douliot
est mort, & quarante-six ans, Son convoi a eu licu le 9 novembre, Autour de sa dépouille mor-
telle se pressaient de nombreux amis, les professenrs des écolis. spéciales d’Avignon, les
éléves du cours d'architecture, ceux de I'école normale, des magons, des charpentiers em-
pressés d’honorer pour la derniére fois leur guide , leur oracle.

» Malgré la pluie, malgré 'approche de la nuit, tous 1'ont accompaged jusqu’au cimeticre.

» I1'y ayait quelque chose de profondément touchant dans I'élan spontané de cette foule
silencieuse et recueillie , dans les cérémonies accomplies au fond: de la. fosse par les taillenrs
de pierres sur le cercueil de Tauteut de la Coupe des pierres , de celui qui était sorti de leurs
rangs pour devenir leur maitre, pour rendre la science accessible & tous,

» Une stmscrlPUOn a été ouverte a I'Hotel-de-ville d’Avignon pour élever un monument
a la mémoire de Jean-Paul Douhot. Nous ne nous croirjons pas quittes non plu.s envers ce
digne et excellent homme, si nous ne consacrions son e llsmgnement & l'école par un souvenir
monumental , qui devra s’élever au sgm de nos classes , ol 8r voix.a si lgng-tempg ettoujours-
si utilement retenti. :

» Eléves de Douliot, ¢ ‘est & vous qu'appartient I'honneur de concevoir et d’exécuter ce
travail, témoignage de reconnaigsance et de regreu' Un concours-sera-ouvert, et vous étea
Tous appelés a y prendre part.

» Voué tout entier au professorat, 2 la vie spéculative dn cabinet, jenme-encore, M. Douliot
n'avait point atteint les résultats que lui promettaient son nom et son savoir : il Jaisse sans
fortune une veuve et trois enfans ; mais parmi les hommes de cceur et de science, il n'en est
pou:t qui ne doive s’honorer de contribuer & I'éducation- des-fils de Douliot. J'ose vous les
recommander, M, le préfet, au nom de MM. les administrateurs, au nom de toute 1'école ;
vous djsposez des bourses dans les colléges royaux, dans les écoles spemﬁles en donnant
aux enfans de Douliot une part aux bienfaits que vous savez répartir avec tant de lumiére
et de justice , vous acquitterez une dette sacrée , une. dette nationale, car le ‘pays doit une
instrnction libérale et large anx fils 4'un. homme qms eat dév oue, usé, pour l¢ progres dela
sc:ence ¢t pour U'insfruction de tous. » : . :
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COURS ELEMENTAIRE

. THEORIQUE ET PRATIQUE

DE CONSTRUCTION.

QUATRIEME PARTIE.
STABILITE DES EDIFICES.

SECTION PREMIERE.

PRINCIPES DE STATIQUE.

LECON 1.

Préliminaires.

1. Ox appelle corps tout ce qui peut affecter nos sens d’un certain ensemble
d’impressions. -

2. Tout ce que les corps nous présentent de constant et d’uniforme, soit dans
leur maniére d’exister, soit dans leur maniere d’agir, se nomme propriézé.

3. Ge qui contient tous les corps de la nature se nomme espace. L'espace est
absolu, immuable, infini : notre esprit ne peut lui assigner des limites.

Toute partie déterminée de I'espace absolu se nomme espace relatif. Ce n'est
que D’espace relatif que I'on considére dans les sciences, attendu que cet espace
est le seul qui, ayant des limites , soit susceptible d’étre mesuré.

4. L'espace relatif que chaque corps de la nature occupe est ce qu'on appelle
son étendue ou son volume. L’étendue d’'un corps a toujours trois dimensions :
longueur, largeur et épaisseur. Nous ne saurions concevoir un corps privé de 'une
de ces trois dimensions. L’étendue est donc nécessaire & L'existence des corps.

Le volume d’un corps n’est pas constamment le méme : il augmente quand la
tempéra ture augmente, et il diminue en méme temps que la température.

On dit qu’un corps se dilate quand il augmente de volume, et qu'’il se contracte
quand son volume diminue,
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2 COURS DE CONSTRUCTION.

5. Deux corps ne peuvent, dans le méme temps, occuper le méme lien de 'es-
pace. Cette propriété géndrale des corps, que les physiciens rendent sensible par
des expériences , se nomme {mpénétrabilité des corps.

6. On dit qu’un corps est en mouvement quand il passe d’un lien de I'espace
dans un autre; si, au contraire , le corps persévére 4 rester dans le méme lieu de
Pespace, on dit que ce corps est en repos.

7. Un corps ne peut, dans le méme instant , se trouver dans plusieurs lieux de
I'espace; d’otr il suit qu’un corps en mouvement ne peut suivre qu'un seul che~
min 4 la fois.

8. Un corps qui est en repos ne peut de lui-méme se mettre en mouvement;
car si le contraire avait lieu, comme il n'y aurait pas plus de raison pour que ce
corps se mit en mouvement ‘suivant une direction plutét que suivant une autre ,
il faudrait admettre qu’il pourrait prendre plusieurs chemins différens a la fois,
ce qui est impossible ( n° 7).

Ainsi, lorsque nous voyons un corps en mouvement, nous pouvons affirmer
qu’il doit son mouvement & une cause quelconque qui n’est pas en lui, qui lut
est absolument étrangere.

Par la méme raison , un corps en mouvement ne peut, de lui-méme, ni aug-
menter ni diminuer son mouvement.

On nomme inertie cette impuissance des corps de se mettre d’eux-mémes en
mouvement quand ils sont en repos, et de se mettre en repos quand ils sont en
mouvement. .

9. On donne le nom de force a toute cause quelconque de mouvement.

Nous ne connaissons les forces que par les effets qu'elles produisent; ainsi, on
estime qu’une force est plus ou moins grande suivant, que le mouvement qu'elle
produit sur un méme corps est plus ou moins considérable. Les effets des forces
sont des quantités qui , comme toutes les autres , ne peuvent étre appréciées que
d’une maniére relative. C’est pour cela que, pour arriver & l'appréciation de la
grandeur d’une force , nous comparons l'effet qu’elle produit a eelui que produit
dans les mémes circonstances une autre force prise pour unité. C'est de cette ma-
niére que nous arrivons i exprimer les forces par des nombres. Ainsi, par exemple,
si une force produit un effet 2, 3, 4, etc. , fois plus grand que celui de la force
prise pour unité, la grandeur ou l'intensité de cette force sera exprimée par 1'un
des nombres 2, 3, 4, etc. Ce qui signifie que les forces sont proportionnelles aux
effets qu’elles produisent.

10. Dans le mouvement d’un corps, il faut considérer I'espace que ce corps
parcourt ou doit parcourir. L'espace qu’un corps a parcouru est la somme des
lieux par lesquels il a passé pendant son mouvement. On ne considére que la
longueur de cet espace dans I'a ppréciatian du mouvement des corps.

11. Comme un corps ne peut se trouver dans deux lieux différens de I'espace
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PRINCIPES DE STATIQUE. 3

dans le méme instant (n® 7), il est clair que le temps est nécessaire au mouve-
ment des corps. :

Pour apprécier le temps qu’un corps mel & parcourir un espace donné, on
prend I'heure,, la minute ou la seconde pour unité, selon que le temps employé
est plus ou moins considérable.

12. Quand uneseule force agit sur un corps, le mouvement qu’elle lui commu-
nique est nécessairement en ligne droite, car il n’y a pas plus de raison pour que
le chemin unique ( n° 7 ) que peut prendre ce corps se dérange de la ligne droite
plutét d’un coté que d’un autre.

Puisque nous ne connaissons les forces que par les effets qu’elles produisent ;
et que le mouvement d’un corps sollicité par une seule force, est en ligne droite
il faut en conclure que la direction des forces est elle-méme en ligne droite. Or,
nous avons vu que l'intensité d’une force pouvait étre exprimée par un nombre;
mais, au moyen d’une échelle de parties égales, tout nombre peut étre représenté
par une ligne droite ; donc les forces en général peuvent étre représentées en
grandeur et en direction par des lignes droites proportionnelles & leurs intensités.

13. Le mouvement d’un corps est encore en ligne droite lorsquil est sollicité
par plusieurs forces susceptibles de se réduire en une seule qui produirait le méme
effet. Mais le mouvement cesse d’étre rectiligne toutes les fois que les forces qui
agissent sur le corps ne sont pas susceptibles de se réduire en une seule.

14. On appelle résultante 1a force unique qui produit sur un corps leméme mou-
vement que plusieurs autres forces données, agissant dans des directions quel-
conques; et les forces données prennent le nom de composantes.

15. Si plusieurs forces agissent sur un corps, et que leurs actions simultanées se
détruisent , le corps restera évidemment en repos; mais on voit que ce genre de
repos différe essentiellement de celui qui résulte de 1'absence de toute force, qui
est le repos naturel. Le repos forcé, auquel donnent lieu plusieurs forces qui se
détruisent, se nomme équilibre. -

16. L'effet que produit une force sur un point matériel auquel elle est ap-
pliquée, reste le méme, soit que cetie force agisse en tirant, soit qu'elle agisse
en poussant ce point matériel, poureu que ce soit toujours dans la méme di-
rection recliligne et dans le méme sens.

L’expérience confirme complétement cette vérité, ( Le sens suivant lequel les
forces agissent, sera indiqué par des fléches dans les figures. )

A7. La résullante de deux forces P, Q, appliquées en un point matériel m
(fig. 1), dingées suivant la méme droite mA., et agissant dans le méme sens,
est égale & leur somme.

Ainsi, R étant cette résultante, on aura

R=P+Q.
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4 COURS DE CONSTRUCTION.

Cette proposition est évidente d’elle-méme, et s'étend a un numbre quelcunque
de forces qui agiraient suivant les mémes conditions.

Ainsi, soient P, P', P”, P, etc., tant de forces qu'on voudra, appliquées en
un méme point matériel , agissant dans le méme sens et suivant la méme droite ,
si R est leur résultante, on aura

R=P+P'+P"+P"+ etc.. .. ... (1)

18. 8i deuz forces égales agissenten sens coniraire suivant la méme droite
sur un méme point matériel , elles se détruiront, et le point matériel sera en
equilibre , c’est-a-dire, en d'autres termes, la résultante de ces deux forees
sera zéra. '

En effet, le point matériel sera, dans ce cas, sollicité a se mouvoir autant d’un
¢dté que de 'autre , et comme il ne pourra se mouvoir dans les deux sens a la fois,
il restera en repos, c'est-a-dire en équilibre.

19. Si deux forces quelconques P et ) agisseni en sens contraire sur un
point matériel m ( fig. 2 ), suivant la méme droite AB, leur résultante R sera
egale a leur différence P—Q ou Q—P ( suivant que P>Q ou Q>P ) et agira
dans le sens de la plus grande.

En effet, supposons que P soit plus grand que Q , et qu'on ait P=Q-+R;ala
place de la force P nous pourrons prendre Q-+R, et alors le point matériel m
sera sollicité au mouvement par la force Q dans un sens, et par la force Q+R
en sens directement contraire : la force Q qui agit dans un sens détruira donc la
force Q, qui agit en sens contraire ; il restera encore la force R, qui agira dans le
sens de la plus grande force P. Cette force R ( n°14) sera donc la résultante
des deux forces P et Q; mais nous avons supposé P=Q-+R : nous aurons donc
R=P—Q, ce qu'il fallait démontrer.

On démontrerait de méme que si Q>P, la résultante R=Q—P.

20. On congoit facilement que la force P peut étre considérée comme e étant. Ja
résultante , et par conséquent la somme de plusieurs forces p,p',p"..., appliquées
au méme point matériel m ( fig. 2 ), et agissant dans le méme sens suivant la
droite mA, et la force Q comme étant celle de plusieurs autres forces g, 4, ¢"....
appliquées au méme point matériel m , et agissant toutes en sens contraire des pre-
miéres dans la direction de la droite mB; de sorte que P=p~+p'+p"+p"'..., et
Q=q+q'+q"+q"... En substituant donc dans' les équations R=P—Q et
R=Q—P, il viendra

R=p+p'+p"+p".—( g+q+q"+q"...) )
ouR=g+q -+ +q"...—(p-+p +p +p ) {

selon que P sera plus grand ou plus petit que Q.
De i il faut conclure cette régle générale que, si plusieurs forces sont appli-
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PRINCIPES DE STATIQUE. 5
quées en un mérne point materiel, el dirigées suivant la méme droite, leur re-
sultante sera égale a la somme de toules celles qui agissent dans un sens,
motns la somme de loutes celles qui agissent en sens contraire, et celte résul-
tante agira dans le sens de la plus grande de ces deux sommes.

21. 87 plusteurs forces sont appliquées en un ou plusieurs points matériels
liés entre euzx: d'une maniére invariable, a l'un quelconque de ces points mate-
riels on pourra toujours appliquer deux forces égales entre elles et directement
opposées, sans que U'effet des premiéres forces soit changé.

Car les deux forces ajoutées étant égales, et directement contraires, se détrui-
ront, et, par conséquent , ne produiront aucun effetsur le systeme.

22. 8i deuz forces égales sonl appliquées auz extrémités d'une droite rigide,
et agissent en sens contraire dans la direction de cette droite, ces deux forces
se détruiront.

En effet, la force qui estappliquée & la premiére extrémité de la droite ne peut
mouvoir cette extrémité sans entrainer la seconde dans le méme sens, puisque la
droite est rigide; mais la force appliquéea la seconde extrémité, agissant en sens con-
traire de la premiére force , s'opposera a ce mouvement, et on arriveraita la méme
conclusion en prenant leschosesen sens inverse; il y aura donc équilibre entre les
deux forces données, comme si elles étaient appliquées a un méme point matériel.

33. On peut toujours iransporter le point d'application d'une force en un
point quelconque de sa direction, sans changer Ueffet de la force, pourcu que
le nouveau point d'application soit li¢ au premier d'une maniére invariable.

Supposons, en eflet, une force P appliquée an point matériel m (fig. 3), et
agissant dans la divection mA ; je dis qu'on pourra prendre le point B pour point
d’application de cette force ; ear si & ce point B on applique deux forces P, P”
égales entre elles , directement contraires et dirigées suivant la droite mA , ces
forces se détruiront, et l'effet de la force P ne sera pas changé (n° 21 ). Mais si
les forces P/, P” sont égales & la force donnée P, on pourra combiner les forces
P, P” qui sont appliquées aux extrémités de la droite rigide mB; or, ces deux forces
sont égales ct contraires; donc elles se détruivont (n° 22) : il ne restera donc
d’effectif que la force P!, appliquée au point B, et agissant dans le sens de la
force primitive P. Mais P'==P , par hypothtse, donc D'effet de cette force primi-
tive P restera le méme, soit que son point dapplication soit en m ou en B de sa

“direction. _

24. Deux forces P, Q quelconques, appliquées en un méme point m (fig.4),
el dond les directions font un angle quelconque PmQ, ont une résultante qui ne
peutl éire nulle. :

En effet, si la résultante des forces P, Q était nulle, le point matériel n serait
en équilibre, et par conséquent, enappliquanta ce point m une nouvelle force
dans une direction quelconque, il serait mis en mouvement dans le sens et sui-
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vant la direction de cette nouvelle force. Appliquons donca ce point n une force
P’ égale et contraire ila force P; le point m sera mu suivant cette force P'; mais
comme cette force P’ est égale et contraire & la force P, elle sera détruite par
cette derniére : le point m ne pourrait donc pas se mouvoir par I'action de la
force P' comme cela aurait nécessairement lieu si ce point était primitivement
en équilibre;; cet équilibre ne peut donc point exister, puisqu’en partant de cette
hypothése on est conduit 4 une absurdité. )

25. La direction de la résullante de deux forces P)Q quelconques , appli-
quées en un méme point m ( fig.4; ), dont les directions forment un angle quel-
conque PmQ) , est nécessairement dans le plan de cet angle. .

Car les raisons qu’on donnerait pour prouver que la direction de la résultante
doit passer au-dessus de ce plan, serviraient & démontrer le contraire; cependant
cette résultante ne peut pas prendre deux directions i la fois (n°7); donc elle
est dans le plan de I'angle formé par les directions des composantes P, Q.

26. La direction de la résultante de deuz: forces P,Q quelconques, appliquées
en un poini m(fig. 5), divise en deux parties I angle PmQ) formé par les direc-
tions mP, mQ) des composantes.

En effet, la direction de la résultante est celle du chemin que les composantes
peuvent faire prendre au point matériel m ; or , ce point ne peutse mouvoir dans
la direction de la force P, puisqu'il est évident que la force Q dérange ce point
du chemin que lui ferait parcourir cette force Psi elle agissait seule; et on en dirait
autant par rapport a la force Q : ces deux forces tendent donc toutes les deux &
attirer chacune vers elle le point matériel; mais ce point ne peut suivre qu’un
seul chemin & la fois; il faudra donc qu'il prenne une direction intermédiaire
mR , ce qu’il fallait démontrer.

27. Dans le cas ot les deum forces données P sont égales, la direction
mR de leur résultante divise I'angle PmQ en deux parties égales ; car les rai-
sons qu'on donnerait pour prouver qu'elle doit s'approcher davantage de la di-
rection de I’une des composantes servirail & démontrer le contraire.

" 98. Dans le cas ou les deux forces données sont inégales, Uangle que forme
la direction de la résultante avec celle de la plus grande composante est plus
petit que celui qu'elle fail avec la direction de la plus petite.

En effet, soit Q>P, de sorte que Q=P -+ ¢; en ne prenant d’abord dans Q
que sa partie P, les deux forces appliquées au point m (fig. ) seraient toutes les
deux égales 2 P, et par conséquent la direction mR de leur résultante R(n°27)
diviserait I'angle PmQ en deux parties égales; or, la force R’ étant la résultante
des forces PP dirigées suivant les droites mP, mQ produira sur le pointm le méme
effet que les deux composantes P,P. Mais, suivant la droite mQ , il nous reste
encore la force g qui fait partie deQ; le point m sera donc dans le méme cas que s'il
était sollicité par les deux forces R’ et ¢, au lieu des forces données P,Q; la résul-
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tante R des forces R et ¢ divisera donc l'angle RmQ en deux parties inégales,
de maniere que RinQ <PmR, ce qu’il fallait démontrer.

29. Si U'on suppose que plusieurs forces soient appliquées aun méme point
m (fig. 6), qu'elles soient dirigées d'une maniére quelconque dans un plan ou
dans U'espace suivant les droites mA, mB, mC..., ef qu'elles se fassent équilibre
auiour du point m, l'une quelconque de ces forces sera dgale et directement
coniraire & la résulfante de touies les auires.

En effet, supposons que les forces données soient P, Q, S, T, etc. ; si I'on sup-~
prime 'une de ces forces, la force P, par exemple, 1’équilibre sera rompu, et le
point matériel m sera mu de la méme maniére que s'il était sollicité par une force
unique égale & la résultente des forces restantes, Or, si I'on rétablit la force P
supprimée , équilibre sera rétabli aussi, ce qui ne peut avoir lieu qu'autant que
la force P détruira la résultante de toutes les autres forces; cette force P est done
égale et directement contraire & la résultante de toutes les autres forces du
systeme.

La réciproque de cette proposition est évidente; c'est-a-dire que toutes les fois
que plusieurs forces agiront sur un méme point matériel, et que I'une d’elles sera
égale et directement contraire 4 la résultante de toutes les autres, le point maté-
riel sera en équilibre.

30. Les corps se composent de parties dont la petitesse échappe méme & notre
imagination. On donne ces parties élémentaires des corps le nom de molécules,
de particules on d'atomes. _

31. A la température ordinaire, il y a des corps dont les molécules sont unies
entre elles par une force plusou moins considérable , qu’on appelle cohésion; d’au-
tres dont 'union des parties est presque nulle, et d’autres enfin dans lesquels les
molécules , au lieu d’étre unies entre elles, tendent sans cesse, au contraive, i 5’é-
carter les unes des autres par une certaine force de répulsion.

Les corps qui jouissent d’une certaine cohésion s'appellent solides; ceux dont
'union des molécules est presque nulle se nomment liguides ou fluides , et ceux
dont les molécules sont en état de répulsion prennent le nom de gaz ou fluides
élastiques. :

Les corps solides sont les métaux, les pierres, les bois, etc. ; les liquides, I'ean
et les différentes liqueurs; et les fluides élastiques sont air, les vapeurs, etc. , etc.

32. La science qui a pour objet la recherche des lois de I'équilibre et celles du
mouvement des corps en général se nomme mécanique. Cette science comprend
deux branches principales, la mécanique proprement dite et I’Aydraulique.

La premiére comprend les lois de 'équilibreetcelles dumouvement des corps soli-
des, et laseconde, les lois de 'équilibre et celles du mouvement des liquides. Ghacune
de ces deux branches de la mécaniquese divise en deux parties,dont1'une a pour ob-
jet Pétude des lois de I'équilibre, et Pautre celle des lois du mouvement des corps.
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On appelle statique la partie qui a pour objet I'étude de I'équilibre des solides,
et hydrostatique celle qui s'occupe de Péquilibre des liquides.

Enfin, on appelle dynamique la science du mouvement des solides, et hydrody-
namique celle du mouvement des liquides.

La théorie de la stabilité des édifices est fondée nécessairement sur cerlaines
parties de chacune des branches de la mécanique, dont nous traiterons & mesure
qu'il en sera besoin. C’est d’abord de la statique que nous allons nous occuper, en
considérant les corps sans pesanteur , pour rendre le raisonnement plus simple,
sauf ensuite & leur restituer leur poids pour rentrer dams les circonstances
naturelles. '

LECON II.

Principes d'équilibre, composition et décomposition des forces paralltles.

33. 8i deuw forces paralléles P,Q agissent dans le méme sens aug extrémi-
tés d'une droite rigide AB (fig. 7)), faisant un angle quelconque ABQ avec la
direction BQ de Pune Q des forces données ;

1° Leur résuliante R sera égale a leur somme P+Q;

2° Cete résultante sera paralléle auzx composantes el agira dans le méme
sens; _

3° Elle aura son point d'application D sur la droite rigide AB, enire les
points A, B d'application des composantes. ' '

En effet, suivant Ja direction de la droite rigide AB, appliquons aux points A
et B deux forces M, N égales entre elles, et agissant en sens contraire, une de A
en M, et 'autre de Ben N ; ces deux forces se détruiront (n® 21), et l'effet des
forces P,Q sur la droite AB ne sera pas changé. Si maintenant nous considérons
les forces P,M appliquées en A, comme leurs directions AP AM forment un
angle quelconque PAM, elles auront une résultante T qui ne sera pas nulle
(n® 24), et dont la direction AT divisera Pangle PAM d’une certaine maniére
(no 26), et sera située dans le plan de cet angle PAM(n®25). De méme, si nous
considérons les forces Q, N qui agissent sur le point B suivant les directions BQ ,
BN, elles auront aussi une résultante S, dont la direction BS diviscra I'angle
QBN en deux parties quelconques, et sera dans le plan de cet angle. De la il
suit que les divections TA , SB des résultantes T, 8, qui produisent le méme effet
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cjue les forces données P, Q, sont dans le méme plan et ne sont pas paralléles; si
donc on les prolonge, elles se rencontreront en un point C, auquel nous pourrons
appliquer ces deux forces T,S (n° 23), pourvu que ce point C, de leur direc-
tion, soit lié d’'une maniére invariable & la droite AB.

Cela posé, par le point C menons la droite CR parallétle 2 AP, et la droite
M'N'paralléle 2 AB : les angles M'CA, ACD seront respectivement égaux aux
angles MAT, TAP; de méme les angles N'CB, BCD seront respectivement
égaux aux angles NBS, SBQ : si donc on applique au point C deux forces con-
traires M', N' égales & la force M ou N, dans la direction de la droite M/N, et
les forces ', (', respectivement égales a P, Q, et dans la direction CD, il
est clair, 1° que les forces P, M’ produiront sur le point G le méme effet que
les forces P, M sur le point A ; mais la résultante T des forces P, M produit le
méme effet sur le point G que sur le point A ; ainsi les forces P, M, transportées
parallelement i elles-mémes du point A au peint C, produiront encore le méme
effet sur la droite AB. 2° De méme, les forces V', ', respectivement égales et
paralleles aux forces N, Q, produiront le méme effet sur la droite AB, en étant
appliquées au point C, que si elles Iétaient au point A. Or les forces M', N' étant
égales et directement contraires se détruiront; il ne restera donc d’effectif sur le
point C que les forces P’, @/, qui agissent dans le méme sens et suivant la méme
droite; donc (n°17) une force unique égale  leur somme P’ + Y, appliquée au
point C et dirigée suivant la droite CD dans le sens de C en D, produirait sur ce
point C, et par conséquent sur la droite AB, le méme effet que les forces ', Q¥ ou
leurs égales P, Q; ce qui démontre les deux premicres parties de la proposition.

Pour démontrer la troisiéme , nous observerons que la résultante R des forces
P, Q est la méme que celle des forces T, S, dont les directions concourent au
point C; la direction de cette résultante R divisera donc I'angle ACB d'une cer-
taine maniére; cette direction rencontrera donc la droite AB en un certain point
Dentre A et B ; la résultante R pourra donc étre appliquée en ce point D de sa
direction : ce qui prouve la troisiéme partie de la proposition.

34. Sideux forces égales P, Q sont appliquées auzx extrémiteés de la droite
rigide AB (fig. 7), et agissent dans le méme sens , le point d ’applimtion D de
leur résultante R divisera la droile AB en deux pariies égales.

En effet , supposons la méme construction (fig. 7 ) que dans la proposition pré-
cédente, et que les forces auxiliaives M, N qui agissent en sens contraire I’une de
Pautre dans la direction de la droite AB soient égales aux composantes égales P,
Q, les directions des résultantes partielles T, S diviseront en deux parties égales
les angles MAP, NBQ (n° 27), puisque les forces P, M sont égales entre elles,
ainsi que les forces N, Q. Mais les angles TAP, TCD sont égaux comme corres-
pondans, et les angles CAD, TAM, comme opposés par le sommet; d’oit I'on
vpit que le triangle ACD est isocele. On démentrerait de la méme maniére que e

2
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triangle DCB est aussi isoctle. On aura donc AD = DC et DB =DC, et partant
AD=DB, ce qu'il fallait démontrer.

35. Il suit de la que, st un nombre pair de forces parallzles agissent dans
le méme sens , sont égales deux @ deux, et appliquées syméiriquement a
égales distances du milieu d'une droite rigide , la résultante de toutes ces forces
sera égale a leur somme, et son poinid application sera au milieu de la droite
rigide.

Car en combinant deux a deux ces forces égales et appliquées & des distances
égales du milieu de la droite rigide, leurs résultantes successives passeront toutes
par le méme point milieu de la droite rigide, et s’ajouteront ensuite, comme
agissant toutes dans le méme sens et suivant la méme droite. '

36. Réciproquement, on pourra toujours décomposer uneforce P quelconque,
appliquée en un point donné d'une droile rigide indéfiniment prolongée, en
autant d'autres forces plus petites qu'on voudra, égales deux a deux, pa-
ralléles & laforce donnée P, appliquées a des distunces egales deux a deuz duw
point d'application de la force donnée P, et dont la somme lotale serait égale
4 celle force P.

Cette proposition est une suite immédiate de celle qui précéde.

37. Le point d'applicationD de larésultante Rde deux forcesparalléles quel-
conques P, Q (fig.8) appliquées aux extrémités d'une droite rigide AB et
agissqnt dans le méme sens, est plus prés dupoint d'application B de la plus
grande force Q que de celui A de la plus pelite P.

En effet, Q étant plus grand que P, on pourra supposer Q= P+g; de
sorte que les forces appliquées aux extrémités de la droite AB seront respective-
ment P et P-+g¢==Q. Ne prenons d’abord dans Q que sa partieP ; les forces ap-
pliquées aux points A et B seront alors égales, et par conséquent (n° 34) le point
d’application de leur résultante R sera le milieu C de la droite rigide AB. Si
maintenant nous combinons cette résultante R avec la seconde partie g de la
force Q , nous verrons que le point d’application D de la résultante R des forces
R et g, ou des forces donnédes P, Q sera situé entre le point C et le point B
(n° 33); donc AD sera plus grand que DB, ce qu'il fallait démontrer.

38. Le point d'application C (fig. 9) de la résultanie de deux forces paral-
Rles iriégafes P, Q, qui agissent dans le méme sens aux ewtrémités A, B, d’une
droite rigide AB, divise cette droite AB en deux segmens AC, CB, réciproque-
ment pmpombnnefs aux deux composantes P , Q; de sorte que

P:Q*:CB:AC.
En effet, supposons d’abord eque les forces P, Q soient commensurables ,

qu'elles soient entre elles |, m i n (m et n éant deux nombres entiers quel-
cenques ). Cela posé , divisons la droite AB en deux parties AD, DB qui soient
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directement proportionnelles aux forces données, de sorte que AD ;DB P:
Q. m:n Sur les prolongemens de la droite AB, faisons BF = DB et AE==
AD, nous aurons EE' = 2AB. Prenons le milieu C de la droite EF nous

aurons CE—= CF.._

= AB. Ensuite, divisons ED en m parties égales et DF

enn pnrties égales aussi ; Ies parties égales de ED seront égales aux parhes égales
de DF, car ED est égal 4 2AD, et DF 4 2DB, la pmporlmn AD:DBimin;

peut se melire sous la forme 2AD: 2DB ou ED:DF  m:n, ce qm donne
ED_ DF
“m = Maintenant, divisons les forces P et Q, la premlbre enm parties

€gales, et la seconde en » parties égales aussi ; les parties de P seront de méme
grandeur que celles de Q ; représentons une de ces parties par p, nous aurons
P=mp et Q=np. Appliquons {p aux points E, D, et un p 4 chaque point de
‘division compris entre E et D; appliquons de méme ip aux points D et F et
un p a chaque point de dmsmn compris entre D et F; il est clair que, de
cette maniére , la force P sera symétriquement distribuée sur la droite ED ,
et la force Q sur la droite DF. On observera qu’au point D seront deux %p
ou p comme sur les autres points de division, mais qu’aux points E et F il n’y
aura que ip & chacun. Ces deux ip, et tous les p appliqués aux autres points
de division, sont donc des forces égales et symétriquement appliquées par rap-
port au point C ; ce point C sera donc (n° 35) le point d’application de la ré-
sultante générale de toutes ces forces élémentaires, et par conséquent des
forces données P et Q.

Cela posé, de ce que EC = AB, et EA=AD, il en résultera EC —EA =
AB — AD, ou AC=DB; de méme , de ce que CF A B et BF=BD, il s’en-
suivva CF— BF — AB — BD, ou CB = AD. Mais nous avons posé P Qs
DA : BD ; si donc nous remplacons BD par sont egal AG, et DA par son égal
CB, nous aurons finalement P : Q;; CB : AC; Pon voit que la propo-
sition est démontrée pour le cas des forces P, Q commensurables.

Supposons actuellement que les deux composantes soient incommensurables ;
je dis que le point C (fig. 10) d’application de la résultante R divisera encore
la droite AB en deux parties telles qu'on auraP : Q. BC : AC. . . . (a).

En effet, si cela n'était pas vrai, et qu’au lieu d’étre le point C qui satisfit a
la proportion (a) le point d'application de la résultante fiut le point D situé
entre les points C et B, quelque petite que fit la distance CD, on pour-
rait toujoursdiviser la droite AB en un assez grand nombre de parties égales pour
que ces parties fussent encore plus petites que ceite distance CD , supposée aussi
petite quion voudra : il y aurait donc au moins un point de division a entre les
points G et D. €ela posé, il est clair qu'on pourra prendre le point @ pour point
d’application de la résultante de deux- forces réciproquement proportionnelles
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aux segmens commensurables Aa, aB, dont 'une pourra étre P, et l'autre
représentée par (', qui sera déterminée par la proposition suivante,

B iAeliPiQ =22

Mais la proportion (a) nous donne Q=—% Bé\- C, d’ot Ton voit que Q>Q, par
la raison que le facteur Aa de la valeur de Q' est plus grand que le facteur ACG
de la valeur de Q, et que le dénominateur aB de la premiére fraction est plus
petit que celui BC de la seconde ; ainsi deux causes concourent a rendre Q>Q.
Mais par supposition le point d’application de la résultante des forces P, Q est le
point D; tandis que celui de la résultante des forces P, Q' estle point a ; or, le
point D est plus prés du point B que ne Uest le pointa; d’ola il s’ensuivrait quen
augmentant la force Q pour avoir la force Q', le point d’application de la résul~
tante séloignerait de la force augmentée, ce qui est contraire a ce qui a ¢été dé-
montré au n® 37, d'otr il faut conclure que le point d’application de la résul-
tante des forces incommensurables P, Q ne peut pas étre située a la droite du
point C qui divise la droite AB en deux parties réciproquement proportionnelles
a ces forces P et Q. On démontrerait de la méme maniére' qu’il ne peut pas
&tre vers la gauche de ce point C ; il faut donc en conclure que c’est ce point C
lui-méme. Ainsi la proposition énoncée au commencement de cet article est vraie
généralement.

39. Appelons p et g les segmens AC et CB (fig. ro) suivant lesquels le point
C dapplicatlon de la résultante de deux forces paralleles P, Q, agissant dans
le méme sens, et appliquées aux extrémités d’une droite nglde divise cette
droite AB ; nous aurons

: P:iQilg:p, dobt Pp = Qg (1)

Clest-a-dire que les produits des composantes par les distances respectives
de leur point d'application & celut de leur résultante, sont égaux. '

40. Appelons r la longueur comprise entre les points d’application des com-
posﬁnles, desorte que r = p + q; cela posé, de la proportion P2 Q {5 gt p,
nous tirerons

P+Q:Qilg+pip e P+Q:Plig4piyg,
ou : R:Qiir:p e RIP | riq.
D’ot1 'on tirera
p:-% et q—_.... (2) ,

formules qui serviront & trouver le point d’application de la résultante.

41, Silon oppose directement une force S égale i la résultanie R des forces
-paralléles et de méme sens P et Q qui agissent aux extrémités de la droite rigide
AB (fig. 11), cette force S fera équilibre a la résultante R et par conséquent aux
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composantes P, Q. Et puisque S=R, et que R=P+4Q, on aura aussi
S=P4Q.D allleurs le point d’application de la force § est le méme que celui
de la résultante.

42, 8i trois forces paralleles P, Q, S, appliquées i une droite rigide AB(fig.11),
se font équilibre, 'une quelconque d’entre elles, la force Q, par exemple, sera
égale et directement contraire 4 la résultante des deux autres (n° 29); or, pour
que les trois forces P, Q, S soient en équilibre , il faut que la force S, qui agit en
sens contraire des deux autres P, Q, soit égale et directement contraire & la ré-
sultante de ces derniéres (n° 29); ainsi'5=FP +Q; d'ot Q=8 —P........(3)
Mais les forces P, S agissent en sens contraire; d'oi il s'enswuit que la résultante
de deux forces paralléles P, S, qui agissent en sens coniraire sur une droite ri-
gide, est égale a la différence des composanies, et agit dans le sens de la plus
grande composante.

0" . R
43. De la premitre des formules (2) on tire 7 =" ou, en comparant ce ré-

Q
CxR

sultat a la fig. 11,AB=——2~—; et si dans cette dernitre on met pour B sa

valeur S, et ala place de Q sa valeur § — P trouvées ci-dessus, il viendra
AB=2CXS L (a)

pour l'expression de la distance du point d’application B de la résultante Q au

point d’application A de la plus petite des composantes paralleles P et S qui

agissent en sens contraire sur la droite AC.

- A4k, Si dansla formule (4) ,quiest AB = 5 iAC, nous supposons ézales les

P
S5xAC

cohposantes S et P, nous aurons Q=S—P=o, ct par wnsequent AB=="~ 5=

SxAC

—5 =, Cest-i-dire que la résultante de deux forces paralliles et egales,

agissani en sens coniraire sur une droite rigide , est nulle , et son point d’appli-
cation est & une distance infinie du point d'application de Punc des compo -
santes; ce qui veut dire, en d’autres termes, que les deux forces proposées n’ont
pas de résultanie unique possible.

De I il suit qu’une seule force ne saurait metire celles-la en équilibre. Pour
obtenir cet équilibte il faudra deux forces qui soient égales aux forces données,
appliquées au méme point, I'une agissant en sens contraire de la premiére force
donnée, et Iautre en sens contraire de la seconde. Alors il y aura évidemment
¢quilibre , puisqu’on aura quatre forces égales appliquées deux & deux aux mémes
points, et directement contraires.

Ainsi, par exemple, soient les forces P, P égales, paralltles et contraires, ap-
pliquées aux extrémités de la droite AB (h.D 12); si on oppose une force P’ éga-
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le & celle appliquée au point A, et uneautre P’ égale i celle appliquée au point B,
il est clair qu’il y aura équilibre.

On pourrait aussi mettre le systéme en équilibre,, en ajoutant une force quel-
conque a l'une des forces données , qui par la cesserait d’étre égale a l’autre , et on
chercherait la résultante du systeme , comme au n° 43,

M. Poinsot appelle couple un systéme de deux forces paralléles égales, agissant
en sens contraire aux extrémités d’'une droite rigide. Ce géomeétre en a fait une
théorie particuliére qui ne nous est pas indispensable.

45. Supposons a présent un nomire quelconque de forces paralléles P , Q,
R, S, T, situées ou non situées dans un méme plan, agissant dans le méme
sens, et appliquées a des points A, B, C, D, ete. (fig. 13), situds d’une ma-
nigre quelconque dans Pespace, mais liés entre eux d’une maniére ineariable,
el proposons-nous de lrouver leur résultante.

10 On joindra les points d’application A , B, des deux premiéres forces P, Q
par la droite AB, sur laquelle on cherchera le point d’application E et la gran-
deur de la résultante V de ces deux forces, comme il a été ditau n° 40, et on

aura V=P +0Q,et AE= vaﬂﬂﬁ%igﬂ

2° On joindra le point E d’application de la résultante V et celui C de la
troisieme force S par une droite EC ; sur laquelle on cherchera le point d’applica-
tion F et la grandeur de la résultante X des deux foroesIV et S, qui sera celle

des trois premiéres forces P, Q, S, et on aura
X=V+8=P+Q+S, et EF =

§ X EC $ X EC

X T PQFS

3° On joindra le point d’application F' de la résultante partielle X et celui D
de la quatrieme force T par Ia droite FD, sur laquelle on cherchera le point
d’application G et la grandeur dela résultante R des forces X et T, et on aura

R=X+T =P+Q+8+T, et FG = T )EFD _P+TQX+%]3}-T

On se conduira de la méme maniére jusqu’a ce qu on soit arrivé 4 la derniere
force donnée.

46. 1l est facile de voir que, si Pon avait un systéme de forces paralléles appli-
quées i des points liés entre eux d’une maniére invariable, et situés d’'une ma-
niére quelconque sur un plan ou dans I'espace, dont les unes agiraient dans un sens
et les autres en sens contraire, on aurait la résultante finale de toutes ces forces; en
prenant celle des forces qui agiraient dans un sens, celle des forces qui agiraient
en sens contraire ( en 8’y prenant comme ci-dessus dans 'un et 'autre cas}, et
enfin celle de ces deux résultantes partielles, d’aprés le principe n° 43, qui serait
la résultante demandée.

- 47, Les deux résultantes particlles qui nous ont conduit 4 la résultante finale
dans le n® précédent peuvent présenter, trois cas.
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Ao Elles peuvent étre égales et appliquées en un méme point, ce qui annon-
cerait que le sysieme des forces serait de lui-méme en équilibre, attendu
que ces deuw résultantes seraient non-seulement égales, mais encore directe-
ment contraires (n° 28 ).

- 2° Elles peuvent éire égales et non directement opposées; dans ce cas la ré-
sultante sera zéro, mais son point d’application sera a linfini (n° 44 ), c'est-

a-dire qu'une seule force ne pouvail produtre le méme effel que les forces
données.

3° Enfin ces deux résultantes seront inégales , et auront ou n’auront pas le
méme point d’ application. Dans l'un et 'autre cas, la résultante finale sera
égale & leur différence. Quant au point d’application de cetle résultante , il sera
le méme que celuides résultantes partielles, quand ces derniéres seront appliquées
au méme point (n° 19), et on I'obtiendra comme il a été dit au n° 43 dans le cas
contraire.

48. Dans tout ce qui précede sur les forces paralleles , nous n’avons tenu au-
cun compte de ’angle que forme la droite rigide avec les directions des forces
qui lui sont appliquées; et, en effet, cet angle n'entrait pour rien dans toutes les
questions que nous avons traitées. De cette indépendance des résultats obtenus
jusqu'ici, par rapport 4 langle formé parla droite rigide et les directions des
composantes , résulte un principe de la plus haute importance, qui consiste
en ce que :

Sil'on a un systéme quelconque de forces paralléles agissant toutes dans le
méme sens, ou les unes dansun sens el les autres en sens contraire, poureu que
ces forces conservent les mémes intensités ou qu'elles prennent de nouvelles in-
tensttés proportionnelles auw premiéres, le point d'application de leur résul-
tante restera le méme, quelque direction gqu'on fasse prendre successivernent
aux forces, tant qulelles resteront paralléles et quielles conserceront les mé-
mes points d'application.

Cetle propriété remarquable du point d’application de la résultante d’un sys-
teme quelconque de forces paralléles a fait donner & ce point le nom de centre

des forces paralléles.

LECON It

Principes d’¢quilibre , composition et décomposition des forces dont les directions ne sont
pas paralleles.

49. La direction de la résultante de deuw forcesP, Q appliquées en un méme
point matériel m (fig. 14) et dont les directions forment un angle quelconque
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PmQ, est la diagonale mC d'un parallélogramme mACB formé sur les droites
mA, mB, qui, a partir du point m, représente en grandeur et en direction les
composantes P, Q.

En effet, faisons BD=BC, et achevons la losange BCED; appliquons au
point D, et dans Ja direction de la droite DE, deux forces ¢, Q”, toutes les
deux égales a la force Q et directement opposées; ces deux forces se détruisant
Pune I'autre, ne changeront rvien & l'effet des forces données P, Q : ainsi la ré-
sultante des quatre forces P, Q, Q', Q”, sera absolument la méme que celle des
composantes P, Q.

Or, si nous considérons les forces Q, Q”, attendu que le point d’application
de la force Q peut étre transporté au point D de sa direction (n°23), ces deux
forces auront le méme point d’application D ; mais elles sont égales: donc (n° 27)
la direction de leur résultante T divisera P'angle QDQ" en deux parties égales,
et, conséquemment prolongée, elle passera par le point C,auquel nous pourrons
la supposer appliquée.

Les deux autres forces P, Q qui nous restent sont pgralléles, et 1'une P peut
étre appliquée au point A de sa direction, et Pautre ( au point E; ces deux droi-
tes paralléles sont donc appliquées aux extrémités de la droite AE; d'ailleurs elles
agissent dans le méme sens; donc le point d’application de leur résultante divi-
sera cette droite en deux segmens réciproquement proportionnels a ces forces P,
Q' (n° 37). Or, d’aprés nos hypothéses, nous avons P { Q; ;Am : mB. Mais Am
CB=CE, mB=AC et Q=Q'; si donc nous substituons dans la proportion ci-
dessus , nous aurons P: Q2 CE: AC; d’olx il suit que le point G est celui oi
la résultante S des forces P, Q' serait appliquée. Mais la résultante T des deux
premiéres forces Q , Q” passe aussi par ce point C et peut y étre appliquée; ainsi,
le point C étant lié au point m d’une maniére invariable, ces forces T et S appli-
quées au point G produiraient le méme effet sur le point m que les forces don-
nées P, Q : mais la résultante des forces T, S passerait par le point G; celle des
forces P, Q, qui est la méme, passera donc par ce point G; d'ailleurs, la résultante
des forces P, Q doit passer par le point d’application de ces forces; donc, enfin,
cette résullante passera par la diagonale mC du parallélogramme mAGB, ce quiil
fallait démontrer.

50. La résultante de deux forces P, Q appliquées &t un méme point matériel
m (fig. 15) dont les directions forment un angle quelconque AmB, est repré-
sentée , non-seulement pour sa direction, mais encore pour sa grandewr par la
diagonale du parallélogramme formé sur les droites mA, mB qui, & partir du
point m, représentent en grandeur et en direction les composantes P, (.

En eflet, quelle que soit la grandeur de la résultante R des forces P, Q, a elle
seule elle produira le méme effet que les deux composantes; si donc on lui oppase
ume force S qui lui soit égale, cette derniére fera équilibre aux composantes P, Q.
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Or, la direction de la résultante des forces P, Q (n° 49) est la diagonale du paral-
lélogramme formé sur les droites mA , mB , représentant en grandeur et en direc-
tion les composantes P, Q; la direction mD de la force S séra donc le prolonge-
ment de celte diagonale Cm. De tout cela il résulte que les trois forces P,Q,S
sont en équilibre autour du point i ; d'out ‘il suit que l'une quelconque de ces
trois forces, la force Q , par exemple, est égale et directement contraire a la résul-
tante des deux autres (n® 29). Si donc on prolonge la direction Bm:de la force Q
d’une quantité mE==mB, la droite mE représentera en grandeur et’en direction
Ia résultante des deux autres P, S. Si maintenant oh joint les points E et A par
une droite AE, le triangle AmE sera égal au triangle mAC; car ces triangles ont
le cbté commun mA ; par construction mE — mB = AC, et les angles AmE , mAC
sont égaux comme alternes—ml.ernes, donc, la droite AE est parallele et égale &
Cm; si donc par le point E on méne une droite ED paralléle & Am, la figure
mAED sera un parallélogramme dont la diagonale mE sera la direction et la gran-
deur de la résultante des forces P, S. Je dis de plus que, le c6té mA de ce paral-
lélogramme étant proportionnel & la force P, le c6té mD sera proportionnel a la
force S=R, car, si cela n’était pas vrai, la droite proportionnelle i la force S
serait plus grande ou plus petite que mD , et, en construisant le parallélogramme
dans ’une ou P'autre hypothése , il s'ensuivrait que la résultante des forces P, S,
devant suivee la diagonale de ce parallélogramme, ne serait plus directement
opposée a la force Q, comme cela doit étre nécessairement. Mais mD=EA=mC;
ce qu’il fallait démontrer.

Le principe qui résulie de la réunion des deux derniéres propositions est de la
plus grande importance ; on 1'appelle le principe du parallélogramme des fomes .
ou simplement le parallélogramme des forces.

51. 1l suit du parallélogramme des forces que les trois cotés mA , AC et mC
du triangle mAG sont proportionnels aux intensités des forces P, Q, R, la der~
niére étant la résultante des deux autres; car les ctés de ce triangle sont respec-
tivement égaux aux droites qui, dans le parallélogramme mACB, représentent
ces mémes forces, Mais nous avons vu en trigonométrie (Géo. pl. n° 395) que
(Cm)* =(mA)2 -(AC)2 -+ 2 mADSACY cos. CAm. Si donc nous mettions dans cette
expression , les forces au lieu des lignes qui les représentent, nous aurions

Re=P++ Q- PQcos. CAm.... (5).

Cette formule nous fera connaitre la résultante R lorsque nous conmitram Tes
composantes P, Q et Pangle de leurs directions,

52. Dans le triangle mAG (Géo. pl. n° 394)on a
Am 3 AG ; mC ;| sin. ACm ; AmC ; sin, CAm....., (a).

Mais Vangle ACm=<CmB, qui est celui formé par les directions de la résultante
3
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R et de la composante Q; de sorte que nous pourrons substituer sin (R, Q)au
lieu de sin; ACm, pour indiquer qu’il s'agit du sinus de I'angle formé par les
directions des deux forces R, Q. De méme, 'angle AmC est celui formé par les
directions de la résultante Il et de la composante P, desorte qu’au lieu de sin.
AmC nous mettronssin. (R, P); enfin 'angle CAm étant le supplément de I'angle
AmB (Géo. pl. n° 366), nous aurons sin. CAm=sin, AmB; mais l'angle AmB est
celui formé par les directions des forces P, Q; par conséquent , d’apres la conven-
tion ci-dessus, nous aurons sin. GAm =sin. (P, Q); si nous substituons ces sinus
dans la proportion (), il nous viendra

P:Q:R; ;sin. (R,Q):sin. (R,P):sin. (P, Q).... (6)

d’ol1 l'on voit que les composantes P, Q et leur résultante R sont respectivement
proportionnelles aux sinus des angles formés par les directions des deéux autres
forces.

53. 11 suit encore de la que les relations qui existent entre deux forces qui con-
courent en un point et leur résultante sont les mémes, tant pour leurs grandeurs
que pour leurs directions, que celles qui existent’entre les cotés et les angles
d’un triangle dont les ctés sont proportionnels aux forces, et les angles supplé-
mens ou égaux a ceux formés par les directions de ces mémes forces. Par consé-
quent , les questions relatives a ces trois forces dépendent entiérement de la réso-
lution trigonométrique de ce triangle.

Donnons-en des applications.

54, Etant donné deux forces P, Q appliquées en un méme point matériel m
(fig. 15), et Uangle formé par leurs directions mP, mQ , trouser la direction de
leur résultante. '

On commencera par calculer la grandeur de la résultante par la formule du
n° 51, etensuite dans la triple proportion (6) du n° 52 on prendra

P:R;sin.(R,Q):sin.(P, Q),
ce qui donnera _
sin. (R, Q)=sin. Cm B=IEI—IERM.

55. Connaissant les directions mA , mB, mC, de trois forces P, Q,R, (la
dernidre étant la résultante des autres) et Uune P de ces forces, trouver les deux
autres Q, R (fig. 15).

La triple proportion (6) du n° 52 nous donne

P:Q::sin. (R, Q) sin. (R, P)
et P:R7sin (R, Q):sin. (P,Q).
La premitre de ces deux proportions donnera

_ Psin.(R,P) . Psin. (P, Q),
Q=—rmar wQ et’la seconde R =W Q
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55 Une force R étant donnde, on demande de la décomposer en deux autres
P, Q, dirigées suivant les droites données mA, mB (fig. 15).
Dans ce probléme, on connait done la résultante R et les angles formés par Ia
direction mGC de cette résultante et celles mA , mB des composantes inconnues.
Or, de la triple proportion (6) nous tirerons

P:R::sin.(R, Q).sm (P, Q)

et - Q: R sin. (R, P):sin. (P, Q)
Rsin. ) R » P
donc P=-—- (g (g tQ= sns::n(P(le)) ..... (9). -

57. On donne la résultante R, lune P des composantes, et Vangle (R, P) des

directions de ces deux forces; on demande la gmndeur et la direction de Uautre
composante Q.

Puisque (n° 53) les relations des forces et de leurs directions sont les mémes
que celles des cotés et des angles du triangle AmC (fig. 15); les données de la
question ramenent le probléme & celui-ci: Un angle et les deux cdtés qui le

comprennent étant donnés dans un triangle, trouver les deux autres angles et
le troisiéme coté.

Or , nous avons vu en trigonométrie ( Géo. pl. n° 399) que
at+bia— tang——ﬂ'wngé———B...(a).
Supposons que a@ == mC=R, que b=mA =P, A = CAm et B=ACm = CmB,
il nous viendra en substituant dans la proportion (a)

' .o CA AC CAm—AC
R4-P:R —P; (tang o4O g CAM—ACr, ()

58. On donne les deux composantes P, Q et la résultante R; on demande les
directions de ces trois forces , le point d’application m de ces forces et la direction
de la force P étant donnés.

Ici on se trouve dans le cas oti 'on donne les trois ctés d’un triangle et qu'on
demande les trois angles. Ainsi, il nous faudra faire usage de la formule donnée

, . . b— —

(Géo., pl. n°397), qui est sin. > ;/ (et ?IE: bt .. (@),
le rayon des tables étant l’uniaé. Reprenons les principes.

59. Si trois forces P, Q, S, se font équilibre autour d’un point matériel m
(fig. 15) en prenant les longueurs mA , mB proportionnelles aux intensités des
forces P, Q, et en construisant le parallélogramme mACB, la diagonale mC de
ce parallélogramme représentera en grandeur et en direction la troisitme force S,
qui fait équilibre aux deux premiéres P, Q (n% 49 et 59) ¢ or, les angles AmS,
BmS sont respectivement supplémens des angles AmG , BiC; les sinus des angles
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formés par la direction de la force S avec chacune des deux autres P, Q sont donc
égaux & ceux des angles que forme la diagonale mC avec les directions des forces
P, Q; on aura donc (n° 52) pour le cas de trois forces qui se font équilibre au-
tour d’un point matériel m,

P:Q: S; sin. (5,Q) Isin. (S,P);sin. (P,Q),
¢est-a-dire, que ces trois forces sont respectivement entre elles comme les sinus
des angles formés par les directions des deux autres. '

60. II suit de 14 que les problémes que nous avons résolus depuis le ne 54,
jusque et y compris le n° 58, sont immédiatement applicables au cas de trois
forces qui se font équilibre autour d’'un point matériel.

61. Si les directions mA , mB (fig. 15) des deux forces P, Q appliquées en un
point 7, sont perpendiculaires, le parallélogramme AmBG sera rectangle, et
Ppar conséquent aussi le triangle AmC; ce qui donnera

(Gm)*=(Am)4-(AC)

ou _ R:=P24-Qx,.... (10)
d’ou : R=}/"P:4Qz.....[0)

62. Appelons a et b les angles AmG, ACm du triangle rectangle AmC, on
aura (Géo., pl. n° 391),

mA=mCcos.a, et mB.%:mCXcos. b,

ou bien P=Rcos.a, et Q=Rcos.b....(12)
dor cos.a:%, et cos.b =%
P | Q {013
ou C0s.a=—=—=, et C08.b=——
VerQg' VetQ

La formule (11) fera connaitre la résultante, et les formules (13) sa direction.

63. Sinons carrons les denx membres des équations (12), il nous viendra
' P2 = R2 cos.?a et Q2 = R* cos.2b
ajoutons ces derniéres membre i membre , etil viendra -
P> 4 Q2 = R (cos.%a+ cos.?b).
Mais (formule 10) P2+ Q2 = R#, nous aurons donc
Rz =R2 (cos.2 @ 4 cos.2 b).
Ce qui se réduit & 1 =cos.2a}cos.2b. . . . . . (14).

La somme des carrés des cosinus est donc égale & 'unité, c’est-i-dire au rayon
du cercle pris pour unité. Ce principe est une modification de cette formule de
trigonométrie ( Géo. pl. n® 371) R® = cos.2a +-sina; car D'angle b éant le
complément de a, nous avons cos.b = sin. 4, et dans la derniére formule R = 1.
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64. Supposons que trois forces P, Q, 8, soient appliquées en wn méme point
matériel m, (fig. 16) et que leurs directions mA, mB, mC ne soient pas dans
un méme plan, mais disposées dune manidre quelconque dans Uespace ; si les
portions mA, mB, mC des directions de ces forces 'sont respectivement propor-
tionnelles & leurs intensités, la diagonale du parallélepipide formé sur ces trois
droites mA , mB , mC représentera en grandeur et en direction la résultante
des trots forces P, Q, S.

En effet la résultante des forces P, Q, dont les directions sont dans le méme
plan mADB, sera représentée par la diagonale mD du parallélogramme mADB ;
appelons-la T, cette résultante, et combinons-la avec la troisiéme composante S ;
comme les directions mD, mGC des deux forces T, S, sont dans le méme plan
DmCE, leur résultante R sera représentée en grandeur et en direction par la
diagonale mE du parallélepipéde ; mais il est évident que la résultante des deux
forces T, S est la méme que celle des forces données P, Q, S; donc la résultante
de ces derniéres est représentée aussi en grandeur et en direction par la diago-
nale mE du parallélepipede.

65. Si les directions des trois composantes étaient rectangulaires, le parall¢-
lépipede formé sur les trois droites, qui représentent en grandeur et en direc-
tion , les trois composantes, serait rectangle , et en vertu du n° 120 de la géomé-
trie & trois dimensions, on aurait

(mE)2 = (mA)* + (mB)* 4 (mCy,
ou bien R?=P2+4Q24-82 (15)
dou R= VE QIS

66. Supposons toujours trois forces rectangulaires appliquées en un méme
point m (fig. 16), et appelons a, b, c les angles AmE , BnE , CmE, que forme
la divection mE de la résultante avec celles mA, mB, mC des composantes;
comme les triangles AmE , BmE, CmE sont rectanglesen A, B et C, nous au-
rons (n°® 62).

P =Reos.a, Q=Rcos.b, S=Reos.c..... (16).
d’or nous tirerons
P )
C08.a = 35y cos.b = RQ’ €O8C =+ eeen (17)
ces formules feront connaitre la direction de la résultante, et peuvent se mettre
sous la forme ‘

P
R e e S

vs(18)
e TFEETE )
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G7. Carrons les équations (16), nous aurons

Pz =R?cos.2a, Q*=R?cos.?b, 8§?=Ricoste.
et ajoutons-les ensuite, il nous viendra
P2 - Q* 4 §* — R? (cos.?a+-cos.?b - cos.’c).
Mais P2 4 Q3 4- 52 = R?; nous aurons done
R? =R?(cos.?a+cos.?b4-cos.’c)
ce qui se réduit & ,
1==cos.’a}cos.*b --cos.7¢c. . . . (19).

68. Supposons qu'on ait un nombre quelconque de forces P, P!, P”, P"......
appliguées en un méme point matériel m (fig. 17), dirigées comme on voudra
dans Uespace, et qu'on en demande la résultante. :

Pour résoudre ce probléme, sur la direction mP de la premiére force P, on
fera la longueur mA égale 4 autant d’unités de longugur, que la force P renferme
d’unités de force; par le point A on ménera la droite AC paralléle & la direction
mP' de la seconde force P/, et & partir du point A, on fera cette droite AC égale
4 autant d’unités de longueur que la seconde force P’ contient d’unités de forcé ;
la droite mG représentera en grandeur et en direction la résultante Q des deux
premiéres forces P, P’ (n® 50). Par le point G on ménera la droite CE parallele
4 la direction mP”, de la troisitme force P”; & partir du point G on fera cette
droite CE égale a autant d’unités linéaires que la force P” renferme d'unités de
force, et la droite mE représentera en grandeur et en direction la résultante des
forces Q, P”, et par conséquent des trois premieres forces P, P, P, Par le point E
on menera la droite EF paralléle a la direction mP" de la quatriéme force P,
on fera cette droite EF égale & autant d’unités linéaires que la force P” ren-
ferme d’unités de force, et la droite mF représentera en grandeur et en direction
la résultante des forces S et P, et par conséquent des quatre premiéres forces
données, P, P', P, P". En continuant d'opérer de la méme maniere, on par-
viendra de proche en proche 4 la résultante de tant de forces données qu’on
voudra, appliquées en un méme point, et dirigées, comme on voudra, dans
'espace.

Onremarquera qu'en suivant ce procédé, on formera un polygone mACEFGm
situé ou non situé dans un méme plan, et comme I'ordre que nous avons suivi
en combinant les forces données pourrait évidemment étre interverti de plusieurs
maniéres, il en résulte qu'on pourra former différens polygones du méme genre,
qui auront tous un cité commun m(x qui est celui qui représente et en grandeur
et en direction la résultante de toutes les forces données. Si ce coté était nul,
c’est-a~dire, si le point G venait coincider avec le point m d’application de toutes
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les forces, il est évident que les forces données seraient d’elles-mémes en équi-
libre.

69. En suivant une marche inverse a celle que nous venons d’indiquer pour
résoudre le probleme précédent, on parviendra a décomposer une force donnée
en autant d’autres forces quon voudra, qui seraient toutes appliquées au méme
point m que la force donnée, et qui auraient des directions données quelconques
dans P’espace. Ainsi, par exemple, si on donnait la force représentée par la
droite mG (fig. 17), le point m étant son point d’application, par ce point m,
on menera tant de droitesmP” mP"', mP”, mP1, mP qu’on voudra, qui pourraient
étre prises pour les directions d’autant de forces; cela fait, par le point G on me-
nerait la droite GI' parallele i la direction mP*"; on ferait cette droite GF égale
a autant d’'unités linéaires que 'on voudrait que la force P*", appliquée suivant
la droite mP"", contint d’unités de force. Parle point I, on ménerait la droite FE
paralléle & la direction mP”’; on ferait cette droite FE égale & autant d’unités de
longueur qu'on voudrait que la force P” contint d’unités de force; par le point E
on meénerait la droite EC parallele i la direction de la force P”, on ferait cette
droite EC égale & autant d’unités de longueur qu’on voudrait que la force P”
contint d’unités de force ; enfin, par le point G on menerait les droites CA, CD
respectivement paralléles aux directions mP’, mP, des deux derniéres forces P/, P,
et les grandeurs de ces forces seraient représentées par les longueurs mD, mA.

On voit que ce probleme est susceptible d’une infinité de solutions, puisque
toutes les forces, excepté deux, peuvent étre prises arbitrairement.

LECON 1V.

Des momens.

70. Supposons que, par un point donné dans I'espace, on méne une perpen-
diculaire 4 la direction d’une force; le produit de I'intensité de cette force par la
longueur de cette perpendiculaire sera ce qu'on appelle le moment de cette force
par rapport & ce point. On nomme aussi moment d’une force, par rapport a une
ligne droite, le produit de cette force par la commune perpendiculaire & cette
droite et a la direction de la force. Enfin si un plan est paralléle § la direction
d'une force,, le moment de cette force par rapport a ce plan sera le produit de la
force par sa distance au plan.

On appelle centre, ouaxe, ou plan des momens, le point, ou la droite, ou
J¢ plan auquel on rapporte les momens de plusieurs forces, On suppose toujours
le centre,, I'axe ou le plan_des momens fixe dans l'espace , de manitre pourtant
qu'il peut prendre un mouvement de rotation. |
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La distance par laquelle il faut multiplier I'intensité d’une force pour avoir
son moment prendra le nom de bras de levier de la force.

Des momens des forces paralltles.

71. Supposons que deux forces paralléles P, Q agissent dans le méme sens
aux extrémités A, B d'une droite rigide AB (fig. 18), perpendiculaire & la direc-
tion des forces : sile centre des momens est le point G d'application de la résul-
tante R, les momens des composantes P, Q seront égaux.

En effet , en'appelant p, g les bras de levier AC, CB, d’aprés le n° 39 nous

aurons .
Pp =Qq.

72. Les momens des composantes P, () seront encore égaux , si on les rapporte
a un axe EF (fig. 19) mené par le point d’application C de la résultante R dans
une direction quelconque. '
" En effet, si par I'axe des momens on mene un pian perpendiculaire au plan
des directions des forces données, et que par les points A , B ol1 les directions des
composantes P, Q rencontrent ce plan on abaisse les perpendiculaires AE, BF sur
la droite EF, ces droites AE , BF seront aussi perpendiculaires aux directions des
forces , et par conséquent seront les bras de levier des composantes : les triangles
CAE, CBF seront semblables, et donneront '

AC:CB:: AE : BF.
Mais (n° 37) Q:P;7AC:CB;
done Q:P:.AE BF.
Et par conséquent P>AE= QXPF,

comme il fallait le démontrer,

73. Les momens pour les composantes seront encore égaux si on les rapporte &
un plan abed (fig. 20), mené par le point d'application G de la résultante, pa-
ralltlement a la direction des composantes. '

En effet, si i ce plan abed on abaisse, par les points d’application des compo-
santes, les perpendiculaives, AE, BF, la droite EF menée par les pieds E, F
des perpendiculaires, passera évidemment par le point C d’application de la ré-
sultante; par conséquent les forces P, Q produiront sur la droite EF le méme
effet que sur le plan abed ; a question est donc ramenée a la précédente.

Dans les trois cas que nous venons de démontrer, le moment de la résultante
est zéro , puisque son bras de levier est zéro. Les momens des composantes , qui
sont égaux, tendent i faire tourner le centre, l'axe ou le plan des momens, F'un
gn sens contraire de I'autre, et se font équilibre.
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Th. Supposons dewx forces paralléles agissant dans le méme sens aux extré-
mités d’une droite rigide AB (fig. 21), mais que le centre des momens soit le
point D situé sur le prolongement de AB; je dis que le moment de la résultante
sera égal & la somme des momens des composanies.

En effet, soit C le point d’application de la résultante R, des forces P, Q;
appelons r le bras de levier CD de cette résultante, et p, ¢ ceux AD, BD des
composantes. Cela posé, puisque R =P |- Q (n° 33), nous aurons

Rr=Pr+Qr...(a).
Mais r =DC = AD 4 AC =p 4 AC, et r=CD =*BD —CB =g — CB: si

donc nous multiplions ces deux égalités respectivement par P et Q, il nous
viendra

Pr=Pp+PXAC et Qr=Qq—Q >CB.

En substituant ces valeurs de Pr, Qr dans I'équation (), il en résultera
q

Rr=Pp+ P> ACH Qg — Q< CB...(3);
Mais P ><AC — Q< CB = o, puisque (n° 39) PXXAC=QCB,
ce qui réduit 'équation (b) & Rr=Pp + Qq,
et la proposition est démontrée. '

75. 8i l'on rapportait les momens des forces paralléles P, Q, quit dgissent
dans le méme sens aux extrémités de la drotte rigide AB (fig. 22), @ un axe DF
mené comme on voudra dans le plan DBF perpendiculaire & la direction des
forces, cet axe DF rencontrant la dwzte rigide en un point D situé sur le pro-
longement de cette dernitre, le moment de la résultante egalerait encore la
somme des momens des composantes.

En effet, si par les points d’application A, B, C des composantes et de la ré-

sultante on abaisse , & I'axe DF, les perpendiculaives AE, BF, CG, les triangles
semblables DAE, DCG , DBF donneront

B0y AR+ An. BD X AE
BF:BD ; ; AB: AD="0XAE,
et BF : BD ©° CG ; DC = "2 X €G

BF

Mais (n° 74), DC > R=P > AD + Q ><BD; si donc, dans cette égalité,
nous substituons les valeurs de AD et de DC données par les proportigns précé-
dentes, il nous viendra

BD )(CG

BDXCGy p prDxA

® 1 Q<DB,
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et en divisant par BD et multipliant par BF,

R < CG=P3<AE + Q< BF,

comme il fallait le démontrer.

76. Le moment de la résultante de deux forces paralltles agissant dans le
méme sens aux extrémités d’une droite rigide AB, (fig. 23) serait encore égal @
la somme des momens des composantes, si Uon rapportait les momens & un plan
abed, parallele a la dirvection des forces, et mené par un point D quelconque
pris sur le prolongement de la droite AB, qui joint les points d’application des
composantes.

En effet, si par la droite rigide AB on méne un plan perpendiculaire au plan
abed des momens, lintersection de ces deux plans sera une droite DF qui passera
sur le point D ot la droite AB perce le plan des momens, et les perpendicu-
laires AE, B, GG, abaissées des points d’application des composantes et de la
résullante sur le plan des momens, auront leurs pieds sur la droite DF ; or, il est
évident que les forces données produiront sur le plan des momens le méme effet
que sur la droite DF, d’ot1 il suit que la proposition est démontrée.

T7. Supposons toujours que deux forces paralleles, agissant dans le méme
sens, soient appliquées aux extrémités d'une droite rigide AB (fig. 24) , mais
que le centre des momens soit situé au point D sur la droite rigide AB entre ses
extrémités; je dis qualors le moment de la résultante sera égal & la différence
des momens des composantes.

En effet, les forces paralleles agissant dans le méme sens, nous donneront

R=P+Q,

par conséquent Rr=Pr+4Qr.. (a).
Mais r—=CD=AC—AD=AC—p,et r—=CD=DB—CB—=¢—CB;
multiplions ces égalités respectivement par P et Q, et il nous viendra

Pr=PX}AC—Pp et Qr=Qq— Q CB.
Substituons ces valeurs de Pr et de Qr dans Pégalilé (a) ci-dessus , et il nous
viendra Rr=PX>}AC—Pp+ Q¢ —Q<CB,
et comme _ P<XAC—QXBC=o,
il nous restera

Rr=Qq—Pp,

comme il fallait le démontrer. :

78. En suivant la marche tracée aux no* 75 et 76 , on démontrerail que si
Vaxe EF (fig. 25), ou le plan abed (fig. 26), coupe la droite rigide AB en un
point D quelconque entre ses extrémités, le moment de la résultante sera encore
égal a la différence des momens des composantes,

79. Nous avons vu (n° 43) que quand deux forces paralleles agissent en sens
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contraire aux extrémités d'une droite rigide AB (fig. 27), leur résultante
R=P—Q, agit dans le sens de la plus grande composante, et son point d’ap=-
plication est situé en G sur le prolongement de la droite rigide AB, du coté de
la plus grande composante.

Cela posé, supposons que, sur le prolongement de la droite rigide AB, on ait
pris le centre D des momens ; je dis que, dans ce cas, le moment de la résuliante
sera égal a la différence des momens des composantes.

En effet , puisque les composantes agissent en sens contraire (n° 42), on a

R=P—Q, -
en multipliant par r , il viendra
Rr=Pr—Qr....{a).

Mais r=DC=AD—AC=p—AC,
et r=GD=BD—BC=q—BG;
en multipliant ces égalilés respectivement par P et Q, il viendra

Pr=Pp—P><AC, et Qr=0Qqg—Q>BC.
En substituant dans 1'égalité (@) , on aura

Rr=Pp—P>AC—Qq +Q><BC.
Mais | Q><BC—P><AC=0;
done Rr=Pp—Qq,
ce qu'il fallait démontrer.
80. En raisonnant d’'une maniére analogue 4 celle des n™* 75 et 76, on dé-

montrerait que la proposition précédente a encore lieu dans le cas olt I'on rap-
porte les momens & un axe DF (fig. 28) ou & un plan abed (fig. 29).

81. Supposons la méme chose que dans le v 79, mais que le centre D des
momens soit situé entre les extrémités A, B (fig. 30) de la droite rigide AB;
je dis que, dans ce cas, le moment de lg résultante sera égal & la somme des
momens des composantes.

En effet, nous aurons encore R=P—Q,

et par conséquent Er=Pr—Qr....(a).
Mais r=CD=AC4AD=AC+}p, et r=CD=BC—BD==BC—gq,
d’o Pr=P>AC+Pp, et Qr=Q>BC—Qq.
En substituant donc dans 'équation (4), il viendra
Re= P> AC+Bp — Q3<BC + Q.
Mais P> AC—QBC=o,
donc Rr="Pp + Qq,
ce qu’il fallait démontrer.
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82. On démontrerait par le raisonnement des n* 75 et 76 que ce théoréme a
lieu aussi quand on rapporte les momens & un axe GF (fig. 31) ou a un plan abed
(fig. 32). '

83. En rapprochant les théorémes précédens sur les momens des forces paral-
leles, on reconnaitra que foutes les fois que les momens des composantes tendent
a faire tourner le centre, Uaxe ou le plan des momens dans le méme sens, le
moment de la résultante est égal a la somme de ceux des composantes; et que
toutes les fois que ces derniers momens tendront & faire tourner le centre, Uaxe
ou le plan'des momens en sens contraire, le moment de la résultante sera égal
la différence des momens des composantes , et agira dans le sens du plus grand
moment composant. '

Dans le premier cas, on aura généralement

Rr=Pp+4Qq....(20),
et dans le second, .
Rr =Pp—QqouRr=Qq —Pp....(21)
(suivant que Pp sera plus grand ou plus petit que Qq), et de ces équations on
tirera

?

_Pp+Qq - _Pp—Qyq _Qq—PFp
r____._B__ et r_-—-R— ou .I".__—'—“I—l“—- .es ('.'!. 2)

en observant que R = P -+ Q quand les composantes agissent dans le méme sens,
et R==P — Qou —=Q — P, dans le cas contraire. '

84. Proposons-nous , maintenant, de résoudre ce probleme : Plusieurs forces
paralleles? , P', P”, P, agissant dans le méme sens , sont appliquées a des points
matédriels situés comme on voudra dans Uespace, et liés entre eux d’'une maniere
invariable ; on demande le moment de la résultante de toutes ces forces , par rap-
port & un axe fixe quelconque HO. '

Par la direction d’une des forces données, menons un plan paralléle i 'axe OH
(fig. 33), et par cette derniére droite un plan qui soit perpendiculaire au pre-
mier , qui coupera les directions des forces en des points A, B, G, D, qui pour-
ront étie pris pour les points d’application de ces forces (n° 23); abaissons par ces
points A , B, C, D les perpendiculaires AH, BK , CN, DO , & I'axe des momens HO ;
ces perpendiculaires seront les bras de leviers des forces données ; représentons-les

respectivement par p, p', p”, p”'. _

Cela posé, 1° on joindra par une droite AB les points d’application A, B des
deux premiéres forces P, P'; sur cette droite AB, on cherchera le point d’appli-
cation E de la résultante S de ces deux premiéres forces (n° 38); par ce point E,
on dbaissera la perpendiculaire EI sur HO, et on aura d’une part

S=P+PV
et de lautre S EI=PAH+ P XBK
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ou : SXEI=Pp+Pp....(a)

20 On joindra le point E d’application de la force S et celui C de la force P”
par la droite EC, sur laquelle on cherchera le point d’application F de la résul-
tante T des forces S, P”, et on aura d’une part

T=S -I—P":P—}-P'--]—P'”....(b),
et de I’autre TXFL=S8XEI4+P"><CN,
ou en mettant pour S>< El sa valeur (a) , et au lieu deP” % CN, sa valeur P”p”,
T FL=Bp+ Py -+ PP (0).

3> On joindra le point F d’application de la résultante partielle T & celui D de

la force P”’ par la droite FD, sur laquelle on cherchera le point G d’application

de la résultante R des forces T, P”, par lequel on abaissera Ja perpendiculaire
GM a I'axe OH, et on aura d’une part

R=T+P"=P4+P 4P +P"...(d), '
etde lautre  R>GM ou Rr=T XFL +P"< DO,
ou Rr="Fp +Pp' 4+ P"p"+P"p".... (23).
En eontinuant d’opérer de cette maniere, sl y avait un plus grand nombre

de forces données, on parviendrait, de proche en proche , 4 la résultante de toutes

les forces et au moment de cette résultante, ce 4 quoi peut conduire directe-
ment la formule (23).”

La formule (23) divisée par la formule (d) ci-dessus, donnera
_Pp+Pp - Pp - Prp”
r= PP P P "'(24)
D’otr I'on voit que, pour avoir lebras de levier de la resultante, il faut diviser
la somme des momens des composantes par la somme de ces oamposantes

85. Si I'on avait un systeme de forces paraliéles dont les momens des unes
tendraient & produire un mouvement de rotation dans un sens autour de 'axe
des momens, et ceux des autres forces 4 produire un mouvement en sens con=
traire , on chercherait, comme dans le n® 84, le moment de la résultante de toutes
celles qui tendraient a faire tourner Uaxe dans un sens , ensuite le moment de la
résultante de toutes les autres, et enfin le moment résultant total de ces deux mo-
mens résultans partiels, d'aprés le principe du n° 83. Ainsi, par exemple, si
P, P, P”, P"1, sont des forces dont les momens tendent a faire tourner I'axe dans
un sens, et Q Q, Q", Q" d’autres forces dont les momens tendent & faire tourner
Iaxe en sens contraire, en appelant p, p', p’y p” oy 419 345 §e, €t 1
les bras de levier des forces, on aura, pour la résultante, la somme algébrique

suivante :

R=P+P4+P+P....—(Q+Q+Q +Q"....)
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en donnant le signe + aux forces qui agiront dans un sens, et le signe —
a celles qui agiront en sens contraire; et le moment de la résultante sera

Rr == Bp -+ P/ o+ P o P .. — (Qg ++ Qf + Qg + Q")
et partant, le bras de levier de cette résultante sera

pPp LB P LR — Qg+ Qe L Q' QU)o
PHPHP P =Q+Q+ o+

86. Si T'on demandait le moment résultant de tant de forces paralléles qu’on
voudrait , appliquées en des points matériels situés dans l'espace d’une maniére
quelconque, et liés entre eux d’une maniére invariable,, les momens étant rap-
portés & un plan paralléle a la direction des forces, aprés avoir abaissé, par les
points d’application A, B, G, D (fig. 34) des forces données des perpendicu-
laires AH, BK, CN, DO, surle plan des momens abcd , on se conduirait
exactement comme dans le n® 84. Ces deux procédés sont tellement semblables ,
quayant eu soin d’indiquer les choses par les mémes lettres, pour obtenir le mo-
ment de la résultante, on pourra relire le numero cité, en se servant de la fig.
34 qui représente la question actuelle au lieu de la fig. 33. .

Des momens de forces noil-parélléles.

87. Supposons deux forces P, Q dont les diretions concourent en un point
m (fig. 35); si le centre D des momens est sur un point quelconque de la direc-
tion mD de leur résultante R , les momens des composantes seront égaux , et
celui de la résultante sera nul; de sorte que le systtme sera en équilibre au-
tour du point D.

Le moment de la résultante est évidemment nul, puisque son bras de levier
est zéro. De la on pourrait en conclure que les momens des composantes sont
égaux, car on voit que ces deux momens tendent & produire un mouvement
de rotation en sens contraire 'un de Pautre autour du centre des momens, et
comme le moment de la résultante est nul, il faut que ces deux momens com-
posans se fassent équilibre, et soient par conséquent égaux. Mais voici une
autre démonstration de cette vérité.

Si, par le point D de la direction de la résultante, on abaisse les perpendi-
culaires DA, DB sur les directions des forces P, Q, les ‘triangles rectanigles
AmD, BmD donneront ( Géo. , pl. n° 389 )

Je premier :.Dm"sin (R,P) ., AD,
et le second +Dm ; ;sin. (R, Q) BD;
donc, sin. (B, P),. sin. (R, Q)3 AD ; DB.
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Mais (n°® 52) Q:P:%sin, (R, P):sin. (R,Q);
donc, Q:P::AD_',DB;
d’olr QXDB=PXAD,

ce qu'il fallait démontrer.

88. Sile centre D des momens (fig. 36) au lieu d’étre sur la direction de la
résultante était sur celle mD d’une composante Q, on démontrerait , comme au
dernier numéro, que le moment R'>< DB de la résultante, est égal a celui
P > DA de l'autre composante P.

89. Supposons que deux forces P, Q concourent en un point m (fig. 37) , et
que le centre D des momens soit situé sur le plan des directions de ces forces ,
mais au dehors de Uangle qu'elles forment ; je dis que le moment de la résultante
sera égal & la somme de ceux dés composantes. '

En effet, menons la droite mD par le point m d’application des forces et le
centre D des momens; et décomposons la force P en deux autres , I'une P! dirigée
suivant la droite mD, et autre P” suivant la direction de la force Q; si la
force P est représentée par la’longueur mG , la force P'le sera par mE , et
l'autre P” par mF, en supposant construit le parallélogramme mEGF.

Cela posé, par le cenire D des momens, abaissons les perpendiculaires
DA, DB, DC respectivement sur les directions des forces données P, Q , et de
leur résultante R; comme le centre D des momens est sur la direction mD de
l'une P’ des composantes de P, le moment de cette dernitre sera égal a celui de
son autre composante P” dirigée suivant mF (n°88), de sorte que

P 5< DA =P" < DB... (a).

Mais Ia résultante R des forces données P, Q est aussi celle des trois forces P,
P”,Q, dont deux P”, Q agissent dans le méme sens suivant la méme droite mQ,
et se composent en une seule égale a P” -}~ Q : la résultante R des forces données
sera donc aussi celle des forces P! et (P"+Q); or, le centre des momens est sur
la direction de la force P'; par conséquent, les momens de la résultante R et de
la composante (P” 4+ Q) sont égaux (n° 88); nous aurons donc

R><DC=(P"+Q)XDB=P"<DB+ QX DB;
ou bien en vertu de P'équation (ay
R X DC X P=AD 4 Q X DB,
comme il fallait le démontrer.

90. Supposons toujours deux forces P, Q concourantes en un poiut m (fig. 38),
mais que le centre D des momens soit situé dans Uangle et dans le plan des direc-
tions des forces donndes P, Q; je dis que le moment de leur résultante sera égal
& la différence de ceux des composantes.
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Pour le démontrer, on décomposera la force P en deux autres, Pune P’ dirigée
suivant la droite mD qui joint le centre D des momens et le point d’application
m des forces données, et I'autre P” suivant la méme droite mB que la seconde
force donnée QQ, mais agissant en sens contraire. Si la composante P est repré-
sentée par la longueur mG, et que 'on construise le parallélogramme GEinF, les
longueurs mE, mF représenteront les composantes P/, P,

Cela posé, par le centre D des momens, abaissons les perpendiculaires DA,
DB, DC respectivement sur les directions des composantes P, Q et de la résul-
tante R ; comme le centre des momens est sur la direction de la composante P' de
P, le moment de ectte dernitre sera égal & celui de son autre composante P”;
ainsi nous aurons

P X AD—=P” X DB.... (a).

Mais la résultante R des composantes P, Q est aussi celle des trois forces P/, P”,
Q, dont deux P”, Q agissent en sens contraire suivant la méme droite mQ; elles
se composeront donc en une seule égale 3 Q—P”, de sorte que la force R sera
la résultante des deux forces P et (Q—P"); ar, le centre des momens est sur la
direction de la composante P'; le moment de la résultante R sera donc égal a
celui de la composante (Q—P”) : on aura donc

R % DC = (Q—P") X DB = Q X DB — P” XX DB,
ou bien, en ayant égard & I'équation () ci-dessus,
RX DC=Q X DB—P X AD,
comme il fallait le démontrer.

91, 1l est facile de voir dans la figure 37 que les momens des composantes
tendent 2 faire tourner le centre des momens dans le méme sens, et que, dans la
figure 38, ils tendent 4 faire tourner le méme point en sens contraire. De la, il
faut conclure que le moment de la résultante de deux forces qui concourent en un
point est égal a la somme ou a la différence des momens des composantes , suivant
que ces derniers momens tendent & faire tourner le centre des momens dans le méme
sens ou en sens contraire, comme dans le cas des forces paralliles.

92. Deux forces, dont les directions ne sont pas dans un méme plan, ne
peuvent jamais se composer en une seule résultante; de sorte que , pour les mettre
en équilibre, il faut au moins Uemplot de deux forces.

En effet, si ces deux forces avaient une résultante, par un point de la dlreu-
tion de cette résultante , on pourrait toujours mener une droite qui rencontrat
la direction de 'une des composantes sans étre dans le plan de la direction de
'autre composante; car, d’aprés Ihypothése, le plan mené par la direction de
la résultante et de la premiére composante ne passerait pas par la direction de
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la derniére composante. Ainsi, si I'on rendait cette droite fixe , elle détruirait
Peffet de la résultante, et par conséquent les forces données devraient étre en
équilibre autour de cet axe, ce qui ne peut avoir lien, puisque I’'une des com-
posantes a un moment nul autour de cet axe (celle dont cet axe rencontre la
direction ), tandis que l'autre a un moment qui ne saurait étre nul,, puisque sa
direction passe au-dela de I'axe des momens. Ainsi, ces deux momens composans
ne sauraient se détruire, et par conséquent les forces données ne peuvent point
se composer en une seule.

LECON V.

Des centres de gravité des polygones.

93. On appelle masse d'un corps la quantité absolue de matitre quile com-
pose, sans avoir égard & son volume.

1 suit de 13 que deux corps de méme masse peuvent avoir des volumes inégaux,
et deux corps de méme volume peuvent avoir des masses différentes.

94. Si T'on divise la masse d’un corps par celle d’un ‘autre corps de méme
volume et soumis & la méme température, le quotient sera la densité du premier
par rapport i celle du second. Ainsi, un corps est plus ou moins dense, selon
que, sous un volume donné, il renferme plus ou moins de matiére.

95. Tous les corps abandonnés 4 eux-mémes de précipitent a la surface de la
terre,, en se dirigeant en ligne droite vers le centre de ce globe. Nous ignorons
quelle est la nature de la force qui fait ainsi tomber les corps ; mais nous ne pou-
vons nier son existence, puisque ses effets nous sont sensibles et que nous pou-
vons les apprécier. Pour désigner cette force inconnue, on lui a donné les noms
de grayité, de pesanteur, d'attraction. Elle agit avec la méme intensité sur toutes
les molécules de matiére qui sont situées i la méme distance du centre de la
terre ; mais sur les molécules placées a des distances différentes de ce centre, elle
agit en raison inverse des carrés de ces distances. Toutefois, attendu que les corps
que nous considérons autour de nous i la surface de la terre sont i de trés-
petites distances les uns des autres, comparativement & la grandeur du rayon
terrestre, qui est d’environ 1,435 lieues, ou 3,271,864 toises, nous pouvons
regarder les molécules de ces corps comme étant animées de la méme pesanteur.

96. Nous regarderons comme mathématiquement paralléles les droites sui-

vant lesquelles les molécules des corps sont attirées vers le centre de la terre,
5
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parce que 1° ces droites forment des angles trés-petits, attendu le trés-peu
d’éloignement respectif des molécules matérielles que nous considérons; 2° nous
ne considérerons de ces droites que de trés-petites longueurs , comparativement
2 la distance du centre de la terre ol elles tendent & se rencontrer.

97. La résultante des gravités de toutes les molécules d’un corps est la pesan-
teur de ce corps ; et comme les directions des gravités des molécules sont paral-
leles , il s'ensuit que la pesanteur ou la gravité d’un corps est la somme des
gravités de toutes ses molécules. Cette somme des pesanteurs des molécules d'un
corps cst aussi ce qu'on appelle le poids de ce corps.

98. Comme les gravités de toutes les molécules d’'un corps sont égales, le poids
d’un corps est proportionnel au nombre de ses molécules ; mais il en est de méme
de sa masse; d’ot1 il suit que ces deux choses seront toujours exprimées par les
mémes nombres ; par conséquent , quand il s'agira de la masse d'un corps, nous
pourrons la désigner par son poids, et réciprogquement 'un par I'autre.

99. Puisque les directions des pesanteurs des molgcules sont paralléles , il existe
dans P'intérieur d’'un corps un point qui est le centre de ces forces paralléles
(n® 48), et ce point est ce quon appelle le centre de gravité du corps.

Si l'on suspend un corps par un fil, ce fil sera tendu suivant une ligne droite
verticale qui passera par le centre de gravilé du corps, quelle que soit la position
qu'on donne & ce dernier par rapport 4 la direction du fil. La tension de ce fil
sera égale et directement opposée au poids du corps. Tout cela est une suite im-
médiate des principesdes forces paralléles.

On congoit qu'une force égale au poids du corps, qui serait dirigée dens le
méme sens , suivant la méme droite, produirait sur le fil la méme tension que
le poids du corps; d’oi il suit qu’on peut faire abstraction du volume du corps
pour ne considérer que son poids suspendu & son centre de gravité, qui est le
point d’application de la force qui produirait le méme effet.

4100. Le poids d’'un corps s'obtient en multipliant son volume par le poids
de 1unité de volume de la méme matiere que ce corps. Ainsi p étant le ‘poids
de cette unité , et v le volume du corps en question, son poids P sera donné par

I’équation P =yp.

La quantité représentée par p est ce qu'on appelle la pesanteur spécifique du
oorps on l'obtient en divisant le poids du corps par le poids d’un pareil volume

Q’eau distillée , et soumise & la température moyenne de l'année, qui est d’en-
viron 18 degrés centigrades.

Nous reviendrons sur les pesanteurs spécifiques des corps.

Ces préliminaires étant posés, passons & la recherche des centres de gravité
des lignes, des surfaces et des corps.
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101, Le centre de gravité d’une ligne droite chargée uniformément de poids
égaux est au milieu de sa longqueur.

En effet, cette droite est dans le méme cas que si elle était soumise 4 Paction
d’une infinité de forces paralltles, égales, uniformément distribuées sur la lon-
gueur de la droite, et agissant toutes dans le méme sens. Par conséquent
(n° 35) le point d’application de‘la résultante de toutes ces forces, ou, en d’au-
tres termes, le centre de gravité de la droite est au milieu de sa longuear.

102. 8¢ une droite AB (fig. 39) divise en deux parties symétriques la figure
quelconque ABCD, cette droite AB contiendra le centre de gravité de cette figure ,
tant de sa superficie que de son contour , uniformément chargés Uun et Uautre.

En effet, si 'on méne une infinité de paralléles @b , cd... infiniment prés
les unes des autres, et dans la direction qui leur convient pour étre divisées
en deux parties ¢gales par la droite AB, on pourra regarder ces droites comme
étant les élémens de la figure , pour le cas de la superficie, et par conséquent
comme des droites uniformément chargées dans toutes leurs longueurs. Dans
le cas du contour, les extrémités de ces droites seront les points élémentaires de
ce contour, ct seront également pesans deux a deux.

Cela posé, il est facile de voir que les centres de gravité de toutes ces droites
sont au milien de leurs longueurs, tant pour le cas de la superficie que pour
celui du contour. Or, la droite AB passe par les milieux de toutes ces droites
ab , ed...; donc elle contient leurs centres de gravité. Cette droite AB pourra
donc étre regardée comme étant le lieu des points dapplication d’une infinité de
forces paralléles, agissant dans le méme sens, et respectivement égales aux
poids des doubles ordonnées de la figure en question , pour le cas de la super-
ficie, et & la somme des poids des élémens du contour situés sur les extrémités de
ces doubles ordonnées, dans I'autre cas. De 14, il sensuit que le point d’applica-
tion de la résultante de toutes ces forces , qui est évidemment le centre de gravité
de la figure, est sur la droite AB. _

. 103, 1l suit de 14 que si une figure plane peut étre divisée en deux parties
égales par deux différentes droites qui se coupent, le point d’intersection de ces
deux droites sera le centre de gravite de la figure , tant pour sa superficie que
pour son conlour ; car, d’aprés ce qui vient d’étre démontré, ce centre doit se
trouver 4 la fois sur ces deux droites, puisque chacune d’elles divise la figure en
deux parties symétriques.

104. De la résulte que le centre de gravité d'un polygone régulier , d’un pa-
rallélogramme quelconque, d'un cercle, d’une ellipse, et de toute autre figure &
centre et uniformément chargée dans toute son étendue, est le centre méme de
figure,, tant pour la superficie que pour le contour.

105. Cherchons maintenant le centre de gravité du périmetre ou contour d'un poly-
gone quelconque ABCDE (fig. 40), supposéuniformémentchargédans tousses points.
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Nous chercherons d’abord le milieu de chaque ¢6té du polygone qui sera son
centre de gravité. Soient @, b, ¢, d, e ces centres ; cela posé , nous joindrons
par la droite ab les centres de gravité @, b des deux cotés contigus AB, BC.
Nous supposerons suspendus, aux points @, b, des poids. respectivement égaux
a ceux des cotés AB , BC, qui seront desforces paralléles agissant dans le méme
sens , aux extrémités a, b de la droite ab. Comme les poids des cotés AB, BC
sont proportionnels 2 leurs longueurs, nous diviserons la droite ab , en deux
segmens af, fb, réciproquement proportionnels aux longueurs AB, BC, et le
point f sera le centre de gravité du systéme des deux premiers cotés AB, BC
(n° 38). Par la droite fc, nous joindrons le point f et le point ¢ , et nous divi-
serons cette droite fc en deux segmens fy, -gc réciproquement proportionnels
aux longueurs AB +-BC et CD, et le point g sera le centre de gravilé du sys-
téme des trois cotés AB, BG, CD. Par la droite dg , nous joindrons les points ¢
et d, et nous diviserons cette droite dg en deux parties gh , hd, réciproque-
ment proportionnelles aux longueurs AB + BC + CD et DE, et le point & sera
le centre de gravilé du systeme des quatre colés AB, BG, CD , DE. Enfin , nous
joindrons les points / et e par la droite ke, que nous diviserons en deux parties
hG, Ge, réciproquement proportionnelles aux longueurs AB 4 BC 4 CD -+
DE et EA, et le point G sera le centre de gravité demandé.

106. Par la théorie des momens, on parviendrait, d’une manitre plus com-
mode pour le calcul,  la détermination du centre de gravité G du contour d’un
polygone quelconque abede (fig. 41).

En effet, rapportons les momens des cotés de ce polygone & une premiére droite
quelconque AB; pour cela, par les miliéux ou les centres de gravitéf, ¢, k, 1,
k de ces cbtés, abaissons les perpendiculaires fo, gp, hn, im, ki, qui seront les
bras de levier des cités ea, ab , bc, cd, de, et multiplions respectivement ces bras
de levier par les cotés du polygone auxquels ils appartiennent, nous aurons, pour
la somme des momens de ces derniers, ax’ +bx” 4 cx"'4- da*"+-ex", en appelant
a,b,c,d;eleschtés, et 2, 27, "', 2, 27, leurs bras de levier fo, gp, elc. La
résultante des poids des c6tés du polygone sera égale & leur somme a4 b+ ¢ -
d-+e; appelons x la distance nG & l'axe AB, du point G d’application de cette
résultante ou du centre de gravité demandé, et nous aurons (n° 84 )

x(a+-bt-ctdte)=ax'+bx"+ex"Fdx+ex;

f_l_blﬂ ‘TM" d’ - T
d'ou r=nG="" - _I_-H_C '|:I_ d—|i+m «ie(26)

En rapportant ensuile les momens des mémes cdtés & une seconde droite AC,
faisant un angle quelconque avec la premiére AB, et appelant 575y y Ty les
distances fr, gt, hu, is, kg des centres de gravité des cotés a, b, c.... du poly-
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gone, et ¥ le bras de levier ¢G de la résultante des poids de ces cdtés, nous
aurons .

7 (a+b-+tct+d-t+e)=ay'+-by"+cy"'+dy "+ey';
- o Tl ey ey
d'olr y=iG= P e (27)
En menant aux droites AB, AC des paralléles tG, nG , aux distances n(x,

tG calculées d’apres les formules (26) et (27), ces droites G, nG se couperont
en un point G qui sera le centre de gravité demandé.

107. Proposons-nous maintenant de trouver le centre de gravité de laire
d’un triangle rectiligne quelconque ABC (fig. 42) untformément chargée de poids
éqaux. |

Pour y parvenir, on supposera que le triangle donné est décomposé en élé-
mens infiniment étroits, paralleles au cté AB; ces élémens pourront étre regar-
dés comme des lignes droites matérielles ; les centres de gravité individuels de
ces droites seront leurs milieux. Mais si par le milieu du cété AB on méne la
droite DC au sommet opposé C du triangle, cette droite DC divisera en deux
parties égales toutes les parallélesa AB; elle contiendra donc les centres de gra-
vité de ces dernitres , et par conséquent aussi celui du triangle. Si I'on avait dé-
composé le triangle en élémens paralleles au coté AC, la droite EB , menée du
sommet B au milicu du ebté AG, diviserait ces nouveaux élémens en deux parties
égales;; cette droite EB contiendrait donc aussi le centre de gravité du triangle ;
d’otr il suit que ce centre est le point G o1 les droites CD, EB se coupent.

108. IL résulte de 1a que le centre de gravité d'un triangle rectiligne quelconque
et situé sur une droite menée par un sommet au miliew du cOté opposé , & une
distance de ce sommet égale aux deux tiers de la sécante.

En effet, menons la droite DE (fig. 42) apres avoir mené les deux droites
CD, BE, par les sommets G, B, et les milicux des cétés AB, AC : Jes points
D, E étant les milieux des cdtés AB, AC, la droite DE sera paralléle s BC;
d'or il suit que les triangles DGE, CGB sont semblables et donnent

BC ; DE;: CG ; DG.
Mais BC est double de DE, comme AB est double de AD 5 donc aussi CG est
double de DG‘, ce qui donne DG = %CG; mais CD = CG -+ DG youen subs-

tituant CD=CG + *CG = 3C__E+EG:§E§

2 2 2 ?
. ' aDC . . ,
ce qui donne enfin CG= —3~, Ctomme il fallait le démontrer.

109. Supposons que le triangle FHN ( fig. 43) soit la projection , sur un plan
donné abed , dun triangle rectiligne quelconque ABG , situé comme on voudra
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dans Uespace ; je dis que si ( est le centre de gravité du triangle donné , la pro-
jettante GM. de ce centre de gravité sera égale au tiers de.la somime des projet-
tantes des trois sommets : Cest-i-dire que

GM__AF+CN+BH

3
En effet le point D étant le milieu de BC, on sura d’abord
- CN —[—BH @)

DL =221
Ensuite , par le point A, menons la dlmle Al parallele a FL,, nous aurons
Dlou DL—LI { GKouGM — KM AD ; AG: 3, 2
d’ol1 nous tiverons 2 (DL —LI) =3 (GM —KM), '

au aDL — 2AF = 3GM — 3 AF ;
en meltant pour LI et pour KM leur égale AF,
__3GM— AF

En comparant cette valeur de DL & celle donnée par 'équation (a) nous

aurons CN+BH_3GM :—AF ou CN + BH=3 GM — AF,

2
CN+BH-AF
3

ce qui donnera enfin GM = yrannens(28)

comme il fallait le démontrer.

Si le plan du triangle ABC (fig. 44 ) était perpendiculaire au plan de projee-
tion, sa pro,}ectmn sur ce plan serait une droite FH , et on aurait encore

M= AF -I-C?I’.T-}-BH

110. Pour avoir le centre de gravité d’un trapeze ABCD (fig. 45), on le dé-
composera d’abord en deux triangles ABC, ACD par la diagonale AG ; par les
milieux H, I des bases paralléles AB, CD, on ménera les droites CH, Al aux
sommets opposés G, A ; sur ces droites, on marquera les centres de gravité
F, E des deux triangles (n° 108) ; on joindra ces deux centres par la droite EF,
sur laquelle sera le centre de gravité du trapéze ; mais il est évident que ce méme
centre sera aussi sur la droite HI qui joint les. milieux des bases paralléles du
trapéze ; car cetle droite HI diviserait en deux parties égales les élémens du
trapéze paralléles aux bases : le point G ot les deux droites EF, HI se rencon-
trent sera donc le centre de gravité demandé

111. La distance GM du centre de gravité G du trapéze , par rapport & la
gmnde base, a pour expression, .
MMN 2CD+-AB
GM= X5 DO
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En effet, soient E, F les centres de gravité des triangles ACD,ACB qui com-
posent le trapéze , nous aurons (n° 109)
: aMN MN

KE =23~ et Fle=—p.....(d

D'ailleurs on peut supposer aux deux points E et F' deux forces paralléles agis-
sant dans le méme sens, et respectivement égales aux poids des triangles ACD,
ACB, qui sont proportionnels & leur superficie, lesquelles sont elles-mémes pro-
portionnelles aux bases comme ayant méme hauteur : ainsi, la force appliquée au
point E sera représentée par la droite DG, et celle appliquée au point F par la
droite AB. On aura les momens de ces forces en multipliant ces droites DG, AB,
par les bras de levier donnés par les formules (@) ; la somme de ces momens sera
done DO ERAABI =" (aDCHAB)..... (5)

La résultante de ces deux forces sera égale a leur somme AB+-DG, qui, multi-
pliée par la distance MG du centre de gravité du trapéze, qui est le point d’ap-
plication de cette résultante, donnera le moment résultant qu'on égalera au
second membre de I’équation (), et on aura

(AB +DC)>< MG :M,—fx(anc +AB).

- ' __MN_ ,aDC--AB
ol MG—-—."’XW,

comme il fallait le démontrer.

