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AVANT-PROPOS

L'idée de cet ouvrage est née lors d'une Ecole d'Eté d’In formatique organisée
a Alés en 1971, sous le patronage de I'Association Francaise pour la Cyberné-
tiqgue Economique et Technique, pour permettre & des enseignants et a des
chercheurs de réfléchir en commun 4 une présentation pédagogique des matiéres
de I'informatique. :

Un groupe de travail sy est constitué pour rédiger des notes d’enseignement
sur les systémes d’exploitation. Un plan de cours détaillé publié aux Etats-Unis
en juin 1971 par le « Cosine Committee of the Commission on Education of the
National Academy of Engineering » sous le titre « An Undergraduate Course
on Operating Systems Principles » a servi de document de départ et a permis
de dépasser le stade des notes de cours. Divers membres du groupe ont pris
pour base de leur enscignement la rédaction obtenue, ce qui a permis d’en
mettre au point la présentation pédagogique. Enfin, cet ouvrage a constitué
la matiére des cours de trois Ecoles de Printemps sur les Systémes d'Exploi-
tation (Les Arcs, 1973 ; Auron, 1974 et 1975).

Ce livre est e résultat d’un travail fait en commun du début 4 la fin de la
redaction. C'est pourquoi un nom collectif, Crocus, a &1é choisi comme nom
d’auteur par le groupe constitué de : J. Bellino (Centre Scientifique IBM de
La Gaude), C. Bétourné (Université de Toulouse IT1 (*)), J. Briat (Université
de Grenoble I). B. Canet (Université de Rennes I), E. Cleemann (Université
de Grenoble I), J. C. Derniame (Université de Nancy I), J. Ferrié (Université
des Sciences et Techniques du Languedoc (*)), C. Kaiser (Conservatoire
National des Arts et Métiers, Paris (*)), S. Krakowiak (Université de Greno-
ble I(*)), J. Mossiére (Université de Grenoble I (*)) et J. P. Verjus (Université
de Rennes I). Des observateurs ont participé aux travaux du groupe. Ce sont :
G. Bazerque (Université de Toulouse I), J. C. Boussard (Université de Nice),
C. Girault (Université de Paris VI) et C. Carrez (Université de Lille I). Nous
tenons a remercier plus particuliérement ce dernier pour son réle de contesta-
taire permanent.

Nous exprimons notre reconnaissance & toutes les secrétaires, en particulier
4 Mmes G. Perez et M. Suard qui ont assuré une grande partie de la frappe des
nombreuses versions intermédiaires du manuscrit, ainsi qu'a M. J. Riguet,
qui s’est chargé de I'exécution de toutes les figures.

Nous remercions enfin les organismes d’appartenance des différents membres
du groupe pour leur soutien matériel au cours de I'élaboration de cet ouvrage.

(*) Anciennement Iria.
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AVANT-PROPOS
DE LA SECONDE EDITION

L'évolution rapide des recherches et des réalisations dans le domaine des
systémes d’exploitation des ordinateurs a posé aux auteurs un délicat probléme
pour la préparation de cette seconde édition : dans quelle mesure fallait-il
tenir compte des progrés réalisés depuis 1973, date d’achévement du texte
initial ?

Nous avons choisi de nous en tenir & une simple correction des erreurs
matérielles relevées depuis la parution de la premiére édition. Une raison
principale a motivé ce choix : I'évolution de I’enseignement de I'informatique
a fait que la matiére de cet ouvrage est maintenant intégrée, pour une large
part, aux programmes de formation de base en informatique : maitrise,
Instituts de Programmation, Ecoles d'Ingénieurs. Cette formation met I’accent
sur des principes généraux de conception dont la présentation nous parait,
pour I'essentiel, toujours d'actualité. L’abondance des travaux récents dans
plusieurs domaines (protection, modéles, structuration des systémes, ...)
aurait pu justifier une refonte compléte de certaines parties de I'ouvrage.
Mais nous pensons que les concepts récemment introduits n'ont pas encore
atteint une stabilité suffisante pour étre intégrés a un enseignement de base,
¢t que leur présentation reléve encore, pour un temps, des enseignements
specialisés ou de la préparation 4 la recherche.

Depuis I'achévement de la premiére édition, plusieurs ouvrages didactiques
ont été publiés sur les systémes d'exploitation. Nous avons inclus dans un
complément bibliographique ceux qui nous paraissent, i des titres divers,
les plus intéressants.

Nous insistons de nouveau sur I'importance que nous attachons, dans la
présentation pédagogique de la matiére de cet ouvrage, aux études de cas
menées en paralléle : études de systémes existants, projets de systémes ou
parties de systémes. Quelques indications 4 ce sujet sont données dans le
complément bibliographique.

Nous tenons enfin 4 remercier tous ceux qui nous ont aidés par leurs sugges-
tions et critiques, et en particulier les enseignants, étudiants et stagiaires des
divers cycles de formation ol notre ouvrage a été utilisé.

Octobre 1976
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PREAMBULE

L'informatique met en ceuvre des ressources importantes et coliteuses, tant
en ce qui concerne le matériel que les programmes. Un souci d’économie
conduit 4 rendre ces ressources communes a un groupe de traitements. Cette
fonction est remplie par un ensemble de programmes et de dispositifs ciblés
qui constituent le systéme d’exploitation (nous dirons plus simplement : le
systéme). Ce systéme a pour charge de mettre 4 la disposition d'un groupe
dutilisateurs les ressources qu'il administre. Bien que les programmes inclus
dansun systeme ne soient pas essentiellement différents des autres programmes,
ils se particularisent par leur aspect dynamique et par la nécessité d’assurer
l'indépendance mutuelle d'un ensemble d'utilisateurs. Le déroulement des
programmes d'un systéme dépend de la nature de leurs données et de I'occur-
rence d’événements externes, ce qui rend le comportement d'un systéme diffi-
cilement previsible et reproductible. Les problémes qu'impliquent la mise en
commun d’objets, leur partage, leur protection, la nécessité de les nommer, la
synchronisation des actions qui peuvent tre entreprises sur eux, prennent donc
plus dimportance dans un systéme que dans d’autres programmes. Ces pro-
blémes peuvent étre abordés & propos d'un systéme particulier. De nombreux
exemples de réalisations sont exposés dans la littérature technique, mais il est
malaisé de dégager de ces descriptions, dont I'abord est souvent difficile, des
principes généraux de conception. C’est & un tel effort de synthése que nous
avons tenté de contribuer.

Nous ne proposons pas dans cet ouvrage des régles de construction des
systémes d'exploitation, mais simplement des éléments pour leur conception.
Plus exactement nous tentons de dégager, chaque fois que cela est possible,
les principes qui s'appliquent a la conception des systémes ou qui semblent
devoir y contribuer dans les années & venir.

Ces principes intéressent les concepteurs de systémes mais aussi ceux qui
participent de prés & leur évolution, qu'ils en assurent la maintenance ou
Pexploitation. Ce travail leur est donc destiné, ainsi qu'aux étudiants et aux
chercheurs spécialisés dans les problemes liés aux systémes d’exploitation ou,
plus généralement, préoccupés par la conception ou I'utilisation de grands
programmes. De fagon plus précise, cet ouvrage s'adresse aux concepteurs,
4ux programmeurs de systémes, aux étudiants en conception de systémes ou
N programmation avancée, ainsi qu'a tous les enseignants en informatique.
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VIII Systémes d'exploitation des ordinateurs

Nous supposons acquises la connaissance de |'anatomie d’un systéme simple
ainsi que 'expérience de la programmation et de l'utilisation d’un systéme.
Lelecteur devra avoir une idée claire du réle d'un assembleur, d’un compilateur,
d’unchargeur, d'un éditeur de liens, d'un interpréteur et d'un systéme de gestion
de fichiers.

De méme nous supposons connues les notions suivantes :

— l'organisation de I'unité de commande et de I'unité de traitement, les
techniques d’adressage, la structure d'une instruction, le fonctionnement des
meécanismes ciblés d’exécution des instructions, les modes de fonctionnement
(maitre-esclave), les notions d'interruption et de déroutement ;

— l'organisation et les caractéristiques des principaux types de mémoire
(circuits intégrés, tores, tambours, disques, bandes,...):

- le fonctionnement des différents types d’organes d’accés et leurs rapports
avec I'unité de commande ;

— l'emploi des structures usuelles de données (tables, listes, piles, arbores-
cences) et leur représentation en machine ;

— la structuration des programmes (récursivité, réentrance).

Il est également nécessaire de connaitre un langage de programmation. Nous
utilisons un langage inspiré d'ALGOL 60 pour la description des algorithmes,
mais la connaissance d’un langage de niveau équivalent est suffisante pour leur
compréhension.

La bibliographie qui figure 4 la fin de ce préambule recouvre a peu prés les
connaissances prérequises.

Cet ouvrage peut constituer un guide pour 'étude des principes de conception
des systémes d’exploitation des ordinateurs, mais il ne saurait étre 4 lui seul
suffisant. Il doit étre complété par 'étude pragmatique d’un systéme réel. En
particulier, il est recommandé aux enseignants d'illustrer les concepts par des
exemples pris dans un ou plusieurs systémes.

Des exercices repérés dans I'ordre de difficulté croissante par un nombre de
1 & 3 figurent a la fin de chaque chapitre. Leur but est de fournir 'occasion
d’appliquer les connaissances acquises dans le cours et d’approfondir certains
points non traités dans le corps de 'ouvrage. Pour la plupart des exercices, des
schémas de solution sont regroupés in fine.

L’ouvrage contient enfin une bibliographie générale, avec regroupement des
références par chapitre, et un index des termes le plus couramment utilisés.

BIBLIOGRAPHIE POUR LES CONNAISSANCES PREREQUISES

Arsac )., Les systémes de conduite des ordinateurs, Dunod (2¢ édition, 1970).
Hopgood F. R. A., Compiling technigues, Macdonald Computer Monographs (1969).

Knuth D. E., The art of computer programming, vol. 1 : Fundamental algorithms,
Addison-Wesley (1968), en particulier 2.1 4 2. 4.

Meinadier J. P., Structure et fonctionnement des ordinateurs, Larousse (1971).
Profit A., Structure et technologie des ordinatewrs, Armand Colin (1970).
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INTRODUCTION

La variéte des formes externes que peuvent prendre les systémes d'exploita-
tion des ordinateurs et la diversité des fonctions qu’ils assurent rendent malaisée
toute tentative de définition générale ou de classification rigoureuse. C'est
pourquoi, aprés avoir donné une idée des principales fonctions d'un systéme et
des aspects externes le plus souvent rencontrés, nous tenterons de dégager
quelques caractéristiques communes qui guideront notre étude.

1.1 FONCTIONS ET ASPECTS EXTERNES DES SYSTEMES

1.11 FONCTIONS D'UN SYSTEME

Un systéme peut étre examiné sous des points de vue trés divers. On peut
considérer qu'il remplit, vis-a-vis de ses utilisateurs, un certain nombre de
fonctions dont la liste ci-dessous n'est pas exhaustive.

— Gestion et conservation de I'information : il s’agit d"offrir aux utilisateurs
des movyens de créer, de retrouver et de détruire les objets sur lesquels ils veulent
effectuer des opérations.

— (Gestion de I'ensemble des ressources pour permettre 'exécution d'un
programme : le systéme a pour role de créer un environnement nécessaire a
exécution d'un travail.

— Gestion et partage de 'ensemble des ressources : le systéme est alors
charge de répartir ces ressources (matériels, informations et programmes) entre
les usagers. Pour cela, il doit réaliser un ordonnancement des travaux.

— Extension de la machine ciblée : le systéme a ici pour role de masquer
certaines limitations ou imperfections du matériel, ou de simuler une machine
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2 Systémes d'exploitation des ordinateurs

différente de la machine reelle. L'utilisateur a alors a sa disposition une
« machine virtuelle » munie d'un « langage étendu », c’est-a-dire d'un mode
d’expression mieux adapté que les seules instructions ciblées. A l'aide de ce
langage, il peut commander I'execution de ses programmes ¢t en effectuer la
mise au point. Font aussi partie du langage étendu les commandes de I'opé-
rateur et les directives utilisées pour la « géneration » du systéme.

1.12 ASPECTS EXTERNES DES SYSTEMES

Les systemes se présentent sous un grand nombre d’aspects externes ; cette
diversite refléte la variété des tiches 4 remplir et des caractéristiques des
matériels utilisés. En dehors d’une classification historique [Rosin, 9], on peut
classer les systémes suivant la fonction principale qu'ils remplissent. On
pourrait ainsi distinguer :

a) les systémes orientés vers la commande de processus industriels
{exemples : systéme de conduite d’un haut fourneau, systéme de guidage d’une
fusée, central téléphonigue),

b) les systémes orientés vers la conservation et la gestion de grandes quantités
d'information (exemples : sysiémes de documentation automatique, systéme
de gestion de comptes bancaires, systémes de réservation de places),

¢) les systémes destinés 4 la création et & I'exploitation de programmes. Ces
derniers systémes peuvent eux-mémes étre classés suivant le degré d'interaction
possible d'un utilisateur avec ses programmes (systémes de traitement par
trains ou systémes conversationnels), suivant le mode d’entrée des programmes
(local ou a distance, par fournées ou continu), suivant le mode de partage des
ressources (mono- ou multiprogrammation), suivant les possibilités du langage
etendu (langage unique ou langages multiples). Ces systémes peuvent présenter
a un degré variable certains aspects du type a) ou b) : ainsi, les contraintes de
temps sont importantes pour un systéme comportant des usagers interactifs.

1.2 CARACTERISTIQUES COMMUNES

Les divers systémes énumérés précédemment posent i leur concepteur
les mémes types de problémes, bien qu'ils différent par leurs objectifs, par leurs
contraintes et par leur aspect externe. L'analyse de leur structure et de leur
fonctionnement permet en effet de dégager un certain nombre de caractéris-
tigues communes :

— gestion et partage d’un ensemble de ressources,

— désignation des objets et acoss a I'information,

— cooperation entre processus paralliéles,

— protection des informations et fiabilité des programmes.
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Dans le corps de |'ouvrage, nous tentons pour chacun de ces aspects de
dégager les concepts utiles 4 la résolution des problémes rencontrés. Lorsque
I'état des connaissances le permet, nous proposons une approche aussi générale
que possible, illustrée par des exemples pris dans des systémes existants ;
dans le cas contraire, nous suivons une démarche plus pragmatique en partant
de réalisations particuliéres.

Les exemples sont, en général, empruntés a des systémes importants fonc-
tionnant sur des matériels moyens ou gros. Toutefois, les notions présentées
s'appliquent également aux petits systémes.

1.21 PARTAGE DES RESSOURCES PHYSIQUES

Des raisons économiques aménent les utilisateurs d’ordinateurs 4 mettre en
commun leur matériel, ce qui pose le probléme de la planification de son utili-
sation et de son partage. Une maniére immédiate de résoudre ce probléme
consiste & admettre un seul programme 4 la fois en mémoire ; ce programme
dispose donc pendant son déroulement de toutes les ressources de I'installation
laissées libres par le systéme. L'utilisation de I'ordinateur peut alors étre
entiérement planifiée par le service d'exploitation : il suffit de Téserver un temps
suffisant & chacun des programmes et de prévoir 'ordre dans lequel ils seront
executés,

Des considérations d’efficacité conduisent a adopter des méthodes de
partage plus complexes.

Exemple. Soit un systéme de traitement par lrains en monoprogrammation avec
gestion simultanée des entrées-sorties, organisé comme suit : un seul programme
d'utilisateur est présent 4 la fois en mémoire ; les entrées-sorties (v compris 'entrée des
programmes eux-mémes) ont lieu depuis (ou vers) une zone sur disque réservée i cet
effet et sont effectuées par des programmes appelés « symbionts ».

Mémeire secondaire

Mémoire principale
- } Zone d'entrée
Zone de sorte
Syetime Tampons Programme
d'enerde- BN OO
SOITie
Fichiers

Figure 1. Exemple de partage de la mémoire.
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4 Sysrémes d'exploitation des ordinateurs

Le disque est divisé en deux régions : |'une est réservée aux entrées-sorties, 'autre a la
conservation des informations des utilisateurs (fichiers). De méme, la partie de mémoire
principale non occupée par le systéme est divisée en une zone de tampons d’entrée-
sortie et une Zone réservée au programme en cours d'exécution.

Une telle organisation, qui suppose I'existence d'une unité d'échange pouvant fonc-
tionner en paralléle avec I'unité centrale, permet de réduire le temps global de traitement
d’un ensemble de programmes.

Le systéme gére plusieurs files d"attente :

— la file des travaux en attente d'exécution (ces travaux sont rangés dans la zone
« entrée » sur disque,

— les files des informations 4 sortir (il v a une file par type de périphérique).

Cet exemple simple permet de mettre en évidence des notions communes & de
nombreux systémes :

— la demande simultanée d'une méme ressource par plusieurs utilisateurs
conduit & un partage qui peut étre séquentiel (exemple : I'unité centrale) ou
simultané (exemple : le disque, la mémoire principale). Dans le cas de la
mémoire, le partage peut étre statique (les limites des différentes zones sont
fixées une fois pour toutes) ou dynamique (les limites peuvent varier),

— aun instant donné, I'ensemble des demandes relatives 4 une ressource peut
excéder la quantité disponible de cette ressource, et cette situation provoque
l'attente des demandeurs,

D'une fagon plus générale, il existe dans un systéme un ensemble de res-
sources utilisables et un ensemble de travaux (ou charge) dont le traitement
entraine des demandes de ces ressources. Le systéme est chargé de 'attribution
des ressources suivant les objectifs qui ont été fixés & sa conception et qui
peuvent consister a :

— mieux utiliser le matériel ou certaines parties du matériel,

— micux satisfaire les utilisateurs, ce qui peut s’exprimer sous diverses
formes (réduire le temps de réponse, respecter les échéances...),

Ces n}l{-jmtifs peuvent étre contradictoires. La définition du systéme implique
un certain nombre de choix de conception, qui influent sur les performances
finales. Ainsi, dans I'exemple ci-dessus, les choix importants concernent :

— le mode de partage de la mémoire principale et de la mémoire secondaire
(statique ou dynamique ? si dynamique, selon quel critére 7),

— le mode de gestion des différentes files d'attente (avec ou sans priorité 7).

Il est commode, pour chacune des ressources importantes d'un systéme
(processeurs, mémoire centrale, mémoire secondaire), d'étudier séparément
les stratégies individuelles permettant de la gérer. Les résultats d'une telle étude
sont applicables dans les cas ol les problémes d’allocation des divers types de
F&ﬁuum:s peuvent étre découplés ; mais le plus souvent ces problémes inter-
érent.

La mise en ceuvre de plusieurs stratégies particuliéres indépendantes dans
un systéme comportant plusieurs types de ressources peut conduire & des
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conflits si elle est faite sans précautions. En particulier peuvent apparaitre
deux types de phénoménes :
gestion de I'ensemble mémoire-processeur dans un systéme multiprogrammé,
— l'interblocage d’un groupe de processus, situation dans laquelle chaque
processus est en attente d'une ressource possédée par un autre processus du
groupe.
Toute politique d’allocation de ressources doit tenir compte de ces dangers ;
elle doit donc étre congue de maniére globale.

1.22 GESTION DE L'INFORMATION

L'utilisateur d'un systéme informatique désire effectuer des traitements sur
des objets ; ces objets peuvent étre, entre autres, les fichiers contenant des
programmes ou des données, les segments dans les systémes 4 mémoire seg-
mentée, les variables, tableaux et structures définis dans divers langages de
programmation.

L'utilisateur désigne les objets qu'il veut employer grice 4 des identificateurs.
Pour qu'un objet puisse étre traité dans un ordinateur, il faut lui associer des
informations le désignant sans ambiguité; de toute maniére, il faut gu'au
moment du traitement effectif, I'objet puisse &tre localisé par le processeur
charge de ce traitement. Ces différentes informations de localisation ou de
désignation constituent les noms de I'objet. Au cours de son existence, I"objet
peut étre désigneé par des noms différents.

L’exemple qui suit, emprunté au langage de commande du systéme SIRIS 7
sur CII 10070, permet de préciser I'établissement de la correspondance entre
identificateurs, noms et objets.

Exemple.
! Fortran si,go Compiler le programme qui suit et ranger
: le résultat de la compilation dans le fichier
x=sin(y+z) appelc go.
Write ( 273) x Ecrire la valeur de x sur le support associé
: au descripteur 273,
()

! Assign bib, fil, (nam f4lib), (sts,0ld) Assignation au descripteur bib du fichier
existant (bibliothéque Fortran).
! Link Editer le programme contenu dans le
- Option (unsat, bib) fichier go, en allant chercher les références
externes dans le fichier associé au des-
cripteur bib ; placer le résultat (module de
chargement) dans le fichier go (option
@ par défaut).
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P Assign 273, fil, (nam,resul), [unt mi,

{val, 450) ) Assignation au descripteur d’identifica-
teur 273 d'un nouveau fichier resul, i créer

) P sur la bande magnétique n® 450,
! Run Charger le programme &dité contenu dans

le fichier go et 'exécuter.

En 1, le compilateur a produit un programme translatable rangé dans le fichier go.
Dans ce programme :
— le nem de x est une adresse relative (déplacement) par rapport & I'origine du

programme,

— lenom sin n’est pas défini : I'identificateur sin figure dans une liste de références non
satisfaites attachée au programme,

— le descripteur 273 n'a pas de valeur.

En 2, lediteur de liens a produit, dans le fichier go, un module de chargement (trans-
latable) constitué en réunissant le texte initialement contenu dans e fichier go a ceux
du fichier f4/ib dont les identificateurs figuraient parmi les références non satisfaites de
go - par exemple, sin est désigné maintenant par un déplacement relatif & I'origine du
module de chargement et toutes les références a sin se font par ce nom.

En 3, le descripteur 277 a pour valeur la chaine de caractéres ‘resul’; la correspon-
dance entre I"identificateur 273 et le fichier appele resul pourra donc étre complétement
etablie 4 I'exécution.

En 4, les adresses en mémoire ont été fixées pour le module de chargement contenu
dans go: maintenant x et sin désignent effectivement des objets.

Sur cet exemple, on peut constater que la correspondance entre identificateur
et objet est établie en plusieurs etapes : on dit que 'identificateur est progressi-
vement lié & I'objet qu'il désigne.

Le but de cette opération de liaison (« binding ») est essentiellement d’asso-
cier, de fagon plus ou moins durable, I'objet 4 des emplacements adressables par
I processeur, ce qui est la seule fagon de le consulter ou de le modifier. La
lizison est établie & I'aide d’une chaine de noms partant de |'identificateur et
aboutissant & I'objet désigné. Cette chaine peut étre construite en respectant
le sens de I'identificateur vers 'objet : c’est le cas, dans I'exemple ci-dessus
de la variable x. Elle peut aussi &tre construite dans un ordre différent : ¢’est le
cas, dans notre exemple, de la liaison de I'identificateur sin lors de édition de
liens, ol sont reliées deux parties de la chaine constituées 4 I'avance.

L’opération d'« assignation » des descripteurs de fichiers fournit Je moven de
retarder jusqu'au stade de I’exécution le choix du fichier utilisé : un méme
PTogramme peut étre exécuté plusieurs fois avec des fichiers différents sans
avoir & modifier son texte. De fagon plus générale, le principe consistant a
retarder les liaisons (« delay binding time ») permet une plus grande souplesse

d’utilisation, qui se paye par une plus grande complexité et, parfois, une perte
d’efficaciteé.
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Dans de nombreux systémes, d’autres opérations de liaison peuvent encore
intervenir pendant I'exécution du programme : les adresses obtenues a I'édition
de liens sont des adresses « virtuelles » et le mécanisme de transformation de ces
adresses virtuelles en adresses réelles peut étre plus complexe gu’une simple
translation statique : production dynamique d’adresses par des mécanismes
de segmentation par exemple.

On demande souvent & un systéme de permettre a plusieurs utilisateurs
d’accéder & des informations communes. Ce partage pose des problémes
supplementaires puisque I'indépendance des utilisateurs doit toujours &tre
assurée. On peut concevoir deux fagons de partager un objet : constituer de cet
objet autant d’exemplaires distincts que nécessaire, ou bien permettre 4 chaque
utilisateur d’accéder a I'exemplaire unique de I'objet. Dans le premier cas, il
faut assurer la cohérence des différents exemplaires ; dans le second cas, on a
encore le choix entre I'affectation 4 I'objet d'un nom différent pour chaque
utilisateur, ou l'utilisation d’'un nom commun.

Exemple. Une procédure partagée peut étre recopiée en autant d’exemplaires qu'il
¥ a de programmes qui 'utilisent. Une autre solution consiste 4 n'avoir qu'un exem-
plaire réentrant. Dans ce dernier cas, les différents noms qu’elle posséde pour les diffé-
rents programmes qui 'utilisent doivent en dernier ressort désigner le méme objet.

1.23 COOPERATION DES PROCESSUS

Dans un systéme, plusieurs activités peuvent se dérouler simultanément.
Ces activités résultent de I'exécution de programmes. Nous utiliserons pour
les désigner le terme de processus.

Reprenons I'exemple, introduit en 1.21, d’un systéme de monoprogramma-
tion avec « symbiont ». A un instant donné, on peut observer I'exécution d’un
programme par 'unité centrale et d'une entrée-sortie par 'unité d’échange.
Chacune de ces activités fait partie d’un processus. Le déroulement de chaque
processus est déterminé par la suite d’instructions exécutée par ['organe actif
correspondant, ou processeur (unité centrale ou unité d’échange).

Il est commode d’introduire un processus distinct pour une activité que I'on
veut considérer comme indépendante. Une telle décomposition ne tient pas
compte du fait que ces processus peuvent ou non se dérouler simultanément ;
en particulier, elle ne tient pas compte du nombre de processeurs. On dit alors
que les processus ainsi définis sont logiquement paralléles.

Notons que les notions de programme et de processus sont distinctes : chaque
exécution d’'un méme programme correspond 4 un processus distinct ; si de
plus ce programme est réentrant, ces exécutions peuvent étre simultanées.

Dans I'exemple du 1.21, I'exécution du train de programmes d'utilisateurs et
exécution du « symbiont » peuvent étre considérés comme des processus logi-
quement paralléles : le processus travail et le processus symbiont. Toutefois, ils
ne se déroulent pas toujours simultanément ; lorsque symbionr utilise I'unité
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centrale, 'exécution de travail est suspendue. En dehors de ce conflit di & une
insuffisance de ressources, les deux processus ont d'autres interactions :

— le processus symbiont ne doit pas pouvoir accéder & un tampon que le
processus fravail est en train de remplir,

— lorsqu’un tampon de sortie est plein, travail doit réveiller symbiont si ce
dernier est inactif,

— lorsqu’un nouveau programme est introduit dans la file dentrée, symbiont
doit réveiller travail si ce dernier est inactif.

Cet exemple met en évidence I'existence de différents types d'interaction
ENitre processus :

— conflit pour I'accés 4 une ressource (unité centrale ou tampon d’entrée-
sortie) qui ne peut étre utilisée que par un seul processus a la fois {exclusion
mutuelle),

— action directe (synchronisation) d'un processus sur un autre : mise en
attente ou réveil.

On rencontre dans un systéme bien d’autres formes de parallélisme : par
exemple les demandes de service faites par des utilisateurs depuis des consoles
d’acces direct correspondent 4 des processus logiquement paraliéles dont le
déroulement peut étre assuré par un systéme de multiprogrammation a un ou
plusieurs processeurs.

On peut considérer un systéme d’exploitation comme un ensemble de pro-
cessus paralléles pouvant interagir. Pour mettre en euvre ces processus, on a
deux problémes a résoudre :

— écrire les programmes décrivant chaque activité individuelle,

— concevoir des mécanismes d’interactions permettant les différents types
de coopéeration : exclusion mutuelle, synchronisation, communication d'in-
formation.

1.24 PROTECTION

La coexistence, a I'intérieur d'un systéme, d’informations appartenant a
différents utilisateurs impose la protection de ces informations contre les erreurs
de programmation ou contre les malveillances. Par exemple, les informations
utilisées pour la gestion du systéme lui-méme doivent étre inaccessibles aux
programmes des utilisateurs; un utilisateur peut souhaiter n’autoriser la
consultation ou la modification de ses informations privées qu'd certains
utilisateurs explicitement spécifiés ; plusieurs utilisateurs peuvent ainsi avoir
des droits différents sur une méme ressource.

Plus généralement, le réle d’un systéme de protection est de garantir, dans
tous les cas, I'intégrité de certaines ressources protégées. Cette protection
peut €tre mise en ceuvre par différents mécanismes ciblés ou programmeés,
Par exemple, de nombreux ordinateurs comportent deux modes d’exécution :
maitre et esclave, et certaines instructions (entrée-sortie, ...) ne peuvent étre
exécutées qu'en mode maitre.
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1.3 PROBLEMES DE CONCEPTION ET D’EVALUATION

La conception des systémes se trouve actuellement 4 une étape intermédiaire
entre un stade empirique on elle est basée sur le savoir-faire et I'intuition, et
un stade scientifique o elle pourrait s'appuyer sur des études théoriques
conduisant & des méthodes de construction des systémes. Deux approches,
entre autres, sont envisageables :

1) faciliter la conception par une meilleure connaissance du comportement
des systémes existants, soit 4 'aide de mesures, soit par la construction de
modéles de comportement,

2) faciliter la réalisation proprement dite d'un systéme en définissant des
techniques d'écriture pour les gros programmes dont la réalisation pose d'im-
portants problémes de documentation et de communication entre les parti-
cipants.

1.31 MFESURES ET MODELES DE SYSTEMES

La conception et la mise au point d'un systéme sont facilitées par la connais-
sance d'informations quantitatives sur le systéme lui-méme ou sur des systémes
existants analogues.

Différentes techniques de mesures, ciblées ou programmées, permettent
d’obtenir des informations :

— sur le comportement d’un systéme (temps de réponse, débit des travaux,
utilisation des ressources, fréquence de certains événements),

— sur le comportement d'un utilisateur en mode interactif ou sur le compor-
tement dynamique d’un programme.

Ces informations peuvent également étre importantes pour choisir un maté-
riel et un systéme, pour modifier une configuration, pour assurer la comptabilité
de I"'utilisation des ressources et pour optimiser les programmes.

Des renseignements sur le comportement d'un systéme peuvent également
étre obtenus par "utilisation de modéles qui en fournissent une image appro-
chée. Ces modeéles peuvent étre traités par le calcul, si leur complexité le permet,
et fournir ainsi des formules directement utilisables ; si leur complexité est trop
grande, ils peuvent étre traités par simulation.

1.32 METHODOLOGIE DE CONCEPTION

La réalisation d’un systéme nécessite I'intervention de nombreuses personnes
et peut durer longtemps. Etant donné I'absence de techniques automatiques de
construction, la fiabilité d'un systéme dépend beaucoup de la méthode suivie
pour sa réalisation. Ainsi, une mauvaise documentation des programmes ou
I'absence de conventions précises de liaison entre les constituants du systéme
sont des sources importantes d’erreur et diminuent donc considérablement la
fiabilité du produit.
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10 Systémes dexploitation des ordinateurs

La construction d'un programme peut étre simplifiée si ses constituants sont
décrits sous la forme de modules pouvant étre combinés sans avoir 4 connaitre
les details de leur realisation interne.

Chaque module ne doit communiquer avec les autres qu'en suivant des
régles bien définies : les spécifications d'interface. Ces régles doivent en parti-
culier imposer une représentation cohérente des informations communes.

Il est souhaitable de disposer de méthodes d'analyse permettant la décompo-
sition d'un systéme en modules. Deux méthodes peuvent étre employées :

— une méthode de conception descendante consistant 4 définir I'implan-
tation de la solution par étapes ; au cours de chacune d’elles, on compléte les
definitions de fonctions ou d'informations utilisées aux étapes précédentes,

— une méthode de conception ascendante qui utilise des fonctions ou des
informations déja décrites pour la réalisation de nouvelles fonctions.

Dans la pratique, on utilise alternativement 1'une et I'autre méthode.

1.4 ORGANISATION DE L'OUVRAGE

Les divers aspects des systémes qui viennent d'étre considérés sont traités
dans I'ordre suivant :

Chapitre 2 : Processus.

Chapitre 3 : Gestion de |'information.

Chapitre 4 : Gestion des ressources physigues.

Chapitre 5 : Protection.

Chapitre 6 : Mesures et modéles de systémes.

Chapitre 7 : Méthodologie de conception et de réalisation.
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2.1 INTRODUCTION

Lorsqu’on essaie d’analyser le fonctionnement d'un systéme d’exploitation,
on se trouve en présence d'un ensemble d’activités multiples, simultanées ou
non, et présentant de nombreuses interactions mutuelles. Ainsi, dans un
systéme comprenant deux unités centrales, il est possible d’exécuter simultané-
ment deux programmes ; une unité d"échange transfére de I'information indé-
pendamment des unités centrales.

Pour décrire le fonctionnement d'un systéme, il est commode d’introduire
la notion de processus, représentant une activité que 'on veut considérer
comme élémentaire. Un processus représente 1'exécution d'un programme
comportant des instructions et des données : c’est une entité dynamique,
créée 4 un instant donné, qui disparait en général au bout d'un temps fini.

Un transfert d’information par une unité d'échange peut étre considéré
comme un processus; ce transfert correspond & l'exécution d'un certain
nombre de commandes envoyées 4 une unité de liaison.

L’objet de ce chapitre est de préciser la notion de processus, de montrer
comment elle est mise en ceuvre et comment est programmeée la coordination
entre processus. Aucun processus en effet n'est totalement isolé des autres; a
certains moments de son existence il communique avec d’autres processus,
c’est-d-dire qu'il échange avec eux des signaux ou des informations : parfois
il les détruit, les arréte provisoirement, les fait repartir ; en outre, les organes
de la machine, comme I'unité centrale ou la mémoire principale, doivent &tre
partageés entre les processus, qui ne peuvent les monopoliser en général pendant
toute leur existence.
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12 Systémes d'exploitation des ordinateurs

Le probléme général de la décomposition d'un systéme en processus ne nous
intéresse pas ici (voir toutefois 2. 24 4 titre d'exemple). Nous supposons donné
un ensembie de processus, sans nous soucier de leur nature mi de ce qu'ils font :
seuls comptent les problémes généraux de la création, de I'activation et de la
coordination des processus.

Les notions présentées ci-aprés sont bien connues, au moins de nom. Le
lecteur voudra bien admettre qu'il n'est pas possible de donner, dans 1'état
actuels des connaissances, une définition formelle des concepts introduits ; il
devra donc faire appel 4 son expérience. Nous espérons que les notions s'éclair-
ciront a mesure qu’il avancera dans le chapitre,

2.2 DEFINITIONS
2.21 INSTRUCTIONS. PROCESSEUR. PROCESSUS

Comme tout systéme général, un systéme informatique peut ére observée
(ou décrit) a différents niveaux. Nous donnerons plus loin quelques exemples
de niveaux d’observation usuels.

A un niveau donné s'exécutent des programmes, ensembles ordonnés d’ins-
tructions. La nature de I'instruction est fonction du langage considéré, et son
exécution peut étre complexe. L'instruction est considérée comme indécom-
posable (indivisible), c’est-a-dire qu’on s’interdit d'observer le systéme pendant
I'exécution d'une instruction.

L'entite, ciblée ou non, capable d'exécuter une instruction, est appelée
processeur.

Enfin, un processus séquentiel (ou plus simplement processus), qui corres-
pond & P'exécution d'un programme séquentiel, est une suite temporelle
d’exécutions d’instructions.

Exemple 1. Le niveau d’observation le plus courant est celui ol I'instruction est
linstruction (au sens usuel) de la machine, le processeur I"unité centrale ou un canal :
un processus représente alors I'exécution d 'un programme écrit en langage de la machine.

Exemple 2. Dans une machine microprogrammée, on peut observer le systéme au
niveau de la micro-instruction ; le processeur est alors l'organe chargé d'exécuter les
micro-instructions et le processus est I'exécution d’une suite de micro-instructions.
8%l y a parallélisme au niveau des micro-instructions, I'exécution d’une instruction {au
sens de I'exemple 1) met en jeu une famille de processus.

Exemple 3. Dans un systéme permettant d'interpréter le langage APL, l'interpré-
teur APL est le processeur, I'instruction est I'instruction du langage APL et un processus
est I'exéeution d'un programme écrit en APL.

L’ensemble des variables et des procédures utilisables par un processus est le
vecteur d’état de ce processus. Rappelons qu'on s'interdit d’observer le vecteur
d'état d’un processus pendant 'exécution d’une instruction (qui prend toujours
un temps fini). Par contre, entre deux instructions, il est possible d'accéder aux
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donnees qui ont alors une valeur bien définie. Nous dirons que le processus se
trouve alors en un point observable ; deux points observables consécutifs déli-
mitent une instruction.

Certains éléments du vecteur d'¢tat d’un processus ne sont accessibles que
par un processus ; certains autres sont également accessibles par d’autres
processus : on pourra distinguer des variables locales et des variables globales.

Exemple. Dans la plupart des systémes, il existe une variable globale indiquant la
date courante, accessible 4 tous les processus ; de méme, les procédures de gestion de
fichiers sont communes & tous les processus. En revanche, les variables et les procédures
déclarées & l'intérieur du programme d'un processus sont locales 4 ce processus.

2.22 NOTION DE RESSOURCE. ETATS DES PROCESSUS
2.22]1 Ressources et états des processus

Pour qu'un processus puisse évoluer, il a besoin de procédures et de données,
de mémoire destinée 4 les contenir, de 'unité centrale, éventuellement de
fichiers et de périphériques. Nous appelons toutes ces entités des ressources.
Comme les ressources du systéme sont en nombre limité, il n’est pas possible
d’attribuer 4 chague processus, dés sa création, toutes les ressources dont il
aura besoin. On peut alors arriver  la situation o, parvenu en un point obser-
vable, un processus n'est pas en possession des ressources indispensables 4
I'exécution de I'instruction suivante. On dit que le processus est dans I'état
bloqué. Par opposition, un processus qui dispose de toutes les ressources dont
il a besoin pour exécuter I'instruction suivante est dit dans I'état actif.

Exemple 1. Un processus est blogué :

— g'il ne dispose pas du processeur,

— 81 la prochaine instruction & exécuter se trouve dans une page non chargée en
mémoire centrale,

Notons que le probléme est généralement plus complexe : quand un pro-
cessus est bloqué, le moniteur peut décider de lui retirer des ressources supplé-
mentaires pour permettre & d’autres processus de progresser. Ainsi, quand un
processus est bloqué en attente du chargement d’une page, le moniteur lui
retire I'unité centrale au profit d*un autre processus.

Remarque. Dans ce qui précéde, nous avons supposé que la détection des
ressources manquantes avait lieu en un point observable. Dans la pratique,
il n’en est pas tout 4 fait ainsi : on lance I'exécution de I'instruction, qui se
termine anormalement du fait du manque d’une ressource, et on revient auto-
matiquement au point observable précédent (cf. déroutement du CII 10070).

Dans un systéme dans lequel plusieurs processus coopérent a la réalisation
d’un méme travail, un processus peut se trouver dans I'impossibilité de pro-
gresser pour une raison logique : 'attente d’un signal d’un autre processus.

Droits réservés au Cnam et a ses partenaires



14 Systémes d’exploitation des ordinateurs

Exemple 2. Le processus p fait un calcul et range le résuitat dans un tampon, le
processus ¢ est chargé d'imprimer le contenu du tampon : le processus g ne peut s'exé-
cuter que lorsque p a rempli le tampon.

Dans le premier exemple, le programmeur n’est pas conscient du blocage de
son processus ; dans le second, au contraire, c’est lui qui programme explicite-
ment I'attente. Quand on désire distinguer les deux causes de blocage, on les
designe respectivement sous les noms de blocage technologique et de blocage
intrinséque [Saltzer, 66).

Si I'on se place du point de vue du systéme, il est commode de considérer
comme des ressources les signaux de synchronisation échangés par les pro-
cessus : la notion de blocage se confond alors avec 'absence d'au moins une
ressource nécessaire a I'exécution de I'mstruction suivante.

Au contraire, du point de vue du programmeur qui ne se préoccupe que du
blocage intrinséque, il est commode de considérer que chaque processus
s'exécute sur une machine virtuelle qui comprend virtuellement toutes les
ressources nécessaires a4 I'exécution du processus, La correspondance dyna-
mique entre les ressources de chaque machine virtuelle et les ressources phy-
siques du systéme est laissée 4 la responsabilité du systéme.

Examinons maintenant du point de vue du systéme, les transitions entre les
états actif et bloque.

Un processus actif passe dans I'état bloqué dés qu’il lui manque une ressource
necessaire a I'exécution de I'instruction suivante. Un processus bloqué devient
actif dés que toutes les ressources nécessaires sont rassemblées. Pratiquement,
des informations sur les ressources allouées & un processus p font partie du
vecteur d’état de ce processus ; les transitions entre états correspondent donc
4 la modification du vecteur d'état par d’autres processus (ou par le processus p
lul-méme, dans le cas de la transition actif — bloqué).

2.222  Accés aux ressources

Une ressource est dite locale a un processus si elle ne peut étre utilisée que
par ce processus ; elle doit obligatoirement disparaitre 4 la destruction de ce
processus puisqu'elle n'est plus utilisable. Une ressource qui nest locale
4 aucun processus est dite commumne.

Une ressource commune est dite partageable avec » points d’accés (n = /) si
celte ressource peut étre attribuée, au méme instant, 4 n processus au plus.
# Au méme instant » signifie que si un observateur interrompait tous les pro-
cessus et observait leurs vecteurs d’état, il constaterait que la ressource est
utilisée par n d’entre eux au plus. Une ressource partageable 4 un point d’accés
est dite critique.

Des processus sont dits indépendants s'ils n’ont que des ressources locales.
Ils sont dits paralléles pour une ressource s'jls peuvent I'utiliser simultanément
et en exclusion mutuelle 5'il s’agit d’une ressource critique.
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Exemple 1. Une unité centrale est une ressource 4 un seul point d'accés : tous
les processus sont en exclusion mutuelle pour cette ressource.

Exemple 2. Si I'on ne considére que des processeurs virtuels, ressources locales
4 chaque processus, les processus sont indépendants. On peut dire par abus de langage
qu'ils sont paralléles pour la ressource processeur physique,

Exemple 3. Un programme réentrant est une ressource a un nombre illimité de
poinits d’accés,

Le mode d'acces a une ressource peut évoluer dynamiquement : un fichier
est une ressource d une infinité de points d’accés quand il est ouvert en lecture,
critique quand il est ouvert en écriture.

2.223 Pouvoir d’un processus

Nous appelons pouveir d'un processus un ensemble d’informations définis-
sant les ressources accessibles & ce processus, ainsi que leur mode d'acees. Le
pouvoir permet de contréler 'utilisation des ressources en fonction de I'iden-
tite du processus.

Exemple. Un processus en mode maitre peut accéder aux ressources que sont les
instructions privilégiées ; une ¢lé d'écriture permet au processus d’écrire dans les pages
ayant le verrou correspondant.

Le pouvoir d'un processus peut évoluer dynamiquement. Un probléme de
protection se pose quand le processus a besoin d’étendre son pouvoir, pour
'exécution d'une entrée-sortie par exemple (voir Chap. 5).

2.224 Contenu du vecteur d’état

Le vecteur d'état d'un processus contient grosso modo des informations de
deux ordres

— des informations utilisées explicitement par le processus (variables,
procédures),

— des informations utilisées par le systéme pour gérer l'atiribution des
ressources ; il s'agit de la description des ressources attribuées ou demandées.

Exemple. Dans le systéme ESOPE sur CII 10070, le vecteur d'état d'un processus est
défini par :

— le double-mot d’état de programme ou PSD (compteur ordinal, adresse virtuelle
ou réelle,...),

— le contenu des 16 registres généraux,

— le contenu de la mémoire virtuelle.

Le pouvoir du processus est représenté par une partie du PSD (bit indiquant le mode-
maitre ou esclave, ¢lé d'écriture) et un octet contenant I'autorisation d’emploi de cer-
taines primitives du systéme.

CROCys. = Syrvdmier f exploinntion des ordinateurs. 3
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2.23 RELATIONS ENTRE PROCESSUS

Considérons maintenant une famille de processus et leurs vecteurs d’état,
a un niveau d'observation donné.