112. Trouver le centre de gravité de Vaire d'un polygone quelconque ABCDE
(fig. 46) supposée chargée uniformément.

Décomposons ce polygone en triangles ABE, EBD ct DBC; déterminons les
centres de gravité a, b, ¢ de ces triangles (n° 108), et & ces points supposons
suspendus des poids proportionnels aux aires de ces mémes triangles. Cela posé,
il est évident que le point g d'application de la résultante de toutes ces forces
ou poids sera le centre de gravité du polygone proposé; en combinant donc ces
poids deux & deux, comme il a été dit au n° 105, on arrivera de proche en
proche a la solution du probléme, en prenant, au lieu des cotés du polygone, les
aires des triangles qui le composent.

113. On peat résoudre le méme probléme par la théorie des momens, ainsi
qu'il suit : _ ,

Prenons pour axes des momens les droites quelconques A’B’, A’C’ (fig. 47),
et par les sommets du polygone ABCDE abaissons, sur les deux axes, les per-
pendiculaives Am, BZ, Cn, Dp, Eo, et Ad, Bi, Gk, Dk, Ee; les distances des
centres de gravité des triangles ABE, EBD, BDC (n° 109) seront respecti-
vement
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1° Par rapport 4 'axe A’'B’,

Bi4Am-+Eo Bl4+Eo-4Dp Bl4- Dp-4-Cn
3 b 3 2 et 3 .;

.2° Par rapport a 'axe A'C’,
Bi - Ad+Ee Bi+Ee} Dh Bi 4 Dk Ck
3 e
Nommons y, ' et y", les premibres distances ( que I'on calculera arithméti-
quement avant tout), et x, x’ et x" les dernieres; représentons par S, §', §”
les aires respectives des triangles ABE, BED et DBG et les momens de ces
trianglesseront ,
1° Par rapport a 'axe A'B’,
J,S’ yrsl’, ,_\J'"Srri
2° Par rapport  I'axe A'C’,
J‘S, .I"S!, x"S”:
Soit le point g le centre de gravité du polygone; abaissons par ce point

les perpenchculmres gF, gL sur les axes des momens (n° 84), nous aurons :
1° Par rapport a 'axe A'B’,

(S+4S"+45") X Fg=y8+y'S'+y"S",

Y

et par conséquent
Fy yS—+r 8'4"8"
=55t S
29 Par rapport & Vaxe A’C’, _
(S4S"48")X}gL=aS +-x'S"4-2"§",
" P

LECON VI.

Centres de gravité des figures planes terminées par des lignes courbes et des lignes droites.

A14. Le centre de gravité G (fig. 48) d'un arc de cercle quelconque ACB est
sttué sur le rayon DG qui divise cet arc en deux parties égales, et & une distance
DG du centre de Uarc, égale au myon du cercle multiplié par la corde et divisé
par la longueur de Uarc.
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En effet, 1° si dans le segment ACB" on mene les cordes AC, CB; si par les
milieux ou les centres de gravité a, b de ces droites on mene la droite ab, comme
les deux droites AG, CB sont égales et symétriquement disposées par rapport
au rayon CD, le milieu ¢ de la dmite ab sera le centre de gravité du systéme de
ces deux cordes. Mais les triangles D4C , CBH étant semblables, donnent

BC I BH Db ;D=2 (o)

d’ol1 T'on voit que la distance du centre de gravité ¢ du contour ACB est égale i
la demi-corde BH multipliée par le rayon Db du cercle inscrit, et divisé par la
moitié de ce contour. .

2° Si dans chacun des segmens CBF, CAE on fait la méme construction que
dans le segment primitif ACB, les centres de gravité des contours inscrits dans
ces nouveaux segmens seront les points e et f. Or, ces deux systemes de cordes
sont symétriques par rapport au rayon DC, si donc on méne la droite ¢f , le point
g ou cette droite coupera ce rayon DC sera le centre de gravité du con-

tour ABCFE. Si nous rapportons la proportion () aux deux cordes inscrites
dans le segment CFB , nous aurons

BF By, Dk ;De ou 2BF: 2Bb:: Dk De,
ou, & cause que 2BF =BF 4 FG » et 2Bb=BC,
nous aurons BF +FC ; BC { | Dk ; De.

* Mais les deux triangles semblables BCH , Deg donnent
BC ; BH ; De ; Dy.

Si nous multiplinns ces deux derniéres proportions par ordre; il nous viendra

. __BH < Dk
BE-++FC : BH 1. Dk § Dy=gp—re.,
dol1 Pon voit que la distance Dg du centre D du cercle au centre de gravité g du
eontour polygonal AECFB inscrit dans le segment ACB, est encore égale 2
la demi-corde BH mulhphee par le rayon Di_du cercle inscrit, et divisé par la
moitié de ce contour.

11 est facile de voir que si on doublait succéssivemeﬂl: le nombre des ebtés du
contour polygonal un nombre quelconque de fois, la proposition subsisterait
toujours; elle aurait donc encore lieu dorsque le nombre des cdtés de ce contour
polygonal étant infini, il coinciderait avec l'arc de l:ercle mais alors le rayon

6
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du cercle inserit serait le rayon de I'arc donné; si done G est le centre de gravité
de I'arc ACB, on aura

__ demi-corde BH XX DC  corde AB ¢ DC
DG = =
Are BC arc ACD

comme il fallait le démontrer.
115, Nommons C la corde AB, Rle rayon DC, et A larc ACB, nous

aurons (M) DG = —ﬁ. «(30).

116. Le centre de gravite g' (fig- 49) d'un sectewr circulaire DACB est situé

sur le rayon DC qui divise le secteur en deux parties égales, et & une distance

Dg' du centre de Uarc AB, qui est Dg' = ; CAR, G étant la corde et A Varc

du secteur.

En effet , on peut supposer le secteur donné ADB divisé en une infinité d’au-
tres secteurs infiniment petits, qui peuvent ¢tre regardés comme des triangles
isoctles ; par conséquent les centres de gravité (n® 108) des élémens du secteur
_aDA

3
Cet arc EF peut donc étre considéré comme étant uniformément chargé par les
pmd.s des élémens du sccteur pmpose le centre de gravité de cet arc sera donc le
méme que celui de ee secteur : si donc ¢’ est ce centre de gravilé (n° 114), nous

cord. EF < DE
aurons Dg' —_ —-—;E-'E'F'—-H....({l)

seront situés sur 'arc de cercle EF decnt du centre D avec un rayon DE —=

(*) Cette formule, qui est facile & construire avec Ia régle et le compas, peut se mettre sous
une autre forme que voici :
Nommons 7z le nombre des degrés de I'arc ACB (fig. 48) ; Vangle CDB== {m , et le triangle
rectangle DHB donnera
I %sin.im i DBouR 2 BH ou ’C
De 14 nous tirerons C=2R sin. {m...... (@)

Rm
p = 5 5i domc nous substituons an ]leu de C et de A leurs

Nous nurons d'ailleurs ACB= A =

valeurs dans I'équation DG = %IE , il nous viendra

__2R*sin. m X 360 360R sin. {m '
_ = PR T R (8

Cette formule fera connaftre promptement par le calcul la distance du centre de gravité de T'are
au centre de cet arc. 8i Fon donnait I'arc par la corde , on déterminerait d’abord le nombre des.
degrés de cet arc par la formule (a), et on le substituerait dans la formule (), qui donnerait
le centre de gravité.

ba
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Mais nE_i‘;-’l—“sﬂ, done
cord, EF — 2 cord. AB__2C aarcAB__ 2 A

—_— 3,etarcEF_ 3 55

en substituant dans 'équation (), il viendra

. 2Cx!R__a CR
Dy'=*— 75

comme il fallait le démontrer.
117. Le moment d'un secteur circulaire ADBC (fig. 49) par rapport au centre

D de larc du secteur est égal au tiers de “la corde multzphee par le carré du
rayon.

En effet, laire du secteur (Géo., pl. n® 237) est %E 3 et son bras de levier

(n° 116) est f—f ; le moment sera done
mom. sect. circ, = ;i {-E—l = %R— .(32),

comme il fallait le démontrer (**).

118. Le centre de gravité m d’un segment de cercle ACB (fig. 49) est situé sur le
rayon DC qui divise le segment en deux parties égales, et & une distance Dm du
centre D du cercle, égale au cube de la corde divisé par 12 fow Vaire du segment ;

de sorte que Dm — GS, S étant Vaire du seqment.

En effet, le segment ACB étant égal au secteur DACB, moins le triangle ABD,
son moment , par rapport au centre D de I'arc ACB, sera celui du secteur moins
celui da triangle; le moment de ce dernier est

AB x DE! DE' Cx (D
>: >< 2 3 f— 3{ E’)s-nln (d)
Or, le triangle rectangle DE' B donne (DE)? =R? — (: ABP =R?— ;(?; par
conséquent !/

(*) Si 'on voulait la formule trigonométrique qui donne cette distance Dg/, il suffirait de

multiplier par £ I'équation (b) de la note(*, page 41), ce qui donmerait
__2foRsin. {m
Dg = T G

(**) Si dans cette formule nous mettons pour C sa valeur 2 Rsin § m (note *, page 42),
il nous viendra
2R? sin. 4 m
T

- (@)

mom. sect. cir¢. =
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C(R* —1C) _CRi—iC

moment du triangle - 3 3 ;

. CR* . | . .
mais (n" 117) le moment du secteur est 3 S de ‘ce dernier nous retranchons

celui du triangle, il nous viendra
CR* CR® o C’.

S D e
3 3 12’
C3
par conséquent, mom. seg. AGB=—.

Mais le moment de ce segment égale Dm < aire ACB =3 ><Dm ;

Ci
donc S3<Dm ==,
C}
et par conséquent Dm =55 (33),

comme il fallait le démontrer (*).

119. La distance de la projection du centre de gravité du demi-secteur DCA
(fig. 49 ) sur le rayon DC , par rapport au centre D, est la méme que celle du
centre de gravité du secteur entier ADB. Quant a son moment, par rapport
un axe mené par le centre D perpendiculaire au rayon DC, il est la moitié de

celui de ce dermier. Or, celui-ci égale 9;-1-;

donc mom, sect. DCA:%R—:A——-—F ;(‘R ,
AE' étant la moitié de C—=AB.

120. De méme, la distance dela projection sur le rayon CD du centre de gra-
vité du demi-segment AE’C (fig. 49), par rapport au centre D, est la méme
que celle du centre de gravité du segment entier ACB. Quant & son moment,
par rapport & 1'axe mené par le centre D perpendiculaire au rayon DC, il est Ia

. 3
moitié de celui de ce dernier; or, celui-ci égale% (n° 418); done

(*) Pour avoirl'aire S du segment de cercle ABC, on observera que le triangle rectangle
AED, (fig. 4g) donne '
AR = R sin. {m et DE! = R cos. {m; on avra douc

Rt sin. m

triang. ABD == R*sin.im c%-%m = { Géo. pl. n° 383); mais le secteur DACB =
mpR  Riin.m__R* (mp — 180 sin. m)

mp R
36o . 2 360 o)

$60

y donc seg, S =

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

PRINGIPES DE STATIQUE. : 45
C3
mom. seg. ACE'= = veeees(@)
Si au lieu de la corde entiére AB nous ne prenions que la moitié AE'—c,
nous aurions 2c=C, et 8¢3=C’. En substituant cette valeur de C’ dans 1’é-
quation (@), il nous viendrait

mom. seg. AE’ G—Bi,: ca e e(34)

124. Supposons qu'on nous demande la distance du centre de gravité du demi-
secteur ADG par rapport au rayon DC (fig. 49).

Pour cela , observons que le centre de gravité du secteur ACD est sur la droite
g'nmenée perpendiculairement au rayon DG, par le centre de gravité ¢’ du
secteur double ABD, et en méme temps sur le rayon Dy qui divise I'arc AC en
deux parties égales; la distance demandée sera donc le cité g’ n de Iangle droit
du triangle rectangle Dg’n ; nous aurons donc

tang. CDg . Dg’ | g'n.
ou,en observant que GDg:—GDA_—m(m étant le nombre des degres de I'arc
AC), 15 tang.2m D' g'n=Dg’ X tang.tm.
:;AB xR <R

Mais (n° 116) Dy’ ==—55— donc g’n_ﬁA?A X tang. +m.

Observons que AB=2AE', A==ACB=2AC, et nous aurons

! = AE’XB - AE“)(B.
g n=s - — g Klang = 3AC P lang. © im= B)(tang.im....(%),
(*) en supposant C—=AE’, et A;——l’arc AC.

. ' AR . o
122. Laire de ce secteur est ——; sl nous la multiplions par le bras de levier

g'n ci-dessus, nous aurons ( par rapport & I'axe CD) (**),

mom. sect. ADC= )(tang m......(36).

(*) Si dans cette expression nous mettons, R sin. 7, au lieu de C, et Z%—R au lieu de Y'arc A,
nous viendra

g'n 360 R? sin. m tang. %m_ 360 R sin. m lang. im
3 2mpR - 3mp e (f)

(**) En mettant pour Csa valeur R sin, 7, dans I'équation (36), on aura

g i
mon. sect. ADC EMW'.,. (2)
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Centres de gravité des figures elliptiques.

123. Supposons que sur lun quelconque AB (fig. 50) des axes d’un ellipse
AcBd on ait décrit un cercle ACBD, et que, perpendiculairement & U'axe qui sert
de diamétre a cercle, on ait mené la corde MN, a cette droite répondront le seg-
ment circulaire MBN, et le segment elliptique mBn , qui auront le méme centre de
gravité.

En effet, si, paralltlement & la corde MN, on divise les deux segmens en un
méme nombre d’élémens infiniment étroits , il est évident que les centres de gra-
vité des élémens de ces deux segmens seront situés sur la fleche commune PB &
ces deux segmens. Cette fléche pourra donc étre regardée comme le lieu des points
d’application de deux systémes de chacun une infinité de forces paralléles, celles
du premier systéme étant respectivement égales aux élémens du segment de
cercle, et celles du sccond aux élémens du segment d’ellipse. Or (Géom., pl.
n° 539), les élémens du segment de cercle sont aux élémens du segment d’el-
lipse, comme I'axe de I'ellipse qui sert de diamétre au cercle est a Iautre ; ainsi
passer du segment de cercle au segment d'ellipse, cest, a des forces données,
substituer , aux mémes points d’application-, d’autres forces proportionnelles; par
conséquent , le point d’application de la résultinte des premiéres sera le méme
que celui de la résultante des derniéres, c’est-a-dire, en d'autres termes, les
deux segmens auront le méme centre de gravité. ' '

124. La distance du centre I de Pellipse au centre de gravité du segment cir-
: 4Ry g (MINYy ,
culaire MBN (n° 118) elam.-l—ﬁm——)—l—ﬂﬁ-, en nommant ¢ cette distance, on aura
_ _ (uNy
9 = 12 aire MBN

pour la distance du centre de I'ellipse au centre de gravité d’un segment ellip-
tique divisé en deux parties égales par le demi-axe représenté par a qui sera in-
différemment le grand ou le petit demi-axe. _ -

125. Le centre de gravité d'un secteur elliptique IeBh (fig. 50) , divisé en
deux parties égales par un axe, est le méme que celui du secteur circulaire
correspondant 1EBH. _

En effet, il vient d’étre démontré que deux segmens correspondans EBH ,
¢Bh, P'un circulaire et 'autre elliptique, avaient le méme centre de gravité ; or,
il est facile de voir qu'il en sera de méme pour les triangles IEH , Ieh , puis=
qu'ils ont leurs sommets au méme point I, et leurs bases sur la méme droite,
divisées toutes les deux en deux parties égales par I'axe AB. D'ailleurs ces denx
triangles sont entre eux comme les segmens; les deux secteurs auront donc le
méme centre de gravité,
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126. Nous avons trouvé (n® 116) quela distance du cenire de gravité
CR.
%
C étant la corde EH, et R le rayon du cercle, qui est ici le demi-axe @, ct A
I'arc EBH du secteur ; pour le secteur elliptique , on aura donc de méme

L Edxa
g=3X—7 O

d’un secleur circulaire était %

(*) Comme I'angle ETH (fig. 50) n’est pas celui elh du secteur elliptique , I'expression ci-

240 asin. ym

dessus, ou son équivalente, (note *, page 43) me donnerait pas immédiatement

la distance du centre I de l'ellipse au centre de gravité du secteur elliptique, on pourrait désirer
d'avoir cette distance , indépendamment du cercle.
Pour cela, on nommera « le nombre de degrés de Fangle eIB, et on observera que,
1o Le triangle rectangle IEK donne 1 | tang. § m 11 IK ; KE.
H

2° Le triangle rectangle IeK donne 1 § tang. & 11 IK ; Ke

d'olt tang. im ! tang. & i KE { Ke; mais KE [ Ke liat &
douc tang. im S tang. e it alb,
. a Ling, o
d’oll on tirera tang. %m::r-—-TE'—-. ...... (r)
. sin.im sin. § m
Mais tang. {m= — = ===
- ecos.gm Y 1—sintim
sin. £ m a
done ——e o —, lADE. &
V'l—sm"%m= b &
, . sin* { m a* p
en ¢levant an carré = o tang.fa
1—siu{im b2
. a® .
on _ sin.” %mmzi tang.*& (1 —sin. 24 m)
a® ting.? «
dod sin. * 4 m = £

b* 4 a* tang.? a

et par conséquent
. atang o (a)

Vi tattangta

L’équation (1) ei-dessus nous fait voir que .

1 s
4m==are, dontla langAmﬁT—u-

sin, -;-ml=

ce qu'on exprime ainsi : § m=arc. (tang. :.-ﬂ;-&—f) (3)

240 a sin, i m

en substituant, dans Pexpression » & laplace de sin. {m, et m leurs valeurs (a) et

(3) , nous aurons
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127, Le moment du secteur elliptique TeBh divisé en deux parties égales par
un demi-axe , est, par rapport au centre 1, égal au tiers de la corde multiplié
par le carré du demi-axe qui divise le secteur en deux parties égales.

En effet, nous avons
sect. circul. IEBH ] sect. ellip. IeBh %% a ;b
arc. EBH x a .

a

e

ou . sect, ellip. IeBh ;% a [ b;
d’ou sect. elhp — & X arc. EBH éA

' wreal37)

Si nous multiplions celie aire par la distance g (n° 126) du centre I au centre
de gravité du secteur IeBh , il en résultera
aEH_bXEBH__ abx EH
EBH a3 (@)

Mais blagien DEH=ZX (38)

mom. sect. [eBh— ; X~

Si donc nous substituons cette valeur de EH dans l’équalion' (@),

a Xefs“m(ss)

UOoUS aurons mom. sect. ellip. IeBh =—
comme il fallait le démontrer.

128. Le moment du secteur elliptique IeB par rapport al'axe cd (fig. 5o)
est la moitié de celui du secteur double IeBh ; car les deux moitids de ce

dernier sont symétriquement siluées par rapport a4 l'axe AB, et ont tous
leurs points homologues situés 4 la méme distance de 1'axe cd ; or le moment

2 h
du secteur IeBh="= >§e ; donc
moment sect. IeB = a—?g-é,

eK etant la mmtlé de eh.

429. Cherchons maintenant le moment du secteur IeB ( fig. 50) par rapport &
Vaxe IB.

120 a¥ tang. «

.mg, amg e VB + @ tang.* a..... ()

arc (tang =

en appelant g la distance du centre I de l'el!lpse an centre de gravilé du sectear elliptique I1eBh
On pourrait rendre indépendant du cercle tout ce qui est relatif au centre de gravité de Vellipse;

" mais pour abréger , et comme il est facile d’obtenir les mémes choses en les comparant an eercle,
nous laisserons les formules suivantes rapportées i ce dernier.
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Pour y parvenir, comparons ce secteur au secteur circulaire correspondant
IEB ; si nous décomposons les deux secteurs en élémens perpendiculaires a I'axe
AB, les élémens de ces deux secteurs seront proportionnels aux demi-axes ; ces
élémens infiniment étroits pourront éire regardés comme des trapézes, les cen-
tres de gravité de ceux composant le secteur circulaire seront situés i des dis-
tances de P'axe IB égales 4 lamoitié de la longueur de chaque élément, et pour
le secteur elliptique il en sera de méme ; les distances des centres de gravité
des élémens du secteur circulaire seront aux distances des centres de gravité
des élémens correspondans du secteur elliptique , comme le demi-axe qui sert
de rayon au cercle est & I'autre demi-axe;. il en sera donc de méme pour Iés
centres de gravité des secteurs eux-mémes : ainsi G étant la distance du centre
de gravité du secteur circulaire JEB , et ¢ celle du centre de gravité du secteur
elliptique IeB, on aura

Gi.giia’b

Mais sec. IEB | sect. IeB .l a ] b;
Donc G ><sect. IEB | ¢ ><sect. IeB | ; a2 ; b2
c'est-a-dire  'mom. sect. IEB ¢ mom. sect. IeB } % a2 ; b

2
Par conséquent  mom. sect. IeB=— > mom. sect. IEB.

Mais (n° 122) mom. sect. [EB =C—f-.tang. s,
C étant Pordonnée KE de are BE; donc

5*Ca o ,
mom. sec. IeB=— —5.+ tang. sm=—5-. tang, Maun(39).

130. Proposons-nous de trouver la distance du centre de gravité du sectewr
elliptique IBe a Uaxe AB (fig. 5o).

Pour cela rappelons-nous que nous avons trouvé au n° 129 que si G était la
distance du centre de gravité du secteur circulaire IEB, et ¢ celle du centre
de gravité du secteur elliptique IeB, on a

alblG =2,
, , aCa L
et quau n° 121 nous avons trou:veG=-3Ir tang. sm,

ce qui donne g= ?‘,’E’—E. tang. Zm .... (‘40)_
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LEGON VIL.

Centres de gravité des figures paraboliques et des surfaces planes qucleonques.

" 131. Le moment d'un demi-segment de parabole CDB (fig. 151), par rapport
@ Uaxe DG, est égal au quart du paramétre de la parabole multiplié par le carré
de la fleche CD.

Pour le démontrer , décomposons ce demi-segment en élémens paralléles &
Pordonnée DB; les longueurs de ces élémens seront y, ¥, y", 5", etc. Prenons
les largeurs égales et infiniment petites de ces élémens pour unité; les aires de
ces élémens seront leurs longueurs y, ', ", ", etc. Les distances de leurs cen-
tres de gravité, par rapport & I'axe CD, seront respeclivement:y, *y’, 1",
2 ", etc. Les momens de ces mémes élémens seront done

Tyt ty'z, y"2 Ly ete, Leur somme, quiest le moment du demi-seg.
DCB=1(y*+y'*+y">+y"*+, etc.). |
Mais ( Géo. , pl.n°449.) y* px=/;y'2=px', etc. Donc

mom. demi-seg. DCB:-’—} (x4 42" —}-.r'*-{-, etc. )

Les x, x', ", etc. , étant les largeurs d’un, de deux, de trois; etc., élémens ,
seront les nombres naturels depuis 1 jusqu’au nombre d’unité contenue dans la
longueur CD, nombre qui sera infini, puisque I'unité est infiniment petite ;
ainsi , nous aurons

mom. du demi-seg. DCB :% (14+2+3+4+5....4DC). )

Or (<), la limite de la somme de la suite des nombres, comprise dans cette
(DCy

2

paranthese , est 5 par conséquent,

«) Supposons la progression par différence.|
' a.b.g...i .k
si on eu éléve tous les termes A la méme puissance , on aura
a"_‘.-b"‘ L L L

proposons-nous de trouver la somme de cette suite de puissances,
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Pour cela , rappelons-nous que nous avons trouvé (alg., n® 152) que la somme de tous les
termes d'une progression par différence etait '

a étant le premier terme, % le dernier, et m le nombre des termes. Nons avons vu aussi, au
méme n® 152 de l'algébre , que le dernier terme était

. kf=a + d (R—-* I} 3
d étant la différence des termes.

Mettons cette valear de £ dans la formule (1), il nous viendra

_[ata +din-1)n __2an 4 dn* —dn_d oa —d
S = 5 = - _-:i.n .

Puisque la somme des premiéres puissances des termes d'une progression par différence est

oa ~—~d . .
. n, concluons, par analogie, avec Thomas Simpsan, que la somme

de la forme :—:.u’ +

des puissance du degré m sera de la forme

Sm = Anm++1 4 Bn™ 4 Cpm—1 4 Dptt=2 4 En=3.,.... + Qz..... (2)s
A,B,C, etc., désignant des coefficiens indéterminés, et indépendans de n, et Sm étant la
somme des puissances m™¢ des termes de la progression.

Mais la loi qxlifégitles termes d’nune progression par différence est-celle-ci : .
g=a,b=a+4d,c=b+d..k=i+d;

«de sorte que la progression peut s’écrire.

Ainsi

g.at+d.adod a4+dd.atfd.iatdp-—r1)
en ¢levant tous les termes a Ia méme puissance , il viendra
a® (a+d)™ (a4 2] (a+3d)m. (@4 4d)™n [a 4 d(n—1)I,

nous aurons done -
Ant 4B 4 Cn =2 4 Drm— 24 B =3, Que=a® 4 (a + )™ 4 (a4 2d)™ v [a 4 d (a—1)].

Supposons que la progression ait un terme de plus , au lieu de » il fandra mettre n 4 1 dans cette
derniére équation , ce qui donnera

Afmt P+ 4 Clatn)m 4+ Dla b )%=+ E fpobr)n=r. Qu 4 1) =
a® + (@+ ™ + (@ + 23 + (a + 30w + (afnd,

Si de cette derniére équation nous retranchons la précédente , membre & membre, il nous
viendra

Affw+ )% = pts] 4 B{(a 4 1) —n=] 4 C[(n 4 1)2 =*—n==1 L.+ Q={afnd)e.

En développant dans les deax membres de cette derniére équation, et en ordonnant par rap-
port aux puissances de 7 , il en résultera
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e S e B B e e
+ ._’”I:‘_ Com=3 4 ('.’#(.-T.z._ﬁ] Cnm—? 4, etc. -
+ @ z=2 Dnm=3 4, etc.

I

m (m—"] (m_a)al dm =3 ,.gl.u---3 +,ete.

(m—-rl
1.2.35

ad dm —zpm—s |

a= z= 4 -—atfm— t nm'-*-|—
Comme ce dernier résultat doitavoir lien pour toutes les valeurs de s, il faut nécessairement
que les coelficiens des mémes puissances de cette quantité r soient égaux de part et d'autre ;

nous aurons donc :

m-]--'l-A =

.

(mt2lmy L™ pea ™ gam—s
I.2. - I I

(m 4+ 1) m (m=—1) m (m— 1) m—1 . m(m—1) -
1.2.3 At === Bty c—':.z a= -
(m-i-t)m(m—-—l (m—2 A_I_m(m—'f}(”"""ﬁ} + I‘).(:""‘z}c,'_ ‘QD____m(n:—:Il(Tng_z)atd’.u—g

1.2-5 4 1.2,

On voit, par ces équations de condition , que les coefficiens A, B, C, D, etc., dépendant de
la valeur de m ; cherchons donc les valeurs de ces coefficiens pour les cas ot m égale respective-
ment 1, 2, 3, 4, etc. Les équations de condition précédentes deviendront :

pour lecas dem==1

2A=d
A 4 B=a
d d o2a—d
d'otr I'on tirera A= — :, et B=a— ?3, - >

Substituant dans la formule (2), et nommant $; la somme des premiéres puissances de tous
les termes de la progression,, il nous viendra

d —
Sy=== n.-l-”in—dn

pour le cas dem =2,

3A==d ' | A=§
d—d*
3A+4aB==2ad 5 doi l}_ﬂiff-é—*—_
6a*—G6ad--ds
C 5= mom
A4B4-C=a : = 6
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appelons 8, la somme des secondes puissances, et substituons dans la formule (2), il en ré-
sultera

ad—d* 6az—bad +d*
. Sg=d—;ﬂa+% = ﬂt-l- a 5 + n,
pourle casde m =3, :
bA=d — d
6 A 4 3B = 3ad* B=2ad!+d’
2
d’olt .
4A + 3B 4 2C = 3ad C= ﬁa’dﬁﬁf' +d
" | aa’—6aid 42 ad? o d
A4+B4C4D=a ‘ D= T

Nommons S, la somme des troisiémes puissances, et substituons encore dans Ia formule (3)
nous aurons

&,  sadied’ 6ard—Bad® +d° @ —6atd+ 2adt+ 2d

— ¥ H]
8, = n 't ———n' + T n* 4 7
en continuant de méme, on trouverait '
P d - 20 ad —-30!‘ nt 4 6atdr—Gads—11d n 4 s0a’d—batd?~3 jads -|-»'J-d*wi
30 20
30 at — 30a'd 4 3 ard® + 27 ad) —ds
+ 3o i

Appliquons ces formules au cas o la progression est la suite naturelle des nombres depuis 1
jusqu'a n; dans ce cas @ == 1 etd=1, et il nous viendra :

n® n
= — -
§u 2 T3

s’=4—+; -I-E
_n o mnrt un 13 agn
S 5 T 20 30 20 +-§

Ces expressions peuvent s¢ mettre sous les formes suivantes :
som (i 2)
s (454 s)
=l

17
S¢ = n’ (3 t 2on ~ Jon* ~ 20n* + 30&‘)
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mom. du demi-seg. DCB“;@;I,.--.-@iI)
comme il fallait le démontrer.

Ce moment peut s'écrire ainsi :
mom. du demi-seg. DCB =]l‘3><4ﬂ’" w(42)

par la raison que p X DG=(DB)?, et dispense de connaitre le paramétre p.

132. La distance du centre de gravité du demi-seqment parabolique CDB,
par rapport au diamdtre CD, est égale & %—’—B

Eneffet(Géo. , pl. n°796),1'aire dudemi-segment GDB:EBC—XTDB; divisons
lc moment (42) ci-dessus par cette aire; en nommant ¢ la distance demandée, il

nous viendra g=nCX ;DB) ngci =l (43),

comme il fallait le démontrer.

133. Cherchons le moment du segment parabolique ACB (fig. 51 ), par rap-
port a la double ordonnée AB.

Sil’on suppose que z représente un nombre infini d'unités, toutes les fractions qui ont 7 an
dénominateur se réduiront 4 zéro, et on aura pour les limites des sommes des premiéres,
sccondes , troisiémes et quatriémes puissances de la suite des nombreg depuis 1 jusqu'a Vinfini,

n ¢tant infini,

K
ll

o
w
i

S5, =

ol +R T wly

On voit, par analogie, que les limites des sommes des puissances supérieures seront :

né

8, = '6-

n?

3, - "a—

8, = %.
ete.
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‘Pour cela, décomposons le demi-segment ACD en élémens paralléles au dia-
meétre DC ; nommons x, x', 1", x”; etc., les longueurs successives de ces élé-
mens 3 partir du point A, et prenons pour unité les largeurs égales et infiniment
petites de ces élémens. Les distances des centres de gravité de ces derniers, par
rapport a la droite AD , seront respectivement + x, s &', + x", - 2", etc., et leurs

momens - ¥, + x'2, + 2", + &"4, elc.; on aura donc
mom. du demi-seg. ADC=1 (x> *a" 24" elc. );
et par conséquent
mom. seg. ACB=a?-+-x' 242" 24", elc..... (a).

L'équation de la parabole qui est y*=—px, quand l'origine est au sommet C, se
change en celle-ci y>=p (a—x), quand longme est en D, a étant égal a DC.
De cette dernitre équation , on tire

p=t2—Y.
P

?

Y]
et par conséquent e -(ﬁ?—;;’:-}—

Substituons dans I'équation (a), et il nous viendra
 mom. seg. ACB==_[ (pa—y' )+ (pa—y'2F+ (pa—y"s)...]

Les y, 5", y" etc. , étant les largeurs d’un, de deux, de trois, etc., élémens,
et ces largeurs étant 'unité, nous aurons

“mom. seg. ACB :i [(pa—1)4(pa — 222+ (pa— 32)*+ ete. ]
Si I'on développe les carrés qui sont dans la grande parenthése, il viendra
mom, seg. ACB =_P—I-2 (p*a*— 2ap-1+- p*a*— Bap+16--p*a*—18ap+ B1......

+prar—2apb>+b*)
en appelant b Pordonnée DA. -

En observant qué p*a® se trouvera dans le second membre de cette équation
autant de fois quil y a d’unités dans b, et rassemblant entre parenthéses les
quantités qui ont un facteur commun, on verra que

mom. seg. AGB:;TIQ [p%‘!a—-aap(l-l-.-4+9....+5=)+1+15+8;,,,_,+54:|_
Or (note « ), la limite de 14+-4+9...+b*=~

B - 5
et celle de 141 6+81...+B;.‘—.-_-1;-; donc
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3 ]
mom. seg. ACB :é(p?a'b__ mgb _|_%)

Si, dans cette derniére expression , on fait attention que pa—=>52 ct p'a'=10+,
en substituant, il en résultera

mom. seg. ACB=, _(55'"_"4'65) 55( ”"g""%):pi:(md:sﬁg):?si"

Si dans cette derniére, au lieu de b, nous mettons sa valeur p“a?, nous aurons
enfin

mom. seg. ACB_..Sa 4 (44).

134. Sil'on divise ce moment par l'aire du segment ACB (fig. 51), qui est
= AB)(DG Xaba_4 56, en nommant ¢ la distance du centre de gravité de

ce segment, par rapport au point D, on aura

8a'b aa
= L i

135. Le moment du demi-segment ACD (fig. 51), par rapport 2 la double
ordonnée AB, sera la moitié de celui du segment entier ACB équation (44) ; de
sorte que

mom. demi-seg. ADC= 4“ b (46),

136. Supposons qu’on nous demande le moment du segment ACB par rapport
au sommet C ou & la tangente FG menée @ ce sommet C.

Nous avons trouvé (n° 134 ) que la distance du centre de gravité de ce seg-

ment, par rapport a la double ordonnée AB, était %; la distance de ce centre,

par rapport au sommet C, sera donc 3—;; mais P'aire du segment ACB'"‘M
donc
mom. Seg. AGB....H—- (4 Y -
Le moment du demi-seg. GDB sera par conséquent— e /48).

137. Proposons-nous de déterminer le moment du secteur EACB par rapport
au sommet G de la parabole, les drojtes AE, BE étant des normales a la courbe.

Ce moment sera égal & celui du segment ACB - celui du triangle ABE.
Pour ayoir le moment de ce triangle , obseryons (Géom,, pl, ,n°474)que sa
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hauteur est le demi-paramétre, et que, par conséquent, la distance de son centre

de gravité 4 la base AB mra:‘p Ce centre de gravité sera donc, par rapport au
sommet C de la courbe, i une dlstance égale a a—E—P L’aive de ce triangle sera

><p Pb 4 son moment sera donc L(a—l«—)—‘u (6a+p);

or, celui r.lu segment ACB (n° 136 ) est —— 4“ 6

d'ol1 il Sensuivra que
mom. sect. parab: EAGB—éa b Ps (6G+P)— -(43¢’+3°PG+5P’) - (49)-

138. L'aire du secteur égale celle du ségment ACB 4~ celle du triangle ABE,

c'est--dire, aire sect; EACB_..4ab p: 8051—3‘05 M wees(50)

donc, celle du demi-secteur ECB ..—.ﬂ-&:":—-—?-?—]...., {(B1).

139. Si nous divisons le moment du secteur EACB par son aire, nous aurons
la distance du sommet C de la courbe au centre de gravité du secteur. Ainsi
soit g, celte dist.ance, il viendra
- 8a*4-3opa-t-bp

%ﬂua (52)
Cette distance appartiendra aussi 4 la projection du centre de gravité du demi=
secteur ECB sur I'axe CE.

140. Le moment du demi-secteur ECB (fig. 51 ), par rapport & Iaxe EC, s’ob-
tiendra, en observant que (n"131 )

mom. du demi-seg. DCB—-——,

3 b_p&‘
3_ 12"

et mom. du triang. EDB= ><

et que, par conséquent,
mom. sect. ECB_az +E!'—=LM....(53}

141. La distance du centre de gravité de ce secteur ECB, par rapport a
Yaxe CE, s'obtiendra en divisant le moment précédent par 'airedu secteur quiest

—&T-;-'-—P)équauon (51).
i donc g est cette distance, on aura

B3 5(3
g=22ath) (“‘H’)X 0 3 fﬂ"H’ (54).

)
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142. Supposons une courbe quelconque ACB (fig. 52) terminée aux extré-
mités de la droite AB, et proposons-nous davoir le centre de gravité G du
segment formé par la courbe et la droite.

Pour y parvenir, divisons la droite AB en un certain nombre de parties
égales, et par les points de division, élevons les perpendiculaires EF , HI, KC,
LM, NO, 4 la droite AB, et terminons-les i la courbe ACB : en vertu du
n° 326 de la géométrie plane, en appelant S Iaire du segment ACB, et m la
distance qui sépare les perpendiculaires , nous aurons

S = m (EF + HI 4 KC 4+ LM 4 NO)..... (a)

Maintenant , par les points o1 les perpendiculaires 4 AB rencontrent la courbe
ACB, menons les paralléles ab, ed, ¢f, hiet Ik & AB, de maniére a former la
suite de rectangles EF6H , HIdK , KhML , LION, tous situés dans le segment;
dont la somme sera par conséquent plus petite que ce segment, et une autre
suite de rectangles AaFE , EcIH, HeCK, KCfL, LM:N, NOLB, qui dépas-
sent la courbe du segment, dont la somme sera par conséquent plus grande
que laire de ce segment.

Si actuellement nous prenons la droite AB pour l'axe des momens de ces deux
suites de rectangles, en observant que les centres de gravité de tous ces rectan-
gles sont respectivement au milieu de leurs hauteurs , nous aurons pour les rec=
tangles intérieurs

moment de EF0H = EF X< m XX EF = im X< (FE)?;
moment de HIdK — HI > m > HI = im > (HI)*;
~ moment de KRML= ML > m 3 ML= £ m > (ML)?;
moment de LION = INO X m X NO = im X (NO).

Soit 8’ la somme des aires de tous ces rectangles , et x la distance du centre de

gravité de I'aire 8" 4 I'axe AB, il nous viendra

' = im [ (BEY" -+ (HI) + (ML) + (NO)* T.s.n ().
Nous trouverions de méme pour la somme des momens des rectangles qui
sortent en pal tie du segment ABC,

¥ = im L(EF) 4+ (H) +2 (KC) -+ (MLy + (N0 T (0
enappe]ant §” la somme des aires de ces rectangles, et y la distance du centre
de gravité de I'aire 57 & l'axe AB.

- 1l est évident que la somme (b) des momens des rectangles intérieurs est plus
petite, et celle (¢) des momens des rectangles en partie extérieurs est plus grande
que le moment du segment ABC, Mais si les perpendiculaires a la corde AB sont
assez rapprochées pour que les arcs qu'elles comprennent entre leurs extrémités
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supérieures puissent &tre regardées comme des lignes droites , ces arcs devien-
dront les diagonales des rectangles AaFE , Fblc, IdCe ,.... qui sont les diffé-
rences entre les rectangles intérieurs et les rectangles en partie extérieurs ; d’ols
I'on voit que le segment serait alors la demi-somme des deux suites de rectan-
gles dont les sommes de leurs momens sont les seconds membres des formules
(b) et (¢). Le moment du segment sera denc la demi-somme desseconds membres
de ces deux formules 3 nous aurens donce

$X g6 =3m [ (EF)* + (IH)* + (CK)? + (ML? - (NO) J.....(54)

G étant le centre de gravité du segment : I'ordonnée gG de ce centre sera donc,

¢ — (EF) +(H)? +(CK)y + ML)+ NOP .
96 =" @rF Tt K- ML No) (%)

en mettant pour S sa valeur (a).

143. Pour avoir I'abscisse A g ou ¢’ G de ce centre de gravité G, on prendra les
momens par rapport a 'axe AD perpendiculaire 2 AB, et on observera que les
distances des centres de gravité des rectangles, tant intérieurs qu'extérieurs, par
rapport & cet axe AD, suivent la loi que veici : tm, 2m, %m, Im, etc., et
que la premitre de ces distances qui appartient aux rectangles intérieurs est
2m: cela posé, on aura évidemment :

moment de EFbH —=m X EF X Zm = im? X EF,
moment de HIdK = m X HI X 2m = $m* X HI ,

moment de KhML = m X ML < Zm = Im? X ML, ¥

moment de LecON = m X NO X 2m = 2m* X NO. o
La somme de ces momens sera donc
2m? [ 3EF +- 5 HI 49 ML ++9NO ]

et on aurait de méme pour celle des momens des rectangles en partie extérieurs,

ym* [ EF 4 3HI + 12CK + gML + 11NO ] -

D’aprés ce qui a été dit plus haut , la moyenne entre ces deux sommes sera le
moment du segment. Ainsi on aura

$ 5¢¢/'G = m? [{EF -+ 8HI + 12 GK + 16 ML + 20N0 J; vu..(56)

Lot 16 ™ (EF 4 2HI 4 3CK + 4ML 4 5NO )
ao 9% =""FF T HI + CKF ML} NO

144. Les deux formules (54) et (56) serviront & trouver le centre de gravité
d’une figure plane terminée par une conrbe quelconque, en coupant cette figure

e (57)
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en deux parties par une droite. Ainsi, par exemple, 8'il s'agissait d’avoir le centze
de gravité de la figure ACBD (fig. 39) , on chercherait le centre de gravité G du
segment ACB, au moyen de ces formules, et celui G’ de I'autre segment ADB;
ensuite ori joindrait, ces'deux centres de gravité G, G’ par une droite GG', qu'on
divisera en deux segmens réciproquement proportionnels aux aires des segmens
ACB, ADB. En général, au moyen des deux formules (54) et (56), on parviendra
far P'addition ou la soustraction des momens,. au centre de gravité d’une figure
plane terminée par une ou plusicurs lignes courbes, réunies ou non par des
lignes droites. I! faut, pour cela, décomposer la figure donnée en segmens du
genre de celui de la figure 52, et en triangles rectilignes, 'il y a lieu , de ma~
niére qu'une droite, comme AB (fig. 52), aboutisse toujours aux extrémités A, B
d’une méme courbe ACB.

LECON VII.

Centres de gravité des polyédres, des cylindres et des cénes. Théortme de Guldin' pour
trouver la superficie et le volume des corps de révolution , sachant trouver le centre de
gravité de leur généralrice..

145, Le centre de gravité d'un prisme ou d'un cylindre quelcongue est situé
sur le miliew de la droite menée par le cenire de grayité de sa base parallele-
ment aux arétes ou génératrices de la surface latérale du corps.

En eflet , on peut concevoir un prisme ou un cylindre comme étant composé
d’une infinité de tranches infiniment minces, paralltles a la base; or ces tran~
ches seront égales; elles auront visiblement leurs centres de gravité sur la
droite menée par le centre de gravité de I'une d’elles parallélement & une aréte ;
cette droite peut donc étre regardée comme étant chargée uniformément dans
toute sa longueur par les poids égaux des tranches élémentaires du solide ;
par conséquent le point d’application de la résultante de tous ces poids élé-
mcptaifes ou le centre de gravité en question sera le milieu de cette droite,
quon pourrait appeler l'axe d'équilibre- du prisme ou du cylindre.

Il faut bien entendre que ce théortme est tout-h-fait indépendant de la
forme de la base du prisme ou du cylindre ; il est, par conséquent, d’une géné-
ralité qui ne souffre aueune exception. .

146. Le centre de gravité d’une pyramide triangulaire est sur la droite menée
du sommet au centre de gravité de la base, et & une distance de cette dernitre ,
égale au quart de cette droite.
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En effet, si I'on congoit la pyramide triangulaire ABCD (fig. 53) divisée en
une infinité de tranches infiniment minces, paralléles a la base ABC, ces tran-
ches seront des triangles semblables a cette base, et auront visiblement leurs
centres de gravité sur la droite FD menée par le centre de gravité de la base
au sommet ; car les centres de gravité, dans les figures semblables , sont-des
points homologues. Cette droite sera donc chargée continuement dans toute sa
longueur par les tranches élémentaires paralléles a la base ; le.centre de gravité
de Ja pyramide sera donc sur cette droite FD. Si 'on décomposait la méme py-
ramide en tranches paralléles a la base BDG, on verrait que le centre de gravité
de la pyramide doit aussi étre sur la- droite AH qui joint le sommet A et le
centre de gravité de la base' BDC.

Mais les deux. droites FD, AH, qui centiennent le centre de gravité de la
pyramide, sont dans le plan des droites AE, ED qui divisent P'aréte BC en
deux parties égales; ces deux droites FD , AH se couperont donc en un point
G qui sera'le centre de gravité de la pyramide.’-

Je dis maintenant que le point G est tel que la dlstance FG= 'GD et pan
conséquent FG= ’['D-

En effet , les triangles semblables FGH , AGD donnent
FG : GD**FH® AD,
et Ies triangles semblables EFH, EAD donnent-
EF ;EA{.FH . AD;
d’o1 1l suil que FG ;.GD % EF ;.EA ;.

or, puisque le point F est lecentre de gravité du triangle’ a’iBG on a EF =
1EA ; donc aussi FG = 3GD, ce qui donne FG==3;FD.

A47. Il suit de Ui que le centre de gravité d'une pyramide quelconque est aw
quart d'une droite menée par le sommet et le centre de gravité de la- base de la
pyramide, & partir de ceite base.

Car , quel que soit Je nombre des cétés de la base , oh pourra toujours décom-
poser cette base en triangles, et la pyramide en autant de pyramides triangu-
Taires qu’il y aura de triangles dans la base, qui auront respectiventent ces trian-
gles pour base et la méme hauteur que la'pyramide en question. Or, les céntres
de gravité de toutes ces pyramides triangulaires partielles seront évidemment
sur un plan paralléle a la base, et  une distance égale au quart de la hauteur
de la pyramide donnée ; de plus, quelle que soit la base de cette pyramide, il
est clair qu'on pourra décomposer cette dernitre en tranches infiniment minces
paralléles & la base, lesquelles seront des polygones semblables & cette base ;
d’ol1 il s'ensuit que les centres de gravité de toutes ces tranches seront sur la
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droite menée, par le centre de gravité de la base de la pyranude et par le sommet
ce centre de gravité sera donc au point ol cette droite rencontrera le plan
mené parallélement 4 la base & une hauteur égale au ; de celle de la pyramide
donnée.

148. Un cone peut étre regardé comme une pyramide dont la base serait un
polygone inscrit & celle du cone, et d’une infinité de cotés ; d’oitil suit que le
.centre de gravité d’'un cbne quelconque est au quart de la droite qui joint le centre
degravité de la base et le sommet du cOne & partir de la base.

149. Pour aveir le centre de gravité d’un tronc de pyramide ou d'un cone
quelconque 2 bases paralleles, on calculera (Géom. 4 trois dim., n® 470) la
hauteur totale, soit de la pyramide entiére, soit du cone entier ; on calculera
aussi le volume ¥ de la pyramide ou du céne entier ; celuip de 1a petite pyra-
mide ou petit cone, et le volume du tronc sera V' — v.

Ensuite ,.on cherchera le centre de gravité de la grande pyramide ou du grand
cone, et celui de la petite pyramide ou du petit cone; puis, en appelant & la
hauteur du tronc, et H celle de la grande pyramide ou du grand céne, celle de
Ia petite pyramide ou du petit cone sera H—h ; par conséquent , si nous prenons
Jes momens par rapport au sommet, les distances & ce sommet des centres de
gravité de la grande pyramide ou du grand céne et de la petite pyramide ou

du petit cone (n° 148 et 149), seront 3—H et T" et si nous appelons g la

distance du sommet de la pyramide ou du céne au centre de gravilé du tronc,
la théorie des momens nous donnera

JHV  3o(H—b —vHAvh
)= ) YV +oh)

Par conséquent,

_3[H(V—v)+4]
g ... (59)

150. Supposons une pyramide triangulaire quelconque ABCD (fig. 54), située
comme on voudra dans Vespace ; st , par les quatre sommets et le centre de gravité
.on méne les droites Aa, Bb, Cc,Dd, Gg, paralliles entre elles , mais de manidre
quelles forment un angle qnelconque avec un plan quelconque a'b'c'd" , on aura

Gg __Aa-i-Bb—Ech—Dd

En effet, F étant le centre de gravité de la base BDG, d’aprés le ne 109, on

aura
| F=22C1 (@

3 LRl
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Mais e centre de gravité G de la pyrami(le donne (n® 147)
AG 7 34
et les triangles semblables AlG, AMF,
AG ; AF 1 IG ; MF;

donc 1G:MF;; 354, dov MF=4C.

Si nous ajoutons de part et d'autre Iy —= Mf=Aa, nous aurons

GI 3l 4GI43Iz 4GI+4lg—Ig  4Cs—Aa
R e

Mettons cette valeur de Ff dans 'équation (@), et il nous viendra
4Gg—Aa=Bb-+-Cc+-Dd, d’or nous tirerons

Gg_@+m1-cc+nd‘_..l.(59)

151. Supposons qu'on nous demande le centre de gravité d'un polyédre quel-
conque. '

Pour cela, on décomposera le poly&dre en pyramides triangulaires dont les som-
mets soient sur les faces de ce polyedre ; puis on ménera un plan quelconque sur
lequel on abaissera des perpendiculaires par les sommets de toutes ces pyramides
triangulaires ; on considérera chacune d’elles en particulier, et, au moyen de la for-
mule précédente, on calculera la distance de son centre de gravité par rapport au
plan dont nous venons de parler ; cela posé , représentons par x, x', 2", x”, etc.,
les distances de tous ces centres de gravité i ce plan, les poids ou les volumes
des pyramides triangulaires, par P, P’, P", etc., et la distance du centre de
gravité du polyedre par rapport au méme plan , par ¢ ; nous aurons (n° 84)

(PP P )X g=Pat+ P’ +P"a" +P o "+ elc.;

dot __ PP’ P a"-P"x" | ete.
0 - ISR P - ete.

En menant un plan paralléle & celui des momens & une distance ézale 2 ¢, ce
plan contiendra le centre de gravité demandé.

e (60)

En opérant de la méme maniére par rapport & un autre plan de moment fai-
sant un angle quelconque par rapport au premier, on obtiendra la distance &
Iaquelle il faudrait mener un plan paralléle au second plan de momens, qui
contiendrait aussi le centre de gravité; I'intersection de ce plan avec le premier
sera une droite qui passera par le centre de gravité demandé.

Assez souvent il suffit de conmaitre la position d’une droite menée par le
centre de gravité des corps ; et alors on donne au plan des momens des dircc-
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tions parallcles a celle qu'on veut donner & cette droite. Mais si I'on veut-con-
naitre entierement la position du.centre de gravité, il faut rapporter le polyédre
2 un troisitme plan de momens, pour avoir un troisitme plan qui contienne le
centre de gravité demandé, qui sera le point ot I'interscction des deux premiers
plans viendra rencontrer le troisitme.

‘Théoréme de Guldin.

152. La superficie.d'une surface de répolution quelconque est égale & la lon-
gueur de-la courbe génératrice multiplice par la circonférence du cercle décrit par
de centre de gravité de celte génératrice.

En effet, soit AFB (fig. 55) la génératrice tournant autour d’un axe vertical ,
‘dont AB est la projection’ verticale, pour engendrer un solide.de révolution;
soit G le centre de gravité de la courbe quelconque AFB; déterminonsla projec-
tion horisontale ¢ de ce centre de gravité, et par celle C de I’axe de rotation,
comme centre, et avec le rayon Cg , décrivons le cercle gk, qui sera la projec-
tion horisontale du eercle décrit par le centre de gravité de la courbe génératrice
AFB, laquelle projection sera égale au cercle dans I’espace. Prenons un arc ad dela
génératrice infiniment petit ; cet arc pourra étre regardé comme une ligne droite
dont le centre de gravité sera son milieu ¢; soit & la projection horizontale de ce
centre de gravité; supposons que la génératrice ait parcouru le chemin DE infi-
niment petit, et menons le rayon CE; si nous mulliplions I'arc ad par be, qui
est le chemin parcouru par le centre de gravité ¢ de cet arc, npus aurons le mo-
ment de ce méme arc ad parvenu dans le plan vertical élevé sur CE, par rapport
4 celui élevé sur CD. Nous aurions de méme le moment de chaque élément de la
&énératrice AFB; or, il est clair que la somme de tous ces momens sera égale &
la longueur de celte generatuce mulnphee par l'espace gh qu’a parcouru son
centre de gravilé; mais le moment de chaque élément est évidemment I'aire de
la surface décrite par cet élément; d'oir il suit que la somme des mémes momens’
oule prodmt de la 5eneralrlce AFB par I'espace gh, parcouru par son centre de
gravité , sera Iaire de la surface décrite par la génératrice enticre; or, la somme
e tous les espaces que parcourra le centre de gravité G, pendant que la généra-
trice fera sa révolution, sera égale & la circonférence du cercle ghk décrit par ee
centre de gravité ; il faudra donc multiplier la longueur de cetie circonférence
par celle de la courbe génératrice, pour avoir l'aire de la surface décrite par la

evolulmn enlitre de cette genéramce ce qu ’il fallait démontrer.

153, Le volume d’un corps de résolution est égal & Uaire de la surfaac géné-
ratrice multipliée par la circonférence du cercle décrit par le centre de grame
de cette surface génératrice.

En effet, soit AFB (fig. 53) la projection verticale de la génératrice du corps,
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et AB celle de I'axe de rotation supposé vertical; soient G la projection verticale
du centre de gravité de la génératrice AFB, et g la projection horizontale de ce
méme point. Par la projection C de I'axe de rotation comme centre, décrivons le
cercle ghk qui sera la projection horizontale du cercle décrit par le centre de
gravité de la surface génératrice, et sera égal & ce dernier cercle. Prenonsun
élément carré o de cette surface génératrice, qui soit infiniment petit, et abais-
sons la projection horizontale b du centre de gravité de cet élément. Supposons
ensuite que la surface génératrice ait parcouru le chemin DE infiniment petit :
nous pourrons concevoir deux plans méridiens, I'un élevé sur le rayon CD, et
I’autre sur le rayon CE, infiniment voisins 'un de I'autre.

Cela posé, nous verrons que, quand la génératrice passe de la position du
plan élevé sur CD 4 celle du plan élevé sur CE , I'élément o de cette génératrice
décrit un petit prisme dont la hauteur est 1'espace be parcouru par le centre de
gravité de cet élément. Or, le volume de ce petit prisme est l'aire de sa base,
que Jappelle m, multipliée par be; mais le moment de cet élément o ( parvenu
dans le plan élevé sur CE), par rapport au plan élevé sur CD, est aussi égal
a4 son aire m, multipliée par be; d’out il suit que le volume de chaque prisme
élémentaire du solide est égal au moment de I'élément correspondant de Paire
de la génératrice ; par conséquent, la somme de tous les petits prismes élémen-
taires du corps compris entre les plans verticaux élevés sur les droites GD, CE,
sera égale au moment de l'aire de la génératrice parvenue dans le plan élevé
sur CE, par rapport au plan élévé sur CD; c'est-a-dire que ce dernier moment
sera égal au volume du- coin du solide compris entre les deux plans verticaux
infiniment voisins dont il vient d’étre question. Mais le moment de la généra-
trice est égal a son aire multipliée par le chemin circulaire gh infiniment petit
Pparcouru par son centre de gravité; donc, le volume du coin du solide égalera
le méme produit, qui est AFBgh.

Pour un coin suivant, également compris entre deux autres plans méridiens
infiniment voisins, on aurait encore son volume, en multipliant Vaire de la
génératrice par P'arc infiniment petit décrit par son centre de gravité, et ainsi
de suite pour les coins suivans. La somme de tous ces coins élémentaires est égale
#u volume du corps, et, comme ces élémens ont un facteur commun qui est 1'aire
de la génératrice , leur somme sera égale 4 ce facteur commun multiplié par la
somme des autres facteurs, qui sont les élémens de la circonférence du cercle
décrit par le centre de gravité de la génératrice; ce qui démontre la proposition
énoncée.

154. Lesdeux derniers théorémes ont encore lieu , lorsque le corps n'étant
pas de révolution, les élémens infiniment petits du chemin parcouru par le
centre de gravité de la génératrice sont constamment perpendiculaires au plan

9.
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de cette génératrice , 2 mesure que, par son mouvement, clle engendre le corps
ou la surface. Ceci se démontrerait par les mémes raisonnemens que ceux em-
ployés dans ces deux derniers théorémes. Appliquons ces prmc:pes 4 quelques
exemples.

155. Supposons, pour premier exemple, qu'on nous demande Faire de la sur-
face d’une sphere.

Pour cela, rappelons-nous que nous avons trouvé (n° 115) que la distance du
centre du cercle au centre de gravité d’'unarc était % ; or, dans le cas d’un demi-
cercle C=2aR et A—pR (Géom., pl. n° 229); la distance du centre de gravité
de la demi-circonférence au centre sera donc %:;—R. Cette distance devant étre

le rayon du cercle décrit par le centre de gravité de la génératrice , la circon-

4pR__

férence de ce cercle sera 5 —4R; or, la longueur de la génératrice est pR;

Paire de la sphere sera donc (no 152) 4’pR=, comme au n° 206 de la Géométrie
3 trois dimensions.

156. Proposons-nous, pour second exemple , de trmwer le volume d'une
sphere. _
Nous avons trouvé (n’ 116) que la distance du centre de gravité d'un secteur

de cercle au centre de Parc était 30 AR, dans le cas du demi-cercle, C=2I, et

A=pR; la distance du centre de gravité du demi-cercle sera donc g Cette

distance étant le rayon du cercle que doit parcourir le centre de gravité de la
génératrice, la circonférence de ce cercle sera %;E 8:{, mais I'aire du demi-
cercle (Géom. ) pl. n° 230) estp ; le volame de la sphére (n° 453) sera donc

XP—B— é—‘?—- , comme au n° 208 de la Géométrie a trois dimensions.

157. Soit maintenant une ellipsoide de révolution, dont on demande le
volume. '

A Varticle n° 425, nous avons trouvé que la distance du centre de ellipse an
centre de gravité d'un secteur elliptique , divisé en deux parties égales par un
axe, était la méme que celle du centre de gravité du secteur circulaire corres-
pondant, et appartenant & un cercle décrit sur 'axe qui divise le secteur ellip~
tique en deux également. Supposons donc que I'ellipsoide soit engendrée par la
demi-ellipse AcB (fig. 50) tournant autour du grand axe; le centre de gravité
de celte demi-ellipse sera le méme que celui du demi-cercle LeK déerit sur- le

R
petit axe; or, nous venons de trouver (h° 156) que cette distance était %5-, et
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ici R=b; par conséquent le rayon du cercle que doit décrire le centre de gra-
vitd de la demi-ellipse génératrice , pendant la génération du corps, aura pour
. 4b o 8 . .
rayon Pexpression z—; la circonférence de ce cercle sera donc 55 mgls Paire
d’une ellipse (Géom. , pl. n° 799 ) est pab; celle de la generatrme sera L , et par
conséquent (no 453) le volume de I'ellipsoide sera
8b__pab__4pab
: IR I |

158. Si ellipsoide était engendrée par la révolution de la demi-ellipse cBd

(fig. 50), son volume serait

159. Supposons qu'on nous demande levohune d'un paraboloide de révolution
engendré par le demi-segment de parabole DCB , autour de Uaxe CD (fig. 51).

La distance du centre de gravité de la génération DCB, par ripport a laxe

de rotation DC , est égale & 32]—3—2 (n° 132) ; la circonférence du cercle décrit

par le centre de gravité sera donc —S—X 2p= 3}—6; et comme (Géom. pl.n°796),

laire de la génératrice DCB — —_E-DC—?—EE—:!;&, le volume du paraboloide sera
3pb 2ab paEt' '
égal a — X 5 =P n’étant point le parametre de la parabole , mais le

rapport approché du dmmel:re a la circonférence du cercle.

Nous ne pousserons pas plus loin les applications de ces deux théoremes de
Guldin, aussi féconds que faciles pour trouver surtout le volume de tous les corps
compris dans la remarque du n® 154.

LECON IX.

Centres degravité des corps sphériques.

160. Supposons qu’il s'agisse de trouver la distance du centre de gravité de
la surface d'un fuseau de la calotte sphérique engendrée par Uarc EH ( fig. 56)
tournant autowr du rayoh AE ; cette distance étant rapportée & Uaxe de rotation
AE, et le fuseau étant compris entre les plans méridiens dont les traces hori-
zontales sont les rayons ab, ac.

Pour y parvenir, divisons la fidcche EF en an r.r&-grmid nombre de parties
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égales, pour que ces parties soient trés-petites, et prenons une de ces parties pour
unité, Par chacun de ces points de division, menons un plan perpendiculaire 3
I'axe de rotation AE : les zones comprises entre ces plans seront équivalentes
(Géom. a trovs dim., n° 211) ; et leur aire commune sera 2pR , la hautear com-
mune & toutes ces zones étant I'unité. Si donc nous nommons m angle du

m =" (@
fuseau , nons aurons 365 X PR =—5=n. (@)

pour Paire commune 4 tous les élémens du fuseau de calotte dont nous cherchons
le centre de gravité.
g

Ces élémens infiniment étroits peuvent étre considérés comme des arcs de
cercle dont les rayons sont les ordonnées de I'arc EH , abaissées sur la fleche EF
infiniment voisines les unes des autres. Appelons successivement ', 2', 2",
x", etc. , cette suite de rayons, et cherchons les distances des centres de gravité
des arcs successifs qui appartiennent & ces rayons, ou, en d’autres termes , des
élémens du fuseau , rapportés & 'axe AE. Or (n° 115), la distance du centre de

o CR ' . .
gravité d’un arc au centre de cet arc est 3 Observons maintenant que la suite
des arcs dont nous cherchons les centres de gravité sont d'un méme nombre de
degrés marqués par m, et que le triangle rectangle ace donne :

1 2sin2cab ) lac, ce, ou x| sinnim | R ce=Rsin. 2m;
ce qui donne 2ce ou be=C =2 Rsin. jm ; et (Géom., pl. n° 233)

__2pRm
A= 360 °

Si donc nous substituons ces valeurs de C et de A dans Pexpression %I—{, il nous

360 < 2R’sin. im __ 360R sin. im
apmR - pm

viendra ’

pour P’expression de la distance du centre d’un arc quelconque & son centre de
gravité. Sidonc, au lieu de R, dans cette expression, nous mettons successi-
vement les rayons x , 2’ , &", etc., des élémens du fuseau , nous aurons

36ox sin. im 360 x'sin, Im 360 2 sin. im
3 ) pm

pm pm

, elc

pour les distances cherchées,
' Si nous multiplions ces distances, chacune par Faire commune trouvée ci-

dessus —mR , il nous viendra
180 )

aRasinim, 2Ra’ sin.2m, 2R"sindm, aRa” sinim, etc.,
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pour les momens de ces mémes élémens par rapport a I'axe AE. Nommons kb la
fleche EF dela calotte, I'aire de cette calotte(Géom. atrois dim., n°241)sera apRh,

et celle du fuseau :’T%k ; si donc g est la distance du centre de gravité de ce fu-

seau & 'axe AE, nous aurons

"8 % g =aRsinim (a2 40" +a"+ete)

Il est aisé de voir que la parenthése étant la somme de toutes les ordonnées de
'arc EH, abaissées sur la fleche EF, sera I'aire du demi-segment circulaire EHF,
car ces ordonnées étant infiniment prés les unes des autres sont les élémens mémes
de ce segment : nous aurons donc

mpﬂh
180

~—— X g = aRsin. 4m X seg. EFH...... (61),

o g _m X seg. EFH.....(62).

Telle est I’expression demandée.

161. Si, dans la formule (62) , nous faisons m ou cab (fig. 56) = 180, nous
aurons sin. +n = sin. go° = I, et il viendra
g = Tg-g—s—-h X segment EFH = ;% X seg. EFH,
et si, dans cette derniére, nous supposons h ou EF = 2R , seg. EFH deviendra
un demi-cercle, et égalera ’PE, et I’expression ci-dessus se réduira &

=Ry 2
c’est-a-dire que la distance du centre de gravité de Uaire d’une demi-sphére au
centre de cette surface est égale & la moitié du rayon.

162. Proposons-nous maintenant de trowver la distance , par rapport a Uazxe
de rotation AE (fig. 56 ), du centre de gravité d’une pyramide sphérique , dont
la base serait la portion du fuseau de calotte décrit par Uarc EH, et compris
entre les deux plmw méridiens dont les traces horizontales sont les droites
ab, ac.

Pour y parvenir, il suffira de concevoir cette pyramide décomposée en pyra-
mides élémentaires infiniment petites , qui auraient leurs sommets au centre de
la sphere , aussi bien que la pyramide proposée, et leurs bases infiniment petites
sur la surface du fuseau qui sert de base & la pyramide totale ; or, les centres de
gravité de ces p}"l‘aml.des élémentaires seront évidemment sur la surface d’un fu-
seau semblable 4 celui qui sert de base & la pyramide proposée , mais appartenant
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a une sphére dont le rayon ne serait que les ¢ de celui de la sphere donnée
(n°® 147. ) La surface de ce fuseau étant le lieu des centres de gravité de tous
les élémens de la pyramide donnée , cette surface et la pyramide auront le méme
centre de gravité. Mais il est évident que les distances des centres de gravité des
deux fuseaux sont entre elles comme les rayons des sphéres auxquelles ils appar-
tiennent ; or, le rayon de la sphére qui est le lieu des centres de gravité de la
pyramide est les 2 de celui de la sphére donnée ; donc, la distance du centre de
gravité de la pyramide, par rapport a l'axe de rotation, sera égale aux ; du se-
cond membre de la formule (62) du n° 460 ; ainsi, en nommant ¢ cette dis-
tance , nous aurons
3 360 sin. tm
T4 mph
— %’E X seg. EFH.... (64).

163. Si, dans cette formule, on fait m=180°, et h==2R, on aura sin.;m =1,

et seg. EFH = I cercle = Pl: ; en substituant il viendra donc

3 > 360 R 3R
9 = I rsep R X T = (69
Cest-i-dire que le centre de gravité du volume d'une demi-sphére est & une dis-
tance du centre égale aux 5 du rayon.
164. Laire du fuseau de calotte qui sert dé bose'd la pyramide sphérique,

¥ seg. EFH

dont il a été question au n° 149, est mﬁ—‘??{n‘ 160.) Si nous multiflions celte aire
par 3, nous aurons le volume de la pyramide , qui sera ;;":—h-
multiplions la formule (64) du n° 464 par ce volume, il nous viendra

3 360 sin. im X mpR’h

; s1 donc nous

mom. pyr. = 4 >< 3 X 180 mph X seg. EFH
Rssin. im
ou mom. pyr. = ————— X seg. EFH.....(66)

2

165. Le centre de gravité d’une zone sphérique quelcongue est au milieu de la
hauteur de celte zone.

En effet, si I'on divise la hauteur de la zone, quelle gu'elle soit , en une infi-
nité de parties égales par des plans perpendiculaires a cette hauteur, ces plans
diviseront la zone en une infinité de zones élémentaires qui seront égales entre
elles, ayant toutes la méme hauteur. Les centres de gravité de tous ses élémens
égaux seront évidemment sur I'axe ou hauteur de la zone proposée ; cetté hautear
sera donc uniformément chargée par les élémens de cette zone ; donc le centre
de gravité de cette dernitre sera le milieu de sa hauteur. -

166. Rapporcoﬁs maintenant le centre de gravité d'une zone quelconque au
plan horizontal KR mené par le centre de la spheére.
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Supposons qu’il s'agisse de la zone ICHG (fig. 56), et nommons h, h' les hau-
teurs AF, AD; la hauteur DF de la zone sera h—2’, et la distance du centre de

= (n°165); ainsi Dg =
Mais Ag, qui est la distance cherchée, -est

h
graw’:e de la zone, par rapport au point D, sera

Ag=AD 4 Dg=p A= M AR K _BEN (o)

2

Si la zone était la calotte sphérique JEC, h =R, et Ag = R+ Rtk

167. D’aprés les raisonnemens déja employes-plusteurs fois, il est cla:r que la
distance du centre de gravité d'un secteur sphérique quelconque , par rapport
au centre de la sphere, est égale aux trois quarts de celle du centre de gravité
de l'aire de la zome correspondante : or (n® 166 ), cette derniére distance est

b1

; si donc g est celle qui appartient au centre de gravité du secteur,

nous aurons

R4tk 3 (4R
gt PEE 2R | f68)
168. Le volume d’un secteur sphérique est égal (Géom. & trots dim., n°214) a
SP L3 —— X DF (fig. 56), mais DF étant la hauteur de la zone du sectear =h—h',
R* (h—h'
.B....%_.._l,_,(sg) |
169. Multiplions ce volume par P'expression de g du n® 167, il nous viendra

mom. sect. ICHG = *2 R’ (k-k’) P 3(k + k’)’

donc vol. sect, sph.=

ou mom. sect. ICHG = PR (=) U} . «(70)

170. §'il s’agissait d’un secteur & calotte, b==R, et la formule dun® 167
deviendrait.

_3®+H) -|-fn (1)

et la précédente,
» L. I G—-—pn. (nﬂ__hh) m
mom. sect. ICH ——L.(12).

171. La distance du centre de gravité d’'une portion quelconque d’un sec-
teur comprise entre deux plans méridiens , ou d’une pyramide sphérique qui
aurait pour base un fuseau de calotte ou de zene quelconque, est la méme , par
rapport au plan horizontal mené par le centre de la sphére, que celle da centre
de gravité du secteur sphérique entier dontla pyramide fait partie ; car les
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élémens du secteur compris entre des plans méridiens infiniment voisins ont
évidemment leur centre de gravité sur le méme plan, perpendiculaire i I'axe de
rotation , qui contient le centre de gravité du secteur entier.

-172. 1 suit de la que, si I'on multiplie I'expression de g du n° 170 par le vo-
lume de la pyramide en question, on aura le moment de cette derniere par
rapport au centre de la sphere. Or, le volume de la pyramide qui a pour

base un fuseau de calotte est -3?5—-}: X DE; mais DE=R — &' ; ainsi

le volume de cette pyramide sera z——== 8 X (R—R"); multlplmns-le par la

valeur de ¢ que nous venons de cuer, et nous aurons

mom. pyr. sph. = (R-[—h'} X 5><180 - (R—4")

. mpR« (Ra —_— kfl) . mpRu ('Ra — kh)
—  8x 180 3604 - A(73)

173. Proposons-nous de déterminer le moment, par rapport au plan hori-
zontal mené par le sphére , d’un segment a calotte.

Pour cela , nous observerons que le volume du segment IEC est égal a celui
du secteur AIEC moins celui du céne ICA, et que, par conséquent

mom. seg. — mom, sect, — mom. cone..... (a).

Le moment du secteur est donné au n° 170 ; quant & celuidu cbne , on le trou-
vera comme il suit :

d’abord vol. cone — L(_D(i)gj_@;

Mais AD="1', (DC)" =R* — (AD)*=R*—h'" ce qui donne vol. céne —
ph! (R — ) 3R o
—————, qui, multiplié par la distance T du centre de gravité de ce

3
cbne 4 son sommet A , donnera

Ia 2 __ hl
mom. cone = P—h—-(—ir*—i—) i
substituant ce moment et celui (70) du n® 172, dans I'équation (a), il viendra

s fRa__ Rl f2 (R=—}'* Yo -
PR (H‘i k") ok f‘; )=P(P‘4 )......(74)

mom, sgg. =

174, Cette expression peut se mettre sous une autre forme, en observant que
h' = AD= AE—DE —=R— ; ce qui donne b’ *=(R—P)" ._R' —aRh+A* ;
et en substituant, on aura
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__ pR*—R*4-2Rh—F*)" p(an h*)®

mom. seg. —

175. Le volume d’un segment A calotte ( Géom. & trois dim. , n° 215 ) est
é’gal a ph* (ﬂ — g) ; si donc g est la distance du centre de gravité du segment
au centre de la sphere, nous aurons

_ PR ORI _R—B_3GR-: )
4ph’(R— ;_i) 4 (R___sf_%) 4 (SR—P)

176. La distance, par rapport au plan KB mené par le centre de la sphére, du
centre de gravité d’un coin de segment quelconque est la méme que celle du centre

de gravité du segment entier; et le volume de ce dernier étant ph“(R— }?:)

mph (R -—{3!)

360

177. Le moment d'un pareil coin, par rapport au plan KB mené par lc
centre de la sphtre, sera donc

b}

celui d’un coin dont le nombre des degrés serait m, sera

h —h)?
: mph* (R ~3) LR“‘%"
mom. coIn seg. = "t X 4(& — 3)
__ mph*(aR—h)*
= = rX3e wae(77)
178. Le moment du méme coin , par rapport a l'axe de rolation, sera égal &
celui de la pyramide correspondante , moins celui du secteur du céne qui fait
partie de cette pyramide. Or (n° 164)

F 1
moment py. EC = R-—?-";J-”—l

X seg. EDC (fig. 54).

Pour avoir le moment du secteur du cbne, il faut observer que la distance
Dim, du centre de gravité du secteur circulaive qui lui sert de base , par rap-
240 X DC < sintm DC

pm ’
étant le rayon de l'arc de ce secteur; le centre de gravité du secteur du céne
sera le point n situé sur la droite Am i une distance nr, de l'axe AE , égale
aux £ de Dm, comme An est les 2 de Am ; nous aurons donc '

DC 4 80 DC .
moe=2 afo X Pm)( sin m__ 180 P);sm im..... @

porta I'axe de rotation AE (note *, page 43) est égale &

10
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Le volume du secteur de cone sera I’aire du secteur circulaire qui lui sert de
base décrit par le rayon DC, multiplié par le ; de AD ou 3 (R—h); h étant la

fléche du segment ; mais l'aire de la base est mpggcy ; le volume cherché sera

done vol. sect. con.— p(];(él (R—n)

Si nous multiplions ce volume par Pexpression (a), il nous viendra

mom. sect. cbn, = L (R‘g) Sin%m..._. (78)

Retranchons ce dernier moment de celui de la pyramide rappelé ci-dessus ,
et il nous viendra

Re sin. im

“mom. coin seg. EC =

 seg. EDG — L E=Rnin | 79)
179. Nous avons trouvé (n° 176) que le volume du coin de

mph® R—%l)
seg. EC :—-——'——3'60—*.";. (ﬂ)

Si g est la distance du centre de gravité de ce coin a I'axe de rotation, en
divisant le moment précédent par le volume (a)’, il viendra

g= 360 -ﬁ) > {R‘ sin. in 5 seg. EDC — (DC) ’(B'E") sin.ém}““ (80)

mph* (R —3

LECON

Centres de gravité des corps ellipsoides.

180. Le centre de gravité de Uaire latérale d'un céne & base circulaire est
le méme que celui du triangle par Uaxe de ce cone.

En effet, si par des plans parallelm 3 la base on divise le céne en tranches
infiniment minces , la surface du cone et l'aire du triangle par I'axe seront
divisées en bandes inﬁniment étroites qui seront les élémens de ces deux sur-
faces. Les poids des élémens du triangle seront proportionnels  leurs longueurs,
et les poids des élémens de la surface du cone aux circonférences de cercle qui
résulteront des sections faites parallélement a la base ; mais ces circonférences
sont comme leurs diamétres , lesquels sont les élémens du triangle. Les élémens
du cbne sont donc proportionnels & ceux du triangle; de sorte que si nous
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supposons la surface du triangle uniformément chargée d’un poids total égal 2
celui de la surface du cbne, les élémens du triangle seront égaux & ceux de la
surface de ce dernier ; en outre, les centres de gravité des élémens des deux
surfaces sont respectivement aux mémes points sur I'axe du cone ; mais quelle
que soit la charge d’un triangle , pourvu qu’elle soit uniforme, son centre de
gravité reste le méme; donc le centre de gravité de l'aire latérale du cone est
le méme que celui du triangle par Paxe.

169. 1l suit évidemment de la que le centre de gravité de l'aire latérale d’un
tronc de cone est le méme que celui du trapéze par 'axe de ce trone.

170. Supposons une ellipse CAD (fig. 57), qui, par sa révolution autour de
Uazwe AL, engendre une ellipsoide, et qu'avec un rayon égal au demi-axe de
rotation. on ait décrit le cercle EAT, qui, tournant autour du méme axe Al ,
engendre une sphére.

Cela posé, menons les doubles ordonnées GH, LM, EF , etc. ; ensuite , dans
le cercle, les cordes AG, GL,... AH, HM..., et dans l'ellipse les cordes Ag ,
gl,... Ak, hm..., qui, dans I'une et 'autre courbe, joignent les extrémités des
doubles ordonnées. Ces cordes, en les faisant tourner autour de l'axe Al, en-
gendreront, celles qui aboutissent au point A , des cbnes, et les autres des troncs
de cones qui seront, les uns inscrits dans la sphére , et les autres dans Vellip-
soide. Nous venons de démontrer que les aires de ces cones et de ces troncs
de cones avaient les mémes centres de gravité que les triangles et les trapézes
par laxe qui y répondent ; je dis maintenant que les centres de grapité des trian.
gles et -des trapeézes inscrits dans le cercle sont les mémes que ceux du triangle et
des trapezes correspondans inserits dans Vellipse.

En effet; d’abord quant aux triangles GAH , g4h , il est bien évident qu'ils
ont le méme centre de gravité, puisqu’ils ont leurs bases sur la méme droite,
leurs soramets au méme point A, et qu’ils sont tous les deux divisés en deux
parties symétriques par I'axe de rotation Al Quant aux trapézes GHML, ghml
ils ont méme hauteur, les bases proportionnelles , et sont divisés en deux par-
ties symétriques par I'axe de rotation Al; ainsi leurs centres de gravité seront
surl cette droite AL Nommons G ct g les distances de cescentres de gravité par
rapport aux grandes bases LM, lm ; par le n" 111 nous aurons

_ aGH -|— LM agk -+ lm
6= 5 XTirmm ¢ 9= 5 =X S Im
. h
mais GH; gh (LM im = LMJ}; g
Mettons cette valeur de Im dans celle de ¢, il viendra
LM x gh
_N_.Ky“"g‘|“ _GH __NK, a2GH+ LM
I="3" ght LM x /&_E 3 S TCH+ LW
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Donc g = G ; donc les cones et les troncs de cones inserits dans la sphére ont
respectivement les mémes centres de gravité que ceux inscrits dans ellipsoide.

181. Le centre de gravité de Uaire d'une calotte ellipsoide, dont le sommet est
Vextrémité de Uaxe de rotation , est le méme que celui de la calotte sphérique
correspondante dans la sphére dont le diamdtre est Uaxe de rotation.

En effet , si 'on divise la fleche, commune aux deux calottes, en une infinité
de parties égales par des plans perpendiculaires 3 I'axe de rotation, entre ces
plans on pourra concevoir dans la sphere et dans Iellipsoide , d’abord un ctne,
et ensuite autant de troncs de cones qu’il y aura de tranches; lor, tous ces cones
et troncs de cones ont respectivement les mémes centres de gravité et sont pro-
portionels ; or, si le nombre de ces élémens est infini, leurs sommes seront res-
pectivement égales a la calotte sphérique et i la calotte ellipsoide ; et comme ils
ont respectivement les mémes centres de gravité , et qu'’ils sont proportionnels,
il s’en suivra enfin que les deux calottes auront le méme centre de gravité. Mais
(n® 165) nous avons vu que le centre de gravité d’une calotte sphérique était
au milieu de sa hauteur ; il en sera donc de méme pour la calotte ellipsoide.

182. De ce que le centre de gravité d’une calotte ellipsoide est au milieu de
sa hauteur, il faut en conclure que les élémens de l'aire de cette calotte compris
entre des plans perpendiculaires 4 I'axe de rotation , sont égaux entre eux
comme dans la calotte sphérique ; car, sans cela, la hauteur de la calotte, qui est
le licu des centres de gravité des élémens, n’étant pas uniformément chargée ,
le milieu de cette hauteur ne pourrait pas étre le centre de gravité de cette ca-
lotte ellipsoide. '

183. De ce que les élémens d'une zone sphérique quelconque sont propor-
tionnels & ceux de la zone ellipsoide correspondante , et que le rapport de ces
élémens est le méme que celui des axes de D'ellipse génératrice, il s'ensuit que
Uaire d'une zone sphérique est & celle de la zone ellipsoide correspondante comme
Uaxe qui est le diamétre de la sphére est & Uautre ; cest-a-dire qu’on a

zone sph. | zone ellip. {2 a } b.
Or, zone sph. = 2pah, h étant la hauteur de la zone; par conséquent,

L] -
.c.ule

apal. ] zone ellip.
d'olx zone ellip. — apbh,

cette expression sera donc I'aire d’une zone quelconque d’ellipsoide.

184, Delail s’ensuit donc que I'aire d’un demi-ellipsoide est égale & 2pab,
puisque dans ce cas A = a; etcelle, conséquemment,. de Pellipsoide entier
i 4pab.

Mais ( Géom., pl. n° 799) nous avons vu que P'aire d’une ellipse était pab ;
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d’otr I'on voit que Iaire d’un ell;psmde est quatre fois celle de I'ellipse généra-
trice. Il faut donc conclure de 13 qu’ane elhpse tournant autour de son grand
axe engendrera un ellipsoide qui aura la méme aire que celui qu’on aurait en-
gendré en faisant tourner celte ellipse génératrice autour de son pelit axe.

185. Supposons qu'il s'agisse de trouver la distance du centre de grapité
de Uaire d'un fuseau de calotte ellipsoide engendréc par Varc dellipse Ah, en
tournant autour-de Uaxe Al 5 celte distance étant rapportée a V'axe de rotation
AL, etle fuseau étant compris entre deux plans verticaux , menés par Uaxe de
rotation , dont les projections horizontales sont les droites ab, ac (fig. 57).

Pour cela, divisons la hauteur AK de la calotte en une infinité de parties
€zales par des plans perpendiculaires & 'axe de rotation Al, et prenons une de
ces parties pour unité : les zones entiéres comprises entre ces plans seront équi-
valentes, puisqu’elles auront la méme hauteur (n°® 182), I'aire commune 4 toutes
ces zones sera 2apb (l'aire de 1'élément qui aurait pour base le cercle décrit par
le demi-petit axe), la hauteur de cet élément étant I'unité infiniment petite.
Si nous nommons m I'angle bac du fuseau , I'aire commune 4 tous les élémens

de celui-ci sera "5'()_ Ces élémens étant infiniment étroits peuvent étre consi-

dérés comme des arcs de cercle dont les rayons seront les ordonnées de Iarc
d’ellipse Ak , abaissées , infiniment prés les unes des autres , sur l'axe de ro-
tation AL _
La distance du centre de ces arcs ou de I'axe de rotation # leurs centres de
gravilé seront ( note de la page 42 ) respectivement égales &
360 ysin- tm 360y’ sin. im 3607' sin. im

3 , etc.
pn pm pm

en nommant respectivement y, y',¥", ", etc. les ordonnées de l'arc d’el-

lipse Ah.
Les momens de ces mémes élémens seront donc )
abysin.zm, 2by’singm, 2by” sinim, etc.,
Nommons g la distance,, par rapport & 1’axe de rotation Al, du centre de
gravité de l'aire du fuseau en question ; nous aurons

g X airedu fus, decal. = 2bsin. 2m (y+y' 4" 45"+ etc.).. (a)

La parenthése étant la somme de toutes les ordonnées, ou plutét des élémens
du demi-segment elliptique ARK, sera égale a I'aire de ce dernier segment : nous
aurons donc

g X aire du fus. de cal. = 2b sin. sm X seg. ARK.... (80)
L’aire de la calotie elliptique entitre gAh = 2pbh (n°® 183 ); h étant la fléche
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AK; celle du fuseau en question sera donc 2 T bh, m étant I'angle bac du fuseau.

Si donc nous divisons le moment (80) ci-dessus par l'aire du fuseau , il nous
viendra énfin

360 sin, im
mph
186. Si dans cette formule nous faisons m = 180°, et b — a, seg. ARK de-

g= X seg. ARK.

viendra égal a p_zﬁ ; etil en résultera

__ 3opadb b
9=78 paxX 4 " 2
pour la distance du centre de l'ellipsoide au centre de gravité du quart de 1'aire

de Dellipsoide, ou méme de la moitié déterminée par un plan mené par Paxe de
rotation.

187. Cherchons maintenant la distance du centre de gravité d’une pyramide
ellipsoide engendrée par le secteur elliptique Alh tournant autour de U'axe de
rolation Al, d'une quantité égale & langle bac (fig. 57), divisé en deux parties
égales par le plan CAD,

Pour y parvenir, supposons la pyramide proposée divisée en une mﬁmte de
pyramides infiniment petites, ayant leurs sommets au centre de Pellipsoide , et
leurs bases infiniment petites sur la surface du fuseau de calotte qui sert de base
4 lapyramide donnée : il est clair que toutes ces pyramides élémentaires auront
lears centres de gravité sur un fuseau de calotte ellipsoide correspondant 4 celui
qui contient leurs bases , et apparienant i la surface d’un ellipsoide semblable a
celui en question ; les axes du nouvel ellipsoide seront donc les £ de ceux de
Pellipsoide proposé, et le centre de gravité de ce nouveau fuseau serale méme
que celui de la pyramide donnée. Or, la distance par rapport i I'axe de rotation
Al du centre de gravité de ce fuseau , sera évidemment égale aux 2 de celle du
centre de gravité du fuseau qui sert de base & la pyramide ; donc (n® 175),

=ix Mx seg. ARK.....(81)

188. Le volume de la pyramide sera égal (n® 153) a aire du secteur Alk
(fig. 57) multipliée par I'arc du cercle décrit par le centre de gla\rlte de ce
secteur elliptique , autour de I'axe de rotation Al.

Or (n° 130), la distance du centre de gravité de ce secteur elliptique , par

rapport i I'axe Al, est
25C ,
f —EI t{mg. 2l

A’ étant Larc de cercle AH, » le nombre des degrés de langle AIH et C =
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KH : la circonférence du cercle qui aurait cette expression pour rayon serait

4ﬂ]§%'3—-—w, et 'arc décrit par le centre de gravité du secteur Alk, dans la

génération de la pyramide, sera par conséquent
4mpbC tang. in
360 <x3A °
le volume de la pyramide sera donc
4mpbCtang. in
360X 3A "7

ou (n° 127), éq. 37, & cause que sect. Alh — ZL:-

vol. py. Ah =sect. Alh X

— A _4mpbCtang. tn __ ampb Ctang. in
vol. py. Ah = — X 360 X3 E = 365 % 3g weree(82)

189. Si nous multiplions Iexpression de g du n° 187 par ce volume , il nous
viendra '

3 X 360 sin. im _, 2mpb*C tang.in
T X g X sege MK

b*Csin. im tang. in

= = X seg. ARK....(83)

On aura le demi-segment d’ellipse ARK, par cette proportion

mom. py. Ak =

a: b, seg KHA | seg KhA — 258 KHA
a

190. Si I'on voulait le moment, par rapport a I'axe de rotation Al , du coin
de segment répondant & la pyramide précédente, il suffirait de retrancher du
moment de cette derniére celui du secteur de céne qui fait partie de la pyra-
mide ; le reste serait le moment demandé.

Pour avoir le moment du secteur de cone, on s’y prendra comme dans le
n° 178.

19%. Le volume du coin de segment d’ellipsoide s'obtiendra en observant que
le coin de segment de la sphére est au coin de segment de ellipsoide , comme
le carré du demi-axe qui sert de rayon a lasphére est au carré de I'autre
demi-axe. -

Ayant le volume du coin de segment de I'ellipsoide, et ¢i-dessus son moment,
il n’est pas nécessaire de dire comment on arriverait 4 la distance du centre de
gravilé de ce coin i I'axe de rotation.

192, Le centre de gravité d'un ‘segment quelconque ellipsoide est le méme que

celui du seqment de sphére correspondant, dont le rayon serait ledemi-axe
de rotation.
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En effet, soit le segment ellipsoide gAh et le segment sphérique correspon-
dant GAH(fig. 57). Sil’on divise la hauteur commune AKen une infinité de par-
ties égales par des plans perpendiculaires a I'axe de rotation, les tranches infini-
ment minces comprises enire ces plans seront entre elles comme leurs bases,
lesquelles sont des cercles, qui, par conséquent, sont entre eux comme les carrés
des rayons, Mais les rayons de ces cercles sont respectivement les ordonnées du
cercle et de l'ellipse, lesquelles ordonnées sont comme les demi-axes ; d’ou il suit
que les tranches de la sphere sont 4 celles de lellipsoide, comme le carré du
demi-axe qui est le rayon de la sphére est au carré de I'autre demi-axe de el-
lipsé génératrice. Ainsi ces tranches sont proportionnelles. D’ailleurs il est facile
de. voir qu’elles auront toutes leurs centres de gravité respectivement au méme
point. Il résulte donc de 1a que la proposition est démontrée.

193. Il suit de la que le secteur ellipsoide 1ZAm a le méme centre de gravité
que le secteur sphérique correspondant ILAM. Car les deux segmens lmA , LMA
ont le méme centre de gravité, et il est bien évident qu'il en est de méme des
deux cones Iml, LMI; par conséquent, la proposition est démontvée. Ceci doit
s'entendre de deux secteurs quelconques.

194. Nous avons trouvé (n° 167) que la distance du centre de gravilé d’un
secteur quelconque de sphere, par rapport au plan perpendiculaire & Iaxe de
rotation et mené par le centre de la sphére, était

3(h4-H
g =200,

Cette distance appartiendra donc aussi au centre de gravité d’un secteur quel-
conque d’ellipsoide.

195. Le secteur sphérique est au secteur ellipsoide dans le rapport des carrés
des demi-axes. Ainsi nous aurons

. . . .b* sect. sph.
a2 : bﬂ L ] seCt' 5ph. - SBC[. eulpn"—:—‘"“‘;"‘"‘p_.

Mais (n° 167) vol. sect. sph. :iﬂ{:{é_’*_—fl) ; donc

vol. sec. ellip. = ﬂf_’f_’%:{ﬂ (®).

196. Le moment du secteur ellipsoide, par rapport & son centre, s’obtiendra
en multipliant les expressions (a) et (&), et on aura
mom. sect. ellip. :ﬁfﬂ

" 197, La distance du centre de gravité, par rapport au centre de lellipsoide,
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(c’est-a-dire par rapport au plan perpendiculaire 4 ’axe de rotation , et mené

par ce dernier point 1), d’'une portion quelconque d’un secteur, comprise entre
deux plans méridiens, est évidemment la méme que celle du secteur tout entier.

198. Le volume d’un secteur d’ellipsoide entier (n°195) étant ?ﬂ%:@ R

celui d'une pyramide ou portion de ce secteur, comprise entre deux plans méri-
diens faisant entre eux un angle représenté par m, sera
2mpl* (h—R')
W‘ LI {83)
199. Le moment de cette pyramide s'obtiendra en multipliant son volume par
Pexpression (@) (n° 194), et sera

vol. py. ellip. =

. mpb* (R3]
mom. py. ellip. = _Eti._:%ﬁ-ﬁ_é—) ..... (84)

200. Si, de ce dernier moment, on retranchiait celui du céne Um , on aurait
celui du coin du segment qui correspond a la pyramide.

LECON X.

Centre de gravité des cylindres tronqués.

201. Nous avons vu (Géom. & trois dim. n® 135) que si, dans un prisme trian-
gulaire ABFEC (fig. 60) dont la face ABDC est un carré, on inscrit un coin cy-
lindrique ABCF , la section droite du coin étant un quart de cercle BC, etla
base ABF du prisme étant un triangle rectangle , nous avons vu, dis-je, que si
I'on menait des plans paralléles a la base ABF du prisme, les élémens corres-
pondans de la surface du triangle cylindrique CBF, et ceux du rectangle BDEF ,
compris entre ces plans, étaient équivalens, chacun 2 chacun, et qu'il s'ensui-
vait que Daire entiere du triangle cylindrique CBF élait équivalente & celle
du rectangle BDEF.

Cela posé , supposons qu'on nous demande le moment de Uaire de la surface
du triangle cylindrique Cab, par rapport &un plan mené par le rayon AC,
parallelement & la face BDEF,

Pour cela , menons une infinité de plans paralléles & la base ABF , infini-
ment voisins les uns des autres, dans la hauteur Cc; ces plans diviseront
l'aire du triangle Cab en élémens rectilignes paralitles a BF, et le segment de
cercle caC en élémens rectilignes paralléles & ca ( ces derniers élémens seront

11
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les ordonnées de l'are Ca). Prenons pour umité la hauteur verticale infiniment
pelite comprise entre tous ces plans; chacun des élémens du triangle cylin-
drique Cab étant égal & son correspondant dans le rectangle BDEF, égalera
BF =5 et leurs momens, par rapport au plan des momens ACLK, paralléle
& BDEF, seront égaux a b multiplié par 1'élément ou l'ordonnée correspon-
dante du segment de cercle Cac; ainsi , en nommant z , x', &", 2", etc., les
élémens successifs de ce segment, 4 partic du point C, la somme des momens
des élémens du triangle cylindrique sera :

mom. triang. cy.=bx 4 bx' 4 bx", ete="> (# + 2’ + 2"+ x", etc.)

mais la somme x + 2’ + 2", ete., des élémens du segment de cercle Cac sera
I'aire de ce segment ; nous aurons donc

mom. trian. c¢y. = b X seg. Cac....... (85).

202. L’aire du triangle cylindrique (Géom. & trois dim. n® 135) est b 3< Ce
—ab, en supposant Cc= a; si donc nous nommons ¢ la distance du centre de
gravité de ce triangle cylindrique par rapport au plan ACLK, en divisant le
moment (185) ci-dessus, par cette aire, il nous viendra

seg, Cac
g=20_22 . (86)

a

203. Supposons maintenant que Uon demande la distance du centre de gra-
vité du volume de la pyramide cylindriquse AabC (fig. 60), par rapport au
plan ACLK. .

Pour ‘cela, il suffira de considérer que cette pyramide peut éire regardée
comme la réunion d’une infinité de pyramides quiauraient leurs bases sur la
surface du triangle cylindrique Cab, et leurs sommets au méme point A ; et
que toutes ces pyramides élémentaires auront leurs centres de gravité sur un
triangle cylindrique semblable 4 celui qui sert de base 4 la pyramide totale , et
appartenant i une surface cylindrique dont le rayon de la section droite sera
les + du rayon R de la premidre surface cylindrique; le centre de gravité de
Paire du nouveau triangle cylindrique sera par conséquent le méme que celui
de la pyramide en question. Mais dans les figures semblables, les centres de
gravité sont des points homologues ; par conséquent ¢ et g' étant les distances
des centres de gravité des deux triangles cylindriques, on aura

L]

ol g =iy ="2ET (&)

gig' VRIFRIITE,

altendu (n° 202) que g = “B-C%,
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204, Si nous oons:dérom le tmngle BCF, le segment Cac deviendra le

quart de cercle ABC = 4 , et @ deviendra le rayon R ; en substituant dans la
formule (87) ci-dessus, il neus viendra

— R __ ?-pB. 3% 3 143

=T =T =R x = R X 0,589.u0.:(88)

205, En multipliant Paire du triangle cylindrique Cab , qui est ab (c'est-a=
dire BF < Cc), par %—, on aura

vol. py. AabC = a};;{....(ﬂg)
206. Multiplions I'équation (87) ci-dessus par ce volume, et il nous.viendra

Rb  seg. Cac

mom. py. AabC = —_— w(90)
.207. Si dans ce moment nous mettons la valeur du seg. Cac = }% » nous
aurons
mom. py. ABFC = “, = R% 3¢ 22 = B3 ¢ 0,196375....(01)

208. Comme en divisant la hauteur Cc en parties égales par des plans
paralleles a la base ABF, les élémens de l'aire du triangle cylindrique Cab
compris entre ces plans sont équivalens, il sensuit, comme pour la calotte
sphérique, que le centre de gravilé de I'aire de ce triangle cylindrique est situé
dans un plan mené au milieu de la fleche Ce parallélement a la base ABF.
Ainsi, & partir du point G, ce centre de gravité sera 3 une distance égale
i,

209. Si nous voulions la distanee de ce centre de gravité par rapport a la
base ABF, en la nommant ¢ , nous aurions

nR-——-a

g:ﬂ-—-i: e (92)

210. Si nous multiplions cette distance par %, nous aurons

=2R=9 (3

pour la distance du centre de gravité de la pyramide A3bC 2 la base ABF.
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211. Multiplions cette distance par le volume (n® 205) & la pyramide AabC,

qui est ais-ﬂ , 1l nous viendra

mom. py. AabC = v (94)

ab R (2R —a)
. 8
pour le moment de cette pyramide par rapport au plan ABF.

212. Si nous faisons @ =R dans les deux dernitres formules , nous aurons

3R . bR}
g = -5, et mom. coin ABFC = T..--(95)

pour la distance du centre de gravité et pour le moment du coin cylindrique
entier ABFC, rapportés au plan ABF.

213. Nous avons trouvé (n° 116) que la distance du centre de gravité d’un
secteur de cercle au centre de I'arc était ¢ — 3% ; dans le cas d’'un demi-cercle,

C = 2R, et A = pR; en substituant il nous viendra

4R*? 4R
9= 3p = 390

Cette distance est aussi celle du centre de gravité d’un quart de cercle, par rap-
port a 'un des rayons AB, AC qui déterminent ce quart de cercle.
Le volume du quart de cylindre ABCLFK ( Géom. & trois dim. , n® 134)

est PR 5 si donc nous multiplions I'expression (96) de g ci-dessus, par ce volume,

4

nous auroens

x pH’b

6 -
mom. } cy. = g +(97)

= 3?
214. Si nous retranchons de ce moment celui (n®212) du coin ABFG
(fig. 60), il nous restera

: 3 3 3 — IR}
mom. du coin AFGLK“_-R,_E'-_ R - Mb

3 8 24
- 5_"1"’- -+ (98)
ce moment étant pris par rapport au plan ABFK.
215. Le volume du coin AFCLK = ABCLFK — ABFC = f%.{' R
WRE— 4R RBGr—) _ o 1oy (99)
13, I
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Divisons le moment (n° 214) de ce méme coin par son volume, et il nous
viendra

__ 5R% 12 SR R _ :
= X REGp=f) — a0p—F) — 10,855 — R X 0,4607...... (100)

pour la distance du centre de gravité du coin AFCLK au plan ABFK.
216. Le volume de la portion du cylindre qui a pour base le secteur ACa

est é—l}b, A étant 'arc Ca. La distance du centre de gravité du secteur CAa

par rapport au rayon AB au plan ABFK (n° 119) est %CZH 3

donnée ca et A l'arc Ca; si donc nous multiplions cette distance par le
volume du secteur de cylindre, il nous viendra

oCR __ RCb
H —_— T.uu (10‘)

C étant 'or-

mom. sect. cy. = A—EE X

217. Side ce dernier moment nous retranchons celui (n® 211) de la pyra-
mide AabC, nous aurons

mom. 501' AIJM o H’SCb — abR (:;R-—a) —

8R*Ch — 6abR*® + 3a*hR __ Rb ($RC — 6aR -+ 3a?)
= = e

par rapport au plan ABFK.

218. Si du volume du secteur de cylindre que nous avons trouvé (n° 216)

égal a %ﬁ, nous retranchons celui de la pyramide AabC, qui est (n"' 205),

s abR
égal & ——, nous aurons

vol. solide AE;CLdK=£?.’ _ ﬂ_%f_’c __ 3ARS -;3- 2abR

Rb(3A—2a
= —L-b—,-—'-'—)'..un (103)
249. Divisons le moment ci-dessus par ce volume, nous aurons

__ 8RC — 6aR 4 3a°
- 4 (3A—22) 77

pour la distance du centre de gravité du solide ACLd, par rapport au plan
ABFK.

220. La distance du centre de gravité du secteur AaC, par rapport au
rayon AG (fig. 60), est 23% > tang. tm (n° 121), G étant la corde ca, A
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Parc Ca, et m le nombre des degrés de Pare Ca. Si nous multiplions cette
distance par le volume du secteur cylindrique ACadLK, nous aurons » par
rapport au plan ACLK; .
mom., scct. cy. ACadLK =— }{ 2;:: ng.im:&f—f X tang. M., (105)
Side ce moment on retranche celui de la pyramide AabC (n° 306), il nous
viendra '
R*Cb

mom. sol. ABCLAK = 32 X tang, 1m — ‘-Z’i '« seg. CaCl==
= (403 tang.}m — 3 seg. Cac)..... (106)
par rapport au plan AKLC.

221. En divisant ce moment par le volume de ce solide, trouvé( ne 218),
il en résultera

__ 4RC1tang. im — 3 seg. Cac
g —_— atjA — ga} s uen (IO?)

pour la distance du centre de gravité de ce méme solu:le ALCLdK , par rapport
au plan AKLC.

222, Si dans la formule (106) nous faisons C =R, m = go°, seg Cac

=+ cercle = f}z—- 5 il nous viendra

! IpR*
R5 (4re — 2 o
mom. coin AFCLK — ( 4 ) R'6 (16 — 3p)

12 48
R‘Ea (16 — 3 3, uim) R’b (16 —g,426)

78 73

R’ X 6,574
= ......48_7_. = 0,137 X R%..... (108)
223. Si dans la formule du n° 221 on fait C =R, a =R, A = jcirc. =
2
‘E} , m=go°, et seg. Cac— } cercle Z%R— , il viendra
P &

4 R (16—3p) __ R 6,574
9= (smt . ) T EGp—h) T arj04

= R X 0,303.....(109)

pour la distance du centre de gravité du coin AFCLK , par rapport au
plan AKLC.

224. Supposons, maintenant, qu'il s'agisse du coin de cylindre elliptique
ABFC (fig. 61); si on le compare au coin du cylindre circulaire ADEC, qui
lui est inscrit , los élémens infiniment minces de ces deux coins de cylindre,
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paralleles a la base ABF, seront entre eux comme les carrés des demi-axes AC,
AB du coin elliptique.

En effet, 1°les élémens du coin de cylindre circulaire seront des prismes
triangulaires de méme hauteur, et seront, par conséquent, entre eux comme
leurs bases, qui sont des triangles semblables, dont les cités homologues
sont les ordonnées du quart de cercle GD abaissées sur le rayon CA; par consé-
quent, les primes élémentaires de ce coin circulaire, seront comme les carrés de
ces ordonnées,

2° Les élémens du coin de eylindre elliptiGue seront aussi des prismes triangu-
laires , qui auront la méme hauteur que les précédens, et seront par consé-
quent entre eux comme leurs bases, qui seront des triangles semblables dont
les cotés homologues seront les ordonnées du quart d’ellipse abaissées sur le
demi-petit axe AC; les élémens du coin de cylindre elliptique seront donc entre
cux comme les carrés de ces ordonnées. Mais les ordonnées du quart de cercle
ACD sont & celles du quart d’eliipse ACB " B ; A (B et A étant les demi-axes
AC , AB de I'ellipse) ; les élémens du coin circulaire sont donc respectivement &
ceux du coin elliptique ; ; B2 ] A2, et par conséquent les coins entiers seront dans
ce méme rapport , comme il fallait le démontrer.'

- 2
225. Le volume du coin de cylindre circulaire étant B :’.;DE, on aura

B A2t PR 1 vl coin el = 2 5PE
Mais les triangles semblables ADE, ABF donnent
- L ] - B X BF
A B BF: DE =X,

par conséquent, |

. : BF
vol. coin e]llp.:A XBXxBF _ AxXBx

JA — 3 ?

ou en faisant BF =5,
A ]: b... (110)

926. Ce que nous disons des coins entiers est applicable & des portions quel-
conques Cabd, Cacl de ces deux coins , et par suite aux pyramides cylindriques
AbdC, AclC; car les pyramides polyédres Abda, Acla, ayant méme hauteur,
sont entre elles comme leurs bases qui sont dans le rapport des élémens des
deux coins, et par conséquent dans le rapport de B* } A2, Or, le volume de la
pyramide cylindrique circulaire AciG (n°205) est

DE x Ca % CA DE %< a X B

—

3 = 3 ’

vol. coin ellip. =
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ou comme (n° 225) DE — > iBF ’
vol. py. circ, = B x 31>< L. B;f,
en faisant BF = J.
Donc Bz 1 A2 B :: » vol. py. ellip.
ou A::S . vol. py. elllp....._—-....(xu)

227. Le volume du secteur de cylindre elliptique ABCLEK est égal au secteur
AarcCe;
2

Abc multiplié par BF=b; mais (n° 127) sect. ellip. = > on aura donc

vol. sect. cy. ellip. = Mﬂm (112)

228. Le volume du solide hdCAKL est égal & celui du secteur cylindrique
elliptique AbCLIK , moins celui de la pyramide elliptique AbdC : donc

vol. solide hdCAKL — 523_‘;3.‘1_‘30 _ %&b

b —
— A (3ar<:60c na)"m(us)

229. Puisque les élémens paralléles & la base ABF du coin cylindrique
elliptique ABFC sont proportionnels & ceux du coin cylindrique circulaire
ADEC, et que les centres de gravité de ces élémens sont respectivement a des
distances égales par rapport au plan ABF; il est facile de voir que les centres
de gravité de ces deux coins sont a la méme distance de ce plan ABF ( voyez
n° 208). Il en sera évidemment de méme pour le centre de gravité, 1° de la

pyramide AbdC, comparée & la pyramide AclC (voyez n° 209); 2° du coin
AFCLK, comparé au coin AECHG (voyez n° 214) , et 3° du solide hdCAKL
comparé au solide elCAGH (voyez n° 218).

Comme nous venons de donner ci-dessus les volumes de ces diverses portions
de cylindre elliptique, et que dans les numéros cités on trouvera les distances
de leurs centres de gravité par rapport au plan ABF, il sera famle d’en déduire
leurs momens par rapport au méme plan. '

230. Les élémens paralléles au plan ABF de toutes ces diverses portions de
cylindre elliptique étant semblables aux élémens correspondans des portions
correspondantes du cylindre circulaire, les distances des centres de gravité des
élémens des portions de cylindre elliptique , par rapport au plan AKLC, seront
- anx distances des élémens correspondans des portions correspondantes du cylindre
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circulaire, par rapport au méme plan, comme les lignes homologues de ces
¢lémens semblables, et par conséquent comme les demi-axes de Uellipse.

231. 1l suit de la, 1° que sig est la distance du centre de gravité de la py-
ramide AclC, et G celle du centre de gravité de la pyramide AbdC, on aura

g GLBL A

Mais (n® 203) g= E%E‘l‘i"'_

done 3 s Gacogaepgey,
fa '

P . 3 Aseg. Cac

dOi.l G = T..'.' (111’-'[')

232. 1l suit encore de la que si g est la distance du centre de gravité du
solide AleGHC , et G celle du centre de gravité du solide hdCAKL , on aura
BiAllgiG
4 B >< ac X tang. im — 3 seg. Cac _

- a l) ——
Mais (n° 221) 9= 2 (3 arc Cec — 2ac) ?

B*A-* « 4 B x ac % tang. tm — 3 seg.Cac ,
s 2 (3 arc Ce — 2ac) .

done

__ A(4B X ac x tang. im — 3 seg. Cac) (115)

2B (3 arc C¢c —2ac) "7

233. Si du rayon AB =R on retranche la distance du centre de gravité
du coin AFCLK (fig. Go) au plan ACLK, trouvée ( n° 223), nous aurons la
distance du méme centre de gravité par rapport au plan BFED, et cette
distance sera

g=R—R 0,303 =R (1— 0,303) =R X 0,697.... (216)

234. Cetle distance sera la méme , par rapport au méme plan BFED, pour
le centre de gravité du coin double de AFCLK,, dont la forme est indiquée dans
la fig. G2 par CIFGHC. Ainsi, la distance dn centre de gravité du coin CIFGHC
(fig. 62), par rapport au plan tangent mené par la génératrice CB paralle-
lement au plan IFGH, sera de méme -

g =R X 0,697..... (117),
R étant le rayant KC.
235. Nous avons trouvé (n® 218) que le volume du solide JCALd =
REBA=9 (fig. 60); celui ‘du coin entier AFCLK sobtiendra en obser-

Lo R :
vant que, dans ce cas, A = CB = ;clr.:%, ctquea=CA=R; en

substituant on aura donc
12
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. __ R&f3pR __R%
vol. coin AFCLK = ("% — oR) = X2 (3, _ )

- 3 142 —
= b X Xt s X 045

Par conséquent (fig. 62), on aura
vol. coin ICFGH =R* X KE % 2 X 0,452 ;
ou bien, & cause que 2KE = DL, ‘
" vol. coin ICFGH = R* % DL ¥ 0,453..... (118)
236. Le moment de ce coin , par rapport au point C, s'obtiendra en mul-

tipliant ce dernier volume par le bras de levier (117) du n° 234; de sorte
qu'on aura '

mom, coin ICFGH = R3 3 DL < 0,697 X 0,452
—=R* X DL X 0,315u... (119)

237. La distance du centre de gravité du demi-cylindre 1AFGDH (fig. 62),

par rapport au plan IHGF, est égale & celle du centre de gravité du demi-
cercle GDH par rapport au centre K, qui est g—g (n° 116) ; par conséquent,

par rapport au point G, cette distance sera

4R __ 4R+3pR - R(4+3p) 443 % 3,142
3p +B._'" 3p - 3p =R X 3 X 3,142

= 1,42435 X R..... (120)

Le volume de ce demi-cylindre sera Egi X KE = E% X DL =
Rs % ?-:-’-%-EZR’ % DL X 0,7855..... (121)

Par conséquent son moment sera
mom. + cyl. IAFGDH = R* X DL 0,7855 X 1,42425 X R
R3 X DL X 11187, (122)
238. La distance du centre de gravité du coin IFLA (fig. 60), par rap-
port au plan IHGF , prolongé, est ¢ =R X 0,589 (n” 204 ); la distance

du méme eentre de gravité, par rapport au plan tangent mené par la droite
CB, sera donc

g =R +R>0,589=R (1 4 0,58) = R X 1,589.....(123)
239. Le volume du coin IFLA est le méme que celui du double du coin
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ABCF (fig. 60) , qui est 2 >3< L ,ou, pour la fig. 62, SRE§AL=R1>;PL3

le moment de ce coin, par rapport au plan tangent mené suivant CB
sera donc

mom. coin IFLA = i3 X DL

A R K 1,589
=R3 DL X o0,5296..... (124)
240. Le volume du coin total LCGDHC (fig. 62), est égal a celui du y-
lindre AC (Géom. @ trois dim., n° 146), il sera donc égal a
pRe X KE —PR“x DL = R* X DL X 1,571 (125)
241. Appelons ¢ la distance du centre de gravité de ce coin total, par rap-

port au plan tangent , mené par la génératrice CB; le moment de ce coin sera

g X R XXDL X 1,571...... (126)
Mais ce moment doit évidemment étre égal & la somme des momens
1° Du coin ICFGH, qui est R3 X DL X 0,315... ( n° 236) ;
2> Plus celui du demi-cylindre IAFGDH , qui est
R3 X DL X 1,118..... (n° 237);
Et 3¢ plus celui du com IFLA , qui est R3 X DL X 0,5296 (n° 239):
on aura donc

g % Rz % DL ¥ 1,571 = R® X DL (0,315 + 1,118 - 0,5296) :

ce qui se réduita g X 1,571 =R X 1,9626,
d’ol1 on tire g=RX : ggjﬁ =R X 15,2492, (127)

pour la distance du centre de gravité du coin total LCGDHG , par rapport
au plan tangent mené suivant la génératrice BC.

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

92 . COTURS DE CONSTRUCTION.

LECON XI.

Centres de gravité de lellipsoide engendré autour d'un axe horizontal, du paraboloide et
© d'un corps généralement quelconque.

242. Supposons un ellipsoide de révolution,engendré par la demi-ellipse AcB
(6g. 58) tournant autour de I'axe AB supposé horizontal , et une sphére en-
gendrée par le demi-cercle LK, décrit avec le demi-axe Ic pour rayon, tournant
aussi autour du méme axe AB ; supposons, de plus, que l'on coupe, par un
plan re paralléle a I'axe de rotation , et Iellipsoide et la sphere, la section faite
dans Pellipsoide ( Géom. @ trois dim., n° 228 ) sera une ellipse semblable &
Vellipse génératrice, et celle faite dans la sphére un cercle. '

Cela posé, je dis que le seqment Ree de lellipsoide sera a celui Res de la
sphere , comme le demi-axe 1B de rotation est & celut qui est le rayon de la
sphere. ‘

En effet, si lon divise la fleche Qc , commune aux deux segmens, en une in-
finité de parties égales par des plans paralléles a celui sur lequel sont les bases de
ces segmens, les tranches que ces plans comprendront seront les élémens de ces
segmens , et , attendu qu’elles sont infiniment minces , pourront étre regardées
comme des cylindres de méme hauteur, dont les bases seront, elliptiques dans
le segment ellipsoide , et circulaires dans le segment de la sphere : les cylindres
appartenant au segment ellipsoide sont donc & ceux appartenant au segment
sphérique, comme les bases des premiers sont aux bases des seconds. Mais les
bases circulaires sont inscrites dans les bases elliptiques correspondantes, comme
le cercle LeK. est inscrit dans ellipse génératrice. Mais ( Géom. pl. n° 7g8)
Iaire du cercle est & celle de Vellipse , comme le demi-axe, qui sert de rayon
au cercle, est 2 I'autre demi-axe. Ainsi donc, attendu que les sections faites dans
le segment ellipsoide sont des ellipses semblables a Pellipse génératrice, les élé-
mens du segment sphérique sont a ceux du segment d’ellipsoide , comme le
demi-axe Ic est au demi-axe IB de révolution, et par conséquent les segmens
entiers seront dans le méme rapport ; c’est-a-dire qu’on aura

seg. ellip. o seg. sph. {a { b . (1 28)
comme il fallait le démontrer.

243. Supposons que Lellipse CEDF (fig. 58), et le cercle YEZF soient les
projections horizontales de Vellipsoide et de la sphere ; que ellipse TGUH soit
" celle de la base du segment rce de lellipsoide, et le cercle VGXH celle de la
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base du segment Rcs de la sphére. Cela posé, menons I'ordonnée PM sur Paxe
EF, et les droites Pi, Ni au centre ¢ : si, sur ces droites {P, N et 'axe CD, on
suppose trois plans verticaux, les deux plans élevés sur les droites :D , /P com-
prendront un coin du segment ellipsoide dont la projection verticale est Pce ,
et les plans élevés sur les droites iD, /N, un coin du segment sphérique dont la
projection verticale est N'cs. Je dis que ces deux coins de .segment sont enlre
eux , comme le demi-axe de révolution est au demi-axe qui sert de rayon a la
sphére. Clest-h-dire que

coin sph. | coinellip 3} b a.....(129)
Cette proposition se démontrerait de la méme manitre que la précédente.

244. On démontrerait aussi, de la méme manitre, que les volumes des pyra-
mides qui auraient leurs sommets au centre commun i Lellipsoide et & la
sphére, et pour base le fuseau P'ce du segment d’gllipsoide , et le fuseau seN’ du
segment de sphére, sont entre eux , comme les axes de Dellipse régénératrice ;
cest-a-dire que

py- sph.  py. ellip. 3%} a.....(130)

245. Je dis maintenant que les distances des centres de grapité de ces mémes
pyramides , par rapport aw plan horizontal mené par Uaxe de rotation AB de
Vellipsoide, sont egales.

En effet, si Von divise ces pyramides en tranches infiniment minces, par des
plans paralleles a celui mené par I'axe de rotation AB (fig. 58), ces tranches
seront proportionnelles, et auront respectivement les centres de gravité & la
méme distance du plan horizontal ; par conséyuent, en projetant les centres de
gravité sur le dernieraxelc, on aura deux systémes de forces appliquées aux mémes
points de ce dernier axe, les unes respectivement égales aux élémens de la py-
ramide ellipsoide , et les autres respectivement égales aux élémens de la pyra-
mide sphérique ; les forces de ces deux systemes seront donc proportionnelles ;
et , comme elles auront le méme point d’application, leurs résultantes auront
le méme point d’application aussi, qui est évidemment la projection commune

sur P'axe Ic des centres de gravité des pyramides : donc, ces deux centres sont
4 la méme distance de I'axe de rotation AB,

246. Les momens de ces deux pyramides, rapportés au plan horizontal mené
par l'axe de rotation AB, seront donc dans le méme rapport que les volumes
de ces pyramides ; on aura done (n° 244)

mom. py. sph. ; mom. py. ellip. ;b ] a.....(131)

247. Les distances des centres de gravité (toujours des mémes pyramides, mais
par rapport @ Uaxe Ic perpendiculaire aw plan mené par Uaxe de rotation AB)
sont entre elles comume les demi-axes b et a dg Uellipse génératrice.
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En effet, si I'on divise ces deux pyramides en tranches paralleles au plan mené
par Paxe de rotation, ces tranches étant infiniment minces seront, dans la pyra-
mide sphiérique , des secteurs circulaires semblables au secteur iNX,, et, dans la
pyramide ellipsoide , des secteurs ellipsoides semblables aux secteurs iPU ; par
conséquent, le rapport qu’il y a entre les distances des centres de gravité des
secteurs iINX, {PU, par rapport a I'axe GH, ou a I'axe Ic, est celui des demi-
axes de Dellipse génératrice ; mais les aires de ces mémes secteurs sont dans le
méme rapport ; les momens des élémens des pyramides seront donc comme les
carrés de ces demi-axes , et par conséquent ceux de ces pyramides elles-mémes :
on aura donc :

mom. py. sph. ; mom. py. ellip. |} b2 a...(a).

Nommons g ct ¢’ les distances demandées ; nous aurons

mon. py. sph. = g X vol. py. sph.; et mom. py. ellip.==g" >< vol. py. ellip.
En substituant dans la proportion (a), il nous viendra

g X vol. py. sph. | g’ > vol. py. ellip. 7} b* { @*.....(132)
Mais nous avons vu (n° 244) que

f
L]

vol. py. sph. ; vol. py. ellip. ;% 4 ; a.....(133)
Si nous divisons la proportion précédente par cette dernitre, nous aurons

919’ tib au.(134)
Centres de gravité des corps paraboloides de révolution.

248, Le centre de gravité G d'un paraboloide engendré par la parabole ACB
{fig. 51) , towrnant sur son axe CD, est sur cet axe a une distance GG d sommet
C égal a 3 CD.

En effet, inscrivens le triangle ACB dans la parabole génératrice, et divisons
la hauteur DG en une infinité de tranches infiniment minces : ces tranches
pourront étre regardées dans le paraboloide comme des cylindres droits de méme
hauteur, et dans le triangle ACB, comme les élémens de ce triangle. Les cylin-
dres élémentaires du paraboloide ayant méme hauteur, seront entre eux comme
leurs bases, qui sont entre elles comme les carrés de leurs rayons, c’est-a-dire ,
des ordonnées de la parabole génératrice; mais les carrés de ces derniers (Géom.
pl n° 451 ) sont comme les abscisses comptées & partir du sommet G; les cylin-
dres élémentaires du paraboloide seront done comme ces abscisses 5 or les élé-
miens du triangle ACB sont comme ces mémes abscisses 3 donc, les élémens du
paraboloide sont proportionnels & ceux du triangle, mais ces mémes élémens
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onl respectivement les mémes centres de gravité situés sur P'axe de rotation CD) ;
donc enfin le centre de gravité du paraboloide sera le méme que celui du
triangle ACB, qui est le point G de I'axe CD, a une distance du sommet C
égale a 2 CD , ce qu’il fallait démontrer.

249, 1l est évident que la distance du centre de gravité d’'un coin quelconque
d’un segment ACB de paraboloide, par rapport au plan tangeant perpendiculaire
& I'axe de rotation CD, est la méme que celle du centre de gravité du segment
entier, '

250. Le volume d’un segment paraboloide (n° 159) est I%? ; si donc mest le
mpabs

a ¥ 36o *
aa

multipiions ce volume par % DC=, (n°249 ) il nous viendra

mom. coin parab. — ;T(a—;-}go' .. (135)

251, Le moment du méme coin paraboloide, par rapport 4 I’axe de rotation
CD, est exprimé par la formule suivante : :

nombre des dégrés d’un coin, le volume de ce dernier sera sl nous

__4p'a*hsin. tm

mom. coin. parab, = —= e (136)

-

En effet, divisons Ia flecle DC en une infinité de parties, pai- des plans per-
pendiculaires & Paxe de rotation CD; ces plans comprendront des cylindres
droits , dont les hauteurs infiniment. petites, mais inégales entre elles, seront
représentées par h, k', k", h",elc. , et dont les bases seront des secteurs de
cercle d’'un nombre de dégrés, représenté par m, qui auront pour rayon les or-
données de la parabole génératrice GB, qui répondent respectivement aux
abeisses h, b 4+ h', b + A"+ 4", etc. Nommons y, y', y", 5", elc. , ces
ordonnées ; les volumes de ces cylindres seront S

mpy*h  mpy”k'  mpy™ k" mpy”h”
360 * 360 ' 360 ' 360 2 Cice (@)

L’équation de la parabole (Géom. pl. n® 449) donnera
yazp.rx, J'!‘!:Pr'x‘,
retranchons ces équations membre & membre , il viendra
yr—pr=p (' —a) o (y4y )y —y)=p' (&'—2).
Mais 2' —x=~h; donc (y-{-y')(y’-—-y):hp’.

Or, quand m est infiniment petit, y' differe infiniment peu de y; de sorte
que si leur différence infiniment petite est d, on aura y'—y =14, et par eon~

séquent
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(r+d4y)d=hp', ou ayd +-d*=hp'.... (b)
mais d étant infiniment petit, d peut &tre supposé égal & zéro, car d? est in-
finiment petit par rapport d , ce qui réduit I'expression (b) &
oyd

de—h}?a dot A= P,,Oﬂh Fa

en prenant d pour unité infiniment pelite; on aura donc
!
b = 9’}' hw — 9‘.)” R = _V:‘ , elc.
_ Id p'
si donc nous substituons dans les expressions (), il nous viendra

ampy’  ampy?  ampy”  ampy™

Bop® Toop® ooy’ op ’ o

Les distances des centres de gravité de ces secteurs de cylindres ( note * de
la page 43) , seront respectivement

240 y sin. tm  240'sin. dm 240" sin. im

elc.
pm ? pt ? pm ’
Les momens de ces secteurs de cylindres seront donc
. /. .
4y'sin. im  4ysin. im 4y sin. im
, elc.

3pp 7. 3p 3p'

En faisant la somme de ces momens, il viendra donc
mom. coin. parab. = Li sin. (34—!—_}”4 Gy Ay

Mais nous venons de prendre pour unité infiniment petite les différences suc-

-ssives entre les y, ', ¥, ete. Si donc y=1, onaura y' =2, y' =3,
¥"'= 4, elc., et le moment ci-dessus sera

mom. coin parab, = 4 sm g (1= 2t 4 34 4 &t 4 54, 09)

b étant égal a DB.

Mais (note «) la limite des 4° puissances des nombres naturels, depuis
5

1 jusqu b, T'unité étant infiniment petite, est 7 ; par conséquent

. b sin. tm a*b sin- im
mom. coin parab. — i 3:_’(5;, = 4’” — . (137)

en observant que b+ = p'’a’, vésullat conforme & I'énoncé de la question.
952, Dans le n® 250, nous avons vu que le volume d’un coin paraboloide était

s ';zé' . si nous divisons le moment ci-dessus par ce volume, en nommant g la
2 200
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distance du centre de gravité de ce coin 4 l'axe de rotation, il viendra

.ip a*bsin. im < 2 X 360 __ 8 360 p'asin.im
15 mpab® = 15 mpb )

«.(138).

253. Supposons, pour finir ce qui est relatif aux centres de gravité, un
corps d'une forme quelconque, mais terminé d'un cbté par un plan supposé hori-
zontal pour fixer les idées (que nous prendrons pour plan de projection
horizontale ), et demandons-nous le centre de grayité de ce corps.

" Pour cela soit ABCH (fig. 59) la trace horizontale de la surface du corps ;
DEG sa projection verticale dans un plan perpendiculaire a une droite AC
menée, dans le plan de projection horizontale, au travers du corps, et IKL
une seconde projection verticale dans un plan paralléle 4 cette droite AC. Per-
pendiculairement a cette droite AC, menons des plans verticaux dont les traces
horizontales soient les droites ab , ¢d, ef, BH, gh , ik, Im, et de telle sorte que
ces plans divisenl la droite AC en parties égales, assez petites, pour que les arcs
Aa, ac, ce, etc., compris entre leurs traces horizontales, puissent &tre consi-
dérés comme des lignes droites sans erreur sensible. Supposons ensuite que
les courbes DEG, ¢'r'h' , o'g"k' et r't'm’. soient les projections verticales
des intersections de la suite des plans verticaux perpendiculaires & la droite AC,
avec la surface du corps. Les secondes projections verticales de ces mémes sections
seront les droites 5’8" , d'd", f'f", etc.

Actuellement supposons que d’aprés le n° 142 on ait déterminé les aires et
les centres de gravité des surfaces AEG, g'r'h’, o’g"k', r't'm',... Nommons
§,8',8", 8".... les aires de ces surfaces,et g, g, g", g”,... les distances &
I'axe DM des centres de gravité de ces mémes surfaces, et enfin appelons m I'é-
paisseur des tranches faites dans le solide.

Ces tranches étant trés-minces , pourront étre regardées comme des cylindres
droits d’une hauteur égale a leur épaisseur, et dont les bases seront ces sections
elles-mémes ; ces cylindres excéderont un peu la tranche a laquelle ils corres-
pondront, mais d’autant moins que les tranches seront plus minces.

Les centres de gravité de ces cylindres se projecteront ( sur le plan vertical
dont la ligne de terre est la droite DG), sur les centres de gravité des aires quie
nous avons appelées §, 8’, 8", 5”.... ; par conséquent, les distances de ces
centres de gravité & 1'axe DM, ou plutdt au plan vertical Idonl; les traces sont
les droites DM, DB, seront respectivement ¢, g', 9", ¢”....

Les momens de ces cylindres , & partir de celui dont la base a pour pro]ec-
tion horizontale la droite Im , seront :

1°. Mom. ducyl. »'t'm' =8 X mXg,

2°, Mom.ducyl. o/g"k’ =8' XXm}Xyg',

13
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3. Mom.ducyl.g'r"h' =8"XXm¥g", ...

4°. Mom. du cyl. DEG =8" X m X ¢".,

B[‘.G- )
La somme de ces momens , qui est .
m(Sg +ngr + Sugu + S"g'--;‘J |
sera égale au moment du solide, dont le volume est =
m (S48 48" 4-8"....).
Si donc nous appelons G son bras de levier, neus aurons
G x( S + Sf + Su + Sww.J :sg + S!gf + Srrgr.' + Sagw"h)““(lag).
: _ Sg g 457" 4 S

d olt G= ST TS +5 weens(140)

Pour avoir les momens par rapport au plan dont les traces sont les droites
IA, IN, on ebservera que les distances des centres de gravité des cylindres suc-
cessifs, a partir de celui dont Ia base a pour projection horizontale la droite ab,
sont respectivement ;m , 2m, fm, Im , etc.

1

Ainsi , les momens de ces cylindres seront

1° Mom. ducyl. r'¢'m’ = 8 Xm X 2m = im* X8,

2° Mom.ducyl.o'g"k' =8’ X m>im==2m* X S',

3° Mom. ducyl. ¢'r"h' = 8" X m X fm = 2m* )X 8" , etc.

La somme de ces momens sera donc

On aura donc, en appelant G’ la distance du centre de gravilé du corps
au plan NIA, '

G’ (s+s'+s"+sw....)=§(s+3s"+5s + 7870 (141)

et par conséquent

, _m(S4- 38/158" k- 75".)
&= si gy g (142

354. S'il y avait une autre partie du corps au-dessous du plan horizontal, on
chercherait les distances de son centre de gravité par rapport aux mémes plans
de momens , et ensuite,, le moment résultant de ces deux portions du corps.
Ainsi, aumoyen des formules précédentes , on pourra trouver la position de la
verticale, passant par le centre de gravilé d’un corps quelconque.

Si 'on voulsit la distance de ce centre de gravité par rapport au plan hori-
zontal, on prendrait les momens par. rapport i ce plan, au moyen de la for-
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mule (139) ci-dessus, en supposant dans ceite formulequeg, g', ¢, g"....
seraient les distances des centres de gravité des tranches verticales, par rapport
au plan horizontal.

Cette méthode est générale , mais elle est un peu fatigante par la longueur des
calculs arithmétiques qu'elle entraine avec elle dans la pratique, et ne donne le
centre de gravite que d’une maniére approchée ; mais , dans les cas .ol1 les corps
ne sont pas géométriques, elle est indispensable.

LECON XIL

De I'équilibre des corps solides qui s'appuient sur un plan inébranlable , par un ou
plusieurs points , en ayant égard ou non au froltement.

-

255. Supposons qu'un corps sans pesanteur ne touche un plan inébranlable
et parfaitement poli que par un seul de ses points , et que ce corps ne soit
poussé sur le plan que par une seule force, qui pourra étre la résultante de plu-
steurs autres; Je dis que le corps ne restera en repos , sur le plan , que si la di-
rection de la force

1° Passe sur le point d'appui ,

2° Est perpendiculairve au plan résistant.

En effet, 1° si la direction de cette force ne passait pas par le point
d’appui, elle aurait un certain moment, par rapport & ce point , dont I'effet
serait évidemment de faire tourner le corps, soit d’'un cbté, soit d’'un autre,
autour de ce point. |

2° Et, si cette méme force, passant par le point d’appui, n’était pas per-
pendiculaire au plan résistant, soit PC (fig. 63) sa direction, faisant un
angle aigu ACB avec le plan CB ; si AG représente l'intensité de cette force , on
pourra la décomposer en deux, I'une CD perpendiculaire au plan d'appui qui
sera détruite par la résistance de ce plan, et I'autre CB paralléle i ceméme
plan, Or, le plan étant infiniment poli, rien ne s’opposera a l'effet de cette der-
nitre force BC; elle aura done pour résultat de faire glisser le corps sur le
plan d’appui.
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256. Je dis maintenant que , dans les mémes circonstances, les ~condi-
tions ci-dessus sont suffisantes pour que le corps soit en repos.

En effet, considérons que si la direction de la force qui pousse le corps sur
le plan passe par le point d’appui, le moment de cette force sera nul dans
tous les sens, et par conséquent il n’y aura aucun mouvement de rotation au-
tour de ce point d’appui. Et, si en méme temps la direction de cette force est
perpendiculaire au plan résistant, il ne pourra y aveir aucun mouvement
de translation ; car cette direction étant perpendiculaire au plan, le sera
aussi & toutes les droites menées par son pied dans le plan; par conséquent
le corps ne pourra glisser dans aucun sens, ou il glissera dans une infinité de
directions différentes en méme temps ; mais un corps ne peul suivre qu’un seul
chemin & la fois ; il restera donc en repos.

257. 1l suit de 14 que si un corps abandonné a la seule action de la pesan-
teur reste en équilibre sur un plan quiil ne touche que par un point, 1° la
verticale abaissée du centre de gravité du corps passera par le point d’appui ;
2¢ elle sera perpendiculaire au plan résistant, c'est-a-dire que ce dernier sera
horizontal. Réciproquement, si ces conditions sont remplies, le corps restera
en repos sur le plan résistant.

258. i un corps sans pesanteur s'appuie par deux de ses points sur un plan
résistant parfaitement poli, et s'il west poussé sur ce plan que par une force (qui
pourra éve la résultante de plusieurs autres), le corps ne restera en repos
quautant que, 1° la direction de la force rencontrera le plan sur la droite qui
joint les points d’appui, et entre ces points ; 2° cette direction sera perpendi-
culaire au plan résistant.

En effet, 1°si cette force ne rencontrait pas le plan sur la droite qui joint
les points d’appui, elle aurait un certain moment, soit autour de cette droite ,
soit autour d’un des points d’appui, et conséquemment il y aurait un mouve-
ment de rotation ; et 2°si cette force n’était pas perpendiculaire au plan ré-
sistant, elle pourrait se décomposer en deux , 'une perpendiculaire & ce plan,
et qui serait détruite par ce dernier , et Pautre paralléele au méme plan, qui
ferait glisser le corps.

259. Il suit de la que, si dans ce cas le corps n’était soumis qu'a l'action
de son propre poids, il ne pourrait éire en équilibre que lorsque le plan ré-
sistant serait horizonlal, ctla verticale abaissée de son centre de gravité ren-
contrerait la droite qui joint les points d’appui entre ces mémes points.

260. Pour avoir la pression exercée sur chaque point d'appui, il suffira de
déterminer le point C ot la verticale GC abaissée du centre de gravité du corps
(fig. 64) viendra rencontrcr la droite AB qui joint les points d’appui A et B,

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

PRINCIPES DE STATIGUE. 101
et de décomposer le poids du corps en deux autres réciproquement propor=
tionnels (n° 38) aux segmens AG , CB ; de sorte que si P est le poids du corps ,
et p et ¢ les pressions des points A et B, on aura

P.q..BCIAC,

d’oir p+qouP;piiBC+ ACouAB: BC,
et p+qouPiq:..BC+ACouAB ; AC,
et, par conséquent , _
' P < BC P X AC -

p= :B et ¢ = —45 w(143).

261. Si un corps supposé sans pesantewr touche un plan parfaitement poli
par trois de ses points , pour qu’une force puisse le tenir en équilibre sur le plan ,
il faudra , 1° que la direction de cette force soit perpendiculaive au plan résis-
tant; 2° que cette direction rencontre le plan dans le triangle formé par les
trois droites mendes par les trois points d'appui.

En effet, 1° daprés ce qui précéde , la direction de la force doit étre per-
pendiculaire au plan résistant pour quil n'’y ait glissement d’aucun cété , et,
2° cette direction doit rencontrer le plan résistant dans le triangle des points
d’appui, pour qu’il n’y ait de moment autour ni d’aucun e¢6té, ni d’aucun
sommet de ce triangle.

262. Si le corps qui a trois points d’appui n’est soumis qu’a Paction de
son poids , pour que ce corps reste en repos sur le plan résistant parfaitement
poli, il faudra donc, 1° que le plan soit horizontal ; 2° que le pied de la verticale
abaissée du centre de gravité du corps tombe dans le triangle des points dapput.

263. Pour avoir dans ce cas la pression de chaque point d’appui, soit ABG
(fig. 65) le triangle formé en joignant ces trois points d’appui par des droites,
et D le point ol la verticale abaissée du centre de gravité du corps vient ren-
contrer le plan fixe; on prendra ce centre de gravité pour le sommet d’une py-
ramide triangulaire, dont la base sera le triangle ABC; ensuite on prendra sur
la verticale une longueur proportionnelle au poids du corps, que l'on regardera
comme la diagonale d’un parallélipipede, dont les trois arétes contigués seraient
celles de la pyramide (n°® 64 ); et le poids sera décomposé en trois forces dirigées
suivant ces arétes; on ira ensuite décomposer chacune de ces derniéres respecti-
vement aux points d’appui A, B, C, en deux autres , I'une paralléle et I'autre
perpendiculaire au plan fixe; et cette derniére sera la pression demandée. Nous
reviendrons sur ce sujet.

264. On voit, par ce qui précde, que les conditions d’équilibre pour le cas
d'un corps qui aurait un nombre plus grand de points d’appui, et méme
pour le cas olt ce nombre étant infini, le corps poserait sur le plan .par une
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base plane continue quelconque, seraient les mémes; c'est-a-dire qu'il faudrait
que la résultante de toutes les forces qui agiraient sur le corps rencontrit le
plan d’appui dans la base du corps, et fut perpendiculaire & ce plan résistant.
Enfin, si le corps posé sur sa base n’était soumis qu’a la séule ‘action de son
poids, le plan d'appui devrait étre horizontal , et la verticale abaissée de son
centre de gravité devrait tomber dans la base.

265. Supposons que l'angle CBA (fig. 66) soit la section droite d’'un plan
horizontal et d’un plan incliné, le c6té AB appartenant au plan horizontal , et
le cdté AC au plan incliné. Si, par un point quelconque C du cdté AG, on
abaisse la perpendiculaire CB sur l'autre cété AB de I'angle CAB, cette droite
CB sera ce qu'on appelle la hauteur du plan incliné, la droite AB en sera la
base et AC la longueur.

266. Supposons un corps DE posé par sa base sur lg plan incliné AC
(fig. 66), que la base du corps et le plan incliné soient parfaitement polis ,
et que ce corps soit soumis & l'action deson poids et d’une certaine force Q : je
dis que, pour que ce corps soit en équilibre sur le plan incliné, il faut,

1° Que la résultante de la force Q et du poids du corps soit perpendicu-
laire au plan incliné ;

2° Que cette résultante rencontre le plan incliné en un point situé dans
la base du corps. _

En effet, 1° si la résultante n’était pas perpendiculaire au plan incliné, le
corps glisserait sur ce plan; et, 2° si cette méme résultante rencontrait le plan
incliné hors de la base du corps, ce dernier serait renversé. Ainsi ces deux
conditions sont nécessaires ; et elles sont suffisantes, puisqu’alors il n’y a ni glis-
sement ni renversement.

267. Il suit de la que, dans le cas d’équilibre, la direction de la force Q .est
dans le plan de la section droite du plan incliné.

En effet, pour que le poids du corpset la force Q aient une résultante,
il faut que les directions de ces deux forces soient dans un méme plan, et
se rencontrent en un point. De plus, leur résultante, qui doit étre perpendi-
culaire au plan incliné, doit aussi étre dans le méme plan. Le plan dans lequel
doit étre la force Q doit donc passer par une perpendiculaire au plan hori-
zontal et par une perpendiculaire au plan incliné ; ce plan de la force Q est
donc & la fois perpendiculaire & ces deux plans; il sera donc perpendiculaire a
P'intersection de ces plans : de sorte que le plan dans lequel la force Q doit étre
située est celui de la section droite du plan horizontal ¢t du plan incliné, ainsi
qu'il fallait le démontrer. _

268. Ce qui précede étant posé , supposons que GQ (fig. 66) soit la direc-
tion de la force Q, GP la verticale abaissée du centre de gravité du corps DE,
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et G le point ot ces deux directions se rencontrent. Prenons Ga égal a la force
Q et Gb égal au poids du corps; en achevant le parallélogramme GaRb, la dia-
gonale GR de ce parallélogramme sera perpendiculaire au plan incliné , dans
le cas d’¢quilibre (n® 266).

Voyons maintenant quel est le rapport qui existe entre le poids du corps et
la force Q. Pour cela il nous suffira de nous rappeler le principe du n® 52, qui
nous apprend que ,

Gb ; Ga ou &R ;% sin. GRb ;| sin RGb.

ou P: Q. sin. Gﬂb s sin. RGb...... (@) ,
A L4 RGb
d’ol1 nous tirerons Q=Px ::: crge(144)

peur la valeur de la force qui tient le corps en équilibre.

Quanl: 4 la pression sur le plan incling, elle est représentée par GR, etle
méme principe nous fait voir que
GhouP ; GR ; sin. GRS | sin. GIR,
sin. GR
d’otz nous tirerons GR=P X —t0z —CRE" (145)

pour la valeur de cette pression.

269. Si la force Q était paralléle au plan incliné , ainsi qu'on le voit fig.67,
le triangle 5GR serait semblable & CAB qui est rectangle ; ce qui donnerait
Pangle RGb — CAB, et GRb = go°. Appelons GAB = a,. nous aurons sin.
RGb = sin. a, et sin. GRb — sin. go® = 1 ; si donc nous substituons dans.
la proportion (a), il nous viendra

P.;Q:%% 1 sin. a,
d’ott Q =P sin. a...... (146)
c'est-d-dire que la force paralitle au plan incliné , qui tient le corps en équi-
libre , est égale au poids du corps multiplié par le sinus de l'angle d'inclinaison
du plan d’appui.

270. La similitude des triangles 8GR, CAB, donne

GbhouP ; bRouQ ;% AC : BG,

P < BC
| Q= —g—(147) _
cest-u-dire qu'ici la force Q, qui tient le corps en équilibre , est égale au poids
du corps multiplié par la hautewr du plan mclmé et divisé par la longueur
de ce dernier.

d’ola

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

104 ‘COURS DE CONSTRUCTION.

271. Quant 4 la pression GR, on l'aura en faisant attention que les angles
bGa, GIR étant supplémens l'un de I'autre, sin. 6Ga = sin. GbC. Or G&C
est le éomplément de bGR = a, donc sin. bGa = cos. a. Si donc nous substi-
tuons dans I'expression générale (145) de GR, en faisant attention que sin. GRb
= 1 dans le cas actuel, nous aurons '

GR = P cos. a....... (148)
pour la pression demandée.
272, La similitude des triangles 5GR , CAB donne
GbouP ; GR:: AC: AB,

1 P x AB
d’ou GR = '—“KC—‘--"H(I49)’

d’ott Ion voit que la pression sur le plan incling est égale au poids du corps
multiplié par la base du plan incliné, ct divisé par la longucur de ce dernier.
273. Si la force Q était horizontale, ainsi qu'on le voit fig. 66, le triangle
bGR serait semblable & CAB; ce qui donnerait I'angle RGb = CAB, ct GRb
= g0° — RGJ ; d’olr sin. RGb == sin. CAB =sin. a, et sin. GRb6 = sin. (g0°
—a) = cos. a.
Si nous substituons dans la valeur de Q du n° 268, nous aurons
__ Psin.a__
Q= —— =P tang. a... (150).
274. La similitude des triangles RGb, CAB donne
GbouP : BRouQ ::AB : BC,

doi Q=2X2 s,

ce qui nous fait voir que la force horizontale qui tient le corps en équilibre sur
le plan est égale au poids du corps multiplié par la hauteur du plan incliné
et divisé par la base de ce plan.

275. Quant i la pression sur le plan dans le cas de la force Q horizontale
(fig. 66),0n I'aura en observant que le triangle GRb étaut rectangle en b, donnera
cos. 5GRou cos. @ . 1 ;2Gb ou P ; GR = —P-.....(15:1)
Cos. a

276. Enfin la similitude des triangles 5GR, BAC donne
bGouP :GR::AB; AC,

d’olt on aura GR=" ;(BAC......OE}S)
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c’est-i~dire que la pression sur le plan incliné, lorsque la force Q est hori-
zontale, est égale au poids du corps multiplié par la longueur du plan in--
cliné et divisé par la base de ce dernier.

Du frottement, et des modifications que ce phénoméne apporte dans les principes
- précédens.

277. Dans ce qui précéde , nous avons supposé les surfaces des corps parfai-
tement polies ; cest-a-dire que, lorsqu'un corps abandonné a la seule action de
la pesanteur sappuyait sur un plan, la base du.corps n'éprouvait, de la part
du plan , aucun obstacle i son glissement ; de sorte qu'aussitdt que le plan ces-
sait d'étre horizontal , le corps commencait 2 glisser. Mais la nature ne nous
offre aucun corps dont les surfaces soient d’un poli parfait, et l'art le plus
exquis reste encore fort loin en arriere de ce degré de perfection : nos glaces, nos
miroirs métalliques les plus brillans ne jouissent encore que d’un poli trds-
€loigné du dernier terme que suppose la théorie précédente. Si maintenant
nous comparons les surfaces des corps faconnés pour nos usages ordinaires et
particuliérement pour les ouvrages de construction , a ces glaces, a ces miroirs
métalliques, nous reconnaitrons que ces corps fagonnés a l'ordinaire sont d’un
poli incomparablement plus grossier. Aussi lorsque nous placons la base d’un
corps sur un plan incliné, voyons-nous que ce corps, abandonné i la seule
action de la .pesanteur, ne glisse sur ce plan que lorsque ce dernier a une cer~
taine inclinaison suffisante ; tandis, répétons-le, quune inclinaison infiniment
petite suffirait pour permettre au corps de glisser, si le poli était parfait.

78. Liobstacle que la rudesse des surfaces des corps oppose a leur glisse-
ment est ce que I'on appelle frottement.

Il est donc nécessaire d’avoir égard au frottement toutes les fois qu’on voudra
connaitre d’unc maniére précise la valeur de I'effet d’une puissance appliquée a
des machines ou & dés constructions.

Le rapport du frottement a la pression sur un plan ne peut étre déterminé
que par expérience. 1l y a deux moyens fort simples de trouver ce rapport.

279. Le premier moyen consisle 4 poser un corps par I'une de ses faces sur
un plan horizontal ou peu incliné; 4 faire augmenter ensuite peu & peu lin-
clinaison de ce plan, jusqu’a ce que le corps soit sur le point de glisser. A cet
instant on aura soin d’observer et de noter le nombre des degrés de l'inclinaison
du plan.. Cela posé , on se rappellera que, si la base du corps et le plan incliné
étaient 1’un et l'autre parfaitement polis, la force avec laquellele corps tendrait
A glisser serait égale 2 la composante du poids du corps paralléle & Ia longueur

14
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du plan incliné. Or, cette force (n°269), est égale 4 P sin. a (P étant le
poids du corps, et « l'angle d’inclinaison du plan), et la pression normale a ce
plan (n® 271) est égale a P cos. @ : si donc f est le rapport du frottement & la
pression , on aura.... f P cos. @ = Psin. &, ce qui donne

f= m tang. @..(153)

Co08. a

d’olz I'on voit que le rapport du frottement k la pression est la tangente trigo-
nométrique de l'inclinaison du plan d’appui.

280. Comme ce rapport est indépendant de la pression, il sensuit qu’il est
constant pour une méme espéce de corps glissant sur un méme plan. L'expé-
rience confirme cette eonséquence, du moinsquand les pressions ne sont pas trop
petites.

L’expérience preuve aussi que ce rapport est indépendant de I'étendue de
la surface frottante; de sorte que la grandeur du frottement dépend uni-
quement de la pression , et est égale 3 cette pression multipliée par le rapport
f outang. a que donne I'expérience.

281. La seconde méthode, pour déterminer ce rapport f, consiste 4 disposer,
comme I'a fait Coulomb, un plan bien horizontalement , sur lequel glisse le corps
par P’action de poids mis dans un plateau de balance attaché 4 Pextrémité d’une
corde qui passe sur une poulie placée a Vextrémité du plan herizontal , pour
venir s'attacher au corps quon veut faire glisser. Aussitdt que le eorps com-
mence & glisser , le poids mis dans le plateau de balance étant divisé par le poids
du corps en glissement, ou , ce qui est la méme chose, par la pression sur le
plan, donnera le rapport f.

11 est facile de voir que ce rapport f varie suivant Ia nature des corps frottans,
et suivant que les faces frottantes sont plus ou moins dressées , plus ou moins
unies.

282. Rondelet a trouvé que la pierre du liais (calcaire fin et dur), frottant sur
la méme pierre, les faces froltantes étant bien dressées et passées au greés, I'in-
clinaison du plan sur lequel le glissement se manifestait €était d’environ 30°, par
rapport i 'borizon , ce qui donne . . . v e« v+ o f= 0,58

M. Boistard a fait ghsser de la pierre de Ghﬁteau-Landon (caleaire fin et tres-
dur) sur la méme pierre, les faces frotiantes étant dressées & la boucharde ;
il a trouvé que f= 0,78, ce qui repoﬂd a4 un angle d’inclinaison égal é
ENVIION + .« + + o+ v . . s s - L A

D'aprés une observation faite par Perronet, dans son mémoire sur le cin-
trement et le décintrement des ponts, L'inclinaison des coupes des voussoirs par
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rapport & l’horizon est de 30 & 4o°, pour qu'ils commencent 2 glisser, il en ré-
sulterait que, moyennement. . . . . . . . °* . « f= o082

Il faut observer que la pierre employée dans les ponts esten général d'un
grain rude, et les joints ne sont jamais dressés au point d'étre bien unis.

Voici quelques aulres résultats que j’ai trouvés,

1° De la petite roche de Paris (calcaire grossier moyennement dur) sur de la
méme pierre, les faces frottantes étant dressées a ordinaire, c'est-a-dire comme
on les dresse dans les travaux, le glissement ne s’est manifesté que lorsque Iin-
clinaison du plan d’appui était de 35° 45', ce quidonne . . . f= 0,71

2° Du liais sur de la petite roche dressée de méme; le gllssement a commencé
sous I'inclinaison de 34° 45', cequidonne . . . . . . . f= 0,69

3° Du liais sur du liais, dressé de méme; P'angle d’indinaison a été de
36°15", cequidonne. . . . . . . . . . . . .. f=o0,3

4° Du St.-Leu et Vergelet (calcaire tendre et assez fin , mais d’'un grain
malgre) sur de la petlte roche; Vinclinaison du plan dappul a été de 30° 3o,
ce qui donne ., . . . o v e v e . f=1059
5° Du Saint-Leu sur du Samt—Leu, les faces dressées au marteau de tail-
leur de pierre seulement ; langle d’inclinaison a éié de 37 oo’ ce qui
donme. . . . . . . . e . = o,5.

6° Coulomb a trouvé du chene sur du chene bien dressé . . 0,427
7° Du chéne sur du sapin bien dressé. . « « s+« . . 0,066
8° D_usapin surdusapinidem. . .+ . . . . . . . . « . 0,560

9° De I'orme sur de I'orme idem. e« s v+ s w . 0,458

10° Du chéne sur du chéne, les fibres des faces en contact étant a
angle droit les unes sur les autres, et bien dressées, « o+ « . 0,265

11° Du bois sur des métaux (fer, cuivre....) bien dressés. . . . . 0,198
12° Du fer sur duferidem. . . . . . . . . . . . . . 0,28}
« o« « . 0,263

14° Du cuivre jaune sur du fer, la surface frottante du cuivre étant
trés-petite. . . . . . . . . . . . + + . 0,168

Nous allons maintenant modifier les questlons relatwes a l’équlhbre des corps
sur des plans, en ayant égard au frottement.

13° Du fer sur du cuivre jaone. . . . .. .

283. Si un corps n'est appuyé sur un plan que parun point, il ne pourra
rester en équilibre, 1° & moins que la résultante P (fig. 63) de toutes les forces
qui agissent sur ce corps ne rencontre le plan résistant au point C d’appui; 2° que
Vangle ACB, formé par la direction de cette résultante avec le plan résistant CB,
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ne soit le complément gle celui dont la tangente trigonamétrique est le vapport f du
frottement & la pression.

En effet, 1° si la direction de la force ne passait pas par le point d'appui, il y
aurait renversement (n°® 255); car le frottement n’a aucune influence contre
cet effet. - : :

2° Prenons la distance CA proportionnelle a Iintimité de la force P; par le
point A abaissons la perpendiculaire AB au plan d’appui; cette perpendiculaire
AB sera proportionnelle  la pression sur le plan résistant , et nous aurons AB =
P cos. GAB =P cos. @; de sorte que la résistance provenant du [rottement sera
exprimée par fP cos. a. - '

Quant a la force avec laquelle le corps glisserait sur le plan, s'il était parfai-
tement poli, elle sera CB —P sin. &; dans le cas d'équilibre, sous le rapport du
glissement , on aura donc

fP-cos. a= P sin. a, ou f =2

= tang. .
Ccos. a

1l suit donc dela, et dun® 279, que I'angle CAB = a est celui de Finclinaison
quil faudrait donner au plan d’appui, pour que le corps piit commencer a glis-
ser de lui-méme, puisque la tangente trigonométrique de cet angle égale le rap-
port fde la pression au frottement; mais l'angle CAB a pour complément celui
ACB, que fait la direction dela force avec le plan d’appui, comme il fallait le
démontrer. ' '

284. Le méme raisonnement appliqué aux cas ol le corps a plusieurs points
d’appui, ou méme, au cas oir le nombre des points d’appui étant infini le corps
s'appuie par une de ses faces, forcera i conclure que, pour que le corps reste en
repos sur le plan, il faut, 1° que la résultante de toutes les forces qui agissent sur
le corps rencontre le plan d’appui dans la base du solide; 2° que la direction de
cette résultante fasse, avec le plan résistant, un angle qui soit le complément de
celui dont la tangente trigonométrique est le rapport f de la pression au frot-
tement,

285. Quant aux pressions exercées sur les points d’appui ou sur la base du
solide , comme elles sont indépendantes du frottement, on les obtiendra, comme
il a été dit précédemment , aprés avoir décomposé la résultante P des forces qu
agissent sur le corps en deux autres forces, Pune BC (fig. 63) paralléle au plan
résistant,, et I'autre AB perpendiculaire & ce plan, et agissant au. point C de ren-
contre de la résultante P avec le plan BC. Au surplus, nous expliquerons, quand
il en sera besoin, la manitre d’avoir ces pressions.
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PRINCIPES DE DYNAMIQUE.

LECON 1.

Du mouvement uniforme rectiligne.

286. Dans la prem:ere section nous avons considéré les corps & 1'état d’équi-
libre; dans celle-ci, nous allons les étudier dans leur étit de mouvement. II y
a plusieurs especes de mouvement : le mouvement uniforme et le mouvement
varié.

Le mouvement varié est de deux genres; il varie d’'une maniere uniforme ou
d’une maniere quelconque. Chacun de ces genres de mouvemens variés est accé-
1éré ou retardé. Nous ne nous occuperons que du mouvement uniforme, du
mouvement uniformément accéléré, et du mouvement uniformément retardé.
Nous supposerons d’abord que ces mouvemens se font en ligne droite et dans le
vide; c’est-A-dire que nous ferons abstraction de toutes espéces d’obstacles qui
pourraient altérer le mouvement des corps, sauf ensuite a avoir égard aux divers
obstacles qui peuvent se rencontrer dans les circonstances naturelles.

287. Lorsque le corps en mouvement n’a regu qu'une seule impulsion, il
persévere un temps indéfini sans augmenter ni diminuer son mouvement, en
vertu de son inertie (n° 8), de sorte que dans des intervalles de temps égaux
il parcourt toujours des espaces égaux, et son mouvement est alors ce qu'on
appelle uniforme.

288. La vitesse d’un mobile qui se meut uniformément est évidemment pro-
portionnelle & I'espace qu’il parcourt dans un temps donné, pris pour unité;
de sorte que si le mobile parcourt 3 métres dans une seconde de temps, sa vitesse
sera dite de trois métres par seconde. D'aprés cela il sera facile de déterminer
Vespace que parcourrait le mobile dans un nombre donné de secondes; car le
mouvement étant uniforme, il suffira de multiplier le nombre des secondes par
la vitesse du mobile. Ainsi dans le cas d’une vitesse de 3 métres par seconde, Ies-
pace parcouru dans 8 secondes sera 3 X 8 = 24 ™.

En général, soit V la vitesse donnée, ¢ le temps, et e l'espace; nous aurons

¢ = Vtwnr (154).
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289. De Péquation (154) nous tirerons
© V=G (155)
doie Lo voit que la vitesse est égale & Uespace parcouru dans un temps donné ,

diyisé par ce temps.
290. De la méme équation (154) on tire

£ = g (156)

cest-irdire quele temps nécessaire & un mobile pour parcourir un espace donné
est éqal & cet espace divisé par la vitesse du mobile.

291. Puisque pour un temps et une vitesse donnés, onae ="V ¢; pour une
autre vitesse et un autre temps on aurae’ =V’ ¢'; d'ol1

ese 3. Vel Vit (159)

cest-u-dire que les espaces parcourus sont comme les produits des witesses par
les temps.

292. Si les temps étaient égaux, la proportion (157) deviendrait
e.e LV V... (158)
c’est-au-dire qu'alors les espaces seraient comme les vitesses.

293. Et si dans la proportlon (157) nous supposons les vitesses égnles, elle
deviendra
ese Lt tha.. (159)

d’oli Uon voit que, dans cecas, les espaces seraient comme les temps, Ce qui est
une répétition du principe du n°® 288.

29%. Au moment ou l'on considére un mobile, il peut avoir déja parcouru
un espace donné E; de sorte que I'espace total qu’il aura parcouru quand il se
sera écoulé un temps ¢ & partir dés l'instant ol 'on commence de considérer le
corps, il faudra & Y'espace E, déja parcouru, ajouter I'espace V¢ & parcourir
dans ce temps ¢ : ainsi on aura généralement '

e =E + Ve........ (160).
Quand E = o, cette équation se réduit 4 celle trouvée au n° 288,

295. Dés qu'un corps est mis en mouvement, et aussi long-temps que son
mouvement dure, toutes les parties qui le composent on qui lui sont adhérentes
sont soumises & la méme vitesse et 4 Ja méme direction. Il suit de Ia que lors-
qu'une puissance exerce son action pour mettre un corps en mouveinent, elle
doit se distribuer en autant de parties égales qu'il y a de molécules dans le corps,
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pour que chacune d'elles acquiére la méme vitesse, et puissent toutes marcher de
concert , et constituer ainsi la vitesse du corps lui-méme.

Si donc le corps ne se composait que d’une seule molécule pour donner & cette
molécule une vitesse donnée, il faudrait une certaine force que nous nommerons
1;8'il y avait deux molécules, il faudrait évidemment une force égale & 2; sl y
en avait 3 il faudrait une force égale & 3, et ainsi de suite; de maniére que, pour
n molécules il faudrait une force n fois celle prise pour unité. Nous ne connais-
sons les forces que par les effets qu’elles produisent , et conséquemment noys
sommes réduits & supposer qu'elles sont proportionnelles aux vitesses qu’elles
communiquent sur un méme corps et dans les mémes circonstances; de sorte que
les forces peuvent étre représentées par les vitesses, et les vitesses par les forces :
si done V est la vitesse d’une molécule due 2 I'unité de force, F la force qui im-
primerait cette vitesse @ un nombre » de molécules, on aura

P"; = V, dou F=nV.(161)

cest-u-dire que la force est égale i la vitesse du mobile multiplice par le nombre
des molécules de ce dernier.

296. Mais le nombre des molécules d’un corps est proportionmel 4 sa masse ou
a son poids (n°® 98); si donc M représente la masse du mobile, gn aura

F = MV......... (162),
d’ot il suit que la force est égale o la vitesse multiplice par la masse.
297. De l'équation (162) on tire,
F Fa
V= g (163)

ce qui nous apprend que la vitesse est égale & la force divisée par la masse.

298. De la méme équation (162) on tire
F
M = G160
d’oi1 nous voyons que la masse est égale & la force divisée par la vitesse. -

299. Puisque, en général , F = MV, si nous avions un autre mobile, nous
aurions F/ = M'V’; d’otr il suit que

F:F UMV . M'V... (165)

Cest-d-dire que les forces sont entre elles comme les produits des masses par
les vitesses.
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800. Si les vitesses étaient égales , la proportion (165) deviendrait
' F:F :M: M..... (166)
et nous ferait voir que les forces sont proportionnelles aux masses.
301. Si les masses étaient gales, la proportion (165) s réduirait 3
F:F [,V V...(@67)

d'out Ton voit que les forces sont proportionnelles aux vitesses qu'elles pro-
duisent, ce qui est une suite nécessaire du principe du n° 295.

- 302. Enﬁn, supposons que les forces soient égales ; la proportion (165)nous
donnera MV=M'V’, d’ox - : .

M :M 2V ! Vi (168)
C'est-a-dire qn’alors les vitesses seront en raison inverse des masses.

303. Sinous comparons cette proportion avec celle (158), aprés I'avoir mise

! -

sous cette forme e’ | e 1% V' .. V, nous aurons
* MM e e (169),

dot Ton voit qué Jes espaces parcourus dans un temps donné sont en raison
invérse des masses , quand les forces sont égales.
304. Si nous comparons cette dernitre.a la proportion (159) mise sous la

formee' : e %t . t, nous en conclurons que
MM 25t few (170)

C'est-a-dire que les temps pour parcourir un espace donné , sont en raison inverse
des masses, quand les forces sont éqales.

305. Supposons que-deux mobiles aillent dans le méme sens et suivant la méme
droite AC (fig. 68) , que lun parte du point A avec la vitesse V, et Uautre du
point B avec la vitesse V', et demandons-nous en quel point G de la droite AB
prolongée , ces deux mobiles se rencontreront.

Nommons e I'espace que devra: parcourir le mobile parti du point A ; nous
aurons ¢ = AC ; si nous nommons e’ D'espace que devra parcourir le mobile
parti da point B, nous aurons e’ =BG : si donc a — AB, comme BC = AC
— AB, nous aurons ¢’ =e¢—a: ainsi les espaces que devront parcourir les
deux mobiles seront respectivement ¢ et e — a ; d'aprés I'équation (154) , nons
aurons donc, les temps étant égaux , o

e=Vt,et e—a=Y't
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dolt t:%, et t:f"‘;";}'f;
e— a €
et par conséquent I i
et en mettant au méme dénominateur,
eV — aV = eV,
d’ot : e V—=VY')=aV
Vv
et partant e=‘£_—*i,-,......(171),

ce qui nous montre que la distance du point A au point de renconire G, est égale
& celle qui sépare les points de départ multiplide par la vitesse dumobile, qui
part du point A, et divisée par la différence des vitesses.

306. Si nous mettons eette valeur de e dans I'équation ¢’ ==e¢— a, nous

aV aV — aV -4 aVi aV'
aurons e" —_ ‘_F-—--_vF — _—?T\-”_- — __‘“'n. (173}
d’olr nous voyons que la distance BC, que doit parcourir le mobile parti du
point B, est égale & la distance qui sépare les points de départ multiplice par
la vitesse de ce méme mobile , et divisée par la différence des vitesses.

307. Sinous mettons la valeur (171) del dans Déquation ¢ = % , nous
a .
aurons t= g (172 bis)

ce qui nous apprend que le temps que mettront les deux mobiles & se rencontrer,
sera égal & la distance qui sépare les points de départ, divisée par la dif-
férence des wvitesses.

308. 1l suit de la qu'un mobile qui aurait une vitesse égale & la différence
V — V' des vitesses des deux mobiles que nous considérons , mettrait autant
de temps pour parcourir la distance ADB des lieux de départ , qw'en mettratent
les deux mobiles en question @ se rencontrer.

309. Si nous supposions V' =V, I’équation (171) donnerait e — L S H
[4]
ce qui nous apprendrait que les deux mobiles ne se rencontreraient jamais,
comme cela est évident , puisqu’alors la distance qui les sépare resterait toujours
la méme; ce que nous avons déji vu en algebre (n° 262), dans le probléme
des courriers , qui est le méme que celui-ci.

310. Enfin, si en méme temps que V =V’ on avait @ = o, il viendrait
e = Z, ce qui veut dire que les deux mobiles ne se sépareraient jamais.

)
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311. Supposons deux mobiles partant I'un du point A (fig. 69) et l'autre
du point B, et qu’ils aillent 'un a la rencontre de l'autre , avec des vitesses
respectives V et V', et demandons-nous en quel point G, entre les points de dé-
part , les deux mobiles se rencontreront.
Nommons e V'espace AC, et ¢’ T'espace CB; si a représente Ia distance AB
des points de départ , nous aurons ¢’ = @ — e. Il nous viendra donc (n°® 288),
e=Vieta—e=V'e

L e (1 =g
t= = t —

d'or v o v
» & a—e
et par consequent v = ~5r

d’ott nous tirerons -
eV =aV —eV, on e (V4+V' ) = aV
v
el partant _ e = fﬁ.m... (173)

Ainsi, la distance du point de départ A au point de rencontre C est égale i
la distance des points de départ multipliée par la vitesse du mobile A , et divisée
par la somme des vitesses.

312. Si nous mettons cette valeur de e dans I'équation ¢’ = a — ¢, il nous

) _ oV aV-|{aV'—aV _  aV’
viendra e = a— VIV VRV ¥ +V"'”(174)'

d’otr I'on voit que, pour avoir la distance BC , il faut multiplier la distance des
points de départ par la vitesse du mobile B, et diviser le produit parla somme

des vitesses.

313. Mettons la valeur (173) de e dans '’équation ¢ = ‘-f-, il nous viendra

ce qui nous fait voir qu'un mobile qui aurait une vitesse égale A la somme
des vitesses des deux précédens, parcourrait l'espace AB dans le méme temps
que ces deux mobiles mettraient a se rencontrer.

314. Quand, dans le mouvement des corps, les masses sont égales , les vitesses
sont proportionnelles aux forces d'impulsion (n°301) ; nous pourrons donc, dans
ce cas, représenter les forces et les vitesses qu’elles produisent par les mémes

longueurs rectilignes (n 12).
Cela posé, supposons un mobile A (fig. 70), soumis & deux impulsions simul-
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tanées, I'une P tendant & faire parcourir au mobile A la direction AB avec une
vitesse représentée par la longueur AB, et I'autre Q tendant a lui imprimer h
direction AC avec la vitesse représentée par la longueur AC ; il est clair, d’aprés
le principe du parallélogramme des forces (n° 50) que le mobile prendra la di~
rection AD de la diagonale du parallélogramme ABDC, formé sur les droites
AB, AG, et aura une vitesse représenlée par la longueur AD de cette diagonale.

Ainsi, en nommant v la vitesse AB , u celle AC et V celle AD, nous aurons
(n° 51 et suivans),

4o v :u. V:sin. DAC ; sin. DAB ; sin. BAC... % )
ou viulViisin (V,u)!sin. (V, v) | sin (vu).. (176)

Q0 V2 = »* 4+ u? 4+ 2 vu cos. BAC....

ou V2= »* 4 u* + 2 vu cos. (v,u)...

%m«07ﬂ

Ainsi on pourra résoudre sur les vitesses les mémes problémes que ceux que
nous avons résolus aux n® 54 et suivans, sur les forces.

315. SiI'angle des deux forces d'impulsion P et Q était droit, on tomberait
dans les formules du n® 60 et suivans, et pour approprier ces formules au cas
des vitesses , on y remplacerait P par v, Q paruet R par V. Ainsi ce serait
une répétition inutile que de résoudre ici sur les vitesses les mémes problemes
que nous avons résolus aux numéros cités sur les forces P, Q , R qui leur sont
proportionnelles.

LECON IL

Du mouvement uniformément et continfiment varié; de la chute des corps graves, et de la
direction que prennent ces corps lorsqu'ils sont animés simultanément d'une vitesse
uniforme , dans unsens quelconque, et de I'action de la pesanteur.

316. Supposons qu'un mobile regoive continuellement une méme impulsion g
b chaque instant infiniment petit ; et demandons=nous Uespace e qu'aura parcouru
le mobile au bout d'un temps donné t. '

Il est clair qu’au commencement du premier instant le mobile , recevant la
premiére impulsion g , aura une vitesse uniforme, pendant la durée de cet
instant infiniment petit , qui sera égale 4 ¢ ; au commencement du second
instant, le mobile recevra une nouvelle impulsion ¢ , qui, s'ajoutant 4 la pre-
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mitre , lui donnera une vitesse égale 4 2¢; au commencement du troisime
instant , le mobile recevra une troisitme. impulsion qui, sajoutant aux deux
premiéres, lui donnera une vitesse égale & 3¢, et ainsi de suite, jusqu’au t™
instant. Les vitesses ou les espaces parcourus d’un mouvement uniforme dans
les instans successifs, seront donc respectivement

gy 20 5 3¢, 495 5geus tgun.(a),
La somme de tous ces espaces successifs sera évidemment égale a l'espace total
que le mobile parcourra depuis le premier jusqu'au t™ instant. Si donc nous
nommons e cet espace tolal, nous aurons

e=g+ 2+ 3¢g+ 49+ tg=g(1+2 43+ foerrt)en. ().

Mais la parenthese du second nombre est la suite des nombres naturels depuis 1
jusqua ¢, ou, comme l'unité est ici infiniment petite, depuis 1 jusqu’a l'infini.

. © »
La limite de cette somme (note «= de la page 50), sera donc el substituant

celte valeur de la parenthése dans ’équation (P) il nous viendra
Eﬂ
e= g—z..... (178).

317. La vilesse acquise au bout du temps ¢ est évidemment le dernier terme.
de la suite (@) ; ainsi, si nous nommons V cette vitesse, nous aurons

4
V=#.....(179)
318. Si nous avions un autre mobile soumis 4 la méme force accélératrice,
. » I gt!g + ’ &
nous aurions (équ. 178) e’ = e de sorte que si nous comparions cette équa-

tion & celle (178), nous aurions

8 g, e
e.e' :.ﬁ;— . g? Lae st (180)

‘ot L'on voit que les espaces parcourus sont comme les carrés des temps. Ainsi ,
si les temps suivent la progression 1, 2, 3, 4, etc., les espaces suivront celles-ci
1,4,9. 16, etc.

319. Pour un temps ¢', I'équation (179) nous donnera V'=— ¢'¢ ; en compa-
rant ce résultat 4 celui (179), nous aurons

ViViiigitg. it t .. (181)
d’otr nous voyons que les witesses sont comme- les temps, Comme on pourrait le
conclure de ce qui a été dit au n° 316.

© 320, En extrayani la racine n_:arre‘e' de tous les termes de la proportion (180),
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il nous viendra Vel e iitit...(182)

c'est-i-dire que les temps sont comme les racines carrées des espaces parcourus.
321. En comparant les proportions (181) et (182), nous en conclurons

ViV Vel Ve ... (183),

ce ui nous apprend que les vitesses sont entre elles comme les racines carrées des
espac&s pm‘cﬂua‘us.

322. Si nous multiplions les deux membres de Iéquation (179) par ¢, nous
aurons : V=gt
le premier membre de ce résultat est Iespace que parcourait le mobile dun

mouvement uniforme, pendant un temps égal a celui déja écoulé, si la force
accélératrice venait & cesser d’agir A Dexpiration du temps ¢; mais pendant le

A A t .
méme temps, le mobile a parcouru I’espace e — % , dou 2¢ = ¢¢* ; nous
aurons donc tV = 2¢e....... (184),

d’ol1 nous voyons qu'un mobile qui se meut d'un mouvement uniformément et
contindment accéléré a acquis , au bout d'un temps domné t quelconque , une
vitesse 'V capable de lui faire parcourir , d’un mouyement uniforme , un espace
double de celui quil a déji parcowrw dans le méme temps.

323. Nous avons supposé le mobile en repos au premier instant de lobservation;
mais on pourrait le supposer déja animé d’une certaine vitesse uniforme V', qu'il
aurait acquise d’'une maniére quelconque avant le premier instant de Pobserva-
tion, ce qui ferait parcourir au mobile un espace égal 4 V¢, dans le méme temps

que la force accélératrice ¢, lui ferait parcourir (n° 316) espace g_:: ; si donc,

dans ce cas, nous nommons e I'espace total , nous aurons généralement
tﬁ
e=V't+ %.....(185).

324. S'il s'agissait d’'un mouvement retardé uniformément suivant la méme

. . g . t*
loi qu'au n° 316, nous aurions évidemment & retrancher g? de V't pour avorr

P’espace parcouru au bout du temps ¢, Ainsi I’équation
e= V’t — ”g_:_l'lvou (186)

sera celle du mouvement uniformément et contintiment retardé.

325. Dans ce dernier cas , on pourrait demander dans quel temps la vitesse
initiale V' serait anéantie.
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Pour résoudre celle question , il suffirait d’égaler V/ au second membre de
Péquation (179), ce qui donnerait

Vf
Vi =1, dot t = g (187).

I suit de la que, le temps demandé est égal & la vitesse initiale V', divisée
par la force retardatrice.

326. $i nous mettions cette valeur de ¢ dans I'équation (186), il nous viendrait

14 ! fa ___ i V'm
e = = — 5‘—2‘3 == _ Y . (188)
g 28 28 28
Ainsi, Vespace qu'aurait parcouru le mobile au moment ot la vitesse initiales
V' serait anéantie, serait égale au carré de cette vitesse initiale , divisé par
deux fois la force retardatrice g. '

327. Non-seulement la vitesse initiale V” peut étre anéantie par la vitesse re-
tardatrice, mais encore le mobile peut retourner sur ses pas, et revenir au point
d’otr il était parti. Si Yon nous demandait le temps qui serait nécessaire pour
qu’en eflet le mobile, fiit retourné au point de départ, nous n'aurions qu'a sup-

3

. . v t M
poser ¢ = o dans P’équation (186), ce qui donnerait V'¢ — 52— — 0. Nous ti~
rerions de cette équation

t=o et t= 32!.....(189).
g

La premiére valeur de ¢ nous annonce ce que nous savions d’avance, que,
dés le commencement du premier instant, le mobile était au point de départ.
Quant 4 la seconde, elle est double de celle du n° 325; ce qui nous apprend que
le temps qu'il faut powr épuiser le mouvement , est égal & celui que mettrait
le mobile & retourner du terme de sa courbe, oi sa vitesse initiale est anéantie,
& son point de départ.

328. La pesanteur ou gravité étant une force qui agit 4 chaque instant sur
toutes les molécules des corps avec une persévérance qui ne souffre aucune in-
terruption , il est clair que le mouvement d’un corps qui tombe a la surface de
la terre est uniformément et contintiment accéléré ; de plus, il est clair que si un
corps élait lancé de bas en haut par une certaine force d’impulsion, la pesanteur
agissant en sens contraire, le mouvement de ce corps serait uniformément et con-
tinument retardé ; de sorte que les principes précédens sont applicables au
. mouvement de la chute des corps; mais pour appliquer, au cas de la chute des
corps graves, les formules que nous avons trouvées ci-dessus sur le mouvement
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uniformément varié en général, il faudrait connaitre la valeur de ¢, cest-a-
dire la vitesse que communique la gravité sur le mobile & chaque unité de temps.

329. Nous avons déja fait connaitre (n° 95) que la gravité d’un corps varie
quand on transporte ce corps d’un lieu de la surface terrestre en un autre, ou
quon le place & une plus grande distance du centre de notre globe ; de maniére
que cette puissance diminue comme les carrés de ces distances. Mais tant que
nous ne déplagons pas le corps d’'une quantité considérable, c’est-a-dire, tant
que nous ne sortons pas des circonstances ordinaires , nous pouvons regarder la
gravité g comme une quantité constante. Pour la latitude de Paris, et 4 la tem-
pérature de la glace fondante , les physiciens ont trouvé que la vitesse qui répond
a la gravilé qui se développe sur un corps dans une seconde de temps , est ¢ =
3o, 195 = g™, 8og; ce qui veut dire qu’au bout d'une seconde , la gravité
aurait développé dans le mobile une vitesse capable de lui faire parcourir,
d’un mouvement uniforme, 3o pieds 195, ou g™, 809 par seconde, si la pesanteur
venait tout & coup A cesser d’agir.

330. En substituant cette valeur de ¢ dansla formule (178) il nous viendra

= 15E — 151, 0gy5. ...(190)

on o= L20EL . fogof5. o (197)

Ces formules nous feront connattre I'espace que parcourt un corps qui tombe,
dans un temps donné ¢ , I'unité de temps étant la seconde.

331, Sidans ces formules nous faisons ¢ = 1, elles deviendront
e = 4", 9045 ou e = 15° 095,

ce qui nous apprend que dans la premiére seconde la chute du corps sera ou de
4”5 9045, st Uon prend le métre pour unité de longuewr, ou de 15, 0975, si
Uon prend le pied de Paris ; cest le mdtre que nous adopterons.

332. Si nous mettons la valeur de ¢ dans Péquation (179), elle deviendra
V = g7, 809. tu..... (192)
et nous fera connaiire la vitesse acquise par le mobile au bout du temps ¢
333. Enfin, si nous substituons la valeur de g dans P'équation (186), nous
aurons e = V't — 4", go45. ... (193)

pour l’équation qui rendra compte des circonstances du mouvement d'un corps
lancé en sens contraire de la pesanteur.

334. Supposons qu'on ait lancé verticalement de bas en haut un solide avec
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une force capable de lui donner une vitesse uniforme de 20 métres par seconde,
si la pesanteur n’agissait pas, et demandons-nous A quelle hauteur la gravité

permcttra 4 ce corps de s'élever.
Pour résoudre cette question, il nous suffira de substituer 20™ au lieu de V'

et 9”,809 au liende g dansla formule (188), ce qui donnera
__ 20Xv20 _ 4oo
T 2xg", %9 " 19,018
ainsi ce corps ne s'éleverait qu’a 20", 389, a cause de la perte de vitesse occa -
sionnée par la pesanteur, et & cette hauteur, le corps sera un instant en repos,
et ne se mouvra ensuile qu'en vertu de la pesanteur qui le fera descendre.
Si 'on voulait le temps qu'il faudrait au mobile pour s'élever 4 cette hauteur,
il suffirait de mettre 20™ au lieu de V' et 9, 8og au lieu de g dans la formule

(187), ce qui donneraif

= 20", 389,

t = — = 2929 — 4" 03g environ.
9,809 g8og ?
335. Enfin , demandons-nous le temps nécessaire pour que le mobile soit re-
descendu au point d’owe il était parti ; dans ce cas, nous nous rappellerons la
remarque du n® 327, et nous verrons que le temps demandé est double du
précédent; ainsi == 4", 078. On aurait le méme résultat par I'équation (189).

336. Supposons , maintenant, un mobile en repos au point A (fig. 71, 72
et 73), et que fout & coup il recoive une impulsion dans une direction quel-
conque AG , capable de lui faive parcourir successivement d’un mouvement uni-
forme, les espaces égaux AD, DE, EF, etc., par seconde , et quwau méme ins-
tant il soit livré & Faction de la pesanteur; et demandons-nous quelle sera lq
direction duw mobile.

Il est clair que si la pesanteur n’existait pas, par I'impulsion étrangere a la
gravité, le mobile serait au point D au bout d’une seconde ; mais comme la pe~
santeur agit en méme temps, ce mobile aura descendu de la quantité Ae =
4™,9045 ; de sorte que le mobile se trouvant soumis a Paction de deux forces
AD, Aa qui se rencontrent au point A, au bout d'une seconde il sera a 'ex-
trémité d de la diagonale Ad du parallélogramme ADda , dont le cité AD
exprime 'impulsion dans le sens AG , et l'autre ¢6té Aa la pesantenr; au hout
de deux sccondes , sans la pesanteur le mobile serait au point E, et sans I'im-
pulsion suivant AG , la pesanteur le ferait descendre jusqu'au point b, clest-
a-dire de la quantité Ab = 4 X 4™, 9045; le mobile sera donc a I'extrémité e
de la diagonale du parallélogramme AEeb , et ainsi de suite; d’ou Ion voit que
lé mobile se trouve successivement aux extrémités des diagonales d’une suite de
pamllélogrammes dont les cotés AD, AE, AF, etc., vont en augmentant sui-
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vant les nombres paturels depuis un jusqu’a Uinfini, et les cotés Ae, Ab, Ac, etc.,
suivant les carrés de ees mémes nombres, Mais les cdtés AD, AE, AF, etc.,
sont respectivement les ordonnéesad, be, cf, elc. , de la courbe AfB qui passe
par les extrémités des diagonales de la suite des parallélogrammes AadD,
AbeE, etc., cest-a-dire de la courbe parcourue par le mobile ; les carrés de
ces ordonnées seront donc respectivement

(ady =1, (bep =4 (cf)’ —9, ete.
et les abscisses respectivement
Aa=1,Ab=h, Ace=9;
donc, Aa: (ady 3 2 Ab S (bee 3% Ac s (f)?, ete.
d'or il suit (Géon. pl. n® 453), que la courbe AfB est une parabole.
337. Représentons par V' Iimpulsion AD, (fig. 71, 72 et 73) et par ig
(n° 322), la chute Aa due 4 la gravité dans la premitre seconde ; en mettant ces

valeurs au lieu de y et de x dans équation y* = px de la parabole, il nous
viendra

. a QVF:
Vii=ipg s dobt p= -—u..(194),

d'otr T'on voit que le'paramdtre de cette parabole par rapport & un diamdtre
quelconque AC, sera le double du carré de la vitesse d’impulsion divisé par la
vitesse donnée par la pesanteur.

338. Si nous comparons cette valeur de p i D'équation (188), qui est
VI‘I

& == —,

2g’
nous verrons que la plus grande hauteur & laquelle pourrait s’g’le\rer, contre
la pesanteur, un mobile lancé verticalement de bas en haut avee la méme vi-
tesse, est le quart du paramétre dela parabole que parcourrait le méme mobile
lancé avec la méme vitesse, dans une direction quelconque.

339. Mettons la valear (194) de p dans l'équation 32 = px, -
| @ .ern(195)

pour Iéquation de la parabole que décrira un mobile lancé dans une direction
quelconque , abstraetion faite de la résistance de Pair.

T3

2V
et nous aurons ysz

340. Proposons-nous, maintenant, de trouver la distance & laquelle , par
rapport & la verticaie_AC » le mobile irait tomber, la hauteur verticale entre le
point de départ et le point d’arrivée étant connue.

Pour résoudre ce probléme, dans le cas de la figure 72, on calculera d’abord

2, . ’
BC d’apré.s l’equatmn J‘ ’TV @, ce qui donnera I'hypothénuse du triangle
- 16
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rectangle CBM, dont le cété BM est la distance demandée. Pour avoir cette dis-
tance, il faudrait connaitre labscisse AC , car on voit que MC = AC — AM
= — h, en appelant k la hautear AMdu point de départ A par rapport au
point d’arrivée B. Le triangle rectangle CBM nous donnera
(CB)y2 — (CM)*=(MB)* ou (MB)* = y* — (x — k)....(a)

Nommons « I'angle MBC, qui est celui que fait la dreite AG avec I’horizon ;

nous aurons

1 tang. 2 ., BM ; MC ou x —#% ; doit x—h = MB tang. =..... (b)

et par conséquent x = h -+ MB tang. «.....(c)

En substituant cette valeur (¢) de « dans I'équation de la parabole, il nous
viendra .

, 2V
Jf = —-E— (k + MB tang. W).ut(d)

et, en mettant dans.'équation (a) la valeur(b)de @ — k , et celle () de y* , il
nous viendra (MB)z = %:2 (h + MB tang. «) — (MB)* lang. «

dot (MBY (1 + tang.? @) — 1:;_ MB. tang. <= ﬂ;’_’.’}
2 V" tang. a - 2V'k
W O gy M = S g

A
ct par conséquent, en résolvant cette équation
V" tang, « V" tang.* « aV'h
MB = —V_l0Et oy /L . :
g (1-+tang." %) ‘/S (1-tang."«) + § (1 +tang.’«)
Ty o Viang.et/ (Vi -2he)tang.fa 2hg
= V' X £ (T g o) s (196)
Telle est Iexpression de la distance, par rapport a la verticale menée par le
point de départ, & laquelle le mobile ira tomber.
On observera que la tang. = sera positive pour le cas de la fig. 72, négative
pour celui de la fig. 73, et nulle pour celui de la fig. 70. Dans ce dernier cas,

on aura MB=BC =V’ 5%(n_:y;,-)
- LECON IH.
Du mouvement des corps assujétis 4 glisser sur des lignes données, dans I'hypothése d'un
poli parfait.

~ 341. Supposons qu’un mobile soit en repos au sommet C d'un plan incliné
AC (fig. 74) , et que tout & coup il soit kvré & Paction de la pesanteur; au lieu
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de descen?lre suivant la verticale CB, il glissera sur le plan CA : il s'agit de
savoir suivant qu’elle loi son mouvement aura lieu.

Supposons que, dans un temps donné ¢, le mobile piit parcourir Pespace Ca
sur la verticale CB; d’aprés le n® 315, nous pourrons décomposer 'espace ou la
vitesse Ca en deux autres Cb, Cc, I'une perpendiculaire et Pautre paralliala A
la longueur CA du plan mclme » en construisant le parallelowr'lme abCe ;
partie de la pesanteur qui imprimerait au mobile la vitesse Cb étant perpen-
diculaire au plan AC, sera détruite par la résistance de ce plan, et Pautre
partie, parallele ¥ce dernier, fera parcourir I'espace Cc au mobile le long du plan,
dans le méme temps que la pesanteur le ferait descendre de la quantité Ca dans
la direction verticale. Or les triangles semblables ¢Ca, ABC donnent

AC:-GB:;Ca:Cc,oua:h:;%’:Cc ........ @
(‘en appelant ¢ la longueur AC du plan incliné, k sa hauteur, et en se rappe-
lant (n® 316), que l'espace Ca—¢ = %)

Il est facile de voir que si le mobile descendait verticalement de C en B dans
un autre temps ¢', dans le méme temps ce mobile descendrait de C en f surle
plan incliné, le parallélogramme CeBf étant construit sur la diagonale CB;
les triangles semblables ABC, CBf, donneront

AG:CB:iCB:Cfontihii &2 ; ¢y,
Si donc nous comparons la. proportion (a) a celle-ci, il nous viendra
€1 Ce “5’ tCfoul 2y Co’ Cfu (198),

d’or I'on voit que les espaces parcourus sur le plan incliné sont comme les
carrés des temps, tout comme dans le cas de la chute verticale (n® 318).

342. Nommons ; g’ I'espace parcouru ‘dans une seconde de temps, E I'espace

parcouru dans un temps donné ¢’ ; la proportion (198) nous donnera
f& .
1ty L E= 5 (199)

Equation toule pareille & celle du n® 316 , relative i la chute verticale.

11 suit de i que, la loi que suit la descente d’ un corps grave surun plan in-
cliné, est la méme que celle qu'il suit lorsqu’il tombe verticalement.

343. D’apres cela il est aisé de voir que si V' est la vitesse acquise par un
mobile glissant sur un plan incliné quelconque, on aura,

V' i=g't'...... (200),

Cest-a-dire que, la vilesse acquise au Imut d’un temps donné, est éga!e ala

force accélérairice sur ce plan incliné, multiplie par le temps donné.
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344, Tirons la valeur de ¢’ de Péquation (200), qui sera ¢’ ..'-:-5_ , pour Ia

”

mettre dans I'équation (199); il nous viendra

A VA xTlg I :
E:_;g-.douv = 2g'E....... (a),

si_maintenanggnous faisons attention qu’en supposant ¢ = 1 dans la proportion
(a)dun® 341, Ce devient + g’ , nous aurons

® 1 [ @

1] 8 . ' k . .
Lihiiigiig' tigtg =5 (a0

Cela posé, supposons que E soit la longneur 7 du plan incliné, et substituons,
dans I'équation (@) ci-deSsus, cette valeur de E, et celle (201) de ¢, nous aurons,

V’'2 = agh, dou V' =} 2gh...... (202),

telle sera la valeur de la vitesse acquise par le mobile, i I'instant ot il sera par-
venu i Pextrémité inférieure du plan incliné. On voit que I'expression de cette
vitesse acquise est indépendante de la longueur du plan incliné, et qu’elle est
proportionnelle 4 la racine carrée de la hauteur £ de ce plan; il faut donc con-
clure de 1a que, la vitesse acquise & Uextrémité inférieure du plan incling est la
méme, quelle que soit Uinclinaison de ce plan ; de sorle que cette vilesse acquise
sera la méme, le mobile descendant par le plan CA (fig. 75), que s'il descendait
le long de tout autre CD, CE, CF, ou, ete., et par conséquent suivant la verti-
cale CB. .

345. Cherchons le temps nécessaire pour que le mobile parcoure la longueur
du plan incliné; pour cela, mettons la valeur (201) de g’ dans I'équation (200),

. . ht )
il nous viendra V' = %~ ; mettons cette valeur de V' dans Péquation (202),

el nous aurons irM = |/ agh, ou 5—-3—,- = agh,

ce qui se réduit a )
| ghtt = als, dow & =2 ... (a)

Suppc;sons un autre plan incliné dont la longueur soit I, et la hauteur h', nous
aurons ¢'2 = %I;} il s'ensuivra donc

LB '
tk: tls . s x - ﬁl-uu-'(noa)-

346.-Si les temps étaient égaux, on aurait

I’ P' d,\z’-r-zolhoh! -
=g dou BV ITATA . (204);
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d’ot1 P’on voit que, powr que dewx plans inclinés fussent parcourus dans de méme
temps , il faudrait que les carrés de leurs longueurs fussent entre eux comme leurs
hauteurs ; et réciproquement , lorsque cette condition aura liew, les temps seront
éqanx.

347. 1l suit de 14 que, si dans un cercle quelconque ADB ( fig. 76), on méne
une suite de cordes AC, AD, AE, AF, etc., et que ’on regarde ces cordes comme
les longueurs d’une suite de plans mclma dont les segmens AG, AH, Al AK,
du diamétre, seraient les hauteurs respectives, un mobile partant du pointA met-
trait le méme temps & parcourir I'un quelconque de ces plans inclinés, et par
conséquent le diametre AB; car (Géom. pl. n® 250 ) (AC)* ; (AD)* ; (AE)* ;
(AF) . (AB): . AG ; AH ; Al AK: AB; clest-a-dire que toutes ces
cordés et le diamétre AB satisfont a la condition du n® 346.

348. Supposons une suite de plans inclinés AE, EF, FG, GC, etc. (fig. 77)
qui forment la surface d’un demi-prisme creux quelconque, dont la section droite
soit le polygone AEFGC...; st un mobile animé par Uaction de la pesanteur
descend le long du contour de ce polygone, la vitesse qu'il aura acquise au
point Gy sera la méme que il était descendu suivant la derticale DC.

En effet, la Yitesse qu'il aura acquise au point E, sera la méme (n® 344) que
celle qu'il aurait acquise en tombant librement de D en H; celle qu'il acquerra
de E en F sera [a méme que celle qu'il aurait acquise de H en I; celle qu'il ac-
querra de F en G sera la méme que celle qu'il aurait acquise de Ien K, et ainsi
de suite. A chaque station les vitesses sont donc respectivement égales; leurs
sommes le seront donc aussi, cequ’il fallait démontrer. '

349. Ce principeaévidemment lieu, quels que soient les longueurs et le nombre
des cotés du polygone; il aura donc lieu dans le cas ol1 les cdtés de ce polygone
seraient infiniment petits, et en nombre infini, c’est-a-dire dans le cas ou,au
lien d'un polygone , on aurait Ja courbe AFGB, nous pouvons donc énoncer ce
théoréme général, que,

Quelle que soit la courbe AFC que parcourra un mobile par Uaction de la
pesanteur, la vitesse qu'il cmm acquise en un point quelconque de sa course, sera
la méme que celle qu'il aoquemut en tombant librement de la mé’nw hauteur.

350. La vitesse qu'aurait acquise le mobile en tombant \ertlcalement de D
en G, s'obliendra en éliminant ¢ enlre les équations (178) ct ( 179), et en en li-

rant la valeur de V quisera V= /2eg..... (a)

Mais nous avons trouvé (n°® 326) que la hauteur e i laquelle peut s'élever un
mobile lancé verticalement en segs contraire de la pesaplenr, avait pour expres-

"ﬂ
sion e = = o7 d'ott nous tirerons V' = y/ 2eg. Si donc nous comparons cette
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équati®n 3 celle (@) ci-dessus, nous en conclurons que la vitesse acquise au point
C est capable de faire remonter le mobile & la hauteur d’oit il est descendu, quelle
que soit la courbe CB ou CM par laquelle le mobile montera. Il y a plus, c’est
que quand le mobile, parti du point G, sera arrivé au point L, sa vilesse aura
diminué de maniére a étre redevenue ce qu’elle était au point F lors de sa des-
cente, Pour les autres points correspondant aux mémes hauteurs sur la courbe
de montée CB, et sur celle de descente CA, il en sera de méme, de telle sorte,
qu'arrivé au point B situé sur I’horizontale AB, le mobile aura perdu toule sa
vitesse; mais & cet instant la force d'impulsion étant épuisée, la pesanteur fera
redescendre le mobile, sur la courbe BC, jusqu'au point C, oi1 il aura acquis la
méme vitesse qu'il avait auparavant a ce point G, et le mobile, en conséquence,
remontera jusqu’au point A, en suivant la courbe CB: le mobile continueraindé-
finiment de descendre et de monter ainsi de gauche i droite, et de droite a gau-
che, en glissant sur les deux branches de courbe alternativement , tant qu'aucun
obstacle ne viendra pas diminuer la vitesse acquise au point C, & chaque os-
cillation. '

Il ne faut pas conclure de ce qui précede que le mobile descendrait par Ja
courbe dans le méme temps que par la verticale; car , dans le premier cas, ce
temps serait plus grand que dans le second, ainsi que nous I'avons vu dans la
descente sur un plan incliné. :

351. Supposons maintenant qu’un mobile soit fixé & I'extrémité A du rayon
inextensible BA (fig. 78) d’un cercle, et que dans la difection de la tangente
AG et dans le sens de A en G, le mobile recoive une impulsion; au liea de
suivre la direction de la tangente AG, le mobile parcourra la circonférence
ACFA de ce cercle, attendu que le rayon inextensible A B maintiendra le mobile
a4 la méme distance du centre B. Il est évident que, pour obliger le mobile a
stiivre le chemin circulaire, le rayon éprouve une certaine tension qui cst occa-
sionnée par la force avec laquelle le mobile tend a se diriger suivant la ligne
droite. Ainsi le centre est obligé de résister i cette méme force. On, donne le
nom de force centripéte , a celle avec laquelle le mobile est atliré vers le centre,
et celui de force centrifuge i celle avec laquelle le corps tend a s’échapper sui-
vant la tangente. Déterminons Pune de ces forces égfes. '

352. Supposons donc que le mobile, au lieu d'avoir suivi la tangente AG
(fig. 78), ait parcouru larc AC, dans le méme temps qu'il aurait parcouru
la longueur AG de la tangente; il est clair que la force centripéte, et par
conséquent la force centrifuge, sera représentée par la longueur GC. Or si I'arc
AC est infiniment petit, l'angle ABG sera aussi infiniment petit, c’est-d-dirc
que la droite GC pourra étre regardée comme,paralléle 4 AD, et par conséquent
.égale 4 cette derniere; si donc f est la force centrifuge, nous aurons

f — AD.... (a).
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Mais si nous menons les cordes AG, CF, nous aurons ( Géom. pl. n°® 151)
. I c‘.b . AC * ’
AF:AC::AC: AD=C0N L ).
Or, Parc AC étant infiniment petit, peut remplacer sa corde; de plus, AF
étant le diamdtre du cercle, peut &tre représenté par 2R ; en substituant dans
Péquation (b) et ensuite dans 'équation (@), nous aurons

= -(Ez—%l-......(zuﬁ).

353. Si la vitesse du mobile est uniforme , les arcs parcourus seront propor-
tionnels & la vitesse ; ainsi I'arc pourra étre remplacé par la vitesse V3 en
faisant cette substitution dans I'équation (205), nous aurons

f= -}Ti-;.....(noﬁ).

354. Supposons un autre mobile circulant sur la circonférence d’un autre
cercle, avec une autre vitesse uniforme ; f* étant sa force centrifuge, nous au-

v . .
rons f/ = SR €t en comparant cette valeur de f' & celle de £, il nous viendra
' - L ‘V' L] lv ?
. f . f' P "I:-l— . 'ﬁ?nnu (‘107).
. . .
Ce qui nous montre que les forces centrifiuges sont comme les carrésdes vitesses
uniformgs, eten raison inverse des rayons des circonférences de cercle parcourues.
Ainsi, si les rayons étaient égaux, les forces centrifuges seraient comme les
carrés des vitesses , et si les vitesses étaient égales, ces forces seraient en raison
inverse des rayons.

355. La vitesse d’'un mobile assujéti & parcourir la circonférence d’un cercle
donné d'un mouvement umiforme , sera évidemment en raison inverse du temps
que mettra ce mobile 4 faire une révolution entitre. Ce temps se nomme temps
periodique. Ainsi la vitesse sera en raison inverse du temps périodique. Mais il
est évident que si la vitesse était la méme, le temps périodigme serait proportion-
nel a la circonférence décrite par le mobile, et par conséquent au rayon du cercle.
Si donc R et R’ sont les rayons des cercles, et ¢, ¢' les temps, nous aurons

t.t LR R ... (208).
Mais dans Ihypothese des vitesses égales, la proportion (207) nous donne |
N R F
si donc on multiplie ces proportions par ordre, il viendra g
Cofief i
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ce qui veut dire que #f = ¢'f', ou que
f ofests . (208),
c'est-d-dire que les forces centrifuges, dans I cas des vitesses égales et des
rayons différens , sont en raison inperse des temps. '

356. Nous venons de voir que les temps sont en raison inverse des vitesses,

de sorte qu'on aura ot VLV V. (209);

Si nous multiplions par ordre les proportions (207) et (208), il nous viendra
' e, RY' ! RV,

et si nous divisons les deux termes du dernier rapport par RR’, nous aurons

gl %r . %......(210),

ot il suit que les carrés des temps périodiques sont en raison inverse des
vitesses , divisées respectivement par les rayons.

357. Supposons maintenant que le mobile se meuve autour du centre B(fig. 78)
en étant animé d’un mouvement uniformément et continuellement accéléré ;
dans ce cas, l'arc décrit dans un temps donné, sera remplacé évidemment par
le second membre de Déquation (178) ; de sorte qua larc il faudra subs-

tituer %c'dnns la formule (205), ce qui donnera .

ltl
f= gé—n......(nu),

d'olr 'on voit que, dans cette hypothése, la force centrifuge augmenterait dans
le rapport de la quatritme puissance du temps, tandis que, dans le cas d'unc
vitesse uniforme , cette force reste constante pour la méme vitesse et pour le
méme, rayon. - '

358, Enfin, s'il gagissasit du mouvement retardé, & la place de larc de la
formule.(205), on mettrait le second membre de équation (186) , et on aurait

(V't ._gi‘)‘
a 1
f—..._" -———ﬁg—-"— ..... (21._9}-

Cette force ceniﬁ{-‘uge irait en diisuant en raison inverse du temps.

359. Supposons qu'en un point I'ugeir A (fig. 59) soit suspendu un mobile E
par le moyen d’un fil inextensible; si ce fil est dans une situation verticale, Je
mobile E restera en repos, et le fil, par éa tension, fera équilibre au poids du
corps. Mais si 'on dérange le mobile de la verticale pour lui faire prendre la
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position B, en le livrant ensuite & l'action de la gravité, la direction rectiligne
du fil n’étant plus directement oppusée a celle de cette derniére force, le mobile
tendra 4 tomber suivant la verticalé; et comme il sera obligé de rester i la
méme distance du centre A de suspension , & cause de Vinextensibilité du il il
sensuit que le corps descendra non verticalement , mais suivant I'arc de cercle
BE. Arrivé au point E, le mu]:ule aura acquis une vitesse (n® 350) capable &l
faire remonter de laulre coté sur l'arc EC jusqu’au point G, situé a la méme
hauteur que le point de départ B, et dans le méme temps, car le fil n’a d’autre
effet que d’obliger le mobile & parcourir I'arc de cercle BE, et le corps est dans
le méme élat que il glisse librement sur ce méme arc par I'action de la pesan-
teur. Ainsice qui a été démontré au n°® 350 et suivant , est applicable au cas da
mouvement que nous considérons ici, Le corps étant arrivé au point G, aura
perdu toule sa vitesse , et action de la pesanteur le fera descendre sur le méme
arc jusqu’en E, ou il aura acquis la méme vitesse qu'il avait acquise au méme
point, en descendant du point B; le mobile pourra donc s'élever a ce point
B, et redescendre de ce point B au point E pour remonter au point C, et
ainsi de suite, lant qu'aucun obstacle ne viendra pas allérer son mouvement.
Un corps qui oscille de cette manitre, prend le nom de pendule simple.