Deux processus sont en relation (ne sont pas independants) si leurs vecteurs
d’etat ont une intersection non vide : 'un des processus peut rendre une
ressource accessible a l'autre, ou le priver de cette ressource, ¢'est-d-dire
finalement que 'un des processus peut faire changer I'autre d"état.

2.231 Création et destruction

Un processus est une entité dynamique qui nait (lors du lancement de I'exé-
cution d’'un programme) et meurt (a la fin de cette exécution). Avant d’exa-
miner les relations proprement dites entre processus, considérons tout d’abord
les opérations de création et de destruction.

Créer un processus, c'est lui donner un nom et définir son vecteur d’état
initial. Le nom permet au systéme et aux autres processus de désigner sans
ambiguite le nouveau processus. Dans le vecteur d'état initial il faut spécifier en
particulier le programme, les dennées d’entrée et le pouvoir du processus. Si,
comme ¢'est généralement le cas, le processus créé doit accomplir une certaine
tiche au profit du processus créateur, les vecteurs d'état des deux processus
doivent avoir certaines variables communes (données initiales, résultats). Plus
delicate est l'attribution d'un pouvoir initial au processus créé : un probléme
de protection se pose quand le processus créé a un pouvoir supérieur a celui de
son créateur (voir Chap. 3).

On définit récursivement la descendance d'un processus p de la facon sui-
vante :

— un processus g cré¢ par p appartient a la descendance de p,

— 51 un processus g appartient a la descendance de p, tout processus créé
par g appartient a la descendance de p.

— 1l 0’y a aucune autre maniére de créer un processus appartenant 4 la
descendance d'un processus p.

La destruction d’un processus peut intervenir de deux fagons
~ — destruction a sa propre initiative lorsqu'il parvient 4 la fin de son exécu-
tion,

— destruction i linitiative du systéme (ou d'un autre processus) d'un
processus dont on a détecté un mauvais fonctionnement. Dans ce dernier cas,
on doil signaler au processus créateur du processus détruit pqu'il s’agit d’une
termingison anormale et détruire toute la descendance de p (ces processus
pouvant utiliser des données de p).

A la destruction d'un processus, son vecteur d'état disparait ; les ressources
communes qu'il utilisait sont rendues disponibles pour d’autres processus,
ses ressources locales sont détruites.

Les processus sont créés ou détruits soit a I'initiative du systéme, soit 4 celle
d'un processus quelconque.
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2.232 Synchronisation et communication

Deux aspects fondamentaux sont & considérer : la synchronisation propre-
ment dite entre processus (c'est-d-dire le fait de permettre a un processus actif’
de changer d'état ou de faire changer d’¢tat un autre processus) et la commu-
nication de données d'un processus & un autre.

Nous avons signalé en 2.222 I'existence de ressources critiques. Le premier
probléme de synchronisation que nous traiterons est celui de I'exclusion
mutuelle a ces ressources critigues. Il s'agit bien siir d'un cas particulier, mais
que l'on rencontre assez souvent dans la pratique pour qu’il soit utile de
Pexaminer en détail. Nous présenterons ensuite quelques outils plus généraux
de synchronisation. )

En ce qui concerne la communication de données d’un processus 4 un autre,
nous montrerons sur des exemples que la programmation devient trés vite
complexe si on se limite & 'emploi de variables communes et des mécanismes
generaux de synchronisation. Des primitives plus riches seront alors décrites.

2.24 EXEMPLE DE DECOMPOSITION EN PROCESSLS

Ce paragraphe présente un exemple d'utilisation des processus. Nous avons
relenu un sous-ensemble de systéme de gestion des entrées-sorties du systéme
ESOPE [Baudet, 72] dans lequel nous avons supprimé des détails de pro-
grammation sans modifier le découpage en processus et la synchronisation
entre ces processus,

Le systéme auquel on veut ajouter un systéme d’entrées-sorties est 4 accés
multiple : 4 un instant donné, des processus de différents usagers coexistent.
Les usagers peuvent conserver des informations (programmes ou données)
dans des fichiers sur disques (un fichier est un ensemble d’articles, I'article est
I'unité logique d’aceés aux informations). On veut construire un dispositif
permettant 4 un usager d'imprimer le contenu d’un fichier ; aprés la demande,
'impression a lieu 4 un instant dépendant uniquement des demandes en attente
et I'usager ne regoit aucun message en fin d'impression. Nous SUppOsSOns en
outre que le systéme comporte une seule imprimante et que les erreurs de
fonctionnement (fin de papier, erreur de transmission) sont gerées par un
opérateur qui peut en outre mettre en service ou hors service I'imprimante.

Pour exploiter au mieux le parallélisme entre les différentes unités du systéme,
on introduit un processus pour chague unité fonctionnant de maniére auto-
nome, c'est-d-dire

— un processus attach¢ au disque, ou facteur, chargé de la lecture des articles
de fichier,

— un processus attaché a 'imprimante, ou pilote, chargé de I'impression
des articles de fichier,

— Un processus servant, associé a la console de I'opérateur.
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Nous admettons enfin qu'a chaque usager du systéme correspond un pro-
cessus, que nous appelons le processus premier de ['usager, charge d'interpré-
ter le langage de commande. C'est ce processus qui déclenche la demande de
transfert.

Le couple facteur-pilote coopére a la réalisation des sorties de fichier tant
que celles-ci se poursuivent normalement ; s7il se produit des erreurs de trans-
mission, ou si 'opérateur désire arréter un transfert, le processus servant
mtervient. Enfin, le processus premier n'intervient que pour transmettre la
commande de transfert d’un fichier au couple facteur-pilote.

On obtient finalement le schéma suivant :

PREMIER PREMIER

usager i usager |

FACTEL'R

)

PILOTE -'l—-d-—— Intetruption d'entrée-somie

L)

SERVANT "_q—— Intervention de ['opérateus

2.3 EXCLUSION MUTUELLE

2.31 INTRODUCTION AU PROBLEME

Exemple 1. Un client d'un magasin a envoyé deux commandes distinctes portant
sur des matériels différents. Ces deux commandes arrivent séparément au service de la
compiabilité qui, pour chacune d'elles, établit une facture et tient 4 jour le compte du
client. L'établissernent des factures peut se faire indépendamment, dans n'importe quel
ordre ou en méme temps, mais on doit faire attention a ne pas modifier le compte en
méme temps, sinom on pourrait avoir la séquence suivante :

le compte, n, est lu pour la premiére facture :

le compte, a1, est lu pour la deuxiéme facture :

le compte est modifié pour la premiére facture, il devient n + ",
le compte est modifié pour la deuxiéme facture et devient n + M.

La valeur finale ducompte estn + n, aulieuden + Hy + Hj.

. Ex:r:mlple 2. Sﬂ". deux processus p et g qui produisent des données devant étre
Imprimees sur une imprimante unique. L'emploi de cette imprimante par p exclut son
emploi par g tant que I'impression pour p n'est pas terminée.

Exf:tmpl't 3. Endehors de I'informatique, le méme probléme se retrouve dans le cas
de trains ayant 4 circuler dans les deux sens sur un trongon de voie unique.
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Ces trois exemples illustrent la notion d’exclusion mutuelle : le compte du
client doit étre considéré comme une ressource 4 un seul point d’acces, de méme
que l'imprimante ou la voie unigue.

Considérons la programmation, au niveau des processus, de l'exclusion
mutuelle pour une ressource critique ¢ donnée, et appelons section critique
d’un processus, pour cette ressource, une phase du processus pendant laquelle
la ressource ¢ est utilisée et donc inaccessible aux autres processus.

Par hypothése, les vitesses relatives des processus sont quelconques et

INCONNUEs ; MOUS SUPPOSONSs qué tout processus sort de section critique au
bout d'un temps fini.

Nous exigeons de la solution un certain nombre de propriétés -

a) & 1ous instant un processus au plus peut se trouver en section critique
(par définition de la section critique),

b) si plusieurs processus sont bloqués en attente de la ressource critigue,
alors qu'aucun processus ne se trouve en section critique, I'un d’eux doit pou-
voir y entrer au bout d'un temps fini (en d'autres termes, il faut éviter qu'un
blocage mutuel des processus puisse durer indéfiniment),

¢) siun processus est bloqué hors d'une section critique, ce blocage ne doit
pas empécher I'entrée d’un autre processus en sa section critique,

d) lasolution doit étre la méme pour tous les processus, c’est-a-dire qu'aucun
processus ne doit jouer de réle privilégié.

Le lecteur comprendra mieux ces propriétés en étudiant le probléme de
Dekker (exercice 3). Si on disposait d'une instruction adéquate, le probléme
de I'exclusion mutuelle se résoudrait par :

exclusion mutuelle (section critigue )
ou section critigue désigne une suite d’instructions utilisant la ressource critique.
Les propriétés a). b), ), d) sont supposées vérifiées par I'instruction appelée ici
exclusion mutuelle. Cette instruction se décompose en trois étapes
exclusion mutuelle (section critique) © débui
entrée ;
section critigue ;
sortie
fin
Les instructions entrée et sortie doivent assurer le respect des propriétés
a), b), c), d). La réalisation de ces instructions fait toujours appel, en dernier
ressort, & un mécanisme cdblé qui réalise une forme élémentaire d’exclusion
mutuelle,
Nous présentons maintenant plusieurs schémas de réalisation.

2.32 ATTENTE ACTIVE

La solution la plus immédiate consiste & déclarer une variable p accessible
aux processus, de valeur 7 ou (0 suivant que la ressource est occupée ou non ;
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un processus doit consulter p pour pouvoir entrer section critique, et

remetire p a 0 en sortant.
Si I'on programme sans précautions, on se heurte alors 4 de nombreuses

difficultés illustrées par I'exercice 3. Pour obtenir une solution simple, nous
ferons appel 4 une instruction spéciale Test And Set [TAS) qui existe sur
certaines machines; cette instruction, agissant sur une variable m, peut se
décrire ainsi :
imstruction TAS(m) ;
débur
bloguer l'accés d la cellule de mémoire m;
lire le conrenu de m ;
sim = 0 alors
début —
mo= 1,
compieur ordinal = compteur ordinal + 2;
commentaire : le compteur ordinal indigue ['adresse de
Uinstruction suivanite du processus ;
fin

sinon compteur ordinal == compteur ordinal + I;
libérer laccés d la cellule de mémoire m

fin

L'emploi de TAS conduit 4 la solution suivante :
Soit p la cellule de mémoire utilisée pour indiquer que la ressource critique
R est occupée

1) pestinitialisée 4 0.
2) La procédure enfrée s’exprime par les deux instructions ci-aprés :

E :TAS(p):
aller 4 E

‘ D’aprés ce qui précéde, le processus ne pourra sortir de cette boucle, ¢'est-a-
dire exécuter I'instruction suivant le branchement, que s'il trouve p=10
pendant "exécution de TAS.

3) La procédure sortie s'exprime par :

= ﬂ
,, La vlalidité de cette solution tient 4 ce que le test et la mise 4 / de p ne peuvent
étre faits que par une seule instruction TAS(p) 4 la fois. Le blocage de I'accés

a I‘a cellule de mémoire p assure, par ciblage, I'exclusion mutuelle 4 la ressource
critique.

Rmue. Pnut_‘ programmer I'exclusion mutuelle 4 la ressource R, onaeu
besoin d'un mécanisme élémentaire cablé d’exclusion mutuelle 2 une autre
ressource p.
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Dans la solution proposée, un processus blogqué sur p boucle sur Finstruction
de test et monopolise un processeur, d’onl le nom d'attente active, Cela est
acceptable dans un systéme multiprocesseur si I'exclusion mutuelle survient
rarement et dure peu. Nous allons étudier d’autres solutions ol le processus
bloqué perd I'unité centrale et entre dans une file d'attente.

2.33 LES VERROUS

Appelons verrou la variable p précédente et associons & un verrou une file
d’attente f(p). Si un processus ne peut entrer en section critique, il entre dans
la file d"attente ; lorsqu’un processus sort de la section critique, un des processus
de la file d'attente est activé, si celle-ci n'est pas vide ; il est inutile d’activer
tous les processus 4 la fois car un seul pourra entrer en section critique. La
valeur initiale de p est 0.

verrouiller (p) - sip = () alors p == 1 sinon mettre le processus dans la
Sile d'atrente f{p), ce qui le fait
passer a l'étar blogué ;

déverrouiller (p) : 5i f{p) n'est pas vide alors sortir un processus de f(p),
ce qui le rend actif
sinon p = 0

Le verrou p et sa file f/p; sont évidemment des ressources critiques qu'il
faut protéger. Il est plus commode de considérer les deux procédures comme
une seule ressource critique; ce sont des procédures du systéme, car elles
manipulent des files de processus ; nous les appellerons primitives parce qu'au
niveau des processus appelants elles se comportent comme des instructions
et leur exclusion mutuelle n'apparait pas explicitement. Comme toute instruc-
tion, une primitive est indivisible pour ’observateur,

Comment résoudre |'exclusion mutuelle pour I'exécution des primitives ? Les
solutions sont différentes suivant que le systéme posséde un seul ou plusieurs
processeurs :

a) Dans un systéme monoprocesseur, il suffit de rendre les procédures
ininterruptibles ; on utilise le processeur comme ressource critique.

b) Dans un systéme multiprocesseur, cette condition ne suffit pas car elle
n'empéche pas deux unités centrales de consulter et de modifier p et f7p) :
on introduit donc une variable d’exclusion mutuelle dans les procédures,
variable qui sera consultée par I'instruction TAS précédente. On retombe
évidemment sur I'attente active mais cette attente dure au plus le temps d’une
primitive ; par contre la section critique protégée par le verrou p peut durer
un temps non négligeable et il devient rentable de programmer une file d’attente.

Une discussion plus détaillée sera donnée en 2.6,

Droits réservés au Cnam et a ses partenaires



22 Sysiémes d'exploitation des ordinateurs

2.34 LES SEMAPHORES
Nous allons généraliser la solution précédente en utilisant une variable
pouvant prendre des valeurs entiéres quelcongues [Dijkstra, 67, 68].

2.341 Définition
Un sémaphore s est constitué d’une variable entiére ¢s) et d'une file d’attente
fis). La vanable e(s) peut prendre des valeurs entiéres positives, négatives
ou nulles ; nous I"appellerons simplement la valeur du sémaphore. La politique
de gestion de la file d’attente est laissée 4 la guise du concepteur du systéme.
Un sémaphore 5 est créé par une déclaration qui doit spécifier la valeur
initiale efl(s) de efs). Cette valeur imtiale est necessarrement un entier non
négatif. A la création d'un sémaphore, sa file fi's) est toujours initialement
vide.
On peut agir sur un sémaphore s par les deux seules primitives suivantes,
qut sont des opérations indivisibles
P(s) : début
efs)=efs) — I;
sief(s) < Oalors
debut
COMMENIaire | on suppose que cette primitive est exécutée par le
Processus r;
dtat (r) = blogué;
mettre le processus r dans la file f(s)
fin
ﬁj;
Vis) : début
efs) = efs) +1;
siefs) = 0 alors
début
sortir un processus de la file fis) ;
commentaire : soit g le processus sorti ;
érat (g) = actif
fin
_@ R
Remarque. La description de Vs n'indique pas comment se fait le choix
du processus g, car ce choix dépend de la gestion des files d’attente qui varie

selon le systéme. Cependant ce choix ne doit pas avoir d’influence sur le résultat
final des actions entreprises par des processus coopérant 4 I'aide de P et V.

2.342 Propriétés des sémaphores

La définition des primitives P et ¥ a les conséquences suivantes :

1) I_Jn sémaphore ne peut étre initialisé a4 une valeur négative, mais il peut
devenir négatif aprés un certain nombre d’opérations P.
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2) Soit np(s) le nombre d'instructions P exécutées sur le sémaphore s,
nv{s) le nombre d'instructions ¥ exécutées sur le sémaphore s,
efl(s) la valeur initiale du sémaphore s.

1l résulte de la définition de P et de V que
efs) = ellis) — npis) + nui's)
3) Soit nf{s/ le nombre de processus qui ont franchi la primitive Prs),

c'est-d-dire qui, ou bien n'ont pas éé blogués par celle-ci, ou bien ont été
blogués mais débloqués depuis ; 4 tout instant on a :

nf(s) < np(s)
Les effetsde Prs) et de Vys) surnf/s) sont les suivants :
Pis) > npis) = np(s) + 1.
sinp(s) = elfs) + nu(s) alors nfis) = nffs) + 1,
commeniaire © c'est lecasoue(s) = 0
Fis) rnufs) == nuis) + 1;
sinp(s) = elis) + nuis) alors nfis) = nffs) + I
commentaire : c'est le cas o efs) < 0,
Théoréme 1. L'exécution des primitives P et I laisse invariante la relation:
(1) nf(s) = min (npis), el(s) + nvis))

Supposons vérifiée la relation (1) et examinons l'effet de P'exécution de
FPis) et Fys).

La relation (1) peut prendre deux formes suivant les valeurs relatives de
np(sjetdeel{s) + nr(s/. Nous aurons donc deux cas a examiner pour P
et ¥is) (pour alléger I'écriture, nous supprimons dans les tableaux ci-aprés
le nom du sémaphore s).

1) Exécution de P(s)

Forme initiale REI?“DI.] APTCS | Effetsur | Relations aprés
de la relation (1) exceution de f  |exécution de P
e la relation np = np + I n
nf = np p| W= np
np < el + ny nf < el + nv np < el + no | nf = nf + nf = el + nv
nf= el + nv . , nf = el + nv
np:.?eﬂ'+m-{nf_£ np np = el + nv | pas d'effet nf < mp

On constate que dans chacun des cas la relation (1) reste vérifiée aprés exé-
cution de Prs).
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2) Exécution de ¥(s)

Forme initiale Relation apres | perotsur | Relationsapres
. exécution de .
de la relation (1) ne = nr 4+ 1 nf exécution de ¥
= ¢f) ' nf = el + nv
np}eﬂ+nu{:§{w+m npzed+ne|nf=nf+1 nﬁinp
nt = \ nf = n
ﬂpﬂfﬂ+””{n§£$+nv np < el + nv | pasdeffet n_{-¢e§+nu

On constate 4 nouveau que la relation (1) demeure vraie dans chaque cas.
Enfin la relation (1) est vraie pour les valeurs initiales qui sont :

npis) = nvis) = nfis) =0
ellfs) = 0.

Cette relation, gui semble compliquée, s'mterpréte simplement en assimilant
le sémaphore & une barriére : une opération P représente une demande de
passage ; e} + nv représente le nombre total d’autorisations de passer jusqu’au
moment présent ; la relation (1) exprime que le nombre effectif de passages

egale le plus petit de deux nombres, 4 savoir le nombre de demandes et le
nombre d’autorisations.

3) 51 (s} est négative, sa valeur absolue égale le nombre des processus
bloqués dans la file f{s).

On a en effet (conségquence 2)

efs) = ellfs) — npis) + nuis)

sl e(s) <0,ona elfs) + m(s) < np(s)

(1) donne alors :

nfis) = elfs) + nufs)

et — efs) = np(s) — nfis)

4) Si e(s) est positive ou nulle, sa valeur donne le nombre de processus
pouvant franchir le sémaphore s sans se bloquer,

On trouvera dans [Habermann, 72] une étude théorique plus compléte du
probléme.

2.343 Sémaphores d’exclusion mutuelle

L'exclusion mutuelle se résout comme suit : on introduit un sémaphore
mutex, (abréviation pour « mutuelle exclusion »), initialisé a | et chague
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processus s'exécute selon le programme :

Plmutex) ;

secrion critigue ;
Vimutex) ;

suite d'instrucrions ;

fin;
Pour etablir la validité de cette solution, il faut montrer :

— qu’a tout instant un processus au plus se trouve dans sa section critique,
— que lorsqu'aucun processus ne se trouve dans sa section critique, l'entrée
en section critique se fait au bout d'un temps fini.

Théoréme 2. A tout instant, un processus au plus se trouve dans sa section
critigue.

Le nombre de processus en section critique est égal a nffmurex) —
nyfmilex ).

Or, d’aprés le théoréme | :

nf(mutex) = min (np(mutex), 1 + nv{murex) )
d'on :
nfimutex ) — nofmutex) = |1

Théoréme 3. Si aucun processus ne se trouve en section critique, il n'y a
pas de processus bloqué derriére le sémaphore d'exclusion mutuelle.
Si aucun processus ne se trouve en section critique, on a :

(2) nff{mutex) = nvfmutex )
Si des processus attendent derriére mutex, on a :
(3) nfmutex) < np(mutex )

Les relations (1) et (3) donnent

nf{mutex) = nv{mutex) + 1

ce qui est incompatible avee (2).

2.35 DIFFICULTES DE L'EXCLUSION MUTUELLE

Les primitives présentées permettent de programmer aisément "exclusion
mutuelle entre processus, mais il ne suffit pas d’utiliser ces primitives pour
garantir |'exclusion mutuelle ; il faut prendre certaines précautions :

— les modifications de verrous (en 2. 33), de sémaphores (en 2. 34) ne doivent
se faire qu'a travers les primitives; il est donc recommandé de protéger les
tables des verrous ou des sémaphores contre I'écriture et de réserver aux primi-
tives le droit d'y écrire.
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— aucun processus ne doit pouvoir entrer dans une section critique. sans
passer par le P{mutex) correspondant.

Si un processus est détruit en cours de section critique, il risque de bloquer
d’autres processus. Il est alors nécessaire de détecter qu'il se trouve en section
critique et de libérer artificiellement la section. II peut étre également utile de
s'assurer qu'un processus ne reste qu'un temps fini 4 Uintérieur d’une section
critique (cas de boucle ou de blocage).

Les solutions précédentes ne garantissent pas a tout processus d’entrer en
section critique au bout d’un temps fini : si la file d’attente comporte des
priorités, un processus de basse priorité risque d'attendre longtemps, voire
indéfiniment. Par contre, si la file est gérée dans I'ordre des arrivées, tout pro-
cessus entre nécessairement en section critique au bout d’un temps fini,

2.4 MECANISMES DE SYNCHRONISATION

2.41 GENERALITES

Les divers processus d'un systéme n'évoluent généralement pas indepen-
damment ; il existe entre eux des relations qui dépendent de la logique de la
tiche a accomplir et qui fixent leur déroulement dans le temps. Nous désignons
I'ensemble de ces relations sous le terme de synchromisation, bien qu’elles ne
fassent pas intervenir le temps comme mesure de durée, mais seulement comme
moyen d'introduire une relation d'ordre entre des instructions exécutées par
les processus,

Le probléme de la synchronisation consiste donc a construire un mecanisme,
indépendant des vitesses, permettant & un processus actif (soit p) :

— d’en blogquer un autre ou de se bloguer lui-méme en attendant un signal
d'up autre processus,
d’activer un autre processus (soit ) en lui transmettant éventuellement
de I'information.

Remarguons que, dans ce dernier cas, le processus g auquel est destiné le
signal d’activation peut déja se trouver 4 I'état actif; il faut donc définir de
fagon plus précise 'effet de "opération d’activation lorsqu’on se trouve dans
cette circonstance. Deux possibilités se présentent :

a) le signal d’activation n'est pas mémorisé, et par conséquent il est perdu
si le processus ¢ ne I'attend pas,

b) le signal est mémorisé et le processus g ne se bloguera pas lors de la pro-
chaine opération de blocage concernant ce processus.

A ce niveau de I'étude, nous n’avons fait aucune supposition sur les méca-
nismes qui permettent de réaliser ces opérations de synchronisation, appelées
aussi primitives. Deux techniques au moins sont concevables :

a) le processus agit sur un autre processus en le désignant par son nom,
ou bien agit sur lui-méme : la synchronisation est dite directe,
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b) le processus actionne un mécanisme qui agit sur d'autres processus : la
synchronisation est alors indirecte,

Autrement dit, dans le premier cas I'identité du processus doit étre un para-
métre de I'operation d’activation (ou de blocage), alors que dans le second le
nombre et I'identité des processus visés peuvent étre inconnus du processus
agissant.

2.42 MECANISMES D'ACTION DIRECTE

Les processus qui évoluent dans un systéme ne sont généralement pas tous
au point; certains processus peuvent par exemple boucler indéfiniment :
il est alors indispensable de pouvoir les suspendre en les faisant passer 4 1'état
blogué. Pour réaliser explicitement le blocage d’un processus donné g, lorsque
cette opération de synchronisation n'a pas été prévue au moment de I'écriture
du programme, il est nécessaire de disposer d’un mécanisme d'action directe ;
dans ce cas, I'identité du processus que 'on désire suspendre doit étre un
paramétre de la primitive de blocage.

Remarquons toutefois que méme dans le cas ol I'on dispose d'un mécanisme
d’action directe pour réaliser le blocage d’un processus, I"instant ol intervient
cette action dans le cycle du processus a suspendre n'est pas toujours indifférent.
En effet, pour assurer I'homogénéité des variables, certaines opérations exé-
cutées par le processus a suspendre doivent étre rendues logiquement inin-
terruptibles. 1l est donc nécessaire, en pratique, de prévoir des dispositifs des-
tinés 4 interdire qu'un processus soit bloqué par un autre pendant certaines
phases de son activité (sections critiques par exemple).

Le meécanisme de synchronisation décrit dans [Saltzer, 66] est une bonne
illustration d’'un mécanisme d’action directe. Dans ce mécanisme, la coopé-
ration des processus est régie par deux opérations indivisibles bloguer et
éveiller. En outre, & chaque processus g est associé un indicateur booléen noté
éial {'gq) qui indique & tout instant ["état, actif ou bloqué, du processus g.

La primitive bloguer(q) force le passage du processus g a I'état bloque ;
I'évolution du processus reprendra lorsque son état aura repris la valeur
« actif ».

La primitive éveiller{q) a pour effet de rendre actif le processus g, $'il était
bloqueé ; toutefois si la primitive éveiller(q) est exécutée par un processus p
alors que le processus g est encore actif le signal est perdu. Si on veut mémoriser
un signal d’activation émis 4 I'intention du processus g, alors que celui-ci se
trouve ¢ncore a I"état actif, on doit associer a chaque processus un indicateur
booléen supplémentaire noté rémein (témoin d’éveil). Son effet sera de main-
tenir 4 I'état actif le processus g, lors de 'exécution de la prochaine primitive
bloguer(yq).

Dans ces conditions, bloguer(q) provoquera le passage 4 I'état blogué du
processus ¢ si et seulement si témoin(g) = faux.
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Par contre si témoinfg) = vrai, il est remis & faux et 'effet de la primitive
s'arréte la. Lalgorithme de cette opération s’exprime comme suit :

bloguer{g) - si 71 témoin(q ) alors
état{q) = blogué
Sinon

témoin(g) = faux

Ainsi bloguer{q) exécuté par le processus p n'a aucune action sur ce pro-
cessus |, tout se passe comme si le processus g executait bloguer{g) suivant
'algorithme précédent. Sile processus g est déja bloqué, la primitive n’a aucun
effet.

La primitive éveiller(g) active le processus g, §'il est blogué. Par contre
si le processus est encore actif lorsque la primitive est exécutée, témoin(g) est
mis & vrai et I'activation est ainsi mémorisée. L algorithme est le suivant :

éveiller(q) : si état(q) = blogué alors
état(q) = actif

sinon témoin(g) = vrai

On note que le témoin d’éveil d'un processus peut mémoriser une — et une
seule — activation éventuelle, alors que le processus est encore actif : c’est 14
une limitation de ce mécanisme.

2.43 MECANISMES D'ACTION INDIRECTE

Dans un mécanisme d’action direete, le nom du processus & synchroniser
intervient expliciternent comme paramétre des primitives d’activation ou de
blocage ; dans un meécanisme d’action indirecte au contraire, la synchronisation
met en jeu, non plus le nom du processus mais un ou plusieurs objets intermeé-
diaires connus des processus coopérants, et manipulables par eux uniquement
a travers des opérations indivisibles spécifiques. Ces objets intermédiaires qui
appartiennent 4 la classe des données externes d’un processus portent les noms
d’éveénements ou de sémaphores suivant la nature des opérations qui permettent
de les manipuler,

2.431 Synchronisation par événements

Nous illustrerons le concept d'événement en nous référant aux langages de
programmation qui permettent de manipuler ce concept.

Dans un langage de programmation évolué un événement est représenté par
un identificateur ; il est créé par une déclaration qui fixe sa portée en tant
qu'objet du langage. De plus un événement ne peut étre manipulé que par
certaines opérations particuliéres : ainsi un événement peut étre attendu par le
(ou les) processus qui y ont accés, ou bien il peut étre déclenché. En outre, un
evénement peut étre mémorisé ou non mémorisé.
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a) Evenemen! mémorise

Un événement mémorisé est représenté par une variable booléenne ; 4 un
mstant donné, la valeur, 1 ou 0, de cette variable traduit le fait que I'événement
est ou n'est pas arrive. Un processus se bloque si et seulement si I'événement
gu'il attend n’est pas arrive ; selon le systéme, le déclenchement d'un événement
débloque un processus ou tous les processus qui 1'attendent.

Cette notion de memorisation peut, toutefois se traduire avec quelques
différences dans les mecanismes proprement dits : en effet, I'événement mémo-
risé peut étre remis a zéro

— soit explicitement, par un processus, au moyen d'une primitive parti-
culiére,

— soit implicitement dés qu'un processus qui 'attend est rendu actif,

Exemple. En PL/L, il est possible, en utilisant "option rask, d'initialiser des processus
paralléles. Un événement est représenté par un symbole déclaré explicitement par
I'attribut gvent ou implicitement lors de l2 création d’un processus (option iask). L'affec-
tation d'une valeur booléenne 4 un événement se fait au moyen d'une psendo-variable
de type completion de la fagon suivante

completionfevt) = "0 B; indique que I'événement noté evt n'est pas arrivé
ce qui équivant a une « remise a zéro » de I'événe-
ment ;

completionfevi) = "I'B; déclenche I'événement noté evi.

Un processus qui exécute I'instruction wait/evt) sc blogue si et sculement si 1'événe-
ment n'est pas arrivé, autrement dit si completionievet) = '(V'B.

De méme que dans le cas des primitives bloguer-éveiller, on notera qu’on ne
peut mémoriser qu'une activation d'un processus déja actif.

b) Evénement non mémorisé

Lorsqu’il n’y a pas mémorisation, un événement émis alors quaucun pro-
cessus ne I'attend est perdu. Par contre, si un ou plusieurs processus sont
bloqués dans Iattente de cet événement au moment ou il se produit, ces pro-
cessus sont rendus actifs. Nous pouvons comparer 'événement non mémorisé
a un message envoyé par radio, qui est regu uniquement par les personnes a
I'écoute & cet instant précis.

L’intérét de I'événement non mémorisé, que I'on retrouve dans les langages
spécialement congus pour la commande de processus industriels, réside dans
le fait que certaines informations prélevées sur des organes externes deviennent
trés rapidement caduques ; dans ces conditions il est souhaitable que le pro-
cessus charge de traiter ces informations seit activé uniquement lorsqu’il est
blogué en attente des dites informations, sinon elles sont perdues. Toutefois
la notion d’événement non mémorisé est trés délicate 4 manipuler, car elle met
en jeu la vitesse des processus.
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¢) Exiensions de la notion d événement

Nous avons introduit le concept d’'événement dans le cas le plus simple ou
la progression du processus dépend, en un point précis de son programme, de
I'occurrence d'un événement et d’un seul. Cette fagon d’'envisager le probléme
est restrictive.

On peut en effet trés bien imaginer que 'activation d'un processus soit
associée 4 des entités plus complexes qu'un simple événement, par exemple &
I'occurrence conjeinte de deux événements ou a 'occurrence de 1'un ou lautre
de deux événements et plus généralement 4 une expression booléenne d’évé-
nements. Cette idee est illustrée dans I'exemple suivant :

Exemple. Soit le programme PL/T :
pl : procedure;

call p2 gvent(e2) ;
call p3 eventfe3) ;
wait (e2, e3) (i);
end pl ;

Dans ce programme, la tiche pl, pour nous conformer 4 la terminologie de PL/1
initialise au moyen d’une instruction call denx tiches paralléles, respectivement iden-
ufiées par p? et p3, avant d'exécuter une instruction waif. L'événement e2 déclare expli-
citement par lattribut event 4 la création de la tiche p2, sera déclenché par la fin d'exécu-
tion de cette tiche ; ilen est de méme de I'evenement 3 pour la tiche p3.

Il en résulte que :

si { = 2latadche plreste blogueée sur l'instruction wail jusqu'a l'arnvee

des deux événements &2 et 3 ;

si i = [ 'arrivée d'un seul des deux événements suffit 4 débloquer la'tiche pi ;
si i = 0 l'instruction wait est sans effet et la tdche pl ne se blogue pas.

Il est parfois utile d’introduire le délai comme l'attente d'un événement
particulier, et de subordonner I"évolution d'un processus a l'arrivée de cet
événement. En PL/1, par exemple, un processus peut se bloquer lui-méme
pendant une période de temps finie, au moyen de I'instruction delay [ < expres-
sion élémentaire = ) ol I'expression élémentaire, une fois évaluée et convertie,
représente un nombre entier de millisecondes.

2.432 Synchronisation par sémaphores

Nous avons déja rencontré le mécanisme des sémaphores pour résoudre le
probléme de I'exclusion d’accés 4 une ressource critique. Le méme mécanisme
est utilisable pour résoudre des problémes généraux de synchronisation : un
signal d’activation est envoyé par une primitive F, il est attendu par une pri-
mitive P.

Un semaphore s est un sémaphore privé d'un processus p [Dijkstra, 68]
s1 seul ce processus peut exécuter I'opération Pys) ; les autres processus ne
peuvent agir sur s que par Fis).
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Ainsi un processus dont I'évolution est subordonnée 4 I'émission d’un
signal par un autre processus se blogue, au moyen d’une primitive P, derriére
son semaphore privé initialisé 4 zéro. Le signal de réveil de ce processus bloqué
est obtenu en faisant exécuter par un autre processus une opération ¥ sur le
méme sémaphore.

Exemple 1. Relations d’ordre entre deux processus.

L'activation d'un processus p dont 1'évolution est subordonnée 4 I'émission d'un

signal par un processus g se programme comme suit, en introduisant le sémaphore signal
ininalise a 0.

sémaphore signal ; { valewr inftiale = )

processus p ;| géfui processus g © deébui
Al oo Ais Bl:.. . Bj;
Prsignal) ; Visignal) ;
fin: fin:

Dans cet exemple, deux cas peuvent se présenter :

— ou bien le processus p est déja bloqué sur la primitive P/ signal) lorsque le
signal arrive — autrement dit lorsque le processus g exécute la primitive
Visignal ] — et le réveil est alors effectif,

— ou bien le processus p est actif lorsque le signal est émis (1l exécute par
exemple I'instruction Ai) et tout se passe comme si le signal etait mémorise ;
en effet la valeur du sémaphore signal est passée 4 1 et lorsque le processus p
executera la primitive P 1l ne se bloguera pas.

Si I'on suppose maintenant que le processus g exécute n fois la primitive
Visignal) alors que le processus p exécute l'instruction Ai, la valeur n prise
par le sémaphore signal mémorisera 'arrivée des n signaux d’activation et le
processus p disposera alors d'un potentiel de # activations : en conséquence son
blocage sera effectif seulement lorsqu'il exécutera la (n + I)-iéme opération
P(signal), en supposant que le sémaphore n'ait pas été modifi¢ entre temps.

A ce niveau, le sémaphore apparait donc comme un mécanisme de synchro-
nisation suffisamment général pour permettre, a la différence des mécanismes
précédemment exposés, de mémoriser un nombre quelconque d'activations
éventuelles alors que le processus auquel elles sont destinées se trouve encore
a I'etat actif.

11 est possible de combiner 'emploi des sémaphores d’exclusion mutuelle et
des sémaphores privés, pour réaliser des modéles de synchronisation plus
complexes. D'une facon générale, toutes les fois gqu’un processus, pour pour-
suivre ou non son évolution, a besoin de connaitre la valeur de certaines
variables d'état, qui peuvent étre modifiées par d’autres processus, il ne peut
les consulter que dans une section critique. Comme il ne peut se bloquer a
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I'intérieur de celle-ci, le schéma suivant est utilisé :

P{mutex) ;

modification et test des variables d'état ;
st non blocage alors Visempriv) ;
T"['mu!e.r i +

FP(sempriv) ;

Si le test des variables d'état indique que le processus peut continuer, alors
il exécute une opération ¥ sur son sémaphore privé sempriv initialisé 4 0, sinon
I'opération F est sautée. A la sortie de la section critique, les variables d'état
indiquent aux autres processus si I'un d’eux doit ou non exécuter Fysempriv).

La séquence des actions mises en jeu par un processus activateur s'écrit :

Fimutex) ;

maodification et test des variables d'état, suivi
éventuellement d'une apération V sur le sémaphore
Privé sempriv;

Vimurex)

L’exemple suivant va nous permettre de préciser ces schémas.

Exemple 2. Probléme des philosophes et des spaghetti [Dijkstra, 71).

Cing philosophes, réunis pour philosopher, ont au moment du repas un probléme
pratique & résoudre; en effet le repas est composé de spaghetti qui, selon le savoir-
vivre de ces philosophes, se mangent avec deux fourchettes. Or, la table n'est dressée
qu'avec une seule fourchette par couvert. Aprés quelques instants de réflexion, les
philesophes décident d’adopter le rituel suivant :

1) Chague philosophe prend place 4 un emplacement fixe.

2) Tout philosophe qui mange utilise la fourchette de droite et celle de gauche.
[l ne peut pas en emprunter d'autres ; deux philosophes voisins ne peuvent donc pas
manger cn meme lemps.

3) A tout instant, chaque philosophe se trouve dans I'un des trois états suivanis :

— ou bien il mange,

— ou bien il a décidé de manger, et ne peut satisfaire son désir par mangue de four-
chette ; dans ce cas il attend jusqu'a ce que les deux fourchettes (celle de droite et celle
de gauche) soient disponibles,

— ou bien il pense et il a la politesse de n'utiliser aucune fourchette,

4) Initialement tous les philosophes pensent.
5) Tout philosophe qui mange cesse de manger au bout d'un temps fini.

Le comportement de chaque convive se réduit done & une succession d'intervalles
quelconques de réflexion et de ripaille ! Le rituel choisi satisfait les régles de savoir-
vivre de ces philosophes, mais doit &tre complété si 'on veut éviter tout conflit - le cas
typique d'un conflit conduisant 4 un blocage irrémédiable de la docte assemhblée est
celui ot tous les commensaux décident de manger et saisissent au méme moment leur
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fourchette de droite, interdisant du méme coup a leur voisin de droite esage de la
seconde fourchette. De méme un philosophe pourrait attendre indéfiniment s'il n'était

pas averti de la libération des fourchettes dont il a besoin.

Le probléme consiste donc & compléter le rituel choisi en faisant les hypothéses
suivantes :

— les activités des philosophes, penser et manger, sont strictement séquenticlles et
n'ont d’interaction avec les activités des autres philosophes qu’au début et 4 la fin de
leur exécution,

— les actions se dérculent 4 des vitesses quelcongues, non nulles,

— le comportement de chaque convive peut étre assimilé a un processus cyclique.

Une salution

Il s"agit d'élaborer un mécanisme qui permette & ces cing processus de coopérer
sans étreinte fatale ; notons tout de suite que, les philosophes jouant le méme role,
le mécanisme de synchronisation sera identique pour tous.

Associons 3 états 4 chague philosophe i :

cli] = 0 lorsqu’il pense ; .

c[f] = 1 lorsqu’il voudrait bien manger, mais ne le peut pas par
mangue de fourchette ;

c[f] = 2 lorsqu’il mange.

Le passage de 1'état ofi] = 0 4 ¢[i] = 2 n’est possible, d’aprés 'hypothése 2, que si
(4) (cli + 1) # 2) et (eli — 1] # 2) (*)

Si cette condition n’est pas réalisée, le philosophe { passe dans I'état off] = 7 et se
blogue. Cette impossibilité d*évolution du processus [ est obtenue en introduisant un
sémaphore privé, noté sempriv{i], initialisé a zéro.

Maturellement, le test de la condition (4) et les conséquences qui en résultent consti-
tuent une section critique 4 protéger par un sémaphore d'exclusion mutuelle, noté
e,

(*) Dans cet exemple, les opérations sur les indices sont faites modulo 5.
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Les actions effectuées par le philosophe i pour demander des fourchettes s'ecrivent
ainsi :

Bl : Plmuex)
iffr.‘ff+ J‘]#Ejirr’c[:‘— f}aﬁi"}@

débur
i =2,
Vi sempriv(i])
fin
sinon di] = 1;
Vimutex) ;
Pisempriv{i]} ;

31 le test de la condition (4) indique que le processus i peut continuer, alors il exécute
une opération F{sempriv(i]) — la valeur du sémaphore passe de 0 & / — sinon I'opé-
ration est sautée, laissant aux autres processus ['obligation d'exécuter une opération V'
4 un moment favorable. Dans tous les cas, 4 la sortie de la phase critique protégée par
mutex, la variable d'état ef/] refléte le nouvel étar dans lequel va passer le processus |
et par conséquent I'obligation (ou non) pour les autres processus de le réveiller, s'il se
trouve bloqué sur un sémaphore privé.

Le passage de I'état ofi] = 2 4 cfi] = 0 entraine le réveil des philosophes (i + /)
et (i — 1) siles deux conditions suivantes sont remplies :

— d'une part ces derniers avaient décidé de manger, autrement dit k] = / pour
k=i+ leti=1];
— d’autre part on est sir gu'ils disposeront de I'autre fourchette c¢’est-a-dire
clk] # 2pour k =i+ 2eti— 2.
La séquence des actions effectuées s’écrit alors :
B2 - Pimurtex) ;

efi] =0

sifeli + I1= 1} et (ci + 2] # 2) alors
débur —
efi + 1] = 2;

Visempriv(i + I])

si(ei = 1) = 1) et (cli ~ 2] # 2) alors
début
i = d] = 2;
Visempriv[i — I])

V' it Qx ):

Nous donnons I'algorithme de synchronisation complet dans lequel les séquences
BI et B2 sont remplacées par une procédure unique rest(k ).

entier tableau efl) : 4] ; {valeurs initiales = ()

sémaphore 1ableau semprivil) > 4] (valeurs initiales = (1)
sémaphore mutex , [valeur initiale = ] )

Erﬁm test(k ) valeur k ; entier k ;
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sifelk] = 1) et o[k + 1] % 2) et (c[k — 1] # 2} alors
début __ -
k] = 2;
Vi semprivik])
fin
processus philosophe i
Li @ débur
PERSEF |
FP{mutex) ;
cli] = 1.
restii)
Fimutex) ;
P(semprivif]) ;
Tranger ;
Pimutex) ;
i = 0;
testfi = 1)
resifi + 1)
Vimutex),
aller a Li;
fin;

Remarque. Le lecteur pourra constater que cette solution présente un point faible
puisqu’elle n’interdit pas 4 certains philosophes de se coaliser au détriment d'un autre ;
si, par exemple. les philosophes qui se succédent pour manger respecient indéfiniment
I'ordre suivant :

(0,3), (0,2), (4,2), (0,2), (0,3} ... ete.
alors le philosophe J est condamné 4 mourir de faim !

2.44 CRITIQUE DES MECANISMES DE SYNCHRONISATION

Aucun des mécanismes étudiés précédemment ne peut répondre 4 tous les
besoins, du moins de fagon commode. En effet si les primitives introduites
permettent de traduire la coopération des processus sous leur aspect temporel,
elles ne fournissent aucun dispositif de communication d'un processus &
l'autre ; en pratique cette insuffisance peut étre masquée en introduisant des
variables communes auxquelles il faut assurer 'exclusion mutuelle d’accés,
ce qui alourdit le programme.

Evénements et sémaphores sont utiles lorsqu'un processus ignore, en raison
de la nature du probléme, l'identité des processus avec lesquels il coopére ;
les interactions doivent toutefois avoir été prévues deés 'écriture du programme
car événements et sémaphores ne fournissent aucun mécanisme permettant
4 un processus d’en bloguer un autre, si 'algorithme de ce dernier ne comporte
4 'avance aucune primitive de blocage; cela est particuliérement génant
lorsqu’on désire faire surveiller par un processus maitre I'exécution d'un
processus en cours de mise au point ou lorsqu’on désire suspendre un processus
qui boucle.
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Alors qu'un processus peut attendre plusieurs événements avee I'instruction
wail genéralisée, il ne peut agir que sur un seul sémaphore a la fois avec la
primitive P. Alors que dans certains systémes, un événement déclenché libére
tous les processus qui I'attendent, la primitive ¥ sur un sémaphore n'en libére
qu'un 4 la fois; pour pallier cette derniére limitation, on peut généraliser les
primitives P et } en autorisant une variation quelconque (au lieu de + 1)
de la valeur du sémaphore (exercice §).