360. La vitesse acquise au point E sera la méme que si le mobile descendait
verticalement du point D situé au méme nivean que le point de départ B (n°® 350).
Mais (n°® 321) les vitesses acquises par un corps tombant librement, sont dans
le rapport des racines carrées des hauteurs desquelles ce corps tombe; par
conséquent, les vitesses acquises au point E par les pendules qui tomberaient
P'un du point B et I'autre du point m, seront entre elles comme les racines
carrées des hauteurs correspondantes DE, dE.

361. Il suit de I que ces vitesses seront proportionnelles aux cordes BE,
mE ; car les carrés de ces cordes (n° 347) sont comme les distances DE, dE ;
c’est-a~dire, que (BE) | (mE)* | DE | dE,

dot | BE,m:;Vﬁ:l/E,

ce qu'il fallait démontrer.

362. II résulte de la que, si I'on veut que le pendule acquiére au point E
des vitesses qui croissent comme les nombres 1, 2, 3, 4, etc., il faudra le faire
tomber des points m , B, e, f, etc. , dela circmlférence du cercle, tels que, les

cordes Em, EB, Ee, Ef, etc., suivent la méme progression.

363. De ce que les carrés des cordes BE, mE sont comme les hauteurs
DE, Ed, il sensuit (n° 346) que si deux mobiles descendaient des points B et
m-en suivant la diréction de ces cordes, ces mobiles parcourraient ces cordes
ddns lé méme temps, ce qui est eonfo:-me a la conséquence du (n° 347).

17
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364. Si donc les arcs BE, mE sont assez petits pour que les cordes qui les
soutendent se confondent sensiblement avec eux , le pendule mettra le méme
temps a descendre du point m que s'il; descendait du point B ; de sorte que ,
quoique les amplitudes des oscillations soient différentes , elles se feront dans le
méme temps. Dans ce cas, on dit que les pendules sont isochrones.

5. Parle point B abaissons la verticale Bb, et supposons que la pesanteur
¢ soit représentée par la longueur Bb de cette verucale en construisant le pa-
raliélogramme Bach , on la décomposera en deux, lune Be dans la direction
du fil inextensible, et qui sera détruite par la résistance de ce fil, et Fautre
‘Ba dans la direction de la tangente 4 Yarc de cercle au point B, qui sera la
force d’impulsion qui, en-se combinant avec la force centripéte, fera descendre
le mobile , suivant I’arc de cercle BE. Cherchons l'expression de cette force accé-
lératrice, ce & quoi nous parviendrons, en comparant les trmngles semblablcs.
Beb, BDA, qui nous donneront

AB:BD: Bb:Ba-ou R:BD:%g?: Bau.(a).
Mais le triangle rectangle BDA donne
1 ! sin. BAD 3R :BD
donc. . sin. BAD [ g ; Ba=g' = ¢sin m...(213),

en nommant m I'angle BAD, et ¢’ la force accélératrice langentleﬂe

On voit par celte équation que la force accélératrice g'. est nulle au pomt
E, olt m = o0, comme cela se concoit d’avance. Elle diminue dans le méme
rapport que le sinus de Parc qui reste & demre au pendu]e pour arriver au

pmnt E.

366. Si nous avions un autre pendule h (ﬁg 79) qui, dans ses osmﬂ'atmns
décrivit un are d’un méme nombre de degrés que le précédent , il serait ,
d’apres I'équation (213), animé par la méme force accélératrice ¢ 4 chaque
instant. .

& _ . dou nous voyons que
sim. m

367. De ’équation (213) nous tirerons g =

fe rnpport entre la force accélératrice du pendule au sinus de I'are que ce mo=
bile a & décrire pour arriver au pomt E (le plus bas de la cuurbe), est constant.

'368. Nous avons vu (n° 345) » que
- I" ‘
p t 2 : - h ‘e ?-l" =aie (ﬂ'),.

et ¢ étant les iemPs nécessaires pour parcounr les longueurs I 5 I’ de deu:
plans mclméa dont les hauteurs respectives sont & et h'. Gela posé, compa-.
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rons deux pendules simples oscillant avec des rayons différens (fig. 79) et dé-
crivant des arcs trés-petits. Nons pourrons remplacer I de la proportion («) par
la corde BE (fig, 79), et ¢’ parla corde hk ; mais

 (BE)»= I = aRXDE=2Rh et (hk »=1'* = arXd'k=2arh’
en substituant dans la proportion (), nous aurons donc '

elesiRr

N ' o ‘/1{ ) we(214).

Dotz T'on wvoit que les temps des ossillatlons sont comme les racmes carrées
des rayons.

369. Si I'on supposait ¢ =1", et que r fit réellement la longueur qu'it
faudrait donner au pendule pour qu'en effet il battit les secondes (*), on pour-
rait résoudre les deux problémes suivans :

- 4° La longueur d’un pendule étant donnée, trouver le temps de ses oscilla-

tions, ce qui sera donné pa'r. la proposition ¢ | 1 | l/R . |/_r, d’olt

2 Le temps des osullatlons étant donné trouver. la longuuur du pendule ce
qui sera donné par la proportion 2 2 1 R} r;o

doi © R = (216),

370, Supposans deur mohlles B, F, suspendus au pmnt A (ﬁg 80), chacun
par un fil mextensnb]e AB, AF ; si ces moblles regoivent.des impulsions propor-
tionnelles & eurs masses, et qu 1ls aillent indépendans I'un de l'autre, ils parcour-
ront des espaces égaux ; or, ils sont tous les deux assujétis & décrire un arc de cercle
autour dupeint A, et ces arcs de cercle ont des rayons différens; pour étre égaux
en longueur, il faudra done que celui qui a le plus petit rayon ait le plos grand
nombre de degrés : il suit de la que dans le tempa que le mobile B yiendra en I,
le mobile F sera transporté en K de maniére que Pangle IAB < KAB.

Mais si les deux mobiles étaient fixés sur un méme fil AB inextensible et

inflexible, ils seraient obligés de' diiffire des arcs d’un méme nombre de degrés
dans le méme temps; d’otz Fon voit que le mobile F serait retardé dans sa course

- {*) On atrouvé par expérience que cette’ Iongueur €tait ega'le a o™, 993, ou trois pleds huit
lignes et demie pour la latitude de Paris,
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par le mobile B; ce dernier s'emparerait donc d’une partie du mouvement du
premier ; par conséquent le mobile B gagnerait tout le mouvement perdu par le
mobile F, de manitre que les deux mobiles oscilleraient de concert , et quand B
serait en C, F serait en G sur la méme droite CGA. On congoit, d’aprés cela,
quil doit exister un point D, sur le fil, entre les points B et F, tel quesi on y
appliquait un mobile animé de la méme impulsion que les deux autres, mais
pouvant se mouvoir indépéndamment , les trois mobiles partant au méme ins-
tant, les deux premiers liés I'un & autre arriveraient aux points C et G, au
méme inslant que le mobile D arriverait au point E de la méme droite CA.
Ce point D se nomme le centre d'escillation, et détermine la longueur AD d’un
pendule simple , qui ferait ses oscillations en méme-temps que le systeme des
deux mobiles liés entre eux par le fil rigide AB. Le systéme des deux mastes
prend le nom de pendule composé.

371. Supposons que les ares d’oseillation soient trés-petits, il est facile de
concevoir que I'arc DE déerit par le centre D d'oscillation , sera de méme
longueur que ceux BI, FK qu "auraient décrits les mobiles B, F 8’ils eussent été
indépendans , car nous pourrions regarder ces trois.arcs B, DE, FK, comme
des droites paralléles et de méme longueur ; si donc par le point E on mene
Ja droite IK paralltle & AB, les arcs ou espaces rectilignes que décriraient
librement ces trois mobiles , seront BI, DE et FK. De la on voit que la perte
de vitesse du mobile F sera GK, et celle qu'aura gagnée le mobile B sera
IC. La quantité de mouvement perdue par le premier sera donc GK XX F, et
celle gagnée par le second I1G < B. Mais ces deux quantités de mouvement
agissent autour du point A, avee les bras de levier AF, AB, les effels
qu'elles produisent autour de ce point A sont donc GK X F XX AF et IC
< B > AB; or en vertu de I'inerlie , le mouvement perdu doit égaler le mou-
vement gagné; par conséquent

GK X F 5 AF = IC 3 BXAB....... (a).

Mais dans e cas des arcs trés-petits, les triangles KGE, IEC peuvent &tre
regardés comme étant rectilignes, et des-lors comme sgmhlables ; €¢ qui nous

donnera ° GE!EC..KG:IC

ou . FDIDBIIKG:IC .BD;;,KG

Substituons cette valeur de IG dans l'équatmn précédente, et nous aurons
Gk X Fx AF = BRXKG o o ap

ee'qu'i se réduit A
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DF X F >< A.F = BD >< B X AB-I!!II-!! (5) ¥
d'oir 'on voit que lune des masses multipliée par le produit des distances
de son point d'application au point de suspension et au centre d'gggillation
estégale a Uautre masse multipliée par le produit des distances r'ma' point
d'application aw point de suspension et au centre d’oscillation.
372, Si les masses étaient égales, I'équation (b) deviendrait
DF, < AF = BD 3< AB........ (¢)
et nous ferait voir que, dans ce cas, les distances des points d’application

des masses au point de suspension et an centre d'oscillation , sont réciproquement
proportionnelles.

373; Demandons-nous maintenant la distance AD du centre d’oscillation
au point de suspension.

Pour cela, faisons x = AD, nous aurons
DF —x—AF. et BB =AB — x;
le premier membre de 'équation (b) sera

DF X F >< AF = (x — AF) X F X AF = F 3 AF — (AF) X F,
et le second

- BD % BXJ&B*(AB—-x)XBX AB=(AB) X B — xB 3¢ AB __
on aura donc

oF X AF — (AF): 3 F = (AB)? )(B—-xBXAB,

ce qul revient a &
x (F > AF 4 B > AB) =B ><(AB)= + F < (AF),
Lob . :Bx(ABJ —|—F><{AF)*

B> ABF o< AF " (17)

Dotr il suit que la distance du centre de suspension est égale & une fraction dont
le numérateur est la somme des produits des masses par les carrés des distances
du point de suspension aux points dapplication de ces masses , et le dénomina-
tewr, la somme des momens des masses par rapport au point de suspensi&n A
3Th. Ce prmmpe a lieu quel que soit le nombre des masses suspendues au fil
rigide, ainsi qu'on péut facilement s'en assurer ,en prenant ces masses deux &
deux pour les réduire en nombre deux fois momdre, et passant de celles-ci a
un nombre deux fois moindre, et ninsi de suite, de proche en proche, de Ia
.méme maniére qu'on parwent 4 la résultante d’un nombre quelmnqhe de forces

paralléles: on arrivera ainsi & larllsunce du centre de suspension . au - centre
d’oscillation du systéme.
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Supposons doncqu'on ait les masses A, B, C, D ..., el que leurs distances
au point de suspension soienta, b,¢, d,....; en suivant la marche que nous ve-
nons d’indiquer, x étant la dlstance demandée, on arriverait & I'équation
général .

_ Aa' 4 Bb* - Ce* na*
Ka+B6+ Cof D & (18-

375. Si les masses étaient égales, cetle équation deviendrait
Ry Sy
= e E e an @)
Si nous supposons , de plus, que Jes distances a,b,c,d,... suivent la progres-
sion 1, 2,3, 4,5,... I; I éant le nombre d’unités contenues dans la plus
grande distance du point de suspension, il nous viendra

1+ 44 94 16 L 25 - 36.....P

= I+2+3+4+5~1-t- ...... o (®),
ce qul sé réduit,, d’aprés la note = de la pﬂge 50, &
bis rooi
. 3T FE wgmg “rite)
C X = : = 243+ .
= + : 343

Telle sera la distance du point de suspension au centre d'oscillation d’un pen-
dule composé de masses égales uniformément distribuées sur un fil rigide &
partir du point de suspension. :

376. Si ce pendule composé était une tige prismatique ou cylindrique de
matiére homogene, en divisant la long@eur de cette tige en une infinité de
tranches infiniment mirices, on pourrait regarder ces tranches comme des masses
égales appliquées & un fil rigide a des distances égales et infiniment petites les
unes des autres, & partir du point de suspension : la formule (b) donnera donc
la distance du point de suspension au centre d’oscillation,, en y supposant 'unité
infiniment petite , et par conséquent la longuenr hnﬁmment grande. Mais dans

oette h}*pol‘hése (note « page 50) , I llmlte du numérateur de cette fraction est

'l:: , et ceile du dénominateur est E, nous aurons donc -

= % (220).

Lityo s B

jd,nn nous. wyuns que, le centre d’wtuaam est aux dcux tiers de lﬂ longueur
de la tige , & paytiv.du point de suspension.
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LEGON 1V.

Du choc direct des corps.

377. Un corps serait parfaitement dur si les molécules de maliére qui le
composent étaient parfaitement en contact les unes aux autres, c’est-d-dire si
entre ces parlicules il n’existait aucun vide, aucun intervalle privé de matiére.
Mais alors le corps ne serait plus composé de parties séparables, il ne formerait
plus qu'un tout indestructible, indivisible, d’une forme inaltérable et d’'un vo-
lume invariable, et perdrait un grand nombre des propriétés communes a tous
les corps. Aussi la nature ne nous offre-t-elle aucun corps parfaitement dur, car
dans ceux que nous regardons comme les plus parfaits sous ce rapport, la somme
des vides qui existent entre les molécules, forme-un espace peut-étre plus grand
que celui formé par la somme des volumes de toutes les particules de matitre
qui les composent. Cependant les corps réputés durs, lorsqu'ils ne regoivent pas
des chocs qui dépassent certaines limites, n’éprouvent que de trés-faibles dépres-
sions, de faibles altérations dans leur forme, ce qui fait que dans un grand
nombre de circonstances il nous est permis, sans qu'il en puisse résulter des
erreurs sensibles, de les regarder comme parfaitement durs. Clest pour cela que
nous allons nous occuper de la recherche des lois qui accompagnent le choc
direct et le choc oblique de ces sortes de corps, dans I'hypothése d’une dureté
parfaite.

378. 1l est évident que le mouvement qu’on imprime a un corps dur par une
force quelconque appliquée en un point de I'une de ses faces , se communique
inslanlanément A toules ses molécules, attendu qu’elles sont toutes parfaitement
en contact et inséparables les unes des autres. Gela posé, passons aux lois mathé-
matiques du choc de celte classe de corps.

379. Supposons un corps sphérique A (fig. 68) allant, avec la vitesse V,
choquer un autre corps sphérique B en repos, et dcmandons-nous ce qui ar-
rivera apreés le choc. |

Représentons la masse du corps A ‘par M, celle du corps B par m, et la
vitesse aprés le choc par x. Cela posé, observons que la force qui fait mouveir
le corps A avec la vitesse V (n° 296) est MV; or, aprés le ehoc, cette m{me
force sera obligée d’agir a la fois sur les deux mob:les A, B, c'est-a-dire sur
nune masse égnle & M -4 m, et devra commumquer a cette dermére masse la
vitesse & ; en vertu du n’ 302, nous aurons done
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_ x M+ m)=VM, doh x = Y + —.. w(221).

Ainsi, la vitesse aprés le choc sera égale & celle du corps A avant le choc
multiplice par la masse de ce méme corps, et divisée par la somme des masses.

380. Supposons que m = nM; en substituant dans 'équation (221), il nous

viendra
™

M 4 aM X + n' (222)

d’olt nous voyons qu’aprés le choc, la vitesse du systeme des deux corps sera
dgale & celle quavait le corps choquant avant la colision , divisée par le
nombre de fois plus 1 que la masse du mobile choqué est plus grande que celle
du corps choquant.

381. Si donc la masse du corps choqué était trés-grande par rapport  celle
du corps choquant, n serait trés-grand aussi, et la valeur (222) de x serait tres-
petite ; d’oir nous devons conclure que la vitesse aprés le choc pourra étre insen-
sible si la masse du corps choqué, supposé en repos , est trés-grande par rapport
acelle du corps choquant. Mais nous voyons aussi que si nous fesons abstraction
de tout obstacle étranger & l'inerlie, quelque petite que soit la masse du corps
choquant ainsi que sa vitesse , la vitesse aprés le choc ne sera jamais absolument
nulle. _

De la il résulte que Dinertie n’est pas un obstacle au mouvement , mais que
les corps ne peuvent prendre de vitesse que dans la proportion de la force qu'on
leur applique et en raison inverse de leur masse. Il en est donc de l'inertie des
corps , comme de P'état d'un vase d’une capacité indéfinie, par rapport a-la
quantité de liquide qu’on y introduit; ce vase, en effet, est 1 tout disposé 4 re-
cevoir aussi peu ou aulant de liquide qu’on voudra ; seulement s'il a une base
tres-grande, il faudra beaucoup de liquide pour qu'il s’éleve sur le fond & une
hauteur sensible ; de méme aussi pour mouvoir une masse. considérable d'une
maniére appréciable , il faut une force qui soit grande en proportion.

382, Supposons maintenant, que M = nm, en substituant dans I'équation
(231), nous aurons '

Tr =

. Vmm Vn \'
- x = nm-—|—m = H+I == I+%ohu(9~ﬂ3)

ce qui nous fait voir que lorsque la masse M est trés-grande par rapport & m,
la vitesse x apres le choc est sensiblement la méme qu'auparavant; car le
dénominateur de la valeur de x sera d’autant plus prés d’égaler Punité, que »,

serap]us grand , puisque la fractmn ~ devient d’autant plus petite.

383, Supposons & présent deux moinles allant dans le méme sens, suivant
Ta méme droite, I'un’ ayant la masse M et la vitesse V, ct P'autre la massé 1 ¢t la
vitesse ¢, et demandons -nous la vitesse du systéme aprés le choc. - '
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- Dans ce cas, les quantités de mouvement étant respectivement MV et mo, 2
linstant du choc on aura MV - mp pour la quantité de mouvement du systéme
des deux corps ; mais alors la masse sera M -+ m, et la vitesse x : nous aurons
donc, aptes la collision ,

\ MV
x (M4 m) = MV + my, doi1 x = M_t;w (224).
Cela nous apprend qu’aprés le choc les deux mobiles iront ensemble avec une

vitesse égale & la somme des quantités de mouvement, avant la collision, divisée
par la somme des niasses. . '

384. Proposons-nous maintenant de déterminer la vitesse aprés le choc, les
depx mobiles allant & la rencontre 'un de P'autre suivant la méme droite ; M
et m étant toujours les masses, et V, ¢ les vitesses primitives individuelles.

La plus grande quantité de mouvement étant MV, et la plus petite m, aprés
le choc nous n’aurons plus que MV — my, et la masse sera M + m; si done x
est la vitesse a cet instant, nous aurons

x M+ m) = MY — my, dob z = H.w.(nm,
de sorte que dans ce cas, la vitesse, aprés le choc, est égale & la différence des
quantités primitives de mouvement, divisée par la somme des masses.

On pourrait facilement généraliser ces formules, et les rendre applicables 4
un nombre quelconque de mobiles; mais comme cela ne spurait offvir aucune
difficylté , nous ne nous en occuperons point. ) .

Les corps mous, clest-a~dire ceux qui se compriment par le choc sans se res-
tituer , sont soumis aux mémes lois que les corps durs, quant i leur vitesse et &
leur quantité de mouvemens apres la collision. Ainsi les formules précédentes
serviront aussi bien pour cette espece de corps que pour les corps durs,

E "

Des corps élastiques.

385. L'expérience a prouvé, de la manitre la plus certaine , que les corps
quon appelle élastiques, jouissent des propriétés suivantes :

1° Supposons une bille d'ivoire parfaitement homogene (fig. 81), recevant

un choc quelconque au point A de sa surface;; effet de ce choc sera de raccourcir

le diamétre AB, de manitre que ses deux extrémités se rapprocheront du centre

1 de la méme quantité; ainsi le raccourcissement Aa égalera le raccourcissement
18
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bB. Dans le méme temps, le diametre DG, perpendiculaire 4 AB, s’allongera
aussi par les deux bouts des quantités égales Ce, Dd. '

2° Aussitot aprés le choc, les deux diameétres reprendront leurs longueurs
primitives avec une force égale a celle qui avait produit ces changemens de
longueur. Il faudrait de méme opposer deux forces égales & I'intensité du choc,
pour empécher le diametre DG de se raccourcir.

Il résulte donc de ce fait, une propriété trés-remarquable des corps élastiques,
puisque un seul choc, et par conséquent une seule force en fait naitre quatre
pareilles dans le solide.

Ce phénoméne n’a lieu rigoureusement que dans les corps parfaitement
élastiques. Ainsi les formules qui suivent ne seront exactes que dans cette hy-

pothése. .

386. Nous nommerons ressort chacune des quatre forces que le choc déve-
loppe dans la biilé (fig. 81). Ainsi il y aura un ressort & chaque extrémité du
diametre AB, et & chaque extrémité du diamétre DC. Ces deux derniers
étant dans une direction perpendicalaire A celle du mouvement , ils n’ont
aucun effet sur ce mouvement du corps ; nous devrons donc en faive abs-
traction, et ne tenir comple que de ceux qui ont lieu aux extrémités du dia~
métre’ AB, coincidant avec la dircction du choc. Cela posé , donnons les for-
mules qui établissent les lois du choc des corps élastiques dans toutes les cir-

constances qui peuvent le plus généralement intéresser.

387. Supposons e les deux corps aillent suivant la méme droite et dans le
méme scns, L'un ayec la vitesse 'V et la masse M, et 'autre avec la vilesse v et
la masse m ; si les corps n'avaient aucun ressort, aprés le chec, la vilesse com-

. MV 4~ me - . | d
° = — e g us grande
mune serait (n°378) x== Morm Soit A le corps qui a la plus g

vitesse , et B l'autre. Aprés le choe la quantité de mouvement du corps A au

MV + my
lieu d’étre MV comme avant , ne sera &onc plus que Mx = M RN Mem’

il aura donc perdu une quantité de mouvement égale &

MV + mo _ M#V + MmV — MV — My M (V- p)u-(MG).
Mo M—+m - M4m '

MY — M X

Cetle quantité de mouvement perdu est précisément la valeur du choc, et
par conséquent la force de ressort qui se développe en avant et en arriére Ide
chaque corps. Le ressort en avant du corps A sera détruit par le ressort en
arrieredu corps B ; il restera donc dans le corps A une force de ressort en
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Mz (V—v¢)
M4+m 7
agissant en sens contraire de son mouvement primitif. Or, si les corps n’étaient
pas elast:ques, il resterait , aprés le' choc, a ce corps A , dans le sens pri-

-
mitif, une force de mouvement égale & M > M _‘:__mv, COIMME NOUS YENnons

arriere égale 4 la quantité de mouvement perdu, cest-a-dire a

de le voir ; si donc de cefte quantité de mouvement nous retranchons la force
deressort en arriére que nous venons de trouver ci-dessus, la quantité de mou-
vement qui restera apreés le choc 4 ce méme corps, sera

MV + my m(VN—v) __

MVt my—Vm—tmy
MX S ™M+ m M < = M. -

M+m MA~m

V (M —m) -+ ame
M. - Mt ......._(ﬂ.),

si donc nous nommons V' la vitesse aprés le choc, la quantité de mouvement
sera Y'M; on aura donc

V (M—m) 4 amo

VM=M. M )

V (M— m) - amv

d'ott V' = 0 g cereeenn (227),

Dans le corps B il nous reste le ressort en avant égal au ressort en arri¢re du

corps A, clest-d-dire a M. -E—(b, or, si les corps n'étaient pas élasti-

M+ m
ques, aprés le choc la quantité de mouvement du corps B dans le sens primitif,
serait m. 0= - imois Te ressort S0 (V=) ant de ce corps agit
T el M-}-m , en av ce corps ag

dans le méme sens, mous aurons donc aprés le choc

MV —+ my M((V—v) -  MVtmp+MV — Mo
" NM4m + m. M-+m =mn. M A4-m

MV — ¢ (M—m)
= m, Mrm v (B),

Si¢" est la vitesse aprés le choc, la quantité de mouvement sera mo’, et par
conséquent

r o aMYV — ¢ (M—m) .
m;’ —;m . M+m LALE DAL LR R ]
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aMV — —
M lmi ml....... (228).

" 388. En raisonnant de la méme maniéresur la formule (225) que nous venons
de le faire surla formule (224), naus arriverions, pour le casoit les deux mobiles
iront 4 la rencontre I'un de Iautre,, 1° pour le mouvement perdu, et par con-
Mm (V+v)

V+m ?

- 2" Pour la vitesse du corps A, aprés le choc, 4

séquent, pour chaque force de ressort ,

, ViM—m) —
V' = Mj)-m O e (229),

Et 3° pour la vitesse du corps B, aprés la collision , &

v = M+'-_'_‘_m nm-.....(ﬂgu)

Discutons ces quatre formules, pour en faire ressortir les circonstances les
plus remarquables.

389. Supposons que le mobile B soit en repos lorsque le mobile A vient le
choquer; danscecas v = o; et les deux formules (227) et (229) se réduisent i

_ V(M—m)

[}
V""'M+m’

' ' - aMV
et les deux autres a v = M’

d’olt I'on voit que les deux eas gue nous venons d’examiner se réduisent en un
seul, comme cela doit étre, puisqu'alors il n’y a point de différence dans le
sens du mouvement des deux corps avant le choc.

Voyons, dans ce cas , ce qui arrivera dans les trois hypothéses générales qu'on
peut faire sur les grandeurs relatives des masses M et m.

{° Supposons que M= m , dans cas

. VM—m) _ VXo
Vi=—N1m = ¥rn

= o,

c'est-a-dire que lc corps choquant sera en repes aprds le choc ;
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T\ __ aMV

= MmN =V;

el - v
ce qui veut dire que le corps choqué s’emparera de toute la vitesse du corps
choquant, et ira dans le méme sens que celui-ci, qui reste /en repos.

2° Supposons que M } m ; alors le corps choquant ne perdra pas toute sa
vitesse par le choc, et le corps choque. en acquerra une plus grande. Pour donner
un cas particulier , supposons M — 2, nous aurons

'Vm___f_

ce qui nous fait voir que le corps cthuant n'aura plus que le ; dela vitesse
qu’il avait avant le choc.

La vitesse v’ du corps choqué sera

-

c'est - & -dire les quatre tiers de celle qu'avait le corps choquant avant le
choc. '

Geci semble étre un paradoxe , mais il se vérifie "comme il suit.

1l est clair ¢fu’aprés le choc, la quantité de mouvement doit étre Ia méme

quauparavant. Or la vitesse 4—; appartient 4 la masse m = ?- la quan-

3+

tité de mouvemenl provenant de cette vitesse sera donc

Y M _ 2VM
TX =g

LV : .
et la vitesse 3 appartient & la masse M ; la quantité de mouvement prove-

VM

nant de cetle vitesse sera done ¥

si nous ajoutons ces deux quantités de mouvement , nous aurons

2 VAP VM 3VM
5 t 3 =-5 = VM,

comme avant le choc.
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3°. Supposons maintcnant que M < m ; dans ee cas on aura

V (m —M) . aMV
[ — —_— _ .
Vi=— M-+ m Et.‘v — M+m’

ce qui nous fait voir qu’aprés le choc le corps choquant retourne sur ses
pas, et le corps choqué se met en mouvement dans le sens que le corps
choquant est venu le choquer , avec une certaine vitesse.

" Donnons un cas particulier, soit m = 2M , nous aurons

EE__ v t,_ﬂ_zV'
sMT T 3 %Y T 7%

V= —

ce qui nous apprend que le corps choquant retournera sur ses pas avec une
vitesse égale au ; de celle qu'il avait avant le choc, et le corps choqué ira
dans le sens du mouvement primitif du choquant , avec une vitesse égale aux

% de celle qu’avait ce dernier avant le choc.

s 2V
La masse m = 2M avec la vitesse 5 donne une force de mouvement
MV . A
égale a {Ti et la masse M avec la vitesse rétrograde 3 » donne une quan-

tité de mouvement négative égale & — =3~ en ajoutant ces deux quantités

de mouvement on aura

MV MV 3NV
5T = =

390. Si les deux corps avaient un certain mouvement dans le méme sens, les
formules (227) et (228) nous feraient connaitre les vitesses aprés le choc. Voyons
ce qui arrivera dans les trois hypothéses qu'on peut f[aire sur les grandeurs
relatives des masses.

1° Supposons que m = M; les formules citées nous donneront

aMV
V’z?g;: , €t ‘U"=—;BT=V:

ce qui nous montre qu’aprés le choc, la vitesse du corps choquant devient celle
qu'avait le corps choqué, et celle du corps choqué devient celle qu’avait le
corps choquant; de sorte que, quand les masses sont égales, la vitesse de 'un
passe dans autre et réciproquement. -
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2° SupposonsM > i ; les formules (2277) et (228) nous font voir que la vitesse
V' du corps choquant aprés le choc ne sera pas nulle, et aura liea dans le
méme sens qu'auparavant, et celle ¢ du corps choqué ne sera pas nulle non
plus, ct aura lien dans le méme sens que celle du corps choquant. Supposons,
par exemple , que M = 2 m; nous aurons
;_ hmV —me  4V—w

3m 3 ?

, et v

Vo= mV |- amV _ V4ov
- - 3

3m
si les vitesses étaient telles qu'on efit V= 2, il s'ensuivrait que ,

V4V 2V 8v—2 7v
f — ' . —_— .
VI = 3 =3 et v' = 5 =3

d’otr 'on voit que dans ce cas la vitesse du corps choquant serait aprés le choc
les 3 de ce qu’elle était avant, et celle du corps choqué les Z.

3%, Soit M < m ; la formule (227) nous fait voir que V' pourra étre né-
gatif, Supposons m = 2M ; cette formule nous donnera

Vi =Mt My _ o=V
= M = T3

et V' sera négatif si 'V > 4v, positif si V < 4v, et enfin nul si
v =Y.

Si donc un corps allait en choquer un autre , d'une masse double ,
avec une vitesse quatre fois plus grande, le corps’ choquant resterait en
repos.

L’hypothése de m — oM, nous donncra

, __ aMV4oM _ aVu
V=3 =73

et dans T'hypothése ot V= 4v, on aurait

8v -t v Qv 3V
[ J— J— —_ .
T — 3 =3 _.31,1__——-4,

d’ol il s'ensuivrait que le corps choqué aurait une vitesse triple de celle qu’il
avail avant le choc, ou les $ de celle qu'avait le corps choquant.

%

On pourrait facilement étudier de la méme maniére quelques circonstances
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particulitres des formules (229 et 230). Nous nous bornerons i une seule, celle
des masses égales. Dans cette hypothése, nous aurons

(o amv ¢ _ 2MV __
V— nu—-—- v el v —m"——v.

D'oi1 I'on voit que dans ce cas les deux mobiles retourneraient sur leurs pas
aprés avoir échangé leurs vitesses.

Ce qui précede sur la dynamique étant plus que suffisant pour ce qui
concerne la stabilité des édifices , nous n’en dirons pas davantage sur ce

sujet,

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

SECTION TROISIEME.

PRINCIPES D'HYDROSTATIQUE.

LECON 1.

Lois de I'équilibre des liquides contenus dans des vases ouverts par en haut; phénoméne
de la capilatité ; équilibre des corps plongés dans un liquide ; de la pesanteur spéci-
fique des corps en général, et de la stabilité des corps flottans.

391. Nous avons vu (n. 31 ) que P'on 'appelait liquides, les corps dont
les molécules n'ont entre elles qu’une trés-faible adhérence, et fluides élastiques
ceux dont les molécules tendent sans cesse a s'écarter les unes des autres. Les
premiers sont si peu susceptibles d’étre comprimés, qu'on peut les regarder
comme enlitrement imcompressibles sans erreur sensible. Les fluides élastiques,
au contraire, sont d'une trés-grande compressibilité, qui va néanmoins en
diminuant, 4 mesure qu’on les comprime davantage,

392. Les liquides ou fluides incompressibles jouissent de propriétés précieuses,
quil nous importe beaucoup d’éludier avec soin. Pour y parvenir, nous les
supposerons d'une liquidité parfaite; c'est-a-dire que leurs molécules n’ont
aucune adhérence, et peuvent glisser les unes contre les autres avec une parfaite
liberté, Cette hypotheése est si conforme 4 l'expérience, qu'en I'admettant nous
ne nous écarterons de Ja vérité que d’'une manitre insensible. D'ailleurs nous
simplifierons beaucoup le raisonnement et le calcul.

393. Un trés-grand nombre de faits prouvent que, les molécules d’un liquide,
au sein méme d’une masse liquide quelconque, sont soumises & 1’action de la
pesanteur tout aussi bien que si chacune d’elles était dans le vide. Cette vérité
est si facile & vérifier et méme & prévoir, que je ne crois pas nécessaire d'en ex-
poser les preuves.

394. Tout liquide enfermé dans un vase ABCD quelconque (fig. 82), ne peut
étre en repos dans ce vase, quautant que ses molécules sont également pressées
dans tous les sens.

En effet, soit la molécule a; pour qu'il y ait équilibre dans Ia masse entiére
10
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du liquide, il faut que cette molécule @ soit en repos. Or les moléeules des
'lEquides sont dans un état parfait de liberté les unes par rapport aux autres; si
donc la molécule a éprouvait une pression plus grande dans un sens que dans
le sens opposé, elle s’échapperait dans le sens de la plus grande pression, et ne
saurait par conséquent étre en repos; il en serait de méme pour toute autre
molécule, et la masse entitre du liquide serait dans un élat d’agitation qui
serait contraire a I'hypothtse de laquelle nous sommes partis. La pression est
donc la méme dans tous les sens pour chaque molécule, ce qui est confirmé par
Pobservation de la maniére la plus incontestable.

* Voici une expérience trés-connue, qui est en effet parfaitement d’accord avec
le résultat de notre raisonnement. On plonge verticalement dans un vase
ABCD (fig. 83) plein d'eau , plusieurs tubes a, &, ¢, d, dont le bout inféricur
est droit dans le premier, coudé latéralement dans le second , recourbé en haut
dans le troisieme, et obliqué d’une manitre quelconque dans le dernier. Avant
de plonger ces tubes (supposés d’'un diamétre un peu grand) , on tient le bout
supérieur bouché, pour ne Pouvrir qu'aprés avoir plongé les tubes dans le
vase. Avant que les tubes ne soient débouchés par le haut, I'eau ne monte
dans leur intérieur que d’une certaine quantité, parce que lair qui y est enfermé
s'oppose, comme nous le verrons par la suite, a son ascension; mais aussitdt
qu’ils sont débouchés , Peau s'éleve dans tous les tubes a la méme hauteur que
la face supérieure du liquide enfermé dans le vase. Or, dans le tube a la pres—
sion se fait évidemment de bas en haut ; dans le tube & latéralement, dans le
tube ¢ de haut en bas, et dans le tube d d'une maniére oblique ; dans quelque
direction que se fasse la pression , elle est donc toujours égale, puisque toutes
ces pressions produisent le méme effet, celui de faire monter le liquide a la
méme hauteur. Ainsi I'expérience confirme la théorie.

395. Supposons que sur la méme verticale EF (fig. 82), qui traverse la
masse du liquide de bas en haut, on prenne deux molécules a, b, & des pro-
fondeurs différentes ; je dis que les pressions que ces molécules éprouveront
seront proportionnelles & leurs profondeurs.

Cela est presque évident ; car la molécule @ ne soutient que le poids des
molécules comprises dans la hauteur aF, tandis que la molécule b soutient le
poids de toutes celles qui sont comprises dans la hauteur 5F. Mais les molécules
infiniment pelites des corps sont égules en dimensions et en poids; d'our il suit
que le poids des molécules qui pressent le point a est a celui de celles qui pres-
sent le point b, comme la hauteur aF est a la hauteur bF. Les pressions sont
done dans le méme rapport que les profondeurs.

396. La face supérieure d'un Liguide contenu dans un vase entidrement ou-
vert par en haut , doit éire un plan horizontal (fig.84).
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En effet, supposons d’abord le fond du vase horizontal ; si la face supérieure
D d C n’était pas un plan horizontal , il y aursit au moins deux points b et d
qui ne seraient pas 2 la méme hauteur. Mais alors la colonne de molécules qui
presse le point ¢ serait plus élevée que celle qui pressele point @ ; le point
¢ (n° 395) éprouverait donc une pression plus grande que le point a; mais
ces deux molécules pressent chacune avec la méme intensité dans tous les sens
(n° 394), et cette intensité est égale a la pression verticale que chacune
d’elles éprouve ; la pression de la molécule ¢ sur la molécule @ sera donc plus
grande que celle de cette derniére sur la premiére; les molécules entre les deux
et au-deld, a droite et i gauche, seront donc inégalement pressées, et par
conséquent ne sauraient étré en équilibre ainsi que toute la masse liquide ,
ce qui est contre I’hypothése. Il faut donc, pour que toute la masse liquide
soit en repos, que les différens points de la face supérieure soient & distances
égales du fond AB supposé plan et horizontal, c’est-a-dire qu'il faut que la
face supérieure du liquide soit aussi plane et horizontale, comme il fallait le
démontrer.

397. S8t le fond du vase au liew d'étre horizontal était incliné comme Uindique
la droite Af (fig.84), la face supérieure du liquide n'en serait pas moins
un plan horizontal DC.}

En effet, les molécules g et b qui touchent au fond du vase éprouveraient
sans doute des pressions différentes , puisque les colonnes de molécules qui
les pressent sont de havteurs différentes; mais & la méme hauteur que
la molécule ¢," s’en trouve une autre i sur la verticale ab, qui éprouve
par conséquent la méme pression , et, agissant latéralement contre la molécule
g soumise & une pression égale, fera équilibre & cette dernire et réciproque-
ment. Les molécules situées au-dessus des points i et g seront dans le méme
état. Quant & celles situées entre les points ¢ et h, elles en trouveront tou-
jours une située sur le fond entre les points b et g, qui recevra la méme pres-
sion, ainsi qu’on le voit en considérant la molécule n et sa correspondante m
sur le fond ; lesquelles sont pressées par les colonnes égales nb , mk.

398. Par le méme raisonnement , on démontrerait que la face supérieure du
liquide enfermé dans un vase ouvert par en haut doit rester horizontale , quelle
que soit la forme du fond du vase. Toutes ces conséquences sont parfaitement
confirmées par I'expérience, et méme par les observations les plus vulgaires.

399. Nous avons déj fait voir (n" 394), que si I'on plongeait un
tube, ouvert par les deux bouts, verticalement dans un vase plein d'un li-
quide quelconque, en ienant d’abord fermé le bout supérieur par la pression
du_doigt, le liquide ne monte dans le tube qu’a une certaine hauteur, mais qu'en
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laissant échapper 'air par la partie supérieure, le liquide s'élevait jusqu’au ni-
veau du liquide environnant. GCeci n’est vrai que lorsque le diamétre intérieur
du tube n’est pas ce quon appelle capillaire , c’est-a-dire que ce diamétre est
plus grand que celui d'un cheveu. Dans le cas d'un tube capillaire , le liquide
intérieur s’élevera au-dessus du niveau extérieur, ou restera au-dessous , suivant
la nature du liquide. i ce liquide est de I'eau, il s'élevera dans le tube capil-
laire au-dessus du niveau extérieur, et s'il est du mercure, il restera au-dessous.
La face supérieure du liquide, dans le tube, au lieu d’étre plane, comme
dans les grands tubes, sera trés-voisine de la surfaice d’une demi-sphire ;
cette surface sera concave pour Peau, et convexe pour le mercure. 1l paraitrait
que toutes les fois que le liquide peut mouiller la paroi intérieure du tube, le
liquide s'éléve au-dessus du niveau extérieur , et toutes les fois , au contraire ,
que le liquide ne s’attache pas a la parei, il reste au-dessous de ce niveau
extérieur. Nous n’expliguerons point la cause de ce phénoméne remar-
quable, sur laquelle les physiciens semblent ne pas étre parfaitement d’accord.
1l nous suffit d’étre assuré de ’existence de ce phénomene, qui se manifeste sur—
tout dans les tubes capillaires en verre.

Ce fait ne se manifeste pas seulement dans les tubes capillaires, mais entre denx
lames de verre plongées verticalement dans un liquide : quand ces lames forment
entre clles un angle trés-petit , I'eau s'éleve vers leur intersection, de maniere
a produire une surface courbe abc (fig. 85), dont le point ¢, A l'intersection
des deux plans, s'éleve Ie plus par rapport au niveau général du liquide. Lorsque
les deux lames sont paralltles et trés-rapprochées, l'eau s'éleve également au-
dessus du niveau principal, et d’autant plus que ces lames sont plus prés I'une
de 'autre. En général, contre les parois intérieures ’un vase,, I’eau forme une
petite surface courbe qui séleve un peu au-dessus du niveau principal, mais
ce n’est que d’une quantité trés-petite. Le contraire a licu pour le mercure.

400, Quelle que soit la forme d'un vase] plein d'un liquide quelconque, st
le fond est un plan horizontal , la pression qu'il éprouvera sera proportion -
nelle & son aire multipliée par la hautewr du liquide.

La proposition est évidente pour le vase eylindrique ABCD (fig. 86); car chaque
point du fond étant a la méme distance de la face supérieure AB du liquide,
recevra la méme pression (n° 395); celle pression commune se répétera autant
de fois qu’il y aura de points élémentaires dans le fond, et comme ce nombre
de points sera proportionnel & laire de ce fond, il sensuivra que le produit
de cette aire par la hauteur AD du liquide sera proportionnel a la pression
totale que recoit le fond.

" Pour le cas de la figure 87 , il est plus difficile de concevoir Pexistence de ce
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principe, attendu que la quantité de liquide contenu dans le vase est ici beau-
coup moindre que dans le cas- de la figure 86.

Pour se convaincre de la certitude de ce phénomene remarquable, que notre
célebre Pascal a observé le premier , il suffit de se rappeler que chaque molé-
cule d'un liquide en repos , dans un vase, est pressée également dans tous
les sens, et transmet cetle pression avec une entiére liberté aux molécules en-
vironnantes , car alors on concevra sans peine que la molécule ¢ se trouve pressée
par la molécule d, avec une force égale a la pression verticale que regoit cette
derniére ; que la molécule ¢, étant retenue par la paroi du vase, vient presser
la molécule a sur le fond qui lui correspond de la méme maniére que la moléculed
presse la molécule b sur le méme fond ; on en dirait autant de toutes les molé-
cules au-dessous de d par rapport i celles au-dessous de ¢; d’ott il faut conclure
que la molécule a recoit la méme pression que la molécule b ; or cette der-
niére recoit une pression proportionnelle & la hauteur bi du liquide ; il en sera
donc de méme pour la molécule @ et pour toute autre du fond du vase, et par
conséquent le fond DC est pressé proportionnellement i l'aire de ce fond mul-
tipliée par la hauteur bc du liquide, quelque petit que soit le diametre AB
( pourvu qu'il ne soit pas capillaire) , par rapport au diamétre du fond DC.

Par un raisonnement analogue, on prouverait que dans le cas du vase ABCD,
évasé par en haut (fig. 88), la conséquence est encore la méme; c'est-a-dire
que la pression sur le fond est proportionnelle & l'aire de ce fond DC multi-
plié par la hauteur du liquide. Enfin, on démontrerait pareillement que la
méme chose a lien pour un vase généralement quelconque ABCD (fig. 8g).
Celle propriété importante des liquides est au reste parfaitement constatée par
les expériences les plus directes et les moins propres a laisser des doutes.

401, Ilsuit de I que deux vases généralement quelconque qui auraient des
fonds , je ne dis pas parfaitement égaux , mais seulement de méme superficie ,
les pressions seraient proportionnelles aux hauteurs des liquides enfermés dans ces
vases, pourvu, toutefois, que ces liquides fussent de méme densité (n° 94) ;
conséquemment si, de plus, les hauteurs étaient les mémes, les pressions seraient
¢gales.

402. 11 suit encore de 1a que si les hauteurs étaient les mémes et les aires des
fonds différentes, les pressions seraient dans le méme rapport que ces aires.

403. Soient donc L la hauteur et S l'aive du fond dun premier vase,
l et s les mémes choses d’'un second ; si P et p représentent les pressions que
recoivent les fonds de ces vases , nous aurons

P=ILS, et p=1Is; done
P:pitIS: Is... (ad1)
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Si P = p, ilen résultera LS = Is, et par conséquent
-L : z :: § : Su-ocu..- (232) 3

c’est-2-dire qu'en général pour que les pressions soient les mémes , les liquides
¢tant toujours homogeénes , il faut que les hauleurs soienl en raison inverse des
aires des fonds des vases.

404. Si les hauteurs L, ! étaient égales, la proportion {231) deviendrait
PipiiS:si.. (233)

Ce qui nous apprend que dans ce cas, les pressions sont en raison
.des bases.

405. De ces principes sur la maniére dont le fond d’un vase est pressé, on
peut lirer une conséquence extrémement importante, et dont on fait une ap-
plication trés-avantageuse , pour produire de grandes pressions. Cette consé-
quence consiste en ce qu'avec une trés-petile quantité de liquide on peut pro-
duire une pression aussi grande qu’on voudra, en donnant au vase une forme
analogue & celle indiquée par la figure 87, le fond de ce vase étant mobile par
rapport aux parois latérales. C’est sur ce principe qu’est fondée cette machine
connue sous le nom de presse hydrolique, dont on fait un si grand usage
dans plusieurs espéces de manufactures. On s'en est servi aussi a faire des
expériences sur la résistance des corps solides.

406. Supposons un vase ABCD (fig. go) plein d’'un liquide quelconque jus-
qua la hauteur ab, que sur sa face supérieure on applique un piston ab qui
touche partout le liquide, et, par ses bords, les parois intérieures du vase sup-
posées parfaitement polies, et quune charge uniforme P vienne presser
le dessus de ce piston; je dis que celte charge se communiquera jusqu'au fond
du vase, dont la pression sera augmentée de toute cette charge P.

En effet, la charge P étant uniforme, toutes les colonnes verticales de li-
quides supporteront une portion égale de cette charge en outre de leur propre
poids. Il nous reste donc & démontrer que si, par exemple, la verticale
ef représente une colonne de liquide infiniment déliée, la pression que regoit
la moléeule e, en contact avec Ja face inférieure du piston, se communique a
toutes celles qui se trouvent sur cette verticale ¢f , et par conséquent jnsque

sur le fond. L , ) .
Or cela est évident, car la molécule e ayant Ia liberté d’agir entre les autres

molécules liquides , ne pourra rester en repos quautant que les molécules au-
dessous la soutiendront ; mais celle qui soutiendra la premiére molécule e ne
pourra de méme rester en repos que parce qu'une autre, immédiatement au-
dessous, la soutiendra 4 son tour, et ainsi de suile jusqu’a la molécule f qui
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touche au fond du vase, et qui se trouve soutenue par ce fond. 11 est évident ,
en effet, que les pressions latérales ne sauraient contribuer en rien i soutenir
la charge P ; par conséquent tous les points du fond du vase sont pressés de
la méme maniére que la surface supérieure du liquide par le piston, en outre
de la pression provenant du poids du liquide méme.

407. 1l suit de la que si I'on ménageait un trou dans le piston ab (fig. 91),
pour y faire passer un tube ordinaire em , ouvert par les deux bouts , la pres-
sion en e étant augmentée en proportion de la charge du piston ab, fera
monter le liquide dans le tube em au-dessus du niveau ab du liquide contenu
dans le vase, d’une quantité gm telle , que le poids de la colonne de liquide
dans le tube qui aurait cette hauteur, gm serait égal a la pression que la charge
du piston communique 2 U'orifice e du tube ; car si la pression du piston n’exis-
tait pas, celle que le poids seul du liquide ecommuniquerait 4 ’ouverture infé-
rieure e du tube em, ferait monter leliquide i la hauteur du niveau ab ; la
pression par le piston doit nécessairement produire un effet qui s’ajoute au pre-
mier , et la grandeur de cet effet doit évidemment étre exprimée par le poids
de la colonne gm au-dessus du niveau ab du liquide dans la vase , que fait
monter celte pression dans le tube , au-dessus du niveau ab.

408. Supposons-un vase ABCD (fig. 92), plein d’un liquide quelconque, et
qu'un solide quelconque abed y soit entiérement plongé, a la profondeur
quon voudra; si le solide avait la méme densité que le liquide , il se trouve-
rait en équilibre avec la pression du liquide environnant.

En effet, le poids du solide étant égal & celui du volume de liquide qu'il
déplace , ne peut apporter aucun changement dans la pression des molécules
liquides. Ainsi, la molécule m, située a la fice inférieure ab du solide , agira
de bas en haut de la méme maniére , et avec la méme force que si Pespace
occupé par le solide I'était par du liquide ; il en sera de méme pour les mo-
lécules , telles que »; situées au-dessus du solide abed. Puisque les molécules
situées au-dessus et au-dessous de ce solide sont en équilibre tout aussi bien que
si le volume de ce solide était occupé par des molécules liquides , il faut en
conclure que le solide lui-méme est en repos, car D'équilibre subsiste aussi
évidemment dans les pressions des molécules lalérales.

409. 11 suit de la clairement que, si le solide abed (fig. 92) avait une plus
grande pesanteur spécifique que le liquide dans lequel il est plongé, les molé-
cules telles que m, situées au-dessous du solide, recevraient une pression
plus grande de haut en bas que celles & la méme hauteur, situées 4 droite
et & gauche du solide ; ces molécules telles que m, presseraient donc latéra-
lement avec une plus grande force que celle avec laquelle elles seraient elles-
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mémes pressées en sens contraire ; et n’étant plus retenues , elles séchappe-
vaient de dessous le corps, en faisant remonter les molécules voisines ; de ma-
niere que la masse liquide ne serait en repos que lorsque le solide toucherait
le fond du vase.

510, La force qui fail ainsi descendre le solide est évidemment égale a la
diffévence entre le poids du solide et celui du liquide, déplacé par le solide,
puisque quand ces deux poids sont égaux le corps ne descend point. Ainsi, ur
solide plongé dans un liguide , perd de son poids une quantité égale au poids
du volume du liquide qu’il déplace , cest-u-dire égale au poids d’un volume de
liquide égal au sien comme U'a trawé Archimede.

411, Supposons donc que V'on pése un solide dans T'air, qu’on le pese de
nouveau aprés avoir plongé dans un vase plein d’eau; dans ce dernier cas, on
trouvera son poids moindre que dans le premier, d’une quantité précisément
égale au poids du liquide déplacé par le solide. Soit donc P le poids dans
Pair, P’ le poids apres I'immersion ; le poids de 'eau [déplacée sera P —P' ;
Or nous avons dit (n° 100 ), que la pesanteur spécifique d'un corps par
rapport & celle de P'eau, était le quotient du poids de ce corps & cclui
d'un volume d’eau égal au sien, si donc desi Ja pesantleur spécifique du corps
dont le poids est P, nous aurons
d = g (234)

Tel est le fondement de la méthode qu'on emploie pour déterminer la pesan-
tear spécifique des corps solides ; mais elle exige des précautions, pour obtenir
des résultats exacts, dont le détail nous écarterait trop de notre sujet: on le
trouve dans tous les ouvrages élémentaives de physique. D’ailleurs la plupart de
ces précautions sont faciles a imaginer, surtout pour les corps de la nature de
ceux qu'on emploie dans les constructions. Je me bornerai, en conséquence, a
faire connaitre les résultats auxquels sont parvenus les savans qui se sont occu-
pés de ce genre de recherches; on en trouvera la table a la fin de cet ouvrage.
Reprenons la théorie des corps plongés dans un liquide.

412. Lorsquw'un corps plongé dans un liquide a une pesanteur spécifique moin-
dre que celle du liquide qui Uenvironne, ce corps monte & la surface supérieure
avec une force égale & Uexcts du poids du volume du liguide déplacé sur celud
du solide, et Véquilibre ne s'établit que lorsque le poids du volume de hqmde
déplacé par le corps, est égal & celui du solide lui-méme.

En effet, ayant démontré (n° 4og) que lorsque les deux pesanteurs spécifiques
sont égales, le solide reste en repos a quelque profondeur qu'on le place, il est
évident que quand le solide est moins pesant, les molécules liquides placées a sa
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face inférieure ab étant moins pressées de haut en bas qu’elles ne le sont latéra-
lement par celles qui ne épondent pas au-dessous du solide,, ét chaque molécule
liquide agissant avec la méme intensité dans toutes les directions, les molécules
sous le solide doivent étre soulevées par celles qui les envirofinent , et par con-
séquent elles doivent soulever le solide loi-méme, jusqu’a cé que le poids du
volume de liquide, déplacé par le solide, soit égal & son propre poids.

/3. Supposons donc que v soit le volume du liquide déplacé abnm (fig. 93);
P le poids du corps flottant , ct d la pesanteur spécifique du. liquide : le poids
du volume du liquide déplacé sera od ; nous aurons done -

vd =P, d’olt nons tirerons v = g......(235).

ce qui nous apprend que le volume du liquide déplacé sera comme le poids-du
corps flottant, et en raison inverse de la pesanteur spécifique du liquide:

414, Lorsqu'un vaisseau ou un. bateau quelconque flotte sur la mer ou sur
une riviere, il est exposé & plusieurs accidens qu’il est utile de prévoir , pour
qu’en le construisanton puisse déterminer la forme qui lui cunwent le mieux pour
éire a labri de ces accidens. Sans avoir Pintention d’entrer A ce su]el: dans tous
les détails qu'il renferme, nous croyons utile de démontrer les prmc]pes géné-
raux qui indiquent le but vers lequel il faut tendre. Pour y parvenir nous
nommerons centre de suspension le centre de gravité du volume du liquide
déplacé par le corps flottant , afin de rendre le discours plus facile.

415. Cela posé, je dis d’abord que powr qu'un corps flottant sur un liquide
en repos puisse rester en équilibre autour du centre de suspension, il faut que
la verticale menée par le centre de gravité du corps flottant passe par ce centre
de suspension.

Cela est presque évident, car si la verticale abaissée du centre de gravité
G (6g. 93) du corps {lottant ne passait pas par le centre g de suspension, le
poids du corps aurait un certain bras de levier par rapport a ce centre g de
suspension, et par consequent un certain moment par rapport & ce pomt g,
dont Deffet serait évidemment de faire tourner le solide autour de ce centre g de
suspension, et par conséquent de communiquer des. pl'esmuns inégales aux
molécules liquides en contact avec sa face mferlq.-ure qui réagiraient avec plus
de force de basen haut contre cette face, vers une arete;, laréte b, par exemple,
plus que vers l'aréte a, et le corps flottant, s'il n’était pas entierement renversé,
prendrait une position penchée a'b'c'd’ qu ll pourra it conserver ou perdre en
revenant a sa position primitive. .

416, En supposant que le corps flottant soit disposé de manitre que cette
condition soil remplic, un coup de vent ou un chée quelconque peut lui faire
20
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prendre une position telle, que la verticale abaissée de son centre de gravite
ne passe plus par le centre de suspension, et alors, si ce centre de gravité est
situé en G (fig. 93) au-dessus du centre de suspension g, le corps flottant
est irés en danger d'étre renversé, et le serait inévitablement, si le moment
de son poids, par rapport au centre de suspension , 'emportait sur la résistance
trés-faible du liquide & cette action. Si le centre de gravité du corps flot-
tant coincidait avec le centre de suspension, et si un choc quelconque venait a
lui faire prendre une position penchée a'b’c'd’ (fig. 94) il est évident qu’il
resterait dans celte position, jusqu’a ce qu'un autre force vint augmenter ou
diminuer son inclinaison. Si le choc était violent, le corps flottant pourrait faire
une ou plusieurs révolutions autour de son centre de gravité en coincidence
avec le centre de suspension. Mais au contraire, si le centre de gravité (fig. 95)
était situé au -dessous du centre de suspension ¢, quelque position inclinée
qu'on donnAt au corps flottant,, plus la verticale €levée par le centre de gravité
s'éloignerait du centre de suspension , plus la force avec laquelle le corps flottant
tendrait & reprendre sa position verticale serait grande, et cela d’autant plus que
son centre de gravité serait placé plus bas par rapport au centre de suspension ;
de sorte qu'un tel corps flottant pourrait résister & tout choc latéral, dont I'in-
tensité ne dépasserait pas le produit de son poids multiplié par la distance de son
centre de gravilé au centre de suspension,

417. Il suit de li que, un vaisseau ou un baleau dont le centre de gra-
vité serait au-dessus du centre de suspension, ne saurait élre mis en usage,
quil en serait 4 peu pres de méme pour celui dont le centre de gravité coin-
ciderait avec le centre de suspension ; que les seuls qui conviennent sont ceux dans
lesquels le centre de gravité est placé au-dessous du centre de suspension, et
que les plus convenables, sous le rapport de la stabilité, parmi ces derniers,
sont ceux dans lesquels la distance entre les deux centres est la plus grande.
D'autres considérations, qui ne sont point de mon sujet, viendraient sans doute
donner une limite & celte distance, au-dela de laquelle il surviendrait desin-
convéniens plus ou moins graves. Clest I'affaire du constructeur de vaisseau.

448. Supposons un liquide sans pesanteur enfermé dans un vase ABCD
(fig. 96), et soumis a la pression d’une force P agissant de haut en bas sur un
piston ab , appuyé immédiatement sur la surface supérieure du liquide; suppo-
sons que la paroi verticale DA soit percée d’un trou gh, d’un diamétre uel-
corique , bouché par-un piston gh, retenu exiérieurement par une force Q; je
dis que la pression qui sexercera sur le piston gh, sera exprimée parQ =

g, s étant Daire du piston gh , et S celle du piston ab.

. En effet, sans troubler 'équilibre qui existe entre les pressions des molécules,
on peut concevoir un lube recourbé gfedeh, parfaitement calibré, dont la base
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serait le piston gh , et dont les parois seraient formées par les molécules liquides
environnantes, rendues immobiles; or, puisque les molécules d'un liquide
pressent également dans tous les sens (n° 394), il est clair que la pression éprou-
vée par le piston gh, est égale a celle que la force P exerce sur l'orifice ¢d du
tube recourbé, lequel orifice a la méme superficie que le piston gh; mais la
pression que recoit, de la part de la force P, l'orifice cd est dans le rapport des
aires des pistons S et s; on aura donc

S :1siiP Q= . (a36)

ce qu’il fallait démontrer,

419. 1l suit de li que, si s égalait I'aire de la paroi AD toute entiére, la
pression Q donnée par I'équation (236), serait la pression totale que recevrait
cette paroi AD.

Supposons le vase parallélipiptdique; les aires s, S seront proportionnelles
a la hauteur Ae =k du liquide, et 3 la largeur AB du fond du vase que
nous nommerons «; en substituant dans la formule (236), il nous

viendra ' Q= I—:? (237)

pour la pression exercée contre la paroi AD, par la force verticale P.

420. En vertu de ce que les molécules liquides pressent dans toutes les di-
rections avec une intensité parfaitement égale , le tube recourbé gfedeh (fig. 96)
qui établit la communication entre la pression exercée par la force P sur l'orifice
ed et le piston gh , au lieu d’avoir ses deux branches 4 angle droit , pourrait les
avoir obliques comme dans les fig. 97 et 98; de maniére que la branche fghe
pourrait étre perpendiculaire & une paroi oblique quelconque AD, et Pautre
fede verticale, sans empécher la libre communication des pressions, et Pégalité
des orifices cd , gh ; d’ott P'on voit que I'équation (236) est générale , pour
toutes les parois planes, inclinées ou verticales, On se rappélera que s peut étre
la superficie enti¢re de la paroi. S

421. La formule (236) s’étend au cas d'un vase 2 parois courbes quelconques ;
car les élémens infiniment petits de ces parois étant pris pour l'unité recevront
une pression exprimée par 5 et par conséquent la pression totale sera égale
a4 ce facteur commun 3 multiplié par lasomme de tous ces élémens ou par I’aire
totale de la paroi courbe, quelle qu’elle soit.

Le piston ab (fig. 96, 97 et 98), n’est que ﬁctif,l lorsque la pression verticale
P peut se distribver uniformément sur la face supérieure du liquide sans cet
inlermédiaire.
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LEGON 1L

De la pression des liquides contre les parois latérales desvases ou des bassins
quelconques,

422, Supposonsun vase ABCD (fig. 99), en forme de parallélipipéde rectangle,
entitrement plein d’un liquide quelconque , soumis a la seule action de la pe-
santeur, les trois dimensions du vase étant quelconques : Je dis que la pression
ou poussée du liguide contre la paroi verticale AD, sera proportionnelle
au volume du prisme triangulaire de la méme longuewr que la paroi, dont
la base sera le triangle rectangle isocele DAE , dont les cbtés de Uangle droit
égaleront la hauteur AD du liquide. _

En effet , d’abord, quel que soit le triangle ADE, si 'on divise la hauteur DA
en une infinité de parties égales, et que par les points de division a, ¢, e, ......
on méne les droites ab , cd , ef,.... paralleles & AB, ces droites seront entre
elles comme les hauteurs Da, De, De....; or, (n° 395), les pressions aux points
a, ¢, e, sont comme les mémes hauteurs Da, Dc, De.... Ces pressions seront
donc aussi comme les droites ab, cd , ef ..., c'est-a-dire comme les élémens
du triangle DAE. Sidonc p, p’, p”, p”...., sont les pressions aux points a,c, e...
de la paroi DA , nous aurons

plablip ledllp lefilp” ! AR
/d.’oﬁ ptp' +p+p" . ab4cd+ef+ AE S p* o AE.... (a).

Mais la somme p + p' + p" + p" est celle des pressions qui ont lieu sur les
points successifs de la hauteur DA, supposés infiniment voisins les uns des
autres ; cette somme sera donc la pression totale exercée sur la paroi DA ; de
plus, les droites ab, cd, ef, AE, sont les élémens du triangle DAE; la somme
ab -+ ¢d -+-ef + AE sera donc aire de ce triangle ; si donc nous représentons par
P la pression totale, et par S laire du triangle DAE , nous aurons

P=p+p +p' +p". et S=ab+cd+ef....

en substituant dans la proportion () il nous viendra
P IS Ilp"! AE.. (B)

Mais la pression p” qui a lieu au point A est propt-wtionnelle 4 la hauteur AD du
liquide , c’est-a-dire que cette pression peat étre représentée par AE = AD que
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nous nommerons k; nous pourrons donc ‘substituer k& au lieu de p” et de AE
dans la proportion (5), et il nous viendra

P:S:'h%h doh P=S.

Ainsi , comme nous ’avons énoncé, si le triangle rectangle DAE est isocéle,
le volume du prisme , de méme lonqueur que la paroi , qui aurait ce triangle pour
base , exprimera la poussée du liguide contre la paroi AD; car ce qui a lieu
pour une tranche infiniment mince, verticale et perpendiculaire 4 la paroi, a
évidemment lieu dans toute la longuear et du prisme et de la paroi.

423. Les pressions qui s'exercent dans les hauteurs Da, Dc, sont comme les
carrés de ces hauteurs.

En effet, la pression sur Da est représentée par le triangle Dab, et celle sur
Dc par le triangle Ded ; or ces triangles sont semblables , ils sont donc entre eux
(Géom. pl. n° 146), comme les carrés des hauteurs Da, Dc ; les pressions dont
il s’agit sont donc dans ce méme rapport; ainsi, p et p’ étant ces pressions,
nous aurons

Py sl 0a D (0 (238).

424, La pression exercée contre une partie ac quelconque de la paroi AD , est
proportionnelle @ cette hauteur ac , multiplice par la distance Dg du milieu g,
de cette hauteur ac, au point D de la surface supérieure du liquide.

En effet , la pression sur ac est évidemment égale & la différence entre la
pression sur Dc et celle sur Da ; mais ces pressions sont respectivement égales
aux triangles Ded , Dab ; la pression sur ac sera donc exprimée par la diffé-
rence de ces triangles, c’est-d-dire par le trapéze abde. Or ce trapéze égale la
hauteur ac multipliée par la droite gh, menée 4 égale distance entre cd et
ab; de sorte que la pression en question sera exprimée par ac X gh. Mais
le triangle DAE étant isocéle, le triangle Dgh le sera aussi ; d'otr il suit que
gh=Dg ; donc enfin la pression sur ac sera ac ) Dg, comme il fallait
le démontrer.

425. Ce que nous venons de dire étant démontré pour une tranche verti-
cale infiniment mince perpendiculaire a la paroi, aura lieu dans toute la lon-
gueur de la paroi; de sorte que l'expression de la poussée qui a lieu dans la
hauteur ac, sera le produit de I'aire de la partie de la paroi dans toute la lon-
gueur qui regoit la pression, multipliée par la hauteur gD, qui est, comme on
voit, la distance du centre de gravilé de cette portion de paroi & la surface su-
périeure du liquide.

426, Cette propositfon ayant lieu, quelle qué soit la hauteur ac, aura encore
lieu quand ac sera la hauteur entiére AD de la paroi ; d'ot il suit que la
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pression contre cetle paroi est égale & son aire multiplide par la distance de son
centre de gmvité a la .s‘urface supérieure du liquide.

27. Sien outre de la pesanteur le liquide est soumis & I'action d’une pres-
sion verticale P, pour avoir la pression contre la paroi, au résultat que nous
venons de donner, il faudra ajouter le second membre de I'équation (236). Ainsi,
nommons ¢ la distance du centre de gravité de la paroi 4 la surface supérieure
du liquide , et s son aire; la premiére partie de la pression sera

gs et la seconde (équation 236) Ii;

la pression totale sera donc
P P
g5 + E’ =S (9 + g).....(a!}g).

428. Remarque. Dans tous les cas o1, en outre de la pression du liquide, il
y aune pression verticale sur la surface supérieure de ce liquide, 4 la pression
qui lui est propre , on ajoulera le second membre de 'équation (236), pour avoir
la pression totale contre une paroi. Nous en avertissons une fois pour toutes.

429. 11 suit du n® 426 une propriété trés-remarquable des liquides soumis
a la seule action de la pesanteur ; c’est que, la pression que recoit la paroi AD
est indépendante de la largeur AB du bassin ; de sorte que quelque grande ou
quelque petite que soit cette largeur AB (fig. 99, 100 et 101), pourva qu'elle ne
soit pas nulle’, la pression restera la méme contre cette paroi AD. Ainsi cette
pression ne dépend uniquement que de Ja hauteur du liquide et de la longueur
de la paroi : elle augmente comme le carré de la hauteur (n°® 423), et comme la
longueur de cette paroi.

430. Sil'on avait un vase cubique, le fond reccvrait une pression que nous
prendrons pour I'unité; si ensuite laire de ce fond est I'unité de surface, les pa-
rois latérales auront la méme aire égale a 1, qui, multipliée par la moitié de
la hauteur (n® 426), nous donnera une pression égalc a :. Ainsi les quatre pa-
rois éprouveront ensemble une pression égale & 4 > + — 2; tandis que 1. fond
en recoit une égale 4 1 : en totalité le hgmde proﬂmt donc une pression lrois

fois plus grande que son poids , pendant qu'un solide ne produirait sur le
fond du vase qu’une seule pression égale i sa masse.

431. Supposons maintenant un vase dont les parois opposées soient évasées
par en haut , de sorte que ce vase soit un prisme creux , dont la base est le tra-
ptze ABCD (fig. 102), et demandons-nous la pmscon qui s'exerce contre la
paroi inclinée DA , le liquide n'étant soumis qu'a Paction de la pesanteur.

“En effet, nous avons vu (n° 394) que chaque molécule d’un liquide pressait
dans toutes les directions avec une méme intensité proportionnelle 3 la hauteur

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

PRINCIPES D’HYDROSTATIQUE. 159

en contre bas de la surface supérieure du liquide i laguelle la molécule est
placée ; si donc nous considérons le point b de la paroi AD, ce point sera pressé
perpendiculairement 4 la paroi , avec une force proportionnelle i la verticale ba
élevée par ce point b. Il en sera de méme pour tous les autres points. Ainsi la
pression du point D du fond sera proportionnelle i la hauteur totale DF du
liquide. Elevons par le point D la droite DE perpendiculaire & AD , faisons
cette droite DE égale 4 la hauteur DF du liquide ; et menons la droite EA :
je dis que si par le point & nous menons be perpendiculaire a AD, la longueur
be = ba , comme DE =DF , ce qui serait facile & démontrer. Par conséquent lcs
€lémens du triangle ADE perpendiculaires 4 la droite AD, seront proportionnels
aux pressions qui s'exercent aux points correspondans de la paroi AD; l'aire dece

triangle ADE sera donc la pression tolale que regoit cette paroi AD. Or ce triangle
est égal a

DE DF

11 suit de Uiy que la pression totale qui s'exerce sur une paroi plane et inclinée
d’une maniére quelconque , est égale & Uaire de cette parol multiplice par la dis-
tance de son centre de gravité & la surface supérieure du liquide; car ce qui a
lieu dans une tranche verticale, infiniment mince, et perpendiculaire  la paroi,
a lieu dans toute sa longueur.

Je viens de dire que la paroi AD pouvait étre inclinée d’une maniére quel-
conque; et en eflet, si le vase avait la forme indiquée par lafig. 103, on pourrait
y appliquer le méme raisonnement, que celui que nous venons de faire sur la
fig. 102, et on démontrerait que la pression que regoit cette paroi AD (fig. 103),
est encore exprimée par le triangle ADE , dont la hauteur AE — AF.,

432. Jusquiici nous avons supposé le fond du vase de niveaw ; mais tout ce qui
précede relativement & la pression contre les parois a lieu, quelle que soit Uincli-
naison de ce fond par rapport & Uhorizon, pourvu que son intersection avec la
paroi pressée soit une ligne droite paraliele & la face supérieure du liguide.

En effet , supposons un vase dont le profil soit AECD (fig. 104), plein d’un li-
quide quelconque ; I'équilibre de ce liquide ne sera pas troublé, si par Ja pensée,
un plan résistant AB, fesant un angle quelconque BAE avec I'horizon, venait a
diviser la masse liquide en deux parties ABE, ABCD; par conséquent la paroi
AD recevra Ja méme pression quauparavant; mais la résistance du plan AB per-
mettrait évidemment de supprimer la partie ABE du liquide et méme du vase,
de maniére qu'il en résultit le vase ABCD : quelle que soit donc Uinclinaison du

fond par rapport & Uhorizon , la pression sur la parot AD reste la méme , comme
il fallait le démontrer. -

I n’est pas besoin de dire qu’en calculant la pression sur la paroi AD, il fau-
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dra se servir dela hauteur AF, et pour la paroi BG il faudra prendre la hau-
teur  partir du point B.

433. Supposons maintenant un vase ABCDEFGH (fig. 105) dont la forme
soit celle d’nne pyramide quadrangulaire tronquée, dont la petite base serait le

fond du vase , et proposons-nous de déterminer la pression qui s’exerce contre une
parot BCDE.,

Cette pression, d'aprés tout ce qui préctde, est évidemment égale au poids
du volume d’un polytdre liquide BCDEIK , dont deux faces BCDE, BCKL sont
des trapézes, deux autres faces BIE, CDK sont des triangles, et enfin une cin-
quieme face EDKI est un rectangle perpendiculaire & la paroi BCDE, dont
la hauteur El est égale & la profondeur ab du liquide; cela a été démontré
(n® 422 ) pour le cas ou, la paroi étant rectangulaire, le solide dont il s’agit était
un prisme triangulaire tel que EBLDKI. En divisant la pyramide triangulaire
LDKC par des plans perpendiculaires a 'aréte LC, en tranches infiniment min-
ces, par un raisonnement analogue 4 celui du n® 422, on démontrerait que la
pression sur le triangle DLCest exprimée par le poidsd’un volume de liquide égal
aceluide la pyramide DLCK. 1l suffira donc d’avoir 'expression du volume du
solide BCDEIK , pour avoir celle de la poussée du liquide contre la paroi BCDE.,

Or, si par I'aréte DK et le sommet B nous menons un plan DKB, nous aurons
partagé ce polyedre en deux pyramides; I'une qui aura pour base le rectangle
EIKD, et son sommet au point B, et l'autre triangulaire, dont la base sera le
triangle DKC, et son sommet au méme point B que la premiére : la somme de
ces deux pyramides sera donc le volume cherché.

Celle dont la base est le rectangle EIKD, aura pour hauteur celle bd de la
paroi BCDE , puisque les deux plans EIKD, EDCBsont perpendiculaires, et 'autre
pyramide aura pour basele triangle BDC, et pour hauteur celle de I'eau con-
tenue dans le vase. Nommons a la grande base BC,b celle ED de la paroi, et H
la hauteur bd de cette méme paroi, et enfin A la hauteur du liquide.

Le volume de la pﬁramide BEIKD sera égal a b%l y et celuide I'autre pyra-
ir

mide BDKC scra— b i?: — aHh ; le volume du solide gnlier ou Pexpres-

2 6
sion de la poussée qu’éprouve la paroi sera donc

bkH . hH hH (25
P = 3 - aﬁ_ = —-(-%j-—@-..... (240).

434.Cela posé, soit Gle centredegravité du trapéze BCDE; si par ce point nous
menons un plan perpendiculaire & V'aréte BC (fig. 105), ce plan rencontrera
1a face supérieure ABCH du liquide suivant la droite de; par le centre de gra-
vité G du trapeze, et par le point b, élevons les droites Gg , ba perpendicu-
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laires & la droite d e; nous aurons les triangles semblables dGg , dba, qui nous

dG > ab __ dG X h
db - H ?

donneront db; dG;ab; Gg=

mais (n° r11)

_ aDE-—l—BC H 2bta
a6 = E) < TEFDE — 3 X a5}

par conséquent
sbt+a k., 2b+}a ;
Gy = 3H = a5 — 3 X T (@ .
D’ailleurs BCDE = E:- (@a+b);
multiplions cette équation par (a), il nous viendra

kR (26 4- a)
6 -

Gg X BCDE =

Si nous comparons cette équation & I'équation (240) nous en conclurons

P = Gg > BCDE..... (241)

C'est-t-dire que la pression sur la paroi BCDE est égale au poids d’un prisme
liquide de méme base que cette paroi, et d'une hauteur Gg égale & la distance du
centre de gravité G de cette paroi & la face supérieure ABCH du liquide.

435. il dagissait d’un vase en forme de pyramide tronquée quadrangulaire
(fig. 106 ) dont le fond ABCH serait la grande base de ce trone, il est évident,
d’apres ce qui a été démontré au n° 433 que la pression sur une paroi BCDE sera
le poids d’un polyédre BCDEIK , qui ne différera de celui qui exprime la pression
de la paroi BCDE de la fig. 105, qu'en ce que la face rectangulaire BCKI
(dont la bauteur BI est la profondeur de I'eau) est formée sur le grand coté
BC (fig. 106) de la paroi, tandis que dans la fig. 105 la face rectangulaire
correspondante est formée sur le petit c6té ED de la paroi. En décomposant ce
solide de la méme manitre que dans la fig. 105, on trouvera que son volume,
ou la pression P de la paroi , est

p — M (atd),
6
et par le méme raisonnement qu'au n° 434, on arrivera enfin a conclure que
la pression demandée est égale au poids d’un prisme liquide qui aurait la paroi
pour base, et pour hauteur la distance du centre de gravité de cette paroi & la
face supérieure du liquide.

436. D'aprés ce qui vient d’étre démontré sur la pression qu’un liquide en

repos dans un vase exerce contre chaque paroi, nous pouvons conclure, par
: a1
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analogie, que, quelles que soient et la forme et Uinclinaison d'une paroi plane par
rapport & la face supérieure du liquide , la pression sera égale & Uaire de cette paroi
multipliée par la distance de son centre de gravité & la face supériexre du liquide,
non seulement pour la paroi loute eniiére, mais encore pour une portion quel-
conque de cetle parot.

437. Supposons maintenant un vase cylindrique droit (fig. 107), la pression
qui aura lieu sur chaque élément, de la paroi, parallele aux génératrices de la
surface, sera évidemment égale & aire de cet élément multipliée par la distance
de son centre de gravilé a la face supérieure du liquide, car cet élément étant
infiniment éiroit, peut étre regardé comme une paroi plane. Or, tous les élé-
mens de la paroi sont égaux entre eux, et sont semblablement disposés par rap-
port au liquide; ils recevront donc tous laméme pression, et leurs centres de
gravité sont tous a la méme distance de la face sapérieure du liquide; d’otr I'on
voit facilement que I pression totale de la paroi cylindrique sera égale & Uaire
de cetle surface cylindrique multiplice par la distance de son centre de grayité
a la face supérieure du liquide.

Ainsi soit r le rayon EC de la base du cylindre; sa circonférence sera apr, et
sou aire 2prh, b étant la hauteur AB du liquide. La distance du centre de gra-

vité de cette paroi a la face supérieure AD du liquide est E; la pression sera
donc P = aprh X ;‘ = prh2... (242).

438. Pour une portion verticale de la paroi qui répondrait & une arc d’'un
nombre quelconque de degrés, nous aurions évidemment

nprh?

P =T (43)

n étant ce nombre de degrés,

439. $'l s'agissait d’un vase en forme de cone tronqué (fig. 108), dont le
fond serait la petite base, on pourrait regarder la paroi comme composée d’une
infinité de traptzes infiniment petits; la pression sur chacun de ces élémens
serait (n® 434) son aire multipliée par la distance de son centre de gravité a
la face supérieure du liquide, or, tous ces élémens se trouvent placés de la méme
maniére par rapport au liquide, et sont parfaitement égaux; leurs centres de
gravité sont 4 la méme distance par rapport a la face supérieure du liquide; la
pression tolale sera donc égale & celle distance commune par la superficie du
cone tronquc.

‘Le centre de gravité de la surface d’un tronc de cone est le méme (n° 169 )
que celui du trapeze ABCD mené par l'axe EF ; soient donc R et r les rayons des
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bases, h la havteur EF du liquide, et G le centre de gravité du trapéze ABCD;
d’aprés le n°® 111 nous aurons

h. ,ar+R
EG ot §><R“I_r".".-..(ﬂ)-

L'aire d’un tronc de céne ( Géom. & trois dim. n® 166 ) est égale i la demi-
somme des circonférences des deux bases multipliée par la longueur de la géné-
ratricej Cest-a-dire quesi g est cette génératrice, l'aire de la paroi du vase sera

aire paroi = ERED . @),
%

En multipliant les équations () et (), nous aurons donc

phg (R+4-1) _, ar + R__phg (arXR)
52 A T = voveenes (244)s

pression =

440. Si le vase conique tronqué avait la grande base pour fond (fig. 109), G
étant le centre de gravité du trapeze par I'axe ABCD; la distance EG de ce centre
par rappart a la petite base, serait

Ak _oR AT,
EG = gX}Xg 17
quant 4 aire de la paroi, elle serait encore g (B;_i- ) 3 par conséquent, dans

phg R +7) , 2R4-r_ phg (3B4n)
. 2.3 )X Rtr . 6 veie (245).

ce cas, la pression =

En général , quelle que soit la surface intérieure du vase, la pression quelle
recoit est égale & son aire multiplie par la distance de son centre de gravité a la
face supérieure du liquide.

Ayant déterminé la pression qu’un liquide exerce sur une paroi pour les vases
ou bassins d’une forme quelconque, il nous reste a déterminer le point d’appli-
cation d’une force égale a cette pression qui produirait le méme effet, étant
appliquée perpendiculairement & cette paroi,

441. Supposons qu'il s’agisse d’abord d’une paroi plane et rectangulaire , AD
(fig. 102 et 103), inclinée d'une maniére quelconque par rapport 4 Thorizon.

Puisque (n® 431) la pression sur cette paroi est proportionnelle au volume
du prisme dont la base est le triangle ADE; il est clair que si Uon projete le
centre de gravité G sur le coté AD, la projection g de ce centre sera le point
d'application demandé. Ce point d'application g de la pression résultante est
donc el que, pour la fig. 102, on aura :

Ag :%%I), et Dg:—‘g—n.
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442. Le moment de cette pression par rapport & 'arréte A (fig. 102), sera

2 * DFYy
AD x< DF >< >< 1;D _ (AD) ‘::( F) (@

si le liquide étalt pressé par une force verticale P, comme dans la fig. 97, (n° 420)
la pression sur la paroi AD (fig. 102 ) serait égale a %::—P-
pression est uniforme , son|moment par rapport a 'aréte A serait
AD X P _ AD __ P (AD)
AB x a 2AB
Le moment de la pression totale sera donc le moment (a) plus ce dernier,
c’est-a-dire que

; et comme celte

mom. pres. lot. — (AD) ?fDF) +

Mais la somme des deux pressions est

AD (DF)* , ADxP _ AD.[AB.(DF}44P]
it Ta = 4AB 3

P(AD)'_ (AD)* [AB (DF)*+3P]
2AB GAB (246)

si donc g est la distance du centre d'action de ces deux pressions, on aura

AD.[AB (DF)* 4P __ (AD)' [AB. (DF) +3P]
g 4 AB 6AB

el par conséquent
2 AD* [AB (DF)* + 3P]
3[AB. (DF) 1 4P] "' (246)
telle serait la distance du point d’application d’une force perpendiculaire a la
paroi, qui fairait équilibre a la somme des deux pressions.

En raisonnant de la méme maniére pour les autres cas, on arriverait a la
détermination du point d'application de la résultante de la somme des pressions
provenant du poids du liquide et de Ia force verticale P qui presse la surface su-
périeure de ce dernier ; mais comme il est trés-rare que la pression contre la paroi
provenant de cette force P ne soit pas contre-balancée par une autre égale et
contraire, dorénavant nous n’en tiendrons point compte afin d’abréger ct de
ne pas nous ¢loigner de notre but principal.

443. Si par le point ¢ (fig. 102) on menait une horizontale dans le plan de
la paroi, en fixant les extrémités de cette droite (rendue rigide ) de maniére a
ce qu'elle edit seulement le pouvoir de tourner sur elle-méme , la paroi qui ne
serait maintenue contre la pression du liquide que par cet axe, se trouverait évi-
demment en équilibre autour de cet axe mené par le point ¢, tant-que le k-
quide conserverail son niveau. Mais si le niveau venait a baisser, la pression
diminuerait dans un plus grand rapport dans la partie au-dessus que dans la
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partie au-dessous de cet axe, et I'équilibre serait rompu; la paroi céderait &
la pression vers le fond, et s'ouvrirait par en bas. Si au contraire le niveau
s'élevait, la pression au-dessus de I'axe I'emporterait sur celle au-dessous, et
la paroi s’ouvrirait en tournant en sens contraire de la premiére fois. Une
vanne ainsi construite pourrait donc servir, au moins comme indicateur,
maintenir un bassin constamment au méme niveau.

444. Dans le cas ot la forme de la pavoi est un trapeze BCDE (fig. 105),
pour avoir le point d’application de la résultante de la pression du liquide, il
faudra chercher la projection du centre de gravité du solide BCDEIK , sur Ie plan
BCDE. Pour cela, on se rappélera (n® 433), que ce solide se compose de deux
pyramides; I'une quadrangulaire et l'autre triangulaire. La premiére a sa base
sur le plan DEIK que nous prendrons pour celui des momens; la distance
de son centre de gravité par rapport a ce plan sera donc le ; de sa

hauteur (n° 147), cest-a-dire égale a 4 , H étant égale .a bd Mais
(n° 433) le volume de la pyramide BDEIK est 51‘:_3_}1; nous aurons done

H bhH 20
mom. pyram. BDEIK = e B il TR (a).

La pyramide triangulaire BDKC a deux de ses sommets (D, K) dans le plan
des momens DEIK ; et ses deux autres (B, C) sur l'aréte BC, qui est, par
rapport au plan DEIK, & une distance égale & H=0d ; la distance de son centre

de gravité par rapport 4 ce plan sera donc (n° 150) %—I = E 5 mais

le volume de la pyramide BDKC (n° 433) est H, nous aurons dnnc

mom. pyram. BOKG = I 3¢ @ _ o )

Si nous nommons g la distance du centre de gravité du solide BCDEIK , par
rapport au plan DEIK, en multipliant par cette letire le second nombre de
ghH (2b + a)

6

I’équation (240) , nous aurons pour le moment de ce solide; or

ce moment doit évidemment égaler la somme des momens (a) et (5), nous aurons

ghH (ab+4-a) __ biH? + ahH* _ RhH* (a+4-b)

donc . =
b 12 12 . 12

ce qui se réd_uit. 4 g (2b +a) = H (“"'l" b)

?

H{a 45
dou - 9 = 3prar (347
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Telle sera I'expression de la distance du point d’application de la résultante
de la pression, par rapport & I'aréte DE qui est située au fond du vase.

La distance de ce point & 'aréte supérieure BC sera par conséquent

, H (a4-8) _ 4BH +oall —oH —Hb __H(b+a) . o
y = - a2 (2b-a) 2(2b + a) a2+ ez)"'(mc:L )-

445. En changeant b en a et a en b dans ces deux formules, on aurait
__ H(a43) _ H (3a--5)
9= 5Gags & 9 = Saary - (49)
pour les distances du point d’application de la résultante de la pression, a

Varéte supérieure DE (fig. 106) et 4 l'avéte inférieure BC, pour le cas du
vase du n° 435, a représentant toujours la grande aréte BC et b la petite DE.

LECON 1L

De l'équilibre entre des liquides de densités différentes; de I'équilibre des fluides
élastiques, et des effets mécaniques de l'air atmosphérique.

446, Supposons deux vases ou tubes HABC, DEFG (fig. 110), de forme
et de dimensions quelconques, réunis par un tube de communication HGDC ;
si dans ce dernier on suppose un diaphragme ou piston mobile ab ; que ce piston
soit fixe pour un moment, et qu'on remplisse 'espace abC BAH d'un liquide ,
de eau par exemple, jusqu'a une certaine hauteur AB , et I'espace abDEFG
d’'un autre liquide, du mercure si I'on veut, jusqu'd la hauteur mn;
si ensuite le piston ab est mis en liberté , les deux colonnes de liquide ne se-
vont en équilibre que lorsque les hauteurs dc, eo de ces colonnes , & partir
du niveaw du centre de gravité du piston ab , seront réciproquement propor-
tionnelles awx pesanteurs spécifiques de ces denx liquides.

En effet, soit S l'aire du piston ab , la pression qu’il éprouvera de la
part de la colonne d’eau (n° 426), sera égale 4 sa superficie S multipliée
par la hauteur dc, [comprise entre le niveau du centre de gravité g du
piston ab et le niveau supérieur AB de I'eau) , et par la densité de ce liquide,
quel que soit le diametre AB du tuyau HABC : si donc k est la hauteur de,
et d la densité de Peau, la force avec laquelle ce dernier lzqmde poussera le
.piston de gauche & drmte sera  Shd....... (@).

De méme, soit b’ la hauteur €0 du niveau du centre de gravité g du piston
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au niveau supérieur mn du mercure, et d' la densité de ce dernier ; la force
avec laquelle ce liquide poussera Je piston de droite & gauche, sera Sh'd’; dans
le cas d’é-uilibre cetle force doit égaler la premitre (a) qui lui est directement
eontraire ; nous aurons donc

Shd = 8h'd’ ouw hd =1h'd’,
ce qui revient A B oA .d % d.. (250),
comme 1l fallait le démontrer.

447, St les deux liquides étaient de méme densité, on auraitd’' =d, et par
conséquent d’apres la proportion (250) k' = h.

N suit de 1a que dans un tube recourbé d'une maniére quelconque , ce tube
ayant d'ailleurs une forme quelconque , la communication entre les deux bran-
ches étant non-inferrompue , un méme liquide introduit par une branche re-
montera dans Uautre, de maniére qu'aussitét Uéquilibre établi , le liguide sera
au méme niveau dans les deux branches.

Eqnilibre des fluides élastiques enfermés d ans des vases.

448. Les fluides élastiques different des liquides en ce qu'ils sont trés-com=
pressibles , pendant que les liquides le sont si peu quon peut les regarder
comme enticrement incompressibles sans erreur sensible. Les fluides compressi-
bles sont éminemment élastiques; c’est-a-dire que de quelque quantité qu'on
les comprime, aussitot qu’ils sont liveés 4 eux-mémes, ils reprennent le vo-
lume qu'ils avaient avant la compression. Du reste ils sont pesans, et leurs mo-
lécules sont dans un état parfait de liberté les unes 4 I'égard des autres, L’air
atmosphérique et la vapeur d’eau sont les deux fluides €lastiques dont les effets
mécaniques sont les plus importans, aussi ce sont ceux que nous aurons le plus
particuli¢rement en vue, mais les principes suivans appartiennent en général
a tous les fluides élastiques. _

449. Supposons que le vase ABCD (fig. 111) soit plein d’un fluide élas-
tique , qui ne puisse point 5’cchapper par l'ouverture supérieure; je dis que,
dans le cas d'équilibre, quelle que soit la pression qu’il éprouve de haut en bas
chacune de ses molécules se trouvera également pressée dans toutes les directions.

Ceci se démontrerait comme dans le eas d’un liquide (n® 394), & cause de la
liberté entitre qu’ont les molécules d’agir dans tous les sens.

450. Supposons un vase ABCD (fig. r11) plein d’un fluide élastique, dont
le ressort serait en équilibre avec la pression de I'air atmosphérique ; dans ce
cas, si nous considérons une colonne EF de molécules, nous conclurons qu'’il y
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aura un plus grand rapprochement entre les molécules voisines du point E ,
qu'entre celles voisines du point F ; car celies prés du point E sont compri-
mées par le poids de toutes les autres, et 4 mesure que la molécule que I'on
considére s'approche du point F, elle se trouve de moins en moins comprimée :
a partir du point F les compressions des molécules yont donc en croissant
en progression par différences égales, dont le premier terme est le poids d'une
molécule, la raison ce méme poids, et le dernier terme la pression de la der-
niére molécule située au point E. Les rapprochemens des molécules suivent par
conséquent la méme loi (n” 385), et par suite les ressorts de ces molécules, et la
densité de la colonne EF.

Si donc nous veulions le poids d’une colonne EF , il faudrait diviser la
hauteur de cette colonne en une infinité de parties égales, et les densités des
tranches horizontales de molécules , iraient en augmentant , suivant la progres-
sion des nombres naturels 1, 2, 3, 4, 5........... jusqu’a &, en prenant pour
unité la densité des molécules comprises dans la premiere tranche & partir du
point F, et en nommant & la hauteur EF de la colonne.

2
Or, cette somme a pour limite (note pag. 50) % : ainsi le poids d’une colonne

de molécules de fluide élastique sera proportionnel au carré de la hauteur de
cette colonne. Pour avoir le poids de cette colonne, il faudra multiplier

" par la densité d du fluide de la premitre tranche & partiv du point F et

o 1w
nous .aurons poids d’une colonne = T...(QSI).

Mais le nombre des colonnes qui viennent presser le fond du vase est propor-
tionnel & la superficie de ce fond ; si donc nous nommons S cette superficie ,

. Sh#
nous aurens pression du fond = — (252).

451. Si la surface supérieure du fluide est pressée par une force P (fig. go),
il est clair que la pression du fond sera augmentée de toute cette force P, si
cette derniére agit sur la surfice d’'un piston de méme superficie que le
fond ; et si laire du piston n’était pas égale a celle du fond, cette augmentation
serait le quatriéme terme de la proportion

8 1SR S @,

§' étant Paire du piston ; dans ce cas on aura donc

pression du fond = Sﬁ%d# + S’ =8 ( + -;;)...(:;53}.
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452. Proposons-nous maintenant de déterminer la pression exercée contre une
parot plane et verticale par un fluide élastique enfermé dans un vase, la ten=
sion de ce fluide étant en équilibre avec Uair atmosphérique.

Observons, pour cela , que chaque molécule presse dans toutes les directions
avec une force égale & la compression verticale qu’elle recoit, clest-a-dire au
poids de la colonne & laquelle cette molécule sert de base ; or (n° 450) ce poids
st en raison des carrés des hauteurs ; si donc nous considérons les molécules
situdes les unes a la suite des autres, sur une méme verticale, et & des pro-
fondeurs respectivement représentées par 1, 2,3, 4,5, «....ht), leurs pous-
sées successives perpendiculaires 4 la paroi, d’apres la formule (251), seront
respectivement

é 4_t_f 94 16d 254 had
2’ 2 2

P 3 2 ? P 2 gressnans 2 !

{a somme de toutes ces pressions sera donc la poussée totale exercée contre la
paroi par une tranche verticale de fluide infiniment mince ; nous aurons
donc pour cette somme

pression d’'une tranche vert. = g (14 4+ 9+ 25 b?)

3
mais (note de la page 50) la limite de la parenthése est %— 3 la pression de la

3
tranche sera donc égaled P = ‘% (),

si donc a est la longeur de la paroi, nous aurons

a 3
pression totale = %......(253).

453. Supposons que DF = EF (fig. 111) , et qu'on ait décrit une branche
DE de parabole dont le sommet serait le point D, et l'axe la droite DC;
d'apres le n° 796 de la .Géometrie plane , Vaire de la figure ADE sera le ; du
rectangle DFEA, lequel rectangle est ici un carré dont le coté est h —=EF;
nous aurons donc aire ADE = g

Si nous maltiplions cette aire par la longueur a de la paroi, nous aurions
le volume d’un cylindre dont la base serait la figure parabolique ADE, et la
hauteur la longeur a de la paroi ; ce volume serait donc

‘vol. cy. ADE = ‘%l,

22
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et si nous multiplions ce volume par la densité d du fluide élastique nous aun-
roins le poids de ce cylindre, qui serait

. adh®
poids cy. ADE = -

Si enfin nous multiplions ce poids par 5» il nous viendrait

3
poids cy. ADE X 2 = -‘%.

Or, le second membre de cette équation est le méme que celui de la for-
mule (253); il fiut donc conclure de la que

pression totale sur la paroi AD = poids cy. parabolique >< g,.... (259),

454. Sil sagissait d’une paroi inclinée BC (fig. 112 et 113), nous arriverions
4 la détermination de la pression que recoil cette paroi, en décrivant la branche
de parabole EbG, comme s'il était question de la pavoi verticale BG, et en se rap-
pelant ensuite que les molécules d’un fluide élastique pressent avec la méme
intensité dans toutes les directions; d’ol on verra que la molécule b, dont la
pression sur la paroi verticale BG est l'abscisse bf de la parabole EOG, presse
avec la méme intensité le point ¢ de la paroi inclinée BC , perpendiculairement
a cette paroi. Si donc on fait la droite cd , perpendiculaire & la paroi BC , égale a
bf, cette droite cd exprimera la poussée sur le point ¢ ; de méme en faisant
ik = gh, la longueur ik exprimera la poussée sur le point i. En conti-
nuant de la méme maniére , on déterminerait les ordonnées d’une courbe Clde
qui serait une branche de parabole dont la plus grande ordonnée serait la hau-
teur BC de la paroi inclinée, et la plus grande abscisse Be égale a la hau-
tear BG du fluide ; le sommet de cette courbe serait le point C , et la droite
BC sera tangente 3 cette courbe en ce sommet.

D’apres cela il est facile de comprendre que la pression totale qu'éprouve
la paroi inclinée est le poids d'un cylindre de méme densité que le fluide
(dont la base serait le triangle mixte CBe , et la hauteur la longeur de la paroi),
multiplié par la moitié de la hauteur BG ouCG du liquide (n® 453). Or, soit H la

hauteur BC de la paroi ; P'aire du triangle mixte CBe sera E;f s le volume du

. HF ., adHh .
cylindre 643— , son poids 35 €t conséquemment la pression totale ;

pression totale sur la paroi BC = adl;.m’........ (254).
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D'aprés les principes qui précedent, et par analogie i ce que nous avons dé-

v onirsur les pressions des liquides, nous pourrions facilement compléter ce

qui est relatif & celle des fluides élastiques ; mais comme ce sujet , tres-im-

portant pour beaucoup de machines, ne lest que Lrés-peu pour les archié

tectes, et que nous avons besoin d’abréger le plus possible, parce que notre

propre sujet renferme beaucoup de détails qu'il ne nous est pas permis de

laisser sous silence, nous terminerons ce qui concerne les fluides ¢lasticues par
quelques considérations sur les eflets mécaniques de P'air atmosphérique.

Effets mécaniques de l'air atmosphérique.

455. Les physiciens ont consiaté par des expériences qui ne laissent aucun
doute , que V'air atmosphérique qui nous environne de toutes parts est un fluide
trés-élastique, et qui est soumis comme tous les autres corps aux lois de la pe-
santeur et de I'inertie,

456. Il suit de 1a que lair presse dans toutes les directions et avec la
méme intensite les surfaces des corps avec lesquels il est en contact.

Ces pressions étant égales et directement opposées se détruisent , et n’ont
d’autre effet sur les corps que celui de comprimer leurs molécules et tendre a
les rapprocher de leur centre.

457. Supposons un vase ABCD (fig. go) plein d’eau; l'air pesera sur la
surface supérieure ab, de maniére que si les parois latérales n’étaient pas
pressées en méme temps du dehors au dedans avec la méme intensité , la pression
contre ces parois serait augmentée de tout le prids de la colonne d’air qui au-
rait pour base la surface supérieure du liquide , et pour hauteur la distance
de la surface du globe terrestre & la limite de notre atmosphere; mais comme
celte pression est partout la méme, les choses restent dans le méme état que
si lair était sans pesanteur. '

458. Si dans un vase ABCD (fig. 91) on plonge verticalement un tube
fe ouvert per les deux bouls, la pression de l'air dans le tube sera la méme qu’a
Pextérieur ; aussi I'eau dans ce tube montera au méme niveau que l'cau exté-
rieure ; mais si le tube est fermé par en haut, et qu'avant de le plonger dans le
liquide on I'ait purgé d’air, comme alors Pair extérieur ne pourra produire
de pression dans le tube, il s’en suivrait que la pression de cc fluide sur la sur-
face du liquide ne sera pas la méme pour toutes les molécules, et celles com-
prises dans le tube n’élant soumises qu’a 'action de la pesanteur , seront soule-
vées par les molécules environnantes qui s’échapperont dans le tube par Torific
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inférieur, et le liquide s’élevera dans ce tube au-dessus du niveau ab du vase , &
une hauteur qui sera en raison inverse de la pesanteur spécifique du liquide,
le tube étant d’une hauteur gf indéfinie au-dessus du niveau ab, et, répétons-
le, parfaitement purgé d’air. En effet, si le liquide dans le vase est de l'ean,
le niveau dans le tube s'élevera a environ 32 pieds ou 10™,40, et s'il est du

mercure, il ne s'élevera qu environ 28 pouces ou o0,76. Nous devrons donc
avoir

32 pieds ou 384 pouces ; 28 pouces i d | 1,

en prenant pour unité la pesanteur spécifique de I'eau , de la nous tirerons

d= %ﬂi = 13,7 environ;
d’olz Ton voit que la pesanteur spécifique du- mercure serait environ 13,7 fois
celle de I'eau: c’est en effet & peu prés ce qu'on a trouvé par des expériences
directes ( n° 411 ).

Cet cffet mécanique de P'air atmosphérique de faire monter les liquides dans
des tubes vides d’air , fermés par en haut, et plongés verticalement dans un
bassin par le bout ouvert, est le fondement de toutes les especes de pompes as-
pirantes. En effet, ces sortes de machines n'ont pour objet que de former et
d’entretenir le vide a I'extrémité supérieure d’un tube dont la hauteur verticale
est un peu moindre que celle a laquelle la pression de I'air peut faire monter le
liquide dans ce tube ; I'eau , étant arrivée a cette hauteur , déverse dans un bas-
sin qu'on dispose & ceteffet, un peu au-dessus de I'endroit ott I'on produit le
vide , dans lequel le piston fait monter’ le liquide. Nous traiterons des pompes
plus tard. Pour le moment il ne doit étre question que des principes de
mécanicue,
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SECTION QUATRIEME.

PRINCIPES D'HYDRODYNAMIQUE.

LEGON 1.

De la maniére dont les molécules des liquides incompressibles se comportent dans les

vases qui les contiennent, pendant qu'ils sortent par des orifices percés dans le fond ou
dans les parois des vases.

459. Nous avous vy {n°® 32) que Ihydrodynamique avait pour objet les lois
du mouvement des liquides. Quoique les principes de cette branche de la mé-
canique générale n’aient presque aucun rapport a la stabilité des édifices pro-
prement dits, nous allons néanmoins nous en ovcuper, parce quiils sont, dans
beaucoup d’autres circonstances , trés utiles aux architectes(*),

460. Demandons-nous , d’abord, de quelle maniére les molécules du liquide
se comportent dans le vase, lorsqu’il s'écoule par un trés-petit orifice percé
dans le fond. ]

Supposons, pour fixer les idées, un vase cubique dont la section verticale soit
le carré ABCD (fig. 114), et dont les parois etle fond soient parfaitement polis
intérieurement. Remplissons-le d’un liquide quelconque, de P’eau,, par exemple ;
concevons-en la masse parfaitement en équilibre, et divisée, dans sa hauteur, en
tranches horizontales d’une épaisseur égale 4 celle d’une molécule, y compris
I’écartement qui existe entre deux.

Avant d'aller plus loin , démontrons que 'existence de ces tranches horizon-
tales n’a rien qui soit contraire & la nature des liquides, et que par conséquent
clle peut et doit méme étre admise.

En effet, I'égalité des pressions nous force méme a supposer que, si par une
molécule quelconque on méne un plan horizontal , ¢e plan contiendra autant
de molécules que sa superficie le permeltra, car toutes ces molécules, se trou-
vant & la méme profondeur, seront soumises & la méme pression , et comme
cette pression, égale pour toutes, les sollicite également 4 se mouvoir dans
toutes les directions, par la réaction des parois du vase qui résistent elles se

(*) La théorie qui va suivre est entiérement neuve, et diflére essentiellement de celle
suivie jusqu’a présent. Elle a été soumise a I’Académie des sciences, le 13 mai 1833,
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ticndront mutuellement en repos. I! arriverait la méme chose dans le plan ho-
rizontal mené par une autre molécule quelconque. Si, au contraire, on suppo-
sait quil fiat possible de trouver une molécule telle que le plan horizontal qui
passerait par celle molécule n’en contint pas d’autres, il est clair que cetle
molécule recevant une pression qui la sollicite 2 se mouvoir dans toutes les
directions, et comme aucune pression horizontale ne pourrait la tenir en repos
dans ce plan , elle s’échapperait d’un cdté ou d’un autre, et serait en mouvement
jusqua ce quelle trouvat le moyen de se placer entre d’autres molécules qui
la presseraient également de toutes parts, et seraient par conséquent situdes i
la méme profondeur , car sans cela U'équilibre ne saurait subsister dans la masse
liquide,, comme nous le supposons. Il n’est pas méme nécessaire que le liquide
soit. parfaitement homogéne pour cela, car dés que I'équilibre scra éuabli,
chacque molécule se scra placée a la profondeur que lui assignera sa pesanteur
spéeifique, ce que les liquides colorés de différentes couleurs et qui sont de- pe-
santeurs spéciliques inégales rendent sensib'e , puisque les tranches de ces li-
quides différens sont trés-distinctes, quand il n’y a pas mélange, et que les
sections qui les séparent nous paraissent trés-planes. Cetle hypothése des tranches
horizontales concues comme il a éié dit plus haut , n’a donc rien qui soit en
opposition avec la nature des liquides, mais, au contrairc, se trouve parfii-
tement d’accord avec les principes mécaniques admis dans la théorie de Pqui-
libre des liquides incompressibles, principes généralement reconnus, et que
I'expérience confirme aussi parfaitement que possible.

401. Cela posé, ouvrons un tres-pelit orifice ab dans le fond du vase : aussitét,
les molécules de la tranche du fond, qui sont situées immédiatement sur la
surface de cetle orifice, s'échapperont hors du vase ; et les molécules latérales de
la méme tranche, n’étant plus retenues de ce colé, s’y porteront, en vertu de
leur grande mobilité, en obéissant & la pression des parties supérieures, qui
les sollicite & se mouvoir, dans toutes les directions, avec la méme force. Ces
molécules latérales de la tranche du fond s’échapperont donc par lorifice & la
suite des premitres, avant que les molécules de la seconde tranche qui sont au-
dessus de Uouverture, ne puissent couler & la suite de celles qui ont sorti dans le
premier instant.

En effet, la pression que regoivent les moléeules de la premiére tranche, est
plus grande que cclle qu’éprouvent celles de la seconde; les premieres se por-
teront donc vers Vorifice avec plus de vitesse dans la divection horizentale , que
les autres dans la direction verticale de haut en bas , et ne laisseront échapper,
par conséquent, aucune molécule de Ja seconde tranche, si ouverture est
dsscz petite pour que son rayon puisse étre franchi par excés de vitesse des mo-
1écules de la premiere tranche sur celle des molécules de la seconde; car, pour
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que quelques uncs des molécules de cetie derniére tranche!, qui sont siliées au-
dessus de lorifice, pussent tomber, il faudrait qu'il se format un vide au-
dessous; or, ce vide ne saurait exister un seul instant, puisque la grande
mobilité des molécules liquides s’y oppose évidemment, en obligeant les plus
voisines et qui ont la plus grande vitesse, c’est-a-dire celles du fond, de suivre
incontinent celles qui, cn s'échappant, ont détruit 'égalité des pressions, et
de venir, de celte maniére, et d’un mouvement continu, fermer, pour ainsi
dire, le passage aux molécules de la seconde tranche, a mesure que celles qui
tombent tendent a le leur ouvrir; €t comme la méme chose se répétera chaque
inslant, nous sommes conduits a conclure qu'il est impossible,, dans le cas d'un
trés-petit orifice percé au fond du vase, qu'une seule molécule de la seconde
tranche , puisse sortir avant que foutes celles de la premiere ne solent coulées.

462. Il suit de 1a que, dés le premier instant, les molécules de la premiére
tranche, en se portant vers I'orifice,, abandonneront nécessairement les parois
du vase, en proportion du nombre des molécules qui se sont échappées dans ce
premier instant, et par conséquent un vide lendra i se former dans le contour
de cette premiere tranche, contre les parois, qui sera d’autant plus étrou: que
ce contour sera plus con51dérablc.

Ce vide subsistera, tant qu'il ne sera pas aussi large que le diameétre d’une
molécule ; mais aussitét que sa largeur sera suffisante, toutes les molécules de la
seconde tranche qui se trouveront au-dessus, couleront le long des parois, pour
I'empécher de se former davantage.

463. Les molécules de la seconde tranche qui omt ainsi quitté leur place,
pour descendre, de I'épaisseur d’une tranche, le long des parois, auront produit
un vide , aulour de cette seconde tranche, que les molécules latérales de cette
méme tranche pourront seules empécher, étant animées de la plus grande
vitesse , et l'espace qu’elles ont 4 franchir étant trés-étroit : elles viendront donc
barrer continuellement le passage aux molécules de la troisitme tranche situées
au-dessus de ce vide, couler le long des parois pour suivre par derriere les
molécules de la premitre tranche, et aller, 4 leur suite, sortir par orifice.

464, Mais'les molécules de la scconde tranche ne peuvent se porter vers le
contour du vase pour descendre de I'épaisseur d’une tranche le long des parois,
sans abandonner en méme temps le point de cette tranche qui répond vertica-
lement au centre de lorifice ;il tendra donc 4 se former un vide en cet endroit ,
que les molécules de la troisidme tranche qui sont au-dessus peuvent seules em-
pécher, en suivant aussitdt celles de la seconde qui quittent ce point.

465. Les molécules de la troisieme tranche qui sont ainsi descendues de la
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hauteur d’une molécule pour empécher le vide qui tendait i se former au centre
de la seconde tranche, en auront produit un semblable au centre de la troisieme ,
que les molécules latérales de cette méme tranche viendront remplir incontinent,
en se porlant des parois an centre du vase, et en produisant un vide autour de
ces parois, que les molécules de la 4° viendront empécher, et ainsi de suite d’une
tranche & l'autre, jusqu’a la plus supérieure, outle vide ira réellement se former &
chaque inslant , si le vase n’est pas entretenu constamment plein.

466. En résumant ce qui vient d’étre dit, nous verrons que,

1° Le vide qui tend & se former & chaque instant 2 la sortie de 1orifice cst re-
porié, d’un mouvement continu, d’'une tranche a 'autre jusqu’d la face supé-
rieure du liquide, en remontant le long des parois, et verticalement an-dessus de
I'orifice , alternativement;

2 D'ou il résulte que les molécules descendent de I'épaisseur d’une tranche,
alternativement au-dessus de I'orifice et le long des parois, de manitre que Loutes
les tranches se replient en nappes, horizontalement les unes sous les autres, pour
se suivre sans confusion , et aller, les unes apres les autres, sur le fond du vase,
et s'échapper par Porifice; de telle sorte qu'aucune molécule de la seconde tranche
ne coule que toutes celles de la premiére ne soient sorties du vase; quaucune
molécule de la troisitme ne s'échappe que toutes celles de la seconde ne soient
dehors, et ainsi de suite jusqu’a la plus supéricure ,si le vase se vide, qui des-
cendra la derniére, sans cesser de paraitre horizontale, le Vide qui s’y forme, et
qui s'agrandit et se ferme alternativement d’un mouvement continu , n'a de
profondeur que I'épaisseur d’'une tranche, qui n’est pas sensible & nos sens.

467. Telle es. la marche naturelle des molécules liquides, dans le cas d’un
trés-petit orifice, et dans ’hypothése que lintérieur du vase est parfaitement
poli. Quoique dans la pratique le poli du vase soit loin de cette perfection, cetle
hypothse seréalise, presque, lorsque le vase se mouille ; car la couche de liquide
qui reste adhérente anx parois et au fond, rend le poli parfait pour le reste de
la masse liguide. Ainsi on doit entendre par tranche du fond, celle qui est imm¢é-
diatement au-dessus de cette couche liquide adhérente,

468. Cherchons maintenant qnelle est la loi mathématique suivant laquelle
I’écoulement a lieu par un trés-petit orifice au fond du vase; et supposons d’abord
le cas oir le yase se vide,

Dans ce cas, il semble, au premier apercu, qu'attendu que les tranches des-
cendent les unes sur les autres le long des parois et vers le centre du vase, alter-
nativement de I'épaisseur d’une tranche, les vitesses des molécules doivent aller
&n s'accélérant par I'action persévérante de la pesanteur; mais, par la réaction
du fond , les impulsions que denne la pesanteur, pendant ces chutes successives,
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sont détruiles par la résistance des tranches inférieures; et, comme toules les
tranches restent soumises aux mémes pressions pendant lout le temps qu’elles
restent dans le vase, et qu'elles ne doivent leurs vitesses qu’a ces pressions, il s’en-
suit que toutes les tranches liquides viennent couler sur le fond, et, par consé-
quent, sortir du vase avec une vitesse uniformément retardée, puisque les pres-
sions des tranches successives, 4 partir de celle du fond , suivent une progression
décroissante par différences égales. Cette conséquence est parfaitement conforme
4 P'expérience.

469. Quand le vase est cntretenu constamment au méme niveau, & mesure
que les tranches descendent en nappes, les unes sur les autres,, pour arriver sur
le fond du vase, elles recoivent des pressions qui croissent par degrés égaux , de
sorle qu'arrivées 4 la sortie du vase, elles ont toutes acquis la vitesse qu’avait la
premiére tranche a Iinstant de l'ouvertare de Povifice, puisqu’elles sont toutes
alors successivement soumises 4 la pression totale; d’ol1 I'on voit que, dans ce
cas , I'écoulement a lieu d’'un mouvement uniforme , comme le prouve encore
Pexpérience. '

470 Pour calculer la vitesse acquise par une molécule i son arrivée sur le fond
du vase, dans lhypothése du niveau constant, il faut faire attention que pendant
tout le temps que les molécules d'une méme tranche ne se meuvent qu’horizon-
talement, elles sont animées d’un mouvement uniforme, puisqu’elles sont , pen-
dant tout ce temps, soumises 4 la méme pression ; d’ol1 'on voit qu’une molécule,
en descendant successivement de 1’épaisseur d’une tranche, recoit bien une accé-
lération de vitesse , mais au lieu de renouveler son action & chaque instant, la
force accélératrice ne donne des impulsions qu’a des intervalles proportionnelsau
temps qu'il faut & cette molécule, dans chaque tranche, pour parcourir I'espace
horizontal qui lui est destiné ; d’ot I'on voit que la vitesse de cette molécule n'est
point accélérée d 'une maniére continue et uniforme.

471. Toutefois, on peut calculer la vitesse acquise par une molécule & son
arrivée au fond du vase, en supposant qu'elle tombe librement, suivant une
verticale , depuis la face supéricure du liquide jusqu’au fond du vase,

En effet, la grande mobilité des molécules liquides permet d’admetire qu’en
parcourant borizontalement, entre deux tranches, I'espace qui lui est destiné
pour aller descendre, de 'épaisseur d’une tranche, alternativement le long des
parois et vers le centre du vase, une molécile n’éprouve aucune aliération dans
sa vitesse ; par conséquent, on peut faire abstraction du temps qu’elle met & par-
courir cet espace horizontal , et supposer qu'elle tombe directement et sans inter-
raption , suivant une méme verticale depuis le niveau supérieur jusqu'au fond
du vase; car le niveau étant constant, les pressions que recevra cette molécule, en
descendant verticalement en ligne droite, seront absolument les mémes que si elle

23
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avait suivi sa marche naturelle. Mais les pressions successives que recevra cette
molécule en descendant de celte maniére, ne seront dues qu’au poids de celles
qui viendront se placer successivement au-dessus d'elle. Or, le poids d’une molé-
cule de matiére quelconque n’est autre chose que la force accélératrice de la pe-
santeur ; d'out il faut conclure que la vitesse demandée est la méme que celle
qu'acquerrait, en tombant librement du niveau supérieur jusqu’an fond du vase,
un grave quelcongue : ce qui est conforme au principe de Toricelli et a T'expé-
ricnce.

472. 1l suit de Ja que 51V est la vitesse demandée , ¢ le temps que meltrait un
corps quelconque a descendre verticalement de la hauteur du liquide, et k cette
hauteur, on aura (n” 316 et 317),

V=rygt, et h= if (a).

473. Eliminons ¢ entre ces deux équations, et il en résultera

Ve = agh, d'oit V=) 2ghu..... (a55).

Equation qui est celle d’une parabole , lorsqu’on fait varier V et k, dont le
parametre est 2g.

474. Si donc on dispose cette parabole ede (fig. 114) de maniére que son
axe ce soit vertical , et son sommet ¢, sur la face supérieure du liquide , les abs-
cines h indiqueront les profondeurs des tranches successives jusqu’d celle du
fond, et les ordenndes V les vitesses de ces tranches.

475. Voyons, maintenant, de quelle manitre les molécules liquides se com-
portent dans Tintérieur du vase, lorsque lorifice percé dans le fond est d’une
grandeur quelconque.

Supposons que son diamétreab (fig. 115) soit tel,que les molécules latéralesde
la premiére tranche sur le fond ne puissent plus barrer entiérement le passage &
celles de la seconde tranche situdes au-dessus; dans ce cas, il coulera encore évi-
demment quelques molécules de cette premiére tranche, tout autour des bords
de Torifice, qui rétréciront cette ouverture de I’épaisseur d’une tranche; mais un
nombre plus ou moins considérable des molécules de la seconde tranche sui-
vront celles de la premitre qui ont tombé dés Pouverture deTorifice, et cettc
seconde tranche s’échappera en nappe sur la premitre, de maniére a diminuer,
i son tour , Pouverture de Iorifice , d’une épaisseur de tranche tout autour. Si
cette ouverture est encore trop grande pour que les molécules latérales de la
seconde tranche barrent entiérement le passage & celles de la troisitme, celle-ci
viendra couler de la méme manitre que les précédentes, et ainsi de suite pour les
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aulres, jusqu’a une tranche pour laquelle I'orifice sera devenu assez petit, pour
qu’elle puisse fermer le passage direct i l'orifice, aux molécules de la tranche
immédiatement au-dessus. Les teintes de couleurs différentes qui indiquent gros-
sierement les épaissenrs des tranches, sont propres a indiquer ce qui se passe
dans une section verticale ABCD (fig. 115).

476. Quelle que soit la quantité de molécules de la premiére tranche qui aient
suivi celles qui étaient immédiatement au-dessus de l'orifice; comme cetie quan -
tité ne saurait étre nulle, il est clair qu’il a fallu que le contour de cette tranche
ait abandonné les parois du vase; un vide quelconque s’est donc formé dans le
pourtour, et les molécules de la seconde tranche, situées au-dessus, ont dd venir
s’opposer a la formation de ce vide, en descendantle long des parois; car les mo-
lécules de cetle seconde tranche élant toutes prétes, par leur grande mobilité, a
s'échapper dans toutesles directions ot elles n’éprouvent pas de résistance, quoi-
que celles de cette méme tranche qui sont du coté de Vorifice coulent dans cetle
direction , les plus voisines du vide qui tend a ce former autour des parois, s’y
porteront évidemment sans retard , en obéissant 4 la pression des parties supérieu-
res; d’ott 'on voit que dans cette seconde tranche, il y aura deux mouvemens
horizontaux : Pun vers les parois, pour empécher le vide dont nous venons de par-
ler, et I'autre vers Vorifice pour sortir du vase; il se formera donc un vide ¢, d,
dans cette tranche participant de la formedu vase, et de celle deorifice, dont la
position sera telle, que les deux zones que ce vide déterminera, soient équivalentes
entre elles, ou du moins proportionnelles aux quantités d’écoulement qui auront
lieu de part et d’autre ; d'ots 'on voit que ce vide ¢, d, sera assez voisin des parois.

477. Ce dernier vide seva rempli par les molécules de la troisiéme tranche qui
sont situces au-dessus; un vide pareil se manifestera dans le lieu que ces derniéres
molécules auront quilté; et ce nouveaun vide sera rempli parles molécules latérales
de cette troisitme tranche, Mais pour cela, il faudra que les molécules de cette
méme tranche abandonnent les-parois, ou elles produiront un autre vide e, & ;
elles en produiront un autre f, g, entre le vide ¢, d, et le point répondant verti-
calement & Dorifice, et ainsi de svile jusqu's la dernitre des tranches qui peu-
vent déverser directement par Povifice. :

478. En résumant ce qui vient d’étre dit sur le jeu des molécules dans P'inté-
rieur du vase, dans le cas d’un grand orifice, nous verrons que ,

1°  La premitre tranche n’a qu’ane scule nappe qui se dirige directement veérs
Porifice 3 _
2° La seconde tranche se divise en deux nappes, dont une coule dircclement

dans Vorifice, et I'antre le long des parois, pour alle}- suivre, par derriére, la
premiere tranche dans lorifice;
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3% La troisieme tranche se divise en trois nappes , dont une va dans Uorifice, et
les deux auatres coulent I'une vers I'autre pour empécher la formation du vide c, d.
Ces deux derniéres nappes se replient sous clles-mémes , de maniére que la partie
de chacune qui est parvenue 4 la place qu'occupait la seconde tranche, prend
une direction opposée 4 l'autre, et les deux finissent par jouer le réle des deux
nappes de la seconde tranche;

4° La quatriéme tranche se divisera en quatre nappes, la cinquiéme en cinq
nappes, et ainsi de suite, de maniére que la dernitre de celles qui coulent di-
rectement dans orifice, et toutes eelles au-dessus , se diviseront en autant de
nappes qu'il y aura de tranches qui s'‘échappent directement par 'ouverture;
et ces nappes se comporteront de telle manitre, que , celle qui sera au-dessus de
Porifice viendra couler dans la hauteur de la derniére tranche qui déverse direc-
tement dans Porifice dés le commencement de 1'écoulement ; la seconde, dans la
hauteur de la tranche immédiatement au - dessous de la précédente; la troi-
siéme nappe , dans la hauteur de la tranche immédiatement au-dessous el ainsi de
suile, de sorte que la nappe la plus voisine des parois de toutes les tranches supé-
rieures, viendra couler sur le fond du vase.

479. 1l suit de 12 que le nombre des nappes de chaque tranche supérieure
est proportionnel & la grandeur de lorifice, et & mesure que le nombre de ces
nappes augmente , les espaces horizonlaux qu'elles ont & parcourir diminuent;
d’oi I'on voit que, si cet orifice était ézal au fond du vase, il y aurait dans les
tranches supérieures autant de nappes que de molécules, et ces nappes n’auraient
alors aucun espace horizontal & parcourir. D’ailleurs, la premigre tranche se trou-
vant lout cntiére sur la surface de l'orifice, tomberait entiérement dans le pre-
mier instant , et elle serait évidemment suivie par toutes les aulres; et le liquide
tomberait & la maniére des solides.

480. On voit aussi que, conformément & I'observation , la face supérieure dv
liquide descend horizontalement , lorsque le vase se vide, et que, dés que cette
face est arrivée au niveau de la derniére tranche qui déverse directement dans
P'orifice , il s’y forme une dépression qui va en augmentant & mesure que le nivean
baisse, et cette dépression pénétre bientdt dans lorifice méme, de maniere que
le liquide n"occupe plus toute la superficie de ce dernier, et ne coule plus qu'autour
de sa circonférence,

481. D’aprés la maniére dont nous-venons de voir que le liquide se comporte
intérienrement dans le cas d’un grand orifice, on voit clairement que les vitesses
des tranches successives sont les mémes que dans le cas d’une trés-petite ouverture,
Cette conséquence est conforme 4 celle 2 laquelle est parvenu M. Hachette ( Traité
élémentaire des Machines, 4° édition, 1828, pag. 74.), par ses expériences sur
Bécoulement des liquides. Ainsi la formule (255) fera connaitre la vitesse d’une
tranche quelconque.
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482. Expliquons maintenant le cas d’un orifice vertical.

Soicnt le vase ABCD (fig. 116) plein d’un liquide quelconque, de 'eau, par
exemple, et ab la dimension verticale de I'orifice. Si 'équilibre existe dans toute
cette masse liquide , an moment de Pouverture de l'orifice , les tranches comprises
dans la hauteur de cet orifice recevront un mouvement horizontal qui les portera
hors du vase, avec une vitesse, pour chacune, qui sera proportionnelle i la pression
qu’elle éprouve dans le vase. La vitesse de la premidre, sur le fond, sera donc la plus
grande , et les vitesses des tranches immédiatement et successivement au-dessus,
jusqu’s la partie supérieure de l'orifice , iront en décroissant comme les racines
carrées des profondeurs. La premitre tranche ne saurait avoir d'autre mouvement
que celui qui la porte vers l'orifice; cette tranche quittera donc les parois , en lais-
sant un vide en arriere; et comme les molicules de la seconde tranche ont moins
de vilesse vers l'orifice que les premitres, celles situées au-dessus du vide formé
autour des parois, seront forcées de descendre le long de ces parois pour empécher
cc vide, avant de pouvoir se diriger vers l'orifice. Ces molécules, en quittant la
place qu’elles occupaient, auront produit un vide daas la seconde tranche, au-
dessus du premier, qui sera empéché par les molécules latérales de la méme tran-
che; ainsi cette seconde tranche se divisera en deux nappes: P'une qui se portera
vers Porifice, et 'autre vers les parois. Il se formera donc un vide en a dans cette
seconde tranche, que les molécules de la Lroisitme, qui sont au-dessus, seront
forcées de remplir. Cette troisitme tranche se divisera donc en trois nappes; une
coulera vers lorifice, la seconde se portera en sens contraire dans le vide a ( ce qui
produira un vide & cntre ces deux nappes ), et la troisitme abandonnera les pa-
rois pour se porter dans le méme vide a. La quatriéme tranche se divisera en qua-
tre nappes, la cinquitme en cing, ct ainsi de suite, jusqu’a la derniére de celles
qui sortent directement par Porifice, qui se divisera en autant de nappes , qu’il
y aura de tranches dans la hauteur de cet orifice.

483. ll suit de la que, pendant que la premiére tranche s’écoule, la seconde
nappe de la deuxiéme tranche la suit par derriére pour aller & Vorifice; dans le
méme temps, la troisiéme nappe de la troisi¢me tranche, aprés étre descendue
dans le vide a, se dirige, en se repliant sous elle-méme, vers les parois du vase,
le long desquelles elle descend 4 la suite de la deuxigme nappe de la seconde tran-
che, pour se porter vers I"ouverture ; laseconde nappe de cette troisiéme tranche,
aprés avoir coulé dans le vide a, se replie sous elle-méme , pour suivre la pre-
mitre de la scconde tranche, dans l'orifice, pendant que la premidre nappe de
la_troisieme coule directement par Pouverture du vase. On voit donc que
les trois nappes de la troisiéme tranche, se disposent de maniére que celle qui se
trouve prés de V'orifice sort dans la hauteur méme de cette troisiéme tranche ; la
seconde nappe ne se présente & l'orifice que dans la hauteur de la seconde,
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et la troisiéme qu’a la hauteur de la premiére tranche. Il en sera de méme des
nappes de toutes les autres tranches, ce qui est facile 4 comprendre , puisque le
nombre des nappes pour chaque tranche, est toujourségale au nombre destranches
qui. coulent directement par Porifice , au-dessous de celle que I'on considére.

484, 8i, Vorifice s’élevant jusqu’au niveau supérieur du liquide, I'écoulement
avait lieu comme parun deversoir, les choses se passeraient dela méme maniere ,
de sorte que la derniére nappe de la tranche la plus élevée, coulerait par la par-
tie inféricure de I'orifice.

485, Nest inutile de dire que la vitesse acquise par les molécules a leur arrivée
4 la hauteur 2 laquelle elles sortent par l'orifice, sera donnée par 'équation (225),
tout comme dans le casd’un orifice percé dans le fond du vase.

LEGON 1L

Détermination de I'écoulement par seconde , tant pour lc cas de l'orifice percé an fond du
vase que pour celui ol il est percé dans une paroi verticale.

486. Supposons d’abord que Porifice soit percé dansle fond du vase (fig. 117),
nous observerons que les points successifs sur lesquels les tranches qui s'échappent
directement par Lorifice viennent se briser pour couler cn nappes les unes sur
les autres, de manitre & rétrécir lorifice de plus en plus, sont nécessairement
placés sur des courbes ai, bi (fig. 115), que nous allons déterminer.

Pour y parvenir, soit ad (fig. 117), I'une de ces courbes, il est évident que,
si les points m, m', m", etc., sont ceux ou cette courbe ad rencontre les faces
supérieures des tranches, les distances ap, mn, m'n', m"n", etc., seront pro-
portionnelles aux vitesses des tranches placées aux mémes profondeurs que les

oints @, m, m', m", etc. Cela posé, prenons pour unité I'épaisscur d’une
tranche; les hauteurs des points @, m, m', m", etc, au-dessous du niveau su-
périeur, seront respectivement |
h,h—1, h—2, h—=3, h—=4yu.. h—y;
en nommant y une ordonnée quelconque p"m", de la courbe ad.
En substituant ces quantitési la place de h dans I'équation (255), nous aurons

successivement

‘vl"—*|/39h’ v :|/99 (h—1), V° =l/’§l (h— 2) (@)

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

PRINCIPES D'HYDRODYNAMIQUE. 183

Mais les distances ap, mn, m'n', m"n", etc., sont proportionnelles a ces
vitesses ; d’oilr 'on voit que,

ap ; mn ou pp’::l/n_yﬁii/ 25'(3»—1)'22!/;:1/:.

d’ota pp' = Ep—-:-f,r%ﬁ_—l 3

on trouverait de méme que

v apyh— h—3
pp =L"//,=. ,PP*—‘EP—':/T:M-

Une abscisse quelconque x répondant a Pordonnée y, sera évidemment égale
aap+ pp' +p'p" +etc., nous aurons donc

ap/h=1 | ap/h—s . ap,/Th—3
Jho Tt T

ou x :%‘(V/I:{-[/k-—— 1-4- |/h—- D) +|/}:-—_3‘/h -—y.)
Extrayons les racines qui sont dans la parenthése, et il nous viendra
V:: [/h — aﬁ -+ ete.
l/hm:: |/h -_— 55—}‘ + etc.
VT Ve e [
‘/;—7: ‘/k S A8 -+ etc.

ay h

en ne tenant compte que des seconds termes de ces développemens, dans
lesquels se trouve, a la premitre puissance , Punité infiniment petite.

En faisant la somme des seconds membres des équations (b), et observant que

le nombre de ces équations sera égal au nombre d'unités quil y a dans 7
nous aurons

r= 5 (s ~ T (ka4 3 +hoen ) |
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ou x:‘ﬁ{zyﬁ—(:-]—n-}-S-{-d ........ -{—y)}.

Or, la somme des nombres naturels depuis 1 jusqu’a y, Punité étant infiniment

petite, a pour limite "r:s ( note de la page 50); ilen résultera donc

X = ff (njh —_ ?:) v ().

La quantité ap est évidemment égale 4 DP'épaisseur d’une tranche; car il
ne peut, de la tranche du fond, couler qu'une seule molécule a la fois, dans
chaque section verticale ; cette quantité ap est donc égale a l'unité : ’équation
(e) se réduira donc a la suivante.

— =r
r= (gyh 2) s
d’on fhx = 4hy — y*....... (256).

Telle est I’équation de la courbe ad, qui, comme on voit, est une pa-
rabole, lorigine étant au point a, et les coordonnées rectangulaires.

487. Résolvons-la par rapport a y, il nous viendra

ye=ah % o b (h— 2);
d’otr nous voyons que la plus grande valeur positive que nous puissions donner
a x est x = h, ce qui donne y = 2h. Ces coordonnées sont celles du sommet
{ de notre parabole.

488. Faisons x=h — x', et y==2 h — y', et substituons dans I'équa-~
tion (256), il nous viendra, toutes réductions faites, et en supprimant ensuite les
accens,

y? = fhx...... (g).

Cette équation est donc celle d’une parabole ordinaire , dont P'axe GH est hori-
zontal et A une distance, au-dessus du fond du vase, égale & deux fois la hauteur
k du liquide; le sommet f est & une distance de la verticale e élevée par le point

a du bord de Porifice, égale & la hauteur & ; enfin son pammetre est égal b 4 fois

cette méme hauteur 2
Quant 2 la courbe bdh , située du cbté opposé , elle est ev:demment égale & la

premiére.

489. 11 est clair que le poml. d out les deux courbes précédentes se ren-
contrent, appartient a la premiére des tranches qui ne mulgnt pas directement
dans Porifice.
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490. Demandons-nous donc i quelle hauteur, a partir du point ¢ du fond du
vase , se trouvera le point d (fig."r17).
Pour cela, il suffira d’observer que I'abcisse de ce point est le demi-diamétre ac
de l'orifice ; représentons-le par a, et meltons cette valeur de x dans Péquation du
n° 487, nous aurons -

y =cd =2k —a V' Rk — a)....(257).

- Silon prenait le radical avec le signe -+, on aurait le point &' (ﬁg. 117) qui
n'appartient pas 4 la question.
491, Cette équation (257) peut se mettre sous la forme

cd = 2h (1 -V 11— %) (258),

d’ot1 L'on voit que le point d Séléve 2 mesure que la hauteur h augmente, car le
facteur b du second membre augmente dans un plus grand rapport que celui
compris entre parenthéses ne diminue.

Réciproquement , le point d s’abaisse quand k diminue.

492. On pourrait demander quelle devrait étre la hauteur 2 du liquide,, pour
que le point d se trouvét sur la face supérieure de ce liquide.

Pour résoudre cette question, il suffira de supprimer les facteurs égaux cd et
h dans les deux membres de I'équation (258) , ce qui donnera

(= V=D =,

dou _1/4-_.4412_—;1, ou 4_%‘.’;21,
et par conséquent h = -‘-if (259).

493, Tl suit de Ia que, lorsqu’un vase se vide et que 1% qllillb.l'e existait avant
Touverture du vase , dés que la hautear n’est plus que les ¢ du demi-diamétre
de Porifice , il commence a semanifester une dépression sur la face supérieure; et,
dans le cas du niveau constant, la hauteur étant au-dessous de cette limite, la
dépression est permanente.

49%4. Déterminons la direction que prendraient les molécules liquides en tom-

bant des différens points des courbes ad , bd (fig. 117) (qu'on pourrait appeler

déversoires) , dans Vespace situé au-dessous de ces dewsx courbes, st rien ne génait
leur mouvement naturel. )

Pour cela , considérons une tranche quelcongue parmi celles comprises dans 1a
. a4
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hauteur cd des déversoires , la premidre sur le fond, par exemple; il est clair
que,, dés que les molécules situées au-dessus de L'orifice auront tombé, chacune
de celles situées sur le bord de cet orifice sera chassée, dans celte ouverture,
avec une vitesse horizontale égale & V, et une vitesse verticale égale A la pre-
miéreV; de sorte que, si la pesanteur ne venait agir au méme instant, la molécule
@ prendrait une direction ao quiserait la diagonale d’un carré dont les cotés ac, ak
seraient la vitesse V. Cette molécule a seradonc soumise, 4la fois, & unevitesse uni-

forme V| 2, dans la direction ao, qui est 4 45° par rapport 4 la verticale ae, et
4 l'action de la pesanteur; elle décrira donc une parabole dont la verticale ae sera
un diamétre sur lequel les ordonnées seront a 45°. L’équation de cette parabole
sera donc (n° 339)

V' étant la vitesse uniforme suivant Ia direction ao ; mais V' :VIA, Péqua-
tion de cette parabole sera donc

y: = igi..vt'...... (260).

495, Mais (équ. 255 ) V= [Agh ; en substituant , il nous viendra donc,
¥? = Bhx....... (m).

496. Rapportons cette derniére équation aux axes rectangulaires ae, ab
(fig. 117), et pour cela, nommons x' et y'les nouvelles coordonnées aq, ¢M;

nous aurons AP=x=2'—Pg= x'—y',
attendu que le triangle rectangle PMy est isocéle; et
PM=y—=y' |/.
En substituant dans I'équation () et faisant les opérations nécessaires, on aura
2 + 4hy = 4hx.... (261).
497, Résolvons cette équation par rapport & y, il viendra

y=—ah = Vgt frr=—ah = b+ 2,

d’otr nous voyens que la plus grande valeur négative que nous puissions donner
dxet x=— h,cequidonneray=— 2 h.
. Ces coordonnées — h et — 2k seront celles du sommet E de notre parabole.

498, 1l'suit de la que le sommet de cette courbe est situé sur la face supé-
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vieure du liquide, & une distance de droite & gauche de la verticale e élevée par
le point @ du bord de l'orifice, égale a 2 fois la hauteur du liquide.

~ 499. Transportons l'origine des coordonnées au sommet E; pour cela, il
suffira de faire ¥ = x" — h, et y =y~ 2h, et de substituer dans Iéquation
(261) : on aura

toutes réductions faites. Cette équalion, comme on voit, est toute pareille a

celle (g) dun® 488 de la parabole fda.

500. Le paramétre de cette parabole est donc égal & 4 fois la hauteur A du
liquide,, et comme le sommet E est sur la face supérieure, il s'ensuit que le foyer
est sur le fond du vase. '

501. En faisant  successivement égale aux profondeurs des tranches succes-
sives, I'équation (262) sera celle des paraboles rs, r's’, r"s", r"s", t'u , vx....,
décrites par toutes les tranches comprises dans la hauteur ¢d du point de ren-
contre des déversoires, I'espace sous ces déversoires étant supposé libre.

502. Le liquide situé dans Pespace adb (fig. 117) doit tomber évidemment
a la maniére des solides, et I'écoulement du reste de la masse liquide ne peut
avoir lieu qua travers les déversoires, et ne peut étre régulier, que quand la
partie sous les déversoires est entiérement sortie du vase.

503. Il suit de la que I'on peutregarder comme étant entitrement vide , Ves-
pace adb , sous les deversoires, a l'instant que I'écoulement commence a travers
ces derniéres. ' '

504. Il est évident, en outre, que I'écoulement ne dépent uniquement que
de la vitesse que communique la pression des parties supérieures aux molécules
situées a la surface des déversoires , et que l'action de la pesanteur & la sortie de
ces derniéres n’a aucune influence sur cette vitesse : son effet se borne a faire
prendre, aux molécules liquides parvenues dans Pespace adb, une certaine direc-
tion a Pextérieur du vase.

505. De tout ce qui vient d’étre dit, et du n°|494, il faut conclure que, dans
le premier instant de I’écoulement , les molécules situées 4 la surface des déver-
soires , seront lancées dans les directions des droites ao, et bo, ms et rs,"m’ s' et
r’ s',etc., qui sont & 45° par rapport a I’horizon. Sans qu’il soit nécessaire de le
démontrer en détail, il est facile de voir que la quantité de liquide qui pourra
couler dans le premier instant, sera au plus égale, dans chaque section verticale
menée par le centre de l'orifice, & l'aire de la figure adbo; d'otr 'on voit que la
quantité totale de I'écoulement sera proportionnelle & la somme des volumes de
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deux cbnes ou pyramides qui auront lorifice pour base, et pour hauteur, 'un
cd, et T'autre oc =ac = a.

506. Cherchons done les volumes de ces cones ou pyramides; celui du der-

nier abo, qui est ordinaire, sera %-a.......(a) ,

.
S étant D'aire de I'orifice, et a la moitié ac du diamétre de ce dernier.

Quant au volume de l'autre, il serait plus difficile de I'avoir rigoureusement;
mais comme les courbes ad, bd ne s'éloignent pas beaucoup de la ligne droite,
‘pour éviter le calcul, nous pourrons considérer I'espace abd comme ayant la
forme d’un céne ou d’une pyramide ordinaire , et comme sa hauteur dc ne dif-
fere pas beaucoup de ac = a, son volume seraa peu de chose prés

Sa
e (o).

Le volume des deux cones sera donc la somme des expressions (a) et (b);
de sorte que si nous appelons C ce volume, nous aurons

- (e)y

Ce qui précede suppose que la densité du liquide introduit dans I'espace
adbo, est la méme que celle de la masse liquide située au-dessus des déversoires,
ce qui n’est pas; car porr que cela fit, il faudrait que les distances am, mm',
m'm”, etc., fussent égales & 1’épaisseur des tranches; or ces distances sont aux
épaisseurs des tranches comme ad est a cd; le liquide introduit dans l'espace
adbo est donc moins dense que celui situé au-dessus des déversoires.

Comme les seules tranches qui peuvent s'introduire sous ces déversoires sont
celles comprises dans la hauteur cd de ces derniéres, si par le point a nous élevons
la verticale qe (fig. 118), et que, par ce méme point @, comme centre , nous
rabattons, sur la droite ad, les épaisseurs des tranches comprises dans la hau-
teur ae = cd , en menant par le dernier point f une droite fg & 45° par rap-
port a Ihorizon , le trapéze afgo sera exactement la quantité de liquide qui aura
passé dans le méme temps sous la déversoire bd. Ainsi, la véritable quantité de
liquide qui s'échappe a chaque stant & travers les déversoires, sera le double
cone ou pyramide adbo , moins le double cone ou pyramide fdhg.

Or, ces doubles cones ou pyramides sont semblables ; ils sont donc entre eux
comme les cubes de leurs lignes homologues. Si donc C et G’ sont ces doubles

F+3=2F

cones , noUs aurons

C1C 1% (@dy I (@ff... @)
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Mais df = ad — af = ad — ae = ad — cd ou df =c¢ — d , en nom-
mant ¢ la droite ad, et en se rappelant que ¢d = d ; si donc nous subs-
tituons dans la proportion (d), il nous viendra

C.:C 1ty (e—dp,

Cled ... (e)

e
03

d'ol1 nous tirerons C' =

La véritable quantité de liquide qui est passée sous les déversoires est donc

C—C' =C— C(cc_:—d)a _ C[c’-—cgc—-dﬂ;

nommons-la M, et mettons pour G sa valeur (c) ci-dessus, et il nous viendra

__2aS[C — (e—d)]
M= T PN (X

L’écoulement devant se continuer, aprés le premier instant, par tranches
paralléles au plan de Porifice, dans. le méme temps que la molécule placée au
point d , descendra au point ¢, il sortira un prisme équivalent 4 la valeur () de

M, qui aura pour hautear ¢d = d (fig. 117); nommons N Paire de la base
de ce prisme , nous aurons

_2a8[@—(c—d)']
Nd = 3¢

2a8 [¢— (c—d)
3cid

d’oti N=

.. (263).

Tel sera le coéfficient d’écoulement ou de dépense. On voit que ce coéfficient
dépend de la grandeur de Forifice et de la hauteur du niveau supérieur par rap-
port au fond du vase, ce qui est conforme & I'expérience.

507. 1l Sagit maintenant de trouver la vitesse par laquelle il faut multiplier
le coéfficient N pour avoir la dépente par seconde.

Pour cela, observons que comme les vitesses des tranches successives vont en
progression par différences égales, la vitesse moyenné des tranches comprises
dans la hauteur c¢d du sommet des déversoires, est la demi-somme des vi-
tesses dues aux hauteurs b et b — d, qui sont (équi. 255) respectivement

V gh, Vg (h—a), oo V sg Vi Vg Vb,

la vitesse cherchée sera donc
v — L= T
a
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508. Multiplions cette derniére par Féquation (263), et nommons D la dé-
pense par seconde , il nous viendra

D aS[C Tt = g (Vb Vb d ) (364),

Pour P'équation générale qui fera connaitre la dépense réelle qui doit avoir lieu
par seconde de temps, D'orifice étant une figure plane quelconque, abstraction
faite du frottement et de la cohésion. A celte équation on joindra celle qui
donne la valeur de d (258), qui est

d=12h — 2 |/ h (h—a).....(265).
et on observera que  ¢* = |/ a? + d=.. (266),

puisque ¢ est hypothénure ad du triangle rectangle ade (fig. 117).

509. Voyons maintenant si les résultats que donne I'équation (264), sont
d’accord avec ceux des expériences faites le plus en grand, et prenons pour
exemple, une de celles de MM. Poncelét et Lesbros, la premiére du tableau
n® 1, par exemple. )

La hauteur b = 1,7447; et Dorifice étant un carré de 20 centimetres de
cdtés, nous aurons S=10,04, et = 0,1; quant & ¢ = 9™ 8og (n’329).

Cela posé, calculons la valeur numérique de d. Pour cela, substituons les
nombres ci-dessus dans I'équation (265), ce qui nous donnera

d =2 X.I’744?_3 |/1,7447 X (1,7447 — o,1) =o0,1016;

et dans I'équation (266) cette valeur de d et celle de a, et il nous viendra

¢ = l/u,ox + (0,101612 = 0,1425;
substituons enfin les valeurs de d et de ¢, et les autres nombres ci-dessus
dans l'équation (264), et nous aurons

0,04 X 0,1 [(0,1425) — (0,1425 — o,1016)’]
3 X o,1016 X (0,1425 )

D=

X l/ 1-9,618 ( |/1,'7447 + I/l,';ézig — 0,1016 = 0,145,517
ou 145 litres 817 mil.
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L’expérience de MM. Poncelet et Lesbros a donné 138 L., 434 mil., daprés
le premier jaugeage et 141, l. 064, d'aprésle second, que ces messieurs don-
nent comme le plus exact. Notre formule donnerait donc 4 1. 453 de plus
par seconde. On n’en sera point étonné si Pon fait la part du frottement du
liquide sur les bords de 'orifice, de sa cohésion , des inexactitudes inévitables
des expériences , de I'évaporation’ pendant la chute du liquide, et de la
forme de lorifice , qui est ici, & cause des angles qu'elle présente,
moins favorable a la dépense qu'un orifice circulaire. En général, 2 superficie
égale plus la forme de V'orifice s'approchera du cercle, plus elle sera favorable
3 la dépense.. Au surplus, si notre formule donne des résultats plus grands que

les expériences de MM. Poncelet et Lebrosse, elle en donne de plus petits que
celles de plusieurs autres autears,

510. Mais supposons les observations de ces deux expérimentateurs parfaite-
ment rigoureuses, et divisons le résultat donné par le caleul précédent par
la différence 4 L. 45 ; nous aurons pour quotient 32 environ ; cest-h-dire que
les divers obstacles que rencontre le liquide dans son mouvement diminuent
la dépense d’un pen moins d’un 32" ; si doncnous nommons 1 la dépense, théo-
rique, la dépense réelle sera 1 — 35 = % Ainsi, pour que la formule
(264) donne] la véritable dépense, il faut en multiplier le second membre
par 35 ; ainsi nous aurons

1 08 [¢ — (¢ — d) o -
p =3xS el = Iy () Vi

511. Comme le frottement et les autres causes de diminution sont va-
riables, ilne faut pas s'attendre & ce que cette formule donne des résultats
parfaitement rigoureux dans tous les cas, mais les erreurs seront toujouss

assez petites pour qu'on puisse les négliger dans la pratique sans aucun in-
convénient.
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LECON 11,

Détermipation de la quantité de liquide qui s’écoule par un orifice percé dans une
paroi verticale du vase.

512. Au n° 482 nous avons expliqué comment les tranches de la masse li-
quide se comportaient, les unes a I'égard des autres, dans le vase, sans rien pré-
ciser sur la maniére dont elles sortent par T'orifice : cest ce dernier point que
nous allons démontrer maintenant. '

Considérons d’abord une tranche horizontale ABCD (fig. 119), prise en un
point quelconque, dans la hauteur de Porifice ; soit ab la largeur de ce dernier
au niveau de cette tranche.

Et observons que I'écoulement ne peut avoir lien d’une manitre réguliére,
que toutes les molécules comprises dans-le triangle ach ne se soient avancées en-
semble, dans Porifice, au moins de I'épaisseur de deux molécules.

En effet, s'il n’y avait de sorties que celles de la premiere file qui se trouve
sur le bord de T'ouverture , les molécules 2,2 ne pouvant point s’approcher
Pune de lautre , celles comprises entre les deux s'y opposant , elles ne pour-
raient pas non plus se diriger vers Porifice, attendu que les molécules 1,1 vien-
draient ala traverse les en empécher ; et ces derniéres ne pourraient pas da-
vantage s'échapper latéralement , les molécules 2,2 tendant 3 leur barrer le
passage. Cela est évident , puisque toutes ces molécules ont la méme vitesse.
11 faudra donc que la seconde file de molécules s’en aille a la suite de la pre-
miére , avant qu'aucune autre ne puisse se mettre en mouvement. Cette seconde
file de molécules étant parvenue 2 la place qu'occupait la premiére , avant ’ou-
verture de l'orifice, laissera un-vide ézal & une molécule i chacune de ses extré-
mités , qui ne pourra étre remplie ni par la molécule 1, ni par la molécule 2,
qui bordent immédiatement ce vide, car, ne pouvant y entrer toutes les deux
3 la fois, et étant a4 la méme distance et animées de la méme vitesse, elles se
barreront mutuellement le passage. La troisitme file , en suivant la seconde,
laissera un vide égal & une molécule 4 chacune de ses extrémités , que ne
pourront remplir ni les molécules 2,2, niles molécules 3,3, et ainsi de suite ,
de sorte que les files de molécules comprises dans le triangle ach s’étant avancées
seulement de 1’épaisseur d’une molécule , celles comprises de I'autre cbté des
droites ac , bc , n’auront éprouvé aucun mouvement. Mais aussitét que les files
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comprises dans le triangle ach se seront avancées davantage, les molécules 1,
2, 3, 4, 5...., savanceront & leur suite, en passant A travers les droites
ac , bc ; et comme les molécules suivantes ne pourront arriver a l'orifice qu'en
passant de méme 4 travers les droites ac, b, il s’ensuit que ces dernieres sont
de véritables déversoirs, qui font prendre aux molécules intérieures des direc-
tions & 45° par rapport 4 la face de lorifice.

513. Je dis maintenant qu'il existe des déversoirs dans la section verticale
menée par le centre de lorifice.

En effet , soient ABCD (fig. 116) cette section verticale menée perpendi-
culairement au plan de Torifice, et ab la double ordonnée qui passe par le
centre de cet orifice. Cela posé, considérons la molécule située au point &,
c'est-i-dire contre le bord supérieur de Vorifice ; comme celle molécule est sol-
licitée au mouvement par deux forces égales, I'une horizontale et I'autre verti-
cale de haut en bhas, elle ne pourra sortir du vase qu'en s'échappant suivant la
droite bd dirigée & 45° 11 n’est pas nécessaire de dire qu'il en sera de méme
pour les molécules situées au-dessous de celle placée au point b, et jusqu’a
une certaine distance en contre-bas de ce point b. Les directions de toutes ces
molécules se briseront donc en des points b, e, f, ¢, qui appartiendront a
une certaine courbe befc, que nous déterminerons ci-aprés.

Considérons & présent la molécule placée au point ¢ du bord inférieur de
Vorifice ; il est clair que, puisque les molécules liquides agissent dans toutes
les directions avec une force égale & la pression qu’elles éprouvent, cette mo-
lécule ase trouve sollicitée & la fois par deux forces égales, I'une horizontale et
Pautre verticale de bas en haut; cette molécule s’échappera donc suivant la
droite ad dirigéc & 45°. Il ensera de méme pour les molécules au-dessus du
point @ ; les directions de ces molécules se briseront donc aussi en des points
a, g, h, ¢, qui seront situés sur une certaine courbe ac que nous allons
calculer aussi. '

Les deux courbes ac, dc, se rencontreront évidlemment en un point ¢, et
seront de véritables déversoirs.

51%. 11 suit des deux dernitres propositions que , dans le cas de lorifice
percé dans une paroi verlicale, tout aussi bien que dans celui de orifice au
fond du vase, les déversoirs sont des surfaces coniques ou pyramidales, suivant
la forme de lorifice.

515. Déterminons la nature de chacune des courbes ac, be (fig. 120),
ab étant la plus grande dimension verticale de l'orifice.

Si nous prenons le point @ pour l'origine des coordonnées de la premidre ac,
la droite aP étant I'axe des abscisses , il est visible que cette courbe est la méme
25
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que celle bd de la figure 117, c'est-a-dire une parabole dont D’équation

(n°486). est y' — 4hy = — fhax.... (268).

Quant 4 la seconde bc, c’est de méme une parabole. Prenons l'origine des
coordonnées au point b, et I'horizontale 5Q pour I'axe des abscisses; si, par les
points 2, n’, »",..... ol1 les plans des tranches horizontales viennent rencon-
trer cette courbe , on éleve les ordonnées ng, n'q’, n"q,", etc., les distances
bq, qq9',q'q", etc., iront en croissant comme les vitesses des tranches succes-
sives, et par conséquent comme les racines carrées des profondeurs. Si donc
nous nommons A’ la hauteur Fb, depuis le niveau supérieur jusqu’au point &,
les vitesses des tranches successives, & partir du point b et au-dessous de ce
point, seront respectivement

Vi, Vit o Vo, Vs Vb + g

L.

y' étant une ordonnée quelconque ¢"n".
Cela suffit pour faire voir que pour avoir I'équation demandée il faudra
faire les mémes calculs qu’au n® 486, ou plutét mettre dans tous ces cal-

culs A au lieu de &, y' au lieu de y, et le signe 4 dans. tous les termes :.
on arrivera & I'équation

y'r 4 4oy = 4h' 2 ... (@)
au lieu de l'équation (256).

516. Rapportons. cette dernitre équation & l'origine a ,. et pour cela, faisons
attention. que les abscisses ne changeront pas , mais qu’une ordonnée quelconque
y" =a— y", en appelant a la hauteur ab de T'orifice, et y" I'ordonnée rela-
tive & V'origine @. En substituant dans I'équation (b) ci-dessus, il nous viendra.

(@—y" P+ 40 (@—y") = 40/,
ou en développant et supprimant les accens de y et de x,.
@ — 2y + p + b — [y = fh'x,
dott 32 — (20 + 4b') y = 42’ — @ — fh'a.

Si dans cette derniére équation nous mettons pour k' sa valeur b — a, il
nous viendra :

y*—23@h—a)y =40k — a) x — a (4h — 3a)...... (269):

517, Cherchons maintenant les coordonnées du point ¢ oit les déversoirs
se rencontrent. '
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Pour cela,prenons la valeur de x donnée par I'équalion (368) du numéro pré-

<édent, qui est & = ———Z » pour la metire dans I'équation (269) ; il nous
viendra

(4?!3’—'.7}:) (h_"“f") — a(Aih—Ba)

P —a(h—ay=
d’olt nous tirerons

h (4h — 3a) ‘/k* (b — 3a)* —ah (hh — 3a)

Toh—a (2h— a)* 2h — g

y="P =

h (4h — 3a) h (Gh—3a) 7k (G —3n)
ok —a 2h—a ( abh —1 ﬁ)...(ago).
Nous ne donnons que le signe — au radical, parce que le signe + appar-
tient & l'ordonnée du point de rencontre des deux paraboles qui se trouve au-
dessus du vase, et qui, par conséquent , ne fait pas partte de la question.

518. Pour avoir IabscisseaP du méme point ¢ de rencontre des déver-
soires ac , bc, il faudra éliminer 'y entre les équations(268) et (269);
ou substituer la valeur (270) de y dans 1'équation (268). Représentons cetle
valeur de y = Pc¢ par b, et aprés avoir substitué dans Iéquation (268),

nous aqmns ad=a —moc =d= @?—3————';“......(272).

-

Ainsi, aprés avoir calculé b par I'équation (270), on en mettra la valeur
numérique dans cette derniére , et on aura la distance d = oc, par rapport
au plan de lorifice, du point oi les déversoires se rencontrent.

519. Si nous supposions la hauteur ab (ﬁg. 120) de lorifice égale i celle
% du liquide, c'est-a-dire, si nous supposions que le liquide s’écoulat par un
déversoir, 1’équation (270) deviendrait

J":E: FI.- — ‘/}la —_— hﬂ == .h.u.u (272), ’

ce qui nous fait voir que dans cecas le point ¢ de rencontre des déversoires
serait en r, sur la face supérieure du liquide. D'oir I'on voit que la parabole
kbe se réduirait a la ligne droite Fr : dans cette méme hypothese o a=h,
I’équation (269) de cette- parabole doit donc se réduire 4 celle d'une ligne
droite horizontale Fr, siluée i une distance aF — h au-dessus de laxe
aP des abscisses 5 or, cette équation devient en effet par cette hypothése

y—a(h— Ry =—k

d'ot y:k:‘;‘/h’——h’:
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ce qui est bien I'équation de la droile Fr, puisque pour toutes les valeurs de
@ on aura y = h.

520. Si dans I'équation (271) nous mettons Ja valeur (272) de b,_-il nous
4hz — K 3h
i T g

On aurait eu la méme valeur de x en faisant y = h dans Péquation (268) ,
comme cela doit étre,

viendra x=d = Fr =

521.La dépense par seconde est évidemment proportionnelle 4 la quan-
tité de liquide qui peut transpirer dans un temps donné, & travers la sur--
face conique ou pyramidale qui constitue les déversoires; d’onr- il suit qu'on
peut supposer vide l'espace conique ou pyramidal formé par ces déversoires,
lorsque le liquide situé de P'autre cté de ces dernitres se met en mouve-
ment, De la il suit, comme au n° 505, que la depense est proportmnnelle au
volume des deux cdnes ou pyramtdes ach, adb réunis:

522. Le premier cone ou pyramide ach est mixte, a cause des arcs de pa-
rabole ac, bc; mais comme les courbures de ces arcs de parabole sont peu
sensibles, nous pourrons, sans beaucoup d’erreur, regarder ce cone ou cette
pyramide comme un solide ordinaive. Le volume de ce céne ou dé cette pyra-
mide acbh sera donc l'aire S de Lorifice , multipliée par le tiers de oc = d;

. ' Sd
alnsi vol. cﬁn. ach = —5-.....(a).

Quant & l'autre cone ou pyramide adb, comme les droites ad, bd sont a
45° sur ab, sa hauteur sera la moitié du dlametre ab=a de Vorifice ; son
volumc sera donc

R S a Sa .
vol. con. ach = g X, = ué—(!})

Ajoutons ces deux volumes, ct xeprésentons leur somme par C, nous aurons
Sd4  Se Sa
C = 7 +g=5¢ (d + a).. (o)

Par les mémes raisons quau n° 47, du volume de ce double céne, il faut
en retrancher un autre semblable, dont Pexpression sera la méme que celle
de C' de ce n° 506, en observant que dans le cas actuel d = co (fig. 120),
ct ¢ = ac; nous aurons donc encore

¢ =LY @,
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La véritable quantité de liquide qui passera a travers les déversoires sera
— [P D S It |
G—C;“‘—G C(” d) C[ca (c d!];

done pe

nommons-la M, et mettons pour C sa valeur (c) ci-dessus, et nous aurons-

§ (2d -t a) [ — (¢ — Y
M= 20dta [ I @.

L’écoulement devant avoir lieu par tranches paralleles au plan de Porifice ,
aprts le premier instant, dans le méme temps que la molécule-placée au point ¢
parviendra au point o, il sortira un prisme équivalent 4 la valeur (¢) de M,
qui aura pour hauteur oc'= d ; nommons N I'aire de la-base de ce prisme;,

Nd — S (3‘;;!' a) [¢' — (e— d]‘],

nous aurons

doi N = 20dto (E‘:;T =2, (293),

tel sera le coéfficient de-la dépense, par un orifice’ vértical. On voit que ;
comme dans le cas d'un orifice horizontal, ce coéficient dépend de la gran-
deur de lorifice et de la hauteur de la face supéricure du liquide par rap-
port au fond du vase.

523. Quoique la‘ superficie N soit moindre que celle S de Porifice , il ne
faut pas en conclure que le liquide ne sort pas a plein orifice ; mais il faut ens
tendre que la densité du liquide est moindre dans le plan de Dorifice que de
Pautre c6té des déversoires, cest-i-dire que dans ce plan les molécules sont plus
ccartées les unes des autres que dans lintérieur du vase. Elles sont unifor:
mément distribuées dans ce méme plan, mais elles s’en échappent avec des vitesses
différentes.  La vilesse moyenne entre toules. ces vitesses différentes est évidem-
ment due, non pas 4 la profondeur du cedre de gravité de l'orifice, mais
a celle du centre-de gravité de la-pression que cet orifice éprouve (n® 441 ) s
nommons G la dislance de ce point au bord inférieur @ de l'orifice ; la
profondeur de ce centre de gravité par rapport & la face supérieure du liquide
sera b — G ;. par conséquent la vitesse que nous cherchons sera

V=15 (h= G (a74)
524, Muluphons les équations {273} ct (274) I'une per l'autre,- et vepré-
sentons par D le produit des premiers membres , nous aurons

o 31 g3
p =St b=t ) G (.

pour Péquation qui fera connaitre Ja dépense par scconde, Porifice étant vertical.
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Quand on voudra calculer ¢ette dépense, on cherchera la valeur de & au
moyen des équations (270) et (271), ct celle de ¢ au moyen de celle-ci :

c = I/!)ﬂ + d*.o. (276) 5

525. Si la hauteur ab de V'orifice (fig. 120) élait égale a celle du nivean
supérieur, en se rappelant qu’alors :

b=k (0°510) & d = '2}‘ (n° 520),

oh? 5k
d'ots c:l/};s +?ﬁ:—{,etquea~_—h,_
en substituant dans 'équation (275), et faisant toutes les réductions , il nous

viendrait

. D:%?l/sg l/(h“Gj;

et en faisant les calculs numériques indiqués, et se rappelant que g =
9,809

D=12,303 X S 1/ h — G (277)

Telle sera la dépense par un orifice vertical ouvert par en haut, c'est-a-dire
par un déversoir. '

526. Quand e déverseir sera rectangulaire, comme cela est le plus or-

dinaire, G = ;, et la formule précédente deviendra

D = 2303 XS I/% o (278).

équation trés-simple, et qui donnera la dépense par seconde par un déver-

soir rectangulaire.
Cette équation donne d’une manitre trés-approchée les mémes résultats

que les expériences de MM. Poncelet et Lesbros, car je trouve par la formule
35, 1. 886, et Iexpérience a donné, dans le méme cas, 34, l. 81 d'aprés
un premier jaugeage , et 35,1. 924 d’aprés un second ; d'otrl'on voit que notre
formule donne un résultat intermédiaire & ces deux -mesures, Ici il y a plus
daccord entre les résultats du calcul et ceux des expériences , parce qu'il
y a moins de causes rétardatrices que dans le cas d'un orifice.

527. Quant & 'équation (275), elle donne environ un 20™ de plus que
les expériences de MM. Poncelet et Lesbros. Ainsi pour la mettre & peu prés
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d'accord avec ces expériences, il faudrait la multiplier par 2, ce qui don-

nerait 0:195(3d+a}{03—(c—ﬁd)’]>< /og (h—G), -

120 d¢*

ou en faisant les.calculs numériques indiqués

D — 278 (d +;3 [¢ — (c — d)] P [/h — G...(279).

Quand Ia hauteur du liquide sera unr peu’ considérable, on pourra sup-
poser G = ; a, sans erreur sensible. Mais l'orifice étant un carré, on aura
. a 3h — 2a
rigoureusement G = 3 X Sp—7 »ee (280),

et dans le cas d'un cercle

_a(ah— a X 1,2480)
6= a (2h—a) U7 (281),

a étant le diamétre de Vorifice.

LECON V.

Considérations sur ce qui précéde et quelques problémes qui s’y rapportent..

528. Les formules des deux derniéres lecons supposent que le liquide dans
le vase est maintenu & un niveau constant, et en calculant nos formules,
nous avons -supposé que l'introduction du liquide nécessaire pour con-
server ce niveau constant ne dérangeait rien dans la maniére dont le liquide se
présente a lorifice. Il sagit de faire voir, maintenant, que cette supposition.
est conforme A ce qui se passe réellement dans le vase.

En effet , le mouvement dans le liquide qui doit fournir'a la dépense ne
peut provenir que de celui qui se manifeste 2 lorifice de sortie, dés I'suverture
de ce dernier ; tout ce qui o été dit aux n® 459 et suivans, et au n° 482 et
suivans , sur le jeu des nappes des tranches horizontales aura donc lieu, jusqu’aun
niveau du fond du canal qui fournit 4 la dépense; et il ne serait pas difficile
de se rendre comple de quelle maniére les tranches qui arrivent dans le vase
se comportent pour remplir les vides qui tendent & se former dans la tranche
situde immédiatement au-dessous du fond de ce canal, surtout si la profondeur
de ce dernier est égale au diamétre de V'orifice dé sortie. Mais sans entrer dans ce

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

200 . COUBS DE CONSTRUCTION.

détail , qui serait fastidieux (*), on congoit qu'il ne saurait y avoir désordre, 'équi-
libre existant avant louverture du vase , tant pour le cas de lorifice percé au
fond , que dans celui d’un orifice vertical , et que les tranches qui arrivent par le
canal doivent s'introduire régulierement , suivant Pordre]de leurs vitesses respec-
tives, dansles vides qui leur sont présentés par écoulement. Il est donc clair qu'il
ne saurait résulter de changement dans ce qui a été ditsur ce qui se passe a orifice
de sortie, par l'introduction dans le vase du liquide qui fournit a la dépense.

Cependant cela suppose que I'embouchure du canal d’entretien est au moins

telle, quavec une vitesse moyenne due & la profondeur du canal , il puisse
s'introduire dans le vase une quantité de liquide égale & la dépense ; car dans
le cas ot cette embouchure serait plus petite!, et-qu’il faudrait une vitesse
moyenne proportionnellement plus grande, comme cette vitesse ne serait pas
acquise & 'instant méme, il y aurait nécessairement un abaissement quelconque
dans le niveau intérieur, qui serait proportionné de maniere & faire diminuer
la dépense d’une part, et a augmenter d’une autre part la vitesse du liguide
qui fournit 4 cette dépense, de maniére qu'a une certaine époque | ecoulement
deviendrait régulier.

Il ne serait pas trés-difficile de calculer toutes ces circonstances, mais comme
nous voulons nous borner 4 ce qui peut étre le plus ordinairement utile, et qu’il
est presque toujours possible de disposer le canal de maniére a pouvoir fournir
plus de liquide qu'il ne s'en dépense, et qu’alors on rentre entierement dans le
cas des formules données dans les deux le¢ons précédentes , nous n’entrepren=-
drons pas la solution de ce probléme, quoique trés-intéressant : il nous suffit
d’en avoir exposé les conditions.

599. On congoit que ce que nous venons de du'e suppose que le fond du canal
qui fournit le liquide est placé & une certaine hauteur au- ~dessus du sommet des
déversoirs dans le cas d’un orifice percé au fond ; ou au-dessus du point le plus
élevé de Dorifice de sortie percé dans une paroi verticale. Voyons ce qui arrive
lorsque le fond du canal et celui du vase sont au méme niveau.

Cette question présente deux cas principaux pour lorifice horizontal , et
trois pour Vorifice vertical.

Pour lorifice horizontal

1° Celui ot le vase est fermé de toutes autres parts que celle par laquelle le li-
quide qui fournit & la dépense peut entrer dans le vase ;

(*) Quoique dans certains cas il puisse étre nécessaire d'étudier le jeu précis des nappes des
différentes tranches horizontales de la masse liquide, en général il suffit, pour le calcul, de savoir
quie les molécules liquides sont animées de deux mouvemens principaux : le mouvement hori-
zontal et le mouvement vertical , et que ces deux mouvemens ont la méme vitesse quand on part
de I'état d'équilibre de la masse liquide.
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2° Lorsque Porifice est dans le fond d’'un canal dans lequel est un courant
d'eau.

Et pour lorifice vertical ,

1° Le cas ou le plan de lorifice est perpendiculaire & la direction que prend
le liquide qui fournit & la dépense ;

2° Celui ol1 ce plan est paralléle & cette direction ;

3° Enfin celui o1 l'orifice étant parallele 4 la direction du liquide, il s’agit
d’un canal dans lequel est un courant d’eau.

Nous allons essayer de résoudre ces cinq questions importantes.

530. Supposons d’abord que la figure ABCDEH (fig. 121), soit une section
verticale du canal ABFH et du vasc CDEF, au fond duquel lorifice ab
est percé, celte section étant paralléle a la longueur du canal. Supposons de
plus que la cloison FG qui sépare le canal du vase, ne laisse passer le
liquide dans ce dernier que par 'ouverture GG, mais avec assez d’abondance
pour fournir & toute la dépense de Torifice ab; que le niveau LM dans le
vase soit le méme que celui 1K dans le canal, et enfin, que la masse liquide
soit en équilibre de part et d’autre , au moment de 1'ouverture de 1'orifice ab.

Cela posé, je dis que le liquide ne pourra se mettre en mouvement dans le
canal,, qu’en proportion de I'écoulement qui aura lieu par lorifice ab; d’oly
il suit que , les vitesses des tranches comprises dans le vase FCDE seront abso-
lument les mémes que si le niveau était entretenu constant dans ce vase par
le moyen indiqué (n° 528); seulement, le jeu des nappes , dont on pourrait
se rendre compte, s'il était nécessaire, seradifférent , mais il n’en produira pas
moins les deux vitesses simultanées, verticale et horizontale, dans toutes lcs
directions , comme dans les cas précédens ; ainsi, la dépense par l'orifice ab ,
dépendra de la formule (267), la hauteur h “étant cclle CL du niveau LM
au-dessus du fond CD. '

Les choses, quant au calcul, restcraient encore les mémes, si la cloison GF
n'existait pas ; c'est-a-dire si le vase n’était que le canal lui-méme, fermé
transversalement par la paroi DE.

531. Soit ABCD (fig. 122), une section verticale faite longitudinalement
4 un canal contenant.un courant d’eau , au fond duquel est percé un orifice
ab , et demandons-rous la formule quidonneraitJa dépense par cet orifice ab.

Observons d’abord que dans une section verticale menée par le cenlre de
Vorifice perpendiculairement au courant, nous aurons les mémes courbes dé-
versoires que dans la fig. 117 (voyez le n® 486); car transversalement au canal
les molécules liquides ont la méme tendance a4 se mouvoir horizontalement
que dans un vase fermé latéralement de toutes parts, attendu qu’une forc:
perpendiculaire 4 une autre nc saurait étre altérée par celle-ci. Ainsi, il ne

a6
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nous reste plus & nous occuper que de ce qui se passe dans la section longitu-
dinale ABCD.

532.Pour ne rien hasarder sur ce point, déterminons, par le calcul, les courbes
déversoires ad, bd , en tenant compte de la vitesse du courant. Pour cela, sup-
posons que le courant soit régulier, et que le fond du canal soit un plan
horizontal ou assez peu incliné, longitudinalement, pour qu'on puisse regarder
les hords de Porifice ab comme étant dans un plan horizontal , sans erreur
sensible, ces bords étant dans le fond méme. Le courant étant régulier ,
nous pourrons supposer la masse liquide dans le canal, divisée en tranches pa-
ralléles au fond, et d’une épaisseur égale & une molécule (n° 460).

Si A est la hautear du liquide dans toute la longueur da canal , ou au
moins aux environs de lorifice, si v est la vitesse de la tranche du fond
(supposé parfaitement poli) due au courant, la vitesse de la tranche immé-
diatcment au-dessus s'obtiendra par la proportion (n° 486)

ViV = ey = O

de sorte que les vitesses des tranches successives dans le sens de la longueur
du canal, seront respectivement

v ST v /i3 v /h=3 v JE=}
Vi T YR T E Tk

Cela posé, considérons que si la vitesse v n’existait pas, les vitesses horizon-
tales avec lesquelles les molécules se porteraient vers lorifice ab, seraient
(n° 486) respectivement

|/:ag |/h, |/2g l/f:, l/ﬂg l/k—ﬂs l/ﬂg l/ﬁ:
Vg Vb=

Pour les molécules qui se présentent a la déversoire ad , les vitesses respec-
tives des tranches seront donc

v, 5 €lCuu., (@)

(4 yo9) /by @tV yE=T @t/ Ji=a
Jh ! Vh ’ Vh

(v-l—/ﬂji/"_s y €tCun. (),
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et pour celles qui se présentent & la déversoire bd ,

(Vo9 =0) /b (ag=0) /BT (Jag =) E=
Vi B R

(Vo —::’]h Vh— 3, etCue ().

533. Maintenant, cherchons I'équation dela courbe ad, et pour cela rappe-
lons-nous (n° 486) que les distances ap, pp’, p'p" , etc., sont proportionnellcs
aux vitesses respectives données par la série (c) ; desorle que

vk /2 . (v 2 — T 4. R
ap.pp;..(+ﬂ9)/ﬁ.(—l—/93./h VT

ce qui nous montre que les distances ap, pp’, p'p", etc., sont dans le méme
rapport que dans le cas oli il n’y a pas de courant primitif; nous aurons
donc la méme équation que celle marquée () du n°® 486; c'est-d-dire que

cette équation sera fhx = fhy — y ... (e).

534, De méme que les rapports des distances ap , pp’, p'p", etc., sont
indépendans du facteur ‘/25:_ %) , ceux des distances b, g9', 9'¢" , etc,,

seront indépendans du facteur -(-—V—,-‘E/—E——ﬂ-—; de sorte que Déquation de la

courbe bd sera la méme (Uorigine des coordonnées étant un point &, et les
abscisses positives étant prises de b vers a) que celle (¢) de la courbe ad,
dont Vorigine est en a et les abscisses positives de a vers b.

535. 11 suit de 1o que, malgré le courant, les déversoires présentent les
mémes circonstances que dans le cas d’un liquide en équilibre avant I'ouver-
ture de Porifice dans un vase ordinaire.

Cette conséquence a quelque chose qui étonne, car il semble au premier
abord que le courant devrait transporter en avant le sommet d des déver-
soires d’une quantité proportionnelle a la vitesse de ce courant , mais le fait

n’en gst pas moins certain. _
L’équation (257) donnera donc la hauteur d = cd du sommet des dé-
versoires.
653, Maintenant observons que la molécule @ seraanimce de deux vitesses
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'une horizonlale, égale a v + ‘/ngh, et lautre verticale égale a l/zgh ;
si donc nous faisons ai proportionnelle & v -~ ‘/zgh et fe a ‘/agh,

I'hypothénuse ae du triangle rectangle aie , sera la direction que prendra la
molécule @, abstraction faite de 'action de la pesanteur pendant le temps que
cette molécule parcourait la distance.ae (n° 505). La molécule b sera aussi ani-

mée de deux vitesses, 'une horizontale , égale %gh — v, et l'autre ver=
ticale, égale a lAgh ; sidonc tb est proportionnelle a %gh — v, el ie i

‘/ngh, Phypothénuse be du triangle rectangle bei sera la direction de la
molécule b.

537. 11 est facile de voir que ci est proportionnel & v, et que, par consé-
quent, les droiles ae, be se rencontrent au point e, de maniere que ic =
ac=a ; car la vitesse verticale est la méme de partet d’autre, et dans le cas des
vitesses horizontales égales, on aurait ¢g = ac ==a; on a donc c¢g =ie = a,

538. 11 suit de tout ce qui précede, que I'écoulement qui aura lieu par Lori-
fice ab dans un temps donné, sera proportionnel a la somme des volumes
des deux cones ou pyramides qui anront pour base l'orifice b, et pour hau-
teur , I'une cd et 'autre Ze.

539. 1l résulte donc de tout cela, que le coéfficient de la dépense est
le méme dans le cas d’un courant , que dans celui d'un liquide enfermé dans un
vase : il n'y a de changé que la direction que prend le liquide & la sortie de
Vorifice horizontal.

Enfin, il est chir que la vitesse par laquelle il faut multiplier ce cotfficient
est encore l]a méme que dans Particle n° 508 , et que, par conséquent, l'é
quation (267) donnera généralement la dépense par seconde , soit que le li-
quide soil enfermé dans un vase, ou que Uorifice soit percé dans le fond dun
canal dans lequel il y awrait un courant quelconque.

Ne connaissant point d’expériences qui aient 6té faites dans cette derniere
circonstance , je ne puis vérifier cette conclusion importante.

540. Considérons maintenant le cas d’'un orifice vertical , toujours dans I'hy-
pothese ol le fond du canal qui fournit 4 la dépense est au méme niveau ou plus
bas que le bord inférieur de Lorifice.

Si l'orifice est percé dans une paroi perpendiculaire 2 la longueur du canal
d’entretien, comme le liquide ne peut se mettre en mouvement dans ce
canal qu'en raison de I'écoylement par l'orifice, il est évident que cetle manitre
d’entretenir le niveau constant ne peut apporter aucun changement dans la
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dépense, et il en serait de méme, Porifice étant percé dans une paroi paral-
Itle & la longueur ducanal, si ce dernier était fermé en un bout par une paroi.

Ainsi, dans ces deux cas, les formules (277) et (279) sont dircctement ap-
plicables.

541. Supposons en second lieu que Vorifice soit percé dans une paroi latérale
d’un canal contenant un courant d’eau.

Dans ce cas, on démontrerait, par un raisonnement analogue a celui du
cas ou l'orifice est percé dans le fond du vase, que I'écoulement est encore le
méme "que si le liquide était contenu dans un vase fermé latéralement de
toutes parts ; ainsi les formules (297) et (279) sont générales et doivent avoir
leur application , quelle que soit la vitesse du courant ; seulement la direc-
tion du liquide a la sortie de Lorifice sera diflérente. Rappelons-nous bien
que dans tout ce qui précede on suppose que le niveau reste constant.

542. Proposons-nous , & présent , de déterminer le temps que mettrait un
bassin a se vider, par un orifice percé dans le fond.

Comme dans ce cas la vitesse et le coéflicient de I’écoulement varient & mesure
que le niveau de la face supérieure du liquide s’abaisse , si nous voulions traiter
cette question en toule rigueur, nous tomberions dans des calculs trop compli-

qués pour la pratique. Clest pour les simplifier que nous allons nous y
prendre de la manitre suivante,

Nous calculerons d’abord le temps nécessaire pour faire baisser le niveau
jusquau sommet d (fig. 117) des déversoires, et ensuite celui qu’il faudra,

a partir de cet instant,, pour que le vase achéve de se vider. Voici comment
nous nous y prendrons :

La hauteur ¢d = d , sera, dans le premier instant.

d=sh—a} b (h—a),

et dans le dernier (n° 492) nous aurons d — fa

3!
Quoique d ne passe pas de la premiére valeur 2 la seconde, en suivant
la loi d'une progression décroissante par différences égales , néanmoins, sans
erreur sensible, nous pouvons supposer 4 cette quantité d cette loi de dé-

croissement ; de sorte que, d’aprés cette hypothése, la valear muyenne de
d sera la demi-somme des deux valeurs extrémes; ainsi

=5 -]—h—-l/k (b — @) (282)
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b étant toujours la hauteur du niveau supérieur primitif au-dessus du fond
du vase.

Telle sera la valeur trés-approchée de d, qulil faudra mettre (apres
I'avoir calculée numériquement) dans I'équation (266) , pour avoir une va-
leur moyenne de c. Ces valeurs moyennes de d et de ¢ étant calculées, on
les mettra dans I'équation (263) , et on aura une valeur moyenne de I trés-
approchée , que nous regarderons comme le véritable coéfficient de la dépense,
pendant tout le temps que le liquide mettra & descendre jusqu'au niveau du
sommet des déversoires.

543. Si au lieu de descendre au niveau du sommet des déversoires , la face
supérieure du liquide ne devait s’abaisser que de la quantité z , la valeur de
d au dernier instant de écoulement serait

d=2h—2)—2 ‘/(h-—z.) (h—z—a),

et, par conséquent, la moyenne serait

d=h — ‘/ﬁ.(h-——a] + (h— z) — l/(h—-z) (h —z —a).
C’est d’aprés cette valeur de d que Ion calculerait ¢ et ensuite N.

544. Cherchons maintenant Pexpression de la vitesse moyenne avec laquelle
I’écoulement aura lieu.
Pour cela, chservons que dans le premier instant, la vitesse (n° 507) sera

‘/99{‘/" Vi~ 9, e lorsque le nivean sera abaissé de la quantité z,

Vogl/h—z+ Jh—2z— dJ; lamoyenne entre

2

cette vitesse ne sera plus que

les deux sera donc

v Y2 l/ht ~/h—d+:{’h—%+ Vh—x—d) | (283)

545, Multiplions cette vitesse par le coéfficient moyen N (n° 542), et par
le temps ¢ qu'il faudra pour que le niveau s'abaisse de la quantité z ; de plus,
supposons que le volume de liquide qui se sera ¢coulé pendant le temps ¢,
soit représenté par M : il en résultera

i — N30/ /m-th—"*'/*"“"““l...(aa.@,

d’olt
ER 4M
BT T T

. (285),
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Telle est Pexpression approchée du temps nécessaire pour faire baisser le niveau
de la quantité z, cette quantité z ne pouvant dépasser h — %a.

Pour se servir de cette formule, on calculera le volume M d’aprés la forme
du vase et la profondeur z ; et le coéfficient N de la dépense, d'aprés la for-
mule (263), modifide de la maniére qu'il a été dit au n® 542.

546. Il nous resterait & donner I'expression du temps qu'il faudrait au vase
pour achever de se vider, depuis le moment ol sa face supérieure coincide
avec le sommet des déversoires , jusqua P'entiere évacuation du liquide ; mais
cette question est beaucoup trop compliquée pour éire résolue ici d’une ma-
niére rigoureuse , et méme avec une certaine approximation,

Cependant , comme le temps de cet écoulement ne peut pas étre d’une longue
durée, i moins que le vase ne soit trés-grand, on arrivera A connaitre ce
temps & quelque chose prés, en prenant pour coéfficient 0,165 X S, qui,

. ge g . I/ﬂﬂg " .
multiplié par la vitesse -3 et par le temps ¢, donnera & peu prés

la quantité de liquide écoulée dans le temps t. Si donc M est le volume de
liquide échappé du vase , on aura

M = 0165 3 St |/”“q

d’olx —

M. (286),
0,165 X S ¢ "_;-E

pour le temps demandé,

547. Pour avoir le temps qu'il faudrait 4 un vase pour se vider par un orifice
vertical, on modifierait le coéflicient (273) en prenant pour & une valeur
moyenne entre les Valeul‘s (270) et (272), et pour 'd une moyenne entre

les valeurs (271) et 4 (n 520), et en calculant ensuite ¢ par I'équation

(276) et d’aprés les valeurs moyennes de b et de d: on arriverait de cette
maniere i un coéfficient N, qu'on pourrait regarder comme constant. On mul-
tiplierait ce coéfficient par une vitesse moyenne entre celle due 4 la hauteur
h — G, et celle qui appartiendrait & la hauteur G, cest-a-dire par une

vitesse égale a ‘/”9.[1/":(34‘ \/G],-
ce qui donnerait N V2 [/k:' G+ /6]
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~

pour I'écoulement pendant un instant; si donc M est le volume de liquide ren-
fermé dans le vase , au-dessus du point le plus élevé de l'orifice, nous aurons

M= NV29[VE—GC+/G]

2

_ aM
"INy W6+ /6]

telle sera I'expression assez approchée du temps demandé.

d'olt e (287),

'548. La face supérieure du liquide étant arrivée au niveau du bord supérieur
de V'orifice, 'écoulement se continuera comme par un déversoir.

Trouver le temps que mettrait le vase i finir de se vider, est encore une
question que nous ne traiterons point ici, quoique moins compliquée que
celle du n® 546, Nous la traiterons rigoureusement, ainsi que toutes celles qui
précédent, dans des notes 4 la fin de cet ouvrage.

549. Nous avons vu que les molécules liquides, @ leur passage dans le plan
de Lorifice , se trouvent plus écartées les unes des autres que dans Pintérieur
du vasc, tant dans Je plan de Dorifice horizontal (n° 506), que dans celui de
Vorifice vertical (n® 522), et que si ces molécules étaient ramenées 4 leur écar-
tement naturel, au lieu doccuper l'aire S de lorifice , elles n’occuperaient
plus qu'une aire égale a N. Or la pression latérale qui a lien sur les
molécules, tout autour de lorifice, et qui, combinée avec la pression ver-
ticale, tend A leur faire décrire des paraboles telles que aM, OM (fig. 117) et
ae, be (fig. 120), doit nécessairement produire ce rapprochement par degré
et ce rapprochement doit étre complet,  une distance de l'oiifice & peu prés
égale & celle du point M (fig. 117) ou e (fig. 120) ol ces paraboles se ren-
contreraient si elles pouvaient librement avoir lieu.

On a observé, en effet, que le faisceau liquide qui sort par l'orifice, étant
coupé par des plans paralléles & celui de ce dernicr, présente des sections dont
laire va en diminuant, & partir de l'orifice, jusqu? une distance environ
égale a la moilié du diamétre de cet orifice. Cette observation a été faite par
des mesures précises et directes, ce qui me laisse aucun doute sur ce fait.
Quelques auteurs ont observé qu'au-dela de cette distance égale & environ la
moitié du diametre de Vorifice, les aires des sections devenaient croissanles,
et quelques autres semblent nier ce dernier fait; de sorte qu'ils nadmettent
point de minimum dans l'aire de ces sections. Nous ne chercherons point &
décider cetle question, et sans rien préjuger sur ce point, pour faciliter le
discours , nous dirons que la plus petite de ces sections paralléles au plan de
Lorifice , a été nommée section contractée , et contraction de la veine fluide, la
différence entre aire de Dorifice et celle de la section contractée.
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550. Un fait , connu des Romains, a éLé constaté par Poleni, professeur a
Pavie, et ensuite par Venturl, de Modene ; il consiste en ce que, lorsque
Vorifice n'est plis en mince paroi, c’est-2-dire, lorsqu’on ajoute un tuyau d'une
certaine longueur et de méme diamétre que lorifice, I'écoulement est beaucoup
plus abondant que dans le premier cas. Quand la]utage est cylindrique , d’aprés
les observations de 1'abhé Bossut, la dépense est & celle d’un orifice en mince
paroi , 81 . G2, tout étant égal d’ailleurs; et d’aprés celles de Venturi,
lorsque cet ajutage se compose d’un eylindre d’une certaine longueur, terminé
par deux cones tronqués ajustés ensemble base 4 base, on peut augmenter la
dépense jusqu'a la rendre environ 2 & fois plus grande que par un orifice
en mince paroi, et quelques savans prétendent méme que ce physicien n’a point
par la atteint le maximum d’eflet dont les ajutages sont susceptibles, et il pa-
rait que M. Clément est parvenu & augmenter encore notablement la dépense ,
en changeant la forme de 'appareil de Venturi. :

Il me semble que ce fait aurait besoin d’étre vérifié de nouveau ; car déja le
résultat de Venturi est environ 1 * fois plus grand que ce qu’il serait ’il n’exis-
tait aucune contraction, ce qui ne peut étre admis qu'en supposant que la-
Jutage , en méme temps qu’il détruit entiérement la contraction de la veine
fluide, a, de plus, la propriété d’accélérer la vitesse de I'écoulement, ce qui
ne parait pas possible; car on concevrait plutdt , au contraire , que le frottement
contre les parois de cet ajutage devrait diminuer cette vitesse. Je ne puis
décider cette question d’une maniére absolue , n’ayant point fait d’expérience a
cet effet ; mais je suis trés-porté a croire que le maximum d’effet d’un ajutage
doit se borner A la suppression totale de la contraction de la veine, de sorte
que dans ce cas, le coéfficient N (n® 506 et 522) doit au plus égaler I'aire
S de lorifice, et on doit regarder la vitesse comme étant la méme que dans
le cas d’un orifice en mince paroi; et méme, pour pouvoir en agir ainsi, il
faut que le liquide coule & plein tuyan ou & gueule-bée.

D’aprés les observations de I'abbé Bossut:, pour que I'écoulement ait lieu 4
plein tuyau, il faut que l'ajulage ait une longueur au moins double de son
diamétre. D’apres d’autres autcurs , cette longueur peut étre moindre.

551. La cause qui détruit la contraction de la veine fluide n’est pas
connue d’une maniere tout-h-fait satisfaisante ; cependant M. Hachette semble
'avoir trouvée en J'attribuant 4 'adhésion du liquide aux parois de I'ajutage ;
car il résulte des expériences ‘que ce savant a faites 4 ce sujet, que quand le li-
quide est de nature & ne pas mouiller les parois de I'ajutage, la contraction
a lien comme dans le cas d’un orifice en mince paroi, et quand 'adhésion du
liquide a lieu avec les parois de I'ajutage , la contraction disparait presque entié-
rement ; et si dans ce dernier cas on disposeles choses de maniére i ce que la
surface supérieure du liquide soit toujours exposée A la pression atmos phérique,

27
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mais que I'écoulement ait lieu dans un espace vide d'air, le liquide se détache
des parois de I'ajutage , et aussildl la contraction a lien comme dans le premier
cas. Si ensuite on donne une légére percussion latérale a l'ajutage, le lfquide
adhtre de nouveau aux parois , et la contraction cesse. Il parait donc prouvé que
I'adhésion du liquide aux parois de V'ajutage est, sinon la seule, du moins la
principale cause du phénoméne qui nous eccupe.

552. Le méme auteur a observé que quand un orifice est percé dans une
paroi & surface courbe , Ja dépense n’est pas la méme que lorsqu’il est percé
dans une paroi plane; la dépense est la plus pefite, toutes choses d'ailleurs
égales , lorsque la paroi en contact avec le liquide est convexe; elle aug-
mente quand la paroi devient plane, et elle augmente encore, si la paroi se
change en une surface concave.

Ce fait sexplique par notre théorie ; mais ccla nous.menerait trop loin, et
nous avons besoin d’abréger.

Il y a encore une circonstance & laquelle il faut bien faire attention ,
c’est que lorsque Vorifice n’est ni horizontal ni vertical, la dépense varie dans
Tun et T'autre cas. Par la méme raison que ci-dessus nous nous dispenserons
de faire les calculs auxquels donneraient lieu des orifices situés dans des plans
inclinés, ces circonstances élant d’ailleurs tres-faciles & éviter.

LECON 1V.

De I mesure de la vitesse de l'eau dans un canal ou une riviere, et dans des tuyaux d'une grande
longueur; et de la pression des liquides en mouvement contre des surfaces qui doivent leur résister..

553. Les questions qui vont suivresont de nature a ne nous pas permettre de
nousservir de laméme théorie que celle qui précéde et que j’ai cu I'idée d'établir
pour Pécoulement des liquides par des orifices pereés dans le fond ou dans les
parois d'un vase, a causedu grand nombre de circonstances qui peuvent modifier
ou détruire fe principe fondamental de cette théorie. Je crois cependant que,
lorsqu’elle aura été méditée et travaillée par des hommes habiles, elle pourra
servir & expliquer bien des faits qui ne I'ont point encore ¢ié. Mais n'ayank
ni le temps ni les moyens nécessaires pour approfondir cette matitre délicate, je
vais me borner A exposer les résultats des travaux des savans qui ont réuni
leurs efforts pour arriver aux données que la pratique réclamait.

554, Cherchons d'abord & expliquer de quellc manidre on peut Mrnc'r @
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mesurer la vitesse moyenne d'un courant d’eau, soit dans un canal , soit dans
une riviere.

Supposons un plan vertical perpendiculaire 4 la direction du courant, les
molécules liquides situées dans ce plan n’auront pas la méme vitesse, pas méme
celles qui se trouveront sur une méme droite horizontale. On a reconnu, en
effet, que les vitesses des molécules situées sur une méme droite horizontale
sont plus petites vers les bords de la riviére que dans le milieu de sa largeur ot
st le maximum. On congoit qu'il en doit étre de méme , & plus forte raison ,
pour les molécules qui sont situées sur une méme verticale; car , si le fond du
canal ou dela rivitre ne diminuait pas la vitesse des tranches qui en sont les
plus voisines, ces tranches seraient les plus vites, et la vitesse irait en décrois-
sant régulierement jusqu’a la face supérieure du liquide, Mais il parait que le
frottement et la cohésion du liquide, pour le fond ou pour lui-méme, occasion-
nent un retard considérable dans les tranches inférieures, et comme ces causes
de retard ne sont point encore connues de grandeur, il s’ensuit que Pexpérience
seule peut nous conduire d’'une maniére plus ou moins approchée a la mesure
de la vitesse moyenne d’un grand courant d’eau, laquelle vitesse doit varier avec
les crues ou les décrues de la riviere. D'ona il suit que lorsqu'on mesure la vi-
tesse moyenne d’'une riviére, il faut indiquer la hauteur des eaux au moment
de Pobservation, desorte qu’il serait nécessaired’ayoir celte vitesse moyenne poyr
les hauteurs les plus remarquables auxquelles la riviére peul s'élever dans les
différentes épeques de 'année , pour rendre cette mesure véritablement utile.

De tous les moyens qu’on peut employer pour mesurer cette vitesse moyenne,
le meilleur serait, sans contredit, de recevoir dans un bassin la quantité d’eau
qui pourrait couler dans un temps donné, et de diviser cette quantité par
T'aire de la section droite du courant; mais ce moyen est rarement praticable,
Clest pour cela qu’on a imaginé plusieurs méthodes plus ou moins directes que
lapremitre dont les deux plus remarquables sont les suivantes,

La premiere consiste 4 descendre verticalement un tube & deux branches dela
forme acefd& (ﬁg, 123), 4 la profondeur des tranches dont on veut mesurer la
yitesse moyenne. La branche horizontale est tournée en sens contraire du
courant , pour que I'eau s'introduise dans la branche verticale. Il est clair que la
vitesse moyenne de toutes les molécules qui peuvents'introduire dans le tube,
sera égale i celle due 4 la hauteur & laquelle leliquide s'élevera dans la branche
verticale. Ainsi & étant cetle hauteur, depuis le centre de pression sur I'o-
vifice de la branche horizontale jusquau point ol le liquide est parvenu dans

Ja branche verticale, la vitesse moyenne cherchée sera [/agh. On fera la
méme opération en différens points de la section droite dy courant, tant sur la
Jargeur que sur la hauteur ; on fera la somme de tontes les vitesses qu'on aura
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trouvées, et on divisera cette somme par le nombre d’opérations : le quotient
sera la vitesse moyenne plus ou moins exactement. Belidor trouve ce moyen trés—
commode , apreés en avoir fait usage lui-méme.

Pour assujélir ce tube, imaginé par Pitot, on pourrait employer. nne tige
de fer assez longue pour pouvoir s’enfoncer de quelques centimetres dans la
terre du fond, ce qui permettrait de le maintenir par en haut dans la situation
verticale, et 2 la profondeur qu'on voudrait, dans la section droite du
courant. : '

Le second moyen a pour objet de donner d’un coup la vitesse moyenne des
filets dans lesens vertical dans presque toute la profondeur de la riviére. Pour
cela, on emploie une régle ou triangle de bois, qu'on leste & 'extrémité
inférieure, pour la faire flotter dans une position 3 peu prés verticale,
un peu au-dessus du fond de la riviere. La vitesse de la régle, supposée
toujours verlicale, est, a chaque instant , égale 4 la vitesse moyenne des
molécules qui la. font avancer. En mesurant donc 'espace parcouru par celte
régle dans un temps donné , on obtient cette vilesse moyenne. Ainsi, en pla-
cant cette régle dans différens points de la largeur de la riviere, mesurant les
espaces qu'elle peut parcourir dans le méme temps dans ces diverses positions,
faisant la somme de tous ces espaces, et la divisant par le nombre d'opé-
rations , le quolient sera un espace qui sera proportionnel 4 la vitesse moyenne
du courant total. L'auteur de ce flotteur, M. Théodore Bonati, a mesuré de
celte maniere la vitesse moyenne du Pé, en 1811 et 1815. « Dans ce fleuve,
Ies tiges se sont maintenues verticales, et n’ont pas tourné sur elles-mémes ,
malgré I'addition d’une petite aile rectangulaire de six centimétres de hauteur
sur douze de largeur, placée latéralement dans le bas, et formant pour ainsi
dire girouette ; quelle que fat la position initiale de cette aile relativement au
courant , cette position n’a pas changé pendant le transport des tiges. M. Bonati
a observé que dans les endroits ou le fleuve est le plus profond , et surtout prés
des rives, on voit quelquefois les tiges s'incliner un peu en avant (M. Ha-
chette,, ouvrage cité précédemment). » -

555. Ces deux moyens de mesurer la vitesse moyenne d’un courant, sont les
meilleurs de tous ceux qu’on a imaginés jusqu’ici ; mais on ne peut disconvenir
que leur emploi ne soit long, difficile, dispendieux, en méme temps que les
résultats qu’ils donnent ne sont jamais d’une grande exactitude. C'est pour cela
que nous donnerons les formules suivantes, pour les déterminer par le calcul
avec tout autant d'exactitude , pour le moins, et beaucoup moins de frais. Ces
formules doivent d’autant plus inspirer de confiance , qu'elles sont dues au ta-
lent bien reconnu du savant M. de Prony, et qu'elles sont déduites des
résultats de I'expérience. '

‘Supposens qu'il sagisse d’un canal cylindrique dont l'aire de la section droite
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soit S; G le contour de cette section; P Ja pente par méire de longueur,
et V la vitesse moyenne de la section par seconde de temps , exprimée en
métres, on aura

V= — 0,0 + [/o 005 -+ 3233 x e (288)

ou en ne prenant que le terme 3233 X< Sp qui est sous le radical,

YV =57 I/%E. (289).

556. §'il sagissait d’'une grande riviére , on aurait

V = — 0,033 + |/2737,013.>§ %B 4+ 0,0034.... (290),

P ‘
% sous le radical ,

V=52 l/%:...... (291).

On voit que cette formule differe peu celle marquée (280).

ou en n¢ prenant que le terme affecté de

557. Si U représente la vitesse du courant 2 la surface supérieure de
Teau, V étant la vitesse moyenne, on aura

V= % U...ee (292).

Pour avoir la vitesse moyenne de la section droite du courant, il faudra
donc mesurer la vilesse moyenne a la surface supérieure de 'eau, et en
prendre ensuite les 3.

558. Supposons qu'il s'agisse d’'une conduite d’eau cylindrique d'une grande
longueur , et nommons -

h la charge d’eau sur Vorifice inférieur de la conduite ;

d le diamétre de cette derniére ;

! sa longueur en métres , et : '

Y la vitesse moyenne cherchée , on aura

V= 26,79 X l/ cner (293).
Cette formule s'accorde avec 51 expériences faites & diverses époques- par

Couplet, Bossut et Dubuat, et differe peu, en plus, de quelques autres expé-
riences rapportées par M. Hachette.
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559. Il est évident que, connaissant la vitesse moyenne d'un courant
quelconque , on aura la quantité d'eau coulée dans une seconde de temps , en
multipliant cette vitesse par I'aire de la section droite de ce courant.

560. La formule (293) n’est pas applicable seulement 4 une conduite recti-
ligne, mais a toute conduite fermée dont la direction présenterait des sinuosités,
tant en projection horizontale qu'en projection verticale. I parait, cependant,
que l'on doit éviter avec soin les penles el. les contre-pentes, c'est-a-dire, qu'il
faut toujours que la conduite présente dans tous les points de sa longueur
sa convesité au plan horizontal mené par sou point le plus bas, de sorte qu'au-
tant que possible il faut égaliser la pente, et méme éviter les trop grands dé-
tours en projection horizontale ; car le mouvement du liquide sera toujours plus
libre, et le travail s’exécutera avec plus de facilité et d’économie. Les con-
duites qui vont prendre I'eau 3 un point élevé, qui la dirigent dans un fond
pour la faire remonter 4 un autre point moins €élevé que le point de départ , se
nomment conduites & syphon. La formule (293) de M. de Prony est donc ap-
plicable & ces sortes de conduites fermées , ko étant Ia différence de niveau entre
le point de départ et le point d'arrivée. Il parait que les pentes et les contre-
pentes dans les conduites & syphon, sont préjudiciables , parce que l'air qui s'in-
troduit dans la conduite avec 'eay produit des phénomenes inconnus qui dé-
rangent le mouvement du liquide, et le calcul se trouve en défaut.

561. Quoique le frottement sur les bords et sur le fond des riviéres dérange
la Joi naturelle des vitesses des filets liquides, on peut cependant conclure de
cette loi , que les vitesses moyennes de deux- riviéres qui auront la méme
pente , ne seront égales quautant que les sections droites de ces rivieres seront
& peu prés équivalentes , et que les profondeurs moyennes seront 3 peu prés
égales, car la pente n’est pas la seule cause de la vitesse moyenne, puisque la
pression vésultante de la hauteur du liquide au-dessus de chaque molécule y
contribue beaucoup. La formule (291) de M. de Prony , tient compte en effet
de cette profondeur, puisqu'il y entre le contour et I'sire de la section droite du
courant , et que ces deux quantités dépendent de la profondeur de la rividre 4
endroit de cetle section droite; d’ailleurs , I'observation faite sur plusieurs ri-
vieres confirme cette conséquence naturelle des proerié_l;és des liquides,

562. L’unité dont on se sert pour la- distribution de I'eau dans les villes, est
ce quon appelle le pouce des fontainiers ; qui revient & une dépense de
1g™, 2 cubes en 24 heures, d’aprés M. de Prony.