2.5 COMMUNICATION ENTRE PROCESSUS
2.51 INTRODUCTION

La coopération de plusieurs processus a 'exécution d'une tiche commune
necessite en général une communication d'information entre ces processus.
Les primitives de synchronisation étudiées précédemment réalisent un mode
de communication ot I'information transmise est réduite 4 la forme elémen-
taire d’une autorisation ou d'une interdiction de continuer I'exécution au-dela
d’un certain point prédéterming. Le message se réduit donc dans ce cas & un
potentiel d’activation.

Ce mode de communication ne suffit pas a tous les besoins. Ainsi, lorsque les
actions eXécutées par un processus aprés son activation dependent de 'identité
du processus activateur, cette identité doit pouvoIr tre transmise au processus
active,

La communication d’information entre des processus implique I'accés de ces
processus a un ensemble de variables globales constituant un Univers commun.
51 I'accés des processus & cet univers n’est soumis & aucune restriction a priori,
les processus en communication doivent s'imposer un mode d'emploi des
variables communes garantissant le bon fonctionnement de la communication.
Il se pose alors des problémes de sécurité, en particulier pour la protection des
Zones communes en cas de fonctionnement défectueux dun processus. Un
remede consiste & imposer que tout aceas aux variables communes soit contrdlé.
On est ainsi conduit 4 un type de solution o toutes les communications se
font par des mécanismes spéciaux, sous Je contrdle du systéme.

2.52 COMMUNICATION ENTRE PROCESSUS PAR VARIABLES
COMMUNES

Les probiémes les plus généraux de la communication entre processus
peuvent étre résolus en rendant un ensemble de variables communes accessibles
4 tous |¢=§ processus. Toutefois I'accés simultané de plusieurs processus 4 de
telles variables pose des problémes de cohérence qui ont été développés en 2.3
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régle du jeu plus ou moins élaborée suivant la nature de la communication. Une
régle simple consisterait a inclure tout accés 4 des données communes dans une
section critique ; toutefois, des considérations d’efficacité aménent a réaliser
des sections critiques aussi bréves que possible, et en particulier 4 éviter le
blocage de processus a I'intérieur d'upe telle section.

On peut faire deux remarques sur ce mode de communication général par
acces 4 des variables communes :

— les régles de communications que doivent observer les processus ne
peuvent leur étre imposées car on n'a aucune garantie contre le non-respect
de ces régles par un processus défectueux,

— la communication par consultation et par modification de vanables
communes s¢ préte assez mal a une interaction du type « envoi de messages » ;
un tel mode d’interaction entre des processus p et g serait par exemple :

1) p envoie un message 4 g (c’est-d-dire fournit de I'information et prévient g
que cette information est disponible). Puis p peut attendre ou ne pas attendre
un accusé de réception de g pour continuer.

2) g, qui attendait un message, regoit le message de p et signale, ou ne signale
pas, sa réception a p.

L’arrivée d'un message impliquant le réveil du destinataire en attente, on
voit qu'un dispositif de synchronisation doit étre incorporé dans le protocole
de communication.

Les deux remarques qui précédent vont guider le plan de notre étude. Nous
examinerons d’abord la réalisation, 4 I'aide de vanables communes, d'un
dispositif de communication réunissant synchronisation et transmission
d’information ; puis nous montrerons, & partir d'exemples, comment les
contraintes de sécurité peuvent conduire 2 des mécanismes comportant un
contréle de la communication, supprimant en fait la notion de variables
communes.

2.521 Modéle du producteur et du consommateur

Le schéma connu sous le nom de « modele du producteur et du consomma-
teur » permet de présenter les principaux problémes de la communication entre
processus par accés a des variables communes avec synchronisation. On
considére deux processus, le producteur et le consommateur, qui s¢ commu-
niquent de I'information & travers une zone de mémoire, dans les conditions
suivantes :

— Pinformation est constituée par des messages de taille constante,

— aucune hypothése n’est faite sur les vitesses respectives des deux processus.

La zone de mémoire commune, ou tampon, a une capacité fixe de n messages
(n > 0). L'activité des deux processus se¢ déroule schématiquement suivant
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le cycle décrit ci-apres

PRODUCTEUR CONSOMMATEUR
FPROD : Produire un message ; CONS : Prélever un message
Déposer un message dans le tampon ;
dans le tampon ; Consommer le message ;
aller ¢ PROD ; aller a CONS ;

On souhaite que la communication se déroule suivant les régles ci-aprés -

— exclusion mutuelle au niveau du message : le consommateur ne peut
prelever un message que le producteur est en train de ranger ,

— le producteur ne peut pas placer un message dans le tampon si celui-ci est
plein (on s'interdit de perdre des messages par sunmpression) ; le producteur
doit alors attendre ;

— le consommateur doit prélever tout message une fois et une seule :

— si le producteur est en attente parce que le tampon est plein, il doit &tre
prévenu dés que cette condition cesse d’étre vraie; il en est de méme pour le
consommateur et la condition « tampon vide ».,

Pour représenter de fagon plus précise I'état du systéme, introduisons deux
variables caractérisant 1'état du tampon en dehors des phases de communication
proprement dites (les deux processus se trouvent donc dans leur phase de
production ou de consommation) :

nplein = nombre de messages attendant d’étre prélevés,

nvide = nombre d’emplacements disponibles dans le tampon.

Initialement, nplein = 0, nvide = n.
L'algorithme des deux processus s'écrit alors -

PRODUCTEUR CONSOMMATEUR
entier nplein = 0, nvide = n
PROD : Produire un message ; CONS : (nplein == nplein — I ;

nvide = nvide — | ; sinplein = — [ alors }

{ Sinvide = — ] afarsJ f- attendre ;

attendre ; =

Déposer le message ; Prélever un message

{Hp!e;‘n = nplein 4+ [ ; nvide = nvide + 1 :
Si consommateur en attente aﬁars} { si producteur en attente alors ;

réveiller consommateur : ~ " réveiller producteur;
aller d PROD - Consommer le message ;
aller 4 CONS ;

Les parties notées entre accolades doivent se dérouler de fagon indivisible,
puisqu’elles comprennent le test ¢t la modification de variables critiques.

Considérons a présent le test sur la condition « consommateur en attente »
dans le processus producteur. On Peul remarquer qu'en raison du caractére
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indivisible de la séquence de début du consommateur, on peut remplacer
la condition «consommateur en attente» par la condition nplein = — |/
qui lui est alors équivalente (en fait, on compare nplein 4 0 puisqu'on a fait
nplein = nplein + I). Le test et la modification de cette condition se font
comme suit :

FPRODUCTEUR CONSOMMATEUR
nplein = nplein + 1 nplein = nplein — 1;
si nplein = O alors réveiller sinplein = — I alors
le consommateur ; attendre ;
Remarquons enfin gue les conditions nplein = 0 et nplein = — [ entrainent

respectivernent nplein < 0 et nplein < (. On voit alors que nplein fonctionne en
fait comme un sémaphore avec la restriction, due a I'unicite du consommateur,
gu'un processus au plus peut se trouver bloqué dans sa file. On peut faire la
méme remarque pour le compteur nvide et le producteur. L'algorithme des
deux processus peut maintenant s'écrire :

sémaphore nplein = (), nvide = n;

FPROD : Produire un message ; CONS . Pinplein) ;
Pinvide) ; Prélever un message ;
Déposer le message ; Vinvide) ;
Vinplein) Consommer le message
aller ¢ PROD ; aller d CONS ;

Analysons le fonctionnement du systéme qui vient d'étre decrit.
Reprenant les notations du 2. 34, on note pour un sémaphore s :

np{ s} le nombre d'opérations P exécutées sur ce sémaphore,
nu('s) le nombre d'opérations F exécutées sur ce sémaphore,
nf(s) le nombre de fois qu'un processus a franchi une primitive P(s/.

On a d'aprés le théoréme 1 :
nf(s) = min (np(s), elfs) + nv(s})
Remplacant successivement s par nplein et nvide, on obtient :
{nf (nplein) = min (np(nplein), nv(nplein})
nf (nvide) = min (np(nvide), n + nv(nvide})
Pour chacun des deux processus, appelons phase 1 la phase de production ou

de consommation du message, phase 2 la phase de dépdt ou de retrait du
message.

(3)
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Suivant la phase ol se trouvent les deux processus, les variables nf et ny
vérifient les relations illustrées sur le schéma ci-apreés :

PRODUCTEUR CONSOMMATEUR
EE}--vnf{mfde,'r = nv(nplein} (6.1) F{nplemn )
Pinvide) nfinplein) = nvinvide) +1 (6.2°)
: () —-nf(nvide) = nv(npleinj+1 (6.2)]
Finplein) Finvide )
(S O nfinplein) = nvinvide) (6.1')
. I

Les relations de la phase | sont vraies a |'instant initial, tous les nf et nv étant
nuls. Les transitions entre les relations des phases | et 2 résultent directement
de I'effet des opérations Pet V.

Nous démontrerons deux propriétés du systéme :

Propriété 1. Le producteur et le consommateur ne peuvent étre bloqués
simultanément.
Si tel était le cas, en effet, on aurait :
nfi'nvide) < np(vide) (blocage du producteur)
nfinplein) < np{nplein) (blocage du consommateur)
D aprés (3), on aurait donc :
nfinvide} = n + nvinvide)
nf{nplein) = nv(nplein)
Combinant ces relations avec (6. 1) et (6.1), on obtient

nv(nvide) = n + nv(nvide )

Cette égalité est incompatible avec I'hypothése n > (. L’interblocage est
donc impossible.

Prupr_iété 2. Lorsque les messages sont consommés dans I'ordre de leur
production, le producteur et le consommateur n’opérent jamais simultanément
sur le méme message.

Aucune hypothése n’a jusqu'a présent été faite sur les procédures de dépdt
et de retrait des messages.

Nous SUppOsErons (ce cas se presente fréquemment dans la pratique) que les
messages qmvent etre consommeés dans 'ordre de lenr production. Le tampon
étant cons1de:n“: comme forme de n cases numérotées de@an — /. une technique
classique consiste a ['utiliser de fagon circulaire, 4 I'aide de deux pointeurs :

queue . pointe vers la premiére case vide;

tete . pomnie vers la premiére case contenant un message 4 prélever.
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Initialement, féte = gueue = 0.
Les procédures de dépdt et de retrait d'un message s'écrivent :

déposer {message) : prélever (message) ;
tampon [queue] == message ; message = fampon [1ére] ;
quene = guene + I modn ; téte == téte + I modn;

Si le producteur et le consommateur opéraient simultanément sur le méme
message, on aurait egalite :

téte = quene,

les deux processus se trouvant dans leur phase 2 (dépét ou retrait).
Les relations (6. 2) et (6. 27) sont alors vénifiées :

nf{nvide) = nvinplein) + 1
nf{nplein) = nvinvide) + 1
Les relations (5) permetient en outre d’écrire :
nfinvide) = n + nvinvide)
nfnplein) < nv/nplein)
Eliminant les nf des 4 relations précédentes, on obtient :
(7 0 < nv(nplein) — nvinvide) < n

Or, les processus étant 4 leur phase 2, le pointeur 1éfe (respectivement gueue)
a eté augmenté de 1 4 chague franchissement de nplein (respectivement nvide ).
On peut donc écrire :

téte = (1éte ), + nfinplein) mod n = nfinplein) mod n

queue = (queue), + nfinvide] mod n = nf{nvide) mod n
L'égalité téte = queue implique donc :

nf(nplein} — nfnvide) = 0 modn
ou encore, d'aprési{6.2) et (6.27) :
nv(nplein} — nv{nvide} = Omodn ,
en contradiction avec la double mnégalite (7). _
Le lecteur vérifiera que la relation téte = queue peut étre vérifiee quand un

processus au moins ne se trouve pas dans sa phase 2. Elle traduit alors, comme
a I'instant initial, le fait que le tampon ne contient aucun message.

Il est possible de démontrer simplement les résultats précédents sans faire

appel au théoréme 1 (exercice 9). ‘
Dans la construction du mécanisme de synchronisation, I'hypothése de
l'unicité du producteur et du consommateur ne joue pas un role essentiel : le
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méme raisonnement s'appliquerait & un nombre quelconque de processus de
I'une et I"autre classe (il suffit, par exemple, dans le programme des pruduu.lzteu rs,
de remplacer la condition « consommateur en altente » par « au moins un
consommaleur en attente », les sémaphores nplein et nvide pouvant alors
prendre des valeurs inférieures & — J). Le schéma précédent pourrait donc
s'appliquer & un ensemble de producteurs et de consommateurs partageant
un tampon commun. Toutefols, rien ne garantit maintenant l'exclusion
mutuelle de 'accés au tampon pour des processus d'une meme classe, et cetie
exclusion doit étre explicitement programmeée.

Movennant cette modification, 'exclusion mutuelle entre producteurs et
consommateurs se démontre comme precedemment, en utilisant le fait qu'un
producteur et un consommateur au plus peuvent simultanément se trouver
dans leur phase de dépdt ou de retrait.

Le programme des producteurs et des consommateurs s'écrit :

PRODUCTEUR CONSOMMATEUR
sémaphore nplein = 0, nvide = n,
mutexprod = I, mutexcons = | ;
entier téte = i, gueue = 0

PROD : Produire {message 1) ; CONS : P(nplein) ;
Piavide) ; P(mutexcons) ;
Pimutexprod) ; message 2 = tampon [tére] ;
tampon|quene] == message 1 ; féte == téte + I modn;
queue = quene + [ modn ; Vimutexcons):
Vimwexprod): Vinvide) ;
Vinplein) ; Consommer (message 2) ;
aller a PROD ; aller d CONS ;

2.522 Communication par boite aux lettres

La communication entre processus suivant le schéma dit de la boite aux
lettres est une application directe du modéle du producteur et du consom-
mateur. Une boite aux lettres est une zone de mémoire permettant la communi-
cation entre ces processus suivant le schéma qui vient d’étre défini. Remarquons
que, lors du dépdt d’un message par un producteur, un consommateur quel-
conque se trouve active, et pas nécessairement le destinataire prévu; on voit
donc que e dispositif n'est efficace que si tous les destinataires sont equivalents
(c’est-a-dire s'il est indifférent, pour accomplir la tiche demandée, d’activer
l'un quelconque de ces processus). Sinon, l'identité du destinatzire doit faire
partic du message, ce qui implique un tria la réception. La solution générale-
ment retenue consiste donc & prévoir une boite aux lettres par classe de processus
équivalents, évitant ainsi tout tri i la réception.

Exemple. Soit un systime d’entrée-sortie gérant un lecteur de cartes et deux

ill'nprimantﬂ, ces trois périphériques pouvant fonctionner en paralléle. Les opéra-
tions possibles sont ¢

— Imprimer le contenu d'un fichier,
— lire des cartes et placer leur contenu dans un fichier,
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L'impression d'un fichier peut étre demandée par un processus quelconque {corres-
pondant & I'exécution d’un programme d'utilisateur). La lecture de cartes ne peut étre
demandée, pour des raisons de sécurité de manipulation, que par une commande
introduite 4 la console de I'opérateur.

Si on veut exploiter complétement le parallélisme, on prévoira trois processus consom-
mateurs, un par périphérique; les deux processus gérant les imprimantes sont équiva-
lents, en ce sens qull est indifférent qu'un fichier soit imprimé sur 'une ou ["autre
imprimante. Les demandes d'entrée-sortie utilisent deux boites aux lettres suivant le
schéma ci-apres :

PRODUCTEURS CONSDMMATELRS
{ [_- Plocessus imprimapte 1
Procecssus Baoice aux lettres
demandeurs o Empression
d'impression
! [ 1 L & Pmeessus imprimante 2
Boite aux lettres
s lecture »
Opératens ) L Processus lectewr cames

Les messages transmis dans les boites aux lettres contiennent identité du fichier
concerné par |'entrée-sortie et peuvent comporter des renseignements complémen-
taires (entrée en binaire ou symbolique, etc...).

Le fonctionnement d’une boite aux lettres étant ainsi défini dans son prin-
cipe, il reste 4 examiner les modalités de son implantation,

— Allocation d’espace pour la(ou les) boite(s) aux lettres.

— Accés 4 la boite aux Jettres : celle-ci doit étre adressable par tous les
processus qui l'utilisent. Cette contrainte est 4 la source des principaux pro-
blémes d'implantation d'un systéme de communication par boites aux lettres,
en particulier dans le cas ou chaque processus dispose d'un espace d’'adressage
distinet.

— Protection contre les actions intempestives.

Ces problémes doivent trouver pour chague implantation une solution
spécifique dépendant des caractéristiques du systéme. Nous nous bornerons
donc & quelques remarques générales :

— L’allocation d’espace peut se faire statiquement ; c'est la solution la plus
simple. A la création d'un processus, I'espace nécessaire pour sa boite aux
lettres est réservé une fois pour toutes. Une solution moins coliteuse en espace
consiste & allouer une zone fixe 4 'ensemble des boites aux lettres et a partager
dynamiquement cet espace suivant les demandes. Le cas de la saturation de la
zone doit alors étre prévu.
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— Les problémes d’accés et de protection peuvent étre liés; en effet, une
fagon d’assurer la protection est de n'autoriser I'acces 4 la boite aux lettres qu'a
travers une procédure assurant un contrdle de validité. Un contréle préalable
peut étre fait sur I'identité du processus : par exemple, le droit d'aceés aux
diverses boites aux lettres du systéme peut faire partie du pouvoir des processus.

2.53 MECANISMES SPECIAUX DE COMMUNICATION

Nous allons maintenant €tudier deux exemples de mecanismes spéciaux de
communication. Leurs caractéristiques communes sont

— le passage obligatoire par des procédures spéciales pour l'accés aux
variables critigues,
— la présence d'un dispositif de synchronisation.

2.53]1 Sémaphores avec messages [Saal, 70]

Le principe du sémaphore avec message découle de la remarque suivante °
lorsqu’un processus p active un processus g par une opération ¥ sur son séma-
phore privé, cette activation accompagne souvent une transmission d'infor-
mation (par exemple I'identité de p, la nature de I'action requise de g par p, ...).
On peut dés lors songer & inclure cette transmission d’information dans le
mécanisme méme des primitives de synchronisation.

On définit ainsi deux primitives Py, et V,, agissant sur des sémaphores et
générahsant P et V :

L'opération F, est I'opération ¥ complétée par un envoi de message. L'opé-
ration Py, est I'opération £ complétée par la réception d'un message. Pour la
description de ces opérations, on introduira des variables de type message ;
les opérations Py, et ¥y, seront représentées par des procédures ayant de telles
variables comme paramétres.

Soit message regu une variable de type message locale 4 un Processus p.

L'opération

P (s, message regu)

exécutée par p est équivalente &

Pis);
{ affectation d’une valeur & message regu ; }
De méme, soit ressage Iransmis une variable de type message locale i un
processus p. L'opération
Val's, message transmis)
exécutée par p équivaut a
Vis) .

passage de la valeur de message transmis : cette valeur sera
affectée au message recu d’un processus g qui franchira P(s)
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De fagon plus précise, on associe 4 chaque sémaphore s une file de processus
/() et une file de messages f)(s/). On notera par une fléche (—) le transfert
d'un processus ou d’un message dans (ou hors de) la file correspondante. Les
opérations Py et ¥y, peuvent alors se décrire comme suit, en désignant par p le
processus qui les exécute :

P (5. message regu(p)) Vs, message transmis)
efs) = efs) = 1, efs) = efs) + I;
siefs) < 0 alors siefs) < 0alors
T début début

érat (p) = blogué choisir g € fe(s);
p = fols) message regu (q) 1=
fin MESSage Iransmis ;
sinon érai {'q) = actif ;
début fols) = g
choisir m e [y (s} Jin
Juls) = m; Stnon
MEessage regu == m message transmis — [y (5}

&T,'
En admettant qu’initialement e/s) soit nul et que les files fy(s) et fo/s)
sodent vides, le lecteur pourra établir la propriété suivante :
Aprés un nombre quelconque d'opérations Py (s) et Vy(s) :
Siefs) < 0, la file fp(5) contient | e(s) | processus, la file fi/s) est vide.
Si e(s) =0, la file fi,(s) contient efs) messages, la file fp(s) est vide.
On peut en tirer deux conséguences :

— il est possible de remplacer les deux files f5(s) et fy,('s) par une file unique
fis), dont les éléments sont des pointeurs sur des processus (st e(s) < () ou
des messages (siefs) = 0),

— si on initialise un sémaphore avec message 2 une valeur n > 0, on doit
aussi placer n messages dans sa file fi's).

Les problémes d'allocation de mémoire pour les messages semblent res-
treindre ces primitives aux cas ol les messages transmis ont un format stan-
dard ; il est en effet difficile, 4 U'intérieur de primitives qui doivent rester indi-
visibles, de mettre en ceuvre des mécanismes trés complexes d’allocation de
zones de mémoire de longueur variable. D’autre part, I'opération ¥y, ne peut
s'exécuter correctement quand la file f,, associée est pleine : on doit prévoir
une réaction spéciale pour ce cas. L'exercice 10 donne un exemple d utilisation
des sémaphores avec messages.

2.532 Communication entre processus dans le systéme MUS
Le systéme MUS [Morris, 69] est réalisé a I'Université de Manchester sur une
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machine prototype. Dans ce systéme, toul processus est représenté par une
machine logique comportant un processeur et une mémoire principale.

Une mémoire secondaire unique contient des informations communes,
constituées en ensemble de segments. La mémoire principale d'une machine
logique peut étre mise en communication avec cette mémoire secondaire,
permettant au processus correspondant d’accéder a un segment.

La communication entre machines logiques se fait par I'intermédiaire de
canaux : toute machine logique posséde 16 canaux, associés 4 16 niveaux
d'interruptions sur le processeur logique. Un nombre quelconque de messages
peuvent étre envoyés sur chague canal; ils sont rangés dans une file. Chaque
message comprend

— l'identité du processus expediteur,

— une zone speécifiant une demande de réponse sur un canal de 'expéditeur,

— un numéro de segment (éventuellement),

— une zone de message de 120 caractéres,

— un lien de chainage vers le message suivant sur le méme canal.

Les messages courts (Jusqu'a 120 caracteres) sont passes directement dans la
zone de message ; les messages longs sont placés dans un segment dont le
numéro est transmis. L'arrivée d'un message sur un canal provoque une
interruption sur le nivean correspondant a ce canal.

Les processus disposent de certaines possibilités de filtrage sur les messages
qu’ils regoivent. Un processus peut en particulier :

— inhiber un niveau d’interruption correspondant 4 un canal; il devient
alors sourd aux messages arrivant sur ce canal,

— etablir une sélection sur les messages regus, en modifiant 'état de ses
canaux.

Un canal peut se trouver dans trois états :

— « ouvert » ; toul processus peut envoyer des messages sur le canal,

— € Teserve » . un processus spécifié, et lui seul, peut envover des messages
sur le canal,

— « fermé » : aucun processus ne peut envoyer de message sur le canal.

Le processus expéditeur peut demander une réponse sur un canal spécifié ;
cette réponse lui est automatiquement transmise quel que soit 1'état du canal.
Toute erreur ou anomalie d'émission est signalée sur un canal fixé une fois
pour toutes. En dehors des primitives d’action sur I'&tat des canaux, il existe
une primitive d'envoi de message, qui a comme paramétres :

— le processus destinataire,

— le canal d’émission,

— le canal de réponse (éventuellement),

— le texte du message ou le numéro de segment,

— el une primitive de réception de message, qui a comme paramétre le
canal de réception.
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La commande de reception fait entrer le message dans la mémoire principale
du destinataire ; si c'est un message long, le segment contenant le message est
mis en communication avec la mémoire principale.

Les erreurs dans la procédure de transmission sont détectées par le super-
viseur (envoi de message 4 un processus mexistant, sur un canal ferme, etc...),

En résume, le dispositif de communication du systéme MUS se caractérise
par une pris¢ en charge compléte de la communication entre processus par le
systéme d’exploitation | un meécanisme de synchronisation est associé 4 la
communication, permettant l'attente de messages par le destinataire et le
réveil de 'expéditeur ; les échanges sont personnalisés, ¢est-a-dire que I'identité
de I'expéditeur et du destinataire est toujours explicitement indiquée ; tout
échange est protégé, grice 4 la notion de canal, contre I'intervention de pro-
cessus ne participant pas a cet échange; enfin, les zones contenant les messages
sont gérées par le systéme.

Un meécanisme voisin programmé est décrit dans [Brinch Hansen, 70].

1.6 IMPLANTATION DES PRIMITIVES DE SYNCHRONISATION

Ce paragraphe est consacré aux problémes de programmation des primitives
de synchronisation. Lorsqu’un processus se bloque en attente d'une ressource,
il est inutile de lui garder 'unité centrale ; il en résulte qu'une primitive de
synchronisation fait habituellement appel 4 'allocation de processeur; I'im-
plantation des primitives et I'allocation de processeur aux processus sont ainsi
étroitement liées.

Nous nous plagons dans le cas ou les primitives de synchronisation sont
réalisées par des procédures du systéme exécutées, sous contrdle, par les pro-
cessus qui en ont besoin. L'implantation des primitives doit, dans ce cas,
résoudre trois problémes :

— assurer une exclusion mutuelle aux variables d'état du systéme auxquelles
accédent les primitives. Les demandes d'accés viennent des processeurs ciblés
du systéme ou des divers niveaux d’interruption d'un méme processeur ciblé.

— interdire I'accés aux procédures et aux variables des primitives en dehors
de tout appel normal.

— permettre le changement des mots d'état du processeur pour attribuer
celui-ci au processus désigné par I'allocateur,

2.61 EXCLUSION MUTUELLE DANS LES PRIMITIVES

Nous admettrons que tous les processus ont accés, par I'intermédiaire de
procédures du systéme, 4 des variables communes utilisées 4 des fins de synchro-
nisation.

L'implantation des primitives dépend étroitement de la structure (mono- ou
multiprocesseur) du calculateur et de la nature des instructions disponibles.

CROCUS, — Symbemes dexploitarion des ordinarawes, 3
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Nous allons donc étudier une suite de cas de complexité croissante :

a) On ne dispose que de la gamme d’instructions classique : les transferts
entre mémoire et registres sont les seules opérations indivisibles utilisées,
Celles-ci réalisent en effet le mécanisme élémentaire d'exclusion mutuelle
mentionné en 2,32, Dans ce cas, il est théoriquement possible de bitir des
meécanismes de synchronisation en utilisant des variables booléennes (exer-
cice 3). Cependant, cette solution est trés limitative : un processus blogué n'est
pas interrompu, mais exécute une boucle d'attente, immobilisant donc inu-
tilement son processeur et freinant 'accés & la mémoire. Elle n'est done
valable que pour un sysiéme multiprocesseur.

b) Le calculateur posséde une seule unité centrale ; une séquence d'instruc-
tions peut étre rendue indivisible en masquant 'unité centrale contre toute
mterruption. On utilise alors, pour passer dans I'état « interruptions mas-
queées », une instruction d’appel au superviseur (SVC de 'IBM 360, CAL du
CII 10070). A lintérieur des séquences masquées, on teste et on modifie les
variables communes et on change éventuellement les processus de file d’attente,
La primitive se termine par I'activation de I'un des processus en attente seule-
ment de I'unité centrale.

¢) Le calculateur posséde plusieurs unités centrales. Pour se ramener au cas
précédent, il suffit de disposer d'un mécanisme garantissant qu'a un instant
donne un processeur au plus peut exécuter une primitive de synchronisation.
Pour assurer cette exclusion mutuelle, on preféere a l'utilisation de booléens
I'emploi de I'instruction TAS qui garantit une meilleure efficacité.

Mais de toute fagon, quand un processus veut exécuter une primitive alors
qu’un autre, sur un processeur différent, en exécute déja une, il faut le maintenir
dans une boucle d'attente.

La programmation de l'exclusion mutuelle par I'instruction TA4S a été
décrite en 2.32. Avant l'entrée dans la section critique protégée par TAS, on
masque le processeur contre toutes les interruptions de facon 4 ne pas inter-
rompre un processus gui exécute une primitive. On procéde ensuite comme
en b). Les interruptions sont démasquées a la sortie de la section critique.

2.62 GESTION DES PROCESSUS

Les processus sont gérés selon le schéma général suivant

— quand un processus passe dans I'état bloqué, on lui retire le processeur
sur lequel il s’exécutait,

— le déblocage d'un processus, c'est-i-dire son passage a I'état actif, le
rend de nouveau candidat 4 I'occupation d'un processeur. Si un processeur
peut lui étre alloué, le processus devient élu : sinon, il doit attendre, et il est dit
alors dans I'état prét. Les états élu et prét caractérisent donc la situation d’un
processus actif vis-a-vis de la ressource processeur,
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Le moniteur dispose d’une table des processus, chaque entrée contenant des
informations propres & un processus. De plus les processus sont généralement
chainés dans diverses files d’attente, correspondant aux diverses ressources
manquantes . processus en attente de mémoire, en attente de page, blogués
derriére un sémaphore, processus préts, etc... Le blocage et le déblocage d’un
processus se traduisent donc par des changements de file.

L'insuffisance de ressources physiques (registres généraux des processeurs
par exemple) impose de disposer de zones de mémoire pour la sauvegarde de
certaines fractions des vecteurs d'état des processus bloqués. Ainsi, & 'élection
d’un processus (allocation d’un processeur), les Tegistres propres i ce processeur
sont chargés a partir des informations conservées dans la zone de sauvegarde ;
inversement, lorsqu’un processus devient bloqué, les registres du processeur sur
lequel il s’exécutait sont ranges.

La modification des registres internes du processeur ne peut étre effectuée
gu’avec des droits particuliers (mode maitre par exemple).

Exemple. Pour le CII 10070, les registres & charger sont

— les 16 registres généraux,

— la mémoire topographigue,

— le double mot d"état de programme (PSD ).

Le PSD est chargé en dernier, au moyen d'une instruction spéciale LPSD. Cette

nstruction alloue I"unité centrale & un processus, dont I'exécution commence 4 I'adresse
fixée par le PSD.

2.6 PROTECTION DES PRIMITIVES

La protection des primitives est en général assurée par deux mesures complé-
mentaires.

— L’appel d’une procédure de primitive se fait par un point d’entrée unigue
(guichet, voir 5.1), nécessitant 'emploi d'une instruction d’appel au super-
viseur.

— Tout autre accés (lecture, écriture ou exécution) i la procédure d'une
primitive ou a ses données est interdit. Cette interdiction est obtenue par
lemploi de ciés et de verrous d’accés ou encore par I'existence d’espaces
d’adressage disjoints (par exemple, dans ESOPE, les processus désignent, en
mode « avec topographie » des adresses virtuelles et les primitives, en mode
« sans topographie » des adresses physiques).

Dans certains cas, les primitives du systéme sont mises 4 la disposition des
utilisateurs. Le contrdle de leur emploi est fait au guichet,

2.64 EXEMPLES

Dans les exemples qui suivent, nous présentons successivement ;

— une implantation simplifiée.de sémaphores sur un IBM 360 monopro-
cesseur ; I'absence de tout dispositif de protection rend cet exemple aisément
compréhensible (et réalisable au cours d’une séance de travaux pratigues).
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— la gestion des processus préts dans le systéme SIRIS 8, qui montre
comment on peut tirer parti d un systéme ciblé d'interruptions pour I'allocation
de processeur.

— l'implantation des files d"attente utilisées dans le systeme BURROUGHS

B650) pour la gestion des événements.

Exemple 1 : implantation de sémaphores [Wirth, 69).

Les processus sont chainés en une seule file circulaire. Chagque vecteur d'état de pro-
cessus, vepro, contient les champs suivants :

— étar  état du processus,

— mep mot d'etat du programme,

— reg  regisires généraux,

— adr  adresse de sémaphore,

— suc  pointeur vers le vecteur d'état du processus suivant dans la file,

Lors de 'appel d'une primitive par l'intermédiaire d’un appel au superviseur (ins-
truction SFC), le registre R/ doit contenir 'adresse du sémaphore {SVC 10 sert pour
l'appel de P, SVC 11 pour celui de V). L'instruction SVC déclenche une interruption
qui permet i I'onité centrale de passer en mode maitre. Les interruptions sont masquées
et les actions ci-aprés sont entreprises :

Pig) ——dels);=els)_ 1

Ranger les registres Sauvegarde du wecreur

du processus dans d'érar da processus
mep{p), regp]; interrompu o

. ; Blocage du processys p

SM:E{H = Miﬂ;i derriére le sémaphore s

ripy = Rl d'adresse contepoe dans KT
Charger les registres apee Election d'un processus

reg (g), mep(q); aceif g

v

Commentaires :

— On suppose qu'il existe toujours un processus actif au moins.

— Les vepro somt chainés circulairement ; la recherche d'un processus actif consiste &
b;alayer la file jusqu'a ce que 'on trouve un processus avec érai = aclif. La recherche
d’un processus en attente de s impose en plus de consulter la valeur de aar.
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Fis) =t (s): = e (s)+] @ il

1]

Rarger lez registres

du processewr dans Sauvegarde du wvecreur
mep(p), reg(p) d'éat du processus p
—
Frab(g) = actif, Déblocage d'un processus g
adr{g} 1= {; blequé derriére le sémaphore s

Charger les registres avec
regiq), mepiq);

!

— Quand une primitive ¥ conduit au déblocage d'un processus, on arréte le processus
élu et on alloue I'unité centrale au processus déblogué. Cela peut conduire & des modifi-
cations superflues de I'état du processeur.

Election du pmcessus g

La création et la destruction de sémaphores sont laissées 4 la responsabilité du pro-
grammeur qui les déclare comme entiers.

La création et la destruction de processus sont réalisées par deux appels au super-
viseur, OPEN et CLOSE -

— A l'appel de OPEN, on passe dans e registre R2 I'adresse du nouveau vepra |
l'adresse de début du nouveau processus est aussi accessible. OFPEN chaine le vepro
pointé par R2 dans la file des processus, range le mot d’état de programme et les registres
du processus créateur, et alloue I'unité centrale au Processus créé.

— CLOSE, primitive sans paramétre, supprime le processus actif de la file circulaire
P'unité centrale est alors alloude & un autre processus actif.

Exemple 2 : gestion des processus préts dans le systéme SIRIS 8 [Boulle, 70].

On désire, dans ce systéme multiprocesseur fonctionnant sur I'[RIS 80 de la CI11,
utiliser le plus possible le systéme d’interruption pour la gestion des processus. Donnons
d’abord un apercu de ce systéme -

— Les différents processeurs sont identiques. Tout processus peut s'exécuter sur
'un quelcongue des processeurs (et éventuellement en changer au cours de son exécu-
tion).

— Le systéme d’interruption est unique et fonctionne comme suit -

— il existe plusieurs niveaux d’interruptions ; une priorité est associée par ciblage
a4 chaque nivean,

— 4 la réception d'un signal, externe ou programmé, un niveau est activé, pour
demander I'exécution du programme qui lui est associé 4 cet instant,
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— quand un niveau n passe dans I'état actif, sa priorite est comparée automatique-
ment & la priorité des niveaux au cours de traitement sur les différents proces-
seurs. Le programme associé & n ne peut s’exécuter que s'il v a un niveau moins
prioritaire en cours de traitement ; dans ce cas, on interrompt le programme
de traitement du niveau le moins prioritaire et on exécute le programme associé
AU nmiveau m.

Dans SIRIS B, 4 chaque processus correspond une priorité, et donc un niveau d'in-

terruption. On associe 4 chaque niveau une file d'attente de processus et on dispose en
outre d’une pile dans laquelle on range les vecteurs d'état des processus interrompus,

Files de processus Niveaux
(=G~
2
P Pele des vecteurs 4 6ar
@ 3 rocessewr | des e
/ Pgs,1 inlerrompus
4
Intecrupirons
’ Pz
P:I'nﬂ!'::ﬂu' 2
& Pi,1 P31

Figure 1. Gestion des processus dans le systeme SIRIS 8.

Quand un processus passe dans 1'état prét, il entre dans la file d'attente de son nivean
qui est déclenché par programme. L'unité centrale est alors allouée par le systéme
d'interruptions. Dans le cas ol un processus est interrompu, son vecteur d'état est
sauvegarde dans la pile.

Dans TI'exemple ci-dessus (le niveau 1 étant Je moins prioritaire), les processus p, |,
P12 €l ps 5 sont en attente dans les files des niveaux 1 et 3 ; les processus py | et p; sont
Interrompus et les processus p, | et Pe.1 $0nt &lus, ' '

51 un Processus associé au niveau 2 passe dans I'état prét, il rejoint simplement la
file de ce niveau ; par contre, si un Processus ps ; associé au niveau 5 devient prét, le
processus p, , est interrompu, son vecteur d’état est range dans la pile ; le processus
Ps 4 peut alors s'exécuter.

Quand un processus se blogue intrinséquement, son vecteur d'état est rangé dans
une zone de mémoire propre; si la file du niveau d’interruption associé est vide, le
niveau est désactivé. Puis le systéme d’interruption active le processus p dont le vecteur
d’état se trouve au sommel de la pile : c'est le dernier mterrompu, donc en général
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le plus prioritaire. Cependant, il est possible qu'un processus prét ¢ soit en attente
dans la file d"un niveau plus prioritaire ; dans ce cas, le Processus active p est interrompu
immédiatement au profit du processus q.

Exemple 3 : gestion des processus dans le systeme BURROUGHS B6500 [Cleary,
69

Gestion des processus © dans le B6500, & chague processus est associée une pile,
Cette pile contient le vecteur d état du processus et tous les liens de chainage utilises
par le systéme, Le B6500est étudite plusen détailen 3. 3. On entretient & chaque création
ou destruction de processus une arborescence généalogique (Fig. 2).

a) Généalogie b} Liens de chainage urilisés

Figure 2. Arborescence de processus dans le B6500.

A chaque destruction de processus, on détruit toute sa descendance.

Synchronisation - le sysiéme utilise des événements booléens, et gére un ensemhble
de files d'attente :

— une file des processus préts,

— une file par événement,

Quand un processus prét est élu, on remplace les liens de chainage de la file des
processus préts par le numéro du processeur sur lequel il va s'exécuter : les processus
de la file prét sont rangés par ordre de priorité {Fig. 3).

Les files de processus en attente d'événement ont une structure analogue : un champ
supplémentaire 4 (Fig. 4) indique si I'événement s'est produit ou non.

Exclusion mutuelle - on dispose des primitives permettant de verrouiller ou de
déverrouiller une ressource.

Interruptions programmées - les mécanismes étudiés jusqu'a présent permettent
de programmer explicitement la coopération entre processus ; un processus actif ne
peut se bloquer qu'a des stades de son exécution fixés une fois pour toutes. Au contraire,
avec les interruptions programmées, un processus peut étre interrompu i n'importe
quel instant et obligé d’exécuter une procédure fixée au départ. On obtient donc une
certaine souplesse de programmation et, en contrepartie, les mémes problémes de mise
au point que dans les systémes a interruptions ciblées.
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Tete de ta ke pret

Premier processus

Dherpiet MoCESEus

ol 0 | n b——] 500 J102 f——u] 21 | %}
1 — —————— S

5040 0
Pile File Pile
ot 500 ™ 21 = 102

Figure 3. File de processus dans le B6500.

CORIaTE éie

guens A

aj Evénement

Tete de la file des ntecruprions

Py 4y

b) Files de processus

Pile = p,

Mom di  fe——pe—i
descriptect
de procédure

Pite o p,

'

—I Nom du

_.Frz.lf:
P ==
. I

descripteur
de procédure

Figure 4. Gestion des interruptions programmeées dans le B6500.
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Les interruptions programmées de processus sont déclarées comme suit, en utilisant
les événements :
EVERLD ¢ ;
interrupt i ; on e, instruction ;

On peut armer ou désarmer une interruption : si P'interruption / est armée, le processus
exécute l'instruction suivant le on a chaque déclenchement de I'événement e, puis
reprend le cours normal de son exécution.

Cela est réalisé comme suit : & un événement e sont associées deux files, celle des
processus en attente de I'événement et celle des interruptions déclenchées par ¢. A un
evénement correspond un double-mot, le premier mot étant 'en-téte de la file des
processus en attente, le second 'en-téte de la file des interruptions. Cette seconde file
contient un pointeur vers le double-mot suivant et un pointeur vers le descripteur de la
procédure a exécuter. La longueur de la file des interruptions est contenue dans un
champ particulier, compre.

Un processus peut se trouver dans un nombre quelconque de files d'interruptions
programmées. Chaque double-mot de la pile peut étre utilisé - pour cela, les liens de
chainage comprennent un numéro de pile et un déplacement & I'intérieur de la pile
(permettant de localiser le double-mot de gestion de I'interruption).

Au déclenchement d'un événement, on effectue les actions suivantes -

— chainer dans la file des processus préts, 4 un rang correspondant & leur priorité,
les processus en attente de I'événement,

— parcourir la file des interruptions, interrompre tous les processus gui ont armeé
I'interruption et appeler la procédure & exéeuter comme s'il s'agissait d'une interruption
cablée.

Il peut se faire, dans un systéme multiprocesseur, que I'un des processus 4 interrompre
soit élu au moment de 'interruption. Pour tenir compte de cette éventualité, on raméne
tous les processus en un point observable en interrompant systématiquement |'ensemble
des processeurs (sauf celui qui exécute la séquence de déclenchement de I'interruption).
Les processeurs sont alloués en priorité aux processus dont interruption a modifié
I"état.

A Tarmivée d'une interruption, ciblée ou programmée, le vecteur d'état du pProcessus
interrompu est sauvegardé et restauré par I'intermédiaire du mécanisme unique d’appel
de procédure : une interruption équivaut 4 I'appel foreé d'une procédure.

2.7 PROBLEMES DE PROTECTION

2.71 LES PROBLEMES

Dans la plupart des systémes coexistent deux classes de processus :

— des processus dont I'algorithme est fixé une fois pour toutes, et qui
peuvent dans une certaine mesure étre considérés comme fiables (il s agit
essentiellement des processus du moniteur),

= des processus dont on ne connait absolument rien (processus des usagers)
¢t qui doivent a priori étre considérés comme suspects.
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De toute facon, en I'absence de preuve rigoureuse de validité, on ne peut
affirmer qu'un processus est définitivement exempt d’erreurs de programma-
tion ; il est donc impératif de limiter les conséquences d'erreurs éventuelles.

Une mauvaise synchronisation est due, en général, 4 I'une des deux causes
suivantes :

a) Les données servant & la gestion des processus et des primitives sont
modifiées par un processus, sans utiliser les primitives prévues. La prevention
de ce cas reléve du probléme plus général du pouvoir d'un processus d’acceder
4 la mémoire (voir Chap. 3).

b) Les primitives, bien qu'appelées correctement, sont mal utilisées par
des processus. 11 s’agit alors d’une erreur de programmation.

Donnons quelques exemples de fautes produites par un emploi incorrect des
semaphores :

— Immobilisation définitive d’une ressource par un processus : si mutex est
un sémaphore utilisé pour assurer I'exclusion mutuelle & des tables globales
du systéme et si un processus exécute un P(murex) sans le faire suivre au bout
d'un temps fini par un ¥/murex ), alors les tables protégées ne sont plus acces-
sibles.

— Interblocage : soit a et b deux sémaphores d’exclusion mutuelle. S deux
processus p el ¢ peuvent exécuter respectivement (Pia) Pib)] et {P{b);
Pia}), il y a risque de blocage, chacun des deux processus devant atiendre que
I'autre libere son semaphore avant de continuer (voir 4.7).

— Mauvaise utilisation d'un sémaphore privé : supposons que dans le
systéme, on fasse appel & un processus d'entrée-sortie ¢ par I'intermédiaire
d'une primitive ¥ sur le sémaphore privé s de ce processus. Supposons en outre
gu'un processus g quelconque exécute par erreur la primitive Pfs). Alors le
processus g rejoint la file d’attente de 5. Lors d’une demande ultérieure d’entree-
sortie, le processus g sera activé au lieu du processus e.

— Interférences parasites : d’une facon plus générale, il faut garantir I'indé-
pendance effective des processus logiquement indépendants: en d'autres
Lermes, une erreur commise par un processus ne doit pas perturber ou détruire
des processus qui ne coopérent pas avec lul.