Connaissant la hauteur & du centre depression de l'orifice du tuyau qui doit
produire cette dépense en vingt-quatre heures, I'écoulement devant avoir lieu 4
plein tuyau, il sera toujours facile de calculer la vitesse de cet écoulement, et de
déterminer ensuite le diamétre de cet orifice parla formule (293) pour que
ce tuyau donne le pouce des fontainiers, ou 19™, 2 cubes en 24 heures.
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De la pression des liquides en mouvement contre des surfaces qui doivent leur résister.

563. La pression contre un plan paralléle au courant est la méme que si
le liguide élait en repos.

En effet, la vitesse du courant étant perpendiculaire & la pression trans-
versale, ne saurait changer celte derniere, et nous avons vu (n° 540) qu'ef-
fectivement dans ce cas , I'écoulement par un orifice vertical était le méme
que dans le cas d’un liquide enfermé dans un vase.

564. Cherchons la pression exercée par un courant deau contre un plan
vertical perpendiculaire & sa direction.

Pour y parvenir , soit AB (fig. 123), un plan vertical opposé & un cou-
rant CAED ; si nous supposons ce plan percé d’un orifice ab, et qu’a cet
orifice nous ayons adapté un tube recourbé acefdb de méme diamétre , ouvert
par les deux bouts, il est clair que la pression qui aura licu 4 lendroit de
Porifice sera égale & l'aire de cet orifice mullipliée par la hauteur om, au-
dessus du centre de pression‘de ce dernier, & laquelle le liquide s’élevera dans
la branche verticale ce du tube et par la densité du liquide.

Or, siVon imagine l'aire du plan AB divisée en un certain nombre de carrés
égaux pris pour unité de surface, et qu'on ait appliqué un tube recourbé
semblable au précédent, & chacun de ces carrés, ayant la méme ouverture , et
qu’'on ait mesuré la hauteur dans c‘haque tube, & laquelle le liquide s'élevera,
en représentant par h, k', B", ", etc., la suite de toules les hauteurs mesu-
rées, laire de l'orifice du tube étant I'unité, et la densité étant représentée
par d , la pression totale sera

d (h4+h' 4 k" 4 " + ete.).... (a).
Soit n le nombre d’unité superficielle du plan fixe AB, ou le nombre des

tubes appliqués, et H le nombre par lequel il faudrait multiplier » , ou I'aire
du plan AB, et la densité du liquide pour avoir la pression totale ; nous aurons

nHd = d (b + " " 4+ k", ete))

ou aH=h4+h 44" 4 b" 4 ete.
d’or H— h"l‘ 13 “l" h”,;}‘ b'ff_i_ Blc.‘”.r (294)'

. Ainsi on voit que le nombre H est égal A la somme des hauteurs me-
surées divisée par leur nombre, c’est-a-dire que H est la hauteur moyenne
entre toules les hauteurs mesurées dans les tubes.

Cette hauteur moyenne H ne peut s'obtenir que par Iexpérience, aw
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moyen du tube recourbé ci-dessus, qui n’est autre que celui de Pitot, et
elle sera d’autant plus exacte, quon aura fait un plus grand nombre d’opéra-
tions , et que les points des stations seront distribués plus uniformément dans
I'espace que doit occuper le plan fixe. La figure 124 indique la section droite
ABCDE d'une riviére, et les cerclesa, b, ¢, d, e,f, g, h et i représentent la
disposition qu'il conviendrait de donner successivement 3 Dorifice du tube de
Pitot, pour avoir une exactitude suffisante.

Si ensuite on nomme S l'aire de ce plan fixe, quelle que soit sa forme,
et P la pression qu'il éprouve, nous aurons enfin

P == SdH...... (295).

565. La vitesse due & la hauteur moyenne H est agH, si donc V
est cette vitesse, nous aurons

2= ogH, do H = .« (296).
Si nous substituons cette valeur de H dans l’equatmn (295) , il nous viendra
SdV
P= *— -+ (297)-

d'oic Lon voit que la pression est proportwnne.!!e au carré de la vitesse due &
la hauteur moyenne donnée par Uélévation du liquide dans les tubes.

566. 11 faut bien faire attention de ne pas confondre la vitesse V avec la
vitesse moyenne ; car Y2 est la somme des carrés des vitesses partielles di-
visée par le nombre de ces vitesses partielles, et non le carré de leur somme,
ce qui est bien différent.

En eflet, nommons v, v', v", v", etc., les vitesses dues aux hauteurs
h,h', B, ", etc. ; nous aurons

h‘::y—l, K= —k" —‘,h" ””, etc.,
2g 29’ -2 29
et en substituant ces valeurs et celle de H dans I'équation (294), il nous
viendra, toutes réductions faites

'VB —_ v + ° + z ;4— ﬂ"’ + e:Ltc.-cn (298)}

tandis que la vitesse moyenne serait
v v " 0" e ete

n.

Vf

?

et par conséquent son carré

v (v-l-v'-i-u”jj— V" - etc)’"  (299).
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567. 8i la trace horizontale du plan fixe est toujours perpendiculaire & la
direction du courant, quelle que soit d’'ailleurs Uinclinaison de ce plan, la
pression horizontale qu’tl recevra sera le produit de la hauteur moyenne H ,
multipliée par Uaire de la projéction du plan fixe sur un plan vertical qui
awrait la méme trace horizontale que ce plan fixe , et par la densité du liquide.

Cela est facile a comprendre , car s'il sagissait du plan incliné EF (fig. 123),
il est clair que l'effet de ce plan se bornerait a résister & la pression horizontale
fjue recevrait le plan vertical EA (qui est sa projection verticale ), s'il n’existait
pas; la pression horizontale de ce plan incliné sera donc la hauteur moyenne
H, mesurée comme au n° 564, multipliée par I'aire du plan vertical EA , et
par la densité du liquide, comme il fallait le démontrer. ‘

568. Quant & la pression perpendiculaire & ce plan fixe, quelleque soit
d'ailleurs sa situation, elle sera égale & Uaire méme de ce plan, multipliée par
la densité du liquide , et par la hauteur moyenne H mesurée comme au n® 564,
dans Vétendue de la projection verticale de ce plan fixe , sur la section drotte du
ourant. -

Ceci se démontrerait facilement d’aprés ce qui précéde, et par analogie & ce
qui a été dit sur la pression des liquides maintenus en équilibre dans des vases.

569. Si I'on suppose une surface courbe quelconque fixe, et frappée par
un courant, on pourra I'imaginer divisée en petits carrés élémentaires qu’on
regardera comme plans ; or, d’aprés la dernitre proposition , chacun de ces
¢élémens aura une pression normale proportionnelle a son aire et & I'élévation
du liquide dans le tube de Pitot qui correspondrait & sa projection dans la sec-
tion droite du courant.

570. 11 suit de la que la pression normale que recevra la surface courbe en-
titre , sera l'aire de cette surface multipliée par la densité du liquide et par la
hauteur moyenne H, mesurée toujours dans I'étendue de la projection de la
surface sur la section droite du courant,

571. Quant 4 la pression horizontale et paralltle au courant, elle sera Ia
méme que celle de la projection de cette surface sur le plan de la section
droite de ce courant.

Nous terminerons cette section par la table 'suivante des expériences faites par
Smeaton , ingénieur anglais, sur la pression des différens degrés du vent
contre une surface plane perpendiculaire 4 sa direction.

a8
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TABLE

\ .
Contenant les vitesses et les forces du wvent, suivant les différens noms
dont il est appelé.

VITESSE DU VENT | FORCE FORCE DESIGNATION
PAR SECONDE PERPENDICULAIRE |  PERPENDICULAIRE
. i sur un surun YULGAIRE
— e, pieﬂanglaiscarré, métre carré, or
en e en livre €n
pieds anglais. métres, avoir-du poids. kilogrammes, LA FORCE DU VENT.
pieds, métres, Tivres. kilog.
147 | 0,448 0,005 0,0244 | Apeine snsble,
2,93 0,893 0,020 0,0976 }
Brise légire,
4,40 1,34 0,044 0,2147
5,87 1,789 0,079 0,3855 &
Vent frais.
7,33 2,234 0,123 0,6002
14,67 4,471 0,492 2,4009
Vent bon frai
92,00 | 6,706 | 4,107 54020 (
29,34 | 8,963 1,968 9,6038
© 36,67 | 11477 | 3,07 | 450060 | TP
44,04 13,414 4,429 21,6135
51,34 | 15648 | 6,027 | 29,4118 } Vent tmpétuenx.
58,68 | 17,886 | 7,873 | 38,4902
66,01 | 20420 | 9,063 | 48,6194 (
73,35 | 22,357 | 12,300 | 60,0240 | Tempie.
88,02 26,828 17,715 - 86,4492 Grande tempm
1 17,35 35,7?4 EL | ,490 1 53 6712 Ouragan.
Quragan qui déracine les ar-
146,70 | 44714 | 49,200 | 240,0960 % ) T T

-

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

SECTION CINQUIEME.

THEORIE GENERALE

DE LA RESISTANCE DES CORPS SOLIDES.

— LECONL

Préliminaires,

572. Les matériaux qu'on emploie dans la construction des édifices et celledes
machines, sont exposés i des efforts qui tendent & les allonger , les accourcir , les
infléchir, les tordre ou les couper en deux parties qui glissent 'une sur lautre
dans la direction de la force qui produit la rupture. Dans chacune de ces circons-
tances, I'énergie avec laquelle les solides sopposent a Iaction de la force qui agit
sur eux , est ce quon appelle leur résistance.

573. Nous distinguerons donc plusieurs genres de résistances , savoir :
1° La résistance a I'allongement ou & l'extension ;

2° La résistance a 'accourcissement ou a la compression ;

3° La résistance a la fléxion;

4° La résistance a la torsion;

5° Et la résistance au glissement des parties I'une sur autre.

574, Dans chaque genre de résistance il faut distinguer deux cas : celui ot
Peffort est sur le point de rompre le corps, et celui ol il ne produit qu'un chan-
gement trés-faible dans la forme primitive du solide. Dans ce dernier cas nous
donnerons 4 la résistance du corps le nom de résistance stable, pour faireen-
tendre que la force qui produirait ce faible changement dans la forme du corps
ne pourrait le rompre quelque prolongée que soit son action. Dans le second
cas nous l'appelerons résistance & la rupture pour indiquer que cette rupture
est sur le point d’avoir lieu.

'575. Le cas le plus important est celui de la résistance stable; car dansla cons-
truction , tant des édifices que des machines, il est évident qu’on ne doit charger
les matériaux, que jusqu’au point de ne produire qu'un trés-petit changement
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dans la forme primitive de ces corps. Quant au cas de la rupture, quoiqu’il ne
soit pas aussi intéressant , il mérite néanmoins d'étre étudié, parce qu'il fournit
un terme de comparaison qui met & méme de juger du degré de sécurité qu’on
a, lorsqu’on ne prend que la résistance stable, et permet de pousser, avec
confiance , I’économie a son juste maximum.

576. Les différentes espéces de résistancesdes corps solides dépendent toutes
évidemment de la cohésion qui unit leurs molécules, et de 'action combinée
du calorique interposé entre elles; de sorte que, si ces deux causes étaient par-
faitement connues, on en pourrait déduire la théorie entiére de toutes les especes
de résislance; mais on peut y arriver, par d’autres considérations, d’une ma-

niére trés-convenable.

577. Pour étre complete, cette théorie doitembrasser deux parties distinctes
et également nécessaires : le caleul et lexpérience. La premiére a pour objet la
recherche de formules qui expriment les relations qui existent entre la résistance
d’un solide , ses dimensions , sa forme, sa position, et le genre d’effort qui agit
sur lui. De ces relations decoulent des principes qui servent d lier les faits
donnés par l'expérience, et qui suppléent i cette derniere dans un grand nombre
de circonstances. L'expérience son tour, procure les faits sans lesquels le calcul
ne serait qu'une vaine spéculation de I'esprit, ne pouvant étre fondé que sur des
h ypothéses arbitraires , quelquefois contraires a la vérité, et ne conduisant, en
conséquence, a aucun résultat utile : c’est donc sous ce double point de vue
qu'il faut nécessairement étudier la résistance des corps solides, afin d’en pou-
voir tirer tout I'avantage possible.

578. Parmi les corps solides que la nature nous présente, il faut distinguer
les corps mous et les corps élastiques.

Les premiers jouissent de cette propriété que, si on es comprlme au moyen
d’une certaine force, ils s’applatissent ou s’accourcissent plus ou moins, et
conservent la forme nouvelle qu’ils ont prise, aprés que la force a cessé d’agir.

Les corps élastiques, au contraire, aprés avoir été applatis ou accourcis, dés
‘que la force a cessé d’agir, ils reprennent leur forme primitive, avec plus ou
moins de promptitude, apres quelques oscillations dans lesquelles des allonge-
mens et des accourcissemens successifs et décroissans se manifestent, jusqu’au
moment ot les corps sont relournés & leur forme primitive.

Tel est I’état des corps parfaitement mous, et celui des corps parfaitement
élastiques; mais les corps que nous présente la nature ne sont ni parfaitement
mous, ni parfaitement élast.iques* ceux que nous regardons comme les plus
parfmtement mous, tels que la cire, I'argile humide, le plomb, etc., ne sont
pas entitrement privés de toute élasnclte seulement cette élasticitéest si faible,
que nous sommes autorisés  la néghger dans les apphcahom. De méme, les
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corps que nous regardons comme les plus parfaitement élastiques, tels que 'acier
trempé , I'ivoire, etc. , tiennent toujours plus ou moins des corps mous; de sorte
que, lorsqu’une force, qui a comprimé ou allongé un de ces corps, vient & cesser
d’agir, le corps ne retourne pas parfaitement a sa forme primitive, et il s'en
faul d’autant plus, que P'altération de cette forme primitive aété plus considérable,
et d’autant plus aussi que cette force a répété son action un plus grand nombre
de fois, ou qu’elle a persévéré plus long-temps, Cependant, quand ces corps, et
méme d’autres corps regardés comme beaucoup moins élastiques,, sont comprimés
ou alongés d'une quantité plus ou moins trés-petites , ils jouent alors si parfaite-
ment le role de corps élastiques, qu'il est impossible d'y trouver la moindre
différence.

579.11 suit de 12 que, quoique la pierre, le bois, le fer forgé, le fer fondu, ete.,
ne soient point des corps parfaitement élastiques, tant que nous n’aurons en-
vue que leur résistance stable, nons pourrons les regarder comme d'une
élasticité parfaite, sans craindre de commettre la moindre erreur appréciable
dans les résultats. Ainsi, en nous renfermant dans cette limite, les phénomenes
suivans que nous présentent les corps élastiques, seront attribués aussi aux
matériaux employés dans les constructions, sans que nous soyons obligés d’en
averlir 4 chaque instant.

De la résistance stable i I’allongement et & I'accourcissement..

580. Supposons un prisme élastique quelconque, soumis & l'action d'une force
dirigée parallélement i sa longneur, de maniére & tendre ou 4 comprimer ce
C'Ol.'pﬁu

" Je dis que pour accourcir le solide d'une quantité donnée, it faudra la méme
force que pour Uallonger de la méme quanate.

Ceci est prouvé par I'expérience.

581. Supposons qu’aprés avoir soumis un prisme élastique a Paction d’une
force paralléle a sa longueur, quil'a comprimé ou étendu, on soumette le méme
corps & une autre force dans les mémes circonstances ; 'expérience nous ap-
prendra que les allongemens ou les accourcissemens que s'ubira le solide dans
ces dewx cas seront proportionnels aux forees.

582. 1l suitde Ja que fa force avec laquelle un corps élastique tend & re-
prendre sa forme primitive, ou & se restituer, et précisément égale & la force
qui I'a tendu ou compnme, car si la force élastique n’était pas égale  la force
qui I'a développée, il n’y aurait pas actuellement équilibre entre ces deux forces,
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et I'allongement ou l'accourcissement ne serait plus proportionnel 2 la force
appliquée.

583. De lail résulte quun corps élastique résistera d’autant plus qu’il sera
plus étendu ou comprimé, puisque le méme corps élastique peut faire équilibre
a des forces différentes, en s’allongeant proportionnellement & ces mémes forces.

~ 584. Si a deux prismes élastiques homogénes de méme base mais de longueur
différentes, on applique la méme force parallélement a leurs longueurs, les
deux prismes s’allongeront ou s’accourciront proportionnellement i leurs
longueurs, de sorte que, si I'un des solides est dix fois plus long que Iautre, il
s’alongera ou s'accourcira dix fois plus que celui-ci; d'oli Pon voit que sur
les corps élastiques , une méme force peut produire des effets différens, cette force,
néanmoins , agissant toujours de la méme maniere.

On peut expliquer cette espece de paradoxe, de la E‘laniél‘é suivante :

Supposons un prisme €lastique suspendu par un bout, et chargé d’'un poids
a Pautre : l'effet de ce poids sera d’écarter la tranche transversale de molécules
situdes & I’endroit ot le poids est appliqué de la tranche transversale de molé-
cules infiniment voisine, d’une quantité égale & 'écartement que pourrait pro-
duire le poids sur ces deux tranches de molécules, si elles existaient seules.
Ensuite, Délasticité réagissant avec une force égale i la traction produite par
le poids, tendra & rapprocher ces deux premiéres tranches de molécules, et
comme le poids, en persévérant, s'oppose a ce rapprochement, la seconde tran-
che, étant attivée par la premiére attirera la troisitme de la méme quantité;
celle-ci attirera la quatrieme, celle-ci la cinquiéme, et ainsi de suite pour toutes
les autres tranches, parce que la réaction est toujours égale 4 1'action; d’out I'on
voit que le premier écartement se répétant entre toutes les tranches, 'allongement
total sera proportionnel au nombre des tranches, et par conséqnent i la lon-
gueur du solide, comme le donne I'expérience. On démontrerait la méme chose
pour le cas de P'accourcissement.

585. On appelle fibre une suite de molécule consécutives placées sur une méme
ligne droite paralléle & Ja longueur du solide.

586. Cela posé , supposons qu'une force paralléle 2 la longuenr d'une
fibre allonge ou accourcisse cette fibre de la n™ partie de sa longueur; il est
clair que pour allonger ou accourcir deux fibres homogénes , de la méme quan-
tité, il faudra une force double; pour trois fibres une forces triples; pour quatre,
quadruple, et ainsi de suite; d’ot il résulte que la résistance a I'allongement ou
A 'accourcissement d’'un prisme élastique quelconque, est proportionnel au
nombre des fibres qui composent ce prisme, et par conséquent i aire de sa
‘base. ~ .
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Sidonc S est I'aire de la base ou de la section droite d’'un prisme, P la force
qui l'allongerait ou Paccourcirait & la n™ partie de sa longueur; si d’un
autre coté S’ est l'aire de la base d’un autre prisme de méme matitre que le
précédant, ela force qui 'allongerait ou P'accourcirait de la n™ partie de sa
longueur, on aura

Ptet*S:8S.

d’ots P = E.Sg e (@)

Supposons maintenant que la base S’ soit 'unité de surface, un métre carré,
par exemple; la formule () deviendra

P = €5......... (300)

Cette formule fera connaitre la force P nécessaire pour allonger ou accourcir
de la n™ partic de sa longueur le prisme dont § serait laire dela base,
pourvu que I'on connaisse, par expérience, la force e nécessaire pour allonger
ou accourcir un prisme de méme nature de la n™ partie de sa longueur,
sa base étant I'unité de surface.

Il faut entendre que la forme de la section droite S du prisme dont on de-
mande la résistance stable est quelconque.

587. La formule (300) précédente servira aussi pour calculer la résistance 4
la rupture, tant pour le cas de lextension que pour celui de la compression
pour un prisme quelconque, pourvu que , dans ce dernier cas, la longueur
du solide soit assez petite pour qu'il puisse s'écraser plutdt que de prendre
une certaine flexion sous l'action de la force comprimante ; seulement
la force e, au lieu d’étre celle qui allongerait ou accourcirait de la n™
partie de sa longueur, le prisme dont la base est l'unité de surface, il
faudra prendre la force nécessaire pour rompre ce solide. Par la suite nous don-
nerons la valear de e pour tous les cas, Pour le moment il n'est question
que de la théorie.

588. Supposons un prisme dont laire de la base soit S, 1 sa longueur, et
que ce prisme ne doive éprouver qu'un allongement ou un accourcissement absolu
représenté par a, et proposons-nous de trouver la force nécessaire pour pro-
duire cet ¢ffet.

Pour cela , observons que si le prisme devait s'allonger ou s’accourcir de la
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_ : : oo 1 '
n™ partie de sa longueur, clest-a-dire }de la quantité o par la formule

(300) nous aurions ,
P = CS--...-.- (a) »
en nommant P la force qui produirait cet effet.
Mais comme l'allongement ou I'accourcissement doit étre de la quantité
absolue @, et que (n® 581) les allongemens et les accourcissemens d’'un méme

risme élastique sont proportionnels aux forces quon y appligue, en nom-
p q propo q Y apphque,

mant P’ la force qui produirait I'allongement ou I'accourcissement a, nous
I aPn '
aurons ’ r—s:a:‘,P;szu—g-.

Si dans celte expression on met la valeur (a) de P ci-dessus, il nous viendra
enfin P’ = R Q)
pour la force cherchée, e élant la force qui, sur I'unité de base, allongerait

le solide de la n™ partie de sa longueur.

589. Supposons un auire prisme de méme nature que le précédent, dont P”
serait la résistance a la tension ou i la compression, S' l'aire de sa base , et .’
sa longueur , et que I'allongement ou Paccourcissement doive étre aussi de la

quantité @ , nous aurons (n’ 588),

. acn8'
P' = “'T-luuo (C)-

Si nous comparons ce résultat a celui () du n° 588, nous verrons que
[ ] L ] S - s' L r - r I
| L L Te T on A . iS'.... (3?!)‘
509. Si les forces P’, P* étaient égales, nous aurions
'S = I§'
et par conséquent S8 Lty (302),

cest-a-dire , pour que deux prismes de méme nature ne s’aﬁonge-nt ou ne
s'accourcissent que de la méme quantité par Vaction de la méme force , il faut
que les aires de leurs bases soient proportionnelles & leurs longueurs.
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LEGON 1L

De la résistance stable pour une section droite quelconque d'un prisme ou cylindre, supposé sans
pesanteur , encastré par un bout ct soumis & une force perpendiculaire 2 sa longueur, appliquée 4
Pextrémité libre.

591. Supposons un prisme ou un cylindre ABCD (fig. 128) encastré horizon-
talement par le bout AD, dans un plan inébranlable GH et chargé & Uextrémité
Libre BC d’un certain poids P.

Par Deffet de ce poids, le corps s abmsser"t par le bout BC, pour prendre la
courbe et la position AB'G'D. Pour lc moment, nous ferons abstraction de la
courbuve , pour ne considérer que ce qui se passe dans une de scs sections droites,
celle EF , par exemple,, qui se trouve en un point E quelconque de la longueur
du solide.

En examinant ce qui se passe dans cette section EF, on verra que Peffet du
poids P sera dalonger les fibres situdes vers la face supérieure ou convexe AB' ,
et d’accourcir celles situées vers la face inférieure ou concave DG’ ; d'or 'on
voit qu'il doit exister, et il existe en effet, une filc de fibres composant une
lame infiniment mince, dont l'intersection avec la scction droite peut étre
regardée comme une ligne droite, située entre les points F, E dans I'épaisseur
du solide, pour lesquelles il n’y a ni extension ni compression; de sorle que
cette lame de fibres n’oppose aucune espéce de résistance 3 action de la foree P:
c’est pour cela que nous donnerons & cette lame, le nom de lame neutre.

La ligne droite d'intersection de cette lame neutre avec le plan de la section
droite du solide est ¢videmment un axe autour duquel les fibres allongées et
celles accourcies résistent a I'action du poids P; cet axe , nous le nommerons aze
d’équilibre ou axe neutre.

592. Il est évident que par l'action du poids P, les fibres g'allongent ou s’ac-
courcissent proportionnellement a leurs distances a I'axe d’équilibre ; or, I'effort
nécessaire pour alonger ou accourcir une fibre élastique (n® 582 ) est propor-
tiannel 4 I'alongement ou & I'accroissement qu’elle doit subir; de plus (n“ 583)
une fibre réagit avec unc force égale & celle qui Pa alongée ou accourcic, par
conséquent , la résistance de chaque fibre sera proportionnelle & son éloignement
de Vaxe d'équilibre.

593. La rdsistance totale du solide est évidemment égale A la somme des
momens des résistances des fibres alongées, par rapport a 'axe neutre de ré-
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sistance, plus celle des momens , par rapport au méme axe, des résistances des
fibres accourcies. Or, les résistances des fibres, tant en compression quen
extension; sont des forces paralléles, méme aprés que le corps s’est courbé
d’une maniére sensible ; par conséquent la somme de leurs momens sera égale &
la somme des résistances des fibres en extension multipliée par la distance du
centre des forces paralliles par rapport & Vaxe neutre (n® 84). 1l en sera de méme
pour la somme des momens des fibres en compression.

594. Supposons, & présent, quun prisme ou cylindre quelconque soit en-
castré dans un plan inébranlable MN (fig. 126 ) commeil a été dit (n°® 591).

Soit cd I'axe neutre de la section EF; si Eaest 'allongement de la fibre la plus:
éloignée de cet axe, en menant un plan cad par le point a et ’axe neutre cd,
il est clair que le volume du solide en forme de coin acdE , sera égal & la somme
des allongemens de toutes les fibres en extension, et, par conséquent (n° 592),
la somme des résistances de toutes ces fibres ; la somme des momens de toutes ces
résistances par rapport & I'axe d'équilibre sera donc égale au moment de ce solide
par rapport au méme axe, c'est-d-dire au volume de ce coin multiplié par la
distance de son centre de gravité au plan horizontal mené par Uaxe neutre

En raisonnant de la méme maniére sur les fibres en compression, et sur
le coin cbdF , on verra que la somme des résistances des fibres en compression
est égale au volume de ce coin, et que la somme des momens des résistances de
toutes ces fibres comprimées est égale au volume du méme solide multiplié par
la distance de son centre de gravité, an plan horizontal mené par I’axe neutre.

595. Cela posé, représentons par ¢ le volume du solide qui représente les
allongemens, et par g la distance du centre de gravité, du méme solide, par
rapport au plan horizontal mené par I'axe neutre; le moment de ce solide sera

L TR ()%

Appelons de méme v' le volume du solide qui représente la somme des ac-
courcissemens des fibres en compression , et ¢' la distance du centre de gra-
vité de ce solide par rapport au plan horizontal mené par l'axe d’équilibre, le
moment de ce-dernier solide sera

Vg ernne (B).

Maintenant observons que le poids P suspendu a l'extrémité libre BC du
prisme encastré est obligé , d’une part, de faire équilibre a la résistance de
toutes les fibres en compression , et de 'autre part a la résistance de toutes les
fibres en extension, et nous verrons que si E représente le moment tolal de
toutes ces résistances autour de 'axe neutre, il en résultera que

E=v 4+ v'¢g" ccoe. (€)
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596. Lorsqu'il y a équilibre entre la résistance du solide et I'action du poids
P suspendu a son extrémité libre, il faut nécessairement qu'autour de I'axe
neutre ¢d, le moment résultant des fibres en extension soit égal & celui des
fibres en compression ; car sans cela cet axe ne pourrait rester fixe, et par
conséquent 1’équilibre entre la résistance du solide et P'action de la force P ne
pourrait avoir lieu, ce qui serait contre notre hypothese. :

Ceci est d’ailleurs prouvé par I'expérience. En effet, dans le bois, par exemple,
lorsque le poids P fléchit le solide au-dela de la limite de son élasticité parfaite ,
en augmentant ce poids, on voit l'axe neutre changer de place , parce qu'une
fois I'élasticité altérée, le rapport des résistances entre les fibres en extension
et ‘celles en compression change, et les momens de ces résistances cessant d’étre
égaux, 'axe neutre change de place, jusqu’a ce que cette égalité soit rétablie et
qu'il y ait équilibre de nouveau, entre la résistance totale du solide et Iaction

de la force P.

597. 1l suit de 1 que généralement nous pourrons égaler les expressions (a)
et () ci-dessus , et nous aurons '

vg = v'g ..., (303),
ce qui réduira 'équation (c) a
E = 2vg..... (304);

d'ow Pon wvoit que, pour avoir lélasticité qui se développe dans une section
droite quelconque du solide , il suffira de s’occuper du moment du coin dont le
volume égale la somme des résistances des fibres en extension (*). '

{*) Les auteurs qui ont traité le méme sujet I'ont fait en employant le caleul infiniticimal , qui
les a conduits & une formule générale qui est ici remplacée par celle (304) que nous venons de
trouver. Voici comment on pent trouver la formule différencielle.

Prenons pour I'axe des abscises Iaxe d'équilibre cd lui-méme ; et pour I'origine des coordonnées
rectangulaires , lextrémité ¢ de czt axe; cela posé, nommons

x l'abscisse et y l'ordonnnée d'un point quelconque du contour de la section droite ¢EdF;

u, la distance pm d'une fibre m & l'axe d'équilibre; -

t, la force nécessaire pour alonger, dela n™ partie de sa longueur , une fibre placée 4" une
distance de I'axe nentre égale & unité.

Cela posé, considérons la fibre dont la distance  I'axe d’équilibre est pm =u; I'aire de sa
basesera drdu ; son allongement devant étre proportionnel A sa distance A I'axe d’équilibre ,sera
fu; sa résistance absolue utdvdy et son moment n2tdzdu. Le moment de la résistance d'une
lame de fibres verticale continue dont I'épaisseur serait dx, et la hauteur pm = » seru

:axfu=da=(%‘- + B)ds;
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598. L’équation (303) ci-dessus fera connaitre la hauteur & laquelle l'axe
neulre doit étre placé dans la section droite du prisme, quand on connaitra le
rapport entre les résistances des fibres en compression et des fibres en exten-
sion, ainsi que la figure de la section droite.

599. Dans le eas de la résistance stable, les résistances des fibres en com=
pression sont égales a celles des fibres en extension (n° 580). Si, de plus,
toutes les sections droites sont susceptibles d’étre divisées en deux parties symé-
triques par une droite perpendiculaire a la direction de la force P, il est évident
que cette droite sera 'axe neutre ; car tout étant égal de part et d’autre , il est
clair que par rapport  cette droite,, le moment de la résuliante des fibres en
compression sera égal & celui de la résultante des fibres en extension ; et 1é-
quation (303) du n° 597 sera satisfaite. )

Ainsi tant que nous aurons affaire & des prismes ou cylindres dont la base
pourra se parlager en deux parties syméiriques par une droite horizontale,
nous pourrons prendre cette droite pour I'axe neutre, en la supposant situde
dans un plan perpendiculaire 4 la force P appliquée a lextrémité libre du
solide. .

Cela posé, appliquons la formule générale (304) ci-dessus, 4 quelques exem-
ples particuliers qui se présentent le plus souvent dans la pratique.

600. On demande la force d'élasticité qui se développe dans une section droite
quelconque d'un prisme & base rectangulaire encastré par uin bout , et soumis &
Paction d'une force perpendiculaire & sa longueur, et appliquée & son ex-
trémité libre.

Soit 1° ABCD; (fig. 127), une section droite du prisme, prise en un point quel-

et s'il s’agissait d’une lame dont la hauteur serait y, on aurait pour le moment de sa résistance

(%—’-]-B)dx,.

et le moment de la résislance de loutes les fibres en extension serait

g‘f(.r‘ + B)dr 4 C
E étant done la résistance torale du solide encastré, on eura, d'aprés le n° 597,
E = %’f(ﬂ +B) dz + C......(a).
En prenant Uintégrale de cetle fonction depuis » = o jusqu'd 2 = ed, on aura I'élasticité

E d'unsolide quelconque. Avant de prendre cette intégrale, il fandra mettre au licu de y st
valeur donnée en z par 'équation de la section droite.
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conque de sa longueur; 2° la droite ab (parallele a AB), l'axe neutre, et
3° le prisme triangulairc AacdBb le solide dont le volume est la somme des
extensions des fibres. Cela posé nommons « la largeur AB du rectangle ABCD,
b la hauteur AD de ce rectangle ; ¢t effort” nécessaire pour alonger dela n™
partie de sa longueur une fibre placée a unc distance de I'axe neutre égal a 1’unité.

L’axe neutre ab sera a égale distance de la face supéricure AB et de la face

inférieure DC du solide (n° 599); par conséquent Aqa — g

La hauteur Ac de la basc aAc du prisme triangulaire aAcdd des esten-
sions, sera donné par la proportion (n° 592) :

L b. 6
1.t ad ou ;.Ac_::-!—.

Laire de cette base aAc = aA )( > et par conséquent

ba
alc = - >< 4 tg

Le volume du prisme AacdBb des extensions sera

w__aAchB_f‘i’xa=“‘;‘.

La distance fe, par rapport i I'axe neutre @b, du pied e de la perpen-
diculaire abaissée du centre de gravité G du prisme AacdBb sur le plan de la
section droite sera

2 - 2 b
g=3dh=3X;=3
Le moment résultant des extensions sera donc,

tab’ __ tab®
Y =5 < 3 5= ﬂ4
Si donc nous substituons dans la formule (304), il nous viendra enfin

tab’ tezf;’

E=aX = . (305)

2

pour l;expression de la force d’élasticité demandée @)

(*) Pour résoudre ce probléme au moyen de la formule () de la note page 227, on
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601. Si la base du prisme était un carré , b —a, et la formule (305) de-
viendrait
E= ... (306
= I—;......( 0 ).

602. Supposons un prisme & base carrée, encastré de manitre que Uune des
diagonales de la base soit paralléle & la direction de la force appliquée & Fextré-
mité libre, et q'on nous demande Uexpression de la force d'élasticité de ce
prisme , pour une section droite prise en un point quelconque de sa longueur.

Soit le carré ABCD (fig. 128), la base du prisme donné ; comme la diagonal
AC partage la section droite en deux parties symétriques ACD, ACB , cette
diagonale sera I'axe neutre (n° 599), 'autre diagonale BD étant paralitle 4
la_direction de la force qui est appliquée a I'extrémité libre du prisme. Le solide
des extensions sera donc la pyramide triangulaire ACDE. Nommons

a la demi-diagonale ID ou AI;

t la force de tension de la fibre placée & une distance de I'axe neutre égale
2 l'unité.

Cela posé, nous aurons

ACD = Al X ID = a?,

La tension DE s’obtiendra par la proportion

1 .¢%.ID oua, DE = at
Le volume de la pyramide des extensions sera
DE t }
v:ACD}(T:a’X%:%s.

La distance g de I'axe neutre AC au pied de la perpendiculaire abaissée du

centre de gravité de la pyramide sur le plan de la section droite, sera (n° 150)

_aD_ID_a
=% — % — 3

, b ,
observera que » est une conslante egale 4 3! et quela constante B == o ; par conséquent ,
b3 the
E=z— fdr 4 C=— + C
12 f _+ e T
En prenant la valeur de celte intégrale depuis 2 =0 jusqu'd 2 = 2, on aura

tab’
= 1, ?

" I2
comme dans le corps de 'ouvrage.
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et par conséquent, le moment de cetie pyramide deviendra

a't

3
at a
‘U‘q —_— -3-- >< ; _ =
Si nous substituons cetie expression dans la formule (304) , il nous viendra

a't

it
E=2X %— = e (@)
pour I'expression de Iélasticité demandée (*).

603. Appelons b le coté AB du carré ABCD (fig. 128); nous aurons
i

: \ b .. .
b* = 2a®, et par conséquent bt=— fat; d'onr a-i:z. Si nous substi-
tuons cette valeur de af dans la formule (@) ci-dessus, il nous viendra
64
E = "
Iz

Sinous comparons ce résultat i celui du n® 601, nous verrons que la résis-
tance & la flexion du prisme & base carrée reste la méme, que le prisme soit en-
castré de manitre que 'axe neutre soit une diagonale de la base, ou que cet
axe soit paralléle & un cdté.

604. Proposons-nous de trouver Uexpression de la force d'élasticité powr une
section droite quelconque d'un tuyau & base carrée , encastré par un bout, et
chargé d'un poids a Uextrémité libre.

Soit ABCD (fig. 129) la base extérieure , et EFGH la base intérieure du
tuyau ; soit, de plus, ab I'axe d’équilibre, qui divise en deux parties symétriques
chacune de ces bases. Nommons ales cétés de la grande base; a' ceux dela
petite ; ¢ la tension dela fibre placée & une distance de 1’axe neutre égale a Punité,

La formule (306) nous donnera pour I'élasticité du prisme plein qui aurait

(*) Pour résoudre le probléme au moyen de la formule () de la note page 227, on observera
que la relation entre x et y sera donnée par la comparaison des triangles semblables AID,
Apm , qui étant isocéles, donnent Ap = pm, comme Al ==1D; de sorte que ye=z, et la
constante B = o; par conséquent , 1

at atxé rx*
='— 3 _ — .
E 3 J* dz +C 34 =5 +C

En prenant cette intégrale depuis = o jusqu'a # = 2 a, on aura

tat
‘3'.':

E =

comme dans le corps de l’ouvrage.
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4
t . . . . :
llr4 grande base If; » et pour celle du prisme plein qui aurait la petite base
a' o 2 . .

i on P'élasticité du tuyau est évidemment la différence de celles des deux

tuyaux pleins ; si donc E est Délasticité demandée, nous aurons

a't a’’t t
= — — — = — (&t —a'4)... .
E=5 -5 =5 @—a).0m)
505. Si A dtait le coté de la-base carrée d'un prisme plein de méme
longucur quele tuyau , et qui aurait la méme force d’élasticité que ce dernier,

' . At t , . : ¢
on aurait — = — (at —a'4) on i cause du facteur commun o

At = at — a'4..... (a)

dot A = |/a4——a'4...... @),

mais les volumes des deux solides, qui ont méme longueur, seraient dans le
rapport des aires des bases, c'est-a-dire

n @ L 2‘__1”
.,Az,a Q,,

ou cn mettant pour A? sa valeur (5),

NV S —at @ ()

Je dis maintenant que le premier terme de ces rapports (¢) est plus grand
que le second j C'est~a-dire que le volume du prisme plein est plus grand que
celui du toyau.

En effet, le radical [/aﬂ —a't = I/(a‘-‘ +a'?) (a*—a'?), ot

en' conséquence le ranport (c) peut se mettre sous celte forme :

V@) @—a) @ —ahen(d)

d’olt I'on voit évidemment la vérité de la proposition , puisque pour que le
radical égalit @* — a'# il faudrait que les denx facteurs qui sont affectés de ce
radical fussent tous les deux a* — a'2, tandis qu'il y en a un qui est a*+ a'2,
plus grand que a* — a'2. _

1l suit de Ia qu'en donnant &un solide la formedun tuyau, il y auwra économie
de matiere sans diminution dans la force d’élasticité.

* 606. Supposons que A soit le coté de la base d'un prisme carré plein ;
Paire de cette base scra AZ. Si celte base est équivalente 2 celle d’un tuyau
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de méme longueur que le prisme plein, les volumes des ces deux solides seront
égaux , et leurs élasticités seront

YA @ — alhen. (d),

mais les bases étant égales, héus aurons A2=a* — a'2, d’ou A4 = (a> —a'*);
mellons cette valeur de A+ dans le rapport (a), il nous viendra

(@ —a') l ai—a't L (@ —a'2p t(@4a?) (@ —a't),
cequiseréduitdh lla?—a'*; a*4-a'?

d’olt nous voyons que la résistance du prlsme plein est moindre que celle du
tuyau.

607. 11 suit donc de I qu'avec la méme quantité de matiére on ol;tiendrq
une plus grande force d'élasticité en employant la forme d'un tuyau, au licu
de celle d'un prisme carré plein, '

608, Supposons deux prismes rectanqulaires de méme largeur , encastrés
par un bout Uun au-dessus de Vautre, dans le méme plan inébranlable, de
manidre que ces deux prismes laissent entre eux un infervalle qut soit le méme
dans toute leur longueur (ces’ deux prismes d’ailleurs étant réunis ensemble
de maniére & éire forcés de prendre la méme courbure par laction d'une
méme force, perpendiculaire & leur longueur, appliquée & Uextrémite libre),
et proposons-nous de trouper lexprssswn de Uélasticité du systeme de ces denx
prismes. : .

Soit ABGH (ﬁg 130) ,  une section drmtﬁe quelconquc da systeme des
deux prismes, ABCD étant celle du prisme placé au-dessous , EFGH celle du
prisme placé nu-dessus, et DCFE, celle du vide entre les deus. Supposons
d’abord que Yon ait un prisme plein qui comprenne la base entitre
ABGH , I'axe neutre ab sera au milieu de la hauteur BG de cetle base; si
nous supposons ensuile que les hauteurs BG , GF des sections droites des deux
prismes donnés soient égales, I'axe neutre ab divisera aussi la hauteur CF de
la section droite du prisme qui occupe la place du vide, en deux parties égales,
et sera par conséquent axe neutre de ce dernier prisme. D’aprés cela il est fa-
cile de voir que la force d’élasticité du systtme des deux prismes est égale a
celle du prtsme total dont la base est le rectangle ABGH , moins celle du
prisme qui occupe la place du vide dont la basc est le- recl'mwlc DCFE. Cela
posé, mommons

‘b la bauteur totale BG;
b' celle CF du vide, ct

a la largeur commune aus deux Prisnies.

3o
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L’élasticité du grand pri °600) %%, et celle du petit 22t
élasticité du grand prisme sera (n e € du petit —.
Si donc E représente l'élasticité du systéme proposé, nous aurons

ab’t ablt at
E= T T = 1 @ =03, (308).

609. Si la face inférieure du prisme située au-dessus se trouvait sur laxe
d’équilibre ab du prisme total ,dont la hase est le rectangle ABGH (fig. 130),
demaniére que la section droite du prisme supérieur fiit le rectangle abGH , dans
ce cas, le prisme dont la suppression formerait le vide entre les deux , serait
pris tout entier dans les fibres en compression du prisme total ; par consé-
quent , apres cetle suppression, I'égalité des momens de résistance des fibres
en extension et de celles en compression aatour de I'axe neutre ab serait dé-
truite, ce qui exigerait que I'axe neutre remontit d’une certaine quantité, pour
que cetle égalité fiit rétablie, d’olt I'on voit que D'élasticité du systéme serait
diminuée.

En cffet, dans ce cas, le prisme & retrancher du prisme total qui a son axe
neutre en ab, ayant toutes ses fibres en compression , son moment sera

Pt . . ab"t
"—-—3 au lieu d'étre — .
12

Car si nous considérons & part la base ABCD (fig. 131) de ce prisme a retran-
cher , le solide (n® 594) qui représentera la somme des accourcissemens des
fibres en compression , sera le prisme triangulaire ADEFCB.

Or, on aura la hautcur AE, dec la base AED de ce prisme (n° 600), par la

proportion
1 c¢t2. DA ou b' | AE = &',

L’aire du triangle AED sera

3 ;e
S Xt =—,

et le volume 2’ du prisme des compressions

th tab™
v = — @ = —.
2 X 2

D'ailleurs la distance g’ de la projection du centre de gravité de ce

prisme triangulaire sur le plan dcla scction droite & l'axe DC est g' =
13&-; le moment du prisme & retrancher du prisme total sera donc
. talls , o tab®

2 3 3
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comme nous ’avons avancé ci-dessus. Si donc E est D'élasticité du systeme des
deux prismes donnés, nous aurons

3 ] -
R

610. Si l'on compare ce résultat i celui du n® 608, on verra que dans notre
dernitre hypothése le systtme des deux prismes a perdu de sa force d’élasticité,
cuoique le volume de ce systéme soit resté le méme. Si le vide s’était Lrouvé tout
enlier au dessus de l'axe neutreab (fig. 130), on serait arrivé au méme résultat,
II faut donc conclure de la qu’il est plus avantageux des’en tenir a I’hypothese
du n® 608, dans laquelle les deux prismes du systéme sont égaux.

611. Il s’agit de savoir maintenants’il y a avantage a laisser ainsi un inlervalle
entre les deux prismes. Pour nous en assurer , supposons-les encastrés immédia-
tement I'un sur 'autre; alors la hauteur 4 du systéme diminuera de I'intervalle
b' qui séparait les deux prismes dans le cas du n® 608 , de sorte que, dans la
formule (305), au lieu de b il faudra mettre b — b’ , ce qui nous donnera

ta (b— b
12 ?

E =

pour Pélasticité du nouveau systéme.
Celle du systéme du n°® 608 est

J’__m r
E _5(53_._55)’

nousauronsdone E § E’ (5 (b—b') . B3 — '3,

cc qui revient a
ECE 2.(b—0b) (b—2b') 2 (b2 +0b'%) (b—1b").
et se fétluit A
E*E %% br—obb' 4 b'z Lb2 4 bb' + b'a.

D'ol1 I'on voit que B < E', puisque le premier terme du second rapport est
plus petit que le second de 3 5" : il ya donc avantage d'écarter Jes deux prismes,
et cet avantage esl exprimé par B

' ta __ tabb -
3bb' X — = -

612. En suivant le méme raisoinement, on arriverait & 'élasticitd du
systeme d'un nombre quelconque pair de prismes encastrés par un bout, les
uns sur les aulres, et laissant entre eux des intervalies. L’analogie fait voir que
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pour procurer i cesystéme la plus grande élasticité possible,, il faut que les pleims
et les vides soient égaux deux i deux, et soient symétriquement placés par rap=
port & 'axe neutre du prisme total qui comprend les vides et les pleins.

613. La formule (308) fera connaiire aussi Iélasticité d’une picce de bois ou
de fer dans laquelle on aurait pratigué une entaille dans le milieu de sa lauteur
et qui traverserait toute la largeur du solide, b’ étant la hautenr DE (ig. 130)
de lentaille.

Dans le cas o cette entaille ne serait qu'une mortaise dont la profondeur
égalerait DI (fig. 130), de I'élasticité du prisme total, au lieu de retrancher

celle du prisme dont la base est DCFE, on ne retrancherait que celle du

n
pnsme qui aurait pour base le rectangle DIKE, qui serait exprimée par t—aj-z—-'

a'étant la profondeur DI de la morlaise, et &' la largeur DE. Si donc I'élasticité
de la piéce, & I'endroit de la mortaise,, est représentée par E , nous aurons

tab® - ta'h? t .
= — - = — (ab3 — a'b'3)...... (310).

L= T 12 12 (ab a'b’?) (310)
On voit par cette formule , que plus la profondeur ¢’ de la mortaise sera grande,
plus Délasticité de la piéce sera diminuce. ca

614. Si le tenon qui doit entrer dans la mortaise est bien juste,, Cest-a-dirc,
vient bien remplir le vide, alors la moitié de T'épaisseur de ce tenon venant
remplacer toutes les fibres tn compression supprimées par la mortaise, il en
résultera que Pélasticité de la- p\éce sera plus grande que si la morlaise était
vide ; mais comme on ne peut jamais compler que le tenen viendra com-
plétement remplir la mortaise, et quand cela arriverait, comme le tenon
présenterait ses fibres en travers s'il sagissait de bois , et que dans cette di-
rection les fibres se compriment davantage , il s'ensuit quon ne doit pas
tenir compte de cette augmentation.

615. Supposons, maintenant, qu'on nous demande Uélasticité d'un cylindre
& base circulaire , encastré.par un bout, et saumcs, u Pextrémité libre, & Uaction
d'une force perpendiculiire i sa longueur.

Soit ABCD (fig.132)une section droile quelconque du cylindre; I'axe neutre
sera le diametre horizontal AT, et le solide dont le volume égale la somme des
fibres en extension, sera le coin cylindrique AECBA.

. Le volume de ce coin (.géom. & trois dim. n° 141) est S

1_: ._ ) Lot o ) v =l2;: x BEunu (ﬂ);
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on aura BE par la | proporuun
c1 3¢5 1B ou » i BE =,
. "ot
ce qui-donnera = 3
La distance a Paxe neutre AC du pied dela perpeudmu]alre qbalssee du centre
de gravité du coin cylindrique sur le plan de la section dmxte ABGD (n‘ 204)

. Ipr
cst g:{-z.—.

Le moment du coin par rapport i I'axe neutre sera donc
P

. 2m? 3pr __ tpr
A T

si nous eubshtuons dans la formule (304), 11 nous viendra enfin

e

E 1 >< E{!Et — E%-[uu-n- (311)' ) '. .

pour P’expression de Pélasticité du nylindrgé circulaire (*).

616. S'il sagissait. d'yn tuyan cylindrique, dont r, r', seraient les rayons
des cercles extérieur et ml,eme'i.tr on aurait, o

Lt
Pour le grand cylindre plein %, - :
' 4

e e e .y tprt
Et pour le petit qui tient la place du vide EZ— 3

{*) Pour résoudre ce prﬁ]:lém‘e par le caloul infiniticimal , on observera que V'équation du cercle est
¥ = == /2rx — x4, lorigine des coordonnés €tant au sommet A du diamétre AG, qui colncide avec

I'axe d’équilibre ; d’olt Ly =(2rr — a2

en substituant dans la formule (a) de la note page 227 , et en observant que la constante B = o, if
viendra '

E= g‘ czm» - xi) & 4 G
cn, mtégram daprés les rcgleqapplmbles aux foncunns bmomes et prenam oette mtegrale dcpms
x = o jusqu'd x = 2r, ﬂviendra .

comme dans le corps de l'ouvrage, ¢ o
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par conséquent, pour le tuyau, E étant son élasticité , on aura

] "
E = !-?r- — Té—- = %p (ri = r’4).. (312).

617. L'emploi des tuyaux cylindriques offre les mémes avantages sur celui des
cylindres pleins, que celui des tuyaux 4 base carrée sur les prismes pleins ( voyez
n® 6ok et suivans); c’est-a-dire qu'avec la méme quantité de matiére, on a plus
de force élastique en donnant i cette matiére la forme d’un tuyau qu’en lui
donnant celle d’un cylindre plein, et pour avoir la méme force d’élasticité, il
faudra bien moins de matiere dans le cas du tuyau que dans celui du cylindre
plein.

618. Si I'on suppose un prisme 2 base carrée ABCD (fig. 133), circonscrit i
un cylindre 4 base circulaire , la force d’élasticité du prisme sera (n° Go1)

et celle du cylindre (n°® 615)

E' = :-;;—r‘......... ().

Mais AB = ar ; dou (AB)t = (2r)¢ = 160* ; en subslituant dans P'expres-
sion (@) il viendra

__abtt 4t
E=-—r=%5%
on aura donc
. F."é.E" 'G. .e " 3'}:22
EaE ot!§l40l] QBP .o Iﬁ . ""'7__
ou bien E . E .,112a; 66 ;56 . 33

Les volumes des deux solides sont comme les aires de leurs bases, qui sont
S = 4r* et 8 = pr
de sorte que
S:S"::d:}’::4:§ Pt IR S ¥ S O

Dot Lo voit que le rapport des résistances, qui est 16  3p, est plus
grand que celui des volumes qui est 4 [ p: Ainsi on perdrait plus de ré-
sistance que de matiére, si Uon arrondissait un prisme carre pour en faire un
cylindre. .

619. Supposons un prisme a base carrée , et un cylindre cireulaire de méme
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longueur et de bases équivalentes, A étant le c6té de la base du prisme, et »
le rayon de celle du cylindre ; puisque les bases sont équivalentes, on aura

Az = prz d'ot A+= pri.... (a).

A" * :
Les élasticités de ces corps seront E = —, et E' = t":{ ; par conséquent
At prt
- .,‘ L] - [ ] I
E . E *e g9 * 43

ou ¢n substituant la valeur (a) de A4,

2.4
RS R A R - RIS

- . A D /I 2, ar.
Ainsi Uélasticité du prisme & base carrée sera plus grande que celle d'un
cylindre de méme volume et de méme longuewr. Il vaut donc mieux employer
la matiére & un prisme qu’a un cylindre. Cependant on voit quici la diffé-
rence n’est que d’un vingt-deuxi¢me de l'élasticité du prisme , et que par con-
séquent , pour peu que les convenances exigent un cylindre au lieu d’un
prisme; on peut se le permettre sans s'écarter beaucoup de I'économie.

[+]

620. Si Pon considere le prisme & base carrée abed , inscrit dans le
cylindre (fig. 133), on aura

(abp = .2, et partant- (ab)t = 4+, .
en substltuant pour (ab)‘i sa valeur 4rt & la place de af dans la formule

ft vt
(306), on aura E= =3
pour Délasticité du prisme inscrit.

Mais celle du cylindre (n° 615)estE’ = =

%
nous aurons donc
S NS SR HE RN VRS )

Les volumes du prisme inscrit et du cylindre donnent

VIVii@ponar Iprilalplial Tilglalisin,
d’otz P'on voit qu'en transformant un cylindré en un prisme & base carrée , on
perd plus de résistance que de matiere, puisque le rapport des résistances
est °% 14 o 33, et celui des volumes |} 14 ; 22.Ceci, et ce qui a été dé-
montré au n° 618, nous font voir que lorsqu’on taille un selide pour le changer
de forme, on perd plus de résistance de matitre.

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

240 COURS DE CONSTRUCTION.

LECON IIL.

~ De la résistance & la rupture des solides prismatiques encastrés par un bout, et soumis A lautre &
un effort transversal.

Pour résoudre cette question le plus convenablement possible, nous divi-
serons les corps en deux especes : la premiére comprendra tous les corps
qui se rompent avant d'avoir pris une courbure sensible, tels que la pierre,
le fer fondu, ectc.; ct la scconde, cenx au contraire qui prennent upe grande
courbure avant la rapture , tels que le l:-ms, le fer for%, etc.

Occupons-nous d'abord des premicrs,

Laoas

621. Dans ces especes de corps, 'axe d’équilibre. doit conserver . peu prés
la méme position que dans le cas de la résistance slable ; de sorte qu’on peut
encore, sans erreur sensible, le supposer sur I'horizontale qui divise en deux
parties symélriques la base d'encastrement, et par conséquent regarder les ex-
tensions et les compressions des fibres comme proportiontelles  leurs distances
a 'axe de rupture. Seulement, comme la rupture commence par les ‘fibres les
plus éloignées de I'axe d’équilibre, tant parce que- celles qui sont les plus éten-
dues cassent les premitres, que parce que celles qui. sont les plus comprlmees
sécrasent le plus 16t Clest pour cela qu’au lien de calculer Teffort néces-
saire pour élendre ou comprimer ces fibres d’une certaine quantité d'aprés
celui qui étendrait ou accourcirait d’une quantité donnée une fibre placée & une
distance de I'axe d’équilibre égale i I'unité, nous rapporterons cet effort & celui

qu'il faudrait pour rompre la fibre la plus étendue,

C .

622. 1l résulte de la que notre formule générale (304) scra apphcable au cas
de la rupture, en se conformant aux observations précédentes (*).

(*) Pour gbteuir la forimule générale du QOelll de rés:stme & la ruptare par le- caic.ul
infiniticial:, nons nommerons : .

x ety les coordounées d'un point quelconque du contour de la base d'cncastrement, les axes
des coordonnées étant snpposés comme dans la note de la'page 227 ; ' '

u la distance d'ane ﬁ!.nm qllelcouque A Paxe ﬂ'equll:bre et

rla force éapable de rompre la fibre 1a plus étendne on la plus conlprimée.
;Icia posé , -donsidérons Ta Gbre dont la distance 4 'axe d'équilibre est is; Paire de sa base sera
dudry si a est la distance & T'axe d'équilibre de la filne doat Ja résistance est r,-la résistance
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623. Proposons-nous de Pappliquer au cas d’un prisme a base rectangulaire;
et soit ABCD (fig. 127) la basede ce prisme, le solide des extensions sera, comme
aun® 600, le prisme ABbdca. Nommons

a la largeur AB du rectangle ABCD;

b I'épaisseur AD du prisme, et

r la force .de traction nécessaire pour rompre la fibre Ac. L'extension Ac¢ de

cette fibre étant proportionnelle a la foree ', pourra-étre représentée par cette
force r.

Cela posé, nous aurons

b .
aA=-, Ace=r,

A rb :
et par conséquerit Aac =7 et 9= "2

4

de.celle placée 3 la distance u-sera -:f; sa résistance absolue sera done M-? et 'son moment

r

~ u'dxdu.
o L
Le moment de la résistance d'une lame de fibre verticale et continue , dont I'épaissetr serait dz,
et la hauteur u, sera ,; dx‘/‘u'du = ?E(u?‘ + A)da.
‘#'il s'apissait dune lame dont la hauteur serait y, on aurait
r
3 4 A) dx
‘Le.moment.de la résistance de toutes les fibres en extension sera
T f ( y54 A ) dryB
3
et par conséquent celui de la résistance totale du prisme .

ir: al -
Bai—ﬁ (ﬂ-}-&)dx{-k,
en prenant V'intégrale depuis x == o jusqu'd x = AC (fig. 126).

Noﬁ laisserons au lecteur le soin d’intégrer cette formule générale dans les différens cas par-
ticuliers qu’on trouvera dans le corps de cet ouvrage , pour évitel les répétitions.

31
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b rab*
Nous aurons g = 3 comme au n° 6o, et gv =17

En substituant dans la formule (304), il nous viendra

B:s)(rlib;.:r%b‘ ..... .(313)

pour le moment de résistance 4 la rupture, en nommant R cette résistance:

624. Si, au lieu d’'un recl.angle, la base était un carré, on aurait b = a-, et

R= T (314).
625. Si I'on avait un autre prisme de méme longueur , on aurait, par
la formule (313) R = L"éﬁf? |
d’olx R YR G ab® [ a'b'e,

11 suit de Ja que les résistances a la rupture de deux prismes cle. méme lon-
gueur , sont comme les produits de leurs largeurs par les carrés de- leurs
épaisseurs.

626. Si les largenrs étaient les mémes , on aurait

RIR Db Do,
c’est-a-dire qu'alors les résistances seraient mmﬁie les' carrés des épaisseurs.
627. Enfin si c’étaient les épaisseurs qui fussent égales, on- aurait
RIR llald,
ce qui nous apprend que dans ce cas les résistances seraient comme les largeurs:

628. 8'il Sagrssait d’un prisme 4 base carrée, encasiré de maniére qu’une
de ses diagonales se trouvit verticale, et par conséquent Iautre sur laxe d’é-
quilibre, en appelant ala demi-diagonale ID (fig. 128) et r la résistance de co-
hésion de la fibre la plus étendue ; nous aurions

surf. ADC = @*; extension DE = r;

le volume de la pyramide triangulaire qui exlf;l'ime fa somme des extensions
des fibres serait donc :

__ra
| A
La distance que nous avons toujours représentée par g et qui est relative au
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centre de gravité de ce solide des extensions sera .g :i: , et par cp;l-
séquent "vg = 1%?,
et en substituant dans la formule (304) il viendra

ra® I
B=2><'E —_-—-"5 ..... 1(315),
pour le moment de la résistance & la rupture du prisme en question.
629. Appelons b le coté AD du carré ABCD (fig. 128), nous aurons
b* = 2a*, et par conséquent 53 = 243 l/a ,
. e _
2/ 2

Substituons cette valeur de «* dans la formule (315), etil viendra

d'ol ad =

o P
B-—ﬁv’z'

Si nous comparons cette expression & celle (314), en y mettant & au lien de ,

or.l’f.ﬂio -L.n . .
mnous aurons R, R' % T o6 aesleyare l/n . 5
d’ol1 l'on voit que le moment de la résistance a la rupture d’'un prisme & base
carrée, encastré de manitre que I'axe d’équilibre soit paralltle dux deux cotés
de la base, est'a celui de la résistance 2 la rupture du méme prisme encastré
de maniére que l'axe d’équilibre est sur la diagonale de cette base comme

|/2 + 1. Ainsi dans le premier cas la résistance est [ﬂus grande que dans

le second. Nous avons vu ( n° 603 ) que cette résistance restait la méme dans
" le cas de la résistance stable.

630. En raisonnant sur la formule (314) , comme nous I'avons fait au

n° 604 sur la formule (306), nous trouverons pour- Pexpression dumoment de
la résistance 4 la rupture d'un tuyau i base carrée,

R = % (a® —a’?)... (316). )

631. Si A était le cd1¢ de Jabase d’un prisme carré plein qui aurait la
méme résistance que le tuyau carré , on aurait

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

244 COURS DE CONSTRUCTION..

y —
‘o2 A= l/a" —a'3y,

T —

et A=) (ad—a'd )

Les volumes de ces corps seraient dans le rapport.de-.

A2 @2 — a'2

3
ou V(@ —a'dR Vet —a'n
Si I'on faisait sur les deux termes de ce rapport lés dévoloppemens et les ré~
ductions convenables., on verrait que le premier terme est plus grand que le
second, ce qui prauve que le volume du prisme plein est plus grand que celui
du tuyau.

632. Si le prisme plein et le tuyau avaient méme volume, on aurait.

Ar=a*—a'*, u A=} a* —a'?,
et les résistances seraient comme

A3 D ad—a'l,.
3 -

ou o (as — u"?‘) . a’ — a3,

En développant et réduisant , on prouverait.que le premier terme de ce rap-
port est plus petit que le second, ce qui fait voir que le prisme plein a moins
de résistance que le tuyau.

633. En raisonnant sur la formule (313) , comme nous 'avons fait aun® 608
sur la formunle (305), on trouvera

r a 1. .
B- == i-;_.(b '_5 )u. (.317)0 l

pour le moment de la résistance de deux prismes rectangulairves , placés a
distance 1’'un au-dessus de 'autre, et encastrés comme il a été dit au n° 608 ,
et on lirerait les mémes conséquences que dans les n* 6Gog et 610.

634. Si I'on nous demandait le moment de 'résislaljlcc 4 la ruptore d'on
cylindre plein eneastré par un bout (fig. 132), Pextension BE =1r, et le
volume du coin cylindrique AECBA , serait (‘Géom. & trois dim., n® v41)

292 ) 207
‘ v=g Xr=ge

a étant le rayon de la base du cylindre.
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La-distance g relative au centre'de gravité sera (n° 204)

.

— 3.
— 16’
rpad
5,

4

dolr: vg =
ef par conséquent R = 2 X - rm = %.. « (318),

635. 8'il sagissait d'un tuyau cylindrique- dont @ et @' seraient les rayons
des bases’, en raisonnant comme awn®616; et au moyen de la formule (3:8),

i = P (3 — g 3
on trouverait R = A (cﬂ a 3).,-.;. (31g)

pour le moment de la, résistance & la- rupture de ce tuyau..

~ L’emploi des tuyaux cylindriques offre les mémes avantages sur les cylindres
pleins que celui des tuyaux carrés sur les prismes carrés pleins.

636 Sil'on supposait un prisme & base carrée ABCD (fig. 133), circons-
crit ou inscrit & un.eylindre circulaire, on tirerait les mémes conséquences
que celles des n” 618 et suivans..

De la résistance & la rupture des corps encast’és par un bout; et soumis i L'autre bout i un effort
transyersal, pour les corps qui me se rompent qu'en prenant une forte courbure, tels que les
bois , ete.

637. Lorsqu'avant de se rompre, un corps encastré horizontalement par un'
bout et chargé d’un. poids a I'autre, prend une assez grande courbure, ou ce qui
revienl au méme, les fibres & la face:convexe du solide sétendent beaucoup-,
et celles a la face concave se compriment beaucoup aussi, il n'est. plus
pomd)le dappllquer, 4 la rechierche de son' moment de résistance a la rupture,
les mémes hypoiheses que dans la lecon précédente, ot nous avons supposé
des corps qui prenaient une flexion trds petite avant de se rompre.

En effet , quand on observe la manitre dont se romp le bois, par exemple,
on reconnait que, pour cette espéce de corps, 'axe d’équilibre se trouve, i
Vinstant olt la rupture va avoir lieu, & une place différente de celle qu'il
occupe lorsque le corps commence & fléchir. De plus, les fibres lés plus éten-
dues ayant perdu de leur élasticité, par l'excés d'allongement ou d’accour-
cissement qu'clles ont subi., ne réagissent plus avec une force égale a leurs
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extensions , il en est de méme pour celles qui sont le plus comprimées.
Ainsi # cet instant il n’y a plus qu'un assez petit nombre de fibres en
extension et en compression , situces ires pres de l'axe d’équilibre, qui
conservent leur élasticité , et, par conséquent cui résistent dans les rap-
ports établis dans les lecons précédentes Enfin, au moment de la rupture,
il arrive une esphcc de désordre dans la résistance des fibres qu'il n’est plus
po&mble d’analyser a pnon, de sorte qu'il n’y a plus que l'expérience qui puisse
nous faire connaitre les principes sur lesquels il faul établir le calcul.

. 638. Mais quelle que soit laloi qui régit l'extension et la-compression des fibres,
il est clair que le moment de la résistance totale du solide est égal & la somme
des momens de résistance des fibres en -extension et de celles en compression
(tous ces momens étant pris par rapport i Paxe neutre de résistance). Si donc
gv est le moment des fibres en extension , et ¢'v' celui des fibres en com-
pression, R représentant Je moment de la résistance totale du solide, nous

— !
aurons = gv + g'v'.
Y

Quelle que soit Ia position de I'axe d’équilibre, ici comme dans le cas d’une

faible flexion, les momens gv, ¢g'v’ des fibres en extension et de celles en
compression doivent étre égaux ; ainsi gv = ¢‘v'. D'our il suit que

R = agv...... (a),,
formule semblable a celle (304) du n° 597.

639. Quoique nous ne connaissions pas , & priori , la loi qui existe dans
les résistances des fibres en extension et de celles en compression, il parait,
d’aprés les expériences de'M. Barlow , sur le bois, qu'on peut supposer les
fibres en extension comme résistant, non pas proportionnellement 2 leurs
allongemens ou & leurs distances & I'axe d’équilibre , mais toutes avec une
force égale et uniforme, ainsi que I'a supposé Galilée.

640. D'apres cette hypothése,, ou plutét ce résultat d’expérience , nous pou-
vons donc regarder les fibres en extension comme étant des forces paralléles
et Cgales, qui tendent & faire tourner le plan de la section de rupture au-
tour de l'aze neutre; de sorte que le moment de la résultante de toutes ces
forces paralléles par rapport & cet axe neutre,-sera égal a leur somme multi-
pliée par la distance du centre de ces forces paralleles a 1'axe d’équilibre.

Or, si 'on représente par r la résistance de cohésion d’un faisceau de fibres
. dont la section transversale serait I'unité de surface , en multipliant cette co-
hésion r par la superficie infiniment petite de la section transversale d’une
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fibre , on en aurait la résistance ; ainsi en multipliant la résistance d’une fibre
par le nombre qu’il y en a lexlensmn on aurait la somme de toutes ces forces
paralieles mais le nombre des fibres en extension est évidemment proportionnel
a la superficie de la partie de la base de rupture du prisme & laquelle ces fibres
en extension répondent ; si donc S représente cette superficie , Srsera la somme
de toutes les forces paralltles en question, ou celle des résistances des fibres.
Quant au centre de ces forces paralléles, il est évidemment le méme que le
centre de gravité dela portion de la base de rupture & Iaqu'elle répondent les
fibres en extension ; la distance de ce centre de gravité & I'axe neutre de rup-
ture étant g , le moment des fibres en extension sera Srg ; or dans la for-
mule (@) du n® 638, nous avons représenté ce moment par gv ; en subsli-
tuant dans cette formule , nous aurons généralement

pour la résistance 2 la rupture des solides prismatiques soumis & un effort
transversal perpendiculaire &4 leur longueur. :

Appliquons cette formule générale aux cas particuliers qui se présentent le
plus souvent dans la pratique.

641. Supposons qu'on demande la résismnce d’un prisme encastré par un
bout, dont la base serait un rectangle.

Soit ABCD (fig. 134) la base de ceprisme, et la droite ab peralléle a AB,
axe neutre de rupture. Cela posé, appelons

a la largeur AB de cette base;

b la hauteur AD du corps ;

n le rapport de la distance aD de l'axe neutre i la face supérieure du
prisme.

D'aprés. ces hypothéses, nous aurons

aD=nb; abCD = anbet g = nb ;
2
ce qui donnera , en substituant dans la formule (320),

:bir = n2ab?r... (321}

R = 2=

pour la résistance demandée.

Ainsi', quand V'expérience aura flit connaitre r et n pour une espéce de
corps donnée, le calcul fera connailre la résistance d’un prisme & base rec-
tangulaire quelconque de la méme espece. .
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642. Si la base du prisme était un carcé, b =a, et la formule (321)

donnerait R = n?dlr....... (322).

643. Si I'on .avait un antre prisme a base rectangulaire de méme matiére
que celui de la formule (321), en nommant ¢’ et 4" les dimensions de la base
de ce prisme, on aurait

R' = an%a'b'?r;

en comparant cette formule 2 celle (321), il nous viendrait

R:R ab; a'b'2..(a)

d'ol1 il suit que les résistances de deux prismes rectangulaires de méme ma-
ticre, sont entre elles comme les produits de leur largeur par le carré de
leur épaisseur. .

644, Si les largeurs de ces prismes étaient égales, Ia proportion (a) de-
viendrait R (A NS

d'olt 'on voit que les résistances des deux prismes sont comme les carrés
des épaisseurs.

645, Si les épaisseurs élaient égales, la proportion (a) deviendrait

- [ - - ',
B.R..a.a,

c’est-a-dire que dans -ce cas les résistances des deux prismes seraient comme

les largeurs.

1l est facile de voir, d'aprés le n* 642, que siles deux prismes étaient i
bases carrées, leurs résistances seraient entre elles comme les cubes des cotés
de ces bases.

646. Supposons un prisme & base carrée, encastré de manidre que l'une des
diagonales de la base soit située verticalement , Uaze neutre de rupture étant
perpendiculaire & la méme diagonale , et qu'on en demande la résistance.

~ Soit ABCD (fig 135) la base du prisme ; ab, perpendiculaire 4 la diagonale
BD, laxe neutre ; cela posé,

Appelons a la demi-diagonale 1B , et

‘n le rapport de ¢B & IB, ce-qui donnera ¢B = na,

d'ailleurs nous aurons .  BI | Be | AC | ab
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ou a, na ., aa | ab = ona,
- Be na .
avh =8 = ab X — = 2na ><7§ = n’a?,

‘Be na

ct enfin g9=3 =733

en substituant dans la formule générale (320), il nous viendra

R = an‘a’)(E = @ e (323).
647. En raisonnant sur'la formule (322) comme nous I'avons fait au n® 604
sur la formule (306), on trouvera

R = n?r (a® — a'3)..... (324)
pour le moment de la résistance:a la rupture d’un ‘tuyau 2 base carrée. On

tirerait de la comparaison de la résistance d’un tuyau 4 celle-d’un prlsme
carré plein, les mémes conséquences quau n® 631.

648. ,Supposons un prisme dont la base de rupture est le reclaf:gleABGH
(fig. 130) , etque-ab soit I'axe neutre, d'aprés le n° 641, sa résistance sera

wabr.w... (@).

‘Si nous ‘supposons de plos un autre prisme DCEF, dont I'axe de rupture
soit le méme que celui du grand prisme ABGH ; ‘en appelant « et b’ les di-
mensions de la base DCEF , on aura pour la résistance de ce prisme n2ab’r,
Si donc on retranche ce dernier prisme du prisme tolal ABHG, il restera deux
prismes séparés ABCD, HEFG { sur lesquels, néanmoins , le poids P sus-
pendu & Vextrémité hhre agira également) , il em résultera, pour la résis-
tance de ces deux prismes

R = nwab’r — n’ab'*r = n*ar (b* — b'2).... (3a5).

649, On. demande la résistance d'un cylindre & base circulaive, dont ab
(fig. 136) est Daxe meutre.

Appelons & le rayon du cercle 5

et n le rapport de ¢D i ce rayon @ ; on aura ¢D = na.

L’équation du cercle rapportd au sommet:D du diamétre, est

—_—

¥ = 2ax — x*;
pour la corde ab nous. avons ‘

x=na, y*=(caP =ana®— n'a*=a* (m — n?),
SN

d’'ous @ =al)/ ane=n*, ,

' ‘ 32
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ct par conséquent ab = m'l/m —n?,
dott  (ab)® = 4a* (2n — n?) X 2a l/;m — n? = 8a® (2n — n?) &

Maintenant (n° 118), soit S laire du segment aDb, nous aurens
__ (@b

— 128’

multipliant de part et d’autre par S il nous viendra

S — (abp _ 8adl(an— %} 20 (an — u?)f
o =" = 12 ST 3 ’

et en substituant dans la formule générale (320), il viendra

— )2 — n2)}
R = ar X AN G (oW (306

650. On demande la résistance d'un tuyau circulaire encastré par we
bout.

Supposons que a soit le rayon de la base de la face extérieure , et a’
celui de la base de la face intérieure; le volume de la paroi étant la dif~
férence entre les volumes des cylindres, dont les rayons des bases sont res-
pectivement a et a' , la résistance du tuyau scra la différence de celle
des deux cylindres ; ainsi n et n' représentant les rapports des distances
¢C et ¢'D (fig. 137 ), nous aurons , par la formule du numéro précédent,
pour le premier cylindre

b (o — nd)E  gar (o' —
Mé_.__"’}-, et pour le second Er‘ms ”_m)';

mais ces deux cylindres étant de méme matiére, et étant dans les mémes
circonstances , les axes neutres ab et a’'b’ doivent diviser les deux rayons
IC, ID dans le méme rapport, ce qui donne n’' 2= n; et la résistance du

4a’ (an — p2)2
3 .

second cylindre sera

Si donc nous appelons R la résistance du tayau, d’aprés ce qui précede

4 (an — n? )} % (30 — 3 )}
3 — YRR ’

nous aurons R=
ce qui se réduit a
fr (a5 — o® —n® '

R= (@ —e %(nn : }_ (327).

: En comparant la résistance d’un tuyau & celle d’un cylindre plein, on
tirera les mémes conséquences que précédemment,

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

THEORIE GENERALE ‘DE LA BESISTANCE DES CORPS.SOLIDES, 251

LECON 1V.

De la courbe que prend un prisme encastré horizontalement par un bout et soumis & une charge
uniforme et & un poids suspendu 4 sop extrémité libre.

651. Dans les legons précédentes nous avons donné les formules qui ex-
priment l'élasticité ou la résistance qui se développe dans une section droite
quelconque du prisme, en nous bornant aux formes qui se présentent le plus
ordinairement dans la pratique ; nous allons , maintenant , considérer la
courbe qu’affecte le solide , en résistant a I'action du poids appliqué & I'extré-
mité libre du solide encastré horizontalement par I'autre bout , et chargé d’une
certaine maniére dans sa longueur. Nous supposons que ce solide ne recoive
qu'une trés petite flexion , de manidre qu'il conserve toute son élasticité.

652. 1l est évident, d’aprés ce qui a été dit au n® 591 et suivans, que
la courbe que prendra un prisme ‘encastré horizontalement par un bout, et
chargé d’une certaine maniére dans sa longueur, sera celle que prendra la
lame neutre elle-méme, puisque cette derniére courbe résulte de Valonge-
ment des fibres situées d'un cblé, et de l'accourcissement de eelles situées
du cdté opposé, de maniére que plus les allongemens d’'une part et les ac-

courcissemens de l'autre seront considérables, plus cette courbe aura de
courbure. ' '

De Ia courbe que prend un prisme, encasteé horizontalement par un bout , et chargé d’un poids
4 son extrémité libre , ce prisme étant supposé sans pesanteur.

653. Soit AB (fig. 138 ) , la lame neutre du prisme, et P le poids sus-
pendu & son extrémité Libre B; Uaction de .ce poids sera de faire prendre,
a cetle lame , une certaine courbe AMC , quil faut déterminer.

Pour cela, prenons le point A pour Porigine des coordonnées, et la droite

AB pour l'axe des abscisses ; pour un point M quelconque de la courbe en
question,, nous aurons :

AP = x et PM =y
Cela posé, il est évident que lorsqu'il y a équilibre entre Paction du poids
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P et I'élasticité du prisme , la courbe AMC est déterminée , et que cet équi-
libre ne serait pas troublé , si on rendait le peint M fixe: Mais dans ce
cas, il est clair que ce qui tient la partie MC de la lame neutre dans sa-situa-
tion actuelle, est le moment du poids P par rapport au point M, et que ce
qui fait équilibre 2 ce moment, et la force d’élasticité qui se développe dans-
la section droite du solide au méme point M.

Nommons / la longueur AB du solide ; nous aurons.
PB=10—=x
pour le bras de levier du poids P par rappert au point M ;:le moment de

ce poids sera donc P(l—x)u. (@

Nous avons vu (n° 591) que la force d’élasticité qui se développe dans une
section droite quelconque du prisme est proportionnelle & I'allongement d’une
fibre placée dans la section droite, & une distance de I'axe neutre, égale a
Punité ; mais plus cetle fibre s'allongera, plus la courbe prendra de courbure
a l'endroit de la section droite que l'on considere ; d’olt l'on voit que cette
courbure sera proportionnelle & la force d’&lasticité qui se développera dams-
cette section droite. Mais la courbure d’ane courbe , pour un point” donné,
est en raison inverse du rayon du cercle osculateur au méme point. Ainsi; r
étant le rayon de courbure de la courbe AMC au point M', et E la force d’¢-
lasticité de la section droite d'un autre prisme de méme base et de méme
matiére que celuieci , et qui, a I'endroit de cette section droite, sa courbe
aurait 'unité pour rayon de courbure, I'élasticité qui. se développe dans la
section droite au point. M, scra

E
()%

En verta de ce qui.a été dit ci-dessus, il faudra donc égaler lés expres--

sions (a) et (4), et nous aurons

P(F—x)= S (3:8]
pour l'équation d'équilibre.

Pour avoir I'expression de 'ordonnéc PM = y , considérons Jes deux élé-
mens consécutifs M, ¢ de la courbe, et prolongeons - les indéfiniment.
Comme la courbure de la courbe AMC est supposée trés petite , nous pour-
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vons regarder le triangle ¢caM comme rectangle en @; en nommant donc m
angle acM, nous aurons

-
L

1 s.tang. m TL ca o aM.!

Mais I'angle m- élant infiniment petit, & cause que les points M el ¢ sont
infiniment voisins , nous pourrons remplacer tang. 1 par I'arc m, et la pro-
portion précédente deviendra

Fom oo ca o aM.... ().

Par les points M et ¢, menons lesl normales Me, ce ;- elles seront respec-
tivement perpendiculaires aux tangentes Mk, ca, et par conséquent les angles
acM, ceM scront égaux, Par le sommet e de I'angle ceM, décrivons I'are
f avec un rayon égal & l'unité; nouws aurons fy = m; et comme Me est
le rayon de courbure pour le point M, et que I'arc M¢ de la courbe, étant
infiniment pelit:, peut étre regardé camme un-arc de cercle, nous: aurons-

__ 1V ::.. m: 3 Me.-
Prenons le trés petit ave Me. pour: L'unité: d'arc;. la proportien préeédente
deviendra: 1- or ::rrm vy diod m = -:_:(dl
De plus, nous avens  ¢a = AM—Ac— Ac =« — x'..

8i donc nous substituons cette valeur de ca et celle (d) de m dans-la pro=
portion (¢), il nous viendra

1-':,‘-:;_::'.::-— x' taM = E (2~ Yorses(€).

Rour .le point ¢; de la courbe, la formule (328). donnerait:

E - LY I P’. L
-’—\:IB(#'—I")‘} duu'r - E([s-——_xu);

T

Si donc nous substiiuens cette valeur de' > dans Péquation (6} nous aurons
Ma.= 3 (b—a') (z—a')

pour: Pezpression dé 1'élément’ Ma de PM =y~

L'élément suivant ab de cette ordonnée sera évidermment de la méme
forme , en remplagant x/ par x" ; ainsi nous aurons

ab = .Efi A — 20 (3 — 27,
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et il en serait de méme pour les autres élemens de cette ordonnée. La
somme de tous ces élémens sera égalg & y ; ainsi nous aurons

r=1% {(z_.xf) (r—r') + (I—2") (w—2") + (I—2) (x-x”)...}....(g).

On voit que x', a", x", etc., représentent les distances des points- ¢,
d, etc., de la courbe, & l'axe AD des ordonnées, lesquelles distances vont
en diminuant de grandeur, tandis que [ et x restent constans, la premitre
étant la longueur du prisme, et la seconde I'abscisse du point M de la courbe,
dont y, que nous cherchons, est ordonmée.

Si donc nous supposons divisée en un trés grand nombre de parties égales
Vabscisse AP du peint M, et que nous prenions I'une de ces parties trés
petites pour unité; les =, 2", &", ete. , représentant les distances des points
de division & l'origine, & partir du point le plus voisin du point M, et
allant vers l'origine A, seront des nombres décroissant continuellement d’une
unité.

Si donc nous prenons ces abscisses dans Vordre inverse a celui suivant
lequel elles sont éerites, elles représenteront la suite naturelle des nombres
depuis 1 jusqu’a n, n étant le nombre des unités comprises dans I'abscisse
AP; en substituant dans I’équation (g) , nous aurons donc

y:%{(z_;) x—1) 4 (I—2) (c—2)+ (I—3) (x— e
+ (@ —n) (.r—n)} ....... (). y

. En effectuant les multiplications indiquées dans la grande parenthése ,

nous aurons :
=)@ —1)=Ilx—l—x+41

(l—2)(x—2) =lx—al—ax+4
(1—3) (r—3) = Iz — 31— 3z + g
(¢ —n) (x —n) = lx —nl — nx 4 n

Le nombre de ces équations partielles sera égal & =, et si nous nommons
M la somme des premiers membres, nous aurons

M=nlx —i(rt+2+3.n)—x(1+ 2+ 3 +n)
| + (2 + 4+ g 1) (B
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D'apres la note de la page 50, les deux premitres parenthéses du second

membre de cette équation (k) auront pour limites -:E , et la derniére ”

7 nous

aurons’ donc: M= nla — - — =

Mettons cette valeur de M 4 la place de la grande parenthése dans I’équation
(h), et il nous viendra
e 2 3
y:% {n&x-——--’.—'-—t--ﬂ—w—h%},

2 2

et enfin, si nous faisons » = AP = x, nous aurons

r=5 {5~ 5

- (329)

pour lequatwn de la courbe que prend la lame neutre AB par Faction du
poids P. (*)

654. Sidans cette équation (329) nous faisons @ = {,en nommant f ce
que devient y dans cette hypothése , nous aurons

Pb
f = g (330),

(*) Reprenons l'¢quation (328)qui est
E
P(l—x) == s (1)
L'expression générale du rayon de courbure étant

(da® 4 &2 )}

= T drdy
.
Edx d¥y — dx?

@G +g:) g

on aura P(l—z)=

Comme nous supposons que la lame nentre prend une trés petite courbure, nous pouvors

d
admettre que £ = 0, et alors I'équation (2} devient

a
P (l—z)=E 3%
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pour Texpression de Iabaissement. BC de Pextrémité B du prisme, ou en
d’autres termes , de la fliche de courbure de la lame neutre.

Cette formule (330) nous apprend que la fleche de courbure f est pro-
portionnelle au poids P et au cube de la longueyr du solide , .et en raison in-
verse de la force d’élasticité E.

De 1a courbe que prend.un prisme encastré horizontilement par un'bont et chergé uniformeément.dans
“toute sa Iongueur,

655. Supposons que:C soit la charge totale uniformément répartie sur toute
la longueur du prisme, de maniére que les élémens verticaux de cette charge
puissent agir librement sur le solide. Céla posé, prenons la droite AB fig. 138
(forme primitive de la lame neutre ) pour 1'axe des abscisses, .et le point A
pour lorigine des coordennées, mommens

I la longueur AB du prisme, _
x labscisse AP et y lordonnde dun poiut quelconque M .de le courbe

AMC; nous aurons BP=1—x.

La charge répartie sur la portion BP de Ja longueur du solide, sera le
quatritme terme de la proportion

pit—xcr SR ),

L)

Fn intégrant une premiére fois, nous aurons
a® dr .
p(&_:)_ngmmm.

Nous ne mettons point de constante , parce que quand z = o, g = o Intégrons celte

équation (3), et il nous viendra
L2 o
(T -%)=w
P LY i
ou Yy = .E (?—E).““ (ﬂ)

pour I'équation demandée , comme dans le corps de I'ouvrage.
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Le centre de gravité de cetle charge sera le milien de la longueur BP ; la dis-

—

tance de ce centre par rapport au point M sera donc Multiplions

cette distance par la charge (a), et le produit

C(l—ap
_%“)’ LA (5)’

sera le moment de cette charge («) par rapport au point M.

Supposons que la courbe AMC qu’affecte le prisme soit arrivée & son maximum
de courbure, il y aura équilibre dans tous les points de la longueur de cette
courbe ; si donc on engage loute la partie AM d'une maniére invincible , sans
rien changer & la courbe, I’équilibre ne sera pas troublé, et on concevra
alors que le moment (b) doit faire équilibre 2 la force d’élasticité qui se déve-
loppe dans la section droite menée par le point M ; or (n° 653) cette force

— E
élastique est —  mous aurons donc

E_C(l—zx® . 1_ C(l—a)
? —_— "_'_2!"'"-'—' lel ; — TE—'_l.'.l. (C).

En raisonnant comme nous I'avons fait au n° 653 , nous trouverions que I'¢-
lément Ma de P'ordonnée MP = y est égale &

!
X —x
Ma:T-,

et en mettant »' au lien de x dans Pexpression (c), et substituant ensuite

cette valeur de % dans celle de Ma, il nous viendra

_C(—dP (s — )

alk

Ma

On trouverait de méme que

_ C(l—a"P(x—a")

ab 2lE ’

et ainsi de suite pour les autres élémens de y; en ajoutant tous ces élémens
il nous viendra donc

7= 5 5 (=) (P (=) o (=) (=) et

et en faisant les mémes observations sur les abscisses x', x”, x", etc., qu’au
' 33
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n’ 653, en nous rappelant que I et x sont encore des conslantes, mous
aurons :

y=ap U= G = C— 2 —a) + @3 =B
4 (b= ) (x —n) } ).
Développons les produits indiqués, et nous aurons.

(&--s)ﬂ (x—1)=Vlx — 2lx 4+ x — l;_-i- ol — r
(I —2p (x—2) = Px — flix + 4o — 2l* + 81 — 8
(—3p (x—3) = bx — 6lx + gx — 3 + 18l — 27

( —~np (@—n) = Px — anlx + n*x — nl* 4 an2l — nd.

Ajoutons ces équations membre & membre, et représentons la somme des pre-
miers par M, en observant quil y a autant de ces équations que d’unités
dans n, nous aurons

M=nlx —2lx (1+24+3+n)+ x (1444 9. +n)—
b (14243 4n) + 2o (144490 o 402) — (148427000 4 03)... (€,

Mais parla note déja citée plusieurs fois, la limite de la premiere et de la
N .
troisitme parenthése est % » celle de la seconde et dela quatritme est ;f , et

‘
enfin celle de la derniére est }-; en substituant dans la valeur de M, il

nous viendra

Telle sera la valeur de la grande parenthése du second membre de I'équation
(d) ; en la substituant aprés avoir fait n = x, il nous viendra

€ . x¥ @
y:;‘—E{I“x -—-l.r3-|—ﬂ-—*+———-:‘-}

ce qui se réduit i
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qui est Iéquation de la courbe que prendrait un prisme encastré par un
bout et chargé uniformément dans toute sa longueur (*).

656. 11 est clair que la charge uniforme C peut se composer du poids propre
du prisme, ou de ce poids plus une surcharge uniforme. Ainsi, si Q est le poids
du solide, et M la surcharge uniforme , nous aurons '

C=0Q+ M

Nous laisserons C dans Péquation (331), mais il faudra se rappeler sans cesse
Ta remarque que mous faisons ici, pour composer cette quantité C d’une ma-
niére convenable 4 la circonstance dans laquelle on se trouvera dans la pra-

lique.

657, Si dans I'équation (331) nous faisons x = I, en nommant f ce que
devient y dans ce cas, nous aurons

f"“ E§E " (332}}

pour P'abaissement total BC de l'extrémité libre de la piece, ou, en d'autres
termes , pour la flecche de courbure du solide.

658. On voit par cette furlﬁule (332) que la fleche de courbure est pro-

{*) Mettons pour r sa valeur générale dans I'équation (¢) du n. 655 , il nous viendra
- d‘!
(—5p = 7 (B = als + )
— —_2
( !+ iy’) IE = 2E

s
da?

ou en supposaunt =,

&y
= ﬂE(sﬂ 21r+:c3)

8i nous intégrons deux fois de suite sans mettre de constantes , par la raison que %ety devien-

nent nuls quand ¥ = o, neus aurens

____(I’x‘ LS | af

2, 12

pour I'équation demandée,, comme daos le corps de louvrage.
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portionnelle & la charge uniforme et au cube de la longueur du solide , et en
raison inverse de la force élastique E, comme au n° 654.

659. La formule (332) peut se mettre sous la forme
— 1O
[= 3E”

Mais dans le cas ou T'on fait abstraction du poids du prisme, et qu’on sup-
pose ce solide chargé d’'un poids 4 son extrémité libre , nous avons trouvé

(n°® 654) que f= —Pf.

‘ 3E

La comparaison de ces deux résultats nous fait voir que les 2 de la charge

uniforme suspendue @ Uextrémité libre du corps , produiront la méme fléche

de courbure que la charge totale uniformément distribuée dans toute la lon-
queur du solide.

De la courbe que prend un prisme encastré horizontalement par un bout, chargé uniformément dans
toute sa longueur et d’un poids 4 son extrémité libre.

660. Nommons toujours G la charge uniforme, qui comprend aussi le poids
du solide , et P le poids suspendu A Pextrémité libre.

Supposons que P’équilibre existe dans tous les points de la longueur du so-
lide, et considérons le point M : d’aprés ce qui a été dit au n° 653, le
moment du point P par rapport au point M sera

P (1 — ) (a),

et d’apres le n® 655, celui de la charge uniforme comprise entre le point M et
le point B, par rapport au méme point M, sera

C(l—a)?
SRELE ()

La somme de ces deux momens doit évidemment faire équilibre i la force
d’élasticité qui se développe dans la section droite au méme point M, clest-

a-dire 2 il: , de sorte que

—_— 1 — | l—
CO—2P gon 2 =BU=2) QU (o).

2l

Pop—2)+
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'Les élémens de y seront encore, comme au n° 653, de la forme

d=2:>(x—x" Yeeres (@).

T

Par conséquent, en mettant x' au lieu de x dans I’équation (c), et substi-

. I . ’ ) . s
tuant Fexpression de - qui en résultera dans I'équation (d) , il viendra

P(l—a)(e—a , CU—a) (z—ad)
E + LY ] ’

‘d’oix I'on voit que dans ce cas le premier élément de y est la somme des pre-
miers élémens des y des n® 653, 655 ; il est évident qu'il en sera de méme
pour les autres élémens cunsecutlfs de part ‘et d’autre ; par conséquent
Pordonnée y quelconque de la courbe actuelle sera la somme des seconds mem-
bres des équations (329) , (331); de sorte que nous aurons

d =

P/l &5 C pwﬁ
=3 (_ﬁ_ —-5)+ (-3 + e (333).

661. Nous aurons l'abaissement lotal BC = f , en faisant ¥ — I dans
cette équation , et nous aurons

PG (se )

662. Proposons-nous, maintenant , de trouver Uexpression de la tangente
trigonométrique de Uangle formé par Faxe AG des abscisses, et par la tan-
gente MT (fig. 139), & la courbe élastique AMB, menée par le pomt M pris
sur cette courbe.

Prenons deux points M, M’ sur la courbe AMB, et par ces deux points
menons la sécante MS ; par le point M’ menons la droite M'N paralléle &
l'axe AC des abscisses , et menons les ordonnées MP, M'P’. Représentons par
x et y les coordonnées du point M, et parx’, ' celles du point M’; nommons
m Dlangle NM'M : le triangle rectangle NM'M donnera

1 otang. m  , MN I NM ou 1 tang. m i x—ux' | y—y/, |

d’olr y—ry'=(x—z') tang. m....... (a).
L’équation (333) donnera

r=p (-8R (E-5+3)
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pour le point M, et pour le point M’
P /Ix? z¥ C (B2 [P aM
! — - — — — e —— — — —
y_E(a ﬁ)+glE(2 3+n)

en retranchant ces équations membre 4 membre , il viendra

. , Pl .
y=y =g {3 (#—a = (s2—x9)}

P 1
e = f (B + L e ) |

Mettons pour y — y' sa valeur (a); et divisons par x — x' ; nous aurons

tang. m =£{%(x+m').—-é(.r’+xx’+.r”)]

“
]

+ ;% g 2 (.x-l—x*)——-% (x’+xx’+x*“)+-;l—ﬂ{x3+x3m' ~+ xx +.r’3)}
Si maintenant nous supposons que le point M’ s’approche de plus en plus
du point M, la sécante SM s'approchera aussi dela tangente MT, et aussitot

que le point M’ coincidera avec le point M, la sécante SM deviendra la tan-
gente MT. Mais alors 2’ = x, et V'équation précédente se réduira a

P F2AN C . a®
tang. m =E (Lx—--;) -+ o (E‘I-—J.I‘z-i—-s-)........ (335),
et sera l'expression générale de la tangente en question.

663. Si dans cette équation nous supposons P = o, il nous viendra
a’
tang- m = ;?E _‘( i’x—lx’ "‘l" ':5')-.10.4- (336),

pour la tangente trigonoméirique de I'angle que fait la tangente & la courbe
avec l’axe des abscisses, dans le cas d’une charge uniforme.

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

THEORIE GENERALE DE LA RESISTANCE DES CORPS SOLIDES, 263

LEGON V.

Probléme snr les prismes encastrés horizontalement par un bout , et chargés mi&Mm dans toute
leur longueur, et d'un poids suspendu & leur extrémité libre.

664. 1l faut ici se rappeler que la foree élastique E a pour expression
P’une de celles données depuis le n° 591 jusquau n® 619, et que Ja grandeur
qui lui conviendrait pour faire prendre a la lame neutre une courbure dont
le rayon serait l'unité, dépendra, en conséquence, de la tension que nous
avons représentée par ¢ dans les mémes articles. '

Cela posé , livrons-nous & quelques problémes utiles.

665. Cherchons d’abord la fliche de courbured’un prisme & base rectangulaire.

Pour cela, meitons pour E sa valeur (305) qui est E = rf—f dans la for-
mule (334), et nous aurons

f=25 (@ + % ):ag%,( 80 + 3C )....33).

pour la fléche de courbure du solide , dans le cas ot il est chargé, d’un poids
P 4 son extrémilé libre, de son propre poids , et d’une surcharge uniforme
dans toute sa longueur.

666. On demande quelle deyrait étre la largewra d’un prisme & base rec-
tangulaire , d’une épaisseur et d'wie longueur donndes , pour que ce solide ne prit
quune fleche de courbure donnée, par Uaction 1° du poids propre du corps ,
20 dune charge uniforme, et 3° d'un poids suspendu & Vextrémité libre dy
solide. ' )

Pour cela, décomposons la charge uniforme C de la formule (337) en deux
parties ; 'une égale au poids propre du prisme, et I'autre égal i 1a surcharge
uniforme , que nous représenterons par M. Le poids propre du solide sera égal
a son volume multiplié par sa densité ; ainsi ce poids = abld , d étant la
densité ; nous aurons donc

C = abld + M;
en substituant dans la formule (337) il nous viendra

p ,
f = o { 8P + 3 (abld + M) }.....(333),
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d’oii nous tirerons
_ B(8P+3M)
a = m...u (339) 3 -
qui sera l'expression de Ia largeur demandée.

667. D'apres les mémes conditions qu'au numéro précédent , a étant donné
trouver Uépaisseur b.

Pour cela, ordonnons I'équation (338) par rapport aux puissances ascen-
dantes de &, et il nous viendra

3lid I3 (8P 4- 3M)
b — !Nf b = _L_“‘};‘—Ivut-o (340),

d’olt I'on voit que pour avoir & il fandrait résoudre une équation du troisieme
degré.

668. Aprés avoir calculé les coéfficiens constans qui entrent dans cette équa-
tion du troisitme degré, on pourra avoir la valeur de & par deux ou trois
tatonnemens , en substituant une premicre valeur de cette quantité que les cir-
constances accessoires de la question permettront d’évaluer 4 peu prés, et
quon modifiera jusqu’a ce que le premier membre devienne 4 peu pres égal au
second. Je dis ceci pour les personnes qui n’auraient pas une habitude suffi-
sante de la théorie générale des équations.

669. La question serait plus simple, si le prisme était 4 base carrée, car
alors b = a , et I'équation (338) se réduirait 2

B
f=1m ) 88 +3 (ald+M) }
et on en tirerait
4
L4 B (P43

atf - aif ’
équation du quatrieme degré qui peut se résoudre 4 la maniére de celles du se-
cond (alg. n® 205), et qui donnera

e
3;44 3ld \2 B (8P4~ 3M )
. a — ‘/ 4“‘ (W) + —ztf—"""(::';w)'

Telle sera la valeur du coté d’un prisme a base carrée , pom que ce prisme
remplisse les conditions du n° 666.

. 670. Pour avoir la fléche de courbure que prendrait un tuyau carré encastré
par un bout, chargé de son propre poids , d’'une charge uniforme et d’un
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poids suspendu en un point quelconque de sa longueur, il suffira de meltre
pour E sa valeur (307) dans ’équation (334), et on aura

f = s (8 +3C )ocen (342)

671. Le poids du tuyau sera (@ = a’%) Id ; nous aurons donc (n° 656)
C = (a* —a') ld+ M;

substituons cette valeur de C dans D'équation précédente , et il nous viendra

f = s, (8P + 3 @ — o) + 3M ) 343).

672. On donne le poids P, la charge uniforme M, le diamdtre intérieur
a' et la fliche de courbure, et on demande le diamétre extérieur a du tuyau.

Pour cela , il faudra ordonner I'équation précédente par rapport aux puis-
sances de a, ce quidonnera

M4 . a® (offa® —30d) + 8PP - 3MP

—_ —

atf - atf ’

équation qui, étant résolue , donnera

o = 3 3Fd s (aifa® — 3Fd) | 8PP t 3M
=V VG 044

pour la quantité cherchée.

Si on demandait le diamétre intérieur a’, on trouverait

, : R (2t — 30d) — B (8P
o« = V() ¢ FEP 30 (3

& L]

673. On demande la fleche de courbure que prendraient deux prismes en-
castrés et disposés comme il a été dit au n° 608, ce systeme étant chargé de son
propre poids , d'une charge uniforme et d'un poids suspendu & son ewtrémité
Libre. _ )

Pour cela, il suffira de mettre la valeur (308) de E dans 1'équation (334),
et on aura :

f = W-:'ﬁ-) (SP "{"' 3G)-_nu....- .(“)'
Mais le poids des deux prismes est adl( b —¥'), o qui donnera

C=adl (b—1b') + M;
34
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en substituant cette valeur de G dans I'équation (a), il nous viendra

P - .
= srm—mm [ 8P -+ 3adl (b—1b") + 3M ] (346).

674. De cette formule nous tirerons

—_ B (8P + 3M) :
= =) = = G4

Telle sera la largeur des dewx prismes, pour que leur sysieme ne prenne
quune fleche donnée , étant soumis & son propre poids , & une charge uniforme
et a an poids suspendw & son extrémité libre.

675. Supposons toujours un systéme de deux prismes comme le précédent , les
bases de-ces deux prismes étant égales, et demandons-nous de combien tl
faudra les écarter Pun de lautre, pour qu'élant chargés de leur propre poids ,
d'une charge uniforme et d'un poids suspendu a UVextrémité libre du systeme,
la fleche de courbure soit une quantité donnée.

Rappelonsnous que & est la hauteur totale du systéme ; et &' la hauteur
du vide entre deux ; de sorte que si h est la hauteur d’'une des deux bases,

nous aurons b= ok 4+ b ,
et par conséquent
= 8h%® 4 12k’ 4 6hb': 4 '3,
d’out nous conclurons que
— b'3 = 8h% + 12h%b" + 6Rb'2, et b — b’ = ah.... (a).
Lequatwn (346) donnera
aatf (B3 — b'3) = 8PP + 3adlt (b — b') + 3M£3
substituons les expressions (a) dans cette derniére équation , et il nous viendra
aatf (8h% 4 12h*b o 6hb'3) = BPI3 <+ 6adlth - 3MP;

d’oit nous tlrerons

—— b+ ‘/k"-{- 8PP -—|- had.!lhlnm;MF -——- 16'utﬂ" . (348).
676. Supposons encore le méme systtme de dewx prismes que ci-dessus,
que la hauteur du vide entre deux et la largeur des deux prismes solent
données, et demandons-nous la hauteur totale b du systtme, pour que ce
dernier ne pmmc qu'une fleche de courbure -donnée, étant soumis & son
propre poids , & une charge uniforme e & un poids suspendu & son evtré-
mifté Libre.
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Pour cela, il suffira d’ordonner I'équation (346) par rapport aux puis-
sances de b, ce qui donnera

84, 8PP - 3MF — 3adt
P — b= + — 22l (34g)-

" Apres avoir calculé les coéfficiens constans de cette équation du troisiéme

degré , on la résoudra d’aprées la méthode connue, ou par " tAlonnemens
comme il a été dit au n° 668.

677. Proposons-nous , maintenant , de trouver la fliche de courbure que
prendrait un cylindre circulaire encastré par un bout , chargé de son propre
poids, d'une charge wniforme et dun poids ‘suspendu & son extrémité libre.

Pour y parvenir , mettons la valeur (311) de E dans la formule (334), et il
nous vigndra f = Efq;"( 8P + 3C )....... (350),
pour Ja fleche demandée, C élant la somme du poids propre du solide et
d’une surcharge uniforme.
678 Le poids du cylindre est prild , nous aurons donc
C = prid + M;

en substituant dans I’équation (350) ci-dessus, il nous viendra
f = g ( 8P + 3prid + 3MB )s

. 4 14 3MB
d’ot1 nous tirerons rt — rd T 8eF_+

atf ipf
équation du quatritme degré , qui, étant résolue & la maniére de celle du
second , donnera

VT T o0

powr le rayon que devrait apoir la base dii cylindré’, ‘pour que, " sous son
propré poids , une charge uniformé et un poids suspmdu d scm ea:trémue
libre , ce solide ne prit quune fleche donnée. -

679. Cherchons la fleche de courbure que pmndlmw un tuyau cﬂmquue,
chargé comme les solides précédens.
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Pour cela , mettons la valeur (312) de E dans la formule (334) , e qui
nous donncra

f = gy (P2 + 3B ) (39),

pour la fleche demandée , € étant la somme du poids propre du tuyau et
de sa surcharge uniforme.

680. Le poids du tuyau est pld (r2 — r'2) ; ce qui nous donnera
CC=pld (r—r'2)+ M,

si nons substituons dans I'équation (352) ci-dessus, il nous viendra

f= W (8?!3 + 3plid (r2 — r'z) 4 3MP )

De cette équation nous tirerons
btpfri — Gipfr'+ = 8P1 4 3MI3 - Jplidr* — 3pladr'2......... (353).

681. Tout étant connu d’ailleurs , demandons-nous le rayon extérieur du
tuyau.

Pour résoudrc cette question , il suffira de résoudre 1'équation (353) ci-
dessus , par rapport a r, et on aura

r= l/!“:; + ‘/( I )s + 8PS —+ 3MP + Gepfi't — 3}]!4(# 350,

&f Gepf.
pour le rayon demandé.

682, Tout étant connu d’aillewrs , demandons-nous le rayor intériewr du
tuyau.

Pour y parvenir , il suffira de résoudre I'équation (354) ci-dessus par rap-
portar’ , ce qui donnera

I i ﬁtpfr‘ — i — [FPB 1 3MB) s
ot |/( 4=r) 6T (355

pour le rayon demandé.

683. Dans toutes les formules de cette Jecon , on fera P =0, quand il n y
aura pas de poids. auspendu M=o, qu:md il n’y aura pas de charge uni-
forme, et on fera ces deux suppositions a la fois, lorsqu'il n’y aura que le
propre poids du solide. Cette remarque nous dispensera de traiter ces cas par-
ticuliers séparément.
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LECON VL

De la courbe que prend un prisme encastré par un bout , et chargé dans sa longueur de poids dont les

grandeurs sont en progression arithmétique croissante, dont le terme infiniment petit serait 4 'extré-
mité isolée du solide.

684. Supposons que Q soit la somme de tous les poids répartis sur la
longueur entiére du prisme. Cela posé , les élémens de la charge Q étant en
progression par différence, il est clair que ces élémens peuvent étre re-
présentés par ceux du triangle ABC (fig. 140), paralleles au cété AC,
car si l'on divise la base AB en parties égales, et que par les points de
division on éleve des perpendiculaires 4 AB, 4 partir du point B, ces per-
pendiculaires iront en augmentant par degrés égaux. Quand le prisme aura
fléchi sous la charge Q, le triangle ABC prendra la forme curviligne ADC
sans changer de superficie , et sans que ses élémens verticaux aient changé de
grandeur et de distance par rapport au plan d'encastrement AC; par con-
séquent rien ne sera changé pour la charge du splide, et nous pourrens tou-
jours la considérer comme étant le trianglerectiligne ABC, malgréla courbure du
prisme, et d’autant plus que nous suppesons toujours cette courbure trés-petite.

Supposons actuellement que par un point M quelconque de la courbe AMD,
on ait élevé la verticale MN ; sans troubler I'équilibre, on peut regarder la
lame neutre comme parfaitement rigide , excepté au point M; la charge qui
fera courber le prisme au point M, sera la portion du poids représentée par
le triangle BNP, semblable au triangle ABC , qui est proportionnel au poids Q.
Mais les superficies des triangles semblables sont comme les carrés des cotés ho-
mologues ; or, les cités homologues de ces triangles sont AB =1 el BP =
AB — AP =1 — x, on aura donc _

By -2 QBeN= 2
Observons présentement que la verticale abaissée du centre de gravité du

| — z

triangle BPN passe a une distance du point M, égale a 7 le moment

du poids qui fait courber la lame neutre autour du point M sera donc

Q U-': @)
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et comme ce moment doit faire équilibre & la force délasticité en ce point M,

.. E s
laquelle est encore ici —, on aura Péguation

E_QU==aP ,. 1__Q(l—ay
— = Sy dol § I SR (a). ‘

- Les élémens de l'ordonnée y auront encore pour expression générale (n® 653)
I
d = - (x —2"),
qui, combinée avec laformule (@) ci-dessus, aprés avoir mis x' au lieu de x dans celte

. l—a' )
derniére, donne d:g-%-ﬁ—ﬁ—)- (x—a') ; les autres élémens de Pordonnée

y seront de la méme forme , et leur somme sera par conséquent

y'z:"’-!’% ; (l—a' P (x—2") 4+ (L—=a"P (2—a") + (I —a )
(x—2x) + et }

ou en prenant les termes de la parenthése dans I'ordre inverse, et en faisant
sur les abscisses @’ , " , @"... la méme observation qu’au n° 653, il viendra

y=agg 3 (1—1P (2= 0+ (1=3P (2=3) + (1 —3)
(2= 3)sseee +(l—n)® (& —-n)}

en développant les termes de la parenthése , on aura

(0 — 1) (x—1) =bx —3x + 3lx —x — B 4 302 = 314 1

(@ —2) (x—2)=VPx— 6l2x 4= 12lx — 8 — ol8 4 1202 — 24l 4+ 16
(L= 3) (x — 3)= Bx — gl2x + 27lx — a7z — 3B + 271* — 811 4 8¢

(@ —np (@—n)= Bx — 3nl2x 4 3ntlx — n*x —nl3 4 3n2l2 — 303l 4-nt.
Soit M la somme des premiers membres de ces équations, comme il y en a
autant que d’unités dans n, il en résultera -

W= § nlo— 3032 (1 42+ 3ot n) = 302 (1 4 & + oot n2)—
@ 't:+8-|;;:7...+n.3) —B (1+2+3...+'ﬁ) 4 312 C1+4+g... %) —
31 (148437 n?) + (1164811}
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En prenant les limites (note page 50) des parenthtses du second membre de
cetle équation, et les substituant dans la valeur de M, il viendra

32xn2 ant Fn? Slnt n®
1 — nldy — —— Ip e T T 3o —
M = nlix - + Inix i " + I2n i + =

La valeur de M étant celle de Ia parenthése de l'expression de y, en subs-
tituant cette valear de M dans celle de y, on aura

3Pxn® & Fn? 3nt 5
y:qu(?Egnl3x—-§ﬂ-+ 5.1'!33-—5} - +l’n3—-4—-+i%-}

ainsi en faisant n = a, il viendra

. Q 3 3P &l B 3 3zt mﬁ%
y=agp e -5+ -7 — -+ -+

@ enfin y = g 1 By "%" = } (356)

2 20
pour I’équation de Ia courbe en question.

685. Si dans cette équation on fait x =1, on aura pour la fleche de

la courbe
(3 5 B 5
f.._sia_{ +ﬁ_._2

2 2 4 20
_ 4P QP
= (£) = L. 359,

De la courbe que prend un prisme encastré par un bout et chargé dans toute sa longueur de poids dont
les grandeurs sont en progression arithmétique décroissante, en partant de I'extrémité isolée et se
terminant & la base d’encastrement , ot le dernier terme de la progression est zéro.

686. Supposons que Q soit la somme de tous les poids répartis sur la
longueur du solide comme il vient d’étre dit ; les élémens de la charge Q
pourront évidemment étre représentés par ceux du triangle ABG (fig. 141),
paralleles & AD ou BC, dont le sommet est au point A d’encastrement.

Cela posé , par un point M quelconque de la lame neutre AB , élevons la ver-
ticale MN; 'si nous supposons toujours la lame rigide partout, excepté au point
M, aprés quelle aura pris la courbure qui lui convient sous la charge Q; ce
qui fera courber la lame en ce point M, sera la portion du poids Q re-
présentée par le trapéze NMCB. Mais ce trapeze est la différence entre les
triangles semblables ABC, AMN , qui sont entre eux comme les carrés des
colés homologues AB et AM ou I et x; on aura donc

ls:mzz'Q:'AﬂNzgﬁ?.
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Le trapéze MBCN sera donc

MBeN=Q % = 2= (0.

La verticale abaissée du centre de gravité du traptze MBCN passe 4 une
distance du point M (n° 111)

. ‘B_M_ 2BC 4~ MN 5
- 3 BC + MN "' ).

Le poids Q étant représenté par l'aire du triangle ABC , nous aurons
l
Q = ; >< BC)

ce qui donnera BC = EIQ
Les triangles semblables ABC, AMN donneront
AB : AM ®:BC : MN
on v RN =2

Substituant les valeurs de BC et de MN, que nous venons de trouver, dans
la formule (b), et obscrvant que BM = I — x, il nous viendra

4Q , Qe '
1—-x><£ ﬁhi—mx4!Q+an_!_m al 4=
5 X0 a0s 3 20 Fa20s — 3 X T¥=
Tt ‘
_ (l=2) (ala)
=3 (l+z) -

Si nous multiplions cette derniere expression par la formule (z), nous aurons

QF—a) (I—=) (al4a) __ Q(I—2a) (2l 42
30 (I 2) = 30 ’

pour le moment qui doit faire équilibre au moment d’élasticité ? de la sec-

tion droite du i)risme au point M. Nous aurions donc

— ) — )
lQ(l m%ﬁ(n!—kx} o EZQ(I m3£§{al+x) ...... ©.

E
— =
r

Les élémens d'une ordonnée y quelconque de la courbe que prend le so-
lide, auront encore pour expression générale _

d = ;(x —a'), ou d= % (I—x"P @l 4+x") (xr—2a')
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et en raisonnant comme pour les cas précédens

Y= 5[ (l—a'p (l4a’) (@—a') + (I—ap (al + a*)
(o= + (L= 2"y (2l +27) (2= 2" |
ou encore (n°653)
— { (L— 1) (2l 4 1) (2 — 1) 4 (L — 2)° (al + 2) (x— 2) 4 (L—3)
(a3 (x—3). (L —ny (2l + 1) (x — n) }
et en développant les termes de la parenthése comme 4 Pordinaire ,
(l—12 (2l41) (x—1) = allx — 32 + x — 2l + 32—
(I—2) (al4-2) (x+—2) = 2P — 6l'x + 8x — 41 + 12l> — 16
(—3) (204-3) (x—3) = 2B3x — gl2x + 29x — 683 4 271> — 81 .
(b—n)* (2l4-n) (x—n) = 2lPx — 3nl2x + nix — anl3 - 3n2 12— ps,

S5i M est la somme des premiers membres de ces équations, comme il y en a
autant que d’unités dans n, on aura

M= wmlx—3lx(1+243..4n) + x (1 + 8'-4- 270+ nd)
— 23 (1 4 2 4 3.0..4n) + 38 (1444 9. 4n2) — (14 16 - 81u..4nd),

En prenant les limites des parenthéses de cette derniére expression (note page 50),
il en résultera

M= 21:!3.1'—3&”--{-—4- ——-E%’-}-l’r@—ﬂ—-‘ '

En substituant cette valeur de M dans Ja dernitre express’lon de y, il viendra

y = %E { onldy — 3!’:9::: + 'j%-f‘_" ;3"'5_‘_32,;3.__..’; },
et en faisant n — x, et réduisant, | | . _
xs a1

y:-gg-ﬂ(ﬁ.r’m-v—-]- Yova (353)

pour I'équation de la courbe demandée.

687. Si dans cette équation nous falsons r = l il nous nendra pour la
fleche de courbure

B QF .
f=g% (P—t+5) = 5%
35

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

274 : COURS DE CONSTRUCTION,

De la courbe que prend un prisme encastré horizontalement par un bout, et chargé dans toute sa lon-
gueur, de poids en progression décroissante par différences égales, en partant de I'extrémité isolde ef
allant vers le bout encastré , le dernier terme de Ja progression étant quelconque,

688. Les élémens des poids pourront étre représentés par ceux d’un tra-
peze ABCD (fig. 142); de sorte que ce trapéze représentera la somme de tous
les poids élémentaires.

Cela posé , par le point G, menons la droite CE paralléle 4 AB ; le tra-
peze ABCD sera partagé en deux parties, dont une sera le rectangle ABCE,
et Pautre le triangle ECD. Nommons C la somme des poids uniformes repré-
sentés par le rectangle ABDE, et Q celle des poids représentés par le triangle
ECD.

Actuellement , supposons que le prisme ne soit chargé que de la somme G
des poids uniformes représentés par le rccmngle ABCE , d’aprés le n° 655,
le moment de la partie de cette charge qui agit sur le point M ‘sera

C(l—z)p
47 ’
d’un autre cbte, si le prisme n’était chargé que de la somme Q des. poids
représentés par le triangle ECD, d’aprés le n® 684, le moment de la partie
de cette charge qui agit sur ce point M serait
Ql—=py
3 '
La somme de ces deux momens est évidemment celui qui produit la
flexion du solide au méme point M , et doit, par conséquent, faire équilibre

%

, . E
au moment de résistance ~ ¢ on aura donc

C{I-—x

.-_;‘ + Q (I-v-a:)s

o = ﬁ'E (’;'_x')n + %E (L= x).... (@)

Les élémens de y seront encore de la forme

ou

d =2 (20— 2" ) (b),

et par conséquent, en mettant x' pour x dans la formule (@), et substi-
toant la valeur de 'E dans (b), il viendra

Cd= g (e 2 P ) g (Lt (x— ),
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d’ou I'on voit que I'élément de y, dans ce cas, est la somme des élémens
de cette ordonnée des cas des n*® 655 et 684 ; et par conséquent notre y actuel
sera la somme des seconds membres des formules (331) et (356) : on aura done

__C B2 P at Q (P Pad "

=mE(7 3 +E)+ 3E (-5 + 5 ) @60)

689. Ilsuit de la forme de I'équation (360), que la fleche de courbure -3
dans ce cas la somme des fleches données par les formules (332), (357) qui sont

f= 5-- et f= Qg, ainsi on aura

=5+ 25=r (5+ %) G6)

On arriverait au méme résultat en faisant x= [ dans la formule (360).

De Ja courbe que prend un prisme encastré horizontalement par un hout, et chargé dans toute sa lon-
gueur de poids en progression croissante, en partant de lextrémité isolde, etallant vers l'encas-
trement , le premier terme de la progression étant quelconque,

. A
690. Il est clair qu'en raisonnant comme dans le cas précédent , on verra:
que la charge du solide peut ici étre représentée par le trapeze ABCD
(fig. 143), et que P'équation de la courbe aura pour second membre la somme
des seconds membres des équations (331) et (358) ; ‘de sorte qu'on aura

1= S (E e E) e G (re B )

2

691. L’expression de la fleche de courbure sera de méme la somme des
fleches (332) et (359) ; ainsi il s’ensuivra que

CB 1 1
=S = (14 59).0 oo

692, L'expression générale de la tangente trigonométrique de I'angle de la
tangente & la courbe par rapport & 'horizon (fig. 142), s'obtiendra en opérant
sur l’équatiun (360) , comme il a été dit au n° 662, et on aura

fang. m‘"—“—— (I.rm-h" + 5 ) + 519_]5 (fax—*spm—}—lx‘——) (364).
693. Enﬁn, en operant de méme sur I'équation (362), il viendra, pour

Vexpression de la méme tang. m , pour le cas de la fig. 143

tang. m. = % (lsw -2 = ) +- EQ-E (sl — i{ifg + :f;)u.. 365).
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LEGON VIL

De la forme qu'il faut donner a un solide encastré horizontalement par un bout et chargé uniformément
dans toute sa longueur , et d"un poids suspendu i son extrémité libre, pour que la courbe qu’af-
fectera la lame neutre soit un arc de cercle, ou, ce qui revient au méme , le rayon de courbure soit
constant , le solide étant sans pesanteur.

694. L'équation (c) du n°660 , qui est
P—z) 42l 2 @

r

nous apprend que E doit varier en méme temps que x, de maniére que E
diminue quand x augmente, et réciproquement, attendu qu'ici r est constant.
Ainsi la force d’élasticité qui se développe dans les différens points de la longueur
du solide , doit aller en diminuant depuis la base d’encastrement jusqu’a l'ex-
trémité Iibre ot elle doit étre nulle, puisque pour ce point, x étant égal
a I,le premier membre de I’équation () ci-dessus se réduit a zéro.

695. Supposons que la base d’encastrement du solide soit un rectangle ;

dans ce cas n° (6o0) E = ol . (B,

12

a étant la largeur et b la hauteur de cette base. Mais pour qhe E ait cette
valeur (), il faul que @=o0; en substituant ces valeurs de x et de E dans
Péquation (a) ci-dessus, il nous viendra

Pz+95=‘_“f"’_

1aor?

tab®
m—m—jou.u.

sera le rayon de l'arc de cercle suivant lequel la lame neutre se courbera
par laction de la charge, la base d’encastrement étant un rectangle.

d’m‘x r =

696. L’equallon (b) ci-dessus nous fait voir que pour que E varie, il ﬁmt
faire varier @ ou b, ou tous les deux i la fois , attendu que ¢ est une cons.
tante,, puisque clest la résistance & la tension pour I'unité de base (n° 600)
Supposons en premier lien que a seul soit variable , et pour indiquer la varia-
bilité de cette quantité , représentons-la par z, nous aurons

= — z;
E 12 7
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substituons cette valeur de E dans Péquation (a), et il nous viendra

i® ,
AP (I — &) +CU—2)=Fr @,
en faisant disparaitre le dénominateur 2/.
Cette équation deviendra

alP (1 —x2) +C(l—a) = ;“_L%.EE.-LS_L Zuen (367).

en y mettant pour r sa valeur (366).
Cette équation est celle d’'une parabole.

697. Supposons que la droite AB (fig. 144) soit la projection horizonfalc
d’une face latérale du solide, cette face latérale restant plane et verticale; et
prenons cette droite pour Vaxe des x ; si la droite AC est la trace horizontale
du plan dans lequel le solide est encastré , le point A sera origine des coor-
données , et AG sera l'axe des z. Ainsi pour AP = x, Péquation (367)
donnera PM == z, quisera la largeur du solide & la distance AP de la base
d’encastrement.

698. Supposons que le point B (fig. 144) soit Iextrémité du solide , de
sorte que AB = [, et transportons, en ce point B, lorigine des coordonnées ,
Vabscisse du point M de la courbe aMB sera BP — x', et I'ordonnée PM = z
ne changera pas : nous aurons donc

z2=AP =AB — BP- =1 — x';
et si nous substituons dans Péquation (367), il nous viendra

P @GP +C),

11

alPx’ 4 Cx'2 = eennes (368).

699. Si dans cette derniére équation nous faisons z = o, nous aurons
alPx' 4 Cx'2 = o,

ce qui nous donnera

x =0, e 1 =— %-P =-— Bd... (369).
La premiére de ces valeurs de ' nous apprend que notre parabole passe
par Pextrémité B du solide, et la seconde que cette courbe rencontre l'axe
AB des x' en un point d au-dela du point B; ainsi la parabole passera
par les trois points ¢, B et d, Aa étant la largeur "a de la base d'en-
castrement,
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700. Dans I'équation (368) nous ferons

Bd P
- — —_ =
.1_:......B(:...----:!'__—--C.'|I

PR PP P (oP +C)

et nous aurons - T < =" £,
. e apb?
d(ﬂl L= 66 — _mcnnlp- c3’;|'0)-

_Cette valeur de z est l'ordonnée ¢b du point b, et comme cette ordonnée
est négative, il Sensuit que ce point b est situé au-dessous de 'axe AB des =’
comme je lai indiqué dans la fig. 144. De I3 nous voyons que la courbe
tourne sa convexité vers 'axe AB des x', puisqu’elle doit passer par les quatre
points ¢, B, b et d. '

Il est facile de voir que le point b est le sommet, et la droite bg , perpendi-
culaire au milieu de Bd, 'axe de notre parabole aBbd.

701, Prenons le sommet b pour lorigine des coordonnées , la droite bg
pour Daxe des z’ et la tangente ef menée par le sommet b pour celui des x”;
npus aurons

,;’x:BP:(:P-—-cB,_:.x"—g,r
aP?
el 3=PM=PIM._PPF="'_G_EF“—F_C"};

si nous substituons dans Yéquation (368), aprés toutes réductions faites, il

A (PLC)
=L A0 e

nous viendra x"s C

pour I'équation ordinaire de notre parabole, dont le parametre est, par

P 4 C
conséquent, . p= f-g-f?ci—) (372).

702. Cherchans maintenant la fliche de courbure que ce corps pren-
drait sous Uaction d'unecharge uniforme, et d'un poids suspendu & son extrémite
libre.

Pour cela, il faut faire attention que la lame neutre conserve sa longueur
primitive en se courbant , puisquelle n'éprouve ni tension ni compression
pendant qu'elle se courbe.

Soit donc AE (fig. 145) la longueur primitive ! de cette lame neutre
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la longucur AB de l'arc de cercle qu'aflectera cetle lame , sera donc éale
a I, mais
n
AB = 360 S IPT)

n étant le nombre des degrés de I'arc AB, p le rapport approché du dia-
metre 4 la circonférence du cercle , et » le rayon de ce cercle; nous
aurons donc

?‘—go X opr =1, dou n= 3;3_! = '—%:! ....... (a).
Nous avons la fleche
AD = AC — CD = r — CD..... (b).
Mais . I:cos.n::r:.DG:::-eos.n.

si nous substituons cette valeur de CD dans D'expression (b), et si nous
représentons par [ la fleche AD, nous aurons

f=r—rcos n
Mettons dans cette derniére pour » sa valeur (a), il nous viendra enfin

f=r—r cos.fp—?-fzr(r-cos -'-%E-f)  (373)

Substituons puﬁr r sa valeur (366), etil nous viendra

tab® 108 o (aP - C) )
[=gmrso ( s T )

pour l'expression de la fléche demandée.

o (374)

703.De ce que laforce d'élasticité E nedépendant quede @ quand & est constant,
il s'ensuit qu’au lieu de donner au solide la forme indiquée en projection
horizontale par la fig. 144 , on pourrait lui donner celle représentée par la
fig. 146 ; oir l'on voit que les deux faces latérales aB, 6B du solide seraient
des surfaces cylindriques parabuliques concaves; les doubles ordonnées ab, ed ,
¢f , seraient les valeurs successives de z données par I'équation (368) , et il ne
serait pas nécessaire que la droite AB divisit ces doubles ordonnées en deux par-
ties egales il suffivait que l'on et Ab { Aa [ cm [ md . en ] nf, etc. Dans le
cas ou cette droite AB diviserait les dﬂubles ordonnees ab , ¢d, ef , ete., en deux
également , la forme du solide n’aurait d’autre avantage que d’étre symétrique,

T04. Proposons-nous, maintenant, de trouver la forme du solide dans les
mémes circonstances , la base d'encastrement étant toujours un rectangle , dont

la largeur serait a, et la hauteur b, dans Uhypothise on a serait constant
et b variable.
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Dans ce’cas, I'équation (b) du n° 694 deviendra E =— E. x3, en repré-

sentant b par z. Mettons cette valeur de E dans DPéquation (a) dn n° 694,
et il nous viendra

P(l—ux) SUZBN_ By (@

Faisons ici une observation essentielle , celle que I'axe d’¢quilibre doit tou-
jours se trouver au milien de chaque section droite , c’est-a-dire que la lame
neutre doit toujours partager le solide en deux parties symétriques situdes
I'une au-dessus de I'autre ; d’olr il suit que, si la lame neutre est droite, la courbe
qui terminera la face supérieure, sera parfaitement égale 4 celle qui terminera
la face inférieure, et cesdeux courbes seront symétriquement disposées par rap-
port a la lame neutre,que nous prendrons pour I'axe des .

Soit donc AB (fig. 147) T'axe des x ou la lame neutre ; CMB la courbe
supérieure , et EmB la courbe inférieure ; si par un point P quelconque de
'axe AB nous menons la droite M perpendiculaire & cette derniere , la lon-
gueur Mm sera une des valeurs de z données par Péquation (a) ci-dessus, et
on aura PM = Pm ; de sorte que si nous ne considérons que la courbe CMB ,
ses ordonnées PM ne scront, pour les mémes abscisses x , que les moitiés des z
correspondantes données par 1’équation (a). Si donc nous représentons par z’
les ordonnées PM, nous aurons z = 2z’; substituons cette valeur de z dans
I'équation (a) , et il nous viendra
C(l—a?
e =

a4

P(l—zx)+ X 83 = T3,

ou en faisant disparaitre les dénominateurs et 1'accent de 2’
6P (I — x) 4 3Cr (I — 2 )2 = 4talz®..... (375),

pour Déquation de la courbe CMB en portant les 5 au-dessus de I'axe AB,
et pour celle EmB, en les portant au-dessous de cet axe AB.

705. Transportons Porigine des coordonnées i Vextrémité B de I'aze AB
du solide ; et ‘pour cela observons que pour le point M la nouvelle abscisse
sera BP ; nous aurons

AP =2 =AB—BP =10—2a,
x' étant Pabscisse BP. En substituant dans I'équation (375)il nous viendra
60rPx’ + 3Crx'? = ftald...... (376).
: 706, Faisons z = o, il nous viendra

alPx’ 4+ Cx'2 = o,
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ce qui nous donnera

&B’ :0’ el .’A’-‘FZ ""%E: ...... . (377)’

et nous apprendra que les deux courbes CMB, EmB viennent passer par
extrémité B de I'axe AB du solide , et rencontrent cet axe en un autre point
b, sur son prolongement , & une distance

Bb = — 25 (379)

‘Cetle circonstance s'est présentée de la méme manitre (n° 6y9g) pour le
cas ou I'épaisseur du solide reste constante , et la largeur est variable.

707. Par le milieu d de Bb, élevons la droite GF perpendiculaire & 'axe
AB, et déterminons le point @ ou ¢ oi la courbe CMBb ou EmBb vient
rencontrer cette droite GF.

Pour cela, il faudra faire &' = — IEP (puisque Bd = i Bb, et que Bb=

- %P), dans D'équation (376); il en résultera que

T Pty
ce qui se réduit 3 — .3%_“‘}' = fatz?
d’oit nous tirerons - - )
2 = da = d¢ = — ; i—-’;ﬁz:........ (379). )

ainsi la courbe CMB passe par les points C, B, a et A, ce qui prouve
que cette courbe a sa concavité en dehors; et la courbe EmB passe par les
points E, B, c et b, et tourne aussi sa concavité en dehors , et en sens
opposé de la premieére. ' -

708. Pour la courbe CBab, p!enﬁns le point d milien de Bb pour l'o-
rigine des coordonnées ; en nommant la nouvelle abscisse #”, nous aurens

'm‘-.:BP:‘;dP-—-Bd:m"A-E,

¢én meltant pour Bp Ia moitié de la valeur (378) de BB, prise’ dans le
sens absolu. En substituant cette’ valeur de x' dans I'équation (376), il
nous viendra ' o S
Phy 1 Pr ,
6iPra” -—ﬁ% + 3Cr (w'ﬂ — 3‘1— z' + %:) = ftals® ,
' 36
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ce qui se réduil a 3Cra"? — @%Pﬁ__‘r = falsd, Lo
ou A z"? — C‘ gzﬂ . (380)
celte équation se réduirait a

s = BB (381),

si P = o0, c'est-d-dire si le solide n’était chargé que d’une charge uniforme.

709. Cette dernitre équation est celle de la courbe qu’on appelle seconde
parabole cubique ; ainsi, dans le cas ol1 il n’y a pas de poids suspendu a I'ex-
trémité libre du solide , les courbes CMB, EmB qm en déterminent la forme,
sont des secondes paraboles cubzques dont l'origine- serait i Pextrémité B de
Paxe AB du solide. Mais dans le cas ot le poids. P existe, ces courbes ont
Véquation (380), et ne sont plus de: Lespéce des pnraboles admises jusqu'ici ,

Ep2
4 cause de la constante isolée @ que cette équation renferme nécessaire-

ment. Cependant , on peut en fiire une espéce p-aru{:ullere de para'ﬁoles 3
par la raison que ces courbes, comme’ les autres: qui portent ce nom, sont
limitées dans un sens, et hldéﬁnies' dans le sens opposé.

En effet , si nous résolvons I'équation (380) par rapport & 2", nous aurons

tal
2" = =& |/ g—c-r 23 ok

d’oll nous voyons que tant que z sera positif, &” sera réel, puisque tous les
termes sous le radieal sont alors positifs ; ce qui veut dire que la courbe sétend
4 l'infini au-dessus de 1'axe AB; mais si nous prenons z négatif, comme 23
' ftal’

sera négatif, 2" ne sera réel quautant que P—f; > G 23, ou que ces deux

quantités seront au plus égales, ce qui donnerait pour la plus grande valeur

possible de = négatif, &= — |/ ST,
valear égale 2 celle (379) trouvée au n° 707 pour le point a.

Ainsi les courbes CBab, EBch portent le caractére le plus remarquable
des paraboles en général ; clest pour ectte raison que nous les nommerons
secondes paraboles cubiques affectées d'une constante isolée.

On remarquera que Porigine des coordonnées de cette espéce de paraboles est
bien stir 'axe GF ,'mais non pas au sommel a de la courbe. Si I'on pre-
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mait lorigine en ce sommet &, I'équation qui en résulterait serait beaucoup
plus compliquée , elle renfermerait, en effet , trois termes de plus dans le se-
cond membre , qui seraient respectivement affectés de z3, z* et z, avecun
terme constant , et le premier membre ne changerait pas. Le point d est done
un point remarquable de cette espece de paraboles, puisqu'étant pris pour
Porigine des coordonnées, il donne lieu & Iéquation la plus simple.

740. La grandeur du rayon r de l'arc de cercle que la lame neutre AB
affectera par l'action de la charge que le solide supporte, aura pour expres-
sion celle (366) du n® 694, a étant toujours la largeur de la base d’encas-
trement, €t b sa hauteur EC totale.

711. Pour que tout cc qui vient d’étre démontré ait lieu , il suffit que , dans
chaque scction verticale, I’axe neutre d’élasticité soit situé au milieu de la hau-
teur de la section ; de la il résulte que , au lieu de donner au solide le profil
CBE (fig. 148), on pourrait lui donner le profil CDE ( beaucoup plus conve-
nable dans un grand nombre de cas), pourva que ik=ab, Im = dé,
no = ef, pq = gh, elc., la droite CD étant horizontale ou inclinée. La
lame neutre devant passer par les milieux A, r, s, £, u, D des doubles
ordonnées CE, ik, Im, etc., prendra naturellement la courbe ArstuD.

Quant a la fleche de courbure, elle sera donnée par i’équétidﬁ (374).

712. Dans le cas ot 'on voudrait faire varier i la fois @ et b, Pune de ces
quantités pourrait varier suivant une loi donnée & volonté; et lautre senle serait
soumise aux conditions exprimées par équation (b) du n® 695.

Supposons que la projection horizontale du solide soit le triangle rectiligne
DBC (fig. 149), la base d’encastrement étant CD , et la droite AB, per-
pendiculaire @ DG, la longueur du solide. Dans ce cas, @ étant la largeur
DC de la base d’encastrement, & la distance Ac = @, on aura la largeur
ab par la proportion :

AB:BeiiDCiab on 11— a)iala=21000 )

Ainsi , dans Pexpression E — E‘? 5 4 la place de @ nous mettrons

Bl setalaplauedeb,z :musaufonsE:Mﬁ

& 12 ' !

en mettant ensuite cette valenr de E dans Péquation (2) n° 694, il nous viendra

P(z_“x)_!_C{le)’:m(I—m) 2

L]
ITY, v

C (1-——:.\:)

dot P+ =B 5 (30,
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T13. Si dans cette équation nous faisons # = o, en faisant attention
qualors z =15, nous aurons

P+ S =1,

ar?

ot p e . 383)

(ﬂ’-i-

sera Pexpression du rayon de courbure qui, comme on voit , est dans ce cas
mclépendant de la longueur du solide.

714. Maintenant suppesons (fig. 150) que AB soit la projection verticale de la
face supérieure du solide , et que AG = b-; prenons la droite AB pour l'axe
des x, et le point A de la base d’enmstremen-t, pour lorigine des coor-
données ; nous aurons -

AP = x, PM = z, et AB = [,
et I'équation (382) sera celle de la courbe CMB,
715. Transportons lorigine des coordonnées & lextrémité B du solide ;
nous aurons x — AP = AB —~BP =1 —3';
en substituant dans I'équation (382) il nous yiendra

P4 % = —tf-u B (384)

12
pour Péquation de la courbe, l'origine étant au point B.

716. Faisons z = o ; nous aurons
P 4+ C—'f ::o, dot &' = — T. = Ba.... (385),.

il suit de ce que 2’ n’a qu'une seule valeur, que la courbe ne ren-
contre I'axe AB quen un seul point @) situé au-deld du point B, sur le
prolongement de AB.

717. Prenons ce point @ pour origine des coordonnées; en nommant 2
Tabscisse aP , nous aurons ' '
.w'.=.BP = aP — aB = 2" — %‘3,
en mettant pour B sa valear (385) prise absolument. En substituant dans 1'¢-
quation (384), il nous wendra

Cx — at vy g GC
T 2! '_'_r' J'er dﬂu 2= Rt_' wuo..u. (385)'

en supprimant les accens de a.
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Clest I'équation la plus simple d'une premiére parabole cubique. On voit
que cette équation est indépendante du poids P suspendu & I'extrémité libre
du solide.

Quant a la fléche de courbure, on 'obtiendra en mettant la v'uleur (383) de
r dans Péquation (373), ce qui donnera

. tab® 1080l (2P 4+ C)
f—-—m(l—m&r—'-w—"-)- ...... (387)

718. Supposons que la base d’encastrement du solide soit un cercle; dans ce-
cas (n” 311), neus aurons

E= E'P: - (@),
p étant le rapport approché du diamétre & la circonférence , et R e rayon
de la base d’encastrement. Mais pour que E ait cette valeur , il faut que x =o¢
dans l'équation (2) du n® 694; en substituant ces valeurs de x et de E dans
cetle équation (a) ci-dessus, il nous viendra

Cl R*
P S =T,

A

. R |
dﬂl.l‘ Yy o= m.."., (388),

sera Pexpression du rayon de l'arc de cercle suivant lequel la lame neutre
du solide se courbera.

719. Pour indiquer que R est variable, représentons—le par z, ce qui nous

donnera E 4:, ou en mettant pour rsa valeur (383), = t’”‘ < al (’P+ )

4
=" (QP;;";_C)Z ; mettons cette valeur de ;.- dans I'équation (“) du n° 694 , et

nous aurons

P (l—a) + C (1—-:)2 !(2P2-|I;C) a"

ou 2R (l—2) + RC (:5—:1:)z z= P (2P 4 C) z%...... (389)y ‘

en faisant disparaitre les dénominateurs.

720. Supposons que la droite AB (fig. 151) soit Ja projection verticale de
Paxe neutre ; A le centre et DC le diametre de la base d’encastrement, et le
point B Textrémité isolée du solide; prenons le point A pour 'origine des
coordomnées, la dreite AB pour Paxe des abscisses, et AC -pour celui des
ordonnées , si & = AP, I'équation (389) donnera z ==PM, la courbe CMB
étant celle qui, par sa révolution autour de l'axe AB enigéndrera le solide.
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7M. Transportons Torigine des coordonnées a l'extrémité B du svlide ; les
z ne changeront pas, et # = AP = AB~— BP =/ — 2’; en substituant
dans Iéquation (389), elle se réduira a

2lR+Px" 4 RiCx'2 = I+ (2P + C). 2t (390),
722‘. Si dans cette derniére équation nous faisons z =0, nous aurons
2lR+Px’ 4 RiCx'2 — o,

=0, e &'=—27 = —Ba... (3g1).

d’ota x

‘La premiére de ces valeurs de #' nous apprend que la courbe CMB passe par
Pextrémité B du solide, et la seconde que cette courbe rencontre 'axe AB de
x' en un point ¢ an-dela du point B.

723. Transportons lorigine des coordonnées au milien ¢ de la distance
Ba; les z me changeront pas, mais les abscises seront ¢P au lieu de BP ;
nous aurons donc

' =BP=cP — B=2a"— g,
en mettant pour ¢B la moitié de la valeur (391) de Ba. Substituons cette
valeur de x/ dans 'équation (3go), et il nous viendra

P RéP?

RCx's — o = I (2P + C) o4,

toute réduction faite.
724. Résolvons cette équation par rapport 4 z, nous aurons

Cette équation nons montre que depuis " =o, jusqu’a ce que C2x"2> I-Pz,
les valeurs de z seront imaginaires ; c'est-a-dire qu'il n'existe pas de courbe
entre les -points B el @ ; mais au-dela de ees points, il y aura deux branches
DBC, dab séparées per la distance Ba, qui s'étendront & V'infini. Cette courbe est
donc une hyperbole, et comme son équation est du quatriéme degré , cette
hyperbole est du quatriéme degré. La révolution de la branche CBD autour
de l'axe AB, engendrera le solide donl il est ici question,

725. Si dans 'équation (373) on met pour r sa valeur (388), on aura

- pR¢ 3608 (2P +-C)
f =gy (1 o =) (03
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En continuant de raisonner de la méme maniére sur les différentes valeurs
que prend E, quand la base du solide change de forme, on arriverait ala
détermination de 1’abaissement de I'extrémité B de ces différens corps, ainsi qu'a
celle de leurs formes dans le sens de la longueur. Ce genre de recherche con-
duirait 4 des résultats plus ou moins curieux , mais je craindrais de sorlir des
bornes qui conviennent 4 cet ouvrage en les poussant plus loin. Au reste, je
crois en avoir assez dit sur cette matiere, pour qu ‘un lecteur habitué au
caleul , puissc, dc lui-méme, résoudre les questions qui pourront l'intéresser.

LECON VIH.

Equation de la courbe que prend un prisme posé librement sur deux appuis de niveau, et soumis i ac-
tion d’une charge uniforme dans Vintervalle des- appuis, et d’un poids suspendu en un point
quelconque de sa longueur. '

726. Supposons d’abord que le solide soit sans pesanteur, et ne soit chargé
que d'un poids suspendu au wulieuw de la distance entre les appuis.

Soient ACB (fig. 152), la courbe qua pris Faxe neutre du prisme, et
A, B les points d’appui. Nommons

2P le poids suspendu au milieu D de l'intervalle des appuis, et

! la moitié AD ou DB de cet intervalle;

Il est clair que la lame neutre ne changerait point d%état, si au lien da
poids 2P, on placait un obstacle invincible au-dessus du point C, et au
lieu des appuis A et B, on substituait deux forces égales chacune 4 P, et
agissant de bas en haut, De plus, Déquilibre ne serait point troublé, si Fon
supposait encastrée Pune des moitiés du prisme , la moitié AG , ‘par exemple,
T'autre étant livrée & Paction de la force P, appliquée au point B, et agissant
de bas en haut. Cette moitié du prisme serait donc dans le méme cas que
dans le n° 653; d'ol1 il suit qu’en prenant origine des coordonnées au point C,
et pour l'axe des abscisses la tangente horizontale ab, menée par le point
milieu C de la’ courbe ACB, T'équation de la moitié CB de cette courbe sera

P /hL* o
r=x(3-%)
comme au n® 653, P n’étant ici que la moitié du pnids suspendu au mi-
lieu de la pitce, et I la moitié de lintervalle des appuis,
11 est évident que Pautre moitié aura la méme équation.
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727. La fleche de courbure DC = f, sera donc aussi, comme au n® 654

Pﬁ
f = BE (395) 3

P étant toujours la moiti¢ du poids suspendu , et ¢ la moitié de Pinter-
valle entre les appuis.

728. Proposons-nous de trouver la courbe d’un prisme posé librement sur
deux appuis de niveau, et soumis & Uaction dune charge uniforme dans tout
Uintervalle des appuis.

Il cst évident que dans ce cas, chaque point d’appui supportera la moitié
de la charge du solide, que nous nommerons 2C. Ainsi les forces P, Q
(fig. 152), qui agissent de bas en haut pour remplacer les appuis , seront
ici égales & C. Cela posé, supposons que la moitié AC du solide, vienne a
étre encastré , I'équilibre ne sera pas troublé, et Ja force P = C, appli-
quée au Ppoint B sera obligée , non—aeulemenl; de vaincre la force d'élas-
licité qui aurait lIEl‘l si le solide était sans pesanteur, et seulement soumis i
Paction de cette force, mais encore celle que développerait la charge uni-
forme distribuée dans la longueur CB, si l'encastrement ayant lieu au
point G, le point d’appui B n’existait pas, Or, si la moitié libre CB du corps
était sans pesanteur , la force P — C produirait une fleche de courbure

(n® 728) qui serait égale a %; mais la charge uniforme C de cette moitié
du prisme , produirait en sens contraire une fleche de courbure (n°® 657),

égale & %; nous aurons donc

ce  Ce SCP

f=F = =g (90

729. De ce que la flecche de courbure est ici la différence entre celles
données aux n* 653, 657, il s’ensuit nécessairement qu'il en est de méme

d’une ordonnée quelconque; par conséquent, une ordonnée y quelconque
de cette courbe sera la différence des seconds membres des équations (339)

et (321); clest-a~dire que nous aurons
ht Bt | o
—(2 )_—_(';—_?4-:;)’

xt

T = Ps?
ce qur-se redml. a Y =R (-— - o e (397)

730. Cette maniére de trouver l’équahon de la courbe du solide uniformé-
ment chargé dans Tintervalle des appuis est trés-simple, mais elle peut pa-
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faitre un peu subtile; en voici une autre toute différente , qui conduit avec
plus de détails au méme résultat.

731. Supposons que l'origine des coordonnées soit le milieu C (ﬁg 152) de
la courbe ACB, lequel point G est celui de contact de la tangente hori-
zontale ab que nons prendrons pour I'axe des abscisses.

Cela posé, appelons x D'abscisse CP du point M de la courbe;  la mmtlé
aC ou bC de la distance entre les appuis, et 2C la somme des poids uni-
formément distribués sur la longuer de la pice. Les distances du point P aux
points d’appui seront aP =1 4 2, et Pb =1{— a. Les charges des deux
parties AM, MB du selide, seront proportionnelles aux longueurs ! 4@,
{— x; de sorte qu'on aura

altaC ey b x s SUEE)
pour la charge de la partic AM; et

R R e
pour celle de Ia- partle MB.

Ces charges tendent 4 faire baisser fe point M, la” premidie ‘autous du
point A, et la seconde autour du point B. Mais ces charges agissent & leurs
centres de'gravilé y “qui sont reSpéciiﬂement ai"t’ milieu des dié{dnceé ab et Pb

autour des points dappul est. dnnc

G(l-{-mi_{_'ﬂ{!a—‘-m)_u

Supposons maintenant qu'un obstac]e soit Ii'hcé au pomt M, de maniétre qu'il
soppose 4 un mouvement dc translation werticale, -mais n'empéche pas un
mouvement de rotation aulour dc ce pomt. M ; cct obslacle ne changera pas
Pétat d'équilibre , de sorke que, i Von' veniitt'a suppmmer les' pmnts d'appui,
le prisme resterait en équilibre autoyr dy point. M, si les pressions sur cos
points d’appui étaient remplacés par ‘deux forces veiticales P, Q, respectivement
" dquivalentes &:ces pressions,.appliqnéesaux mémes: points:A- &t .Br, et agistant
de bas en haut. '

W1 faut done que les points d'appui A et B réagissent contre, la. charge du
'prlsme 3 de manitre que-lT:s momens de ces iéactions plu" rapport du point M
soient égaux. De plus, la’ semme de -ces réactions doit étre égale a la charge
C qui fait baisser le po:nt "M du’ prisme. Or, les bras de levier de oe:

gy
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réactions sont &P ou ! 4+ =z, et Pb ou ! — a; mais pour que les. mo-
mens de ces réactions soient égaux, il faut qu'elles soient cn raison inverse
de Ieurs bJ, as de levwr l + «, { —a; si doncon appelle P et Q ces réac~

l.mns,onaura P:Qil—a !l 4 =

P étant la réaction du point d'appui A, et Q celle da point d’appui L,
Cette prdportion nous donne '

P4+Q:Qilalll+4a;

mais P+ Q=0¢C,
donc C:Q:%2 8 4o,
d’otr Q (!-l—-")

2!
Le moment de Q sera donc -

C(lda)(l—=x) €(B—a)
al — :

2l

On trouverait la méme expression pour le moment de P. Or , c’est évidem-
ment 'un de ces momens qui doit faire équilibre & celui ~1:i de Pélasticité qui se
_développe dans la section droite du prisme au point M. Ainsi pn aura

C(A=a) , €, o
1-;='(_'ﬂ——) dh -}ﬁ;TE(lz_-—-a:’*)......_... (ﬂ)-

'Qp_ant aux élémens de Lordonnée y , ils auront encore pour_expression
d = 5— (¢ - 2'),
de sorte qu'en mettant «’ au lieu de & dans la formule (a), il viendra
d...i(liwa: ) (@ — @),

d’e Pon voit quc la somme de tous ces élémens sera

y=gmy (B—a) (a—a' )+ (B—a") (a—a") +

' ' (lama:")(w—-a:")....} ‘
et en faisant la‘méme remarque que précédemment sur les abscisses =’

2", etc., il viendra

Y= G =D =0+ @ —§) @—3) + E=g) (5=
=) @—n.
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Développons les termes de Ia grande parenthése, nous aurons '

Ben)(@—1)=bBx—L—x+1
(B —f) (xr—2) = lx —alt— 4z + 8
(F—9) (x—3) = bx— 3P — gx + a7

L] - L L] - - L] L L] . L]

(3 — n?) (x —n) = lP2x —nl2 — n2x 4 03,

Faisons la somme de ces équations membre a membre, comme il y en a
autant que d’unités dans r, il viendra

M=nlx—10 (0 4 2.4n) — 2 (1 + 4 4+ .« +n)
-+ (1 4 8. +nd);

prenons les limites , il en résultera

-y B and nt
H.._.nla:——-——s— 'Z',

et en faisant @ = n,
2
M:I’x*—-?—-,—'-i-—z-——-——.

_ Si- nous substituons cette valeur de M a la place de la grande paren-
these de la demlere valeur de y , il nous viendra enfin

’ o C { P2 o
Y= g
pour Péquation de Ja moitié CB de la courbe, comme au n° 7ag (*).
Cette équation donnerait la valeur (398) de la fliche de courbure, en y
faisant & = 1.

732. Si le prisme était & la fois soumis & action d’une charge et d’un poids
suspendu au milieu de lintervalle _des appuis , il est évident que l'expression de

(* Sidans I'éguation (#) du n° é_3r nous iﬂetlom::pmu ;_ sa valerr %’, qui a lien dans

I'hypothése . ol :% = 0, il nous viendra .

‘g-:—{ﬂ ;(-}E(li ..'3’)7 ; R ¢ .I
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Pordonnée d’mm point quelconque de la courhe qu'il affecterait., serait. la

somme des seconds membrcs des équahons (329) et (397}, de sorte qu'on
. P (la? a:’ C [Bs

alll‘a]t Jf —_— ( x ) + 2IE ( _;-—-- -1-2 saennay (598)

P étant Ja moitié dﬁ gﬁids suépcnd_u'a_u milieu c_m'tt_'e les :-_a‘_pﬁuis , et C celle

de la charge uniforme.

Cette charge unifor e | peut étre que e pmls propre du solide, ou ce
-méme poids , plus une surcharge uniforme.

733. Supposons maintenant un prisime’ sdns’ pesanteur ; cﬁaryé d'un poids
suspendu en un point quelconque dans lintervalle des appuis , supposés tou-
Jours de niveau. '

Soient ACB (fig. 153) la courbe de ]a lime neutre; D le point d’ap-
plication du poids 2P ; ¢ la distance GD du milien G de Pintervalle des
appuis au point D _d’applical.io_n du poids 2P, / la moitié de AB, etx,y
les coordonnées DP, PM d’un. point quelconque M, de la partie DB de Ia
courbe en question , l'origine des coordonnées étant le poiut.D, et Faxe des
abscisses 'horizontale EF menée par le point D. :

Cela posé , nons aurons DE = ¢ — ¢, et FD = I 4 ¢, pour les
distances des Pomts dappm au point d’application D du poids 2P. Les pres-
sion sur les points d’appui A, B, pourront étre remplncés par deux forces
verticales , agissant de bas en haut qui seront en raison inverse des bras
de levier DE = ! — ¢, FDL = ! 4 ¢; de sorte qu'en nommant Het K

ces forces, nous aurons
H"K"l+c'Z——od’ouH+K’H::ag‘.:l.+q,

.

mais leur somme H —+ K == aP;.ce qui donnera -

P tH Al 4,

en intégrant deux fois. de suite, il viendra

C %5
| o %n;‘-(ﬂx—?)’-
, C (B3
et 2% -”“;ﬁ(_?;“'ﬁ)’

comme dans le corps de l'ouvragei
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dot o L i) Y

sera la force qui remplacera le point d’appui B. On trouverait que’ celle qui
remplace le point d’appui A est

K="= @)

Supposons que le prisme vienne & étre encastré dans toute la partie ADM,

ee-qui ne troublera pas I'état d’équilibre ;. le moment de la force H par rap-
port au point M, sera PE X H, et ce moment devra faire équilibre &

. E
cefui — de l'élasticité de la section droite au point M ; nous aurons done

mxﬂm% w@
Mais PD =DE—DP=1l—c¢c—x;en substnuant cette valeur tfe
PE, et celle (a) de H dans Péquation- (c), il nous viendra

Uﬂﬂu n—%xw.

Pour- avair l’tminnnée PM =y, nous: observerﬁns que la. tengente DT,
menée au point D d’application du poids 2P n’étant pas horizontale, en la-
pmlongeant elle coupera 'ordonnée PM en un point m; et les élémens de-
la courbe comprise entre le- point D et le point M étant prolongés , ne ren-
contreront “cette ordonnée PM qu'au-dessus dm pont m ; de sorte quela

a sommie des ¢élémiens de 1a forme d == 2= ne sera plus égale PM,‘.»mais

seulement & mM : & cette somme il fiudra donc ajouter P paur avoir I’or
donnée PM. Or, le tnangle rectangle DPm donne

1 . DP :: tang, mDP “Pmyou 1 5 xll tang. u o Pm=x tang. n.. ().

Cela posé , pour avoir Vordonnée PM , nous ‘mettrons la valeur de ;
tirée de I'équation (d) (aprés y aveir-mis.x' 4 la place de' x) dans lexpres-
sion a:_—r_.e.' d’un élément de mM, ce qui nous donnera

d_ﬂ%ﬁu

c—.:\':') (w—x)

Comme tous les élémens du segment. Mm de Tordonnée” p seront’ de cette
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forme , mais que @' sera successivement remplacé par &', x”, etc.; leur
somme , ou mM sera

Mm = P“ETBJ { (l—ec—x') (x—2") + (Il—c—2a") (x=2")
+ (I—c—2") (& =2 ). |

et si nous ajoutons cette derniére, membre 4 membre a Péquation (g), il

nous viendra

y=x ngon 4§ ((—c—a') (x —a') + (l—c — o) (& — o)

+ (= c—a") (@— &%) }

En considérant les @', &, &, etc., comme d’habitude, il viendra
y== tang n -4 wﬂ) { (Z c—1) (—1) + (l—c—2) (z—2)
4 (—e—3) (@ it (T —c—n) (n—n) } ().

En développant chaque terme de la parenthése , nous aurons
(l—c—1) (x—'x):lx—-cx-—x—l-—};c+ I
l=c—n(@—a)=lz—cx—2v—2l+a+4
(l—c—3) (x—3)=Ilr—co—3x—3l+8c+9

(.’,——cé—n) (2 —n) = fx-;cx:-—lsx—n£+nc+nﬂ,

et en faisant la somme de ces équations membre - membre , commeil y en a

autant que d'unités dans n, en nommant M 1a somme des premlers memhres ,

il nous viendra

M= nlax — ncx — (1 +2 +3+4....:|—n)—-—l(1 +a+3.... + r) 4+

c(14a43i4n) + 144+ 9. nt *

La limite de cetie somme (note page 50) sera

nlx n?  n% nd
M = nlx — nca - el e ok
faisons n =— x , nous aurons D ' L
a® 22 ca? o
2_ 2 o — — —_
M=l == taty
ce qui se.réduit & M= a7
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si donc nous mettons cette valeur de M i la place de la grande parerithése
dans'la valeur (f) de ¥, nous aurons.

[ — 2
y = xlang. n + _(E;l-‘-') { < ° x —% }....... (g).

pour la partie DB de la courbe '(‘)

Soit M’ un point quelconque de Ja branche DA de la courbe ACB ; nbni—
mons x Pabscisse DP'; nous aurons

FP’ ._.DF—-DP' --i-i-c—x (h),
or, si nous supposons le solide encastré depms le point B jusqu’au point M’, le
moment de la force K., par rapport au point M/ sera K )< FP¢5 ou en mattant

pour K et pour FP' leurs valeurs (6) et (h) M'(l + ¢ —x),

et comme ce moment doit faire éqmllbre a eeim S de P'élasticité qui se dé-
veloppe dans la ‘section droite.en M’ , il nous viendra
P I— 2

(l4c— )= % (i)

La somme des élémens de Ia forme =—= ;' sora m'M!, ‘de sorte que
pour avoir Fordonnée P'M' = y de m'ﬂ', il faudra retrancher P'm’. Or,

y! Divisons les deux termes de l*é:jua;tion (d) par E, et mottons-y la valear gémérale de r,
dans 'hypothése od g = o0, il nous viepdra

7
Intégrant une premiére fois, nous aurons

{I+c}[!—c—:r1 &y
: =@
. .-.'%.-(I'I'c)- (h.—cr-':-:) + tang. n ﬂ.%l-'

et en intégrant encore une fois

h-'c.t‘a-‘

m”"‘ )( ————— )-I-rhns neay,
ou y=x m"“"'m(‘*c){u:‘”"k

comme dans le ogrps de l’omm
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T . ' o, R . :
si de I’équation (i) on tire la valeur < aprés y avoir mis x' au.lieu de x,

pour la mettre dans la valeur de d, nous aurons

d =200 (1 o—x) (v — =),

et par conséquent

n'M = P ('[

{(i +c—2a') (x=—2') + (ll+:'c:--x”) (:x-—x")

b G (e o

ou en faisant dans la grande parenthése les mémes observations et les mémes
calculs qu'a l'ordinaire’ :

' =P”m_ 2 | .‘f‘-’ xf""-'— 5]

6
Quant & m'P’, on trouvera ;. par le triangle rectangle DP'm’;
) m'P = x tang‘r_z;
et par conséquent - - Vo

y = o g+ B0 5‘ £ F e

séra Déquation’ de la eoirbe DM'A.

734. Si dans I’équation (gj nous fai.sons x=1—c, cest-a-dire = BE,
il nous viendia -

y=BE =f= (L~ c) tang. n+ - “+'-73.{<‘,;®5 — ey

P(I+c)(£ )

ou f= ({—¢) tang. n + NOR

et si dans l’équation (k) nous faisons r=1 + ¢, Cest-d-dire, * = AF,

il en résultera

y=FA=BE= f=— (I c) taug wep: 5= ELINCL,

o f=— (o) gt T (1 P (),

si nous a]outons les deux équations (I), ( mj apres les avoir multipliées , |
pnemlere par 1 -+- Cy e.tlﬂ".secondq, par '—.c, il pous viendra

P O T
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o f=gn {(1.4— ¢ (L—c) + (L—e) (z+c)3}

P(B— 22
PO AE . (309).

735. Pour avoir la valeur de tang. n, on retranchera 1'équation () de
I'équalion (m), ce qui donnera

ou ‘ f:

0 = — 2l tang. n -+ EIIP;T: { (I—e) (I+c)P —(I4¢) (1—0)3}

d’olx tang. n = %ﬁ (400).

Enfin, subslituons cette valeur de tang. n dans chacune des équations
(9) et (k), et il viendra

__aPex (B — Y P[!—f—c){t—-c I a1 -
+ NSRRI —_ - X ;
IE 6

= AE x*

2

et y =

aPex (B—c¥) = P(l—c¢) (l4 1
3E T TR {_ac"z‘“‘é‘”“(

y:P(l+c] {ac(.’..-—n)x ¢

| —
ou “IE T x5

w— i } (4o1),

[4¢
2

ot y = P(l—c¢) { . 20'(!3-{-0’] y

E +

X2 — % x3 } (402),
pour les équations respectives des branches de courbes DB, DA.

736. Cherchons maintenant Uexpression de la 'tangenre trigonoméirique de

Vangle formé, avec Uaxe EF des abscisses, par la tangente M'T (fig. 153)
@ la courbe DA, menée par un point quelconque M'.

Pour cela, soit la sécante M'S, qui coupe la courbe DA aux deux points
M’ , m, dont les coordonnées sont respectivement z, y et z', y'.

Si par le point m on mene la droite mn paralltle 3 GF, le triangle
nmM' donnera

1 otang.m imn jnM', ou 1 Jtang. m e —2' [ y—y',
d’otr (2 —2') tang. miymy’...... (a).

Les coordonnées des points M, m devront satisfaire & 1'équation (402) de
la courbe DA, de sorte que nous aurons

P(l—
y = —(‘Eﬂ{—ﬂc(;{_c)xﬁ-!tcm‘méﬂ}
38
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et y’:.ﬂ%ﬂ{—iﬁ%ﬂlﬂx’+%ﬁx’z#éx!3}.
Retranchons ces deux équations membre & membre, et il nous viendra

oy =RUZA 2 U (o gy g I (=) —

I — »'3y ¢

5 (P—x) ¢

ou en mettant pour y —y' sa valeur (a) |

— l
(x —x') tang. m“P(iE c){—»““;c) (#—2')+— +c(x x')—
3 (23— x'3) }
Cette derniére étant divisible par = — ', il en résultera

tang. m = 20—=5) { — ac(i:j_c) -+ H;c (z + ') —

k.
6.(.r2+.r.r +x’5)} ...... ®).

Si maintenant nous supposons que la sécante M'S tourne autour du point
M', pour venir coincider avec la tangente M'T, le point m s’approchera de
plus en plus du point M’, de manidre que ce point m coincidera avec le point
M’ aussitét que la sécante M’S coincidera avec la tangente M'T; mais dans
ce cas on aura x = x', et 'équation (b) se réduira a

P(l—ec) ( 2c(l4e)
= {_.. ;

tang. m. = E

+(Uho)a —La o (f03),
et sera l'expression demandée.

- 737. Cherchons - la valeur de x, pour le cas ol fang. m =0, ou, ce qui
revient au méme, la valeur de Uabscisse x du point de la courbe DA , pour
que la tangente & cette courbe soit horizontale.

Pour cela, il suffira d’égaler i o la parenthése du second membre de I’é-
quation (403), ce qui donnera

x*—2 (I4¢c) x—}-—'ic (£+°) =

dotr x=z+c_|/(ﬁ"”ﬁ“”....... (f04).

- Nous ne donnons que le signe — au radical , parce que le signe -+ don-
nerait une valeur pour x qui dépasserait DF.
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738. Cette valeur de-x répondra au point le plus bas de la courbe ACDB

(fig. 153); de sorte qu'en la mettant alaplace de x dans L'équation (4o2)
nous aurons

f=£'(—lﬁ'_'f'") i_,ac (Ia-l—c) (l+c_‘/[1+c]3(3£—c})

z__-_?_( ‘/(H—c)(az—c) (i+c ‘/(m—‘c)) }

Développant les termes de la grande parenthése, et redmsant, il nous
viendra

P(l—¢ . — 3 —c)!
y=- (iE )%_‘(g F)S(H-c)’+(i+c)é3l c)_‘/(t+c)3( 'ﬂ)g(405)-

Telle sera V'expression de 'ordonnée du point le plus bas de la courbe ADBC
( fig. 153).

739. En ajoutant cette ordonnée, prise avec le signe -+, & la valeur (399)
de f=BE, nous aurons la plus grande fléche de courbure, qui sera

=" gm0 (o),

et qui se réduit & celle du n° 727, en faisant ¢ =0, Clest-a-dire, en sup-
posant le poids 2P suspendu au milieu de lintervalle des appuis , comme
cela doit étre. -

740. Si nous mettons x < ¢ au lieu de x dans P'équation (fo1), elle
se changera en celle-ci :

P(l+ ¢ ac(l
b

y= (x +¢) + E._E..ﬁ (e+¢)* + (ﬁ;—f }--*(407)'

et si nous substituons @ — ¢ a la place de x dans I'équation (4o02), elle
viendra

_P(l—;- ¢) 2¢ (L= ¢) (& —¢) (l=c) (2 —cP  (x— c)’
B e e e 52} 4o8),

Ces équations seront celles des courbes DB, DA (fig. 153), lorigine des
coordonnées étant le milieu G de I'intervalle dés appuis.

744 Nous avonstrouvé (n° 734) que f =BE¢PP= Iﬁ%ﬂx; or PM=—=
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. Pp—pM ou y = —(—Eﬂ — y'; si donc nous substituons cette valeur de
y dans les équations (4e7), (408), elles deviendront

PR / P(l-l—c) ac(l—¢) (x4c) (I =) (P
. "‘?EFE:E =7 El { 3 + 2
_ (eAcp
6

o P(B— . P(l—o¢ c(l 4o [ 4 .
“"""(3E1M 5= (EIC)%ﬂ2(3+)( —¢) ¥ S (@0

(2 —c)
“_a':ﬁ(!}

c’est-a-dire, .
P(l+ ¢ {(14-3) (l—ef 2= (@+e (—0(xz+f
El 3 - 3

Lp——

2

+(m-46-c)5} ----- (409) 5
ot ' y = P(:E.;.c) {(s—g)gu-c)! + ac(t-;-e% @—¢ (49 i.-,c—i)*

o L.?_%_c_)” }. (410).

L’équation (409) sera celle de la branche DB, et Iéquation (410) celle de
Pautre branche DA, 'origine des coordonnées étant au point I, sur le mi-

lieu de la droite AB, qui passe par les points d’appui A et B.

742, Ces deux équations nous montrent que dans ce cas, comme dans tous
ceux qui précédent, les ordonnées sont proportionnelles au poids P, puisque
ce poids est facteur dans leurs seconds membres.

743. Reprenons I'équation (397) du cas de la’ charge uniforme qui est

C /B2 xt
r=m0(5=5)w— @,

-

et rappelons-nous que la fliche de courbure (n’ 7::8) est (396)

5CP
f _ ;/i_E‘ hassann (b}.

L’équation (@) suppose l'origine des coordonnées au point de contact C de
la tangente horizontale DE (fig. 152); transportons cette origine au point
D, milieu de Phorizontale AB , qui joint les points d’appui.
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5CP

Pour cela, on observera ‘que PM = Pp — pM, ou y = TR~ ¥ ;

en substituant dans 'équation (a), il nous viendra

§(_3_15 , G (ﬂm‘* at
24E Y =am\3 — Fx) ’
d’oit nous tirerons
C (58 Bx? ot
o= —_— e — [
y e QEE 2 P + 13 }u-un-o (c).

744. Si nous ajoutons 'équation (c) & chacune des équations (4o9), (410),
en nommant y les sommes des premiers membres, nous aurons

__P{—¢) § (o) (=P  3e(b—c)(@te)  (I—¢) {@-Hcf, | (wc)
y=2ig2 (BT i [y, &)

C (61 B o
+ = {E —_ —i + i—t; } (411),
P(+ L -6 [ l+¢) (z—c (
et y= (Etc) {(“—0)3(4“") +2C(+€j(¢"¢}_(+)§w )’+ 3:633}
C |54 P "
+ 2TE { I—;‘*""‘;- + TS }u‘ ¢¢¢¢¢¢¢ {4]2).

La premiére de ces deux équations sera celle de la branche DB (fig. 153),
et la seconde celle de la branche DA de la courbe ADB que prendrait la lame
neutre d’un prisme chargé uniformément dans tout Pintervalle des appuis
et d'un poids 2P suspendu en un point quelconque D entre ces appuis.

745. Pour avoir la plus grande fléche de courbures de ce prisme, il fau-
drait déterminer la tangente trigonométrique de l'angle formé par la tangente
4 la courbe (en un point quelconque de la branche DA) avec I’horizontale AB,
qu'on trouverait élre (n° 736)

tang; B o= P(;c) {M(f:_c) — (I+c) (x—¢) + (fﬂ—:c?}
2®
J ] = v+ } (413).

On égalerait ensuite le second membre de cette équation & zéro, ce qui
donnerait une équation du troisitme degré, qui, étant résolue, ferait con-
naitre la valeur de x qui répond 4 la plus grande ordonnée de la courbe, c’est-
a-dire, & la plus grande fliche de courbure : en mettant donc cette valeur de
@ dans l'équation (412), elle donnerait la valeur de y qui est -cette plus
grande fleche. Pour éviter ln longueur des calculs, nous nous contenterons
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de déterminer la fleche de courbure qui a lien an milieu de Vintervalle des
appuis , et d’autant plus volontiers, qu'elle ne peut différer que trés-peu de la
plus grande, la courbure du prisme étant toujours supposée trés-petite.

746. Pour avoir cette fleche de courbure, il suffira de faire o = o dans
Péquation (412), ce qui donnera

. P(!—-c) (=) (I4+c? 2l ¢) A(4e) & 5CP
f= { 3 T3 T T2 6_} +oE

P 5CP
=220 (s 00) + B0

Telle sera la fliche de courbure au milieu de Vintervalle des appuis dans
le cas d’une charge uniforme et d’un poids suspendu en un point quelconque
entre les appuis.

LEGON IX.

De la courbe que prend un prisme posé horizontalement et librement sur deux appuis , et chargé
de diyerses maniéres entre les appuis.

747, Supposons d’abord qu’il sagisse de la courbe que prend un prisme
chargé de poids dont la somme est représentée par le triangle AEB (fig. 154),
dont la base est la lonquewr AB, comprise entre les points d’appuis , et dont la
perpendiculaive ED abaissée par le sommet E sur la base AB, divise cette
base en deux parties égales.

Il faut d’abord observer que la charge du prisme, représentée par le
triangle ABE, dés que le prisme a pris la flexion qui lui convient , est repré-
sentée par la figure curviligne ACBF. Mais les élémens verticaux des deux figures
restent les mémes ainsi que leurs aires et les distances de ces élémens par
rapport au milien D de la distance entre les appuis. D'oir il suit que nous
pourrons _calculer les charges des diverses parties de la piece , _d’apres le
triangle ABE.

Cela posé, nommons :

2Q la charge totalc ABE ;

! la moitié DB ou DA de la distance entre les appuis ;
et @ et ¥ les coordonnés CP PM d’un point quelconque M.

D'apres cela, chacun des triangles ADE, DBE sera représenté par Q ; la
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charge de la partie ACM de la Jame neutre sera représentée par la ﬁguré- AoNE,
et celle de 'autre partie MB sera le triangle oNB. '
Le triangle BoN étant semblable & BDE , on aura

(DB): ¢ (oBY % BDE * oBN,
on pl(l—ay il QraN= LU= ).

On aura le trapéze

DoNE = Q — QU= 2l QGak=0h) |

Les charges (), (b) et - Q font baisser le point M, en le faisant tourner, la
premiere autour du point B, et la seconde autour du point A, Mais ces
charges, pour faire baisser le point M, agissent & leur centre de gravité.

Le centre de gravité de la premitre (a) est 2 une distance, du point

l— s
B, = ig—m)-, son moment par rapport au point B sera donc

QQ(;—T;—?—)—S (e).

Appelons R un certain poids suspendu au point M ; le moment de ce poids par
rapport an point B sera R (l—=x);

égalons ce moment & celui (c) de la charge comprise entre les points M
et B, nous aurons

R (1—x) =2 U=2),

divisons de part et d'autre par { — , il viendra

R‘ 2 (;—m_)ﬂ........ (d)

pour la valeur d’un poids suspendu au point M, qui produirait sur ce point
M le méme abaissement que la charge (a) répartie sur la longueur MB du
prisme. ' ' '

Le moment par rapport au point A dela charge de la partie AM du prisme,
sera la somme des momens de la charge représentée par le triangle ADE, et de
celle représentée par le trapéze DoNE. Or le moment de la charge représentée

par le triangle ADE, sera
! l .
Q >< %"‘ = '2_39"'uunnu (6).

Quant i celui’du trapéze DoNE, on observera dabord que la superficie du
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triangl'e DBE = >< DE = Q, d’l DE = Q_, et que les triangles sem-
blables DBE , oBN donnent

DB ; Bo ; DE ; oN,

ou 11— Q'N_WEQ—Q:i.,.(f).

Ensuite la distance du centre de gravité du trapeze DoNE par rapport 2
la droite DE , est (n° 111)

20N 4 DE

? XN T DE’
el en substituant pour Do sa valeur x, pour DE sa- valeur i:_@ ; et pour
oN sa valeur fg(—:g:f—), il viendra

4Q(i—w)+£

< [} I 3l — 2a? (9’)
o ‘_ 2 L 6‘_3;8 LT ENR I .
T

wi g

La distance du méme centre de gravité par rapport au point A sera donc

égale & Pexpression (g), plus li distance AD =1; ainsi en appelant ¢
cette distance , on aura

_ 3l — 22 2 (3R —2?)
R =Tk o )

Le moment de la charge représentée par le trapéze DoNE , pris par rapport

au point A, sera donc égal au produit de (b) (M, par la distance

g du centre de gravité du trapéze au point A ; de sorte que ce moment sera

Q (alz — a2) 2 BB —a? _ 2Qx (38 — a;“}
A X 3 A= — A R O

La somme des momens (¢) et (i) sera celuide la charge tolale com-
prise entre les points A et M, par rapport au point A, et sera égale a
2Q! 2Qx (32 —a?) _ 2Q- (P 3Pz —a)
R LT e ®)-
Nommons R’ un poids suspendu au point M ; le moment de ce poids, par
rapport au point A , sera R’ (I 4+ x); si donc nous égalons ce moment a
celui (k), nous aurons

R (14 2) = 22 (F+3£?;Fm—m“)
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R — 2Q (P30 —ad)
=T 3 Eixa

d'ou

Nous avons trouvé (éq. (d)) R = ,"Q._(;;_“’E;

si donc nous ajoutons ces deux expressions , nous aurons

2Q (P4 3o —a) _ aQaP halo—a)

32 (14 2) A+
pour celle d'un poids qui, suspendu au point M, produirait, sur ce point M,
le méme effet que la charge totale du prisme. -

Actuellement , supposons qu'au lieu des points d’appui la charge du point M
soit soutenue par deux forces verticales dirigées de bas en haut, 'une ap-
pliquée au point A , et l'autre au point B. Dans l'état d’équilibre, la somme
de ces deux forces sera égale a la charge (I) du point M, et les momens de ces
deux forces par rapport au point M seront égaux.

Appelons P la force appliquée au point A, et P’ celle appliquée au point B ;
les bras de levier de ces forces, par rapport au point M, étant respectivement
{4+ xet l—x,onaura

P(l+x)=P (I—ux),

R4+ R = 2Q (;;x)n -+

d’olr P:Pll—2, l4ux,

ce qui donne P+P P 21 4 a

Mais P4+P =R 4+ R =22 (;:’{'-it-ft)—m“);
done 2Q (gf(j‘;f:)““‘“} TPt al il
d’ou P = S _‘;;fm_'ta)....... (m).

Le moment de ce point P’ par rapport au pbinl: M sera donc
Pl —x)= % (2t + alx — z*) (Il — =),

ce moment doit faire équilibre a celui % de Délasticité qui se développe dans
la section droite du prisme au point M; on aura donc

L=l ele — o) (— ) = & (28 — 3l 4 ) e ()
Les élémens de Tordonnée y seront encore ici de la forme

T —a
)

d =

T

39
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et en tirant la valeur de ;' de P'équation (n), aprés y avoir mis z' au lieu
de x, qui sera _
= 3—%: (28 — 3lx'2 + z2'3)...... (0)
pour la mettre dans la valeur de d, il viendra

d= 3FE (28 — 3lz'2 + 2'3) (x — ')

Comme les autres élémens de y seraient de la méme forme , en substituant
x", x",etc. , dans celle-ci , au lieu de =',la somme de tous ces élémens sera

e

3 | OF — 3t £ 2% (z—a') + (P — 3"t + =)
(== ).}

En faisant sur les abscisses x’, =", etc., les mémes observations que d’ha-
bitude , il viendra

3—%:2 (af =3+ 1)(x—1) + @B — 12l + 8 (x—12) .0
+ (al® — 3ln2 + n) (z — n) }.....(p);
en développant dans la grande parenthese, on aura successivement

(@B —3l41) (x—1)= 2Pz — 3lx + 2 — 2} + 31 — 1
(al} — 121 +8) (& —2) = al’w — 12l + 8z — 413 4 241 — 16

J‘:

I

¥

(203 o= 3ln® + 0¥) (2 ~— n) = 2Bz — 3lan® 4 nPx — anl® 4~ 303l — ni.
1l y aura autant de ces équations que d’unités dans »; en en faisant la somme
membre 3 membre, il en résultera

M = onlPx — 3lx (1 + foee. + 12) 4 2 (14 8...4-n3) — n£3(| 4 2... +n)
+ 31 (148... 403 — (1 + 16... +nr4);

en passant aux limites de ces derniéres parentheses

M= 2nl’x — I.rn3+— —_ 13 2 4 .3:21 — %5;
en faisant n = =z,
M:-alaa:*—l.r4+ais_glx=+§@_f
4 4 5
- Izt 2
i T —_— J3apr o il
eri réduisant M = B2 . z + =
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et en substituant dans l'expression de ¥y ilen résultera -

= 3% (53.';:3 — ‘%‘ -+ :—;).....(415}:

telle sera Péquation demandée ™

748. Pour avoir la fleche de courbure au milieu de la piece, il suffira de
faire = = I dans cette derniéré équation , ce qui donnera

5o P
f“ng(la 4"'5);% """ (416).

749. Pour avoir lexpression. de la tangente trigonométrique de l'angle
formé, avec ’horizon, par la tangente 4 la courbe menée en un point M quel-
conque de cette courbe , on s’y prendra de la méme maniére qu’au n® 736 et

on aura tang. m — 5.—%5 (233;: — L3 4 %‘): (417)-

750. Quant & Pexpression de la méme tangente , lorsque le point de con-
tact est aux points dappm, on l'obtiendra en faisant 2z — I dans 1’équation
précédente (417) , ce qui donnera , toute réduction faile ,

tang, m = ;f%unn (418)

751, Supposons qu'il s'agisse de la oaurbg que prend un prisme posé horizon-
talement et librement sur deux appuis, et chargé de poids dont la somme est
représentée par les triangles rectangles égauz ADF , DBE (fig. 155), dont les
sommets D sont au miliew de la distance entre les appuis A et B.

Nommons ;Q chaque triangle ADF , DBE ,

! la moitié AD ou DB de la distance entre les appuis,

{*) §i dans V'équation '(0) nous mettons %_au lien de ;-, il nous viendra

dz?
d'olr %::—% (al‘x-—l;r’_-l- %)
et - .?’—Q(F‘-s“—"i‘g)_'

équation pareille & celle da corps de louvrage;
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x et y les coordonnées CP, PM d’un point quelconque de la courbe ACB ,
V'origine des coordonnées étant en C , milieu de lhorizontal GH , tangente
a la courbe.

Cela posé , la charge de la partie AM du prisme sera représentée par la
somme des triangles ADF, DNO, et celle de la partie MB par le trapéze
NBEO.

Observons que ce trapeze NOEB est la différence entre les triangles sem-
blables DBE , DNO; la proportion

(DBY $ (DN):%°Q : DNO ou I a2 3% Q : DNO,

donnera DNO = %’f,
et on aura par conséquent
] —
NBEO = Q — & =2C =D (),

pour la charge de la partie MB du prisme.
La charge de la partie AM sera

ADF + DNO = @ + &' =2CED )

La premiére charge fait baisser le point M autour du point B, et la
seconde autour du point A.
Le centre de gravité de la charge NBEO sera a une distance du point B

, NB aNO BE
egale a -§- Xﬁaﬁ".".f. . (c)-

Or, la superficie du triangle

DBE = 0 x BE = + x BE = Q; diou BE = 22,

@ DB : DN :: BE : NO,
ou isxts 2 No =%,
et NB=1— a.

En substituant dans Dexpression (c), il viendra
l—a < £Qx + aQl _ (I — ) (2& ~+ Iy
3 2Qz + 2Ql — T 3 (z41)
multiplions cette distance ou bras de levier par la charge () de la partie MB,
il nous viendra pour le moment de cette charge, par rapport au point B,

: orr _Q@—a") _(—a) ezt __Q(—=z) (224D 5
mom. NBEO = A X = T male T w(d
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Silon appelle Run poids suspendu au point M, son moment par rapport

au point B sera R (I —a=);

et si L'on égale ce moment 2 celui (d) de la charge NBEO, on aura

l—x) (2
R=20=0 0ot @

ce qui donnera

pour la grandeur d'un poids qui, suspendu au point M, produirait sur ce point
M le méme effet que la charge NBEO. -
Le moment par rapport au point A de la charge représentée par le triangle

ADF est ‘%XQ=5§,

celui de la charge représentée par le triangle DNO par rapport au méme
point A sera

Qa2 2DNy  _ Qa? 2
F X (A + =) = S+ %)
La somme de ces deux derniers momens sera donc
I ]
mom. ANODF = 2 4 2 (1+%)= 3 (B + 3122 + 20)... ()

Si nous appelons R’ un poids suspendu au point M, son moment par rap-
port au point A sera R’ (! 4 x); et si nous égalons ce moment  celui (f)
ci-dessus , il nous viendra

R+ @) = o (F3la+ 22%)

dow . R = ‘?Tf*"(t%'&') (P + 812 + 22)..0. ()

pour le poids R’ qui, suspendu au point M, produirait sur le point A le méme
effet que la charge représentée par la-somme des triangles ADF, DNO.

Nous pourrons donc regarder ce point M comme chargé de la somme des
poids R 4+ R’, qui sera, d'aprés les équations (e) et (g).

3P

_Q (P4 ls + o)

=T 3 (+a e ()

~Si maintenant au lieu des point;.; d’appui nous substituons deux forces

L p o QU—2) a- Q 2
R+ R = +3ﬁ(£+$)(£3+3lx —[—-2.1’3)
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verticales, I'une appliquée au point A et 'autre au point B, et agissant de bas
en haut ; dans I'état d’équilibre , la somme de ces deux forces sera égale 4 la
2Q (B 4 Ip + o)

3 (T )
verticales seront égaux ; si donc P est la force appliquée au point A, et
P’ celle appliquée au point B, on aura

| PU+ax) =P (I—x),
Lot PIPi(l—2): 4+ 2,

charge

du point M, et les momens de ces mémes forces

ce qui donne P4 P P lal: (42,

Mais P+P*:”Q(;E‘;f;}"wg’,

donc *Q(;:Effﬁ;‘”e);w;:nz:(z-;-x),
d'out p=QC +3;n + xi) (). i

Le moment de cette force P’ par rapport au point M, sera

P ) = @ (zi+:m_;_;a) (=2 _ Q (t;;m’)’

mais ce moment doit faire équi]ibre a celui %‘ de Délasticité qui se dévelﬂppe
dans la section droite du solide au point M ; on aura donc

E_ Q(P—a)
S =T )

Quant aux élemens de l'ordonnée y , ils seront toujours de la forme

x—a

d =—,

et en tirant la valeur de i » de Iéquation (%), aprés y avoir changé x en x'

pour la substituer dans I'équation ci-dessus, il viendra

d = g (B — 2% ( — a').

Les autres élémens de y seront de la méme forme , et ne différeront qu’en ce

quau lien de x’ il faudra mettre successivement z”, x, etc. Par consé-
quent, leur somme ou la valeur dé y sera de la forme

1= el B =) (=) + B =) (=) |
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etc. , les mémes observations que d’habitude ,

. (B—=nd) (x fn) }

et en faisant sur les x, 2", x7,
r == B =)+ (P —8) (x —2)

En développant les parentheses comme précédemment , et en prenant les
limites de celles qui résulteront de ces développemens, apres la substitution faite

dans Pexpression de y ci-dessus, il viendra

ro s (= Do 0

pour Léquation demandée (*).
752. On aura la fleche de courbure , en faisant £ ==/, dans cette équa-

tion , ce qui donnera

f=2....... (420)

753. Quant & l'expression de la tangente trigonométrique de I'angle de la
tangente & la courbe par rapport & I'horizon , pour un point quelconque de
la courbe , elle s'obtiendra de méme que précédemment > et sera

tang. SSE (33.1: - _,), o (421).

454, Enfin, la tangente aux extrémités de la piece, sera

tang. m — %ﬁ” (422).

755. Supposons qu'on demande la courbe que prend un prisme chargé de poids
dont la somme est représentée par la figure ABDEF (fig. 156), symétrique par
mpport 4 la verticale El élevée sur le miliew 1 de la dcsmnce AB entre les

appms

(*) L'équation (K) deviendra

& _ Q5
23 = 3m (P %)
en y mettant pour ; sa valeur %—
' dy Q o
d'olt ﬁ A (1'5.:: 4)
Q Bz 2_5
et y = —ﬁ—v (-..-’— b
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Dans ce cas, on peut supposer la charge composée de deux autres, dont
une uniforme représentée par le rectangle ABDF , et Tautre par le triangle

FDE. Par conséquent, le moment par rapport au point M, de la force ver-
ticale appliquée au point B qui agit de bas en haut , et qui doit faire équi-

libre au moment ;—E de D'élasticité de la section droite du solide au point M,

sera évidemment égal a4 la somme des momens analogues pour le cas o le
prisme est chargé uniformément, et pour celui ot le solide ne serait chargé que
de la somme des poids représentés par le triangle FDE; mais nous avons trouvé
| C (P —a%)

2l

au n° 731 que le premier de ces momens était , et le second a été

trouvé au n° 747 (éq. (r)) égal a
% (283 — 3lx* 4 2%,
nous aurons donc

E_ Gl | & b Blwt 29).. ().

r 2l

Quant 4 l'expression des élémens de T'ordonnée y , elle sera encore

'
x — @
d =

_—_
et par conséquent

CP—ao% (z—x

d = 2lF,

) 422 (ol —3lx 4 &) (2 — ") (D)
3PE oA

Or, cette valeur de d est la somme des expressions trouvées aux n® 731 et
747 5 donc, les ordonnées de la courbe dans le cas actuel est la somme de
celles des courbes des mémes numéros. Ainsi I'équation demandée sera

=2 (%2 4.2 (v —"%{-—l— 2o (423).

2 1z,

755, La fleche de courbe sobtiendra en faisant x — I dans cette derniére
équation, ou sera la somme de celles des n® 728et 748, clest-a-dire que

=5 B .. (f24).

756. L'expression de la tangente trigonométrique de l'angle formé, avec
I’horizon , par la tangente i la courbe, pour un point de contact quelconque,
s'obtiendra comme A I'ordinaire d’apres I'équation (423) , et sera

.lang. m= f@ (I’x — %s) + d»% (333:; — 23 4 %4) ..... (425).
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757. Pour la méme tangente lorsque le point de contact et aux points
d’appui , on aura

758. Demandons-nous la courbe que prend un prismechargé, dans toute la
distance entre les appuis , de poids dont la somme est représentée par la
figure ABDEF (fig, 157) , symétrique par rapport & la verticale-1E menée par
le miliew 1 de la distance entre les appuis.

Dans ce cas, la charge de la pitce peut étre décomposée en deux parties ; I'une
uniforme , représentée par le rectangle ABHG , et Iautre par les deux trian-
gles GEF, EHD. D'apres cette observalion, et ce qui a été dit au n® 754,
Pexpression de y sera la somme de celles des ordonnées pour les cas des
n°® 729 et 751 ; ainsi nous aurons

T

pour Iéquation demandée,dans laquelle C sera la demi-somme des poids uni-
formes représentée par le rectangle ABHG , et Q I'unc des charges repré-
sentées par les triangles égaux GEF, EHD.

759. La fleche de_murbure s'obtiendra en faisant = I dans I’équation
(427), et on aura

5CF , 3QP |
= g8+ Zop (:28)

760. L'expression de la tangente irigonométrique de I'angle formé par la
tangente & la courbe avec I’horizon, le point de gontact étant quelconque ,
s'obtiendra comme & l'ordinaire,, d’apres I'équation (427), et on aura

C 3 4
tang. m = & (l"x - %) + T%_i‘. (£3x -—-—%)....... (429).
761. Et lorsque le point de contact est aux points dappui,

4o
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LECON X.

Suite de la recherche de la courbe que prend un prisme posé horizontalement et librement sur deux
appuis , et chargé de diverses maniéres dans 'intervalle des appuis. |

762. Cherchons la courbe que prend un prisme chargé par des poids dont
la somme est représenice - par le triangle ABGC (fig. 158), dont la base AB

est Uintervalle des appuis.
Prenons pour I'axe des abscisses une horizontale DE qui coupe la courbe en

un point F, milicu de la distance DE des appuis ; prenons ce point F pour
P'origine des coordonnées , et nommons m l'angle EFG que fait avec I'heri-
zontale DE la tangente HG mende par le point F de la courbe. Enfin,
nommons Q la charge totale du prisme, ou ce qui est la méme chose , I'aire
du triangle ABC.

Cela posé, cherchons la charge de la partie AN du prisme, et celle de la
partic NB. La premitre sera représentée par le triangle ANO, et la seconde
par le trapeze NBCO.

Pour avoir le triangle ANO, on observera qu'il est semblable au triangle

totale ABC, ce qui donnera :
(AB) : (AN§ 13 Q : ANO,

ou Gt @t ap 1t Qo ANO = 200

Le moment de cette charge par rapport au point A sera

2 X
Q fi{j; ) 42 (lj— )_Q (L;ﬂm)a @.

Soit R un poids suspendu au point M; son moment par rapport au point A
sera R (! -+ ) ; égalons ce moment & celui () ci-dessus, il nous viendra

4z
R(l+ ) = Eef
et par conséquent R = 2%"—)3.. ().

Cest le poids qui, suspendu au point M produirait le méme cffct autour da
point A que la charge représentée par le triangle ANO ; ce poids produira donc
sur le point M le méme abaissemeat que cette charge ANO.
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Pour avoir le trﬁpez.e NBCO, on observera que ce trapeze est la différence
entre les triangles ABC et ANO ; mais le premier est représenté par Q, le

second a été trouvé égal a Q—-—-M donc

4B
NBCO = Q — Qf‘ﬂ; 2 o Q(M_f-ftg (=2.... ©
La distance du centre de gravité de ce lrapéze par rapport au point B, est
2NO + BC
X Fogwc @

Mais-le triangle ABC = 22 5¢BC = I 5XBC=Q; donc B =

-~

. (8).
Les tr{angles semblables ABC , ANO donnent
AB : AN ** BC : NO,

ou al P izt (% * NO :-Qﬁ;#)........ )

Si donc nous substituons dans l'expression (d) les expressions (¢) et (f),
et pour NB sa valeur I — x, mous aurons

RQ(i+w)+Q .
I-wwx L ael4a)(—ua
- 3 QU-+x Q™ T 3@ ta
N +£

Multiplions cette derniére expression par la charge (c) ci-dessus, et nous
aurons

QBIAD ¢ —a) ( 2(l+a) (I—a) _ Q (it a) (=2l (g)
2 ' 6+ 6
pour le moment de la charge de la partie MB, par rapport au point B.

Supposons le poids R’ suspendu au point M; le moment de ce poids par
rapport au point B sera R’ (I — x); égalons-le a celui (g) ci-dessus, il nous

o , | —ap
viendra R (5 x) = Q(2£+:3§( w): .
d’ﬁi.l Q (3!-[—&:) (l_ a’) vereanes (h’).

Ce poids R’ suspendu au point M, prodmrait..sur le point B le méme
effet que la charge représentée par le trapéze NBCO, ce poids R’ produira
done sur le point M le méme abaissement que la charge NBCO.
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Ajoutons les expressions (b) et (h), et nous aurons]

- QU+2P | Q@i+ (l—=
R+ RN ="g—+ 68

d’oil en développant ¢t réduisant,

B lx
R+ R = 9._@__.:"__2. (3;" ¥ (i),
pour le poids total qui produit I'abaissement du point M.
~ Si actuellement & la place des points d’appui nous substituons deux forces
verticales , agissant de bas en haut, 'une P appliquée au point A, et lautre
P’ appliquée au point B, dans ’état d’équilibre, la somme de ces deux forces
doit égaler la charge (t) du pomt M, et leurs momens dmvent étre égaux.

Ainsi nous aurons P (E +x) =P (l—2x),

d’od P:P iil—x’l+x,

ce qui donne PP P L al il A+ o
Mais PP =R+R=2C+D
done 'Q_GLT-F'L).PH' E:l.+x,
don pr— QB+ (2

128

Le moment de cetle force qui est

P’ G.’“ X) = Q@I+ (+2)(t—x) _Q@Bi+ax) B—

1 aﬂ 122

doit faire équilibre au moment ? de 1'élasticité de la section droite du prisme
au point M, il résultera donc que

E_ Q@Bl+2) (P—a)
— = s ()

La somme des élémens de la forme ——

U
sera égale , non 4 y = PM ou

= P'M', mais 3 QM pu Q'M’, ainsi pour aveir PM, de la somme de ces
élémens , il faudra retrancher QP , et pour avoir P'M’, il faudra ajouter Q'P'.
Hm le trumgle rectangle FPQ donne

1 tang EFG “e FP PQ,

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

TREORIE GENERALE DE LA RESISTANCE DES CORPS SOLIDES. 317
L] t L]

ou 1 5 tang.m o, x ) PQ = = lang. m....... (m);

ainsi, pour la partie FB de la courbe, de la somme des élémens de la forme
—a .
=2 il faudra retrancher x tang. m.

- - 1 * - -
De Téquation (I) tirons la valeur de —, aprés y avoir mis x' au lien de x,
|

- "
et substituons-la dans Pexpression d = r—z

, ce qui donnera

_ QO @)
12E

et par conséquent
y = — x tang. m+ {(3l+m’) (P x'%) (x—x') 4+ (3l 4 2")

=27 (@ — &) |
pour la branche FB de la courbe.

En faisant sur les abscisses x', =", etc. , les mémes observations que d’ha-
bitude , nous aurons

Y = —ux lang. m—F {(31—5— 1) (—1) (a:—:)—l—-(?.’-i—]—a) (—4)
(x-,-—a)....- (GLom) (=) (2 —n) |

En développant dans la grande parenthése et prenant les limites , comme
4 l'ordinaire , il viendra

y. =~ x tang.m -~ SFE (3n33x+—-;—l ——f'f._@gwf_;a
+T+)

et en faisant n=x, i

s e 2
£,

enfin en réduisant, on aura

_ 3M Br® it o5 _
J" = - X tang- . + 32PE ( 6 _— '-"' 'a_o")lllu-u (n)‘
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pour D'équation de la branche FB (*). Cette équation servira aussi pour I'autre
branche FA , en y mettant — & au lieu de +

Dans cette équation (n), faisons alternativement @ —1, et x = — I;

y deviendra I'abaissement IF du milieu F de la courbe AFB ; appelons et
abaissement f', et nous aurons, toutes réductions faites,

— 4:1QF
f =— ltang. 4+ TR
r o 34
et f = ! tang. m + g |
Si lon retranche la premitre, de ces deux dernitres équations, de la
seconde il viendra

= A
o = 2l tang. m 26oF ?

A
ot tang. m = ;S:E (431).

Substituons cette valeur dans l'équation (r), et nous aurons finalement

_ 7QPx Q p3FF | P bt x‘)
-r"-“jrnoE-l-wP‘E > T % 4 20/’

Q Uiz B2 Pat [zt
W y=nm = T T E =~ e
763. Pour avoir l'expression de la tangenle trigonométrique de I’angle formé,

avec I'axe des abscisses , par la tangenle menée par un point quelconque de la

courbe , on s’y prendra comme 4 l'ordinaire, en opérant sur 'équation (432),
et on aura

(i xt
tang n = kg (— B + x4 T — 19 — F)l (439)

{’l

I
dans I'équation (I) nous mettons ponr ~ sa valeur g nous’ aurons

_Q@l+a) 2 —r”}‘

B o R (5za+ar—3m 15):
, dr _ Q By
d'oll T ='I—a-ﬁ-E (3!51': + 3 b !!) tang. m,
PA B AT
et: mmc P TG T ae) TE e

equat:on eg:ﬂe i l’équatwn ().
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764. La tangente menée au point le plus abaissé serait horizontale , et dans
ce cas n ==0, et par conséquent tang. n==o; d’ott il suit que
xt

i Bo?
— L 4+ 3P + = — =T =o,

éqnation qui se réduit &

4
at 4= flad — 222 — 12880 4+ ?5 —0;

faisons dans cette équation @ = z — I, en subsiituant , développant et ré-

. - rtzi
duisant , il viendra 2t — 8122 + = o,

d’ou on tirera

7 — =+ ‘/4£3i V/Iﬁl4 — [—gt_’

x=1 ‘/4 3392 y
et en séparant les racines

= =+ I‘/zi - z,gazill/ﬁ,gz,

et = Il/:i--:sg:.__i 137, =
ou i263><1
et = =% 1,17 ><I.

Mais nous avons fait x = z — Z, nous aurons donc
) r=*a63%1—1,
et == 1,17 X I—1,

ou = 1,63 X1l et x=— 3,63 X1,
el x=o0,17 X [ et I:HIE;I?XL

De ces quatre valeurs de x, la troisitme seule convient ici : lés trois antres
dépassant les points d’appui. Ces quatre valeurs de x annoncent que si l'on
considérait la courbe indéfiniment prolongée , elle aurait en tout quatre
points pour lesquels la tangente serait horizontale, mais pour Lobjet que
nous nous proposons ici, il nous suffit de considérer le point dont ’abscisse
x =0,17 X, clest-d-dire, le point, entre les appuis, qui a subi le plus grand
abaissement. Comme la flexion est supposée trés-faible, pour rendreles ealeuls plus
simples, nous pourrons supposer x= 0,2 [, sans erreur sensible.
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765. Substituons cetle valeur de z dans I'équation (432) il nous viendra

. Q _ L4P 0,120 0,008 0,0010685 _ 0,0003205 )
y"—mﬂE% E....I_ 2 G . 4 20 \?

et apres avoir fait les réductions,
" 3
y = — % (0,016016) = — Qrf (0,001334)......(434).

Comme cetle valeur de y est négative, il sensuit que le point le plus abaissé
est au-dessous de l'axc horizontal DE des abscisses.

766. Pour avoir l'abaissement IF ou EB du milieu F , nous ferons x=1
dans I'équation [43‘.1), ce qui donnera

3k b B 5Qr QP
y = 12?QE ( + TR I ) ;oE'— (0,10416).=IF.

'767. Quant & Ja plus grande fleche , elle sera égale & la valeur de IF,
plus celle (434} de y prise d’une maniére absolue : on aura donc

f= (o 10416 4 0,001334) = -——- (0,105494) . (435)

768. Demandons-nous la courbe que prend un prisme chargé de. poids dont
la somme est représentée par le trapéze ABCD (fg. 159).

Ici la charge peut étre décomposée en deux partics ; I'une uniforme , repré-
sentée par le rectangle ABMD, et I'autre représentée par le triangle DEC. En
nommant ces charges respeclivement G et Q, et d’aprés les considéra-
tions dont nous avons accompagné les cas analogues & celui-ci, nous aurons:

1» L’équation de la courbe actuelle, en ajoutant les seconds membres de

celles des n® 729 et 562, cc qui nous donnera ,
___ C /> [x* E! L L{‘*ﬁ 3f 2 B3 lact :"_"i "
y= "!E(W—-i +12)+129E( 6o +—+?_T_20)--(43(’)x

2° L’expression de la fleche de courbure en ajoutant celles des n® 728
et 767, ce nous conduira &

=50 (105490 (437);

Et3° Llexpression de la tangente pour un point quelconque de contact , en
opérant comme & lordinaire sur I'équation (436), et on aura

T I Q it Py
tang. m = 5 (I-a.{-——g;) -+ BE (_t_":_o +383x + ?—3.135— %.{438}.
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LECON XI.