2.72 QUELQUES REMEDES

Pour éviter ces ennuis nous proposons la politique suivante, inspirée de
[Brinch Hansen, 72).

1) Réservant a la gestion du parallélisme les primitives P et ¥, nous intro-
duisons une instruction spéciale pour assurer 1'exclusion mutuelle

avec a jaire msiruction ;

dans laquelle a désigne une donnée partagee.
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On peut traduire aisément I'instruction ci-dessus, en utilisant P et V-

Pimutex-a);
instruction ;
Vimutex-a)

mutex-a designe un sémaphore associé a la donnée a.

Z) Dans un systéme a accés multiple, il faut préserver I'indépendance des
différentes machines virtuelles de chaque utilisateur. Nous définissons donc
une partition de I'ensemble des processus en sous-ensembles ou usagers : un
usager correspond soit au moniteur, soit a un utilisateur du systéme,

L’emploi des primitives de synchronisation se fait alors comme suit

a) Chaque usager peut déclarer ses sémaphores privés et utiliser certaines de
ses variables privées pour réaliser des exclusions mutuelles. Ce faisant, il ne
risque de bloquer que sa propre machine virtuelle, ce qui ne saurait mettre en
cause le fonctionnement global du systéme.

b) Un usager peut en autoriser d'autres & exécuter exclusivernent des pri-
mitives F'sur certains de ses sémaphores ; cette extension 4 I'usager de la notion
de sémaphore privé permet une synchronisation entre usagers (demande de
service au moniteur, par exemple).

Exemple. Le processus du moniteur chargé des entrées-sorties sur un periphérique
est bloqué au repos derriére un sémaphore ses, accessible 4 tous les usagers. Lorsqu’un
processus fait une demande d'entrée-sortie, il dépose un message dans un tampon,
puis execute Fises). Le message comprend les paramétres de 'entrée-sortie & exécuter
et un nom de semaphore sur lequel il faut exécuter en fin d'entrée-sortic une primitive V.
Ce sémaphore a dii étre déclaré accessible au moniteur. Pratiquement. les noms de
sémaphores qui figurent dans les primitives sont qualifiés par le nom de 'usager lorsqu’ils
appartiennent & un usager autre que celui qui exécute la primitive.

Ce fonctionnement peut étre illustré par le schéma suivant :

FROCESSUS DE L'USAGER u PROCESSUS DU MONITEUR
Préparer le message d'entrée-sortie A Pises);
Vimonit ses) ; Décoder le message d'entrée-sortie !
Exécuter l'entrée-sortie;
Prsem) ; Viusem});
aller d 4 ;

On peut associer 'autorisation d’exécution de la primitive ¥ soit 4 certains
sémaphores, soit 4 certains usagers ou processus.

3) En ce qui concerne les exclusions mutuelles entre processus d’usagers
différents, certaines précautions sont 4 prendre :

— Imposer & un processus d’entrer dans une section critique globale par une
séquence déterminée d’instructions. On utilise pour cela, dans la pratique, une
instruction d’appel au superviseur (SVC) suivant le schéma ci-aprés (voir 5. 1
et 5.2).
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Exemple

PROCESSUS D'UN USAGER PROCEDURE AFPELEE PAR SVC
—* Changer le pouvoir du processus
: {droir d'accés)
FVC, —— avec v faire
P — début
instructions en section critigue |

fin

Restaurer le pouvoir initial ;

— S'assurer de la fiabihite des nstructions contenues dans une section cri-
tique.

— Ne jamais détruire un processus & |'intérieur d'une section critique glo-
bale. On peut associer pour cela & chaque processus un compteur de sections
critiques globales, compteur initialis¢ 4 0, augmenté de / 4 chaque entrée
de avec, diminué de 1 a4 chaque sortie ; un processus ne peut étre détruit que
lorsque le compteur a la valeur 0.

Quand un processus se trouve dans une section critique globale, on n'a pas
intérét a lui retirer le processeur au profit d'un autre processus, méme plus
prioritaire. En effet, le nouveau processus actif se bloquera si son programme
comporte également une entrée dans la méme section critique. Lors de I'allo-
cation d’unité centrale, on peut tirer parti du compteur de sections critigues
pour evaluer la priorité réelle d'un processus.

Ces indications n’empécheront pas un usager de programmer ses exclusions
mutuelles 4 I'aide de P et ¥, au risque de bloquer indéfiniment sa machine
virtuelle ; par contre, on garantit que I'usager en difficulté n’aura pas d’influence
néfaste sur les autres.

2.8 EXEMPLE DE COOPERATION DE PROCESSUS

Le probléme de la gestion d’une imprimante dans le systéme ESOPE a été
présente en 2.24, ou le systéme d’entrée-sortie a été décomposé en processus.
Il reste a traiter en détail le probléme de la coopération de ces processus. Pour
des raisons de présentation, ce traitement est reporté au paragraphe 7.5.

EXERCICES
1. [1]

Un :n&::mble de processus coopérant & I'exécution d’une tiche commune peut étre
rﬁ:zpréa:nt: parun graphe orienté dans lequel chaque arc représente I'évolution compléte
d'un processus. Le graphe ainsi obtenu est appelé graphe des processus pour la tiche
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considérée. On introduit deux lois de composition S{ab) et Pfa.b) ol aet b désignent
des processus, telles que :

S{a, b) représente I'exécution en série des processus a et b,
Pla, b) représente leur exécution en paralléle.

a a
Sfa, 'E".-II Fia, :IJ';
b

En utilisant les seules fonctions Set P, donner, lorsque ¢’est possible, une description
des graphes suivants

Py

(n (2) (3) (4)
2.11]

Dans le cas o les effets de bord n'imposent pas une évaluation sequenticlle fixe,
certaines sous-expressions d'une expression arithmétique peuvent étre évaluées dans
un ordre quelconque. On peut donc les évaluer en paralléle, si on dispose d’un nombre
suffisant de processeurs,

Soit I'expression :

fa+ &) +fc+d) — (elf

I} Donner la structure d’arbre correspondante.

2} En utilisant les conventions de 'exercice 1, donner un graphe des processus corres-
pondant & une évaluation paralléle de cette expression. On cherchera 4 exploiter au
mieux le parallélisme,

3) Donner une description de ce graphe en utilisant les seules fonctions S et P intro-
duites dans I'exercice 1.

3. [3] Programmation de I'exclusion mutuelle au moyen de variables communes [Dijkstra,
67).

Le probléme de I'exclusion mutuelle entre processus paraliéles pour I'accés 4 une
section critique a été posé en 2.31. Cet exercice a pour but de montrer les dif‘ﬁculté_s
de la programmation de cette exclusion mutuelle lorsque les seules opérations indivi-
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sibles dont on dispose sont l'affectation d'une valeur 4 une variable et le test de la valeur
d’une variabie (on exclut donc les opérations du type TAS et I'usage des sémaphores).

Le principe de la solution recherchée comsiste 4 définir un ¢nsemble de variables
d'état, communes aux contextes des divers processus ; I'autorisation d’entrée en section
critique sera définie par des tests sur ces variables, et I"attente éventuelle sera program-
meée comme une attente active, ¢'est-d-dire par répétition cyclique des tests.

1) On se limite initialement au cas de deux processus, notée p, et p,.

1) On essalera d'abord de construire une solution utilisant une variable booléenne
unique ¢, égale & vrai si I'un des processus p; se trouve dans sa section critigue, & Sfaux
autrement. - o

Verifier que Pexclusion mutuelle ne peut étre programmée en utilisant cette seule
variable,

1) On essaiera ensuite de construire une solution utilisant une variable commune
unique f, avec la convention suivante :

! = isiet seulement si le processus p, est autorisé & s'engager dans sa section critique
(i =12

~— Ecrire le programme du processus p,.

— Wérifier qu'on peut obtenir une solution répondant aux conditions a), b), d)
du 2.3] mais non 4 la condition ¢).

3) Pour éviter la restriction précédente, on introduit maintenant une vanable boo-
léenne par processus ; soit ofi] la variable attachée & Py, avec la signification suivante :

cfi] = wrai si le processus p; est dans sa section eritique ou demande & y entrer,

eff] = faux si le processus p, est hors de sa section critique.

Le processus p; a le pouvoir de lire et modifier eft], et de lire seulement of j] (7 # i).

— Ecrire le programme du processus p,.

— Vérifier qu'on ne peut obtenir qu’une solution satisfaisant aux conditions a),
c),d)oub), c),d) du 2.31 mais non aux quatre conditions simultanément.

4) Une solution correcte peut &tre obtenue en combinant les solutions 2) et 3) ci-
dessus, c'est-a-dire en complétant la solution 3) par I'introduction d'une variable
supplémentaire ¢ servant & régler les conflits 4 I'entrée de la section critique. Cette
variable n'est modifiée qu'en fin de section critique. Le principe de la solution est le
suivant : en cas de conflit (¢’est-3-dire & 1] = vrai et o{2] = vrai) les deux processus
s'engagent dans une séquence d'attente ol f garde une valeur constante. Le processus p,
tel que { # ¢ annule sa demande en faisant cli] = faux, laissant donc 'autre processus
entrer en section critique ; p; attend ensuite dans une boucle que 7 soit remis 4 i avant de
refaire sa demande d’entrée par o] == vrai, '

— Ecrire le programme du processus Pi-

— Vérifier qu’on peut obtenir une solution satisfaisant aux gquatre conditions du 2. 31.

Iy Généraliser la solution 4) au cas de n processus py, ..., p,. On introduira comme
précédemment un tablean booléen [f - n] et une variable entiére ¢ avec les significations
du 4); on remarquera toutefois que la variable 1 ne fonctionne plus en basculesin > 2,
et qu'on ne peut donc se contenter de la modifier en fin de section eritique. On procédera
comme suit : tout processus p, devra avoir lui-méme exécuté f = i avant de signaler son
mtention d’entrer en section critique par o] = yrai et de consulter les o ], j # i. On
devra s’assurer que la variable ¢, une fois tgaled i, ne sera plus modifiée jusqu’a ce que p,
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sorte de sa section critique. On utilisera 4 cet effet un second tableau booléen B[] - n),
avec

bli] = yraisi {
ou bien le processus p, demande & faire 7 1=
bi] = faux sit # iet si le processus p, est hors de sa section criligque.

On s’assurera que p; ne peut exécuter f == ; que si 1] = faux,

4. (1]

Programmer, en utilisant les sémaphores, les deux cas de synchronisation décrits
ci-aprés en PL/1 (cf. 2.431).

Cas | {condition er)

ou bien ¢ = ¢

Processus a Processus b Processus ¢
wait (el,e2) (2) completion fel) = 'I'B completion (e2) = 'I'B

Cas 2 (condition ou)
Processus a FProcessus b Processus ¢

wait (el e2) (1) completion {el) = "I'B completion fe2) = "I'R

3.[2] Description d'un systéme d'interruption simple [Denning, 71].

On considére un systéme d’interruption utilisant deux bascules : un masque m et une
trappe 1. L'interruption est masquée sim = 0 et autoriséesim = J, L'arrivée d'un signal
d’interruption se manifeste par une tentative de faire ¢ == J. §i I'interruption est démas-
quée, f passe d | immédiatement ; sinon, ¢ passe 4 J au moment du démasquage. La mise
de rd [ entraine 1'éveil d'un processus cyclique de traitement d'interruption.

Décrire, 4 I'aide de sémaphores, la logique de ce dispositif cablé et du processus
cyclique de traitement.

6.[3] Probléme des « lecteurs » et des « rédacteurs » [Courtois, T1).

Le modéle des lecteurs et des rédacteurs schématise une situation rencontrée dans la
gestion des fichiers partageables. Dans ce modele, on considére des processus paralléles
(n au plus) divisés en deux classes : les lecteurs et les rédacteurs. Ces processus peuvent
*€ partager une ressource unique, le fichier. Ce fichier peut &re lu simultanément par
plusieurs lecteurs, tandis que les rédacteurs doivent ¥ avoir un accés exclusif (un seul
rédacteur peut y écrire et aucun lecteur ne peut lire pendant ce temps).

On note comme suit le programme des lecteurs et des rédacteurs:

LECTEURS REDACTEURS
demande de lecture ; demande d'écriture ;
lecture ; écriture
Jfin de lecrure ; fin d'écriture ;
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Les procédures demande d ‘écriture et fin d'écriture devront assurer Uexclusion mutuelle
entre deux rédacteurs. Avec les procédures demande de lecture et fin de leciure, elles
doivent assurer les régles de coopération entre la classe des lecteurs et la classe des
rédacteurs.

Ecrire, avec des sémaphores, des opérations P et V, et des variables d'éat Je pro-
gramme des lecteurs et des rédacteurs dans les quatre cas énumeres ci-apres.

Cas |. Priorité des lecteurs sur les rédactewrs, sans réquisition. Les lecteurs ont
toujours priorité sur les rédacteurs sans réquisition; le seul cas ol un lecteur doive
attendre est celui ol un rédacteur occupe le fichier. Un rédacteur ne peut donc accéder
au fichier que si aucun lecteur n'est en attente ou en cours de lecture. On autorise toule
coalition de lecteurs pour occuper indéfiniment le fichier et en interdire 'accés aux
rédacteurs.

a} Donner une solution en utilisant des variables d'état .

— le nombre n/ de lecteurs occupant le fichier,

— un témoin ¢ dallocation du fichier 4 un des rédacteurs,

— des sémaphores privés sprivii), 1= 1,2, ... m,

— un sémaphore d’exclusion mutuelle, murex,

— deux files d’attente filelect et filered qui servent 4 gérer les numéros des processus
En atienpte.

Cette gestion utilise les procédures ajouter et dter qui sont données ci-aprés.

sémaphore tableau spriv[1 - n] = 0 [I - n]; commeniaire il y a n processus ;
sémaE.&.ﬂrE mutex = {;
entier al = 0 booléen e = faux ;
structure doublet |entier compie file liste) filelect, filered ;
procédure ajouter [, x) ; doublet x ; entier j :
deébut
compte de x = compie de x + 1;
metire j dans la liste di
_i" :
procédure dter (j, x); doubler x ; entier | ;
— dibu
comple de x = compte de x — I,
J = élément Gié de liste de x

b) Rechercher une solution sans utiliser de sémaphore privé (il existe une solution
ne nécessitant que 3 sémaphores).

Cas 2. Priorité des lecteurs sur les rédacteurs si et seulernent si un lecteur occupe
déja le fichier. Quand aucun lecteur ne lit, les lecteurs et les rédacteurs ont méme priorité.
Par contre dés qu'un lecteur lit, tous les autres lecteurs peuvent lire, quel que soit e
nombre de rédacteurs en attente. Les lecteurs ont toujours le droit de se coaliser pour
monopoliser le fichier.

Cas 3. Priorité égale pour les lecteurs et rédacteurs. Aucune catégorie n'a priorité
su:‘l*autn:. Si un lecteur utilise le fichier, tous les lecteurs nouveaux qui arrivent ¥
a::c::ad:m Jusqu'a l'arrivée d'un rédacteur. A partir de ce moment, tous les nouveanx
arrivants attendent, sans distinction de catégorie. Si un rédacteur utilise le fichier, tous
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les nouveaux arrivants atlendent également. Quand le rédacteur a fini, il réveille le
premier processus en attente dans I'ordre (ici inconnu) des files d'attente. Si plusieurs
lecteurs se suivent dans Ia file, ils accédent ensemble au fichier. L attente infinie est
impossible dans ces conditions.

La solution, dans ce cas, se déduit comme suit de la solution | - les opérations demande
de lecture et demande d'écriture ne sont plus indépendantes mais doivent maintenant
provoquer une mise en attente dans une file commune, sans distinction entre lecteurs
et redacteurs, dés qu'un rédacteur attend ou utilise le fichier.

Cas 4. Prionté des rédacteurs sur les lecteurs. On donne cette fois la priorité aux
rédacteurs ; des qu'un rédacteur réclame l'accés au fichier, il doit I'obtenir le plus 1t
possible sans réquisition, c’est-d-dire 4 la fin de I'exécution des processus occupant le
fichier au moment de la demande. Donc tout lecteur arrivé aprés que le fichier ait é1é
demandé par un rédacteur doit attendre, méme si des lecteurs utilisent encore le fichier,
On notera que les rédacteurs peuvent cette fois se coaliser pour interdire indéfiniment
aux lecteurs l'accés au fichier.

On devra completer b solution | par un mecunisme assurani gue Farrivee du premier
redacteur pendant une lecture bloque 1'accés au fichier pour les lecteurs jusgu’a ce que
ce rédacteur ait fini d'écrire, ainsi que tous les rédacteurs arrives apreés lui €l ayant trouvé
le fichier occupé par un rédacteur. On utilisera un mécanisme sy métrique de celui ducas |
pour 'ouverture du fichier aux lecteurs par le dernier rédacteur présent. On désignera
par ar le nombre total de rédacteurs en attente ou en cours d’écriture.

1. [3] Problémes des feux de circulation.

La circulation au carrefour de deux voies est réglée par des feux verts ou rouges.
Quand le feu est vert pour une voie, les voitures qui v circulent peuvent traverser le
carrefour ; quand le feu est rouge, elles doivent attendre (on admet que les voitures
de chaque voie traversent le carrefour en ligne droite). On impose les conditions sui-
vanies :

a) toute voiture se présentant au carrefour doit le franchir au bout dun temps fini,

b} les feux de chaque voie passent alternativement du vert au rouge, chague couleur
étant maintenue pendant un temps fini,

¢} & un instant donné, le carrefour ne doit contenir que des voitures d'une méme voie.

Les arrivées sur les deux voies sont distribuées de fagon quelconque.

Le fonctionnement de ce sysiéme est représenté par un ensemble de processus paral-
léles.

Un processus changement gére la commande des feux, et un processus particulier est
ass0cie 4 chague voiture. La traversée du carrefour par une voiture de la voied (i = I, 2}
correspond & l'exécution d'une procédure traversée; par le processus associé @ cette
voiture. On demande d'écrire le programme du processus changement et des procédures
traversée, el rraversée, dans les deux cas suivants :

Cas . Le carrefour peut contenir une voiture au plus 4 la fois.
Cas 2. Le carrefour peut contenir k voitures au plus & la fois.

Le fonctionnement correct des feux doit étre maintenu quel que soit 'ordre d'arrivée

des voitures ; la modification des feux par changement doit donc comporter les opérations
‘suivantes

— Interdire aux nouvelles voitures arrivant sur la voie od le feu est vert de s'engager
dans le carrefour (pour respecter la condition b)),
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— attendre que les voitures engagées dans le carrefour en sowent sorties avant d'ouvrir
le passage sur l'autre voie (pour respecter la condition ¢)).

Dans le cas 1, on a un probléme d'exclusion mutuelle; dans le cas 2, on pourra
remarquer que le probléme est analogue & celui des lecteurs et rédacteurs {exercice 6,
cas 1) et adopter une solution du méme type.

8. [2] Une extension des primitives P et ¥ [Vantilborgh. 72].

On définit sur un sémaphore 5 deux nouvelles operations mdwvisibles Prn, 5) &t
¥in, 5), ot n est un entier non négatif. Selon la notation habituelle, e0fs) désigne la
valeur initiale de s, ff's) la file d'attente associée 4 5. On associe 4 chague processus
p € fs) un entier non négatif noté rang(p), inclus dans son vecteur d'état ; rang/p) n'a
pas de signification si p n’est pas blogué.

L'effet de Pn, 5] et ¥i'n, 5) se décrit comme suit -

Pin, s} :5in = efs) alors
- es) = e(s) — n
sinon
début
commentaire on désigne par p le processus appelant ;
introduire p dans [1s) ;
état{p) = blogué ;
rangipl = n
_ﬁ_ﬂ
Fin, s) .'%
efs) = g8} + n;
tant que g € f(s) et rangfg) = e('s) faire
extraire de f(s) un processus p tel que rang(p) < e(s) ;
état(p) = EEE;
es) = efs) — rang(p)
fin

fin

Aucune hypothése supplémentaire n'est faite sur |al gorithme de choix de p dans f{s).

[} E'irngranmer avec les seules primitives Pfn, s} et V(n, 5) le cas | de I'exercice 6
{probléme dn?:s lecteurs et rédacteurs). On supposera que le nombre total de Processus
(lecteurs et rédacteurs) dans le systéme est au plus égal & une valeur fixe n.

2} En supposant que I'algorithme d'extraction des processus de la file d’attente de s
commence par les processus dont le rang est le plus petit, exprimer Pin, 5) et (¥n, 5}
en utilisant les primitives Pfs) et Fis).

3) Soit un ensemble de processus, partitionné en n classes de niveaux de priorité
distinets ; ces classes sont numérotées 1, 2, ... n-1. n dans I'ordre des priorités décrois-
santes. Tous les Processus sont en compétition pour I"wtilisation d’une méme ressource
l;:;:::!q'uc; en cas de conflit d’acces, la ressource est allouge au processus le plus priori-
d:J Programmer en utilisant les seules primitives P(n, 5) et ¥(n, s ) I'entrée et la sortie
d.a]:ﬁmrr eritique pour les processus de la classe i. Pour assurer I'exclusion mutuelle

ressource, on introduira un sémaphore initialisé 4 une valeur telle que la
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somme des rangs de deux (ou plusieurs) processus soit toujours supérieure 4 sa valeur
courante.

b) Donner une autre solution a ce probléme en utilisant les primitives P(s) et Vis).

9. [

Démontrer directement, sans utiliser ke théoréme 1 (2. 34), les propriétés 1 et 2(2.52)
du modéle du producteur et du consommateur. On considérera 4 cet effet les nombres
nprod et ncons de cycles complets d'exécution du producteur et du consommateur depuis
I'instant initial et on établira les relations satisfaites par ces nombres dans les différentes
phases d’exécution des deux processus.

10, [2] [Saal, 70].

On considére un ensemble de processus associés deux & deux dans une relation de
producteur & consommateur. Les différents couples (pc)). i = 1, ..., n somt indépen-
dants, sauf en ce qui concerne I'allocation de leurs tampons d'échange r., qui se fait
suivant la procédure ci-apres :

— chaque tampon est constitué de cases de taille fixe, chainées entre elles ; chaque case
peut contenir un article (on appelle ainsi les objets produits et consommis),

— imitialement, aucun tampon n’est constitué ; il existe une réserve contenant m cases,

— le producteur p; puise une case dans la réserve, v place un article et chaine la case
en queue du tampon t;,

— quand le consommateur ¢; a prélevé un article dans r,, il restitue la case enrres-
pondante 4 la réserve,

— si la réserve est vide, le producteur p, doit attendre : il est réveillé dés qu'une case
devient disponible.

Une case étant repérée par une adresse, on dispose des procédures suivantes

demander case(x) : extraire une case libre de la réserve : affecter 4 x la valeur de

I'adresse de la case,

restituer case(x) : restituer a la réserve la case d'adresse x,

chatnerx, i} : chainer la case d’adresse x 4 la queue du tampon 1,

extraire(x, i) rextraire la case de téte du tampon t;; affecter 4 x la valeur

de I'adresse de cette case.

I} On suppose d'abord qu'il n'y a pas de limite {autre que celle imposée par la taille
de la réserve) 4 la taille d’un tampon 1, Ecrire le programme des processus [, el ¢;
en utilisant les procédures ci-dessus, et les opérations P et ¥. On notera que les opé-
rations comportant des manipulations de files de cases doivent se faire en exclusion

mutuelle.
2) Ecrire le méme programme en utilisant les sémaphores avec messages (voir

2.331), en transmettant comme message les adresses de cases. Montrer que I'on n°a plus
besoin d'utiliser les procédures de manipulation de cases.

3) Comment modifier les programmes de 1) et 2) lorsqu’on impose maintenant une
limite supérieure / au nombre de cases de chaque tampon ¢, 7 (une telle limitation aurait
un but de sécurité, pour éviter I'épuisement de la réserve en cas d'incident dans un
PIOCEssUS p; ou ¢;).

1. [3] Sections critiques conditionnelles [Hoare, 72h].
Rappelons (2.72) que Iinstruction

avec v faire I
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associe une instruction / & une variable partagée v; les instructions faisant référence
a la méme variable v sont en exclusion mutueile ;

v peut désigner une variable simple ou composée (tableau, structure).

Mous introduisons deux formes conditionneiles de cette instruction -

1" Forme 1 :
avec v lorsque b faire |

signifie que I'instruction f doit &ire exécutée en exclusion mutuelle 4 la variable v lorsque
la condition b est vérifige.

L'expression booléenne b ne contient que des constantes ou des éléments de la
donnée v.

Pratiquement, l'instruction est interprétée comme suil par un PrOCESsSUS p

@) le processus p entre en section critique et évalue b ;

b) sib = vrai, p exécute I et sort de la section critique ;

¢) sib = faux, p sort de la section critique et se bloque : il sera réactivé lorsqu’un
autre processus quittera la section critique et reprendra son exécution en a).

2) Forme 2 :
avec v faire I et attendre b

Le processus p exécute f de fagon inconditionnelle, puis se blogque jusqu’i ce que la
condition & ait la valeur vrai.

1) Programmer 4 I'aide des sections critiques conditionnelles le probléme des phi-
losophes aux spaghetti (voir 2.432),

2) Programmer & I'uide des sections enbigues condinionnelles le cus | de Iexercice 6
(probléme des lecteurs et rédacteurs).

3} Programmer I'implantation des sections critiques conditionnelles en utilisant les
semaphores et les primitives Pis) et Fis).

1212] Une primitive P généralisée [Paul, 71].

On définit sur un ensemble de sémaphores §1: 53, ... § UNE nouvelle opération
indivisible Pfs,. s, .., 5,). Selon la notation habituelle, efs,) désigne la valeur du
sémaphore 5,. L'effet de la nouvells opération est le suivant

51 tous les stmaphores s (1 =1 = k) ont une valeur e(s,) positive, la primitive
P(sy, ..., 5,) esl exécutée : dans ce cas elle agit simultanément sur tous leg sémaphores
et elle décrémente leur valeur de un : fe processus appelant poursuit son exécution. Si
un au moins des sémaphores 5, a une valeur négative ou nulle, la primitive n'est pas
exécutée et le processus appelant se bloque. L'évolution du processus blogué devient a
nouveau possible lorsque tous les sémaphores ont repris une valeur positive ; le processus
reexécute alors la primitive P,

, 1) Montrer que la primitive généralisée Pis,, s, ... 5) n'est pas équivalente 4 la
sequence de primitives P(s, ) ; Prsyji...; Pis,). Une primitive I généralisée est-elle
necessaire 7

EéhPrc_pgrammer avec la primitive P généralisée, le probleme des philosophes aux
spaghetti

On trouvera i la fin du chapitre 7 des exercices sur I"exemple de coopération de pro-
cessus (systéme d'entrée-sortie) présenté en 7. 5.
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3.1 INTRODUCTION

Ce chapitre est consacré aux techniques qui permettent de gérer I'information
présente dans un systéme. Cette information représente des objets sur lesquels
on veut effectuer des traitements. Nous nous intéressons aux mécanismes qui
permetient de créer, retrouver, modifier et détruire les représentations des
objets. Nous avons écarté les aspects syntaxigues. des langages offerts aux
utilisateurs, y compris ceux du langage de commande. Les mécanismes de
protection, qui contrélent I'emploi des objets, apparaitront au chapitre 5.
Dans le présent chapitre, nous supposons souvent I'existence d'un compilateur
pour imposer le respect des conventions d’accés aux objets.

Nous présentons dans I'introduction les principaux problémes que souléve
la gestion des représentations des objets. Nous EXposons ensuite trois exemples
de mécanismes employés, puis, en nous appuyant sur ces trois exemples, nous
examinons les méthodes de représentation des objets en machine, I'accés 4 cette
représentation et sa gestion en mémoire.

3.11 TERMINOLOGIE

Les objets sont concrétisés par une représentation. Nous distinguons la
représentation externe employée par les utilisateurs du systéme et la représen-
tation interne au systéme, qui tient compte de la nature du calculateur.

Pour alléger le texte, nous utilisons désormais le terme « objet » pour évo-
quer aussi bien I'objet lui-méme que sa représentation externe ou interne.

La représentation des objets et la maniére d'y accéder font appel 4 un certain
nombre de fonctions d’accés. Nous examinons d’abord les fonctions associces
4 la représentation externe, puis celles qui sont associées a la représentation

Droits réservés au Cnam et a ses partenaires



68 Systémes d'exploitation des ordinateurs

interne et nous montrons comment on passe de la structure externe a la structure
interne. Nous réservons pour noter ces fonctions les termes désigner, repérer,
renfermer, contenir et fournir, qui ne sont employés dans ce chapitre qu’avec
le sens précis qui leur est donné ci-aprés.

3.111 Représentation externe des objets

Les concepteurs et les utilisateurs d'un systéme peuvent définir des objets,
grice & un langage de programmation avec lequel il créent des identificateurs,
On dit qu'un identificateur désigne un objet. Certains identificateurs, utilisés
de fagon universelle pour désigner des objets donnés, sont appelés notations,
Une notation est un cas particulier de 'identificateur. Lorsqu’on a associé un
identificateur a un objet, on peut assimiler I'identificateur 4 la représentation
externe de l'objet.

Exemple 1. L'cbjet mathématique £ = {ie N |0 =i < 20 et i premier | peut se
définir en ALGOL 68 comme :

[1:9] ent premier = (1,2, 3,5, 7, 11, 13,17, 19)
Ici. 1, 2, ..., 19 sont des notations, premier est I'identificateur de I'objet.

Exemple 2. vrai, faux, nil sont des notations en ALGOL 68.

L'objet désigné par un identificateur peut étre une constante ou peut servir
d’intermédiaire pour accéder  un objet parmi d’autres. On dit dans ce cas que
cet objet repére un autre objet.

L'emploi de désigner et de repérer est illustré par les exemples suivants.

Exemple 1. En FORTRAN, la notation /23 désigne une constante entitre.

Exemple 2. En ALGOL 60, I'identificateur défini par réel a désigne un objet qui
repére une valeur réelle. —

Exemple 3. En ALGOL 6%, un identificateur peut désigner un objet de mode ent,
rep ent, rep rep ent, ... c& qui signifie qu'il désigne respectivement : o
— une constante entiére,

— un objet qui repére une constanie entiére,
— un objet qui repére un objet du mode rep eni.

On appelle chaine d’accés 4 un objet une composition des fonctions désigner
L reperer qui, 4 un instant donné, fait passer d'un identificateur a cet objet.

Dans une chaine d’accés, un objet Tepére par un autre objet peut étre désigné
par zéro, un ou plusieurs identificateurs. Dans pratiquement tous les langages
de programmation, un identificateur permet d’accéder non seulement & 'objet
qu*ﬂ désigne mais aussi 4 tout objet de la chaine d’aceés : en ce sens, un iden-
tificateur peut étre la représentation exierne de plusieurs objets.
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Exemple. Considérons le programme ALGOL 68 suivant -

(a) débur réel y := 3.2 rep réel xx = ¥
(bj — débui ias réel x = 2.3

i) XX =y

fd) fin

fe) Fi=§ 4+ xx;
(f) XX =y,

g} fin

Dans ce programme, nous avons défini trois identificateurs y, x et xx. qui désignent
respectivement des objets ¥ et X de mode rep réef et un objet XX de mode rep rep réel.

—-—

L'objet X désigné par x a une existence dans 1ot le programme, grice 4 Topiion ras.
Par contre I'identificateur qui le désigne n'a d'existence que dans la région (b-c-dj.
A partir du point {¢), on note -
1} que Fobjet X n'est plus désigné par aucun identificateur,
2) qu'il existe deux chaines d'accés -

¥ désigne Y repére 3.2
xx désigne XX repére X repére 2.3

3) que dans I'instruction (e -

— ¥, en partie gauche de I'affectation, donne accés a I"'objet Y,

— ¥, cn partie droite de 1'affectation, donne accés 3 I'objet 3.2,

— xx, quant a lui, donne ici accés & lobjet 2_3,

4) que dans Dinstruction (f)

— xx donne accés & I'objet XX et y & 'objet ¥ (qui repére alors la constante 3.5).

3.112  Représentation interne des objets

La mémoire d’un ordinateur est constituée d’emplacements qui ont & tout
instant un contenu. Les emplacements sont de taille quelcongue, accessibles
comme un tout et généralement inconnus de ['utilisateur du systéme.

Nous utilisons encore pour les emplacements le terme désigner vu plus haut
et nous appelons nom I'information qui désigne un emplacement.

Le processeur peut utiliser les noms pour lire ou modifier le contenu d’un
emplacement nommé et il peut interpréter un contenu comme une instruction,
comme une valeur entiére, une chaine de bits,..., ou comme un nom.

On doit convertir la représentation externe des objets et de leurs fonctions
d’accés en une représentation interne s'appuyant sur des emplacements, des
contenus et sur leurs fonctions d’accés.

Dans le systéme, la représentation externe est convertie en un couple (empla-
cement, contenu) et on appelle nom de I'objet le nom de 'emplacement. Une
constante est un couple dont le contenu ne doit pas varier. On dit alors que
I'emplacement renferme la représentation interne d'une constante. _

Un objet qui repére un autre objet est un couple dont le contenu peut varier.
Dans ce cas, on dit que I'emplacement contieni la représentation d’un objet.
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Cette représentation est soit un nom, soit la représentation interne d'une
constante. ) ) 1

La conversion des fonctions d'accés aux objets se fait selon les régles sui-
vantes

FONCTIONS D'ACCES EXTERNE FONCTIONS D'ACCES INTERNE

un identificateur désigne un objet == un nom désigne un cmplacement

un objet est une constante <> un emplacement renferme une constante

un objet repére un objet <> un emplacement contient un nom qui
désigne un emplacement

Exemple. Soit les deux instructions du langage d'assemblage du CII 10070,

al LW, R "

b) LW, R *m
m est le nom (ici, ladresse en mémoire) d'un emplacement qui comtfent une valeur
d adresse.

Soit r cette valeur. Les fonctions d’accés associées aux deux mmstructions sont :

a) m désigne un emplacement qui contient une valeur (v J

by m désigne un emplacement qui contient le nom & qui désigne un emplacement qui
coniien? une . valeur.

L’application de ces régles peut étre suivie d’une simplification.

La suite « nom désigne emplacement renferme constante » peut étre rem-
placée par le seul élément « constante », lorsque I'emplacement qui contient
le nom est de taille suffisante pour contenir la constante. Cette simplification
n'est possible que parce que la suite des fonctions désigne et renferme ne relie
le nom qu'a cette seule constante.

Exemple. Dans certaines machines, I'adressage dit « immédiat » permet de repré-
senter une constante dans une instruction, au lieu d'un nom. Dans ce cas, lorsqu’un
identificateur désigne une constante, celle-c; peut &tre représentée directement par une
valeur dite « immédiate ». On peut éviter de convertir Pidentificateur en un nom. Clest

le seul cas ol la représentation interne d'un objet n’est pas un couple {emplacement,
CORfen ),

Remarque 1. Lorsqu'un objet repére une constante, on peut le représenter
par un emplacement qui renferme la représentation interne de la constante.

Remarque 2. La distinction entre les fonctions renfermer et contenir peut
?tn‘:' assurce par un dispositif cablé de protection. Dans ce cas, on interdit toute
ccriture dans les emplacements qui renferment des constantes.

Remarque 3. Nous réservons le terme adresse pour les cellules de la
mémoire ph}_’siqut. Dans certains systémes, les instructions n'utilisent pas des
adr-iﬁses, mais des noms d’emplacements en mémoire virtuelle. L'objet repré-
sente par un emplacement et son contenu n'a pas une adresse fixe mais peut se
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déplacer en memoire physique. Par définition, dans ce chapitre, le nom ne
change pas 1nrsqq¢ change I'adresse de I'emplacement qu’il désigne. Le mou-
vement en mémoire physique est étudié an chapitre 4.

3.113  Objets composés

Nous n’avons considéré jusqu'ici que des objets simples et leur désignation.
Un systéme comprend aussi des objets composés qui sont obtenus par compo-
sition d’autres objets. La représentation interne d'un objet composé s'appelie
un descripteur ; celui-ci indique la nature de I'objet (nombre et nature des
cléments, présence d’un ordre entre Jes éléments,.. ) et des emplacements qui le
contiennent (nombre et classement des empiacements,...). On appelle nom
d'un objet composé le nom de I'emplacement qui contient son descripteur.

Associee au descripteur de 1'objet composé, une fonction d’accés permet de
désigner soit 'objet composé lui-méme, soit un ou plusieurs des objets qui le
constituent. Cette fonction d’accés a des paramétres et Journit le nom d'un
emplacement ou un contenu, Un objet auquel est associée une fonction d'accés
est dit accessible.

Exemple 1. Un tableau en ALGOL 60 est un ensemble ordonné d’objets de méme
type. 51t désigne un tableau i deux dimensions, ffi, j] est la fonction d'accés & un élément
du tableau; «i, /] fournit un entier si le tableau est de type « tableau d'entiers ».

Indiquons un descripteur possible pour ce tableau. I contient une adresse origine et
un triplet par paramétre. Chaque triplet précise :

— l'indice du paramétre (ici / ou 2,

— la valeur actuelle de la borne inférieure du domaine de variation du paramétre,

— la valeur actuelle de la borne supérieure du domaine de variation du paraméire.

Ces informations permettent :

— de vérifier que les valeurs de i et j appartiennent aux domaines de variation,
— d'accéder 4 'emplacement désigné, aprés un calcul faisant intervenir I'adresse
origine, les valeurs de 7, f et les valeurs du triplet.

Siv, et v) représentent les valeurs inférieures et supérieures du domaine de variation
du premier paramétre, v, et ¢ celles du second paramétre, I'emplacement désigné par
f[f, j] est fourni par -

origine + (valeur(ij — v,) » fvy — vy, + 1) + valeur(j) — vs

Exemple 2. Une structure, en PL/1, est un ensemble d’objets du langage. Si a est
I'identificateur d'une structure et b I'identificateur d’un champ de la structure, a. b
est la fonction d'accés 4 un élément de la structure.

Une représentation interne de la structure peut étre la réwnion, en un ensemble
d’emplacements consécutifs, des emplacements correspondant aux champs. Un tel
emplacement peut contenir une valeur (nom ou constante) si le champ est un objet
¢lémentaire, un descripteur si le champ est un objet composé. Le descripteur de la
slructure spécifie alors origine et la taille de cet ensemble d'emplacements. Chagque
identificateur de champ est traduit en un indice, et la fonction d"accés est une indexation
dans cet ensemble d’emplacements.
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Exemple 3. La fonction d'accés aux composants d'un ﬁchj_:r se déduit Eér!él:algmgn[
de 'organisation du fichier ( fichier séquentiel, fichier 4 accés direct, ...). Considérons un
fichier séquentiel comme un objet composé d'articles. Le descripteur :iu_ fichier est
constitué de I'adresse d'origine des emplacements qui contiennent les articles (n°® de
dérouleur, adresse d une piste) et d'un index (matérialisé par la téte de lecture du dérou-
leur, ou adresse de la piste courante). La fonction d’acces fournit P'article spécifié par
Iindex, lequel augmente 4 chaque accés (avancement de la bande, augmentation de
l'adresse de piste courante). L'article peut étre lui-méme un tableau, une structure.
L'accés 4 un objet composant nécessite alors la mise en ceuvre d'une nouvelle fonction

d'acces.

La fonction fournir peut entrer dans la composition d'une chaine d’acces
si celle-ci fait intervenir des objets composés. On utilise aussi le terme « chaine
d'accés » pour la composition de fonctions internes désigner. renfermer,
contenir, fowrnir qui méne jusqu'a I'objet 4 partir du nom associé 4 un iden-
tificateur.

Exemple. Dans l'instruction suivante du CII 10070
LW, R m, X

oli X désigne un registre d’index, la chaine d'accés mise en euvre est « { m, X } fournit
un emplacement qui confienr ung valeur ».

On trouvera plusieurs approches de la représentation des objets et des fonc-
tions d'accés prescrites dans les langages de programmation dans [Abrial, 72 ;
Pair, 71, 72 ; Trilling, 73 ; Verjus, 73 ; Wegner, 71].

3.114 Durée de vie des objets

On appelle durée de vie d'un objet le temps pendant lequel il est accessible.
La durée de vie d’un objet est précisée par le langage au moyen duguel on le
fait apparaitre ou disparaitre. Un fichier est créé ou détruit par une opération
explicite et sa durée de vie n'est pas liée au processus qui le erée. Un objet créé
dans un bloc d’ALGOL 60 est implicitement détruit 4 la sortie de ce bloc. Un
objet crée dans un programme FORTRAN est détruit quand ’exécution du
programme est terminée.

Lorsqu'un objet est détruit, les emplacements de mémoire qui contenaient
sa representation interne deviennent disponibles pour d’autres objets. Si la
représentation interne de I'objet subsiste a la destruction de I'objet, aucun nom
ne doit la désigner.

Remarque. On ne doit pas confondre la durée de vie d’un objet avec celle de
I'identificateur qui le désigne. Ainsi, dans certains systémes, lorsque dans un
processus donné on ferme un fichier, I'identificateur qui le désigne n’est plus
utilisable bien que I'objet fichier existe encore. Ce n'est qu'a la destruction
que I'cbjet fichier disparait.
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3.115 Notion de segment

Un segment est un objet composé constitué d*une suite linéaire d’emplace-
ments numerotes 0, 1, 2, ... Il sert & regrouper des objets de méme nature, de
méme protection, de méme durée de vie. Cest dans un segment que I'on
représente souvent un objet composé, Le segment est généralement la plus
petite unité partageable d'un systéme (au sens de 3. 121). La taille d’un segment
peut changer au cours du temps. Comme exemples d’objet rangé dans un
segment, on peut citer : une procédure, un fichier, un tableau, une pile.

Certains segments sont désignés par les utilisateurs, d’autres sont créés par
le systeme sans qu’il leur soit associé d'identificateur. Comme tout objet
compose. un segment a un nom et un descripteur. Le nom désigne I'emplace-
ment renfermant le descripteur.

3.116 Procédure

Plusieurs objets se ratiachent 4 la notion de procédure. Nous précisons ici
ceux qui nous sont utiles. A une procédure nous associons son texte-souree,
son objet-procédure, un segment-procédure et plusieurs procédurus.

Le texte-source est la suite de caractéres qui est la représentation interne du
texte ecrit par un programmeur. Il est traité par un compilateur ou un interpré-
teur.

L'objet-procédure est la suite de constantes produite par le compilateur et
destinée 4 étre interprétée par un processeur comme des instructions. des
valeurs initiales ou des valeurs constantes. C'est un objet composé qui est en
général conservé dans un segment (ou un fichier), le segment-procédure, dont
la durée de vie dépend d’opérations explicites de création et de destruction,
Un segment-procédure peut contenir plusieurs objets-procédures.

Un traitement particulier d’un objet-procédure par un processeur, on dit
aussi une exécution de la procédure, exécute une suite d'instructions qui est
tout ou partie d'un processus (cf. 2.2). Une exécution de procédure crée des
objets locaux qui ne servent qu'a cette exécution et utilise des paramétres et
des objets externes.

En général les emplacements des objets locaux et des parameétres sont obtenus
d’une maniére standard pour un systéme donné. Si I'ensemble des objets
externes qu'une procédure peut désigner change d'une exécution a 'autre, il
faut indiquer sa composition avant chacune d’clles. Nous appelons procédurus
le couple (objet-procédure, ensemble des objets externes), préparé avant toute
exécution de procédure.