Suite de la recherche de la courbe que prend un prisme posé librement sur deux appuis de niveau,
et chargé d’une certaine maniére dans l'intervalle des appuis.

769. Proposons-nous de déterminer la courbe que prend un prisme chargé
uniformément dans une partie quelconque de la longueur entre les appuis.

Soit abhd (fig. 160), e rectangle donl; la superficie représente la charge
du prisme ; nommons

¢ la demi-distance KB des appuis,

¢ la distance Ke, du milieu K de D'intervalle des appuis , au milieu e, de
la charge abhd du prisme,

d la demi-longueur ae ou eb de la méme charge, et
G cette charge (otale.

Supposons que la lame neutre du prisme ait pris la courbe AIB; par le poin
H ot la verticale GH, abaissée du centre de gravité G du rectangle abhd, ren-
contre cetle courbe AIB, menons Ihorizontale DE et la tangente LF ; pre-
nons cette horizontale DE pour I'axe des abscisses, et le point H pour lori-
gine des coordonnées, <

Cela posé, il est évident 1° que a tangente LF menée au point H n’est pas
horizontale ; 2° que la courbe AIB se divisera en quatre branches différentes,
savoir : Hm, Hr, mB et nA; desorte que cetle courbe exigera quatre équa-
tions qu'il faut déterminer.

Cherchons d’abord celle de la branche Hm. .

Pour cela, déterminons les pressions des points d’appui A et B. Ces pres-
sions seront en raison inverse des distances Ae, B du centre de gravité de la
charge G; or, on a

Ae=AK +Ke=1!4c, et B=KB —Ke=1—c.
Si donc P et P’ sont les pressions respectives des points A et B, nous aurons
P.:Piil—ecil+tec,
dod PP (P2l l—cetP+4P P alll4e,

ce qui donnera

P=CUD g p = OO (a).
al '

al

4t
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Si au lieu de la charge uniforme G on avait seulement un poids suspendu
au pmnt H, en encastrant le solide depuis le point A jusquau point H, la
partie HB de la courbe aurait I'équation (g) dun®733; de sorte que, en observant

que le poids P de cette équation (g) est ici ig , nous aurions pour P'équa-

tion de la courbe HB,

St fataf —F o

-La charge répartie de H en m, qui égale g vient nécessairement modi-

fier cette courbe, et comme cette charge agit en sens contraire de la réaction
du point d’appui B, et que léquation (331) est celle d’'un prisme encastré
par un bout et charge uniformément dans toute sa longueur, de I’équation (b)
il fandra retrancher

! 22 o3 a:‘
(s — 7o

. . C /d%? dz® !
c’est-2-dire , m (-—-;- -5 -+ ”)

attendu que dans le cas actuel C' = ¢ et I' = d-; équation de Ia
2 v

b_ratiche Hm sera donc .
y_xtangm+c(£+c)g(£ c")— g} L
L— -'3- + E_ e e (c).

De cetle équation on passera a celle de la branche Hn , en y changeant les
signes de ¢ et de tang. m; de sorte qu’on aura pour celte branche Hx ,

_ C ¥t
da:’ xt
_.3--{-1—5} ....... ().

Si dans D’équation (¢) nous faisons @ =d , y deviendra Qm, et on aura

_ Clto | (—0d & C (@ &
Qn=dang.m+ S0 {505 — Gl — g G55

c(l+c) fo=oe_ 4’} — G @

a _ﬁ I_BTE'."

""dtmg m

Nommons n I'angle formé avee Phorizontale DE, par une tangente quel-
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conque a la branche de courbe Him ; on trouvera, en opérant, sur Péquation
(), comme a l'ordinaire , que

tang. n = tang. m -+ C(I-]—c) }(L c)m——l ~ Wk [d“x-—

dx 4 %’} ().

Pour savoir ce que devient cette tangente lorsque le pointde contact est en
m , il suffit de faire # =— d dans Péquation (f) ce qui donne

tang. n = tang.m 4 S {(z—c)d—'?}—%....... 9.

Occupons-nous , maintenant , de la courbe mB.

Observons d’abord que si la charge uniforme se réduisait en un poids égal
suspendu au point H, la branche mB passerait par le point H , et son équa-
tion serait celle (g) du n° 733, cest-a dire

¥y = @ tang. m + (2;][: 2 { (l—¢) z;s"%z}. (k).

Mais la charge uniforme répartie sur la longueur Hm , modifie nécessaire-
ment la courbe, et son équation (k).

Le moment de la réaction de 'appui B sur une section droite quelconque,
comprise entre le point m et 'appui B, sera cette réaction qui est 9%_—-‘:-),
multipliée par le bras du levier p'E =1 — ¢ — & ; c’est-a-dire que ce mo-
ment sera

C (I+ %) (t C - :r)..a...... (l')-

Quel que soit leffort qui modifie le moment (3), il est clair que cet effort
"inconnu doit renfermer le facteur d, puisqu’il doit disparaftre dans le cas o
d =0, Clest-a-dire , dans le cas ok la charge uniforme se réduit en un, poids
égal suspendu au point H; d’olt Pon voit que Vaction de cet effort sur le point
m', peut étre représenté par Md, M étant une quantité inconnue. Si main-
tenant nous observons que ce moment Md agit €n sens contraire du moment
(¥), nous aurons

Rl P 7}
T

Mettons ' au lien de x dans cette équation , et tirons-en la valeur
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&z —

de ; pour la mettre dans l'expression d = d'un élément quel-

conque de n'm’, et nous aurons

C(l+o¢

. 4 [ Md !
d= —E— l—c—2x") (w——x)-—-f (x—a').
Les dutres élémens de n'm’ seront de la méme forme , et leur somme sera
f ! G ! I [ "
n'm' = —-(;'i-:—"'-)- {{} —c—a')lz—a )+ (l—c—2") (x—x )]
Md ¥ :

La premiére partie de cette somme, jointe & & tang. m (n° 733), donnera
Péquation (), et la seconde partie sera ce qu’il faudra retrancher de cette
“équation (k) pour avoir celle de la courbe mB. Cette seconde partie de m'n’,
sobtiendra en faisant sur ', 2", 27, etc., l'observation ordinaire, ce qui
donnera

Md . Md n Mda?
i (x-—1+a:—n+x—3...+a:-—n):-ﬁ- (nx _ -;) ==

en faisant n =a. Introduisons donc cette expression avec le signe — dans
P’équation (k), et mous avrons
[ET) {(‘ m5} M

y =& tangc nm + alE _6 ﬁ"".unu.

pour l’équahon de la courbe mB.

Mais comme la branche mB, prolongée , ne peut passer par l'origine H
quand x = o., "quation (%) ne peut donner y = o; il faut donc que cette
équation (k) renferme une constante N indépendante de x; cette équation
sera donc de la forme

y==xtang.m + 2t HC: )2-,__ h% —d ( + N B

dans laquelle il faut déterminer M et N.

Pour cela , cherchons par le procédé ordinaire , I'expression de la tan-
gente de I'angle » formé par une tangente a la courbe mB -et I'horizontale
DE 4 nous aurons

g = .k S (0= 5 =

Mais cette tangente ne pouvant étre nulle quand x =o, il faut quela

. M . .
fraction —;;x ne renferme pas @ ; par conséquent M doit renfermer le di-
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r

. M ,
viseur & , de sorte que nous pourrons remplacer M par —» dans les équa-

tion () et (m), ce qui nous donnera

C(l+¢c ' d !
¥ = @ lang. m + ———— (+ Cl+o {(1— )—-—-—-%-—-E (—;‘?-{-N) e ()
et tang. n = tang. m -+ C“ {(I a\:):.vc:—-:f}...;liﬂi ,,,,, (o).i

Faisons x = d dans ces deux équations (), (¢), elles donneront

y=Qm=d tang. m+C{!+c){ c)—--—“**——(Md+N) - (),

M’d

et  tang. n = tang. m+c(l+c){(l--c)d-——;

Mais ces deux résultats doivent évidemment égaler respectivement ceux mar-
qués (¢) et (g); d’olt Ton voit que

M Ca M Ca
2E T 12K ( + N) 16E ’
dols M = %‘ et N=2oi (9

En substituant ces valeurs de M’ et de N dans 'équation (n), il viendra enfin

y = x tang. m+C“+c){(£ mg f

— o Ua—a)
= z tang. m + m { 12 (I2— c'l)atz-——zf(l—i— c)xa—ﬁ-ld’x'-}- fd-’}.... (s)

our 'équation demandée.
p eq

On aura celle de la branche nA , en changeant les- signes de tang. m et
de ¢, ce qui donnera

y == tang. M oo S1a(ls— ) 2 (b—0)ad— 41+ ... ().

Faisons # =1 — ¢ dans I'équation (s) et & = I+ ¢ dans la dernicre
(), et il nous viendra

y = EB = (I—0) tang. m i {s(zz-cx) @ —cp — 4dvl
(t— )+ 1} '

c | weares ()

et ¥y =DA=FB = — (I + ¢)tang. m + m{ 8 (2 - c)

(b +0p — s @ 4 O+ W |
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En ehmmant EB entre ces deux équations , il nous viendra

tang, m — Y:.TE (482 — 4@ — d?)...... (439),
et en éliminant tang. m entre les mémes équations (), nous aurons

BB = g § 4 (5 =) (a0 — 20t — &) - 10 (40)

Si maintenant nous substituons Ja valeur (43g) de tang. m, dans Jes équa-
tions (c) , (), (s) et (f), il nous viendra, enfin,

4o ytﬁfﬁ{w 4l — 4t —dYx + 6d (als — 262 —1d) a
| — 4dexd — lxi E..(un)
pour Péquation de la branche Hm ;
—fed (413 — fe —d*) & 4 6d (2l — 2¢* — dl) &
o fdesd — i [ (k)
pour celle de la branche Hu 3 ' ‘
¥y =g C {4 (4oc — 4ob —doe — 1) x + 12 (I — & ) @
— 4+ )@ 4 U b (443)
pour celle de la branche mB, et
Py = M [-4(45&:— 468 —de + ) o + 13 (:a — ) a®
— 4 — ) a® + I b (hlih), '

pour celle de la branche rA.
Si nous substituons cette méme valeur (439) de tang. m dans I'équation ( f),
nous aurons )

tang. n:-;-n-(:‘?E- {cd (42 — 4> — d*) + 3d (alt —ac2 —dl)x
— 3dex? — I3 } (445),

ﬁuur Pexpression de la tang. n de langle formé par Ihorizontale DE et
une tangente & la branche Hm.

On aurait P'expression de tang. n relative & la branche Hn, en changeant
dans celle-ci lesigne de ¢, ce qui donnerait
tang. n = — f cd (40 —fer —d2) + 3d (2l — 20t — dl) @

+ 3dear — U3 buvun (446).

- C
Y= uE {
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On trouvera Pexpression de la tang. » pour un point de la branche mB, en
opérant comme & l'ordinaire sur Péquation (443),et on aura

tang. n = —= g (Gt — 46 — dic — Id) & 6 (i— ) x
— 3(1+0) 23 b (7).

Et pour I'expression analogue relative a la hranche nA , ll sufﬁla de changer
dans celle-ci le signe de ¢, ce qui donnera-

tang, n = TQ%E{_ (4l7¢ — fe* — d2c —d*l) 4 6(L — ¢2) x |
—3(—0) } (448).

770. SiTon voulait le point le plus bas de la .courbe AHB , on égalerait 2
zéro le second membre de I'équation (446) , dans le cas ol la charge umi-
forme se prolonge vers A au-dela du milien K de l'intervalle dgﬁ appuis, ou
le second membre de I"équation (448) dans le cas ol cette charge sera com-
prise entre les points K et B, et on aura, dans chacun deces deux cas, la
valeur de x a laquelle repond Pordorinée dir point de contact de Ia Langenlc
horizontale 4 la branche Hr ou A la branche nA Mais comme la courbure
de la piéce est toujours supposée trés-petite, on aura sensiblement le méme
résultat , en supposant & == ¢, soit dans I'équation (442), si la charge uni-
forme dépasse le point K, soit dans Péquation (444) dans le cas contraire.

Dans le premier cas on aura

yo=—IC=— E?E $ fd? (13— ) —c? (4d3_-6dz:»+4dci:-zca} ...... (@,
et dans le second . |
y=—IC=— AT;:!TE‘I {4 4o (= ) + o (@6~ ld2 f )
— D } ®. '

81 maintenant nous ajoutons IC 3 CK = EB , cest-a—dlre les equatlous
(440) et (a) , cette dernitre étant prise en signe contralre, nous aurons
1

K= f = g { 8db— 1adlio}— WS — fod It + Ui }...(!;48)

dans le cas ol la charge umforme depnsse le point K. .
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Et si nous ajoutons les équations (440) et (b), cette derniére étant prise
en signe contraire , il nous viendra

f =Kl = 4:}:1- { 8lt — 1alc* — fd*lc 4 4lc¢ — 4lxd*

+ 8cd? §...... (449)

pour celui ot la charge uniforme est comprise entre le point K et le point B.

771. Les équations précédentes supposeront le solide sans pesanteur; si Pon
veut tenir compte de son poids, aux fléches de courbure (448), (449), on

- 5CF ., _
ajoutera celle du n° 728, qui est f—= oF. " C" étant le poids, ou ce

méme poids plus une surcharge uniforme, ce qui donnera

5CF , G , .
f=K=7T¢ +m{ 8dlt — 12dels — 4d3l2 — hdct

0t o (450)

_ 5CT L Cesh ol — fdile + Ald— flode
et f:mw-m-{*m{ — sal% 4dzle ¢3— 4

+ 8c'az }...... (451).

La premitre de ces deux fléches de courbure appartiendra au cas ol la
charge uniforme C dépassera le milien K de Tintervalle des appuis et la se-
conde au cas ou cette charge G sera comprise entre les points K et B.

772. Si le solide était chargé en deux endroits différens de lintervalle
des appuis, on calculerait la fléche de courbure que donncrait chacune des
deux charges au milieu de la distance des appuis , et on ajouterait ensuite
ces deux fleches : leur somme serait la fleche totale du solide. Cela est
général , de sorte que , quel que soit le nombre des charges, la flche totale
sera la somme des fleches particuliéres a chacune d’elles.

773. En continuant la marche que nous venons de suivre dans la question
Qni fait Tobjet de cette lecon , et en allant chercher les équations convenables
dans les lecons précédentes, on parviendra aux équations et aux fleches de
courbure pour des charges qui seraient représentées par des trapizes tels
que abed (fig. 160), tant pour le cas ohr la base be serait plus grande,
que pour celui ol elle serait plus petite que la seconde base ad. Mais comme
les calculs se compliquent , et qu'en ‘peut, dans la pratique , se dispenser des
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€quations qui en résulteraient , nous nous contenterons de ce qui.précéde sur
les prismes posés librement sur deux appuis de niveau, et chargés de diffé-
rentes manitres dans P'intervalle des appuis.

LEGON XII,

De la courbe que prend un prisme de niveau, encastr¢ par une extrémité et soutenu i Pautre par un
appui , et soumis 4 Yaction d’une charge uniforme et d’un poids suspendu en un point quel-
conque del'intervalle des appuis.

774. Soit AFB (fig. 161) la courbe de la lame neutre du prisme , A le
point d’encastrement et B le point d’appui ; nommons

{ la longueur AB du solide;

¢ la distance AC du point d’application C du poids P, et

C la charge uniforme.

Prenons la droite AB pour I'axe des abscisses , et le pnint A pour l'origine
des coordonnées ; pour un point M de la branche AF, comprise entre le point
d’encastrement A et le point d’application F du poids P, nous aurons

AP=2x et PM=—y.

Cela posé, si nous faisons abstraction du point d’appui B, le moment
du poids P, par rapport au point M, sera P (¢ — ) ; et celui de la charge

. . — x)? y
uniforme (n° 655) sera E_g_ﬁ__-'_"_)_ Le moment résultant de ces deux-la sera
P (c - .1#) + c LI (a),

Mais ce dernier moment sera dlmm_ué de celui de la réaction de la pression qui
a lieu sur le point d'appui B; nommons P’ cette pression; son bras de levier
¢tant BP =/ — &, son moment sera P’ (! — x); en retranchant ce der-

nier moment de celui (@), le reste devra faire équilibre an moment % de

Iélasticité qui se développe dans .la section droite au point M * nous aurons

done P e—x) + L= _pg_y)= ...m..(b)
42
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Les ¢lémens de lordonnée PM = y seront encore ici de la forme

x— a'

d = =
r

en éliminant ensuite r entre cette équation () et P'équation (c), nous aurons

d= % (c—x) (x—=z') + & (t*sz(m—m,) ~F G-wg {w—ﬂ»---- (d).

...... (c) 5 en mettant 2’ au lieu de x dans équation (), et

En opérant et raisonnant comme dans les questions précédentes-, nous
tirerons (*)

e R A T JC R -

pour l'équation de la courbe AF comprise entre le point d’encastrement A
et le point d’application F du poids P, la pression de Pappui B étant encore
indéterminée.

Occupons-nous , maintenant, de la branche FB, et pour cela , considé-
rons le point M’. Observons ensuite que, si P =0, la courbe AFB ne se
composerait que d’une seule branche AFB, et que, par conséquent , I’équation
de cette courbe , pour tous les points de la longueur AB, serait ce que devient
celle (¢) en. y faisant P = o. Mais I'existence de ce poids P modifie la courbe
de maniére que pour la branche FB ce poids P a un certain effet, sur Ja sec-
tion droite qui répond au point M’, qui est une certaine fonction de P, de
la distance AC = ¢ et de l'abscisse AP’ — x. Cette fonction doit étre nulle
quand P ou ¢ est nul; par conséquent ces deux quantités doivent étre fac-
teurs dans la fonction cherchée.

Il faut remarquer , ensuite, que la branche BF prolongée vers le plan d’en-
castrement DE, ne saurait passer par le point A, 4 moins que ¢ ne fit nul;
par conséquent , il faut que la fonction cherchée ait un terme indépendant
de x ; cette fonction sera donc de la forme Pc (Mz* 4 N), M, N et n étant

*) Ea mettant pour 7 sa valenr d’;r dans I'éqnation (B), on trouvera que
) p q

dA C M
I d:; E["_”}{'ﬁ{l“-ﬁi—i—(l-_—x};

e en intégraut deux fois de suite, on aura

PO %-—(cz-— ,)+2£E(Fx 113—}-:@) _..:% 1-;.._..‘;),
et 2° ys--'-.i ﬁf,__. +21E(F"'"+, %(?_%
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des quantités inconnues. Pour avoir I'équation de la branche FB, il faudra

donc substituer Pe (Ma" + N) 4 la place de P (__. — —) dans Téquation

(e), ce ql.u donnera

Ba?  l® | &t P (lx?
T O+ N) + S ® (7 TE)TE (5 =5 (0
~ Si nous opérons sur cette dernitre équation d’aprés le procédé ordmalre )
en nommant m l'angle formé, avec Phorizontale AB, par une tangente au
point M’ de la branche FB, nous aurons

tang. m = § (sz — lx* x‘) (J.:t:—— ..... (9)-

De méme que la branche BF prolongée ne peut -passer par le point A,
de méme aussi la tangente dont le point de contact a pour abscisse & == 0 ne
peut étre horizontale ; I'équation (g) ne peut donc pas donner tang. m = o; car
si la branche BF prolongée passait par le point A, et qu'en méme temps la
tangente en ce point A fiit horizontale , comme cela a lieu pour la branche AF,
il s’ensuivrait que ces deux branches seraient le pmlongemént I'unie de I'autre,
et la courbe AFD n’aurait qu'une seule équation qui serait celle marquée (e)."
Or il est évident que l'encastrement d’une part , et le simple appui de I'autre,
agissent différemment de chaque c6té du point d’application F du poids P ;
par conséquent l'exposant de z du premier terme du second membre deIé-
quation (g) doit étre zéro, pour que dans I'hypothese de x = o, le second
membre de cette équation se réduise 2 une constante. Ainsi n — 1 = o, d'ois
n = 1. En substituant donc cette valeur de n dans les équaurms (f) et (q),
nous aurons

LGP R L s 1 ety WO

et tang. m = E aﬂF (lﬂx — lx* + 13) P (Ex-—- m;) (@)

D’aprés Péquation () , si m représente Iangle formé par une langente ‘i Ia
branche AF , et 'horizontale AB, on trouvera , par la méthode ordinaire, que

: P- QIE ' P’
tang, m :]T] cx -—ig) + —..- le-"-' Ix® + iﬂ) _— —- .,ix-—-%....'(kj;

Observons , maintenant , que les deux branches AF, FB ont le ‘point F
commun , et que, par conséquent, les deux équations (e) et (h) doivent donner
la méme valeur pour y , en y faisant & = ¢, et les deux équations (i) et (k)
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la méme valeur pour tang. m, dans la méme hypothese. Ces deux conditions
nous donneront

d’oir =-, et N=— ~..... ().

Substituons ces valeurs de M et de N dans les équations (&) et (i), et
nous aurons enfin

P E-D+ S T E Do,

Pa? C 20 P z
et tang.m = —& + 3 (Iﬁx-—— lx® -I'-—) —_= (Ix — ;)...... (n),

pour les équations relatives 4 la hranche FB,la pression P’ du point d’appui
B restant encore indéterminée.

Pour déterminer cette pression P’ , il nous suffira d’observer que pour le
point B , ou pour x=1, I'équation (m) doit donner y—=1o; ce qui nous donnera

~Pe fel 2 C /e ¥ 8 P /P
o=% (=% +mG-3+s) — % —g)
P @3l—¢) e
ou g_____._..__b..._..._._...i. 3 d’

e o PA@BI—c) | 3CE _ PA (3l— o) 36C
don p =203 =0 ¥ BIG_oF . (452).

Substituons cette valeur de P’ dans les équations () et (m), (k) et (n),
et nous aurons

10y = P (Tt_g +-2TE (;?_%{5_5‘ 5 4 [ch’(MS—%E)-I-SCF]

Ia? a;’)“mm

2 6
pour I’équation définitive de la branche AF ;

P fex & C (B2 5, gt [ 4Pc® (3l —¢) 4 3CP ]
”?*ﬁ(-.."@*‘:—ﬁﬁ(?*?-’*‘:;)" §FE
:
CX(E =) 45D
pour celle de la branche FB,
Fungn="2 (s —2) + S (vo— s 4 ) (PL0I—0 + 307

, v, (;x — .?5 (455);
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pour Vexpression définitive de Ja tangente trigonométrique, de angle formé
par une tangente & la branche AF , et l'axe AB dos x,

o ___ch C ) . [;:i.Pcﬂ (31—(:) -+ 3(],-:3]
et 4 tang.m—-z—E—i—;_{—E(lw-—-lx +§)—- PR

g
X(;.I - .Z_)l.lllili (456) ]
pour celle relative & la branche FB.

775. Cherchons la valewr que doit prendre x dans chacune des équations

(455), (456) , pour que tang. m soit nulle, ou, en d’autres termes , pour que les
tangentes aux deuzx branches AF, FB de la courbe AFB (fig. 161 ) solent

horizontales.
La premitre (455) de ces cquahons donnera

2 (31—
o=P (ca:-—-%+% (I‘m—la:“—{-;j)—-[‘mc a)+3{:15] (E e)
d’otr 'on voit que x =o, et

o=—28I’P (c — 'z) -+ 41:G (gs —lx + ‘%B) — [4Pe* (31—c) +3C17) (l-—- E’)
__15BC 4~ 12P (2P — 38 + &)

ou r= 16PC
"¢/ TOFC F 12P 2P — 38+ &P 1:1cP (aF—3le &) -3FC
* ‘/ 16 X 1666C2 4EC (4573~

La premitre valeur de & nous apprend que la tangenle au point A est ho-
rizontale; quant aux valeurs de  données ‘par équation (457), si elles sont
réelles , nons feront voir que la tangente sera horizontale en deux autres points
de contact. Ainsi il y aurait trois tangenles & cette courbe AF, qui seraient
hor#zontales. .

En égalant 2 zéro le second membre de ’équation (456), on arriverait a
uneéquation du troisieme degré en x, qui, étant résolue, ferait connaitre I'ab-
scisse du point de contact de la tangente horizontale a la branche FB. Cette
équation étant du troisitme degré , donnera une seule valeur ou trois valeurs
réelles pour a. ' '

776. Pour avoir la plus grande ordonnéede la branche AF, il faudrait, dans
l’gqu'ation (453), mettre pour @ sa valeur donnée par l'équation (457), et si cette
valeur de & est moindre que ¢ = AGC : cette plus grande ordonnée serait la
fleche de courbure de cette branche. De méme, pour avoir la plug grande
ordonnée de la branche FB, il faudra , dans I'équation (454), metire pour
x sa valeur tirée de P'équation du troisiéme degré, qui résullera du second
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membre de I'équation (456) égaléa zéro, pourvu que cette valeur de & soit plus
grande que ¢ = AC et plus petite que Z = AB, cette plus grande ordonnée
sera la fleche de courbure de cette branche FB; la plus grande de ces deux
fleches de courbure sera celle du prisme en question.

777. Si nous supposons que la charge uniforme C du solide soit nulle , les
équations (453)," (454) , (455) et (456) se réduiront respectivement a

o y=1(E-5) 0l (£ —5)...... (459)

pour l'équation de la branche AF ;
o Pe ¢ PE(Bl—¢) (la® 2
z 7—E(?_6)" 2PE, (?—E """" (459)

pour celle de la branche FB,
0 _P P (3l —¢)
3 tang. m = E (CI — %2) -— "--EEE'—-—- (I _29) (460)

pour l'expression de la tangente relative a4 la branche AF ,

y __ b3 Pe? (3l — ¢) ¥
et 4° tang. m= — — —FE (Ex — o) (461)

pour celle relative 2 la branche FB.

778. Si dans cette hypothese nous cherchons les abscisses des points de
contact des tangentes horizontales, en égalant & zéro les seconds membres des
deux derniéres équations , nous aurons

o3 (cx——i;*a) —c2 (3l —c¢) (t.r—— 3;- =o, et I3 —(3l—c) (J.r—"?):o,

d’olr nous Lirerons
ale (B — 3lc + &)

1° Xz =10, et x= Y i U (a),
_ l—e¢
20 Fr l— z_-‘z _‘3£_'coo.liut (b]-

779. Substituons la valeur (b) de # dans l'équation (459), nous aurons

== GV - - iz,
{ :‘__,;c}a “g {I - l/;t:i;t )
ou f= GE (; 3; ..... . (462),
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pour la fléche de courbure , dans le cas oit le solide n’est chargé que d'un
poids P, suspendu en un point quelconque entre la base d’encastrement et le i
point d’appui.

780. Si ce poids P était suspendu au milien de l'intervalle entre la base

; substituons cette va-

leur de ¢ dans les équations (458), (459), (460) et (461), et nous aurons

: P
1° Y= 5E (gla? — 112%)...00 (-463)

pour V’équation de la branche AF;

L=l

d’encastrement et le point d’appui , on aurait ¢=—

. P .
2° Y = ok (— 2B + 1alta — 15lx® 4 52°)...... (464),
pour celle de la branche FB

P
3° tang. m = w0 (6lz — 112%)..... (465)

pour Pexpression de la tangente relative 4 la branche AF ,

et 4° tang. m = ETEE (48 — 1olx 4 5z2)..... (466)

pour celle relative & la branche FB.

781, En mettant pour ¢ sa valeur ‘; dans Texpression (452) de la pression
P’ du point d’appui B, dans hypothtse ot C= o, il viendra

P! = S8 e (467).

782. Si nous metlons la méme valeur l; de ¢ dans les wvaleurs (@) et (b)

de x (n° 778), il nous viendra
= — ?—i, et xr— (: — %5) = 13X 0,553..... (468).

La premiére de ces valeurs de # nous fait voir que le point de contact de la
seconde tangente horizontale n’est pas compris entre la base d’encastrement et
le point d’appui, et que , par conséquent, nous devons n’en faire aucune men-
tion. Quant 4 la seconde , qui se rapporte & la branche FB, elle nous fait voir
que le plus grand abaissement de la pitce a lieu un peu au-dela du milien de
Pintervalle AB. ‘
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783. Enfin , si nous mettons pour ¢ sa valeur :‘ dans la valeur (462) de

la fleche de courbure, nous aurons

PP PP
f= §8E/5 — E x 107,028 (469)

784. Si le prisme posait librement sur deux appuis, la fleche de cour-
7' . P ]

. . P
bure (n°727) serait f' = g 5 mais dans ce cas P’ ==, et I' = ;
en substituant dans cette derniere expression, il viendra f' = EE En com-

parant cette fleche de courbure a celle (469) ci-dessus, nous verrons que
- L I L] LR [ ]
f » ! e "/_5 . 1 L) 1 L] % y

c'est-a-dire que la fleche de courbure, pour le cas oti le solide est encastré
par un bout est plus petite que celle pour le cas ol le prisme est posé librement
sur deux appuis , dans le rapportde 1 |5

785. Si dans Pune ou lautre des équations (463), (464) , nous faisons

l
x =— -, nous trouverons que
2

PR
¥y = ;(Ing rees (470)'

Tel sera I'abaissement de la piece au milieu de Pintervalle AB. Dans le cas ol
le solide n’est pmm. encastré , mous avons trouvé que cet abaissement était

(n® 784) f' = 48E:-‘ ces abaissemens seront donc |’ % 1.7 o6

786. Supposons, maintenant, que le poids P = o, de maniere que le solide
ne soit sonmis qu’a Paction d’une charge uniforme €, la pression P du point

d’appui B deviendra P = %C (b71)
et les (‘quations (453), (454), (455) et (456), se réduiront &

b= R E- D

pour la branche AF et pour la branche FB; cest-a-dire qu’alors, la courbe
AB ne se compose que d’une seule branche ;

2. tang.m= (Ix—-— Lx? —i-ﬂ) lx-—- —a) (473)

pour l’expresslon de la taugente trigunoméu ique de l’ang!e formé avec I'axe
des 2, par la tangente menée & un point guelconque de la courbe AFB.
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787. Cherchons la valeur de x pour que la tangente & la courbe AFB soit

horizontale; pour cela, il suffira de faire ézal A zéro le premier membre de
Péquation (472), ce qui nous donnera

r"’j 3
.i(gzx—lm-’-_l.-? ..-_ Ix.—..:g_ =0,
. N 4796
d'olr nous tirerons xr==o0, et xr==1 16:1: o

La premiére valeur de x nous fait voir que la tangente & la courbe est
horizontale pour le point de contact A , et la seconde, qulil y aurait encore
deux autres points de contact pour lesquels la tangente serait aussi horizontale;
mais 1'une de ces derniéres valeurs de  dépassant la longueur ! ou AB, n’ap-

partient pas a la question : la seule admissible est x =1 (-:% 4'7&); qui
se réduit & x=1<0,6377.

788. Si nous mettons cette dernitre valeur de x dans Déquation (472),
nous trouverons, toute réduction et tout calcul faits ,

;’ = ELE > 0,0053..... (474)-

789, Nous avons trouvé (n°® 728) que la fleche de courbure d’un solide non
L
encastré , et chargé uniformément était f' = 5(3;' ; mais alors G’ n’est que

la moitié de la charge, et ' celle de la longueur AB du solide; ainsi
C' = g set U= -; 3 en substituant dans la valeur de f', il nous viendra

. 5 CP
f =mx§-x0’013, -

d’o1 I'on voit que la fleche de courbure , pour le cas ou le solide est encastré
par un bout, est plus petite que celle du cas ol le solide pose librement sur
deux appuis, dans le rapport de 53 130 ou & peu prés 11 2 | 5.

L]:c,:ON XIIL

De la courbe que prend un prisme de niveau , encastré]_:a.r les deu:u: bouts, et soumis & I'action d'une
charge uniforme , et d'wn poids suspendu en-un point quelconque de I’mmrvalle des appuis.

790. Supposons que la lame neutre du solide’ soit AB, (fig- 162) A et B
les points dencastremens , et C le point d'application du poids P, Pre-

43
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nons le point A pour Vorigine des coordonnées , et la droite AB pour Uaxe
des abscisses.

$il 'y avait que Pencastrement A, .les équations des deux branches de
courbes AD, DB seraient celles (453), (454) du n°774 ; mais I'encastrement du
point B vient nécessairement modifier ces deux branches , et parconséquent leurs
équations. L’effet de cet encastrement est de donner a la branche DB une forme
telle qu'au point B la tangente a cette courbe est horizontale. Mais si l'on sup-
pose que le prisme se prolonge vers E d’une quantité BE quelconque ; que ce
prisme soit inflexible depuis le point E jusqu’au point B, il est clair que leffet
de l'encastrement au point B pourrait étre remplacé par une certaine force
appliquée au point L. Cela posé, nommons

! la distance AB entre les deux plans d'encastrement ;

¢ celle AC du point A au point dapphcatmn CouD du poids suspendu

P ce poids ;

P’ la pression sur le point B; -

P" la force qui, appliquée au point E , produirait le méme effet que
Pencastrement en B ; _

¢’ la distance du point d’application de cette derniére force au point A ;

C la charge uniformément distribuée dans lintervalle AB, et

~x l'abscisse AP ou AP’ et y I'ordonnée PM ou P'M’ de la courbe ADB.

Le moment du poids P par rapport & la section droite an point M, sera

8
P (¢— x); celui de la cherge uniforme -‘%—f—) » et celui da poids P",
P* (¢"— x) : la somme de ces trois momens sera
P (e—a) + <=2y P (' — e (a).

Le moment ‘de la pression du point B, qui aglt en sens contraire, sera
P’ (I--x), et devra étre retranché de (a) , ce qui donnf:ra

C (l—w}i

P (o—a) + + P —2)— P (=)

ce dernier moment résultant doit faire équilibre & celui — de Pélasticité qui
se developpe dans la section droite au point M; ainsi nous aurons

C (=

P(c x)+—--—-——fg-+i‘” c---x) P! ;_x)_E

R
o’

111

= Elem Y o (- 2P T @) = F e )i B)

!lw
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D'ailleurs on cnn(;ull: ‘que les élémens de lordonnée y = PM seront encore
dela forme d =

. (€) , et par conséquent on aura

P r ! ' ] f I ]
d=1 (o—a') (@—a) + = (Il—z) (1—a )+ % @ — ) (£ — )
S |

-3 G—a) @—2),

en éliminant r entre les équations (b) et (c).

D’aprés cette forme de I’élément d de y, on en conclura facilement, par

la méthode ordinaire , -que
P g 2\, C [P 2t
fff?“ﬁ+m(‘“r*)+i

LT

De 11 on tirera

o » %@%ﬁﬁw~wﬁw%wwa‘

Ces deux équations appartiennent 4 la branche AD ; cherchons celles qui
appartiennent a la seconde branche DB.

"Par le raisonnement du' n® 774, nods conclurons qu:e

r= G-+ n®-5+9+5E -9
=g (= 5ty |
et que tang. m:‘gg + 2_1% (l’.; — ¥ 3{) n I_lE” c’a:—?)
=g =D

car ces deux derniéres équations doivent donner respectivement les mémes va-
leurs. pour y et tang. m, que celles (475)et (476), eny faisant # =—¢,
puisque le point D appartient aux deux branches AD, DB, -

L’équation (477).doit donner. y = o, et I'équation (478) tang, m=o ;. quand
@ = 1 , puisque la branche DB doit passer par le point B, et quen ce point
B: Ia tangente BE A la courbe doit &tre horizontale, En snbshtuml: donc ¢ au
lieu de x dans ces équations (477) et (458), nous aurons

o o PA(Bl—¢) PR(3—1)
1° . - 6= .“T-i + *E- + ._(6-—-) p4 T'“(d)'
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et 2° | + +M) P:' (e)

En ¢liminant P” et P’ entre ces deux dernitres équations , nous trouverons

9P (1—0)-H-CF _ 12P (3ld—al—sed'+le) - CF (6¢—51)

P=—p—p o otP'= P —1) - (479)-

En substituant ces valeurs de P” et P’ dans les équations (475), (§76), (477)
et (478) , on aura celles qui feront connaitre la courbe que prendra le prisme
encastré par les deux houts.

794, On voit que les valeurs de P” et P’ dépendent de ¢', qui est la dis-
tance AE du point A au point E , ot la force P” est apphqnee pour produire
le méme effet que I’encastrement Quant a cette longueur ¢', elle dépend de
la profondeur du scellement ou de I'assemblage, ou , ce qui revient au méme,
¢’ est la longueur du solide depuis le poinl; A jusqu’au bout E qui est au fond
du scellement, ou depuis le point B jusqu’au bout qui est au fond du scel-
lement du colé du pojnt A. .

792. Cette observation nous conduit & voir que, pour pouvoir regarder
un prisme comme encastré par les deux bouts, et pouvoir y appliquer les
équations précédentes , il faut que la profondeur du scellement soit assez con-
sidérable, car si elle était petite, il en résulterait que pour remplir la condi-
tion que Ia tangente soit horizontale au point B , il faudrait une force P”, dont
la grandeur serait d’autant plus considérable; c’est-h-dire, qu’il faudrait que
la matiere qui opérerait l'encastrement eit une résistance d'autant plus
grande. Cela se voit par I'expression de la valeur de P qui remplace cette ré-
sistance. De I il faut conclure qu'il sera trés rare qu'on puisse regarder un
prisme comme encastré par les deux bouts, méme quand il sera scellé ou assemblé
par ses' extrémités, car ces'seellemens ne sont presque jamais, ni assez profonds,
ni assez- herméthnes, pour que la tangente 4 la courbe au point B soit horizon-
tale. Il n’y aurait gutre que le cas ol le solide serait soudé dans deux autres
a ses extrémités , ou que ces solides ‘seraient fondus ensemble d’'un seul jet.
_Néany_:;ging nous allons continuer nos calculs.

“793. Si nous voulons avoir I'abscisse du point qui répond 2 la plus grande
ordonnée , c'est-a-dire, & la fléiche de courbure, il suffira d’égaler 4 zéro le
sedond ‘membre de l’équation (478) , ce qui nous donnera.

o=13§.+% l’.x—--&r’+m5)+P" x-—-m—h)—P" (lx—--{)l-

on 234 L T..P” C)#+31(cc+=;w_amr) _I_acgoﬂ —
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Pour résoudre cette équation du troisitme degré, on se rappellera qu’elle

doit étre satisfaite en y faisant x = I, puisque la tangente 4 la courbe doit

€tre horizontale au point B ; on pourra donc diviser le premier membre de
celte équation par x — I, ce qui donnera le quotient

x* -4

x -+

et pour reste Cl? 4- 3P"l (2¢’ — ) — 3P'I* - 3P¢?, cest-a-dire, le second
membre de I'équation (¢) mis au méme dénominateur. En résolvant donc
cette équation («), on aura

¢ (3P' — 3P” — aC) L (Cl 4 3P" (2’ — 1) — 3P'))
C G

= o... (a),

_ L@ — 3P’ —aC)
x = - 2C
‘/ B (3D — 3" — 3C)’ 1(Cl+ 3P (gd —)— 3P
ic +
Pour calculer &, on mettra pour P’ et P" leur valeur (479) dans, cette
formule (b).

794. Pour avoir la plus grande ordonnée de la branche DB, on subsr;ituera
la valeur () de x (qui sera moindre que ) dans 1'équation (477).

795. Si le poids P était appliqué au milieu de Tintervalle AB, les deux
branches DA, DB de la courbe ADB seraient symétriques, on aurait I —a¢,
et pour Vabscisse correspondante a la plus grande ordonnée, x =+ 1 =-¢c.
Substituons ces valeurs de et de x dans Péquation (477), ce qui nous donnera

T (R L L =)

P! 726 c’)
17C¢ | Prd 5P'c3
ou f,_H - + ZSE + eE (3" — €) — —zuvuu (480).

796. Dans I'hypothése précédente ou I = ac, les valeurs (479) de P” et
P’, se réduisent 4

v ¢(@3P 4 3C) ;. 3P (a¢ —-3::'}-|—2C(3c’—-—-5c :
P’ = -—_—_ﬂ(ﬁ'“?"") et P'= PYCETT vons (481)_..

797. Si dans Iéquation (475) nous mettons pour P et P’ leurs derniéres
valeurs, et pour ! sa valeur 2¢, il nous viendra

= ;471!'- (303:’ 2:::3) + 48 =5 (4orz? — 4cac3 + a:*).. o (482),
pour Péquation de la brandhe AD. On trouverait la méme équation pour Ia
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branche DB , en supposant l'origine au point B. On voit que cette équation
est mdépendante de la quantité indéterminée ¢’

© 798. La fléche de courbure , dans ce cas, s’obtiendra en faisant x — ¢ dans
I’équation (482) , et on aura

Pet Ce® :
f =g + mEe (489).

799. Si le solide était posé 1ibrement sur deux appuis, la fliche de cour-

bure (n® 696 et 728) serait f' = ;5E + SEcE, P et C n'étant que les

moitiés du poids suspendu et de la charge uniforme, et ¢ étant la demi-dis-
tance entre les appuis. Si nous voulions représenter par P et G les charges
entitres, comme alors les numérateurs de la valeur de f' seraient deux fois

plus grands , il faudrait doubler les dénominaleurs pour ne pas changer cette

5Ce®
valeur de f' , et nous aurions f' = bl:. + B Si nous comparons cetle

valeur de f' & celle (483) de f, nous aurons

. T N ] SC .e - '
fc -.4+8-P+BUOP+G‘BP+SG,

doir Ton woit que la fleche de courbure, dans le cas o le solide est en-

castré par les deux bouts , est plus petite que dans celui o le prisme est

posé librement sur deux appuis , dans le rapport de aP -+ G ; 8P +- 5C.

800. 8¢ lu charge uniforme rexistait pas, dans le cas des deux encas-
tremens , la fleche de courbure est quatre fois plus petite que dans celui ou
le solide pose librement sur les appuw ; et cmq fois dans le cas o cest le
poids suspendu qui est nul. {

LECON XIV.

De la courbe dun prisme posé librement sur plusicurs appuis de niveau , et soumis 4 P'action d'un
- poids dans chaque intervalle des appuis , et d'une charge uniforme.

801, Soit ABC (fig. 163)la lame neutre d’in prisme posé de nivemu sar’ trois
appuls A, B et C, et soumis a l'action d’uné charge uniforme, et de poids

susperidus aux points quelconques D et E daus Vintervalle de denx appuis con-
séeutifs ; prenons l'origine des.coordonnées:au point B , et nommons
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{ la distance AB; I celle BC ; ¢ celle BD , et ¢’ celle BE ; soient P et
P’ les poids suspendus aux points D et E, et G,C’ les charges uniformes dis-
tribuées , la premiere de A en B et la seconde de B en C ; enfin, représen-
tons par p, ¢ et r les pressions qu'éprouvent les trois points dappm A, B
et C. Cela posé, observons que la courbe affectée par la Jame neutre AB{] se
composera de quatre brariches, BD et DA pour le cété BA, et BE, EC pour
le coté BC, dont il faut avoir les équations.

Occupons-nous d’abord de li branche BE.

Pour cela, observons qug la tangente au point B ne pourra étre horizon-
tale que lorsque tout sera symétrique de chaque coté de ce point B; ainsi en
général cette tangente sera inclinée par rapport a I'axe AC ; soit donc m ,
I'angle formé par cette tangente el l'axe AG ; pour avoir lordonnée PM ,
—

A la somme Mim des élémens de la forme d = Z , il. faudra ajouter
Pm = x tang m.

Du reste , il est évident que nous pou\funs regarder le solide comme étant
encastré depuls le point A jusqu'au point B, et considérer la question sous

le méme point de vue qu'au n° 794; de sorte que nous aurons, pour lequa—
tion de la branche BE ,

y_xtangm-l- 3 +§ﬁ-ﬁ 3 o

~ & (5 = ) o,

et P'expression de la tangente trigonbmétrique de I’angle forme par la tangente
en un point quelconque de la brunche BE et l'axe BC, sera, par conséquent,

(ax% m’) c (E‘i’ o

téng.n:ls.mg.m—l—P—'( )+*ﬁ(£"m—l’x=+£)
| B (1= D (489

Par le raisonnement du n® 774, nous trouverions que I'équation de la
branche EC est
. pe o
y=xugn+ 7 (T~%) +

2

— (=) @

(t’%’ U ot

3 12

et Pexpression de tang m. relative A cette branche EC sera

tang. m:t:mg m+ E -+- T (l"x-—l’x“—!—wﬁ) —F £’x——-—)
(Y. ) N : .
puisque ces deux équatlons clmvenl: donner respecmement les m&mes valem's
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que celles (484) et (485), en y faisant x =¢', et que la branche CE pro-
longée ne doit pas passer par le point B.

Les équations des branches DB, DA s’obtiendront des précédentes, en
changeant le signe de tang. m, r en p, P’ en P, G’ en G, !' en [ et
¢’ en ¢; desorte qu'on aura

. E /ca? C /B2 ‘;ma a p fla?
y=— = tang.m + ﬁ(?“@ +z:i(‘:"3‘ +E)_E(;_%D)
...... (488).
el tang. n ——tang. ;-n+E ,)+ 223 — |2 - ';’_‘j.._.

e (489).
pour la branche BD :. et

J’='—~’Ctaﬂ5-m+ a ﬁﬂ)+=m Fm'_w xq)_%‘. < 1“‘)
-+ (490).
et tang, n = — lang. m. - a]i.+ i (.’,’:c-—-l.r’+5')—-— Jx.—':f
veenrs (Q1),
pour la branche DA.

Lequalmn (486) doit donner y = o0 quand = =1', et "équation (490)
aussi , quand @ = I; en substituant respectivement ces valeurs de = dans
ces équations, nous aurons

' P2 ' €™ i
o=1'tang. m -+ ©E (3!' —c') + BE — FE (g}

PA CP
ot q:mltang.m+a—ﬁ(33—c)+8—ﬁ E (b):

La somme des expressions p, ¢ et r des trois points d’appui doit égaler celle
des poids P, P’ et des charges uniformes C et G’ ; nous aurons donc

ptqtr=P+P +C+C . (o)

De plus , le moment résultant de toutes les forces p, q,r, P, P, Cet C’
par rapport i un point quelconque , par rapport au point A, par exemple, doit
étre nul, puisque 1'équilibre ggiste entre toutes ces forces ; il nous viendra donc

pibom S 2 & i, R Pro + &Ly

En élimipant entre les quatre équations (&), (b) () et (d) , nous aurons

__ 4Pl (3!0--0’—]—2!! ) =+ 4Pl (3l¢— 3 —al) - CIP (314- 41) — CU (492)
; _ TNy TR
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PP (P-H1) [ 2Bl — ¢ (Bl—c) — 2lc ('— )] + 4PL (¥ + 1) )
g= {[zﬂ'ﬂ—cﬂ{?ﬂ'—c)-k al¢ (I'—1)] 4 CIB [ (§t + 50 +1* SW— - (493),

-+ CUR L (42 4 5) + 1%
_ AP Blo— o) APIEL (3L — 1 ally— CIB - CUP (304- 41) ,
B (I 1) wer (494)
' APl (Bllle—1'c®— all") —4P'c'P (31'¢ c"—zt”)——C!mF-{—C’N”
tang. m = 24 U+ E . (495)'

:802. Pour avoir les équations définitives des quatres branches de la courbe
ADBEG, il suffira de mettre ces valeursde p, g, r et tang. m dans les huit
équations qui portent les n® depuis (484) jusqu’a (491); mais comme les
calculs seraient trop compliqués, on ne fera ces substitutions qu'aprés avoir
calculé numériquement les valeurs de.ces quantités p, g, r et tang. m, d’apres
les quatre dernieres formules. Ces substitutions étant faites ; on cherchera I'abs-
cisse du point de contact de la.tangente horizontale pour les deux branches qui
(I'une & droite et I'autre & gauchedu point B) donneront la plus grande ordonnée
répondant a ce point de contact ; en un mot , on se conduira, pour chaque
portion de courbe BA, BC, comme il a été dit au n° 793, pour avoir la fléche
de courbure.

803. Supposens, en ‘premier lieu , que les points D et E , auxquels les poids
P, P’ sont suspendus , .soient au milieu des intervalles AB, BC; nous aurons
'r .
c= —;— et ¢/ = ;.3 cette hypothése réduira les valeurs ci-dessus de p, g, r
et tang. m, &

PR (S14-80) — 3PPIL oOLF (Bl 48) — 2G5

1687, U: + I) ' -[496)'!
__ DU (8430 P (P4-1) (Bi4-30)4-2Cl [V (414-SDA-B]--a GV [ (445141
W6 (I41)
----- (4979 » , ,

p = T 3PIELPPUGI 8D — aC 4 aQUA (B al) | fos

= 168 (7 1) » 498
— 3BAIB + 3PIPA — o CIPP - oCP1°

tang. m = +24117 (t'ﬂj) R e (499)

804. Supposons, en second ligu , qu’en outre de I’hypothese précédente, on
eit /'=l, clest-a~dire que le point B soit le milieu de l'intervalle AC; cette
derniére hypothése réduira les dernieres valeurs de p, ¢, » et tang. m. , a

18P — 3P’ -} 14C — aC'

—_ /

p = " s . (Boo) ,
2aP - 2aP' |- 20C < 200/

q = -+ 2 ::;I; 2l . (501).

M-
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' 3P 4~ 13P' —2C + 14C

= 7 vonee (503),
—_ 2 m__. !
tang. m = 3P |- 3P LE 2CR - 'ACP"“. Bof):

805. Enfin , supposons que les poids suspendus P, P’ soient égaux , ainsi que
les charges uniformes G et G, les derniéres valeurs de p, ¢, r et tang. m,
deviendrent ' )

C .
sb+6C ¢ = 1_113__3-[_—_1_2_’ et tang. m. = o..... (505).
On voit en effet, que tout étant symétrique par rapport au point B, les pres-
sions p et r des points A et C doivent étre égales, et que la tangente au
point B doit étre horizontale. Dans ce dernier cas, les équations des deux
branches de chaque portion de courbe BG, BA se réduiront & celles marquées
des numéros depuis (488) jusqu’a (491), aprés y avoir mis pour p et ¢ leurs

valeurs (505) et . Les deux premitres serviront pour les branches BE ,, BD,
et les deux autres pour les branches EC, DA.

806. Proposons-nous de trouver les équations relatives aux quatre branches
AD, DB, BE et EC (fig. 164 ), pour le cas o le solide est encastré par les
deux bouts A et C, et soutenu par un point d’appui B entre les encastremens
A e C _ _

Prenons D'origine des coordonnées ‘au point B, et la droite AC pour Daxe
des abscisses ; nommons :

{ Plintervalle AB; 2’ celm BC ; ¢ la distance BD du pomt B au point de
suspension D du pmds P; ¢’ la distance BE du méme point B au point d’ap-
plication E du poids P’ ; Get G’ les charges uniformes distribuées sur les lon-
gueurs AB, BC; p, g, r les pressions des points A,B et G; s, ¢ les forces
qui, appliquées aux points G et F, remplaceraient les encastremens aux points
A et C, et ¢, c" les distances des points G et F par rapport au point B.

Cela posé, pour avoir 'équation de la branche BE, il suffira d’observer que
le solide peut. étre considéré comme encastré depuis le point A jusqu’au point B,
et qu’a ce point B la tangente & la courbe ne sera point horizontale dans le
cas général; car il devlendra évident , par cette observation , que pour avoir
équation cherchée, il suffira d’ajouter & tang. m au second membre de I'équa-
tion (475) du n° 590, ce qui nous donnera

.y = @ tang. m—l—E(—"—wn)-I'",j;: iy g!ms_i_'%;)

g (2 8) =5 (5 =5 @o8),
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en remplacant P par P', C par C', P" par ¢, P’ par r, ¢ par ¢/, I par ',
et ¢’ par ¢"; doa l'on tirera '

P, af\s O 3
tang. n = tang. 7 (o' T) b g (Ve — Vet 4 §)

e e

Telles seront les équations qui se rapportent & la: branche BE, dans
lesquelles » et ¢ sont la pression exercée sur le point G, et la force qui,
appliquée au point F, situé & une distance BF du point B égale ac”,
produit le méme effet que 1'encastrement au point C.

Pour avoir les équations qui se rapportent a la branche EC, il suffira
d'ajouter x tang. m dans les seconds membres des équations (477), (478),
en remplacant comme ci~dessus P par P’, P par-t, P/ par r, G par C/,
¢ par ¢, L-par ", ¢’ par ¢” et m par n, el: TIOUS aurons

e 2 (52) o (04205
| —&@—% Gony
- tavg, n = tang. m+ 2o 4 O .(z'.z'x"-'-.zf,qi_—t-' A+ £ (cw~2)

— L-} (E'x—‘ﬁ)-. ;'(509) C

Il n'est plus Fesoin de dire cmnment on tromfera que | lm equatmns qui se
rapportent 4 la branche BD sont

y=—-xlang m—l-'P (m' ;5)+2£E( + )+E(€£_§)
TR ( ‘ﬂ) tr( |n)'
tmg.n_—-tang.m ';E (c;ttir-— 2\ T ,(E#.x%dm’;d-ﬁ)-hi, d’.n-r-qx')

y (L'n-.—~ -») ..;..(ou}

.fr*r 4

et que celles qui se rapportenl. h: la 'branche DA sunt
]mv—rmtangm-}—h pd ‘&)_}_ o(a? ‘-ﬁzfﬂ‘ﬂ’"h ¢k \,“')

p.; 3 i um ..l.l‘t‘ !lnl

— :’5 & 6):.1. “53?
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) a
o 1=t 4 & (o) 4 (2)

— L (e g?) (513).

807. 1l nous reste 2 déterminer les valeurs des constantes p,q,r; s, t et
tang. m. Pour cela, nous observerons que les équations (508), (Sog), (512)
et (513), doivent avoir leurs premiers membres nuls , les deux premiéres
quand x = BC==1', et les deux secondes quand = = BA = I; en faisant
ces substitulions , nous aurons

. PUr3l—c) | OB | d3(3M—U) ol
0——-3 tang-in+-_6—E‘_+—8-E+———-EEl—'—m3E ------ (ﬂ-},

PR crE | (a1 ri®
o = tang. m + “E -} E -+ --E;E—;-—rl — e (8),

Pa (31— CcP sB (3" — B
o= —1 tang. m +---—-(EE—£) -+ BE -+ -—(—E——D — ’:;—E..-u.. (c),
- Pe? cp sl,(3c" — 2
el 0 z—mﬂga m + ;‘% + ﬁ + % — F';.”“" (d)o

808. Outre ces quatre équations, nous nous en procurerons deux. autres,
en observant 1° que la somme des pressions p, g et r des points A', B
et C, doit égaler celle des poids P, P', des charges uniformes G, C’, et des
deux forces s et ¢ qui remplacent les encastremens aux points A et C :nous

aurons donc p+ g4 r=P P 4 G} C'+s + t.. (6),

et 2° comme il y a équilibre entre toutes ces forces, le moment de leur
résultante doit éire nul, ce qui nons donnera

1
pt—Pe— S _so Bt 4 Sl 7= i (f).

809. En éliminant entre ces six équations on.déterminera les six inconnues
Psqsr, S, tettang. m. Nouis nié férons point ces éliminations, pour abréger,
parce qu'elles n'offrent d'autre difficulté que celle de la longueur des calculs,
et que la' question considérée Sous cé point de vue général-est rarement utile.
Pour fa simplifier, nous supposerons 1° que les poids P, P’ sont égaux; 2° que
les charges uniformes sont égales ; -3“':que le point d’appui B est au milieu de
lintervalle AB, et 4° que les deux poids égaux P sont suspendus aux milieux
des intervalles AB, CB. "*" " "+ -

- Ces hypothéses feront évidemirient que, -
" 1° La t&ﬁgent au ‘point B sera horizontale , et par conséquent ‘le solide
sera comme encastré en ce point By

2, Les quatre branches AD, ED\ BE et CE, seront parfaitement égales ;

Droits réservés au Cnam et a ses partenaires


http://www.cnam.fr/

THEORIE GENFRALE DE LA RESISTANCE DES CORPS SOLIDES. 34y
3°. Les pressions en A et C seront égales entre elles, de sorte que p=r;

4°. En prenant les distances BF, BG égales entre elles, cest-a-dire, en
supposant ¢”= c¢", les forces s et ¢, qui tiennent lieu des encastremens en
A et G, seront égales ;

5° Enfin, les points de suspensions D et E.des poids égaux P étant aux
milieux des intervalles éganx AB, BC (que nous nommerons ), nous au-

L
rons ¢ = ¢’ = -.
9

Les quatre branches AD', DB, BE et EC, étant égales', auront la méme
équation, en prenant origine au point A pour la premiére , au point B pour
la seconde et la troisitme, el au point C pour la quatrieme. Cette équation,.
eummune 4 ces quatre branches , s'obtiendra en faisant lang. m = o et

¢ = - dans I’équation: (506), ce qui nous donnera

Y R

TR
| — & (5 — 5 Grd)
De la on tirera

e (= D) 8 (e D) (o)
—_— % (Em—:-—?).. (515),

n étant angle formé panr k- tangents &-T'une dés quatre bﬁnches , et axe
AC des abscisses.

Les mémes hypothéses que ci-dessus réduiront ]’équai:ion (Sog) &

tangn=gp -+ o (be— et 5) + 5 (cx-—%—E” (1= = 2. 316

810 Si nous faisons 7= é-,. daus I'équation- (515), le point de contact
de Ia tangente ¥ la branche BE sera au point E, et cette tangente sera hos
rizontale; nous aurons donc

0 = 6Pl + 9C + 65 (§¢" — Ij = 18pLvuen. (a),

et si- nous faisons 2= ' dans ’équation (516), le point de contact deé la
tangente 4 la branche EC sera au point G, et cette tangent.e sera augsi hori
zontale ; nous aurons donc

0 =34 4CV+ 129-(2¢" — ) — Innpl.'..... (&),
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Les hypothéses du n” 8og réduisent les deux équations (e) et (f) du n° 808,

4 celle-ci seulement  2p 4 ¢ = 2P + 2C -+ 2s.... (c).
Au moyen de ces trois équations on tmuvera'que

$/3P - aC) 3P (4¢ — 31) 4 2C (6" —50)
CENw—p PT 4 @=D et g =P+ Cur (517).

811, Substituons ces valcurs de s et de p dans les équations (514), (5:5),
et il nous viendra

y = = [sa (3P + 2C) x> — 41 (P + C)? + ncm} (518).

tang.n = { I* (3P 4 20) x + 6L (B +- €) 2* 4 4Ca? } (B19)

pour les équations de chacune des quatre branches AD, BD, BE et CE ,
les origines étant respectivement aux points A, B et C.

812. Si dans I'équation (518) nous faisons = = ;l, nous aurons la fléche

f= ﬂi—i—_—g—).“u (520).

de courbure qui_sera 584E

813. Supposons qu'un prisme AB (fig. 165) soit encastré par les deux
bouts A, B, et soutenu par deux appuis C, D, également espacés entre les
plans d’encastrement ; que des poids égauz P soient suspendus au miliew de
chacnne des trois parties égales AG,CD, DB .du prisme , et que ce dernier
soit en outre soumis & une charge uniforme représentée par 3C, de maniire
que C soit la charge qui agit sur chacune des portions AC, CD et DB.

D'apres ces suppositions , il est évident que les équations (518) , (519) et
(520) appartiendront 4 chacune des six branches AE, EG, CF, FD, DG
et GB, en prenant L'origine des coordonnées respectivement aux points A, G,
D et B, et qu'il en serait de méme s'il y avait un nombre » de points d’appui
intermédiaires ; car chaque partie du solide étant dans le méme état que si elle
éiait. encastrée par les deux bouts, il est clair qu'on peut les considérer cha-
cune séparément, et comme elles sont toutes soumises aux mémes conditions ,
quel qu'en soit le nombre, les branches de murbe qui en résulteront seront
égales , et auront les mémes éqmtmns

; 1l est clair aussi, que, d’apres les mémes condmons, quel que soit le nombre
dg,s points d’appui intermédiaires , la charge que supportera chacun -deux sera
égale & la somme P 4~ G des charges qui agissent sur une seule portion AC ou
CD, etc., du solide, comprise entre deux points d’appui.

11 est visible encore que, les deux forces s et p qui ont lieu aux points d’en-
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castrement A et B, auront les expressions (517) du n° 811, quel que soit le
nombre des points d’appui , ¥ étamt la distance AG ou CD, etc. ; entre deux

points d’appui, et P, G le poids et la charge uniforme qui répondent &
un des intervalles AC , CD, etc.

e ———

LEGON XV.

De la forme qu'il faut donner & un solide posé librement sur deux appuis de nivean, et soumis a
Paction d’une charge uniforme et d’un poids suspendu en un point quelconque entre les appuis ,
pour que la lame neutre se courbe suivant un arc de cercle , le solide étant supposé sans pesanteur.

814, Supposons d'abord que le poids suspendu au solide soit & egules dis-
tances des apputs.

Prenons le point G (fig. 166) milien de AB, pour l'origine des coor-
données , et nommons : ' '

t la moitié AC ou CB de AB

aP le poids suspendu au mllleu C de Pintervalle AB ;

2C la charge uniforme totale distribuée dans la longneur AB , et

x Dabscisse d’'un point quelconque de la lame neutre:

Cela posé , prenons I'équation (@) du n® 531, et augmentons-en le second
membre de P (I — «), qui est le moment de la réaction du point d’appui B,
par rapport a une section droite quelconque du solide, en ne supposant ce
solide chargé que du poids 2P, et nous aurons
7 =P0=2)+ = (@

T

Telle est l’équahon d’équilibre qui doit subsister dans toutes les sections ver-
licales transversales du solide. Comme le second membre de cette équation varie
en méme temps que &, il faut que E varie dans le méme rapport que ce
second membre , puisque r doit ici étre constant , étant le rayon de Pare de
cercle affecté par la lame neutre. :

815. Supposons que les sections transversales du solide sbient des réc-
tangles ; dans ce eas (n° 6oo) , E = !:-g '
Pour que E varie , il faut que a ou b varie , ou tous les deux & la fois ; fai-

sons d'abord varier a, et pour indiquer la variabilité de cette largeur a,

, th®
représentons-la par z , nous aurons E—= o
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Substituons cette valeur de E dans V'équation (a), et il viendra

< CE e B).

B =P —a)+.
:816. Cherchons .ce que devient z quand z ==.0, et nommons a cette va-
leur CH particuliere de z; nous aurons

o _pryp @ g W =1CPE0

= 2, |
127 2 12r 2

E __ tat?
d’olx r.= muuon (531).

Telle sera la valeur de r; elleest tout-i-fait semblable & celle (366) du
rayon de courbyre de la lame neutre , pour le cas oii il sagit d'un solide
encastré par un bout (n° 694).
~ En substituant cette valeur de r dans I'équation (b) ci-dessus, il en résultera

Iz (2P —I—G) z = 2alP (I — &) + aC (I* — x*)ceensn (B22).

817. Supposons que‘la fig. 166 soit la projection horizontale du solide , Ia
droite AB étant celle d’'une des faces latérales ; prenons cette droite AB pour
I'axe des @, et le point C, miljen de AB, pour l'origine des coordonnées.
Quand on fera # =CP, ,l’égugtion (522) donpera z —PM.

Cherchons 1a valeur de x qui dpnnerait z == o ; pour cela , il suffira d’¢-
galer & zéro le second membre de Péquation (522), ce qui nous donnera

2alP (l—x) + dC (> — %) = 0,
dot 2=1=CB, &t a=— LD —_ (L. (53).

La premiére de ces deux valeurs de & nous apprend que la projection ho-
rizontale HB d’une face latérale du solide passe par le point d’appuiB; C'est-
a-dire que la largeur du solide en ce point B est nulle. La seconde valeur (523)
de x, qui est négative , nous fait voir que la courbe BH , prolongée du cdté
opposé au point B par rapport au pojpt,C, rencontrerait Iaxe AB prolongé
en un autre point J.

818. La distance BI, etitre les points B <t I, olila courbe BHI rencontre
I'axe AB, sera

BG+GI_I+1(::?+C) n!(?(;{j_(])o

et ]a moitié BK de cette distance sera par conséquent BK = L (P‘: < .
Mais CK=BK —pC=‘EF9_, PHL-C_T. ()
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Faisons » = — %P dans ’équation (522); il nous viendra

12 (2P 4 C) z = 2alP (I—b—%’) + aC (lﬁa— %);),
2
Lo e = SO EEPt- ‘32:} = KL...... (524).

819. Transportons l'origine des coordonnées au point L , I'axe des abscisses
étant la droite ab , menée par le point L paralltlement 3 AB.

Pour cela , observons que x = CP = KP — KC = Lp — KG ; mettons
pour Lp sa valeur &', et pour KC sa valeur () (n° 818); ce qui nous donnera

Observons de plus que z = P = Pp — Mp =KL — Mp , et mettons
pour KL sa valeur (524) et pour Mp,z' ; nous aurons

_ a@®iCp
L= m) =L aeares (5).

Substituons ces valeurs de = et de z dans l'équation (522), et nous
aurons , loutes réductions faites,

or = L0 O L 5a8),

pour U'équation la plus simple de la courbe ILB , qui, comme on voit, est une
parabole ordinaire, dont le parametre est {1&%#). Cette parabole est exac

tement la méme que celle trouvée an n° 701 ; seulement elle est autrement
située par rapport 4 I'axe AB, et dans le cas actuel P et C ne sont que les
moiliés des charges du solide, et [ celle de sa longueur.

820. On trouverait une autre courbe AHL'I" qui passerait par le second
point d’appui A, de sorte que la forme des faces horizontales du solide sera la
figure AHB, terminée par la droite AB et lcs arcs de parabole AH, BH.

821. Comme la loi de Pélasticité du solide dépend uniquement ici de sa lar-
geur z aux différens points de sa longueur, il est facile de voir qu'on pourrait
lm donner la forme indiquée par la figure AcBd , avec cette seule condition
que hg = fe , pour tous les points de la longueur AB , de sorte que la droite
AB divise ou non la figure AcBd en deux parties symétriques.

822. Puisque la lame neutre se courbe suivant un arc de cercle, et que les
deux parties CB, CA du solide sont symétrigues , il-est clair que I'expression
de la fleche de courbure sera celle (374) trouvée au n® 702, en se rappelant

45
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que P et C sont les moitiés des charges du sollde et ! la moitié de sa longueur,
dans le cas actuel,
. , . tab® .

823. Supposons maintenant , que dans l'expression E — % , au lieu de

faire varier @, nous fassions varier & ; en représentant b par z, et substituant
©on .

la valeur ;;z3 de E dans I'équation () du n°® 814, nous aurons

2*
o =Rl -a)+ 0,

pour I'équation d’équilibre qui doit subsister dans toutes les sections transver-
sales du solide:

824. Si dans cette équation (a) nous faisons = o, en appelant b ce que
devient z dans ce cas, nous aurons

tal®
r—Pl—|--—

3 s tab’
dﬂu r = mluu-n (526)’

Iz

valeur du rayon de I'arc de cercle suivant lequel la lame neutre se courbe,
qui est encore la méme que dans les questions précédentes analogues a celle-ci.

825. Substituons cette valeur de r dans I'équation () ci-dessus , et nous aurons
I+ (2P + C) 2 = 2b3 IP (I — ) + b3C (12 — a2)v.n. (521).

Supposons que la figure 167 soit la projection verticale du solide, la droite
AB étant celle de la face inférieure ; prenons la droite AB pour l'axe des
abscisses, et le milieu C de cette droite pour V'origine des coordonnées. Quand
on fera @ = CP, l’équation (526) donnera z=PM, pour Dépaisseur a
domner au solide dans la section transversale PM.

826. Les valeurs de « qui donnent z = o, s'obtiendront en égalant a zéro le
second membre de Iéquation (527), ce qui donnera

AP (l—2)+C@—a)=[alP +C(l+2)] l—a)=10,

d’o x=1, et x=-—-£-—(-a-:—P{:‘--l_-—C—z:-—CE_......(528),
valeurs de x tout-h-fait semblables & celles (523) du n° 817. !

La premiére de ces valeurs de x nous apprend que la courbe DB passe
par le point d’appui B, c’est-a-dire qu'en ce point B la hauteur du solide
est nulle. La seconde des mémes valeurs de «, qui est négative , nous fait voir
“que la. courbe BD prolongée du cié opposé par rapport au point G, ren-
contre I'axe AB prolongé en un point E..
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827. La distance BE du point B au second point E out la courbe BDE

rencontre I'axe AB des abscisses, sera BE — ﬂé‘:—ﬂ, comme au n® 818,

et par conséquent sa moitié BG — !(P;C), et CG = g (a).

Faisons & =— — % dans 1’équation (527), nous aurons

B (oP + C) 23 = ab%P (1+ ) + BiC (= —%)

5 . —_— 8 (P _I_C)ﬁ R—
d’oun ‘ z =25 Wﬁ) — GI..u... (b).

828, Transportons l'origine des coordonnées au milieu G de BE, et pour
cela observons que I'axe des abscisses restant le mgme, les z ne changeront
pas. Quant 2x = CP, elle deviendraz = 2’ — CG = ' — . Substituons

C
cette valeur de x dans I'équation (527), ce qui nous donnera

B @P+ 0= TCIL _ s,

B(P4Cp? PP+ C
22 - (6!".) = (2b5‘—:|~ L T (529),

équation qui est celle d’une seconde parabole cubique affectée d’une cons-
tante (n° 709).

829. A partir du point dappui A, on aura une seconde courbe ADF qui
sera parfaitement égale 4 BDE , et les deux seront symétriquement disposées

par rapport 4 Iaxe vertical CD = b ; de sorte que la face latérale du solide
aura la forme ABD,

830. Puisque la lame neutre du solide se courbe suivant un arc de cercle,
et que P'expression (526) du rayon de cet arc de cercle est la méme que celle

(366) la fléche de courbure dans le cas actuel sera la méme que celle (374)
du n° 7o2.

831. Si dans lexpression E = %?,Inous faisons varier 4 la foisaet b,

il faudra convenir de quelle maniére 'une de ces deux quantités devra va-
rier ; car pour remplir les conditions exprimées par Péquation (@) du n® 814,
il suffit d'une variable. Supposons que a varie comme dans le n° 712; de

sorte quan lieu de a nous ayons ¢ Tx) ; si pour exprimer la variabilité
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ta (I — .
) z3 ; en substi-
124 '

tuant cette valeur de E dans P’équation (2) du n° 814, il nous viendra

ia (Ii—:x) B =P (=2 + C flﬂ—;cg)’

ar al

de b nous le représentons par z, nous aurons E =

t® C (I 4 x)
ou o = P+ e (a).

832. Nommons b ce que devient z lorsque @ = o, clest-a-dire , suppo-
sons que b représente I'épaisseur du solide au point G milieu de AB (fig. 168);

¥ . mb"__ C
l_équatlon (@) donnera =P+

L PRY . . fﬂl{?z
d’olr nous tirerons = EEP O (530).

Cette valeur de », comme on voit, est la méme que celle (383) du no13.

833. Substituons cette valeur de r dans I'équation () ci-dessus, il nous viendra
P9 13— 2P 4 C (1 + )onene (530).
834. En faisan_t Z = 0 , NOUS aurons
2+ C(+a) =0, dob x=—1CEEO (53,

De ce que # na ici qu'une seule valeur qui est négative, il s’ensuit que la
courbe qui sert de directrice 3 la moitié de la face supérieure du solide, ne
rencontre ’'axe des abscisses qu'en un seul point ¢, du cité opposé au point B,
par rapport au point G.

835. Si dans l'équation (531) nous faisons &= Z, il nous viendra

r=Bb =10 | %’%‘9 (533).

Cetle valeur de z ou de Bb est plus grande que & = CD.
S5i dans l'éqiation (531) nous faisons @ — — I, il nous viendra
- 2P

¢ = Aa = b Vm (534).

Cette valeur de z ou de Aa est plus petite que & — CD.

1l résulte de ce qui précéde, que la courbe caDb qui termine la moiti¢ Db
de la face supérieure du solide passe par les quatre points ¢, a, D, b, et sa
concavité est par-dessus. On aura une courbe dDfe toute semblable 4 la pre-
mitre , et les deux seront disposées symétriquement par rapport a V'axe ver-
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tical CD; de sorte que la projection verticale d’une face latérale du solide sera
de la forme ABIDd; et le solide aura la forme singulitre ACCDADS
fig. 169. -

836. Le rayon del’arc de cercle suivant lequel la lame neutre se courbe étant
de méme forme que celui du n° 713, il estclair que la fliche de courbure
actuelle aura I'expression (387) du n° 717, en observant qu'ici P et C repré-
sentent seulement les moitiés du poids suspendu au milieu de Pintervalle AB
(fig. 168), et de la charge uniforme.

837. Nous ne pousserons pas plus loin ce genre de recherches , que le lecteur
pourra continuer autant qua’il le désirera , sans beaucoup de peine , en suivant
la marche que nous avens indiquée dans les derniéres questions , et dans celles
de la septiéme lecon. Nous nous réservons de traiter , toutefois, les questions de
ce genre qne les sujets dont nous nous occuperons par la suile pourront exiger.

Il nous resterait, pour finir ce qui concerne la flexion des corps posés sur
deux appuis , etc. , de résoudre les questions analogues a celles que nous avons
résolues dans la cinquiéme lecon ; mais ces questions ne sauraient offrir des
difficultés au point ot nous en sommes, puisqu’il suffirait d’appliquer les
mémes raisonnemens et les mémes calculs sur les différentes fleches de cour-
bure données dans les legons depuis la sixime jusqu’d celle-ci inclusivement.

LEGON XYV.

De la résistance & la rupture des solides exposés 4 des efforts agissant perpendiculairement a
Teur longueur.

838. Supposons qu'il s'agisse du prisme AB (fig. 138), encastré de nivean
par le bout AB dans un plan résistant , et soumis &, Uaction d'un poids P
suspendu & son extrémité libre B , et d'une charge uniforme C répartie dans
toute sa longueur AB — I.

Il est clair que la rupture d’'un solide doit en général avoir lieu & l'en-
droit ol1 laction de la charge qu'il supporte produit la plus grande courbure
ou, en d'autres termes, au point de la longueur du solide pour lequel le
moment de la charge est le plus grand, pourvu que le solide soit homogene
dans toute sa longueur.

Or, dans le cas actuel , il est évident que la plus grande action de- la
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charge se fera sentir 2 la base d’encastrement ; la rupture aura donc lieu
dans cette base.

Mais le moment du poids P par rapport a la base AD, sera PI, et celui
de la charge uniforme C, sera %. La somme Pl 4 ?de ces deux momens

devra donc faire équilibre 4 la résistance R de la base d’encastrement , de
sorte qu'on aura '

R=Pl 4 &= L0053,

pour I'équation d’équilibre entre la résistance du prisme et I'action de la charge;;
R ayant pour valeur 'une de celles trouvées dans la lecon III, selon la forme
de la section droite du prisme,

839. Cela suppose, pourtant, que la longueur de la piece n’a pas changé 2
linstant de la ruplure, et cette longueur change nécessairement.

En effet, pour que la rupture ait lieu, il faut que la pitce prenne une
certaine fleche de courbure qui est plus ou moins grande , selon que le corps
est plus ou moins flexible ; ce qui rapproche I'extrémité libre du solide du plan
d’encastrement , ou, en d’autres termes, ce qui diminue le bras de levier de
la charge qui produit la rupture. Mais cette diminution est trop peu consi-
dérable pour avoir une grande influence sur le moment de la charge , et cette
influence est encore compensée par la diminution de Iélasticité de la section
de rupture , laquelle se trouve trés altérée bien avant que la fracture n’ait lieu.
Ainsi nous négligerons cette faible cause d’erreur , et nous nous en tiendrons
i supposer que le bras de levier ne change pas, malgré la flexion du solide.

840. Supposons qu'il s’agisse toujoursd’un prisme encastré de niveaw par
un bout , est soumis & U'action d'un poids P (fig. 140) suspendu & son extrémité
libre B, et d'une charge représentée par le triangle ABC.

Dans ce cas, la rupture aura encore évidemment lieu a la base d’encastre-
ment A, de sorte que le moment du poids P sera encore Pl, et celui de la

. . l
charge représentée par le triangle ABC, que nous nommerons Q, sera %— ;
I'équation d’équilibre entre la résistance du solide et la somme de ces deux
momens sera donc

R=p 4 L=LCEED . 536). .

844. 8l s'agissait de la rupture d’un prisme encastré horizontalement par
un bout A (fig. 141), et soumis & Vaction d'un poids P suspendu & son extré-
miié libve B, et d’une charge représentée par le triangle ABC , on trouverait
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par le méme raisonnement, que l'équation d'équilibre est ,*dans ce cas,

R=""CEE0Q . 53y

8492, Si dans les deux derniers cas on ajoutait une charge uniforme , il est
facile de voir que les équations d’équilibre seraient alors respectivement

R — LGP+ zt? 120 ........ (338),

R=CPERID) 53

843. Supposons qu'il s'agisse’d'un prisme AB (fig. 152) , posé librement
sur deux appuis de niveau A , B, chargé d'un poids 2P au miliew D de Uin-
tervalle des appuis , et d’une charge uniforme 2C.

Dans ce cas il est évidenl qu'on”peut supposer le solide encastré depuis
le point A jusqu’au point milieu I, et la moitié isolée DB comme étant
soumise 4 l'action d’une force P agissant au point B de bas en haut, et
d’une charge uniforme C agissant aussi de bas en haut 2 son centre de gra-
vité ; d’o il suit que dans ce cas l'équation d’équilibre sera celle (535)
du n° 838.

844. Si le poids 2P au liew d’étre suspendu au miliew de Uintervalle des
appuls , se trougait appliqué en un point quelconque K (fig. 153), il faudrait
chercher le point de rupture. Or, s'il n’y avait que le poids 2P suspendu au
point quelconque K, la plus grande courbure aurait lieu en ce point K et par
conséquent la rupture ; et sil n’y avait que la charge uniforme , cette rupture
aurait lieu au mileu H de lintervalle des appuis : le point de rupture sera
donc entre les points H et K. Nommons 2 la distance de ce point de rupture
au point B, et 2l la longueur AB du solide; la distance du point de rup-
ture au point A sera 2l — . Quant & la distance du point K (ol1 le poids
2P est suspendu) au point B, nous 'appellerons KB = ¢, ce qui donnera
AK = al —c.

Cela posé, décomposons le poids 2P en deux forces p ét ¢, appliquées aux
points d'appuis A et B; par les principes des forces paralléles nous aurons

p+qg=2P, e p (2l —¢) = qe;

en éliminant entre ces deux équations mous aurons

P (al —
-LT—-Q......... (@), |
Ces forces et g, agissant de bas en haut, feront équilibre au poids 2P,

p=T,etqg=
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La portion de la charge uniforme 2C répartie depuis le point B jusqu’au
point de rupture , sera donnée par la proportion

1 xS ),

et cclle répartie depuis le point A jusqn'au point de rupture, par celle-ci

. C (ol —2)
- “‘“‘“‘T'_"'"-u-lnu‘ (c)-

Maintenant , dans le cas d’équilibre, il faut que les momens qui agissent
dans un sens soient égaux i ceux qui agissent en sens contraire autour du point
de rupture; les forces dont les momens agissent dans le méme sens sont p
et (c), dune part, et ¢ et (b) de l'autre. Les momens des deux premiéres

¢ (2!5* 7 ¢ ﬂ:m , et ceux des deux autres

1:C%" al —

P
seront -;-? X (a2l —a) et

P (al— C
(;1 9 X x et Tx > .1;:; nous aurons donc

Pe (2l — x)

! + C_l_'('m!-—.fc)‘2 Pal—e)m

Pe+Cl
= m--ln-oo (540),
Telle sera la distance du point B au point de rupture.

L’un des membres de P'équation (d) est le moment résultant des efforts
exercés sur le solide qui doit faire équilibre a la résistance qui se développe
dans la section de rupture. Ainsi nous aurons , dans le cas d’équilibre
2P (2l —¢) &+ Ca®

al ?

al

d’olr

R =

ou en substituant la valeur (53g) de o,

aP (2l —¢) (Pe+Cl) (P4-C) C(Pc+CI)

R = TPECH or (B41).

Cette équation se réduit & celle (535), quand ¢ = I, cest-a-dire , quand le
poids 2P est suspendu au milieu de I'intervalle des appuis, comme cela doit étre.

845. Supposons que le solide, toujours posé librement sur deux appuis de
niveau, soit soumis & Uaction d'un poids 2P suspendu en un point quelconque
dans Uintervalle des appuis; dune charge uniforme 2C représentée par le
rectangle ABDF (fig. 1506) , et dune autre charge 2Q repressnm par le
triangle FDE.

Nommons encore x la distance du point B au point de rupture ; ¢ la dis-
tance du méme pmnt B au point -;le suspension du poids 2P et al Vintervalle
AB des deux appuis.

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

THRORIE GENFRALE DE 1A RESISTANCE DES CORPS SOLIDES. 361

Cela posé, nous décomposerons le poids oP en deux forces p et ¢, agissant
de bas en haut aux points d’appui A et B, dont les momens, par rapport au
point de rupture, seront, comme au n° 844 , respectivement égaux

[ — —
Pe (2l — x) ot Pz (al c)........ . (@),
1 {
Nous décomposerons aussi la charge uniforme 2C en deux autres agissant de
bas en haut & leur centre de gravité, dont les momens, par rapport au point de
ruplure , seront , comme au n° 844, respectivement égaux i

C (2 — )} Ca?
w——T-—— et —2—1- .......... (b).

Quand & la charge 2Q, nous la décomposerons de méme en deux parties, I’une
dtant la partie de cette charge réparlie depuis le point d’appui A jusqu’au point
de rupture , et Iautre depuis ce dernier point jusqu’au point d'appui B; ensuite
nous chercherons les centres de gravité de ces deux portions de charge,, pour en
avoir les momens par rapport au point de rupture.

Mais nous avons trouvé au n° 747 (ﬁg 154), que les momens des charges
AONE, OBN, par rapport a un point O quelconque, étaient respecmement

2Q) (P+3ﬂm_m5) zQ nt;_ﬂ% e ).

X représentant la distance DO du milieu D de Pintervalle AB des appuis au point 0.
Si donc O est le point de rupture que nous cherchons, comme DO=DB— OB,
ou x =1 — OB, et que nous appelons ici x la distance OB, il s’ensuit que pour
avoir les momens en question, il suffira de remplacer & par {— x dans les ex-
pressions (c), et de développer et réduire, pour avoir respectivement

2Q (3F = D @),

pour les momens demandés.

et

Observons maintenant que la somme des momens qui agissent dans un sens
doit égaler celle des momens qui agissent en sens contraire autour du point de
rupture, dans le cas d’équilibre , nous aurons

Pe (zl‘w—m) + C (QII;- x)? + 2Q (38~ 3Im‘+a:‘) Pz (n:—c) + Ca® aQa:'

~3a(eh

in

d’oll nous tirerons

1 {P+G) + ‘/ (P z + {-(-Pﬁ%—ﬂuu-""(ﬁ'ﬁ")‘

Telle sera la dlstnnce du point B au point de rupture, en ne donnant que le
46
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signe -}~ au radical, le signe — donnant 4 x une valeur négative qui est étran-
gére & la question.

Le moment R de la résidence  la rupture doit faire équilibre 2 'un des mem-
bres de I'équation (e) ; nous aurons done

Pz (2l -—c) 2Qa?
l

Ca2
Pl — + —-::T —|— ?F'uo-oolo..- (543),

pour Iéquation demandée, dans laquelle il faudra mettre la valeur (542) de =,
aprés l'avoir calculée numériquement, d’aprés les valeurs particulieres de
P,Q, C, c et I, qui appartiendront & la question dont on s'occupera. La formule
(543) serait trop compliquée en y introduisant la valeur générale (542) de .

846. Supposons que le solide , toujours posé librement sur deux appuis de ni-
veau , soit soumis & Uaction d'un pois 2P suspendu en un point quelconque dans
Vintervalle AB (fig. 157) des appuis , d'une charge uniforme 2C représentée par
le rectangle ABHG , et d’une autre charge 2Q représentée par les deux triangles
GEF, EHD, wéunis par leur sommet E au milieu de AB.

Nommons toujours x la distance du point B au point de rupture; ¢ la dis-
tance du méme point B au point de suspension du poids 2P, et 21 I'intervalle AB
des appuis. '

Cela posé, comme dans Varticle précédent, nous décomposerons le poids 2P
en deux forces dont les momens, par rapport au point de rupture, seront respec-
tivement-

Pc (ai—wJ' o 29 L (@)

et la charge uniforme 2C en deux autres dont les momens, par rapport au méme
point , seront respectivement ' :

— 12 2
C (aiﬂ ap G

Quant & la-charge 2Q , nous la recompenserons de méme en deux parties, I'une
étant la portion de cette charge répartie depuis le- point A jusqu’au point de
rupture, et Pautré la portion répartie depuis ce dernier point jusqu’au point B,
et nous en chercherons les momens par rapport au point de rupture.

~ Mais nous avons trouvé au n® 751, que les momens des charges ADF DNO
et NBEO , par rapport & un point N quelconque, étaient respectivement

3% (B + 3lz> + 21%) et 2 £ m:?; 2D ©»

x représentant la distance DN du milieu D de P'intervalle des appuis au point N.
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Si donc N est le point de rupture que nous cherchons, comme DN —=DB—BN,
ou =1~ BN, et que nous appelons ici x la distance BN, il s’ensuit que pour
avoir les momens demandés, il suffira de remplacer  par I— x dans les expres-
sions (c), et de développer et réduire, pour avoir respectivement
Q (68 — 12Px 4- gla® — 22 Qa2 (31 — 22)
308 et T rrrseanse (d)-

La somme des momens qui agissent dans un sens devant égaler celle des mo-
mens qui agissent en sens contraire autour du point de rupture, dans le cas
d’équilibre , nous aurons

Pe {21— x) + C (2! —a)l + Q (6P — 12 3;;9!.1:‘5‘ — 2a%) — Pz (21;- ¢)
2? (3l — 2z '
Q.r....._{:._.____)"”"_" (g)'

]

+

2!
d’ol1 nous tirerons

. — (P+C+ (P+C+2Q | 7 (P+4‘3;|— QP s(Pc+é:1+Q1)m(544)_
Telle sera la dlstance du point. d’appui B au point de rupture, en ne donnant
que le signe — au radical , le signe -~ donnant une valeur positive qui, dépas-
sant le point A, n’appartient point a la question.

En égalant le moment R de la résistance & la ruptur'e‘ au second membre de
Péquation (e), on aura

R=Doll—d | O Q0w L5,

pour I'équation d’équilibre entre la résistance 4 la rupture et I’action des efforts
auxquels le solide est soumis, dans laquelle on substituera la valeur numérique
de x, tirée de I'équation (544).

847. Proposons-nous de trouver I’éqmtwn d’equahbm entre la résistance d’un
prisme posé librement sur deux appuis de niveau, et soumis & Uaction d'un
poids 2P suspendu en un point quelconque entre les appuis , d’une charge uni-
forme 2G représentée par le rectangle ABED (fig. 159 ), et d’une charge repré-
sentée par le triangle DEC.

Nommons x la distance du point B au point de rupture; ¢ la distance du
méme point B au point de suspension du poids 2P, et 2/ V'intervalle des appuis.

Cela posé, observons que les momens du poids 2P et ceux de la charge
uniforme 2G par rapport au point de rupture seront les mémes que ceux
des n® précédens, ainsi ceux de 2P seront P (Qi_"x) Pa: (2! 2 , ek ceux

dencc—(-ﬂ;—f-)-aélc—f.
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Quant & ceux de la charge représentée par le triangle DEC, on les trouvera
en observant que nous avons trouvé au .i° 762 que les momens des charges ANO,
BCON (fig. 158), par rappurt & un point N quelconque étaient respectivement

Q (14 Q (2l + =) (l—-:':)g
R et oF

Si donc N est le point de rupture , il suffira de changer x en I — z dans ces
deux derniéres expressions, pour avoir les momens demandés, qui seront respec-
tivement

Q (2l — ¢ Q (3l—az)a?

6B € 6F

Dans le cas d'équilibre que nous cherchons, la somme des momens qui agis-

sent dans un sens doit égaler celle des momens qui agissent en sens contraire au-
tour du point de rupture, nous aurons donc

— ol —x — al —
Pc(a: x) + C( L! )a + Q(at ) P.m(: c)+ &
49 (3!(;—-:0)mu ........ @,

d’oi1 nous Lirerons

_ 2P -|-QC + Q) l/ 4P (P+ C+Q) 4L (3Pc¢ +j?g,s+-2Q1) ..... (546).

Telle sera la distance du point de rupture au point d’ appm B, en ne donnant
que le signe — au radical.

En égalant le moment R de la résistance & la rupture au premier membre de
Péquation (a), nous aurons

Pe (21 — ) + C (zl’-—:e)’

(a!

R = 4+ G-

- (541),

pour I'équation d *équilibre entre la résistance a la rupture et I'action des efforts
auxquels le solide est soumis, dans laquelle on substituera la valeur numérique
de x, tirée de 'éguation (543)

848. Proposons-nous de déterminer Uéquation d’équilibre entre la résistance
d’un prisme posé librement sur deux appuis de niveau, et soumis & Vaction d’un
poids 2P suspendu en un point quelconque entre les appuis, d’'une charge uni-
forme 2C dans tout Uintervalle AB (Jig. 160) des appuis, et d'une autre charge
uniforme G' représentée par le rectangle abhd , qui n'a liew que dans une partie
ab de la longueur AB du solide.

Nommons toujours x la distance du point B au point de rupture; ¢ la dis-
tance du méme point B au point d’application du poids 2P, 2i lintervalle
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AB des appuis; ¢’ la distance BG du centre de gravité du rectangle abhd A ce
méme point B , et d la demi-longueur ae, eb de la charge abhd.

Cela posé, comme dans les articles précédens, les momens du poids 2P et de
la charge uniforme 2C par rapport au point de rupture, seront respectivement

Pe (2l—ax) Pz (2l —¢) C (al—z?® Ca?
; , 7 ) et - ~, VR (a).

Quant aux momens de la charge uniforme C' représentée par le rectangle
abhd, on les trouvera en observant que si O est le point de rupture, les por-
tions a0, Ob, on aura aO—=Be 4- ca — Bo—=¢ +d — =, et 0b —=0B — Bb,
mais Bb = Be—cb; ce qui donnera Cb —=0B— Be + eb—=x — ¢ +d. Les
portions de la charge uniforme G’ réparties sur les longueurs a0 ou ¢’ +d — x,
et Ob ou x— c'+ d, seront données par les proportions :

C!(c+d-~x) (5),

ad 20 d—
dtC a—e +d .C_-@i-‘-;-df’——’*“’ ee (9)
Le bras de levier de Ja force (b) sera w, et par conséquent son.

gerd—ar ... @

4d
— f . :
Le bras de levier de la force (c) sera a—?—-—%-ﬂ, et par conséquent son mo-

moment sera

ment sera ‘(l—’('i':—‘_é_.d“:_k_d)‘o I (8).

La somme des momens qui agissent dans un sens devant égaler celle des mo-
mens qui agissent en sens contraire autour du point de rupture, nous aurons

Pe (2l —x) + Cl—azp C (c'—}-—d-—z)‘ Pz (2l—¢)

1 2l 7 .t :L
C (x—
+ D e (),
) __ 9 (aPe - 2G4 C'e)
d’ola T = 4C+4P+C'r wewier (547)?

pour la distance du point B au point de rupture
En égalant le.moment R de la résistance a la rupture au second membre de
I'équation (e), nous aurons

= EEmd O SEo e (548),

pour I'équation d’écLui]ibl;e entre la résistance & la rupture et Iaction des efforts

Droits réservés au Cnam et a ses partenaires



http://www.cnam.fr/

J66 .COURS DE CONSTRUCTION

auxquels le solide est soumis, dans laquelle on substituera la valeur numérique
de x, tirée de Péguation (547).

849. Demandons-nous Uéquation d'équilibre entre la résistance d'un prisme
de niveau , encastré par une extrémité et soutenw & Uautre par un appui , et Uac-
tion de la charge du solide, se composant d’'une charge uniforme et d’un poids
suspendu en un point quelconque dans Uintervalle des appuis.

Soit AB (fig. 161) le solide en question, A le point d’encastrement, C le point
d’application du poids suspendu , et B le point d’appui. Cela posé, il est clair
que le prisme se rompra en deux endroits : au point d’encastrement , et en un
autre point compris dans Vintervalle AB, pour lequel la courbure est la plus
grande ; mais comme la rupture ne peut avoir lieu en un de ces deux points sans
avoir lieu en méme temps en I'autre, il nous suffira de considérer la rupture au
point A d’encastrement. -

Or, pour ce point (en prenant la notation du n° 774), la base de rupture doit
faire équilibre au moment de la vésultante du poids P, de la charge uniforme C,
et de la pression P’ du point d’appui B ; nous aurons donc

R = Pc +_%-—— P'i,
Pc (28 — 3lc -2 cp
o R = 4¢ (2 §ﬁ+c) e (54y9),

en mettant pour P/ sa valeur (452), toute réduction faite.

550. Si le poids P ¢lait suspendu au milieu de AB, au aurait [ —=12c, et la
formule précédente deviendrait

R =880 L (s50).

851. Enfin, supposons qu'il s’agisse de la résistance & la rupture d’un prisme
placé dans les circonstances de celut du n° 790 (fig. 162).
* Dans ce cas, la rupture doit avoir lieu en trois points a la fois : aux deux points
d'encastrement A et B, et en un autre intermédiaire ; et il nous suffira encore ici
de considérer celle qui aura lien au point A,

La somme des momens , par rapport a ce point A , devant faire équilibre 2 la
résistance R de la base d’encastrement , nous aurons _

R = Pc + %1+P"c'—-—P'l,

Cl 19PS (b—c) - CB'  12Pe (Bl'—aP— rec'+-le) - CF (6¢'—5)
R =FPc+ 2 128 (c—1) - 1_-119 (¢ — 14

cen mettant pour P” et P’ leurs valeurs (479), ce qui se réduit &

R — lzpc(l:;)"'-(]ﬁ_.,...-m (550'
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Telle sera la formnle qui fera connaitre la résistance a la rupture, pour un
prisme encastré par les deux extrémités ; et chargé d’un poids suspendu en un
point quelconque de sa longueur et d’une charge uniforme continue.

852. Supposons que le poids P soit suspendu 4 égales distances des plans d’en-
castrement ; dans ce cas I — 2¢; si nous substituons dans la formule (551), il

¢ (3P + 5C)
nous viendra R=———=......... (5b2).

853. 8'il Sagissait d'un prisme posé librement de niveau sur plusieurs appuis,
dans les deux intervalles des extrémités, on appliquerait la formule (549) ou
(550), parce que dans ces deux portions le solide serait comme encastré par un
bout, et soutenu par un appui & Pautre bout. Et sl s’agissait d’un solide en-
castré par Jes deux bouts et soutenu par plusieurs appuis intermédiaires, on se
servirait dans tous les intervalles de la formule (551) ou (552). On se servira des
formules (549) et (551), dans le cas ou le poids P sera auspendu en un point quel-
conque , et des doux autres (550) et (552) dans le cas o1 ce poids sera au milieu
de chaque portion du solide.

FIN.
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31, 32, RXDCXP=AD+ Q X DB, lises: RX DC=P X AD + Q X DB.
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' .
55, 16, mom. seg. ACB ;r.--ﬁ-[(pa — y )2, lisez rmom..seg. ACB =:-£'7 [( pr—y* )%

70, 24, laformuledun® {164, ¥sez: la formule du v° 162,
72, 13, mené par la sphre, Jisez ;- mené par le centre de la sphére.

T3, 40, mph (R— —2—-) , lisez: mph'(n - _éh_)
560 360

83, 4,

84, , 1la pyramide, lisez ; de la pyramide,
86, 7, X seg. CaC'=, lises: ¢ seg. Cac =,
=gR*? R’

3 y liser 1 == e,

4
93, 44, Ulellipse régénératrice, isez : lellipse génératrice.
95, 6, tangeant, lises ; tangent.
Ib.,, 29, quand m est infiniment petit , lisez ; quand A est infiniment petit.
40, 28, dés.Tiostant, /isez : de Pinstant,
144, 4, et puissent toutes marcher, lisez ; et qu'elles puissent toutes marcher.
447, 2%, égal B Vt, lises: égal 2 V1,
448, 9, serait égale, fisex: serait égal.
Ib., 22, de sa courbe, lisez : de sa course.
122, 28, delafig. 70, lises : dela fig. 74.

Ib., 16,

v2 e
123, 16, Ehii——,ﬁ.r.es:E=—B;—-'

*th 9o
128, 18, f=%,iim:f==-ﬁ..

94" *
Ib.,, Ib., f= (“r’t— -"::—)’. lisez ; f=(\"|’.-'— ﬁ'tT-)'.

R2 2R
487, 28, quantité de mouvemens, Jisez : quantité de mouvement.
447, 24, et, agissant latéralement, Jises : et qui, agissant latéralement.

158, 10, ns(g'+—§-),am:-_—.a(;+-:—).

9 S (o VT 1t
189, 9, “ﬁ_ﬁ_[C_&:_{;c___d_).],’ﬁ““H:w.

189, 24, la dépente, lises : la dépense. *

494, 23, duns Péquation (b) ci-dessus, Zisez : dans Péquation (a) ci-dessns. .

., 26, o*—2ay” +y* + d'a— 4h'y" = db'x, lises ; @* — 2ay + 7 4 40’0 — 47 = db'x
., 27, (2a4 4b)y", lises: (2a 4 4b')y.
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o

pen celle marquée, dises : peu de celle marquée,

que s’ubira , /isez : que subira.

et précisément , /isez : est précisément.

de molécule consécutives, /isez : de moléeules conséentives.
forces triples , Jisez : force riple.

précédant, Iises : précédent.

égal & Punité, Jisez : égale & Punité.

Du prisme située, lisez : du prisme situé,

(67— 46°%), dises : {6 — 46").

d'oll A? == pr‘ lisez : Aol AS = port,

plas de résistance de matidre, Sises : plus de résistance que de matidre.

4a'3(20 — )2
: l'(ns L) , lises :

42'3r(2 n.'-—n"]---,
3 2

AM — AC — AC =, lisez : AM — AC=.
4 (1—8)(x—2) .., lsez: 4 (1= 2)}(x—2) +..
M= {nl'x.., lisez : M = {nl’x..

Q , Q
$=arE UMy =g
C{l—x) | lis, Cll—xp x)‘
41* T
l:l="(L tl— P(l=x') $.., lisez: d = i(]-»x’)'(s—;’) +
2E e : 2lE
e 4
Chaga—|pr Gy o [P*
2= *+ RB* m,!ﬂe:.::in w
longuer, lises : longeur,
P(1
y=xtang. n 4 {(L—c— 5)eur, lisez : y=1xtang n 4 _L_—!—_cl[(] —C—x
cest-i-dire x = BE, lises : c‘es:-h-dire y =BE.
< (o6l { 514
2E T e R T
horizontal , Jises : horizontale,

943
b5 dises : 420,

1QI° 44Q1*
I'=—l1ang, = “BﬁgE lises : ' =11ang. m + —i%

Mo 4 N, lises: Mc 4 N.
1(51:.[.2@.;.2(:) lirex: nml(sp+2q+m1
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