312 CONTRAINTES APPORTEES PAR LE SYSTEME

La nature des objets ne détermine pas entiérement leur mpré:sﬂl_lt_atiﬂn. On
doit encore tenir compte du partage des objets entre plusieurs utilisateurs et
de la limitation de la taille des matériels utilisés comme support.
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3.121 Partage des objets et utilisation des noms

Nous disons (cf. 2.222) qu'un objet est partagé s'il est accessible a plusieurs
processus, Le partage des obijets intervient dans plusieurs circonstances :

a) Partage d'un objet avec utilisation d'un méme nom

Soit deux processus qui partagent un objet. Pour que cet objet puisse &tre
désigne par le méme nom dans les deux processus, il faut réserver ce nom,
que I'objet soit utilisé ou non. Tous les objets partageables entre deux processus
ont donc des noms réservés. 1l en résulte que I'ensemble des noms que peut
utiliser un processus doit comprendre les noms de tous les objets partages,
comme c’est le cas dans le systéme ESOPE (cf. 3.4). On verra lors de I'étude du
BURROUGHS B6700 comment on peut alléger cette contrainte (cf. 3.3).

b) Partage d'un objet avec urilisation de noms différents

Si on admet qu'un segment peut recevoir un nom différent dans chaque
processus, I'ensemble des noms que peut utiliser un processus peut ne com-
prendre, en plus des noms des objets privés de ce processus, que les noms des
objets partagés auxquels il accéde. Il faut alors autre chose que le nom pour
désigner un objet partagé. Dans le systéme CLICS, par exemple (cf. 3.2),
les objets partagés sont rangés dans une arborescence (comme dans un fichier)
et sont désignés de fagon unique par I'identificateur du nceud (ou de la feuille)
correspondant ; cet identificateur regoit une représentation interne formée
d'une chaine de caractéres, que le systéme est capable de transformer, au
moment voulu et pour un processus donné en un NOmM Propre au Processus.

c) Réutilisation des noms

Soit une procédure réentrante utilisée par deux processus. Les identificateurs
déclarés dans le texte-source de la procédure sont les mémes pour tous les
processus et sont transformés, a la compilation, en un nom unique. Pourtant, 4
'exécution, certains noms, ceux des variables locales par exemple, doivent
désigner des emplacements différents.

En résumé, le partage des objets ou des noms introduit les conditions sui-
vantes :

— un emplacement qui contient un objet partagé est parfois désigné par
deux noms différents dans deux processus différents,

— le méme nom doit pouvoir désigner des emplacements différents dans des
processus différents.

3.122  Interférence avec la gestion des ressources physiques

Les mémoires physiques des systémes sont limitées en taille et ont des délais
d’aceés trés variables. L'existence de supports secondaires sur lesquels les
Processeurs centraux ne peuvent exécuter des instruetions impose la mobilité
des objets sur leur support. Cette mobiljté complique la gestion de I'information
en y mélant la gestion des supports physigues. Pour séparer les deux fonctions,

Droits réservés au Cnam et a ses partenaires



Gestion de Uinformation 75

on introduit parfois la notion de mémoire fictive, mémoire centrale hypothé-
tique qui est suffisamment grande pour contenir tous les objets du systéme
et qui est composée d'une suite d'emplacements numérotés 0,12 .. N
Chaque objet du systeme, et en particulier chaque segment,a alors une st ructure
propre qui est appliquée dans la mémoire fictive. Cette application ne change
pas pendant la durée de vie de I'objet, si bien que les objets ont un nom fixe
dans la memoire fictive. L'application de la mémoire fictive dans les supports
physiques est faite par I'allocateur de mémoire a I'insu de la gestion des noms.
On verra au chapitre 4 les diverses techniques possibles,

Mémaire

des ressources physique
physiques

Remarque. La mémoire fictive est une notion attachée au systeme, tandis
que la mémoire virtuelle (cf. 2.2) est en général associée 4 un processus seule-
ment.

3.123  Reprisentation du systéme

Dans ce chapitre, le systéme est représenté comme un ensemble de processus
manipulant des segments qui sont appliqués dans la mémoire fictive. Chaque
segment a une taille variable, indépendante des autres segments. Leur ensemble
constitue I'espace des segments.

3.13 MODIFICATIONS DE LA CHAINE D'ACCES A UN OBJET

Les objets que crée |'utilisateur sont désignés par un identificateur. L objet
qu’utilise le processus doit étre rangé dans un emplacement et désigné par un
nom. Ce nom fournit soit directement, soit par une succession de relations,
Femplacement de I'objet. On rappelle que la chaine d’accés est la composition
des relations désigner, renfermer, contenir, fournir qui vont du nom a I'objet ;
on appelle liaison la construction de cette chaine. Les différents éléments de
cette chaine ne sont pas tous établis en méme temps. Lorsque la chaine est
compléte, on dit que le nom et I'objet sont liés. Rappelons que I"objet qui est
en bout de la chaine d’accés peut étre soit une constante (cas des opérations
arithmétiques sur les entiers, par exemple), soit un nom (cas des opérations
sur les pointeurs, par exemple).

Soit aRb et bR'c deux maillons de la chaine d’accés; I'accés 4 ¢ depuis a
peut étre réalisé de deux fagons :

— par é.nhstimﬁm, faite une fois pour toutes. La relation aR"c = aRbR'c est
représentée, b est alors perdu,
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— par chainage. La relation R" n'est pas représentée et le cheminement
aRbR ¢ est effectué a4 chague acces.

La substitution permet de gagner du temps lors de 'accés i I"objet, mais on
perd de l'information. Le cheminement dans la chaine daccés peut étre accé-
leré en gardant le résultat de cheminements partiels dans des registres assgo-
ciatifs.

La transformation de I'identificateur en'un nom est toujours effectuée par
le compilateur du langage externe (ou par un interpréteur). Lorsque la liaison
ne peut étre faite par le compilateur, celui-ci met en place les objets qui la
permettront plus tard (par exemple, une chaine de caractéres représentant
I'identificateur pour I"éditeur de liens).

3.131 Objets liés dés la compilation

Méme lorsque les noms et les objets sont liés dés la compilation, la gestion
des emplacements peut faire intervenir une succession de noms et de fonctions
d’accés. Cetie succession traduit le fait que les noms sont relatifs 4 I'ensemble
des emplacements qu'ils peuvent désigner et qu'ils peuvent changer lorsque
cet ensemble est modifié.

Exemple. Considérons le systéme SIRIS 7 sur CI1 10070, Le compilateur range tous
les objets locaux d'une section de programme dans un segment (module de chargement)
et transforme chaque identificateur en un nom translatable, qui désigne un emplacement
dans le segment. Le chargeur applique plusieurs segments dans la mémoire virtuelle et
substitue aux noms translatables des noms virtuels qui désignent un emplacement en
mémoire virtuelle. Durant exécution, le processeur transforme, 4 chague référence, ce
nom virtuel en une adresse en mémoire centrale, 11 utilise pour cela une table (mémoire
topographique) qui est entretenue par allocateur de mémoire. Comme Jes adresses
varient selon la répartition dynamique de la mémoire, elles ne sont pas substituées aux
noms virtuels. Ceux-ci sont conservés ajnsi que, pour chaque processus, la table qui
définit la relation entre les noms virtuels et Jes adresses.

3.132 Noms et objets libres aprés compilation

Certains objets ne peuvent &tre liés 4 la compilation. Ce sont les paramétres
effectifs d'une procédure ou les objets externes.

a) Les paramétres

Une procédure est écrite en utilisant des paramétres formels qui sont des
identificateurs désignant des objets fictifs. Ce n'est qu’a I'appel de la procédure
que les objets réels sont désignés 4 I'aide des paramétres effectifs,

'Le remplacement des paramétres formels par les paramétres effectifs ne peut
pas toujours étre fait 4 la compilation, car les parametres effectifs peuvent
n’étre connus qu'a I'exécution. Une solution consiste 4 créer un nom intermé-
diaire qui désigne :

— nil avant I'appel, (il est un nom fictif),

~— le nom du parameétre effectif aprés I'appel.
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Exemple. Soit, dans le systéme CLICS :

procédure p(f) ; débui ... fin ;
ple); o

Les identificateurs e et f sont transformés 3 la compilation en nom(e) et nom(f)
qui désignent chacun un emplacement. A lappel de la procédure, I'emplacement
designé par nom(f) recoit la valeur nom(e/. Aucune instruction de la procédure ne peut
modifier le contenu de l'emplacement désigné par mom( [},

b) Les objets externes

Les objets externes sont des objets qui ne sont pas créés dans le programme
compilé. Le compilateur crée un objet composé intermédiaire, appelé lien.
Un lien contient au moins la chaine de caractéres représentant |'identificateur
et parfois des informations permettant de retrouver tous les noms désignant
ce lien. A la compilation le nom de I'objet externe est le nom du lien auquel il
est associe.

On appelle édition de liens la liaison des objets externes. Elle peut étre effec-
tuée avant l'exécution du programme (liaison statique), ou bien en cours
d’exécution (liaison dynamique). On en verra un exempleen 3.2,6.

L'edition de liens peut :

~— conserver le lien et y ajouter le nom de I'objet externe,
— supprimer le lien et substituer le nom de 'objet au nom du lien partout
ol il est employé.

Exemple 1. Une référence externe dans un programme en langage d'assemblage
désigne un lien aprés assemblage. L'éditeur de liens substitue le nom de I'objet au nom
du lien et détruit le lien.

Exemple 2. Un bloc de contréle de fichier / DC B} est un lien. Il contient la chaine de
caractéres représentant |'identificateur du fichier, son nom {ce peut étre ["adresse d'un
périphérique) et plus généralement une description d'un objet de type fichier (cf. 1.22).

3.2 GESTION DES NOMS DANS LE SYSTEME CLICS

3.21 INTRODUCTION

Le systéme CLICS (Classroom Information and Computing Service)
[Clark, 71a] est une présentation idéalisée 2 des fins pédagogiques du systéme
MULTICS réalisé sur une machine HONEYWELL 645.

CLICS comporte un nombre fixe de processus. Chacun d'eux peut étre
as50Ci€ 4 un utilisateur pour la durée d’une session (intervalle entre les appels
des procédures LOGIN et LOGOUT). C'est cette durée que nous appellerons,
par abus de langage, durée de vie du processus. Chaque processus exécute des
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objets-procédure travaillant sur des objets collections de données. Tous ces
objets, partageables pour la plupart par I'ensemble des processus, sont contenus
dans des segments.

Chagque processus désigne des segments. Un segment donné doit étre acces-
sible par plusieurs processus a la fois. Cet accés est contrélé par un systéme de
protection.

Le moniteur de CLICS est un ensemble de procédures partagées qui sont
exécutées par les processus associés aux utilisateurs. Chaque processus peut
donc, 4 un instant donné, exécuter des fonctions du moniteur ou des procédures
qui ont été écrites par un utilisateur. Une commande comme ! FORTRAN
(cf. 1.22) se traduit par un appel de la procédure du moniteur qui constitue Je
compilateur FORTRAN.

Dans la suite de ce chapitre, nous présentons la mémoire segmentée et les
différents objets qu’elle peut contenir, la fagon dont un processus les nomme,
et, enfin, la facon de réaliser I'édition de liens. Cette opération, comme il a été
vuen 3.13, remplace l'identificateur d'un objet par un nom qui permet d’y
acceder. Nous nous intéressons aux mécanismes d’accés, sans décrire les méca-
nismes de protection. Nous signalons cependant, quand c’est le cas, les dispo-
sitifs d’acces qui ne se justifient que pour des raisons de protection.

Quand nous évoquons dans le texte un segment particulier, nous appelons §
l'objet, TOTO son identificateur et 5 son nom.

3.22 LA MEMOIRE SEGMENTEE

Un segment, dans CLICS, peut contenir de 1 4 22* mots, Un objet, appelé
descripteur de segment le situe dans une mémoire fictive (cf. 3.12) de 2*° mos.
La gestion des ressources physiques n'est pas considérée ici.

Le descripteur de segment comprend

— la longueur du segment,

— "adresse, en mémoire fictive, du premier mot (base) du segment (codée
sur 40 bits),

— des indicateurs utilisés par le mécanisme de protection.

Tout accés & un mot du segment fait intervenir le descripteur de segment.

L’application des segments dans la mémoire fictive, fait passer d'un ensemble
de suites, les segments, dans une suite unigue, la mémoire fictive. Cette trans-
formation nécessite une gestion de la mémoire fictive analogue a la gestion de la
memoire physique telle qu'elle est présentée en 444, Cette gestion est faite
dans CLICS 4 I"aide du dispositif de pagination ci-aprés.

Les segments et la mémoire fictive sont découpés en pages de taille fixe

(256 mots), Soit K le nombre de pages du segment et d un numéro d’emplace-
ment dans une page :

— st K < [, I'adresse de base du segment est celle d’une page de mémoire
fictive associte au segment,
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Base

— 1.1

—si I <= K < 2% l'adresse de base du segment est celle d'une page de
memoire fictive utilisée comme table de K pages. Chagque élément / de cette
table est associ€ a la page numéro / du segment et désigne la page de mémoire
fictive gqui lui correspond.

Base

—

—si 2® < K < 2%, l'adresse de base du segment est celle d'une page de
mémoire fictive utilisée comme table de tables de pages. Chaque élément
de cette table est associé aux pages de numéros 256 s j & 236 « i + 255 du
segment et désigne une page de mémoire fictive qui contient une table de pages.
L'¢lément j de cette derniére table est associé 4 |a page de numéro 256 + [ + §
dusegment et désigne la page de mémoire fictive qui [ui correspond.

Bage

On constate que I'adresse de base d'un segment, contenue dans un descrip-
teur, change lorsque la taille d'un segment atteint une page ou 256 pages.

Par la suite on emploiera « adresse fictive » pour « adresse en mémoire
fictive » et, dans les schémas, on représentera I'adresse fictive du mot de
numéro d d'un segment comme si le segment avait moins d'une page.

Remarque. L’'accés 4 un mot de segment peut faire intervenir plusieurs
consultations de table. Ces consultations peuvent étre évitées en gardant le
résultat des consultations les plus récentes dans des registres associatifs. Nous
Ne tenons pas compte de cette possibilité dans la suite du chapitre.

CROCUS. — Syrrbsrer dexploiiation dey ordimarsurs. 4
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3.221 Désignation d*un segment par un processus

Tout segment est désigné par un nom, qui est le nom d'un emplacement
contenant le descripteur du segment. Un segment peut avoir plusieurs noms ;
chacun des emplacements correspondants contient alors une version du des-
cripteur (Fig. 1).

11 serait souhaitable de n"accéder & un segment que par un descripteur unigue
plutét gque par de multiples versions de celuici. En effet chaque fois que la
longueur ou la protection d'un segment changent, ces informations doivent
étre remises & jour dans toutes les versions de son descripteur,

Mais il existe plusieurs raisons pour multiplier les versions du descripteur
d'un segment et partant pour avolr plusieurs noms pour un segment.

a) Soit un segmeni partagé par deux processus. Ce segment n'est pas
nécessairement utilisé avec le méme mode d’acces ; un processus peut y écrire,
l'autre seulement le lire. Aussi I'accés 4 un segment necessite non seulement
le couple (adresse, longueur) gqui le situe mais également une information
précisant le mode daccés. Clest le descripteur qui fournit toutes ces informa-
tions : le couple est unique pour un segment donné, le mode d'accés est propre
a chaque processus.

b)) Soit deux processus qui désignent le méme segment. Si on veut conserver
un nom unigue dans les deux processus, ce nom doit étre réservé, que 'on
accéde ou non au segment. Les noms des segments partagés sont alors attribués
de fagon statique dans chaque processus. Pour utiliser moins de noms et en
particulier pour ne pas nommer les segments non utilisés par un processus,
les noms sont alloués dynamiquement a4 chaque processus. Il n'y a plus de
raison pour que les segments partagés aient le méme nom. Par contre il est
nécessaire qu'ils aient le méme couple (adresse, longueur).

Descripteur du segment Descriprear du segment
pour £, pour Fy

1] ? J'rr

Segment partagé
par Foet Py

x, ¥ modes d'aceis

iv j  noms du segment

Figare 1. Noms d'un segment.
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3.222  Descriptif des segments d’un processus

Le nom s; par lequel un processus P, désigne un segment S est un entier,
compris entre 0 et 2'® — |, correspondant au mot de numéro s; d'un segment
appele descriptif du processus P, ; ce mot contient un descripteur du segment 5.
Si un autre processus P; désigne S par le nom s,, le descriptif de P; a pour mot
de numéro s; un autre descripteur de 5.

A chaque processus est associé un descriptif unique qui contient les descrip-
teurs de tous les segments nommés par le processus. Le descripteur du descriptif
est contenu dans un registre non programmable, e registre de base du descrip-
tif.

Un processus désigne alors un mot d’un segment 5 par un couple (nom du
segment, index dans le segment) : le nom du Segment est propre au processus
qui désigne le mot, I'index dans le segment est le numéro d’ordre du mot dans
le segment considére. Le mot de numéro o du segment § a ainsi le nom (s, d)
pour le processus P,

Le nom d'un mot de segment, que nous appelons adresse segmentée, est codé
sur 40 bits (16 pour le nom du segment, 74 pour I'index dans le segment).
Le processeur traduit une adresse segmentee (s, d) de la maniére suivante -
le registre de base du descriptif repére le descriptif dont le mot de numéro 5
est la representation pour P, du segment 5 : le mot de numéro d dans ce segment
est le mot recherché.

Regizere de base 5, .' ﬂ!...,_‘
du descriprif

L]

T Descripeif de P l.' ..
[
'

'li-.‘..h
! Segment -
F

Mot recherché

Figure 2. Adresse segmentée,

Par construction, les registres programmables et le descriptif représentent
lespace adressable du processus. Le descriptif n'est pas adressé comme les
Autres segments par le processus auquel il est associé (il n'a pas de descripteur
dans le descriptif) et il n'est pas accessible aux autres processus.

C’est pourguoi nous séparerons dorénavant dans les schémas le descriptif,
sans représenter son registre de base, et les segments partagés.
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3.23 LANGAGE DE LA MACHINE ET OBJETS MANIPULES

Dans ce qui suit, nous observons un processus 4 un instant donné de son
evolution et nous cherchons a montrer comment il accéde aux objets (données,
procédures) qu’il manipule. L'utilisateur désigne par un identificateur [es
objets créés par lui-méme ou d’autres utilisateurs. Or le processus accéde 3
ces objets par un nom. Nous verrons au paragraphe 3.26 quand et comment ce
nom est obtenu. Auparavant, afin d’illustrer les mécanismes d’acces. indiquons
le format des instructions de la machine et les objets que I'on veut manipuler.

3.231 Format des instroctions

Le langage de la machine est constitué d'instructions de longueur fixe,
contenues dans un mot. On considére ici que 'objet élémentaire que peut
designer un processeur est le mot d'un segment. Les instructions sont géné-
ralement composées de trois champs :

— Le code-opération. Lorsque nous aurons besoin d'illustrer une instruc-
tion, nous utiliserons un nom de code-opération trés explicite.

— Le nom d'un registre (éventuellement). Chaque processus utilise
16 registres généraux notés RO, RI, ..., RI5: les registres RO, R3, R4 et RS
ont une fonction trés particuliére que nous expliciterons : R/ et B2 servent en
cas d'interruption.

— Un champ adresse qui contient une valeur ou un nom d’opérande.
Lorsque le champ adresse est un-nom, nous I'écrivons entre parenthéses. Ainsi
le format d'une instruction sera noté

opération, R valeur

aperation, R {nom)

On abrége souvent dans les schémas « opération, R » en « op »,

3.232 Les différents objets manipulés par 'exécution d’ume procédure

Considérons une procédure P. En dehors des 16 registres généraux, on

répartit en trois classes les objets qu’une procédure peut désigner au cours de
I'exécution de P.

1} Les objets externes d la procédure

Ce sont des fichiers identifiés par un nom symbolique. Leur durée de vie est
déterminée par des opérations explicites de création et de destruction.

Si on fait abstraction des problémes de privilege d'accés. tous les fichiers
(¥ compris le segment contenant P) sont accessibles depuis P avec les régles
suivantes :

— sile fichier est une collection de données, on peut désigner chague consti-
tuant de ce fichier pour le lire ou le modifier. Le fichier a pour support un seg-
ment appelé segment de données. Un constituant elémentaire est toujours un
mot du segment contenant une valeur dite élémentaire {indépendamment de
sOn Lype qui ne nous intéresse pas ici).
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— si le fichier est un objet-procédure, on peut designer certains points
d’entrée de la procédure en vue de I'exécution du sous-ensemble de la procé-
dure défini par ce point d'entrée. Le fichier & POUI support un segment appelé
segment-procédure. Un point d'entrée correspond 4 une instruction (contenue
dans un mot) de ce segment-procédure,

2) Les objets internes & la procédure

Les objets internes & une procédure ne sont accessibles 4 un processus que
pendant I'exécution de la procédure. Nous Supposons gue ces objets sont
représentables sur un seul mot. On en distingue trois types :

a} Les objets rémanents, créés 4 la premicre exécution de la procédure par
le processus et détruits lorsque le processus se termine. Chague fois que P est
exécutée par le processus, elle trouve les objets rémanents 4 la valeur que leur
avait donnée I'exécution précédente ou, si c’ast la premiére exécution, i une
valeur nitiale, fixée i la compilation et conservée dans le segment-procédure.

b) Les objets locaux, créés a chaque appel de la procédure par le processus
et detruits au plus tard lorsque la procedure se termine. Les procédures pouvant
s'appeler récursivement, les objets locaux sont gerés en pile. Chaque fois que P
est exécutée par le processus, elle trouve les objets locaux 4 une valeur initiale
fixée une fois pour toutes a Ia compilation.

c) Les étiquettes, qui correspondent aux noms d’emplacement du segment-
procedure contenant des instructions. On peut considerer que tout objet i
valeur élémentaire constante, soumis seulement a des opérations de lecture,
appartient i cette classe.

3} Les paramétres

A tout paramétre est associé un objet qui a pour durée de vie I'exécution
de la procédure et que seule la procédure peut désigner. Sa valeur est le nom
d'un objet qui n'est pas interne a la procédure et dont la durée de vie est plus
grande que celle de la procédure, Cet objet peut étre :

— un objet interne 4 la procédure appelante,

— un paramétre de la procédure appelante,

— un objet externe.

Notons que les objets créés par une procédure appelante ne sont utilisables
par la procédure appelée que si ce sont des objets externes ou que s'ils sont
désignés par un paramétre.

Exemple. On désire compiler dans CLICS e programme ALGOL 60 suivant :
début procédure f ;

éhur réel a;

__hp_m'céa‘ureg; debut... a = g + !E
gra=a4+]

fin

fin
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Avec les mécanismes de CLICS, I'utilisation de a a I'intérieur de la procédure g n'est
possible qu'en passant @ comme paramétre a la procédure g ou en déclarant 2 comme
externe & el g.

La gestion de la structure de bloc d’ALGOL est étudiée dans l'exercice 4,

3.233  Multiplicité des objets
Le systéme doit satisfaire les deux objectifs suivants :

— chaque procédure et chaque collection de données est potentiellement

partageable,
— les procedures peuvent s'appeler récursivement.

I1 en résulte les conséquences suivantes :
a) Les objets a valeur constante sont proteges contre toute ecriture,

b) Les objets externes, qu'il s'agisse de procedures ou de collections de
données, ne sont pas recopies.

L'utlisation d’un segment-procedure § par un processus P, ne doit pas
perturber son utilisation simultaneée par le processus ;. Par contre. I'utilisation
par P, d’un segment de données partagé en écriture peut interférer avec |'uti-
lisation qu’en fait le processus P.

¢) Les objets dont la durée de vie est égale a celle du processus (registres et
objets rémanents) figurent en un exemplaire par processus. En effet 'utilisation
que fait d’un tel objet le processus P; ne doit pas interférer avec |'utilisation
qu’en fait le processus P,

d) Les objets dont la durée de vie est égale 4 celle de la procédure (locaux
el parametres) figurent en un exemplaire par appel de procédure et par pro-
cessus. Autrement dit, pour chaque processus P, il doit v avoir autant d’exem-
plaires d'un tel objet que d'exécutions en cours de la procédure qui 1'utilise.

Le paragraphe suivant illustre la maniére de nommer, dans une instruction,
ces différents types d'objets.

3.24 ACCES AUX OBJETS

Considérons un segment S présent dans les descriptifs des processus P, et P
respectivement sous les noms s; et 5;. Soit un objet d'emplacement d dans le
segment 5 : il a pour noms respectifs (s, d) pour P; et (5;,d) pour P, L'adres-
sage indexé permet de désigner cet objet dans une instruction utilisable par
plusieurs processus 4 la fois.

[l existe deux types d’indexation : I'adressage indexé partiel (noté jp dans l¢
champ adresse) et I'adressage indexé composé (noté ic). Le champ adresse d'une
instruction est alors formé, quand c’est un nom =

— d'une marque d'indexation f ipouicy,

- d'un couple (nom de registre, deéplacement), soit (R, dep), le nom du
registre étant codé sur 4 bits et le déplacement sur 24.
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Si le registre R contient |"adresse segmeniée (s, 4/, alors I'adresse segmeniée
du mot recherché est respectivement

/s, dep) s1 'adressage est indexa partiel,
(5, dep + d) si I'adressage est indexé composé,

Exemple. Si R contient (30, 600/, I'instruction
op {ip. R, 100)
se référe & I'adresse segmentée 30, Y, et

op (ic, R, 100)
se référe & P'adresse segmentée 30, 700 ).

3.241  Accés aux étiguettes du segment-procédure

Les instructions de branchement utilisent 1'adressage indexé partiel ; le
registre R0 contient a tout moment le nom par lequel le processus désigne le
segment-procedure en cours d’exécution. Ansi, toutes les instructions de
branchement & une instruction du segment ont la forme -

br ip, RO, d)

ouda pour valeur le déplacement par rapport au début du segment-procédure.

Exemple. Considérons dans une procédure la séquence :

ALPHA  instruciion |

se brancher @ ALPHA

Le segment-procédure correspondant est le suivant -

Instruction |

br r'?_p, 'li"ﬂ-' T
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La figure 3 montre I'utilisation de ce segment par les processus P; et P; qui le désignent
respectivement par les noms 25/ et /46 :

Processus P Processus pf

Descripeaf

Sepment procédure

I"_"‘I
’ tHsrruction f

br fin, R, 72/

Figure 3, Accés au segment-procédure.

La partie déplacement de R du processus P, est & tout instant I'adresse relative (par

mﬂp;ﬂ a la base du segment) de I'instruction en cours : RO est un compteur ordinal
relatif.

Dans I'exemple précédent, aprés exécution par P, de l'instruction de branchement

considérée, le registre RO de P, contient (251, 72). Aprés exécuti .
RO contient (146, 72, - J. Aprés exécution par P, son registre

3.242  Accés aux objets rémanents

Rappelcmslque les objets rémanents ont la durée de vie du processus et qu'il
doit y en 4VOIr un exemplaire par processus. Ils ne peuvent étre rangés dans le
segment-procédure. Par contre, leur valeur initiale, qui doit étre identigque
pour tous Ies_pmc:essus, est rangée dans une zone du segment-procédure.

A la premiére exccution par un processus P; d'un segment-procédure S,
:: It}t-.uveau SEgment est cree et inclus dans le descriptif de P,. C'est le segment
de liaison LrS,_r J dl.! segment-procedure S pour le processus P, Les valeurs
mitiales des objets rémanents sont recopiées en téte de ce segment de liaison.
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Notons que

—= ¢e segment est inaccessible aux autres processus,

— lors de toute nouvelle exécution dy segment-procédure par le processus
considéré, le méme segment de liaison est utilisé (on verra en 3.252 comment
il est retrouve),

— chaque processus posséde 4 un instant donné autant de segments de
liaison qu’il connait de segment-procedures différents,

En conséquence, les opérations de § sur des Objets rémanents se référent
au segment de laison.

Soit un segment S utilisé par deux processus Piet P, Le segment L5, i ) est
nommé [; par F, et le segment L(S, j) est nommé l; par P,. La référence aux
objets rémanenis s’effectue par indexation partielle, en utilisant un registre
genéral, R4 par convention, appelé registre pointewr de liaison qui contient
le nom du segment de liaison de la procédure en cours d'exécution. Upe opé-
ration sur un objet rémanent a la forme suivante -

ap  (ip. R4, déplacemeny )

Processus P, Processus 'P,r'
Descriptif Descripeif
of 4 &2
el 108 9 71
— \ - [ »
I 9\ /

LS, i) LS

Segment procédure

partagé 5 I

] ﬁj'. R*. il

Figure 4. Accés & un objet rémanent.

Comme pour le descriptif, nous associons dorénavant les segments de liaison
4UX processus.
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3.243  Acceés aux objets externes

Les objets externes sont conservés dans les fichiers des utilisateurs. Tout
objet qui n'est pas cree par une procedure est un objet externe a cette procédure,
D’autre part, parmi les objets créés par une procédure, sont externes ceux qui
ont une durée de vie supérieure 4 celle du processus. Nous avons vu que le
segment de liaison contient les objets rémanents d’une procédure. 11 contient
également les références externes que peut effectuer la procédure. Soit deux
processus P, et P, utilisant le segment-procédure S, lequel fait référence & un
segment 5/. 57 étant connu par F; et P; sous les noms 5 et ; on ¥y accéde par
indirection en utilisant un mot du segment de liaison. Ce mot contient I'adresse
segmentée de 'objet externe, ¢'est-a-dire :

— (5;, déplacement dans 5/ dans LS, i/,

— (3;, déplacement dans §i) dans LS, ).

Une instruction de § sur un objet externe s'écrit ;
op + [ip, R4, déplacement dans segment de liaison) .
Lindirection (notee =) consiste a calculer par adressage indexeé, 'adresse
segmenteée d'un emplacement qui contient I'adresse segmentée de I'objet

referencé. Nous verrons ultérieurement 4 quel moment I'adresse segmentée
(5, @) est rangee dans le segment de liaison et par quelle méthode.

Processus PI.

Desceiprif

Sepment 5‘1

Mot recherché

Segment deliaisen

’
¢ .r;
'
) ol :
i
[]
P Segment 5
=
"ll-_-.‘-‘
op +fip, R, 50/

Figure 5. Accés a un objet externe.
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3.244 Accés aux objets locaux

Rappelons que les objets locaux ont pour durée de vie I'exécution de la
procédure et qu'ils doivent étre gérés selon une structure de pile. Appelons
région I'ensemble des emplacements qu'il est nécessaire de créer a cet effet
dans la pile a I'appel d'une procédure donnée.

Pour chaque processus, un segment particulier constitue Ia pile. Le registre
R3, appelé aussi registre pointeur de pile, contient I'adresse segmentée de la base
de la dernicre région empilée : celle de la procédure en cours d'ex écution. Par
ailleurs, le premier mot de la pile contient toujours 'adresse segmentée du
sommet de pile. La pile associée au processus F; sera notée p, dans la suite,

Soit un segment-procédure § et un objet local 4, auquel a été réservé le mot
de numéro r d’une région. Soit p, et p; les piles associces aux processus P, et P,
qui utilisent §. La reférence 4 A est faite sous la forme

op (ic, R3, n )

puisque le registre R3 du processus P, contient (p,, d,), adresse de base de la
derniere région empilée par P, et que le registre R3 du processus F; contient
I'équivalent pour P,

Remarque. Cette méthode daccés s'applique sans changement aux pro-
cédures récursives : & chaque appel de la procédure, le registre B3 est mis a
Jour ; il est rétabli i chaque retour de procédure.

Frocessus P,

Segment §

Rég. associde

P premier appel
b de §

op fic, Ry, 10

Rép. associde

) & [‘I]?:':] de

Rég. associde
ap degxigme
appel de §

L objet local est sicué dans e
dixigme mor de 1a zone associde
a 5.

Figure 6. Accés & un objet local,
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3.245 Accés aux paramétres

Rappelons que la durée de vie d'un parametre effectif est au moins égale 3
celle de I'exécution de la procédure appelante. La procédure appelante caleuje
le nom du parameétre en tenant compte de sa nature :

— Objet externe : son nom (s, 4! est rangé dans le segment de liaison de |a
procédure appelante.

— Objet rémanent de la procédure appelante @ son nom est une adresse
segmentée ([, d2), déduite du couple (R4, d2) et du contenu / du registre R4,

— Objet local de la procédure appelante : son nom est une adresse segmentée
(p, d3 + d4) déduite du couple [ R3, d4) et du contenu (p, d3) du registre R,

— Valeur élémentaire : la procédure appelante crée un objet local auguel
elle donne la valeur élémentaire considérée.

— Paramétre de la procédure appelante : nous verrons plus loin comment
obtenir son nom.

L'accés aux paramétres dans la procédure appelée est illustre par I'exemple
suivant :

Exemple. Soil I'appel de procédure Pid, R, L, £, ol & désigne une valeur élémen-
taire et R, L, E les identificateurs d'objets respectivement rémanent, local, externe. La

procédure appelante détermine le nombre de paramétres et leurs noms et les range dans
¢ing mots successifs.

Mombre de paramétres 4
Mom de 8 P “3 ¥ dﬁ. Mots destinés
AU DOms
Mom de R ld, des paraméures
Hece:
Nom de L | p.dytd, siiectifs
Nom de E s, dy
Scgment de |jaisen, de nom {,
de la procédure appelante Pile, de nom p
Zone des d
objets Objet rémane oo 2 d
rémane ot ?
dlli
Objet local
Références
aux abjets &y dl ds 8
EXtEMmEs

Figure 7.  Accés aux paramétres,
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Donnons & ces mots les noms 0, 1, 2, 3 et 4 ef considérons un registre général, reg,
appelé registre pointeur de paramétres, dont ke contenu est le nom de la base du quin-
tuplet. Dans la procedure appelée, le nom d'un parametre formel est celui d'un mot qui
contiendra & I'exeécution le nom, cajeulé dynamiquement, du paramétre effectif. Ce
double repérage nécessite que I'accés 4 tout paramétre formel se fasse par indirection,
La procédure appelée utilise

* (ic, reg, i)

ol i vaut /. 2, 3 ou 4 selon le paramétre référence. Ainst si F est I'identificatenr d'un
parameéire formel, |'instruction

F=3

se traduit dans le segment-procédure en

charger la valewr, RT Ej
stocker le registre, RT s (ic, reg, i)

ol RT est un registre auxiliaire,

Reste a trouver un emplacement pour le quintuplet. La procédure appelante le range
dans la pile, immédiatement aprés sa propre région. Les informations nécessaires ay
retour dans la procédure appelante et les objets locaux de la procédure appelée sont
empilés également.

Ainsi & tout appel de procédure est associe, dans la pile, une région qui
comprend ;

— la zone des paramétres,
— la zone de retour,
— la zone des objets locaux.

L'adressage des paramétres, comme Padressage des objets locaux, pourrait
donc s'effectuer grice au registre R3. En fait CLICS, comme MULTICS
(cf. 5.2) est doté d'un mécanisme de 8 anneaux de protection. Le contréle des
acces dépend de I'anneau dans lequel se trouve la procédure et des protections
associées au segment nommé. Une procédure peut changer d’anneau entre
deux appels successifs. L’existence de Ces anneaux de protection entraine celle
de :

— 8 piles par processus {car il y a 8 anneaux), appelées respectivement
0.1,...,7

— un segment de liaison par anneau d’exécution de la procédure.

Comme une procédure appelante ne s'exécute pas forcément dans le méme
anneau que la procédure appelée, les paramétres n'appartiennent pas toujours

la méme pile que les locaux de la procédure appelée. En conséquence, un
registre supplémentaire, le registre RS, repére les paramétres tandis que le
regisire R3 repére les locaux.
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3.246 Ilustration des mécanismes d’acces
Rappelons I'utilisation des registres du processus :
RO : segment-procédure en cours d'exécution,
R3 : base du dernier bloc empilé,

R4 : segment de liaison associé a la procédure, _
R3 : base du dernier groupe de paramétres empiles.

et la fagon de faire référence aux objets :
— objel externe : lecture/écriture appel + (ip, R4, d)

— objet rémanent : lecture/écriture (ip. R4, d)
— objet local : lecture/écriture (ic, R3,d)
— paramétre : lecture/écriture * (ic, R5, d)
— instruction : se brancher & (ip, RO, d).

Dans Uillustration suivante (Fig. 8), nous représentons deux processus F; et
P en train d'exécuter un segment procédure 5 dans lequel figure tout I'éventail
des types d'adressage. Nous avons arbitrairement supposé que F; et F; exécutent
5 dans le méme anneau que la procedure qui 'appelle. (£; dans 'anneau /1, P;
dans l'anneau 4.)

Pour lire le schéma, il est conseillé de considérer ['une aprés ["autre les cing
reférences qu'on trouve dans les instructions composant le segment partagé S,
et pour chacune, de suwivre tout le cheminement d'adressage conduisant i
I'emplacement ou se trouve l'objet référenceé.

Chaque fois que les noms n’ont aucune raison d’étre identiques pour Piet P,
nous les illustrons sous forme d'exemples numériques différents.

Remarque. Nous pouvons indiquer maintenant comment se fait le caleul
du nom d'un paramétre qui correspond & un parametre de la procédure appe-
lante : c'est une adresse segmentée (g, d5 + d6 ) déduite du couple (RS, d5)
et du contenu [g, df) du registre RS,

3.25 APPEL ET RETOUR DE PROCEDURE

Les meécanismes étudiés dans les paragraphes précédents permettent de
résoudre les problémes mis en jeu par I'appel et le retour d'une procédure :

— calcul de I'adresse segmentée des paramétres effectifs,
— sauvegarde du contexte de la procédure appelante,

— appel proprement dit,

— chargement du nouveau contexte,

— retour vers la procédure appelante,

— restauration du contexte de la procédure appelante.

Nous développons une solution possible 4 I'aide d’un exemple, celui de
I'appel de la procedure

P(8, X, Y)
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ou X désigne le 13-iéme objet rémanent de la procedure appelante et ¥ un objet
externe désigné par le 20-iéme mot du segment de liaison. Nous supposons que
la procédure appelée et la procédure appelante ne s'executent pas dans le méme
anneau et quelles utilisent donc des piles différentes.

31.251 Caleul de PPadresse segmentée des paramétres effectifs

Le calcul des adresses segmentées des parametres effectifs est fait par la
procédure appelante. Ces adresses et un mot indiquant leur nombre sont
rangés dans la pile de la procédure appelante, a la suite des objets locaux.

Supposons que les objets locaux occupent 14 mots de la pile. On range & dans
le 15-iéme mot. En désignant par A7 un registre de travail, il y a successivement :

a) Rangement de &,

chargement immédiat, RT &

rangement! du registre, RT (ic, R3, 15
b) Rangement du nombre d’arguments :

chargement immédiat, RT 3

rangement du registre, RT (ic, R3, 16)

¢) Calcul du nom du premier paramétre. On utihise I'instruction caleu!
adresse, qui évalue I'adresse segmentée du champ opérande

caleul adresse, RT (ic, R3,15)

rangement du registre, RT (ic, R3,17)
d) Calcul du nom X du second paramétre

calcul adresse, RT (ip, R4, 13)

rangement du registre, RT (ic, R3, 18}
¢) Calcul du nom ¥ du troisiéme paramétre

chargement mot, RT (ip, R4, 20)

rangement du registre, RT (ic, R3, 19)

3.252 Appel de procédure et changement de contexte

Seuls les contenus des registres R0 et R3 sont sauvegardés par 'exécution de

I'instruction appel de procédure. Les autres registres doivent &tre sauvegardés
par la procédure appelante.

a) Registres sauvegardés par la procédure appelante

Le contenu des registres 4 sauvegarder est rangé dans la pile. Si la procédure
appelante a un segment de liaison, le contenu du registre R4 doit &tre sauve-
gardé. 5i elle a des paramétres, le contenu du registre RS doit étre préservé.
Dans tous les cas cette sauvegarde des registres est prévue dés la compilation.
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Supposons par exemple qu'on doive sauvegarder les registres R4, RS et
Ri12: cela s'écrit

rangement du registre, R4 (ic, R3, 20)
rangement du regisire, RS (ic, R3, 21}
rangement du registre, R12 fic, R3, 22)

b) Mise 4 jour de I'adresse segmentée de sommet de pile

L’adresse segmentce du sommet de la pile est contenue dans Je premier maot
de la pile. Cette mise 4 jour se fait comme suit -

calcul adresse, RT fic, R3, 23)
rangement du registre, RT (ip, R3.0].
File, de nom p,
de [2 procédure
appel anee
Scgment de lidison,
de nom f,
de |a procédure R, p 100 I-""
sppelante
lr | '
Objers locaux [
de |'appelante 15
— }
Valewr de X 13 3 16
I
P -' ”51 17 Nomde§
f— I i3 I8 Nomde X
124 17 |
Segment externe [24 17 ¥ Nemde ¥
de mom 124 Comenude R, | o
— ]
Canteny de R M
E.ﬂ-
4 r Conteru de R 3 29

L Valew de ¥

Figure 9. Situation avant I'exécution de I'instruction « appel de la procédure ».

¢) Préparation du registre RS pointeur de paramétres pour la procédure
appelée

calcul adresse, R3 (fe, R3, 16)
d) Exécution de I'instruction d’appel de procédure

L'instruction d’appel provoque le changement du contenu des registres RO
e R3. Les anciens contenus sont ranges dans la pile associée 4 I'anneau d'exé-
cution de la procédure appelée. Le registre RO regoit 'adresse segmentée du
point dentrée de la procédure appelée. Le registre R3 regoit 'adresse segmentée
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du sommet de pile de 1a procédure appelée, adresse qui, par construction, figure
dans le premier mot de la pile.

Remargue. Le numéro de la pile utilisée par la procédure appelée est
calculé par les mécanismes de protection. Nous n'examinons pas ici comment

il est obtenu.

Pile, de som p, -F
ie de la procédure
de |a procédure '
s;pilm: appelee

p i35 \________/ Contenu de R,

(——

! 13 Contenu de Ry
24 17 avant |'appel
Contenu de R, ] I
Co de R Zone

nienu C€ Mg des obpers locaux

de 'appelés

Coneenu de f 5

1
Figure 10. Situation aprés I'instruction d’appel de procédure.

€) Reservation de la zone des objets locaux a la procédure appelée
La réservation de la zone des objets locaux 4 la procédure appelée est obtenue
en augmentant 'adresse segmentée du sommet de pile qui est contenue dans le
premier mot de la pile. La taille r de cette zone est calculée 4 la compilation pour
contenir R0, R3 et les variables locales de la procédure. Il vient
calcul adresse, RT (ic, R3, 1)
rangement du registre, RT (ip, R3,0)

J) Initialisation du registre pointeur du segment de liaison

P_nqr chaque anneau de protection, une table contient les numéros de segment
de liaison des procédures. Cette table est repérée par le second mot de la pile
associée a 'anneau. Elle fournit le contenu du registre R4, pointeur du segment
de liaison.

3.253 Retour i la procédure appelante

a) Libération de la région des objets locaux 4 la procédure appelée

Pqur détruire les objets locaux de la procédure appelée, la valeur du sommet
de pile contenue dgns le premier mot de la pile est modifiée. Sa nouvelle valeur
eds;t lue dans le registre R3 qui repére la base de la région des objets locaux 4

truire.
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Il vient :
rangement du registre, R3 (ip. R3,0)
b) Exécution de l'instruction de retour
L instruction
retour procédure fic, R3,0)

charge les registres RO et R3 avec les valeurs rangées en tate de g zone des
objets locaux de la procédure appelée (cf. 3. 2524).

¢) Restauration des registres de la procédure appelante

R3 repére désormais la pile de la procédure appelante qui peut restaurer
elle-méme ses autres registres. Notre exemple donne -

chargement mot, R4 (ic, R3, 20/
chargement mot, RS (te, R3, 21)
chargement mot, Ri2 (ie, R3,22)

3.26 LIAISONS DYNAMIQUES

Nous examinons maintenant un aspect fondamental de CLICS, en précisant
les techniques mises en ceuvre pour :

—— assurer le partage des informations exécutables ou non.,

— permettre I'écriture séparée de sections de code ou de données compilées
indépendamment,

— gérer les objets de taille variable.

Il existe des langages de programmation (ALGOL 60, PL/1 ou ALGOL 68)
ol certaines liaisons entre segments ne peuvent étre mises en place qu'a I"exécu-
tion. Ceci est dil au fait que ces langages permettent de traiter des objets de
taille variable, des procédures récursives ou encore des objets créés et détruits
dynamiquement.

D’autres liaisons qui sont mises en place dés la compilation dans des systémes
classiques, ne peuvent plus I'étre dans CLICS 4 cause des contraintes de
modulanté (procédures compilées indépendamment), de partage et de pro-
protection (problémes liés & I'accés partagé d’informations). De plus CLICS
permet I'accés aux collections de données, considérées comme des segments.

Nous laissons de c6té la traduction des identificateurs d'objets locaux,
rémanents ou paramétres, car elle se fait au stade de la compilation ; par contre
nous étudions Iidentification des objets externes et les mécanismes mis en
®uvre pour leur substituer un nom.

Nous supposons, dans ce qui suit, que § est un segmeni-procédure dont
Une instruction opére sur un objet externe  § situé dans le segment S'. Le
Programmeur ne peut pas désigner S par un nom de segment puisque ce nom
différe d'un processus a I'autre. Le segment est alors désigne, sans ambiguité
dans le systéme, par un wdentificateur symbolique unique.
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3.261 Remplacement de Pidentificateur par un nom de segment : édition de
liens

Soit TOUAMOTOU Tidentificateur utilisé pour cataloguer 5 4 sa création.
Cette création peut étre postérieure au debut de I'exécution du segment S qui
le référence.

Le programmeur désigne le segment §° par TOUAMOTOU. Lorsqu'un
processus F y fait référence c’est par un nom s', propre 4 F et 4 son descriptif.
Examinons quand et comment est réalisée I'eédition de liens qui fait passer de
TOUAMOTOU a s,

Comme cette édition ne peut étre faite par le compilateur, celui-ci range la
chaine de caractéres « TOUAMOTOU » dans une zone réservée de S.

On peut imaginer tout d’abord que 'édition de liens s’effectue au moment
de l'adjonction de 5 dans le descriptif de P et avant le commencement de
I'exécution de 5. 11 suffirait en effet de parcourir la liste des références externes
de Setd’inclure dans le descriptif de P tous les segmenis nécessaires, ¢'est-d-dire
EOUS Ceux qui sont cités par § et qui ne figurent pas déja dans le deseriptif’

Processus P,

Segment procédure § L (8 i) avant

'Il

=

e

" mLMHE_TﬂL' * \*

Figure 11. Effet de I'édition de liens dynamique.
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Cette solution présente les inconvénients suivants -

— il peut se révéler inutile d’inclure systématiquement dans le descriptif
tous les segments cités dans une procédure. En effet certains d’entre eux peuvent
ne pas étre utilisés 4 I'exécution,

— elle impose que tous les segments nommés par une procédure existent
au moment de son appel. D’une part ce n’est pas nécessaire si § n'utilise pas S’
lors de cette exécution particuliére. D'autre part ce n'est pas possible si S
doit &tre créé par P ou par un autre processus avant d'étre nomme dans 5.

La solution adoptée dans CLICS consiste 4 faire |a substitution de TOU A-
MOTOU par 5" lors de la premiére référence 4 §° par 8. Il s’agit donc d’une
edition de liens dynamique. C'est le processeur qui doit détecter que le mot
n'est pas encore lié. Pour cela un indicateur de déroutement est prévu dans le
format des mots-machine. Quand il est présent, il se produit un déroutement,
qui appelle I'éditeur de liens, et efface I'indicateur, Auretour de ce déroutement,
I'instruction nommant 5 est exécutée 4 nouveay,

L'état de l'indicateur de déroutement dépend du processus qui exécute
le segment-procédure S et non pas de 5. En effet comme 5 peut étre partagé
entre deux processus P, et P, & un instant donné la substitution de TOLA-
MOTOU peut étre déja faite pour F; (et le nom en est 5”), mais non pour P,
Pour cette raison I'indicateur de déroutement doit figurer dans le segment
de liaison L(S, i/. Par ailleurs, ce n'est pas la chaine de caractéres « TOUA-
MOTOU » mais son adresse dans le segment 5 qui figure dans le segment de
liaison et qui est associée & I'indicateur de déroutement. On fait référence 4 5
par indirection via le segment de liaison,

3.262 Référence i un segment-procédure

Soit un segment § faisant référence 4 un segment-procédure S'. Au premier
appel de §” par la procédure § exécutée par le processus P, I'éditeur de liens
est mis en ceuvre. S* est alors connu par la chaine de caractéres « TOUAMO-
TOU » accessible par le segment de liaison LS, i). Si c'est le premier appel de
5" par le processus P, 'éditeur de liens inclut §” dans e descriptif du processus
Py créé et initialise un segment de liaison L/S",i). Rappelons que LS’ ¥,
contient -

— les objets rémanents de la procédure S,

— les mots de liaison pour les références externes faites par §°, que ces
références soient 4 des données ou a des procédures.

L'état initial de L7S", ), identique pour tous les processus, figure dans
un modéle, présent dans Je segment-procédure de §°.

Remarque 1. Lorsqu’il v a plusieurs points d’entrée, chacun d’eux regoit
un identificateur. Ceux-ci sont conserves dans une table rangée dans le segment
§'. Toute référence symbolique 4 'un de ces points d'entrée est préfixée par
Pidentificateur TOUAMOTOU du segment S'. L'éditeur de liens vérifie que
¢ point d'entrée demandé figure bien dans Ia table des points d’entrée de 5.
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Remarque 2. Nous n'avons pas tenu comple des anneaux de protection,
dont la présence complique les mécanismes indiqués. En particulier il y a
autant de segments de haison que d'anneaux de protection de la procédure 5,

1l en résulte gu’au premier appel de S§° par le processus F; dans 'anneau a,
I'editeur de liens peut découvrir (en utilisant la table accessible par le 2-¢me
mot de la pile de I'anneau correspondant, cf 3.252) que le segment 57 est déja
présent dans le descriptif de P; 4 la suite d'un appel de S* par P, dans un anneau
différent de a. Il doit alors créer un nouveau segment de liaison associé cette

fois & ['anneau a.
Segment procédure 5

14444

ENTREE | 334

Processus P,

Table ENTREE? 529
des poinrs
d'encrée

Era rnitial
des abjets rémanents

Madile
de valeur
indtiale

du segment Erar initial DHErout. mrx

de liaisan des mots de lisison
pour les référentes
externes que fajr 5°

de ENTREE 2

demificarears || + TOMBOLCTOL » Y| oz

de références
exterpes de 5'

« MONLEC » r Iig

P roc fdure Instructions
exécurable de ENTREE I ‘ -
o)
- Instfuctions

Figure 12. Image du segment de liaison & sa création.
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Il en résulte aussi que les rémanents de ¢ LICS ne peuvent. sans précaution,
étre utilises comme des rémanents d' ALGOL 60, Ils servent surtout 3 conserver,
en dehors de la pile, des variables « locales 3 une procedure » (comme en
FORTRAN).

3.263 Catalogue des segments connus et catalogue général

Pour savoir si le segment TOUAMOTOU figure dans le descriptif du pro-
cessus P, 'éditeur de liens consulte un catalogue donnant pour chague segment
accessible & P, (c’est-a-dire dont le nom est présent dans le descriptif), ['iden-
tificateur associé. Ce catalogue, appelé catalogue des segments connus, est un
segment particulier du processus P,

Lorsque TOUAMOTOU ne figure pas dans le catalogue des segments
connus, il est recherché dans le catalogue général, unique dans le systéme,
connu de tous les processus sous le méme nom et qui contient les caractéris-
tiques de tous les segments catalogués (identificateur. adresse de base dans la
mémoire absolue, longueur, liste des contriles et acces, etc. ),

3.264 Gestion du deseriptif

Rappelons que CLICS comporte un nombre fixe de processus ¢t gue chacun
d'eux peut étre associé & un utilisateur pour la durée d'une session.

Avant d’étre associé 4 un utilisateur, le descriptif d'un processus P, contient
un petit nombre s, de noms de segments désignant, entre autres :

— les piles,

— le catalogue général et le catalogue des segments connus,

— I'éditeur de liens et les segments-procédure du moniteur,

— la procédure de gestion du terminal associé au processus.

Chaque segment § référencée par F, pendant la session regoit un nom lors
de sa premiére référence et le garde pendant toute la durée de la session méme
8l :

— le segment S n'est plus utilisé par P,

— le segment S est détruit.

Les noms de segments sont pris en séquence aprés s,

Pour éviter d’utiliser un segment détruit, un indicateur de déroutement
est prévu dans chaque descripteur. Lorsque cet indicateur est présent, toute
réference au segment entraine un déroutement qui provoque I'appel d'une
procédure du moniteur.

Le catalogue général des segments contient, pour chaque segment catalogué,
la liste des processus qui le désignent par un nom et le nom donné par chaque
Processus. Lorsqu'un segment est détruit, cette liste permet de retrouver tous
les processus qui I'utilisent et de placer I'indicateur de déroutement dans tous

Ipleurs,

En fin de session d'un utilisateur, tous les segments de nom supérieur ou
€gald s, sont enlevés du descriptif de P, et les listes qui leur sont associées dans
le catalogue général sont mises a jour.
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3.3 GESTION DES NOMS DANS LE SYSTEME BURROUGHS B6700

31.31 INTRODUCTION

Le svstéme BURROUGHS B6500/6700 [Hauck, 68 ; Cleary, 69 ; Creech, 71 ;
Organick, 71] posséde les caractéristiques suivantes :

— marquage de tous les éléments de la mémoire par un préfixe,
— utilisation systématique de piles,

— partage des objets par le partage de leurs noms,

— création et destruction dvnamique de processus.

Contrairement 4 CLICS, le systeme BURROUGHS B6700 ne permet pas
I'édition de liens dynamique.

Le moniteur est composé d'un ensemble de procédures partagées connues
de tous les processus.

Dans ce chapitre, nous présentons la pile associée 4 un processus et les objets
qu’elle contient, les noms qui les désignent, leur partage entre processus grice
a une pile arborescente et 'utilisation de celle-ci pour la gestion de I'ensemble
du systéme.

3.32 LE MATERIEL
3.321 Notion de préfixe

Dans le B6700, les premiers bits de chaque emplacement sont réservés pour
indiquer la nature de l'objet représenté dans le reste de I'emplacement. 1ls
forment le préfixe de I'emplacement. Le préfixe peut indiquer, entre autres,
une valeur, un nom ou un descripteur.

L’utilisation systématique des préfixes a des incidences

— sur l'adressage : quand le processeur accéde 4 un emplacement que son
préfixe signale comme contenant un nom. alors que I'instruction nécessite une
valeur, il effectue automatiquement un accés supplémentaire 4 I'emplacement
désigné par le nom. Cette indirection automatique est repétée jusqu'a la
rencontre d'un préfixe signalant une valeur.

— sur la protection : quand, aprés d'éventuelles indirections, le préfixe de la
valeur n'est pas compatible avec le code opération de I'instruction, une erreur
est signalée. On dispose ainsi d'une protection au niveau de I'emplacement.

— sur le nombre des codes-opérations du langage de la machine - les opérations
Fﬂhciuées dependent du type des opérandes. Ceux-ci peuvent parfois ne pas étre
identiques : par exemple un opérande peut €tre en simple précision, ["autre en
double précision. Il existe un code unique pour une opération donnée (par
exemple l"addition). L'opération est completerent définie par le type de ses
opérandes.

— sur la compilation : les compilateurs sont simplifiés, car ils n'ont pas d
engendrer des ordres d'indirection et de conversion de type.
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3.322 Les segments

La mémoire physique se compose d"une mémoire centrale de N emplacements
de 51 bits (N < 2%9) et d’un disque : elle est allouée par zones (cf, 4.43) 3 des
segments, qui peuvent étre de deux types :

— les segments de données, qui sont des tableaux, des éléments de fichiers
ou des piles, _
— les segments-procédures qui contiennent des instructions exécutables,

Un segment est représenté par un descripteur de Segment qui occupe un
emplacement. Ce descripteur contient. entre autres, les informations suj-
vantes :

— un prefixe (sd pour un segment de données, sp pour un segment-pro-
cédure),

— Padresse en mémoire physique de la base dy segment,

— la taille du segment.

La donnée d'un couple (descripteur de segment, déplacement) permet 4 un
processeur de calculer une adresse en mémoire physique par addition du
deplacement & I'adresse de base. Au cours de ce caley] d’adresse. le processeur
vérifie que le déplacement n'est pas supérieur 4 la taille du segment et qu'il n'y
a pas violation de protection.

Quand un segment est déplacé en mémoire. | ou les versions de son descrip-
teur doivent étre retrouvées el mises i jour ; nous ne considérons pas ce pro-
bléme dans ce chapitre.

3.323  Les processeurs physiques

Une installation peut comporter plusieurs processeurs. Chacun d’eux exécute
des objets-procédures dont les mstructions sont écrites en notation postfixée
et gére en pile son espace de travail. Cette technique, décrite dans [Randell, 64],
permet de traiter simplement la structure de bloc et les appels récursifs de
procédures. Elle comporte certains avantages :

— la génération, par certains compilateurs, d'instructions en notation
postfixée est facile,

— la structure de bloc permet une définition précise de I'espace de travail
(ef. 4.6) et en facilite la gestion,

— beaucoup d'instructions trouvent leurs opérandes sur le sommet de la
Pile et leurs noms peuvent alors étre implicites.

Le langage utilise Pour programmer le systéme est un dérivé d'ALGOL 60 X

l¢ systéme dispose aussi de compilateurs pour d'autres langages évolués cou-
rants,

La pile d'un Processeur est contenue dans un segment, dont Je descripteur
o5t réparti entre deux registres : le registre base de pile qui contient I’adresse de
base du segment et le registre plafond de pile qui contient "adresse du dernier
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mot du segment. Ces deux registres délimitent le volume total réserve pour la
pile. A tout instant, I'adresse du sommet de la pile est cqnlenj.m da_ns un registre
sommet de pile, mis a jour par ciblage a chaque opération d'empilement ou de
désempilement. Le plafond détermine la position limite du sommet : une
tentative de dépassement provogue un déroutement, qui entraine le réajuste.
ment du plafond ou la destruction du processus. D’autres registres permettant
d’accéder aux objets de la pile seront présentés en 3. 34,

Les instructions sont rangées dans des segments-procédures, suites d'em-
placements portant chacun un préfixe noté inst.

FProcessus P, Mémoire Processys P,

Figure 13, Pile d'un processus,

L'instruction qu'un processeur est en train d’executer est désignée par le
registre pointeur d'instruction qui. entre autres -

— contient le nom de I'emplacement oi se trouve Je descripteur du segment-
procédure courant,

— indigque le déplacement de I'instruction courante, mesuré en octets par
rapport & 'origine du segment-procédure courant.

Les interruptions sont traitées comme des appels de procédure inattendus,
forcés par cablage. La sauvegarde de I'environnement au moment de I'interrup-
tion et sa restauration, une fois interruption prise en compte, sont réglées
par le schéma d’appel et de retour de procédure,

3.33 REPRESENTATION DES OBJETS DU LANGAGE

Nous considérons ici un Processus isolé ; tous les objets qui lui sont acces-
sibles sont donc représentés dans sa pile.
3.331  Objets simples

| Nous 5uppnsun.5 qu’il n’existe quun seul type d'objets simples (au lieu des
divers types - entier, réel, simple ou double precision, ...). Un emplacement
contenant un objet simple porte le préfixe val. Quand un objet est créé sans
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valeur initiale, I'emplacement correspondant recoit un préfixe spécial signifiant
valewr indéterminée. Une tentative de lecture d'une telje valeur provoque un
déroutement.

3.332 Tableanx

Un tableau 4 une dimension est représenté dans [q pile par un descripteur
de segment qui renvoie au corps du tableau proprement dit, lui-méme extérieur
i la pile. Cette méthode permet de representer des tableaux dont la taille peut
varier au cours de leur durée de vie (F ig. 14).

File

Segment corps de £y

/

Objer-cableac ¢, | sd =
- |

Objer-tableav i, | =d ‘

Figure 14. Tableaux 3 une dimension.

Segment corps de £y

Un tableau 4 deux dimensions de taijle / x M est représenté par le descripteur
d’un segment de données de ! mots, chacun d’eux contenant Je descripteur d'un
segment de données de m mots. Tous ces Segments sont créés en méme temps
que le tableau,

Un tableau 4 n dimensions est representé suivant le méme principe. Un
tableau peut donc étre de tajlle variable selon une ou plusieurs de ses dimen-
5I0MS,

3.333  Objets-procédures

Chaque objet-procédure est conserve dans un segment-procédure et repré-
sente par le descripteur de ce segment. On assimile tout bloc ALGOL 60 & une
procedure et on lui associe donc un segment-procédure,

L'ensemble des descripteurs des segments-procédures utilisés par le pro-
cessus, ou descriptif, est conservé dans Ia pile, dans une région dont la durée
de vie est au moins ¢gale a celle du processus.

3.3 ACCES AUX OBIETS
3.341 Mp&ctslexicugraplﬁquﬁ

On appelle bloc une suite d'instructions du texte source comprise entre les
symboles deébur et fin et comportant des déclarations. Si on admet qu'un bloc
Peut contenir un autre bloc, la définition précédente doit étre complétée
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par une régle permettant d'associer par paires les symboles débui et fin limitant
un bloc. A cet effet, on définit un nombre & initialisé a8 — 7 qui, lorsqu’on par-
court le texte source, augmente de [/ a chague rencontre du symbole d_éEEE el
diminue de / & chaque rencontre du symbole fin. Dans un programme bien
construit, & reste non neégatif et sa valeur finale est — I aprés rencontre dy
dernier symbole fin. Lorsqu'on pénétre dans un bloc aprés avoir franchi un
débui, 1a valeur courante de k est appelée niveau d’emboitement du bloc ; Je
symbole Jin qui termine le bloc est le premier symbole fin rencontré pour lequel
la valeur courante de k est égale au niveau d’emboitement du bloc. Dans le
systeme BURROUGHS B6700, les niveaux 0 et | sont réservés au systéme ;
le niveau d'emboitement du bloc le plus externe d’un texte-source, c'est-i-dire
du programme |lui-méme, est donc égala 2.

Nous appelons identificateurs d’un bloc les identificateurs dont la declaration
figure dans ce bloc & un niveau égal au niveau d’emboitement du bloc, Le lexigque
d'un bloc est I'ensemble des identificateurs du bloc et des blocs englobants.

3.342 L’espace adressable

Chaque exécution d'un bloc crée deux espaces d’emplacements :

1) Une région, de taille connue & la compilation. Elle contient une zone
de liaison et la collection des objets créés par le traitement des déclarations
des identificateurs du bloc. Nous disons que la région est issue du bloc. A la
sortie du bloc, cette région est détruite et les emplacements qu'elle occupait
sont libérés. Le niveau d’emboitement d’une région est le niveau d’'emboitement
du bloc dont elle est issue.

2} Une zone d’évaluation des instructions, geree en pile. Les emplacements
de cette zone sont créés et libérés au fur et 4 mesure de 'évaluation des instruc-
tions. A la sortie du bloc, cette zone est de taille nulle.

Par le jeu des exécutions de blocs imbriqués et des appels de procédures,
il existe en général 4 un instant donné plusieurs régions. Leurs durées de vie
étant imbriquées, I'ensemble de ces régions est géré en pile ; il forme I'espace
adressable du processus. La derniére région créée est la région courante.

Remarque. Si une procédure est appelée récursivement, il existe i un
moment donné plusieurs régions issues du méme bloc,

La pile des régions et la pile des zones d’évaluation sont en fait fusjonnées
en une seule pile comme le montre I'exemple ci-dessous.

Exemple. Considérons e programme ALGOL 60 suivant

débur entier i : .
entier procédure p; début entier j: ... E - . N

bloc 2 hlucjr[
ie=Jap_
fin
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A l'exécution de 'instruction etiquetée E, la pile a la configuration sUivanie -

Pile

} Région issue du bloc 2

} Zone d'Evaluarion comespondant & e 3,

/EEE } Région issue du bloc 3

Zome d'Evaluarion de linstrucrion friquerés F

Sommet de pile

3.343 Environnement : accés par désignation

L’environnement, 4 un moment donné de I'exécution, est un ensemble de
régions inclus dans I'espace adressable, te] qua tout identificateur (de para-
metre formel ou non) appartenant au lexique du bloc en cours d’exécution
correspond un objet de I'environnement. Iors d’une autre exécution du méme
bloc, le méme identificateur désignera un autre objet, car I'environnement aura
changé. Un identificateur désigne soit un objet du langage, soit un paramétre
formel qui fournit I'information conduisant au paramétre effectif. L’environ-
nement sera defini plus rigoureusement en 3.36 par la facon dont il varie i
partir d'un état initial. Pour I'instant, constatons qu'il contient une région
de chaque niveau d’emboitement f, i allant de 0 jusqu’an niveay d'emboitement
de la région courante.

1} Noms statigues : le compilateur traduit chaque identificateur en un nom
statique de la forme /a, b /, OU a est le niveau d’emboitement dy bloc ol est
déclaré I'identificateur et b est un entier valant & + J pour le k-iéme objet
déclaré dans le bloc. (Les emplacements 0 et | de la région étant systématique-
ment réservés 4 la zone de liaison, b doit commencer 4 |a valeur 2.)

Base de la région 0 }
Zone de linissn

i-er ohjer

3 Jdme objer

2) Registres d'environnement - chaque processeur comporie une collection
de registres d’environnement (« display registers ») qui contiennent une repré-
sentation de I'environnement  tout moment - le n-iéme registre repére la base
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de la région de niveau n de I'environnement (0 < » < 37 dans le systéme
BURROUGHS B6700). Le contenu des registres d’environnement est mis 3
jour a chague ouverture ou fermeture de bloc.

3) Inierprétation des noms statiques en fonction de l'environnement . pour
accéder 4 ['objet de nom statique /a. b/, le processeur ajoute & au conteny
du registre d’environnement de niveau a.

Exemple. Soit le programme ALGOL 60 :
débur entier i ;
procedure p ;
début entier i
i=i+ 1, jmi;
$ii < 3alorsp

_,ﬁ" ;
débuz entier k ;

i o= {J P (—(D
fin

fin

Aprés compilation, on a la correspondance suivante :

[

Identific ateus ] [ Ir I

Nom statigue 22 2.7 3.2 1.2

On remarque que j et k ont le méme nom statique.

Pile Pile
Miveay 3 Miveay 2

Registres —
d'envimmanement

I_. _mﬁﬂﬂ . Nivean
2 = I‘!pri : #
! =1 | covimonremen 3
_\_ Hors
MNiveay 15 Miveau 3 ENVironnement
s R | T

Aprés ]’app!;l 1, & l'exécution de _.I'- = i, 1= m t?

nom statique (3, 2) correspondant a4 7 dési : .
I'objet j,. P ata J désigne L zal | Objet J3

Ap‘r&ﬁ I'appel 2, I'environnement a changé et
le méme nom statique (3, 2) désigne um autre
objet, j,.
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3.344 Accés aux paramétres effectifs : noms dynamiques

L'identificateur d’un paramétre effectif ne peut figurer directement ay sein
du corps de la procédure appelée puisque le paramétre effectif varie en général
d'un appel a I'autre. Seul est connu, i |a compilation, le parametre formel qui
gst traité comme un objet local 4 Ia procedure, & 'emplacement duquel on
accéde par désignation. L'information concernant le paramétre effectif ne
peut étre fournie qu'au moment de 1'appel de la procédure. Le nom du para-
metre effectif est alors rangé par la procédure appelante dans 'emplacement dy
paramétre formel,

L'interpretation de ce nom ne doit pas faire ntervenir l'environnement
car le paramétre effectif peut ne pas sy trouver. Ce nom €5t un nom dynamique
constitué d'un couple (b, d) on b est |e déplacement, par rapport a la base
de la pile, de la région ou se trouve le paramétre effectif, et dest le déplacement
du parametre effectif par rapport 4 la base de cette région.

Un emplacement contenant un nom dynamique porte un préfixe noté nd.
Pendant 'exécution de la procédure, chaque accés a Uemplacement du para-
metre formel est automatiquement transformé, par le préefixe nd, en un accés
indirect vers I'emplacement désigné par le nom dynamigue,

Exemple. Dans le programme de la figure 15, pour exécuter /= k, |o processus
a besoin de la valeur de & ; mais k n’étant quun paramétre formel, i faut obtenir |a
valeur du paramétre effectif j, qui est hors de I'environnement au momeni considéré,
Pendant I'exécution de g, la pile a I"aspect illustré sur la figure 16.

début entier i :
procédure qi'k) ; entier k : début entier | ;

F~'-=-ﬂ:‘
fin

début entier j; ...; qfj}: ...

fin
-ﬁf Figure 15.
Pile=
S e B
N — |

3 -
F— Miveay 3 *.?.
vl j

T— Parambcre effectit

Miveau 2
ad I, 2 Parametre formel
[T

Figure 16. Nom dynamique d’un paramétre effectif.
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Remarque. On verra dans le paragraphe suivant que C'est pour pouvoir
traiter le cas des procédures passées en parametres que le nom dynamique n'est

pas simplement b + d.

3.35 PROCEDURES

A chaque traitement d'une déclaration de procédure est crée un procedurus
qui est 'association d'un objet-procédure objproc et d' un environnement env.
ALGOL 60 précise que env est l'environnement courant au moment du trai-
tement de la déclaration. Une méme déclaration de procédure rencontrée
plusieurs fois de suite par récursiviteé entraine la création de plusieurs procé-
durus, qui ont tous la méme composante objproc mais différent par leur
compaosante env. Quand un procédurus est cree, sa repreésentation est rangée
dans la pile avec le préfixe proc.

@) La composante objproc figure dans I'emplacement du procédurus sous

forme du nom statique de I'emplacement de la pile ot est rangé le descripteur
du segment-procédure contenant I'objet-procedure.

Exemple.

début procédure g ; débur procédure p ; débur ... fin;
procédure pp . débui ... fin;
q:

fin;

fin

Aprés deux appels récursifs de g, on a la situation représentée sur Ja figure 17.

File

Oibjee
procédore

Objet
procédure

Objet
procfdure
P

Figure 17.  Procédurus et objet-procédure.
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Remarque. Un emplacement prefixé proc pourrait contenir directement le
descripteur de I'objet procédure, puisque I'édition de liens est effectuée avant
I'exécution du programme. Mais cette solution conduirait multiplier les
descripteurs de segments et 4 compliquer leur recherche pour les mettre a jour
en cas de deplacement des segments en mémoire physique,

b) La composante env du procédurus n'a pas besoin de figurer explicitement
dans I'emplacement de chaque procédurus : en effet, tous Jes procédurus créés
dans une région donnee ont la méme composante eny, qui est 'environnement
associé & la région. 11 suffit done d"avoir, rangee én un seu) exemplaire dans la
zone de liaison de la région, l'information représentant eny, Ce role est rempli
par la chaine statigue, qui sera étudiée en 3.363. Cette cconomie a pour
contrepartie une legere complication des noms dynamiques. Ils sont formés
d’un couple dont les éléments désignent : 1'un, la zone de liaison d’une région,
Pautre un déplacement par rapport a cette zone.

Remarque. Cette généralisation du procédurus et |a présence du préfixe
de l'emplacement permettent d'utiliser les mémes instructions de la machine
pour désigner un objet par un nom ou par une procédure qui fournit I'objet.
Seule la chaine d’acces 4 I'objet change : la procédure est considérée comme
une fonction d’accés a "objer.

3.36 VARIATIONS D'ENVIRONNEMENT AUX APPELS ET
RETOURS DE PROCEDURES

Lenvironnement change a 'occasion des appels et des retours de procédures.
Les entrées et les sorties de blocs en sont des cas particuliers que nous ne traitons
pas.

Dans ce qui suit, on désigne par :

Rappelante) la région courante au moment de I'appel,

Efappelante ] 'environnement associé 4 cette région,

Riappelée} la premiére région créée 4 la suite de "appel.

3.361 Appel de procédure

Appelons environnement initial I'environnement auquel on ajoute R{appelée )
pour former I'environnement pendant I'exécution du bloc Ie plus externe du
corps de la procédure appelée. Par définition des langages a structure de bloc,
lenvironnement initia] est constitué par la composante env (cf. 3.35) du
procédurus appelé, que ce dernier ait été passé en paramétre ou nomn.

a) Sile procédurus appelé n’est pas un paramétre, env est forcément inclus
df'mls Efappelante). Plus précisément, si n est le niveau d’emboitement de la
""8I0N contenant le procédurus, env est constitué des régions de niveaux 0 4 n
de E(appelante). Cette propriété rend trés simple I'installation du nouvel
“OVironnement par le processeur : les registres d'environnement () 4 » n'ont

CROCUE. — Syrsdmes despivitation des ordimarees, !
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pas a étre modifiés, le registre n + I désigne la nuuwl_le: régiun Riappeiée)
et les contenus des rgg‘igl‘_t‘ﬁ. n <+ 2, elc..., ne sonl ].',I-l'l-lE sigm.ﬁcaufs, On remanjue
qu’il n’est pas besoin d’accéder 4 la représentation du procédurus dans la pile :
n est déduit de son nom statique et le nom de I'objet-procédure est connu dés
la compilation.

Exemple. Soit le programme :
début procédure p ; début entier 1 ... jin;

début entier k ;... [ p: ... fin
fm
L'snvironnement avant et aprés 'appel de p sont illustres sur la figure 18
Pile Pele
Miveay 2
Procédurus pme p Procddurus
Registes wppelé Registres appelé
d*envisonne me a d*envimnnement
Nivean 3
z Rfappelants) 2 | pal B Rimppelane)
3 3
Mivea
| ! Riappeléel
Environnement asamt Nappel de p —= |

Environnement aprés Fappsl de g

Figure 18. Appel d'une procédure qui n'a pas €& passée en parameétre.

b) Sile procédurus appelé est un parameétre, le processeur doit aller chercher
dans la pile les composantes objproc (cf. 3.35) et env du procédurus. On trouve
objproc dans I'emplacement du procédurus, et env dans la zone de liaison de la
région du procédurus.

En général, env n'est pas inclus dans Efappelante), comme le montre
I'exemple suivant :

Exemple. Soit le programme :

début procédure q( pp ) ; procédure pp ;
début ... pp ;... fin

début procédure p ; début entier I ; ... fin;
qipl;
fin

Jin

Au moment de son appel par la procédure g, le procédurus p passé comme paramétre
effectif n'est pas dans I'environnement courant (Fig. 19).
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File Pile
Miveaa 2 Niveau 2
grc g Registres pme g
d'environne ment T
Hegiscres — 3 2 —-—J =
A'epvirenne men Niveau " I VER 1
R Procédurus 3 _ proe “!" Frockdusus
appelé X —— appelé
2
} & . Miveau R feppel
ant appelante
Parandtre formel 2 (cppaiome) ad !
vand |‘appel de Mi
] app PP I.EIHI i }Hrnppe!jz‘,l

apris 1'appel de pp

Figure 1%. Appel d'une procédure passée en paramétre et qui n'est pas
dans I'environnement.

3.362 Retour de procédure

Au retour d'une procédure, il faut rétablir E{appelanre). On dispose pour
cela de la zone de haison de Rf'appelée). Une méthode immeédiate serait d'y
ranger le contenu des registres d'environnement significatifs de la procédure
appelante ; mais, comme a chaque appel d'une procédure donnée I'environne-
ment n'est pas toujours le méme, les zones de liaison devraient avoir des tailles
diverses, donc inconnues 4 la compilation. Aussi range-t-on dans R(appelée)
uniquement un pointeur, appelé élément de chaine dynamique, qui désigne la
zone de liaison de Rfappelante) ; c’est dans cette derniére que figure I'infor-
mation permettant de reconstruire E{appelante), sous une forme qui sera
etudiée plus loin (chaine statique).

Un registre propre 4 chague processus, le registre de région courante, désigne
constamment la base de la région courante; son contenu fournit, 4 'appel

Pile

Zone de liaison
Registre de
région Coutante

Zone de lisizen

Zone de linison

Figure 20. Chaine dynamigue.
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d’une procédure, la valeur de I'élement de chaine dynamique de la procedure
appelée. La chaine dynamique relie toutes les régions, dans I'ordre inverse de
leur création (Fig. 20) ; elle ne sert qu'au retour de procédure (et donc en par-
ticulier & la sortie de bloc).

3.363 Chaine statique

MNous avons vu deux circonstances dans lesquelles on doit retrouver 'envi-
ronnement d'une région grice 4 sa zone de liaison :

— a I'appel d'une procédure passée en parametre,

— au retour d'une procédure.

Au lieu de recopier tous les registres d’environnement dans la zone de liaison,
on n'en range qu'un seul, grice 4 la propriété suivante des environnements,
qui découle de la structure de bloc :

Soit R, une région de niveau n. Appelons R; la région qui appartient
I'environnement de R, ¢t qui est de niveau i. 11 y en a une et une seule pour
chaque i allant de 0 a n. Appelons E(R;) I'environnement associé 4 R, Nous
constatons la propriété suivante :

E(R;) = R;w E(Ri_,), i=1..n
E(R,) = Ry

Supposons que la base de R; soit connue. Il suffit, pour obtenir EfR,/,
d’obtenir la base de R,_, et d’appliquer la formule de récurrence. La zone de
liaison de R, contient le nom de la base de R;_, sous forme d’un déplacement

par rapport a la base de la pile.
La base de R, est obtenue au départ :

— soit par la chaine dynamique, en cas de retour de proceédure,
— soit par le nom dynamique, dans le cas ou une procédure est un paramétre,

La suite des noms qui figurent dans les zones de liaison et qui permetient
de construire I'environnement associé 4 une région s'appelle la chaine statique.

3.364 Zone de liaison

Le premier mot de la zone de liaison porte un préfixe noté [i et contient

— le niveau d'emboitement de la région,
— un &lément de chaine statique,
— un élément de chaine dynamigue.

Exemple. La figure 21 indigue les chaines statiques et dynamigues correspondant
an programme de la figure 18.

3.365 Détail de 'appel de procédure

Nous étudions ici en détail les instructions correspondant & l'appel de
procedure.,
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Pile Pile

Regisues H-.Tgi::ﬂs T 2
4'envisonnement d'enviconnement =
1
3l
Registre de ﬁﬂ_ugin:m de ki 3
rfgon Courante " gion Couranoe
" i I,
val &
avant ['appel de p
li 3
- de | de liai vad |
D7 ivon encore explicieer

aprés ['appel de p

1} Une premiére instruction réserve un mot en sommet de pile. Ce mot sera
occupé par le premier mot de la zone de liaison de procédure & appeler.

2} L'instruction suivante empile temporairement le nom du procédurus
a utiliser. Ce nom peut étre un nom dynamique ; dans ce cas, il est recopié &
partir de I'emplacement réservé au paramétre formel dans la région de la
procédure-appelante.

3) Les parametres effectifs sont ensuite évalués et leurs noms dynamiques
empilés.

4) L'instruction d’appel proprement dite est exécutée. Si la procédure &
appeler est dans I'environnement, son procédurus est désigné par un nom
statique (n, d). Le registre d’environnement n + 7 regoit 'adresse de base de
lanouvelle zone de liaison. Les autres registres d'environnement restent valables
¢tsont inchanges. Si la procédure est un paramétre, son procédurus est désigné
par un nom dynamique (b, d). Dans la zone de liaison désignée par b, on trouve
le niveau n de la région correspondante. Le registre d’environnement n + J
regoit I'adresse de base de la nouvelle zone de liaison. Les autres registres
d'environnement n, n — I, ..., regoivent le contenu de la chaine statique
Commengant en b. Dans tous les cas, le contenu des registres d’environnement
de numéro supérieur 4 n + J n'est plus valide, et le programme n'y fait pas

Droits réservés au Cnam et a ses partenaires



116 Systémes d'exploitation des ordinateurs

référence. Le nombre n + / est rangé dans la nouvelle zone de liaison, avec le
contenu du registre d'environnement # {chaine stgtiquc} etile _n:ume:nu du reg1strle
de région courante (chaine dynamique). Le registre de région courante regoit
'adresse de la base de la nouvelle région. Le contenu du registre pointeur
d'instruction (cf. 3.322) est rangé dans le deuxiéme mot de la m;-%well'e zone de
liaison avec un préfixe noté rer. Le nom de I'nbjet-prqcédure‘: a executer est
chargé dans le registre pointeur d'instruction. L'instruction suivante, désignée
par ce registre, fait partie de la procédure appelée. o

Pile L=

Regisore de 1 n l I
égion Couwrante ~

Registre de
rEgion Couranie

=1 Registre sommer

Resi
EE1SENE Sommer de Pj]g-

de pile

Chaline
dynamiqes

=

avant |'appel proprement dic apris |'appel proprement dit
Figure 22. Appel de procédure.

3.37 PARTAGE DES OBJETS ENTRE UN PROCESSUS PERE ET
SES PROCESSUS FILS

3.371 Création de processus
La création de processus se fait par un ordre d’activation sur une procédure.

Exemple.
début entier b ;
processus truc ;
procédure p(i) ; entier i; début ... fin ;
début entier m ; -

eréer-activer Iruc sur pim) ;

fin fin

Figure 23, Exemple de création de processus,

On utilise la terminologie processus pére et processus fils pour évoquer le
processus créateur et le processus créé.
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Toutes les possibilités des appels de procédures sont permises lors de la
création d'un processus sur une procedure : les paramétres sont autorisés, la
procédure peut avoir été déclarée 4 n'importe quel niveau, elle peut étre elle-
méme un parametre.

A I'exécution, une création de processus différe d'un appel de procédure
par les points suivants :

— La nouvelle région (appelée) et les régions que pourra créer ultérieure-
ment le processus fils, s'ouvrent non pas au sommet de la pile du pére. mais
dans une pile nouvelle, propre au fils.

— Un nouveau processeur virtuel est mis en activité. Ses registres regoivent
I'information permettant de gérer le nouveau processus; en particulier son
registre pointeur d’instruction regoit le procédurus. Ce processus est lancé,
et le processus pére, dont les registres n'ont pas été modifiés, reprend immé-
diatement sa tiche.

Remarque. Le probléme de lallocation des processeurs réels est traité
au chapitre 4.

3.372 Existence d’objets communs aux processus pére et fils

La création d'un processus introduit une nouvelle source de création de
régions issues d'un méme bloc.

Soit p; le processus pere, p; le processus fils créé sur la procédure § avec le
procédurus I,

Q; et @, leurs piles,
W.et W; les ensembles de régions qu’ils peuvent atteindre en dehors
de leurs propres piles.

L'union des régions de O, et W, forme I'espace adressable du processus p,.
La structure de bloc impligue les conséquences suivantes :

1) Seit Z(1i,j) I'ensemble des régions de O, qui existent au moment de la
création de p;. On appelle Z(i,j) le trongon de I'espace adressable de p;
dans Q.. L'ensemble W; est défini par

W, = W;w Z(ij)

2) L'environnement initial du processus fils est composé des régions de W,
formant I'environnement associé 4 la région qui contient le procédurus /.

3) Un paramétre effectif de S est un objet quelcongue de W,

4) Les objets créés par p, sont tous dans Q.

3) L'environnement de p; évolue 4 partir de I'environnement initial et des
parametres effectifs selon les régles edictées en 3.34, 3.35et 3. 36,

6) La fin du processus p ; se produit quand Q; devient vide.
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Ces nouvelles régles s'appliquent récursivement aux processus que le pro-
cessus fils peut créer 4 son tour et aux processus ancétres du processus pere.
[] existe un processus p, tel que W, soit vide. Les piles ainsi creees constituent
une arborescence (Fig. 24).

Pile ) du processus o,

Z (. [} Fil . du processus P
£,k 1 _________________ I__c__?{ P us F

Pile (), du processus oy

2 (k 1}
' ' File §; du processus gy

1

p; acréé p; et p, ; ce dernier a créé p;. Le processus p, peut avoir acces aux tron-
cons (&, ) et Z(i, k).

Figure 24. Arborescence de piles.

3.373 Incidence sur les noms

Pour tout processus le processeur doit gérer une pile et un espace adressable.
La pile est gérée au moyen des registres base, sommet et plafond de pile décrits
en 3.322. L'espace adressable et I'environnement, qui en est un sous-ensemble,
étant composés de trongons répartis dans diverses piles, le mode de désignation
des objets doit en tenir compte.

a) Les éléments de la chaine statique peuvent désigner des régions d’une
autre pile. Le nom d'une région est alors un couple (numéro de pile, déplacement
de la région dans sa pile).

b) Les éléments de la chaine dynamique d'un processus ne désignent jamais
que des régions de sa pile. Quand la région ouverte a la création du processus se
referme, le processus est détruit et il n'y a plus aucun retour a effectuer. Un
élément de la chaine dynamique désigne une région par son déplacement par
rapport a la base de la pile.

¢) Les noms statiques conservent la forme indiquée en 3.343. Ils sont inter-
prétés en fonction du contenu des registres d'environnement.

d) Les noms dynamiques sont formés d'un triplet (muméro de pile, déplace-
ment de la région dans sa pile, déplacement de I'objet dans sa région) .

¢) Chaque pile est un segment. Les descripteurs de toutes les piles sont
regroupés dans un descriptif de 1 024 éléments au plus. Le numéro de pile qui
intervient dans les éléments de la chaine statique et dans le nom dynatique
est le déplacement, dans le descriptif, de 'emplacement ot se trouve le descrip-
teur de la pile considérée. Le descriptif est lui-méme un segment dont le des-
cripteur figure dans la pile de numéro zéro.
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Remarque 1. Le double chainage :

— pom de la pile zéro dans le descriptif,
— nom du descriptif dans la pile zéro,

permet & l'allocateur de mémoire de déplacer le descriptif et la pile zéro.
La pile zéro est la pile du processus racine du systéme.

Remarque 2. On notera I'absence de protection cibléee limitant l'acces
d’une pile au seul trongon autorisé au processus.

Exemple. Revenons au programme de la figure 23 Juste aprés linstruction créer-
activer, les processus pére et fils sont dans 1'état représenté sur la figure 25.

Pile du processus pére File du processus fils

L
Registres 2
4" envife nae ment

s
3

Parambtre effecedf
Truc File
Lz potation E dans D\
Fone de liaison
Truc Pile

se développe ainsi :

J

Fone e lizison

Descripeal
& pi

Figure 25. Chaines statiques
et dynamiques de processus pére et fils.

3.374 Synchronisation

Les mécanismes fournis a l'utilisateur pour synchroniser ses processus
paralléles ont été décrits en 2.63. La synchronisation peut étre utilisée pour
empécher quun processus pére ne detruise les régions de sa pile qui appar-
tiennent 4 1'espace adressable d'un processus fils, alors que ce dernier n'est pas
terminé. Le processus fils risquerait dans ce cas de désigner des objets disparus.
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Par ailleurs, le systéme vérifie, 4 chaque fermeture de bloc, gu'il ne subsiste
pas de processus qui ont été créés quand la région 4 détruire était courante
(plus précisément les compilateurs engendrent & chaque fermeture de bloc
un appel a une procedure du moniteur chargée de cette vérification). Cette
protection programmee est la seule prévue.

3.38 INCLUSION DU MONITEUR DANS L'ARBORESCENCE DE
PILES

3.381 Partage des objets par une collection de processus

Une collection € de processus se partage un objet si et seulement si celui-ci
est dans |'espace adressable de chacun de ces processus. Etant donné la relation
entre l'espace adressable d'un processus et celui de son pére, ceci signifie
qu'il doit exister un processus p-créatewr qui a créé 'objet partagé, puis les
processus de C (ou des ancétres de ces processus).

Le processus p-créatenr peut avoir pour seul role de créer les objets partages
puis les processus qui se les partagent. Comme la région créée pour les objets
partages doit avoir une durée de vie au moins égale a celle de tous les autres
processus, le p-créateur est bloqué en attente de I'événement traduisant la fin
de Vexécution de ceux-ci.

Exemple.

Pile du precessus py

Objets communs | 4 2.0, 0) = Z0,2)
i pyoeropy

Pile du processus Py Pile du processus p 2

- i - =

Figure 26. Objets mis en commun par un ancétre commun.

Comme il est plus efficace de réaliser I'accés 4 un objet par désignation
plutot que par paramétre, on s'arrange pour que le procédurus sur lequel est
créé chacun des processus ait tous les objets communs dans son environnement,

3.382 Partage des objets communs i tous les processus

Les procédures et les diverses tables qui constituent e moniteur sont consi-
dérées comme des objets partagés entre tous les processus.
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Parmi les procédures, on peut citer :

— celles qui permettent & I'utilisateur de créer des segments-procédures 4
partir de textes-sources (compilateurs), de le cataloguer (gestion de fichiers)
et de les nommer pour les exécuter,

— celles qui gérent I'arborescence de processus,

— celle qui est appelée automatiquement aprés toute interruption afin d'en
détecter la cause.

Nous avons déja décrit une table du moniteur : le descriptif des piles.

Tous ces objets sont rangés dans la pile d'un processus racine dont la durée
de vie est égale 4 celle du systéme et dont tous les autres processus sont les
descendants. Cette pile ne contient jamais qu’une région de niveau d emboite-
ment zéro. Elle contient en particulier le descriptif des segments-procédures
du moniteur et les procédurus associés 4 chacune des procédures (Fig. 27).

Exemple.

Pile du proce ssus
facine

Segment-proc édure imprimer

g

Sepmenr-procédure £1nus

Deseripuf
des piles

Figure 27. Processus racine.

3.383 Partage des procédures communes i plusieurs processus

Rappelons que I'édition de liens est entiérement effectuée avant 'exécution
et qu'il n'y a donc pas d'édition dynamique. Nous considérons ici les procé-
dures compilées qui correspondent aux programmes des utilisateurs. Le
partage de tels programmes entre plusieurs processus nécessite la présence
d’un trongon commun B. Si B était la région racine, celle-ci contiendrait alors
des objets dont la durée de vie serait inférieure i celle du systéme et qui seraient
en nombre inconnu. Il faudrait introduire, au niveau du moniteur, une gestion
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dynamigue de Ieurs noms. Cette solution reviendrait aussi a rendre les proce-
dures communes 4 tous les processus. Pour éviter cette gestion dynamique, le
trongon commun B est une région de niveau d’emboitement I qui est crege a
l'aide d'un processus auxiliaire.

Soit un segment-procédure p catalogué. Quand aucun processus ne ['utilise,
son descripteur n'apparait dans aucune pile. Lorsqu'un premier utilisateur en
demande I'exécution, le systéme crée un processus auxiliaire a dont "unigue
région est de niveau d'emboitement /. Il inscrit dans cette région, 4 des empla-
cements prévus dés la compilation (de nom statique /. k), le descripteur de p
et les descripteurs de tous les objets-procédures compilés en méme temps que p
et qui sont déclarés dans p. Ces descripteurs figurent dans le catalogue des
fichiers. Le systéme compléte ainsi un descriptif utilisable par tous les processus
crées sur p. Un procédurus, constitué de I'objet procédure correspondant
au bloc le plus externe et de 'environnement associé A la région est aussi
cree dans cette région. Puis un processus est lancé sur ce procédurus comme
fils de a. Si la procédure p est déja utilisée, a n’a pas 4 étre créé : on se contente
de créer un nouveau fils pour a. Le nombre de processus utilisateurs de p
est comptabilise et a est détruit 4 la fin de 'exécution de son dernier fils.

Exemple. Dans la figure 28, deux processus [ et m utilisent le méme programme p.
Un processus n utilise le programme g. Le processus m a appelé une procédure du
moniteur, par exemple sous 1’effet d’une interruption.

3.4 GESTION DE L' INFORMATION DANS LE SYSTEME ESOPE

Les caleulateurs deécrits dans les deux exemples qui précédent comportent
des mecanismes d’adressage évolués, qui permettent de réduire I'importance
des opérations programmeées & mettre en ceuvre par le systéme pour I'accés &
I'information. Les techniques avancées utilisées sur ces matériels ne doivent
pas décourager un concepteur de systéme disposant d'une machine moins
perfectionnée. A partir des concepts qui viennent d'étre développés, deux voies
souvrent a lum :

— réaliser une machine virtuelle en dotant son calculateur d’une extension
programmee,

— restreindre les possibilités offertes aux utilisateurs pour tenir compte
des limitations du matériel disponibie.

Dans la pratique, la solution adoptée est souvent un compromis entre ces
voles extrémes.

A titre d'illustration, nous présentons une description schematique des
meécanismes de gestion de I'information dans le systéme ESCPE, réalisé sur
un calculateur CII 10070 [Bétourné, 70). Aucun concept nouveau n’'est ici
introduit ; nous montrons comment certaines des idées développées dans 3.2
sont mises en ceuvre compte tenu des restrictions apportées par le matériel.
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3.41 LE MATERIEL

Nous presentons ici briévement les caractéristiques du CII 10070 qui
nous seront utiles dans ce chapitre.

3.411 La mémoire physique

Nous considérons la mémoire physique du 10070 comme composée de
N + P mots de 32 bits ; cette mémoire est constituée par :

— une mémoire principale directement adressable par I'unité centrale,
comprenant N mots (N < 27,

— une memoire secondaire (disques), non adressable par |'unité centrale,
comprenant P mots.

L'unité d'information en mémoire physique est la page de 512 mots. Une
page est repérée par une adresse physique A, qui peut désigner un emplacement
en meémoire ou sur disque.

3.412 L’adressage topographique

Lorsque l'unité centrale se trouve dans le mode « avec topographie »,
ce que nous supposons dans tout ce qui suit. le mécanisme d’adressage fonc-
tionne ainsi :

— une adresse de mot est constituée par un nombre représentable sur
17 bits,

— c¢e nombre est interprété comme un couple (numéro de page v, dépla-
cement d).

Le numéro de page v désigne un registre de 8 bits dont le contenu ¢ est
interprété comme un numéro de page physigue en mémoire principale ;
I'adresse finalement obtenue résulte de la concaténation de ce numéro avec le
déplacement 4 initial (Fig. 29). L'ensemble des 256 registres correspondant
4 tous les numéros de pages possibles est appelé mémoire topographique.
Ce mode d’adressage permet de gérer la mémoire physique par pagination
(cf. 4.45).

— ] S e

| -
Figure 29. Transformation d’adresse par la mémoire topographique.
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Lorsque le registre topographique de numéro ¢ contient une valeur parti-
culiére de ¢, notée nil, cette valeur n'est pas interprétée comme un numéro
de page physique et il y a déroutement. Pour des raisons technologiques, la
valeur nil est codée en utilisant les deux bits de protection associés a chaque
registre de la mémoire topographique (cf. 4.45).

3.42 LA MEMOIRE ADRESSABLE

Le systéme gére des usagers, définis comme des ensembles disjoints de
processus. Nous décrirons successivement I'ensemble des objets existant
dans le systeme et I'ensemble des objets accessibles a un instant donné 4 un
usager.

3.421 L’espace des segments

Tout objet existant dans le systéme est représenté comme un segment. Un
segment est un ensemble ordonné d’articles ; un article est une suite de 512 mots
et a donc la taille d'une page de mémoire. Un article est désigné de facon
unique par un couple ( f, a) ol :

Jfest le nom interne du segment,

« est le nom de I'article dans le segment.

Ce mode de désignation est interne au systéme. Le nombre de segments
et le nombre d'articles par segment sont limités.

L'ensemble des couples ( f, a) admissibles constitue 'espace des segments.
Nous examinerons plus loin comment un segment est désigné par les utilisa-
teurs du systéme, et comment est établie la correspondance entre ce mode
de désignation et les noms internes.

3.422 La mémoire virtuelle

A un instant donné, I'information accessible 4 un usager est définie par sa
mémoire virtuelle, On appelle ainsi I'ensemble des noms pouvant étre construits
avec 17 bits, longueur du champ « adresse de mot » dans les instructions du
10070 ; un tel nom, ou adresse virtuelle, s'interpréte comme un couple (nom
de page virtuelle (8 bits), déplacement). La mémoire virtuelle comprend
done 256 pages virtuelles. Les processus de I'usager doivent nécessairement
désigner toute information par une adresse virtuelle.

3.43 DESIGNATION DES SEGMENTS

Jusqu'ici, nous n’avons désigné un segment que par son nom interne I
Ce nom est réservé au systéme pour nommer de facon unique un segment : il
désigne une entrée dans une Table Générale des Segments (TGS), unigue
pour le systéme, qui contient pour chaque segment existant dans le systéme un
descripteur regroupant toutes ses caractéristiques (taille, protection, ...).
Les usagers utilisent d'autres noms pour désigner les segments qu'ils mani-
pulent,
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a) Nom remporaire

Pendant gu'un usager utilise un segment, il peut éire nécessaire de donner
a ce segment une prolection spécifique vis-d-vis des processus de I'usager,
pendant la durée de cette utilisation.

Par ailleurs, dans certains cas (données temporaires) on souhaite pouvoir
limiter la durée de vie d'un segment et, en particulier, la lier & celle d'un usager
donné. C'est pourquoi un usager doit donner & chague segment qu'il utilise
un nom temporaire qui identifie le segment pour ce seul usager. Ce nom est
utilisé comme paramétre dans les diverses procédures d’action sur les segments,
qui sont :

— créer un segment de taille déterminée avec un nom temporaire donné,

— ouvrir un segment, c'est-a-dire autoriser I'accés 4 ses articles par des
processus de ['usager avec une protection donnée,

— Jfermer un segment, c’est-a-dire interdire tout accés a ses articles,
— détruire un segment et rendre réutilisable son nom temporaire,
— modifier la taille d'un segment par création ou destruction d’articles.

La Table des Segments Utilisés (TSU) regroupe les segments utilisés par
P'usager & un instant donné. Ces segments sont accessibles par leur nom tem-
poraire.

Si un segment n'est utilisé que d'une fagon temporaire (pour ranger des
résultats intermédiaires par exemple), son nom temporaire suffit 4 le désigner
4 un usager. 51 on désire lui donner une existence plus longue (et en particulier
le faire survivre a la disparition de l'usager, permettre son partage entre usa-
gers, ...}, alors on doit utiliser un autre mode de désignation.

b) Identificateur

Un identificateur (ef. 3.1) permet 4 un utilisateur du systéme de désigner
un segment, par exemple dans le langage de commande. Un identificateur
résulte de la concaténation d’un indicatif de client (ou utilisateur) et d'un
indicatif de segment (par exemple DUPONT = TOTO). Les identificateurs
des segments d’un méme client sont regroupés dans une table appelée catalogue
du client. On introduit les opérations suivantes

— catalpguer un segment de nom temporaire ¢ (pour l'usager U') en le
désignant par I'identificateur x; le segment peut maintenant survivre a la
perte du nom temporaire,

— associer le segment désigné par identificateur x avec le nom lempo-
raire ¢ pour 'usager U, avec un droit d’acceés donné: le segment peut main-
tenant €tre manipulé par I'usager U,

~— dissocier un segment désigné par Iidentificateur x du nom temporaire f
pour l'usager /.
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Usager U
Caraloguee
fx
= —— Lien cré
Figure 30. Effet de caraloguer.
Usager [
Caralogue
TGS x|
Descripieur

=== Lien crsé

Figure 31. Effet d'associer.

3.44 ACCES A L' INFORMATION : LE COUPLAGE
3.441 Principe du couplage

On désigne sous le nom de couplage le mécanisme permettant & un usager
d’atteindre, grice au mode d'adressage fourni par sa mémoire virtuelle, un
objet appartenant au sous-ensemble de I'espace des segments qui lui est
couramment accessible, c’est-a-dire défini par la composition courante de sa
TSU (ce mécanisme a été introduit pour la premiére fois dans Je systéme
GORDO [Anderson, 68]). Le couplage associe une page v de la mémoire
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virtuelle d’un usager U 4 un article de segment (f, ). Un article ainsi couplé
est connu des processus de I'usager U/ sous le nom v. Un article peut &tre
couplé aux mémoires virtuelles de plusieurs usagers, et peut étre connu de
ces usagers sous des noms différents ; il peut également étre couplé 4 plusieurs
pages virtuelles d'un méme usager, et donc connu de lui sous plusieurs noms
différents. Nous examinerons plus loin les conditions de ce partage et les
restrictions auxquelles il est soumis.

A un instant donné, I'information accessible aux processus d'un usager
est définie par I'état de couplage de sa mémoire virtuelle, représenté dans la
Table des Pages Virtuelles (TPV) de 'usager.

TRy
¥y T
¥y ™ v, est couplée 4 'anicle h"l,ulfl
1" 1 vy vy Est couplde & D'asticle HI'EE:I
: vy n'est pas couplée
= |
-FE' @y
L
il

Figure 32. Etat de couplage d’une mémoire virtuelle.

On dispose des deux opérations suivantes :

— coupler &4 une page virtuelle un article d’un segment ouvert, avec une
protection spécifiée,

— découpler une page virtuelle couplée, ce qui interdit tout accés 4 travers
cette page.

Ces opérations permettent de modifier, 4 'exécution, le contenu de la TPV
et donc 1'ensemble d’informations accessible & I'usager. Un nom de page
virtuelle joue ainsi le role d’un repére pour des articles de I'espace des segments.

Remarque. Il y a une différence fondamentale entre I'emploi de la pagi-
nation tel qu'il apparait ici et celui développé au chapitre 4. Ici, la mémoire
virtuelle est utilisée comme un ensemble de repéres vers 'espace des segments
et le changement de valeur d'un repére n'entraine aucun mouvement d'in-
formation.

3.442 Réalisation du couplage

Nous décrivons ici les structures de données utilisées pour la mise en ceuvre
du couplage, et les opérations sur ces données,
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TGS

TIS du segmem [

Figure 33. Localisation d'un article couple.

La figure 33 montre comment on détermine la localisation physique de
Varticle (f, a) couplé & une page virtuelle v. Le nom f permet de retrouver
dans la TGS le descripteur du segment f, qui comporte, entre autres, un poin-
teur vers une Table d'Implantation du Segment (TS ). Celle-ci indique pour
chaque article du segment I'adresse physique 4 on il est implanté. A est donc
une adresse en mémoire principale ou sur disque, qui est tenue & jour par les
processus du systéme charges d'allouer les ressources physigues.

Dans le cas ol 4 désigne une adresse de page en mémoire principale, soit @,
on peut utiliser la mémoire topographique comme moyen d'accélérer la
localisation physique de I'article couplé & la page virtuelle v. Dans ce cas,
en effet, ¢ est recopié dans le registre topographique du nom t, et I'adresse
physique (g, d/ est obtenue directement & partir de (v, d) par le mécanisme
cablé décrit en 3.412. Lorsque le registre de nom v contient nil, il y a déroute-
ment, et I'adresse physique A4 est déterminée par la voie TPV-TGS-TIS.
Le chargement d'une adresse ¢ dans un registre topographique a lieu :

— quand un article primitivement sur disque est chargé en mémoire
principale,

— quand lors d'un accés par la voie TPV-TGS-TIS on trouve un A4 dési-
gnant une adresse en mémoire principale (par exemple parce que ['article
avait déja été chargé en mémoire pour le compte d'un autre usager).

Dans le cas ol A désigne une adresse sur disque, il v a défaut de page et
des dispositions sont prises pour transférer en mémoire principale I'article
managquant.
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3.443 Contraintes

La principale contrainte pour I'utilisation du couplage provient du fait
qu'il n’existe pas de dispositif permettant la réimplantation d’une procédure
dans la mémoire virtuelle. Aprés édition de liens, une procedure se trouve
donc lice 4 des adresses virtuelles fixes: il en résulte que les articles d’un
segment contenant une procedure doivent toujours étre couplés aux mémes
pages virtuelles.

De méme une procédure, aprés I'édition de liens, doit toujours trouver
ses données 4 des adresses fixes ; il est possible de tourner cette restriction,
au prix d'un alourdissement du programme, en n'accédant aux données que
par une indirection sur un registre suivie d’une indexation (voir exercice 10).

3.45 PARTAGE DES SEGMENTS

Aux restrictions prés indiquées en 3,443 pour les segments de procédures,
les structures de données et les mécanismes introduits permettent le partage
d’un segment entre usagers suivant le schéma de la figure 34.

Usager Ul Lsager Ez

Figure 34. Partage d’un segment entre usagers,

Dans ce schéma, le segment de nom interne f est connu de l'usager UJ
sous le nom temporaire 11, de Pusager U2 sous le nom temporaire 2. Son
article a est couplé 4 la page virtuelle v/ chez Ul, v2 chez U2 (vd = v2 &'l
s'agit d’'un segment-procédure, d’aprés 3.443). Le mécanisme d’accés décrit
en 3.442 conduit 4 'adresse physique 4 de I'article considéré.
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3.46 UTILISATION DES MECANISMES DE GESTION DE L'IN-
FORMATION

Nous illustrons par un exemple simple |'utilisation des mécanismes de
gestion de I'information du systéme ESOPE. Soit a interpréter la commande

« EDIT 81 = TOUAMOTOU, S0 = TOMBOUCTOU

Cette commande appelle un éditeur de textes interactif, qui regoit en entrée
un texte symbolique contenu dans un segment « source » TOUAMOTOU
et délivre en sortie un texte modifi¢ dans un segment « objet » TOMBOUCTOU.

En ce qui concerne la gestion de I'information, I'nterprétation de cette
commande donne lien aux opérations suivantes dans la mémoire virtuelle de
I'usager qui a émus la commande

1) associer, ouvrir et coupler le segment EDIT-CODE contenant le pro-
gramme de Tl'éditeur de textes. Le segment EDIT-CODE est un segment
partage qui existe en exemplaire unique pour tout le systéme. Il contient
un programme exécutable absolu avant déja subi I'édition de liens et doit
donc étre couplé a des pages virtuelles fixes.

2) créer un segment de travail (propre & I'usager appelant) destiné a contenir
les données de travail de I'éditeur pour cet usager. Ces données sont désignées
dans le programme par des adresses fixes ; on doit donc coupler le segment
4 des pages virtuelles spécifiées,

Le segment de travail est spécifique & une exécution particuliére du segment-
procedure EDIT-CODE par un processus d’un usager. Un nouvel exemplaire
doit donc en étre constitué 4 chaque exécution et, pour réutiliser I'espace en
mémoire physique, il est détruit 2 la fin de I'exécution. Le segment de travail
n'est désigné que par un nom temporaire (soit 7).

3) Certaines des données qui figurent dans le segment de travail doivent
étre initialisées. Cette initialisation est faite aprés la création d'un exemplaire
particulier de ce segment, en y recopiant le contenu d'un segment partagé
EDIT-DATA, unigue pour le systéme. On doit donc associer puis ouvrir
EDIT-DATA, le coupler dans des pages de travail, transférer son contenu
dans le segment 1, et enfin le fermer et le dissocier puisqu'il ne sera plus utilisé.

Remarque. Dans la procédure de I'éditeur de textes figurent des instruc-
tions {associer, coupler, ...) qui désignent les segments TOUAMOTOU et
TOMBOUCTOU.

3.5 REPRESENTATION ET GESTION DES OBJETS

Les exemples qui précédent ont montré diverses solutions aux problémes
de la représentation interne et de la gestion des objets d'un systéme. Nous
présentons ici les enseignements que nous en tirons pour la représentation
des objets et l'accés aux emplacements qui les contiennent.
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3.51 REPRESENTATION DES OBJETS
3.511 Généralités

Un objet est, suivant sa complexité, représenté sur un ou plusieurs empla-
cements. Il est caractérisé par les informations suivantes :

— son type,
— sa taille,

— sa durée de vie,

~- la fonction d’accés aux composants de I'objet,
— les restrictions d’accés 4 cet objet,

— sa valeur.

a) Le type. Le type précise la nature de I'objet représenté et les opérations
dont il peut étre un opérande. Il peut étre consulté & I'occasion de certains
acces (affectation, opération, passage d’arguments), notamment lorsque la
validité de ces accés n'a pu étre vérifiée a la compilation.

Du type d'un objet, quand il est représenté, on peut dans certains cas déduire
sa taille (exemple : un entier), les restrictions d’accés (exemple : une procedure),
ou méme la fonction d'accés aux composants (exemple : fichier sequentiel).

Exemple. Dans BURROUGHS B&700, c'est le préfixe qui détermine le type. Dans
CLICS et dans ESOPE, le type n'est pas représenté.

b) Lataille. La taille indigue le nombre, fixe ou variable, des emplacements
occupés par la représentation de 1'objet. Elle est enregistrée lorsqu’elle n'est
pas déterminée par le type.

¢) La durée de vie. La durée de vie a été définie en 3. 114 comme le temps
pendant lequel un objet est accessible & I'aide d'un nom. La durée de vie d'un
objet peut étre déterminée automatiquement par des opérations implicites
liées 4 I'exécution d’un programme ou spécifiée explicitement Par une instruc-
tion du programme. Dans ce dernier cas. il est nécessaire de représenter 1'indi-
cation de durée de vie afin de contrdler la validité de certaines opérations et
de récupérer au moment opportun les emplacements libérés.

Exemple 1. Dans CLICS et dans BURROUGHS B6700, les objets locaux & un bloc
ou a une procédure, qui ont méme durée de vie, sont rangés dans une pile gérée en fonc-
tion de cette durée de vie.

Exemple 2. Un fichier utilisé par un processus qui n’a pas le pouvoir de le détruire
a une durée de vie indépendante de celle de ce processus. Au contraire un fichier tempo-
raire est détruit en méme temps que le processus qui I'a créé.

d) La fonction d'accés. La fonction d’aceés 4 un objet composé peut étre
définie. comme I'ensemble des informations nécessaires pour atteindre soit
I'objet composé lui-méme, soit chaque élément de cet objet (cf. 3.113).

Exemple 1. Dans BURROUGHS B6700, un vecteur est représenté par un segment.
La fonction d'accés se déduit de I'adresse de base du segment et de sa taille. Une matrice
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(n, m} est représentée par a segments de taille m. La fonction d’accés est représentée
par le contenu de n + T descripteurs : un descripteur primaire d'un segment 5 et n
descripteurs de segment contenus dans le segment S.

On note que cette représentation est applicable 4 une collection de n enregistrements
de taille variable.

Exemple 2. Dans CLICS, un segment de données peut étre le résultat de la compi-
lation d'une suite d'objets définis par programme. La fonction d'accés est complétée
par une table appartenant au segment lui-méme. Chaque ligne de la table comporte
I'identificateur de I'objet et 'adresse de I'emplacement correspondant dans le segment.

e) La restriction d'accés. La restriction d'accés définit les opérations per-
mises ou interdites sur 'objet. Elle est représentée lorsqu'elle n'est pas déter-
minée par le type, ce qui est le cas lorsqu'elle varie au cours du temps ou
lorsqu'elle est fonction du processus qui désigne 'objet. Par exemple, on note
dans la représentation d'un fichier s'il est accessible en écriture ou en lecture.

f) La valeur. La valeur d’un objet est une suite de bits, interprétable par
lIf Processeur ; ¢'est une constante ou un nom.

3.512 Décomposition de la représentation d’un objet

Généralement, on divise la représentation interne d’un objet composé en
deux parties :

— une partie statique, ou descripteur, qui est de taille connue et fixe et
dont la composition se déduit du type de I'objet,

— une partie dynamique de taille quelconque, parfois variable.

Cette taille et I'origine de la partie dynamique figurent dans la partie statique.

Exemple. Dans les trois systémes étudiés, tous les objets composés (fichier, tableau,
collection de données, prodécure) sont représentés par une partie statique (le deserip-
leur) et une partie dynamique (un ensemble d'articles dans ESOPE, les segments dans
BURROUGHS B6700 et CLICS).

3.513 Partage d'un objet

Le partage d'un objet est la possibilité pour plusieurs processus d'accéder
a cet objet (cf. 3.121). On considére le cas ol chaque processus peut désigner
I"objet partagé par un nom qui lui est propre.

Le partage intervient sur les éléments de la représentation d’un objet :

a) le type, la taille, la durée de vic et la valeur sont uniques et donc par-
tageables,

b) la fonction d’accés et la restriction d’accés ne sont pas nécessairement
uniques. A moins qu'elles ne soient déterminées par le type de I'objet, il
doit en exister un exemplaire par processus.

Le partage introduit une nouvelle décomposition de la représentation
d'un objet :

— une partie unique, commune a tous les processus,

~— une partie propre 4 chague processus,
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D’ou la schématisation suivante -
— objet simple

g

Fartie propre Pamie statique
ay processus PR T

— objet composé

____._'_JI__,..':|

Pamie propre Partie spatique Farte dljrnl.m.iqu:
iu processus Uk e LLLL

Dans ces schémas, la partie statique et la partie dynamigue d'un objet
partagé sont contenues dans des emplacements indépendants des processus,
La partie propre au processus est contenue dans un emplacement attribué
au processus; elle est toujours désignée par un nom.

Le schéma de partage, par deux processus p; et p;, d’une valeur composée
est le suivant

mi
:fé:ign# e —— L
Nom =i
Bl
Partie starique Famje statique
propre 4 p, unique Partie dynamigue
B e
m deésigne Emplacements indépendants des processus

Partie statique
prmpre & p;

Emplacements de 'espace
adregzable de p; ot By

Ce schéma n’est généralement pas appligué tel quel dans les systémes : en
limitant sa généralité, on s'efforce d’accroitre son efficacité, par exemple en
supprimant un chainage.

Exemple 1. Dans BURROUGHS B6700, les valeurs simples partagées ont un méme
nom. Leurs représentations, statiques et intrinséques, sont rangées dans une pile
COMMUNE AUX Processus.

Exemple 2. Dans CLICS, les valeurs simples ne sont pas partagées. Les valeurs
composees comprennent un segment (partie intrinséque dynamique) et un descripteur
propre & chaque processus. Le descripteur contient des informations intrinséques
fjtail]c. origine du segment) et des informations propres au processus (restrictions

‘acoeés).
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Exemple 3. Dans BURROUGHS B6700, les objets composés (segment de données)
peuvent étre partagés de deux maniéres :

— partage par nom (un seul descripteur dans une pile commune),
— partage par valeur (un descripteur par pile).

Exempled. Dans ESOPE, un objet composé partagé est un segment. Sa représenta-
tion contient quatre parties :

g) une parlie propre au processus, contenant des restrictions d'accés propres au
processus et un lien de chainage vers le descripteur unique du segment,

b) le descripteur unique contenant toutes les caractéristiques statiques intrinséques
(taille, protection, et origine de la table d'implantation du segment),

c} latable d'implantation du segment, de taille dynamique, dont chaque emplacement
contient |'adresse physique d'un article,

d) I'ensemble des articles.

3.52 ACCES AUX OBJETS

Les exemples des paragraphes 3.2 4 3.4 ont fait apparaitre une grande
diversité des formes de noms. Chaque fois que cela était utile pour désigner
un objet dans un ensemble particulier, une nouvelle forme était introduite
avec un nouveau qualificatif (statique, segmenté, virtuel, ...).

Nous allons, dans ce paragraphe, revenir sur les principaux aspects du
nom et sur les formes rencontrées.

3.521 Nom d’un objet

Dans ce chapitre nous ne nous sommes intéressés qu'a la fagon d’atteindre
un objet, et non aux opérations qu'on lui fait subir. Pour effectuer une opé-
ration sur un objet d'un ensemble, il faut pouvoir le distinguer des autres et
le désigner 4 l'organe qui exécute I'opération.

A un instant donné, la désignation d’un objet parmi d’autres est rendue
possible par numérotation ; le numéro dans cet ensemble a été appelé « nom ».
Cette numérotation a les propriétés suivantes :

— un nom ne désigne qu'un seul objet (dans cet ensemble, & un instant
donné),
— tout objet est désigné par un nom.

Dans une machine, I'ensemble des emplacements est fini mais les processus
créent un nombre arbitrairement grand d’objets qui doivent étre représentés
dans les emplacements ; ces derniers doivent donc étre réutilisés. Les empla-
cements occupés par un objet deviennent réutilisables 4 la fin de la vie de
cel objet.

Le découpage d'un ensemble d'objets en sous-ensembles présente certains
avantages :

1) si les objets regroupés ont méme durée de vie, on peut résoudre globa-
lement les problémes de réutilisation des emplacements correspondants.
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Exemple. Dans BURROUGHS B&6700, des objets peuvent &tre créés en début de
bloc ; ils sont détruits 4 la fin du bloc correspondant. Les objets créés en début de blog
occupent une région et ont méme durée de vie. Les problémes de réutilisation des
emplacements sont traités au niveau de la région : 4 la sortie d'un bloc, la région gui
en est issue (région courante) est détruite et les emplacements qu'elle occupait sont
libéres.

2) si le processus désigne pendant un certain temps des objets dans le
méme sous-ensemble (phénoméne de localité, cf. 4.23), il peut accéder a un
objet en conservant (par exemple dans un registre) le nom du sous-ensemble,
constani pendant cette période, et en désignant 'objet par son nom dans le
sous-ensemble. Par cet artifice, le champ-adresse d'une instruction peut
étre réduit.

Exemple 1. Dans CLICS, les registres Rf, R3, R4 sont utilisés dans ce but. Les
objets rémanents d'une procédure qui s'exécute pour le compte d’un processus peuvent
etre désignés par celui-ci pendant toute la durée d'exécution de la procédure. Pendant
cette duree, le registre pointeur de liaison R4 contient adresse segmentée de 'origine
du segment de liaison. Dans une instruction, un objel rémanent sera désigné par le
nom de R4 (4 bits seulement) et le déplacement dans le segment de liaison.

Il'en est de méme pour le registre pointeur de pile (R3) qui contient la base de la
derniére zone de locaux rencontrée, et pour RO qui contient I'adresse relative {par
rapport 4 la base du segment) de I'instruction en cours.

Exemple 2. Dans BURROUGHS I'ensemble des objets accessibles 2 un instant
donné change en début et en fin de bloc. Les sous-ensembles introduits correspondent
donc aux blocs. Pour désigner un objet dans une instruction, il suffira d'un nom statigue
(niveau d'emboitement du bloc et rang de 'objet dans le bloc), le contenu des regisires
de contexie précisant le sous-ensemble, Le nom dynamique n’apparait jamais dans
une instruction ; les registres de contexte sont mis & jour cn début et fin de bloc.

Soit un objet appartenant 4 un instant donné i deux ensembles ayant
chacun sa propre numérotation. Pour passer d'une numérotation & l"autre,
I'équivalence des deux noms de cet objet doit étre exprimée dans un réfé-
rentiel qui contient les deux ensembles précédents.

Exemple 1. Considérons le cas des externes dans CLICS. Soit 5 un segment auguel
fait référence un segment 5, pour un processus p,. Le segment § est connu par p,
sous le nom s, et peut étre connu par un autre processus Pz sous le nom s,. On accéde
4 5 par I'intermédiaire du segment de liaison L8y, 1). Lors de la premiére référence
4 .5 pour p,, I'éditeur de liens dynamique utilise I'identificateur donné pour § a sa
création et 'adresse de § en mémoire fictive.

Exemple 2. Dans BURROUGHS, un paramétre effectif peut étre n'importe quel
objet de Ia pile ; il peut done se trouver en dehors du contexte pendant ['exécution
de la procédure appelée. Pour le désigner, on utilise un nom dynamigue, c’est-a-dire
un nom dans la pile. -
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3.522 La meémoire fictive

La mémoire fictive est I'ensemble des emplacements du systéme. Nous
I'avons choisie comme référentiel pour le partage des noms et nous avons
supposé qu'un objet demeurait associé 4 un emplacement pendant toute
la durée de vie de I'objet. Nous avons considéré que la mémoire fictive était
linéaire ; elle pourrait tout aussi bien étre segmentée. L’acces i un emplacement
utilise 'adresse fictive.

3.523 [Espace adressable d’un processus

L'espace adressable d'un processus 4 un instant donné est le sous-ensemble
de la mémoire fictive constitué par les emplacements contenant les objets
accessibles au processus a cet mstant. Cet espace est nécessaire pour permettre
le partage des procédures et des données dans la mémoire fictive et la création
dynamique d’'objets.

Exemple 1. Dans CLICS, le nom d'un emplacement de 'espace adressable a été
appelé adresse segmentée. L'espace adressable est défini 3 tout instant par le descriptif.

Exemple 2. Dans BURROUGHS, I'espace adressable est formé -

— de la pile du processus et des trongons de ses ancétres : ces éléments sont designés
par un nom dynamigue,

— des segments dont le descripteur figure dans la pile; on uiilise alors un nom
segmenteé,

Exemple 3. Dans ESOPE, I'espace adressable est défini par la table des segments
de l'usager /TSL),

Dans ESOPE. nous avens rencontré un cas ol le nombre maximal d’em-
placements accessibles au processeur (mémoire virtuelle) est plus petit que
I'espace adressable du processus. Le couplage permet d"utiliser. 4 des instants
différents. la méme adresse virtuelle pour désigner des objets différents de
I'espace adressable. '

L adresse fictive d'un emplacement de I'espace adressable est obtenue &
partir du couple :

— nom du registre contenant I'adresse fictive de l'origine de l'espace
adressable.

— déplacement dans l'espace adressable.

3.524 L’eavironnement d'un processus

Dans certains langages de programmation, on a le moyen disoler dans
I'ensemble des identificateurs d’un programme le sous-ensemble de ceux qui
sont valides en un point donné. Ce sous-ensemble a été appelé lexique (cf, 3. 34).
[l reste en général stable pour une suite d'instructions (bloc ALGOL 60,
procédure dans CLICS). Lorsqu'on exécute I'instruction qui se trouve au
point considéré, I'ensemble des objets désignés par les identificateurs du
lexique constitue 'environnement courant du processus.
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Dans le cas ol le nombre d’emplacements nécessaires pour contenir les
objets crées au cours de I'exécution d’un programme est connu a la compi-
lation, ces emplacements peuvent étre alloués a ce stade (allocation statique),
L'identificateur peut étre converti en un nom de I'espace adressable, qui
figure alors dans I'instruction. Le lexique n’a pas 4 étre conservé 4 I'exécution.

Dans le cas o les objets créés par un programme sont gérés dynamiquement,
leurs emplacements ne peuvent pas étre connus lors de la compilation. On a
alors le choix entre

—— conserver, ou méme construire, le lexique lors de I'exécution {solution
utilisée dans les mterpréteurs),

— donner un numéro 4 chaque environnement et utiliser ce numéro dans
la représentation des identificateurs,

Cette derniére solution évite de conserver les identificateurs du lexique.
L’adresse fictive d'un emplacement est alors le triplet :

— nom du registre contenant l'adresse fictive de l'origine de l'espace
adressable,

— nom du registre contenant le nom de la base de I'environnement dans
I'espace adressable,

— nom de l'objet dans I'environnement.

Les objets de I'environnement sont les locaux, les parametres et les externes.
Les externes et les paramétres désignent des objets qui ne sont pas forcément
dans l'environnement. 11 faut donc les désigner dans l'espace adressabie.
référentiel commun a tous les environnements, Comme les objets de Ienvi-
ronnement n'ont pas méme durée de vie, I'environnement est généralement
segmente en régions. Un descriptif de régions permet de les situer dans |'espace
adressable.

Exemple. Dans CLICS, on peut associer chaque anneau quatre régions, leur
descriptif étant constitué par les registres R {segment en cours d'exécution), R3 (zone
des locaux), R4 (rémanents et références externes), RS (arguments),

EXERCICES
1. [1]

On suppose qu'il n'existe dans CLICS qu'un seul anneau ; il n'existe donc qu'un
seul segment de lisison par procédure et qu'une pile par processus. On souhaite modi-
fier CLICS pour ne conserver qu‘un seul segment de liaison par processus, Dans ce
cas, comment sonl modifiés les mécanismes d’adressage 7

2. (1]

Dans les mémes hypothéses que celles de I'exercice | {un seul anneau), on souhaite
modifier CLICS pour supprimer la pile associée au processus. Les objets a gérer en
pile sont répartis dans les segments de liaison. Dans ce cas, comment sont modifiés
les mécanismes d’adressage ?
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3. [2]
On souhaite modifier CLICS pour pouvoir réutiliser les noms des segments détruits.

Quelles sont les opérations 4 effectuer lors de la destruction d’un segment 7 Quelles
sont les modifications du systéme qui faciliteraient ces opérations 7

4. 2]

On désire exécuter des programmes ALGOL 60 dans le systéeme CLICS. On fait
les hypothéses simplificatrices sujvantes -

— lout bloc est une procédure sans paramétre,

- I'édition de lien entre toutes les procédures que contient le programme est faite
avant I'exécution ; il n'existe pas de références i des segments de données,

— & tout objet-procédure est associé un seul segment et réciproquement. Le niveau
d'emboitlement de la procédure est spécifié dans le descripteur de segment,

— I'évaluation des expressions s'effectue grice 4 deux registres et & une zone gérée
en pile,

— le compilateur interdit de passer une procédure en paramétre.

On demande :

I} Comment réaliser I'accés aux objets de I'environnement ?

2) Comment effectuer les commutations d'environnement 7 On ne considérera
pas le cas des branchements par étiquette.

50121
Expliquer comment est rétabli I'environnement de la procédure appelante lors du
retour de procédure dans le systéme BURROUGHS BaT00.

6. [1]
Pourrait-on se passer des registres d'environnement et des registres de région cou-
rante dans le BURROUGHS B6700 7

01

A un instant donné, 3 processus sont en cours dans le systéeme BURROUGHS
B6700. Deux d’entre eux, uf et w2, utilisent la procédure pl, le troisieme. u3. utilise P2
Le programme suivant, qui contient les déclarations des objets du moniteur (par
exemple, la procédure sinus) est une représentation de la situation décrite ci-dessus.

debrat procédure simus ; débur ies _ﬁ__lt ;
procédure pll ; début procédure pl ; débur ... fin,
créer processus ul sur pl';
Créer processus ul sur pi;
attendre la fin de ul et w2 ;

fin
procédure p21 ; début procédure p2 ; début ., fin;
créer processus ul sur p2 ;

attendre la fin de ud .
fin
créer processus pseudod sur pli |

CFEEr processus pseudo? E pil;
aitendre la fin de pseudol el pyeudo? :

fin

—

Que pensez-vous de cette interprétation ?
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8. 3]

Imaginer les problémes que pose la construction d'un systéeme de fichiers dans
BURROUGHS B6700 et décrire les fonctiohs & metire en cuvre pour y accéder.

|

On rappelle que la primitive coupler(v, a, f) du systéme ESOPE (cf. 3.44) associe une
page v de la mémoire virtuelle d'un usager 4 un article de segment [f, a), ce qui cor-
respond 4 une opération vide dans le cas oil la page v est déja couplée 4 l'article (f, a).
Lutilisation du couplage suppose une structuration logique du segment en articles
de la taille d’une page. On désire maintenant masquer 4 I'usager le découpage du seg-
ment en articles, mais en contrepartie on veut lui donner la possibilité de gérer le
segment comme un fichier séquentiel (du type « flot de caractéres »). A cet effet on
lui fournit la procédure :

écrirefu, n, f)

qui permet de copier dans le segment f, une chaine de n caractéres dont le premier est
repere dans la mémoire virtuelle par le nom u (u désigne une adresse d'octet). On
demande de programmer cette procédure. On supposera que la taille d'une page est
de | octets,

10. [2]

On a vu (ef. 3.443) que le probléme du partage d'information (procédure ou données)
dans la mémoire virtuelle du CII 10070 pouvait étre résolu en éditant et en couplant
chaque procédure et ses données aux mémes adresses dans toutes les mémoires vir-
tuelles ot elles sont utilisées.

On se propose d'examiner plus généralement les fagons ‘de réaliser le partage de
procédures et de données entre processus, en utilisant la mémoire virtuelle du CIT 10070
et le mécanisme du couplage décrit en 3.44.

1} On suppose d'abord que chaque processus dispose d'une mémoire virtuelle
propre. Dans quelles conditions peut-on éviter d'implanter aux mémes adresses vir-
tuelles les données partagées entre ces processus ?

2) On suppose maintenant que plusieurs processus peuvent travailler dans 1a méme
mémoire virtuelle. Quelles contraintes cela implique-t-il sur la programmation des
procedures et des données partagées entre ces processus 7
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4.1 NOTIONS GENERALES

Nous désignons par ressource tout élément dont peut avoir besoin un
processus pour son exécution. Une fonction importante d’un systéme est la
répartition entre ses utilisateurs des ressources qu'il administre. Le plus
souvent, la somme des demandes 4 un instant donné est supérieure 4 la somme
des ressources existantes, et cette situation entraine l'attente de certains
demandeurs. L'allocateur d'une ressource gére la file d’attente de cette
ressource,

Du point de vue de I'allocation des ressources. un systeme est défini par un
ensemble de files d'attente et par la politique adoptée pour gérer ces files :
régles de passage d’une file 4 une autre, gestion interne de chaque file.

Lors de la conception du systéme, il s’agit, une fois définis les objectifs et
recensces les contraintes, d'établir le schéma général des files dattente et de
déterminer les informations utilisées pour gérer ces files ainsi que les événe-
ments provoquant les transitions entre files.

Lors de la réalisation du systéme, il faut pouvoir représenter les ressources,
les allocataires et les demandes. Il faut également tenir compte du fait que
I'allocateur consomme lui aussi des ressources (principalement du temps
d’unité centrale et de la place en meémoire). 11 faut, par conséquent, envisager
la maniére dont ces ressources lui sont allouées : allocation particuliére ou
utilisation du mécanisme général.

Nous allons examiner les diverses ressources couramment utilisées et la
maniére de les représenter ; ensuite, nous envisagerons la nature des demandes
de ressources et les réponses de I'allocateur a ces demandes.
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4.11 EXEMPLES DE RESSOURCES

On peut classer les divers types de ressources selon certains critéres non
exclusifs les uns des autres.

a) Ressources physiques ou programmées

Certains types de ressources sont des organes de la machine : unités cen-
trales, mémoire principale, canaux d'entrée-sortie, dispositifs periphériques.
Dautres mettent en jeu la programmation : messages, programmes dits « de
service » ou « utilitaires », fonctions ou procédures, fichiers. L'utilisation de
ressources programmeées implique celle de ressources physiques (mémaoire
par exemple).

b} Ressources i acces unique ou multiple (cf. 2.222)

Sont généralement & aceés unique : les unités centrales, les zones de mémoire
temporairement affectées  un processus, les fichiers privés ou dotés de pro-
tection d’accés, certains dispositifs périphériques (dérouleurs de bandes
magnétiques, imprimantes, lecteurs-perforateurs de cartes, terminaux gra-
phiques), les procédures ou programmes de service non réentrants.

Sont & accés multiple : les canaux d'entrée-sortie multiplexeurs, les proce-
dures ou programmes de service réentrants, les fichiers en lecture (publics,
0u prives avec autorisation par mot de passe).

¢) Ensemble de ressources banalisées

Pour certaines catégories de ressources, gui existent en plusieurs exemplaires,
le choix de "unité allouée peut, dans certaines conditions, &tre sans importance
pour le demandeur. Dans ce cas, les ressources sont dites banalisées.

Exemple. Les zones libres de mémoire principale, les dérouleurs de bandes magné-
tiques, les pistes de disques ou de tambours, les pages de mémoire principale sont des
ressources banalisées,

d) Ressources virtuelles

Bien qu'un systéme d'exploitation dispose d’une quantité limitée de res-
sources, on peut donner 3 un processus I'illusion de posséder une ressource
en propre alors qu'il n'y en a pas assez pour satisfaire toutes les demandes.

Exemple. Les imprimantes, qui existent en trop petit nombre, ne sont pas allouées
aux processus; ceux-ci disposent alors d'une imprimante virtuelle représentée par
des zones de mémoire secondaire. Les échanges d'informations entre un processus et
une imprimante réelle se font en deux étapes -

— transfert, sous le contrdle du processus, entre mémoire principale et imprimante
virtuelle,

— transfert, sous le contréle d'un processus du systéme d’exploitation, entre impri-
mante virtuelle et imprimante réelle (« spooling »).

De méme, 'espace requis en mémoire par un processus peut n'éire que particlle-
ment en mémoire principale, le reste résidant sur une mémoire secondaire dédiée 4
la pagination ou au « va-2t-vient » (cf. 4.432).
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¢) Ressources requérables

Une ressource est sujette 4 réquisition (« preemption ») si le systéme d’exploi-
tation peut la retirer 4 un processus alors que celui-ci en a encore besoin.
Selon le type de la ressource, le systéme peut, avec un coiit variable suivant
le type de ressource, effectuer les sauvegardes nécessaires de maniére & &tre
4 méme de restaurer ultérieurement 'état de la ressource avant la reéquisition.
S1ces mesures de sauvegarde n'ont pas été prises, le processus en question est
détruit. Ainsi I'unité centrale est couramment réquisitionnée, avec sauvegarde
du vecteur d'état du processus ; au contraire, il est rare d'appliguer ce procédé
4 un dérouleur de bande magnétique.

4.12 REPRESENTATION DES RESSOURCES

A toute ressource ou ensemble de ressources banalisées, il correspond dans
le systéme une procédure d’allocation (I"allocateur) et un répertoire décrivant
ces ressources. Le plus souvent, on définit pour chaque ressource une unité
d’allocation (guantum). et on associe 4 chaque unité une entrée (descripteur)
dans le répertoire de la ressource correspondante.

Exemple 1. Une mémoire paginée (cf. 4.45) est représentée par autant de descrip-
teurs qu'il v a de blocs de mémoire allouabies,

Exemple 2. Un ensemble d'unités de disques est représenté 4 raison d'une enirée
par unité si le quantum d’allocation est I"'unité compléte. Ce méme ensemble cst repré-
sente par autant d'entrécs qu'il v a de pistes si le quantum d'allocation est la piste de
disque,

Les informations contenues dans un descripteur dépendent de la nature
de la ressource et de la fagon dont elle est gérée. Le descripteur minimal se
réduit & un bit représentant I'état, libre ou alloué, de la ressource.

Exemple. Dans l'allocation d'espace pour un disque. une chaine de » bits peut
représenter les n pistes du disque; le numéro de la piste est ici déduit implicitement
de la position du descripteur dans le répertoire de la ressource.

Les descripteurs contiennent fréquemment des informations autres que le
simple état d'allocation ; citons quelques exemples.

— L'identification de I'allocataire (ou des allocataires pour les ressources
partagées) permet de vérifier qu'un processus ne libére que des ressources gui
[ui appartiennent, ou rend possible la récupération de toutes les ressources
allouées a un processus qui disparait du systéme. Dans ce dernier cas, si le
nombre de ressources de nature différente est important, il peut étre préfé-
rable, en plus, de tenir 4 jour pour chaque allocataire une liste des ressources
qu'il posséde, plutdt que de devoir lors de la récupération explorer les réper-
toires de toutes les ressources du systéme.

CROCUL = Systémer o exploitasion des ordinateurs, [
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— Les renseignements sur I'accés a la ressource peuvent étre nécessaires
{adresse physique d'une unité d’entrée-sortie), ou simplement utiles (Jiste
des dispositifs facultatifs effectivernent présents pour un terminal).

La structure d'un répertoire, ¢’est-a-dire la maniére dont sont organisées
les entrées, dépend principalement du nombre d’entrées et de la nature, cons-
tante ou vanable, de ce nombre, Si le nombre d’éléments est invariant, ce
qui est le cas le plus fréquent, le répertoire est un tableau : on représente ainsi
par une table & n entrées les n blocs de mémoire d’'une mémoire paginée.
Si le nombre d’éléments est variable, le répertoire est généralement une liste
dont les entrées sont créées dynamiquement. Une autre solution, possible s
les variations du nombre d’entrées restent dans des limites connues et étroites,
consiste a disposer d’une table contenant le nombre maximal d'entrées
attendues.

Exemple. Une mémoire allouée par zones de tailles quelconques est I'exemple le
plus courant d'une ressource 4 nombre variahle d'elements (cf. 4.442). Les allocations
sont effectuées par groupes de cellules consécutives et 'élément d'allocation est créé a
partir d'un élément libre de taille supérieure ou ¢gale 4 la demande, ce qui revient 4
faire varier la taille et le nombre des éléments libres.

Le support du répertoire d'une ressource est generalement la mémoire
principale ; toutefois si la durée de vie des allocations peut étre supérieure i
la durée d'une séance d'exploitation, ce répertoire doit étre tenu 4 jour sur
mémoire secondaire. Ainsi, I'état d’occupation des pistes d'un disque desti-
nees a enregistrer des fichiers permanents se trouve sur le disque lui-méme.
Les procedures d"allocation sont alors plus complexes car il faut assurer la
cohérence entre la copie du répertoire tenue & jour en mémoire principale
(pour des raisons d'efficacité) et le répertoire lui-méme sur mémoire secondaire
{nécessaire au redémarrage du systéme).

4.13 ORIGINE ET FORME DES DEMANDES D'ALLOCATION

Une approche simple consisterait 4 admettre que les ressources sont affec-
tées & des allocataires de type unique, par exemple les processus, et qu'un
allocateur est activé sur demande explicite de ces derniers, soit pour acquérir
une ressource, soit pour libérer une ressource précédemment acquise. Pour
diverses raisons, la réalité est plus complexe : il existe dans un systéme des
entités de nature et de durée de vie différentes lides 4 des notions telles que celle
de travail, de processus, d'utilisateur, etc. . et chacune de ces entités peut étre
allocataire de ressources; de plus, les demandes de ressources ne sont pas
toutes explicites (il faudrait par exemple qu'un processus dispose déja du
processeur « unité centrale » pour pouvoir demander un processeur).

Exemple. Dans un systéme multiprogrammé de traitement par train de travaux,
certaines ressources peuvent étre alloudes globalement & un travail (unités d'entrée-
sortie) alors que d’autres le sont individuellement aux processus composant le travail ;
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en se plagant dans ce cas au niveau des processus, on peut faire abstraction des res-
sources globales et considérer que les processus ne sont en compétition que pour 1'uti-
lisation des autres ressources (1'unité centrale, peut-étre la mémoire, ...). La distinction
entre ces deux niveaux d'allocation apparait d'ailleurs nettement dans la structure des
systémes de c¢ type ou l'on rencontre les deux fonctions de gestion des travaux d'une
part, de gestion des processus d'autre part.

Les demandes de ressources peuvent prendre des formes trés diverses.
Exemples.

— Un processus devient demandeur d'unité centrale 4 partir du moment ou plus
rien ne lui manque pour qu'il puisse s’exécuter : la fin du blocage du processus entraine
une demande d'unité centrale.

— Dans un sysiéme 4 mémoire paginée (cf. 4.45), un déroutement pour défaut de
page peut étre équivalent & la demande d'un nouvel.emplacement de page par le pro-
cessus qui est 4 Norigine de ¢e déroutement,

— Dans un sysiéme a allocation statique de mémoire, 'indication de la 1aille de
mémoire nécessaire, perforée sur une carte de commande accompagnant le travail,
constitue une demande indirecte d'allocation de mémoire formulée par le programmeur.

L'identification de la ressource demandée peut étre donnée avec plus ou
moins de précision et, selon cette précision, I'allocateur dispose de plus ou
moins de liberté.

Exemple 1 : allocation de mémoire 4 un travail.

La demande faite par le programmeur peut ne mentionner que la taille de la zone
de mémoire nécessaire, laissant la possibilité 4 I'allocateur d'implanter le programme
n'importe ol ; elle peut aussi mentionner impérativement |'adresse d'implantation
(cas des systemes ne traitant que des programmes non translatables).

Exemple 2 : allocation d'espace secondaire dans le systéme OS/360.

Le programmeur voulant créer un fichier sur une unité & accés direct. peut faire la
demande de réservation d’espace de diverses maniéres, en particulier :

— en précisant ['adresse physique de 'unité sur laguelle 'espace doit étre alloué.

— en indiquant seulement le type de ['unité (par exemple disque 2314) lorsqu’il
existe plusieurs unités du méme type,

— en donnant seulement le groupe (par exemple toute unité 4 accés direct) auquel
doit appartenir I'unité.

Les deux derniéres formes permettent une meilleure utilisation des ressources en
rendant possible la répartition des allocations sur I'ensemble des unités, ce qui permet
en particulier d’équilibrer 1a charge des canaux.

4.14 FONCTIONS DE L'ALLOCATEUR

4.14]1 Généralités

La maniére dont les ressources sont allouées dépend des objectifs choisis
par le concepteur et des contraintes particuliéres liées a I'utilisation de chaque
type de ressource. La bonne utilisation du matériel et la satisfaction des
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utilisateurs sont les objectifs le plus souvent recherchés. Ces objectifs sont
parfois contradictoires : par exemple, I'un des facteurs principaux tendant 4
la satisfaction de I'utilisateur est le temps de réponse du systéme; ce temps
de réponse est d’autant plus court que les ressources nécessaires ont une pro-
babilité importante d’étre disponibles: dans ce cas elles sont sous-utilisées.

Le probléme de Iallocation d'une ressource comporte dans le cas général
deux aspects : gestion de la file d’attente des demandes (stratégie d’allocation)
el choix de la ressource parmi les ressources banalisées (algorithme
d’allocation).

Pour illustrer les choix possibles en matiére de stratégies, prenons I'exemple
d’une mémoire allouée par zones. Lorsqu'une zone devient libre, I'allocateur
essaie de satisfaire les demandes de mémoire en attente ; il peut, selon les
objectifs choisis :

—— examiner ces demandes dans leur ordre d'arrivée (FIFO),

— associer 4 chaque demande la priorité attachée au processus demandeur,

— satisfaire la demande correspondant le mieux a la zone libre,

— satisfaire avec la zone libre le plus grand nombre possible de demandes
(en commencant par les plus petites),

— satisfaire en premier lieu la demande la plus grosse présente dans la
file, ce qui peut le conduire a geler la zone libérée jusqu'a ce que d'autres
libérations lwi fassent atteindre une taille suffisante.

Pour chaque type de ressource il existe généralement divers algorithmes
possibles. 1] est difficile de définir les meilleurs algorithmes, car dans 1'évalua-
tion de leur qualité interviennent des facteurs opposés tels que l'utilisation
optimale de la ressource et le coiit de I'algorithme.

Exemples

— Meémoire allouée par zones : les deux techniques les plus connues essaient de
satisfaire une demande & partir. respectivement. de la premiére zone de taille suffisante
ct de la plus petite zone de taille suffisante,

— Unités d'entrée-sortie - & 'allocation au hasard de la premiére unité disponible,
on peut opposer la recherche de I"unité qui donne la meilleure répartition de la charge
des canaux.

— Espace secondaire sur disques 4 tétes mobiles : ici encore, 4 I'allocation au hasard,
on peut opposer la méthode qui consiste 4 essayer d'allouer des emplacements proches
de la position courante des tétes de lecture-geriture.

Remarquons qu'une solution donnant de bons résultats dans certaines
conditions de fonctionnement peut se trouver mal adaptée dans d’autres. Le
dernier exemple illustre assez bien ce fait : si la demande d'espace secondaire
est effectuée par un processus an moment o il veut écrire sur cet emplacement
(cas d'une allocation dynamique piste par piste, par exemple), 'allocation
“s0us les tétes » donnera de bons résultats - c'est par contre un raffinement

superflu si T'allocation d’espace 4 un fichier est effectuée globalement au
début d'un travail.
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4,142 Traitement d’une demande

Quelle que soit l'origine d'une demande de ressource et la maniére dont
elie a eté formulée, cette demande finit par étre présentée a I'allocateur corres-
pondant qui peut, soit I'honorer immédiatement, soit la mettre dans une file
d’attente pour un reexamen ultérieur, soit encore la rejeter.

a) Une demande est honorée et le catalogue de la ressource mis & jour, s'il
est possible de la satisfaire, au besoin par réquisition, et s'il n'existe pas, par
ailleurs, de conditions de non-allocation. De telles conditions correspondent
au cas ol il a été décidé de surseoir 4 toute nouvelle demande en provenance
d’un demandeur.

Exemples

— Dans la gestion de |'espace secondaire, on peut tenir compte d'un coefficient de
remplissage maximum au-deld duquel aucune allocation n'est plus effectuée, jusqu’a
ce que ¢e coefficient soit redescendu 4 une certaine valeur,

— Dans la méthode de la « régulation de la charge » (cf. 4.62), I'observation d'un
taux de pagination atteignant un certain seuil conduit le systéme 4 refuser l'introduction
d'un nouveau travail en mémoire.

&) Une demande est mise en file d'attente si la ressource n'est pas dispo-
nible ou si des conditions particuliéres ne permettent pas de 'honorer. La file
d"attente est constituée d’¢léments identifiant le demandeur et les paramétres
de la demande.

L'allocateur peut intervenir 4 nouveau dans trois circonstances pour tenter
de satisfaire une ou plusieurs demandes de la file :

— lorsque Iétat de la ressource est modifié a la suite d’une libération
effectuée par I'un des allocataires,

— lorsqu’un événement extérieur donne le signal d'un réquisition possible,

— lorsqu’une condition de non-allocation disparait.

Les instants d'intervention de l'allocateur font partie de la stratégie
d'allocation.

¢) Une demande est rejetée lorsqu’elle ne peut étre satisfaite immédiatement
et quil nest pas prévu de file d'attente pour la ressource demandée. Ce rejet
n'entraine pas le blocage du demandeur, qui peut, au contraire, examiner la
décision prise par I'allocateur et réagir en conséquence. Une telle forme de
demande correspond en fait & un test de disponibilité de la ressource, couplé
avec une allocation si la réponse est positive; deux opérations sont ainsi
incluses automatiquement dans une section critique (cf. Chap. 2).

Exemple. Dans un systéme conversationnel, ol I'utilisation des bandes magnétiques
est en genéral exceptionnelle, les dérouleurs ne sont pas alloués automatiquement a
un utilisateur ; ce dernier. au moment o il va avoir besoin d’un dérouleur, peut en
faire la demande au systéme par une commande particuliére ; si un dérouleur est libre,
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il lui est alloué, et un message lui indique qu'il peut maintenant I'utiliser ; si aucun
dérouleur n'est libre, cela lui est également signalé par un message, et il peut alors
decider de faire autre chose.

4.15 PRESENTATION DU CHAPITRE

Dans la suite de ce chapitre, nous introduirons la notion de charge d’un
systéme pour caractériser la demande de ressources : une bonne connaissance
des caractéristiques de la charge permet d’améliorer le service rendu, dans le
sens des critéres retenus par les réalisateurs du systéme (temps de réponse,
debit des programmes, etc. ),

Ensuite, nous étudierons les stratégies d’allocation applicables pour le
processeur, pour la mémoire lorsqu'elle est allouée par zones, pour la mémoire
paginée et pour la mémoire secondaire. Dans chacun de CEs Cas, nous ne
considérons qu’une seule ressource : les stratégies proposées sont des straté-
gies individuelles qui ne tiennent pas compte des besoins du demandeur en
autres ressources.

Ces stratégies individuelles sont trés variées et dépendent de la nature de
la ressource; cependant. 34 un niveau d'allocation donné, par exemple au
niveau des processus, il est souhaitable que les ressources spécifiques de ce
niveau soient allouées de maniére cohérente au moyen d’une stratégie globale,
afin d’éviter les effets antagonistes de stratégies individuelles indépendantes.
Aprés avoir mis en évidence le phénomeéne décroulement du systéme, qui
peut apparaitre lorsque le processeur et la mémoire paginée sont alloués au
moyen de stratégies individuelles, nous présenterons des stratégies globales
pour I'allocation combinée de ces deux ressources.

Enfin, nous introduirons le phénomene de Pinterblocage : un groupe de
processus est en interblocage si chaque processus attend une ressource allouée
4 un autre processus du groupe, et posséde lui-méme des ressources attendues
par d'autres processus du groupe. Nous proposerons des solutions concer-
nant la prévention, la détection et |a gueérison de I'interblocage.

4.2 CARACTERISTIQUES DE LA CHARGE D'UN SYSTEME
4.21 INTRODUCTION

La charge d'un systéme désigne I'ensemble des demandes de ressources
présentées 4 un instant donné par les travaux des utilisateurs. Les caractéris-
tiques de cette charge sont connues du systéme de deux maniéres

— & partir d'indications explicites fournies par le programmeur : para-
metres mentionnés sur la carte de début d’un travail, ou bien indigués lors
d’une commande de travail conversationnel,
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— & partir de mesures faites par le systéme lui-méme a des instants plus
ou moins rapprochés au cours du déroulement des processus (distribution
des références a la mémoire, temps d’exécution, etc...).

Par ailleurs il est utile de constituer des ensembles de programmes formant
des Ehll'gﬁ‘l}’]]ﬁ {Cf Chap 6) pour faire des COomparaisons entre S}’S[émﬁ,
et évaluer leurs qualités,

Il est commode de distinguer deux niveaux d'observation de la charge :

— un niveau global ou macroscopique se situant i une échelle de temps
correspondant a la durée d'un travail,
— un niveau fin dont I'échelle de temps est celle de la durée d’une instruction.

A ce dernier niveau, la ressource 4 laquelle on s'intéresse est la mémaoire ;
en effet, la dispersion des références quengendre le déroulement d un pro-
cessus a une incidence importante sur efficacité des algorithmes dallocation
de meémoire.

4.22 CARACTERISTIQUES GLOBALES DE LA CHARGE

Les courbes et les résultats de mesures de ce paragraphe ne constituent que
des exemples particuliers ; en effet, de grandes variations existent d’un systéme
a un autre en fonction des matériels et des tvpes d'utilisateurs. De plus, pour
un systeme donné, la charge peut dépendre de la période d'utilisation.

Nous tentons de montrer comment chaque type de mesures peut étre
exploité pour la conception d'un systéme, pour sa génération ou pour la
prise en compte des travaux. L'utilisation des mesures pour l'auto-adaptation
du systéme & la charge sera évoquée au paragraphe 4.6.

Examinons successivement quelques caractéristiques des demandes de
Tessources.

1} Taille de mémoire principale

L'exemple de la figure | montre la distribution des besoins des travaux
en meémoire principale sur un calculateur géré en monoprogrammation
[Le Faou, 73]

Ces résultats font apparaitre une dispersion importante des tailles de
mémoire nécessaires. Si 'on envisageait 'exécution de ces mémes travaux
dvec un systéme multiprogrammeé, il serait vraisemblablement plus efficace
de prévoir des partitions de taille variable. Dans le méme ordre d’idées. des
mesures [Batson, 70] faites sur une machine BURROUGHS B5500 donnent
une idée de la répartition et de l'utilisation de segments de différentes tailles
(limitées 4 1 023 mots) (Fig. 2).

La connaissance de la taille des travaux peut étre utilisée dans I'écriture des
algorithmes de gestion de la mémoire et dans le choix des paramétres de
génération du systéme.
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Figure 1. Utilisation de la mémoire principale [Le Faou, 73].
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Figare 2. Distribution pour I'ensemble des segments en usage [Batson, 70).

2) Temps d'unité centrale

Les figures 3 et 4 permettent de comparer pour le systéme MTS [Arden, 69]
les distributions des temps de caleul des travaux non interactifs et interactifs

La connaissance du temps de caleul (ou d*une borne supérieure de ce temps)
peut servir 4 la conception d’algorithmes d'aliocation de I'unité centrale.

Ainsi les résultats des figures 3 et 4 peuvent contribuer au choix d'un quantum
(cf. 4.3) si on désire favoriser les travaux interactifs.
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Figure 3. Temps de calcul des travaux non interactifs [Arden, 69).
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Figure 4. Temps de calcul des travaux interactifs [Arden, 69].
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3) Comportement de I'utilisateur conversationnel

Pour un utilisateur conversationnel, on définit le temps de réflexion comme
Iintervalle de temps entre le début de la réception d'une réponse A une com-
mande et 'envoi d’une nouvelle commande, La figure 5 [Scherr, 65] montre
un exemple de distribution de ce paramétre dans le systéme CTSS.

Densité de probabilité

.12

—'-l*

004 4
0,03
0,02
001 4
Temps de réflexion

— : ' ' —
HIT 20 30 y 40 50 a0 7

{secondes)
Mé&diane Moyenne

Figare 5. Distribution des temps de réflexion des utilisateurs [Scherr, 65].

Remarques. Le pic qui est au début de la courbe correspond & I'envoi
de messages trés brefs (retour-chariot) : de méme il faut compléter la courbe
par le point de densité de probabilité 0.12 et de temps de réflexion nul ; ce
point correspond a I"exécution. provoquée par un seul messa ge, d'un ensemble
de commandes pré-enregistrées.

Le temps de réflexion a une valeur relativement élevée. ce qui conduit 4
libérer la mémoire occupée par I'utilisateur en cours de réflexion.

4) Entrées-sorties

Dans un systéme multiprogrammé, il est intéressant de connaitre les besoins
relatifs des programmes, en entrées-sorties et en calcul, de maniére 4 équilibrer
la charge des différents processeurs.

Les courbes de la figure 6 montrent une grande disparité entre les compor-
tements de deux compilateurs [Leroudier, 73] ; on pourrait équilibrer la charge
des canaux d’entrée-sortie en multiprogrammant des compilations de pro-
grammes en FORTRAN et en PL/1.
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Figure 6. MNombre d'entrées-sorties sur disque pour des compilations FORTRAN
et PL/1 [Leroudier, 73).

Le tableau qui suit présente, pour le systétme CP/CMS, les besoins en
entrées-sorties des differentes classes de travaux soumis par les utilisateurs.

Manipulations | Editions | Chargements | Assemblages Div
de fichiers de fichiers | Exécutions | Compilations | = =0

Nb. E/S disques
— Moyenne 19 65 78 490 34
— Ecart-type 70 120 150 800 240
INb. E/S console
— Movenne 1.5 30 10 9 5.5
{— Ecart-type 10 50 45 40 35
Temps UC (s)
— Moyenne 0,1 0.5 34 8 0.1
— Ecart-type 0,5 1.3 30 1 1.5

Figure 7. Statistiques des entrées-sorties selon les types de travaux
[Leroudiar, 73],

Les valeurs moyennes sont en général peu représentatives car les écarts-
types sont grands.
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5) Taux d’utilisation des fonctions du systéme

Il est utile de connaitre la fréquence relative d’emploi des diverses fonctions
du systéme, chaque fonction étant caractérisée par un usage relativement
stable des différentes ressources. Le tableau de la figure 8 donne un exemple
de ce type de renseignements.

Manipulations | Editions | Chargements| Assemblages Divers
de fichiers de fichiers | Exécutions |Compilations

Pourcentage 37 12 17 5 21
des commandes

Pourcentage 8 10 48 32 24
unité centrale

Pourcentage 5 52 28 12 3
temps utilisateur

Figure 8. Statistiques des temps de calcul selon les tvpes de travaux
[Leroudier, 73].

Remarque. De méme que dans I'exemple de la figure 5, on doit compléter
la premiere ligne par une fraction de 8% correspondant a I'exécution de
commandes pré-enregistrées.

Les résultats de ce tableau montrent en particulier que les travaux d'édition
de fichiers, auxquels les utilisateurs consacrent une fraction importante de
leur temps, constituent une charge relativement faible pour le systéme : ce
renseignement contribue & I'évaluation du nombre de terminaux connectables.

4.23 COMPORTEMENT DYNAMIQUE DES PROGRAMMES. PRO-
PRIETE DE LOCALITE

L'exécution d’un programme se traduit par une suite de références a des
instructions et 4 des données. Nous considérons ces instructions et ces données
comme occupant des emplacements dans un espace d’adressage linéaire unique
(mémoire virtuelle), indépendamment de leur support physique. Nous consi-
dérons en outre que la mémoire virtuelle est découpée en blocs égaux d’empla-
cements consecutifs, et nous nous intéressons a la suite des références aux
blocs. Pour un découpage en blocs d'une taille donnée, I'exécution d'un
programme comprenant n blocs numérotés de / 4 n se traduit par une suite

de références aux blocs -
m=r1 r: wra .l“,- .. avec i".-‘=},2.....ﬂ

oU r; est le numéro du bloc contenant la i-iéme référence 4 la mémoire.
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L'expérience montre que la suite des références posséde les Propriétés sui-
vantes, vérifiées pour un grand nombre de programmes [Spirn, 72).

1} La distribution des références n'est pas uniforme sur l'ensemble de la
mémoire : histogramme des références 4 la mémoire faites pendant |'exé-
cution d’un programme présente généralement des PICS MArqués, correspon-
dant aux zones le plus fréquemment utilisées (boucles, données localisées).

2) On peut diviser la suite des références en sous-suites consécutives 1;
(non nécessairement de méme longueur), telles que si L; est I'ensemble de
blocs distincts référencés dans la sous-suite w, :

a) la distribution des références dans ev; n'est pas uniforme : de plus, le
nombre de blocs de L; est souvent petit par rapport au nombre total n
de blocs du programme.

b) L, et L;., possédent généralement beaucoup de blocs en commun.

¢) Liet L;,; tendent & devenir non corrélés pour de grandes valeurs de :
la connaissance de L; donne peu d'information sur la composition
de L, ; pour de grandes valeurs de /.

On exprime ces propriétés en disant que la plupart des programmmes pré-
sentent la propriété de localité. Cette propriété est lide 4 une certaine structu-
ration, fréquemment rencontrée, des instructions et des données (instructions
exccutées en sequence, boucles, accés regroupés aux données). Lorsque la
structuration est différente (cas des données organisées en listes ou les acees
sont dispersés), la propriété de localité peut ne plus étre vérifiee pour le pro-
gramme ou pour les données,

Remarque. Lexistence de la propriété de localité est, dans une large
mesure, indépendante de la taille des blocs constituant la mémoire virtuelle,
Lexercice 1 présente un modéle de programme & comportement local,

L'existence de la propriété de localité se traduit pratiquement par les
conséquences suivantes :

1) Considérons un programme dont les instructions et les données sont
initialement contenues dans une mémoire secondaire. Pour exécuter ce pro-
gramme, il faut transférer ces instructions et ces données en mémoire pringci-
pale ; nous supposons que ce transfert se fait par blocs de taille fixe (pages)
et « a la demande » (cf. 4.45) : une page n'est chargée en mémoire principale
quau moment du premier accés 4 I'information quelle contient ; cet accés
provoque un déroutement (défaut de page). Si on considére I'évolution du
nombre de défauts de page en fonction de la taille 5 de la mémoire principale.
on constate que :

a) La courbe représentant en fonetion de s le temps moyen efs) séparant
deux défauts de page consécutifs n'est pas une droite (Fig. 9), mais
a une allure en S. La seuil en dega duquel I'intervalle entre défauts
de page devient faible peut étre notablement inférieur 4 la taille
totale du programme.
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Figure 9. Intervalle moyen entre défauts de page en fonction
de la taille de mémoire principale [Belady, 69].

Ce comportement peut s'expliquer en remarquant que, jorsque la
memoire est assez grande pour contenir le nombre de blocs distincts
figurant dans un Z, donné, les défauts de page sont provoqués par le
renouvellement de la population de I, qui, d’aprés la propriété 2h),
est lent. Au contraire, le nombre de défauts de page devient élevé
quand la mémoire est insuffisante pour contenir la totalité de L, a
un instant donné,

b) Un phénoméne analogue est illusiré par le résultat d’expériences
faites sur le systéme IBM M44/44X [Brawn, 68). La grandeur mesurée
est ici le nombre de pages chargees depuis la mémoire secondaire.
Lorsque s diminue, on constate que ce nombre croit d’abord trés
lentement, puis augmente trés vite au-dessous d'un certain seuil
(Fig. 10},

¢) Les résultats donnés en a) et b) dépendent, en toute rigueur, de ["algo-
rithme de remplacement utilisé pour la gestion de la mémoire (¢'est-
a-dire du choix de la page de mémojre principale & allover lors d'un
défaut de page. lorsque toutes les pages sont occupées). En fait, on
constate que les résultats indigués en a) et b) dépendent peu de I'algo-
rithme de remplacement utilisé. Fn revanche, la maniére dont le
programme est ecrit (ou produit par un compilateur) peut avoir une
influence notable. Ainsi, en réduisant la dispersion des références,
on peut réduire de fagon importante la taille de mémoire nécessaire
& une exécution efficace du programme [Brawn, 68].

Z) Comme conséquence de la Propriété 2b), les références faites par un
programme dans un passé récent i ses Istructions et a ses données sont
souvent une bonne estimation des références qui seront faites dans un avenir
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Figure 10. Variation du nombre de transferts de pages
avec la taille de mémoire principale pour le systéme IBM M44/44X [Brawn, 68].

proche. Cette remarque (qui sera développée en 4.63) est 4 la base de 'usage
des antémemoires (mémoires trés rapides et de petite taille dans lesquelles sont
conservées, 4 tout instant, les informations le plus récemment référencées).
L’expérience montre qu'il y a une probabilité élevée pour qu'une nouvelle
référence concerne une information présente dans I'antémémoire ; ainsi, le
temps d’acces apparent a4 l'information est plus voisin du cycle de I'anté-
mémoire gue du cycle de la mémoire principale.

Exemple. Dans une série dexpériences de simulation destinées a évaluer I'efficacité
de I'antémémoire sur I'ordinateur IBM 360/85 [Liptay, 68], on a mesuré, pour un
ensemble de programmes constituant une charge type, la fréquence relative des accés
pour lesquels I'information recherchée se trouvait dans "antémémoire. Pour I'ensemble
des programmes considérés, de taille comprise entre 16 K et 218 K octets, la fréquence
relevée varie entre 92 % et 99 9%, selon les programmes. L'antémémoire comportait
256 blocs de 64 octets et était gérée de maniére & contenir & tout instant les 256 blocs
contenant les références les plus récentes.
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4.3 ALLOCATION DE PROCESSEUR REEL

Le probléme de I'allocation de processeur peut étre schématisé comme
suit : au cours du temps, suivant une certaine loi d’arrivée, des processus
demandent les services d'un processeur du systéme ; pour simplifier l'algo-
rithme d’allocation, nous nous limitons au cas ou tous les Processeurs sont
identiques. Le temps d’exécution d'un service demandé est connu ou non au
moment de la demande,

L’objectif d'une stratégie d'allocation est la satisfaction des demandes,
tout en respectant les contraintes imposées. Celles-ci peuvent étre. entre
autres -

— la garantie 4 chaque processus d'un temps donné d'allocation,

— le respect d’un ordre de priorité entre les processus demandeurs,

— l'exécution totale d'un processus avant une heure limite fixée a 'avance,

— lannulation du travail de tout processus qui tente d'utiliser le pro-
cesseur pendant un temps supérieur au maximum fixé par le programmeur ou
le systéeme.

4.31 CLASSIFICATION DES STRATEGIES

Avec les notations de la figure 11, une stratégie d'allocation de processeur
est definie par les opérations suivantes :

(D : entrée d"un processus demandeur,

@ : sélection d'un processus demandeur.

: sélection d'un processeur,

[4) : interruption du service.

Les opérations (D). (D, @ sont nécessairement lides - lorsqu’un proces-
seur cesse de servir un processus donné, un processus demandeur peut (et
donc doit) étre servi. Nous ne nous intéressons pas d la sélection d'un pro-
cesseur, ni a la fagon dont les processus deviennent initialement candidats a
I"allocation de processeur.

Processeyr -
Ensembje .
de pmcessus Processeur - Somie
demandeurs

Processeys —@___p

Figure 11. Schéma général de I'allocation de processeur,
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Une premiére distinclion peut étre faite entre les stratégies mettant en jeu
ou non la réquisition du processeur. Un second critére de classification des
différentes stratégies est la nature des informations utilisées par cellesci.

A coté des stratégies entiérernent fixées a priori, on peut distinguer les stra-
tégies utilisant des informations de diverses origines :

— mformations attachées aux processus utilisateurs,

— informations recueillies au cours de l'activité du systéme.

Les stratégies gui vont étre examinées visent en général a réduire le temps
de réponse (temps écoulé entre (1) et la sortie) pour les utilisateurs dont le
service exige un temps d'exécution court au détriment des utilisateurs qui
ont des demandes plus importantes.

4.32 STRATEGIES SANS RECYCLAGE DES TRAVAUX

La valeur exacte du temps d’exécunion est en général inconnue au moment
de la demande. On utilise une valeur estimée a priori, fournie ou non par le
programimeur.

a) File d’attente simple

A titre de comparaison le schéma ci-dessous montre la stratégie la plus
simple dite file d’attente simple ou FIFO (« First In, First Out », ou premier
arrive, premier servi). Ceite stratégie ne tient aucun compie des temps d'exeé-
cution.

Entrie ——im I—.— Processeur Somie

Elle est couramment utilisée dans les systémes de traitement par train.
Les travaux courts ont un temps de réponse €leve s'ils arrivent aprés des
travaux longs.

b) File d"attente ordonnée suivant le temps estimé d’exécution

Enerée L i Processeur —l Sortie

Quand un nouveau processus arrive, il est placé dans la file a 'endroit
correspondant 4 son temps estimé d'exécution ; la file est ordonnée suivant
les temps d'exécution croissants: 'estimation est faite a priori et aucune
correction n'est tentée en cours d'exécution. Le temps de réponse des travaux
courts est ainsi diminué, mais les travaux longs sont retardés (indéfiniment
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si le débit d'arrivée des travaux courts est assez grand). Cette stratégie peut
étre combinée avec un systéme de priorités croissantes avec le temps d’attente
tl un temps limite d’utilisation du processeur.

On peut également, avec cette méthode, utiliser une régle de réquisition du
processeur - quand un nouveau travail arrive, son temps estimé d'exécution
sl compare au temps estimé restant pour le travail en cours; s'il est plus
faible, le travail en cours est interrompu, et céde la place au nouvel arrivant ;
le travail interrompu retourne dans la file d’attente, 4 I'emplacement corres-
pondant 4 son temps restant d'exécution, c'est-a-dire en tete des processus
qui attendent.

La réquisition accentue encore l'avantage donné aux travaux courts :
par contre & chaque interruption, il v a une perte de temps pour la gestion
des vecteurs d’état.

Par rapport 4 la méthode de la file d'attente simple, les deux stratégies
précedentes abaissent la moyenne du temps de réponse des travaux courts,
mais augmentent la dispersion autour de la moyenne globale. Elles présentent
I'inconvénient de devoir se fier uniquement & un temps d'exécution estimé,
qui peut étre incorrect ou falsifié par des usagers de mauvaise foi.

4.33 STRATEGIES AVEC RECYCLAGE DES TRAVAUX

Les méthodes précédentes sont peu adaptées aux conditions des systémes
conversationnels, o les demandes sont fréquentes et ol les conséquences
d’une erreur d’estimation peuvent étre graves pour la qualité du service rendu.
Dans une méthode avec recyclage, on ne poursuit pas 'exécution d"un proces-
Sus jusqu’a son terme : au bout d'un temps trés court, de I'ordre de quelques
millisecondes, on interrompt ce dernier pour allouer le processeur a un autre
processus ; les processus interrompus sont placés en file d"attente. Le nombre
de ces files et la maniére dont elles sont gerées distinguent les diverses stra-
tégies développées dans ce paragraphe.

a) Balayage cyclique simple ou tourniquet

Dans la stratégie du tourniquet (« round robin »), le processeur est alloué
successivement & chaque processus ; si au bout d'un temps fixé g, le processus
ne s'est pas terminé, il est interrompu et placé en queue de la file des deman-
deurs.

Entrée J—[ J l - Processeur Somie

L'intervalle de temps g, appelé quantum, est le parametre de cette stratégie.
Si g tend vers I'infini, on retrouve la strategie de la file d'attente simple, Quant
au modeéle obtenu en faisant tendre g vers zéro, il a été étudié analytiquement
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en raison de son interét theorique : tout s’y passe comme si chaque processus
était servi (dés son arrivée) par un processeur dont la vitesse de calcul était
divisée par le nombre de processus dans la file [Coffman, 68).

La méthode du tourniquet garantit que tout travail est servi au bout d'un
temps fini. Son principal avantage est de limiter le délai de prise en compte
(temps écoulé entre (D) et (@), ce délai dépendant d’ailleurs de la charge.
Dans un systéme en temps partagé, ol la plupart des interactions usagers-
systéme sont trés bréves, le temps de réponse est du méme ordre que le délai
de prise en compte quand le quantum est fixé 4 une valeur telle que la plupart
des interactions soient terminées en un seul quantum.

b) Recyclage a plusieurs files dattente

On souhaite parfois accorder aux travaux courts un privilege plus grand
que ne le permet la stratégie du tourniquet. Dans ce but, on introduit plusieurs
files d’attente avec des valeurs de quantum éventuellement différentes.

-

G T T T T 1

Processeur

4!

2 | R

Hni'l'-:-e I ]

Figure 12. Recyclage a plusieurs files d'attente.

Les processus demandeurs sont rangeés dans »n files 0. @, ..., @,. A chaque
file Q; est associé un quantum de temps g, Les nouveaux arrivants entrent
dans la file Q,. Le travail situé en téte de la file O, {7 = I} ne peut étre pris
en compie que si toutes les files 0, 0 < j < isont vides. Si un travail provenant
de O, n'est pas terminé au bout du temps g, il passe en queue de Q. ; les
travaux sortant de @, v retournent. Enfin tout nouveau travail qui arrive dans
la file 0, pendant I'exécution d'un travail de la file Q; (i = 1) est pris en
compte dés 'expiration du quantum g; Dans la pratique, cette stratégie
est généralement assortie d'une réquisition qui permet la prise en compte
immédiate d’un travail arrivant dans une file 0, vide.

Les stratégies a plusieurs files permettent un ajustement plus souple que
celles évoquées précédemment.
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Exemplel. n=2 g, = g, = g

C'est le cas le plus simple : il ¥ @ une file haute et une file basse, le choix étant
défini par le fait que le temps d’exécution est plus grand ou plus petit que g. En faisant
varier g, on peut privilégier une classe plus ou moins étroite de travaux.

Exemple 2. n quelconque, g, = 2! 4,
Cette stratégie a été utilisée dans le systeme CTSS, n étant égal a4 & [Corbato, 62].

4.34 STRATEGIES FONDEES SUR LA NOTION DE PRIORITE

La priorité est un nombre attaché a chaque travail et définissant le degré
d’urgence attribué & son exécution - elle est dite externe si elle est fixée avant
la prise en charge (par exemple sur une carte de contréle). et interne si elle
est fixée ou modulée par I'algorithme de gestion des travaux. Un travail de
priorite p, doit étre pris en compte avant un travail de priorité p; sip; < p, :
il peut y avoir ou non réquisition.

Une stratégie fondée sur les priorités peut étre mise en uvre, soit en consti-
tuant une file unique ol les travaux sont ordonnés d’aprés leur priorité,
s0it en constituant plusieurs files de travaux de méme priorité, une file nétant
servie que lorsque les files de plus forte priorité sont vides. On peut également
introduire la notion de priorité dans une stratégie avec recyclage, la priorité
d’un travail diminuant aprés chaque quantum alloué a ce travail.

4.35 STRATEGIE FONDEE SUR LA NOTION D'ECHEANCE

Dans certains cas (contrdle de processus industriels, simulation en temps
réel, établissement de la paie dune entreprise), on est amené & spécifier une
échéance (« deadline »), c’est-a-dire une date limite a4 laquelle I'exécution
d’un certain travail doit étre termingée.

Pour que cette contrainte puisse étre respectée, on doit connaitre la durée
d’exécution d'un tel travail ou tout au moins une limite supérieure. On est
alors capable de déterminer pour les différents travaux comportant une
échéance, I'heure avant laquelle ils dojvent €tre entrepris pour respecter
cette échéance. Le calcul doit tenir compte du fait qu'il peut exister plusieurs
travaux de ce type, ainsi que d'autres travaux ne comportant pas cette
contrainte. On peut alors se ramener 4 une stratégie 4 priorités en affectant
aux Iravaux une priorité qui croit 4 mesure que I’heure d’échéance se rapproche.
Quand un travail ne peut étre terminé avant son échéance, deux stratégies
sont possibles :

— détruire le travail, s'il n’a alors plus d'intérét (traitement de mesures
en temps réel),
— retarder I'échéance (paie d’une entreprise).
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4.4 GESTION DE LA MEMOIRE PRINCIPALE

4.41 INTRODUCTION

Nous regroupons sous le terme geénéral de « gestion de la mémoire » tout
ce qui concerne la gestion des unités servant de support a des informations.
Nous nous intéressons seulement aux informations directement adressables
par un programme en cours d'exécution et nous excluons celles qui sont
rendues accessibles a ce programme par des opérations d’entrée-sortie
demandées explicitement. Pour gqu'une instruction élémentaire s'exécute,
ses opérandes doivent se trouver en mémoire principale ou dans des registres ;
de méme, les instructions successives sont prélevées par un processeur dans
la mémoire principale (la présence de mécanismes d’antémémoire ne change
rien & ce fait puisque le processeur n'engendre que des adresses de mémoire
principale).

Lorsque la mémoire principale est le seul support existant dans le systéme
pour I'information adressable, on dit que I'on a une mémoire uniforme ; toute
information qui disparait de la mémoire perd définitivement la possibilité
d'étre adressee par un programme ; la taille de l'espace unilisable par un
processus est alors inférieure ou égale a la taille de la mémoire principale,
et cela quelle que soit la capacité d'adressage de la machine (donnée par le
nombre de bits de "adresse). La gestion d’une mémoire uniforme se raméne
au choix d'un algorithme de placement : une fois placées en mémoire, les
informations doivent y demeurer jusqu'au moment ol elles cessent d'étre
utilisées. La seule forme possible de partage d'une mémoire uniforme entre
plusieurs processus consiste en un découpage de cette mémoire et en une
allocation de fractions différentes 4 chacun des processus.

Lorsque 'on veut partager la mémoire, ou une partie de celle-ci, sur la
base d'un multplexage entre les processus, en pratiquant la réguisition
comme cela se fait pour une unité centrale, alors apparait la nécessité d'une
mémoire secondaire destinée 4 conserver les informations provisoirement
chassées de la mémoire principale au profit d’autres informations : on a
alors affaire 4 une mémoire hiérarchisée. La hiérarchie des mémoires comporte
au minimum deux niveaux (la mémoire principale et une mémoire secondaire
constituée généralement de disques ou tambours magnétiques), mais elle
peut comporter plus de deux niveaux, dont chacun est en général caractérisé
par rapport au précédent par un coilit de stockage moindre, une capacité
plus grande et un temps d’accés plus important. Dans une telle organisation,
il s’agit de répartir I'information entre les niveaux de la hierarchie de maniere
4 ce que le maximum de références concerne les unités les plus rapides.
On arrive ainsi 4 ce que le temps moyen d’accés 4 une information s’approche
du temps d’accés de I'unite la plus rapide, et cela avec un coit proche de
celui des unités les plus lentes [Mattson, 70]. La gestion d'une mémoire hié-
rarchisée fait intervenir des politiques de placement et de remplacement en
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mémoire principale, d’allocation d’espace secondaire, et, dans le cas de plu-
sieurs niveaux secondaires, de migration entre niveaux.

Dans ce qui suit, nous ne considérons que la gestion de la mémoire prin-
cipale avec et sans mémoire secondaire, en laissant de cété la gestion de la
mémoire secondaire elle-méme, qui sera abordée en 4.5, Pour definir une
gestion adaptée 4 des circonstances données, il faut en particulier tenir compte
de la fréquence des demandes, de la durée d’allocation, des tailles demandées,
du volume total de mémoire disponible et des caractéristiques des unités
d’échange. 1l faut également tenir compte des contraintes technologiques
imposées 4 I'allocateur, notamment de celles lides i I'adressage de la mémoire
physique et & la protection des informations qu'elle contient.

4.42 INCIDENCE DES MECANISMES D'ADRESSAGE

Examinons les problémes posés par 'implantation des programmes en
mémoire centrale. Un programme adresse un espace logique. ou virtuel :
lors de I'exécution. tout ou partie de cet espace a pour support la mémoire
centrale. Une foaction de topographie F établit la correspondance entre 'espace
virtuel et I'espace réel. La gestion de la mémoire réelle dépend étroitement
de la fagon dont cette correspondance est réalisée et du moment de sa réali-
sation [Mc Gee, 65). Trois cas sont envisageables,

1) Lorsque la correspondance est réalisée lors de écriture. de la compilation
ou de I'édition de liens du programme. le résultat est un module non trans-
latable qui doit étre chargé 4 une adresse précise, toujours la méme, puisque
les adresses qu'il contient sont des adresses de mémojre réelle. Dans ces
conditions, le chargement dun tel programme entraine une demande de
memoire formulée en termes de taille et d'adresse. ce qui laisse peu d'initia-
tives a l'allocateur ; tout au plus, ce dernier peut-1l associer 4 une zone fixe
de mémoire réelle une file d'attente des programmes 4 charger dans cette
zone ; la gestion de cette file dépend des autres ressources réclameées par les
programmes. On dit dans ce cas qu'il y a partition de la memoire,

Exemple. Le sysiéme DOS/360, qui utilise une mémoire uniforme, fait partie de
cette catégorie.

Z) Lorsque la correspondance est réalisée au moment du chargement en
meémoire réelle, le résultat de la compilation ou de I'édition de liens est un
module translatable ; un chargeur est capable de I'implanter n'importe o
en memoire centrale en effectuant une réimplantation statique qui fixe défi-
nitivement les adresses. L’'adresse d'implantation est laissée a I'initiative de
I"allocateur, ce qui permet une gestion plus efficace des ressources. Cependant,
bien souvent, une réimplantation statique n’est pas suffisante pour permettre
une bonne gestion de la mémoire : un programme ayant commencé son
exécution ne peut plus étre deplacé; 'l est écrit en mémoire secondaire,
il devra retrouver plus tard la méme place en mémoire principale.
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Exemple. Le systéme OS/360 pratique la réimplantation statigue dans une mémoire
qui, sans options particulieres, est uniforme. Avec 'option « rollin-rollout », un pro-
gramme implanté en mémoire peut €tre recopié sur mémoire secondaire pour autoriser
son voisin du dessous 4 s'étendre en cours d'exécution vers les adresses supérieures.
Pour poursuivre son exécution, ce programme doit étre ramené 4 la méme place lorsque
la zone on il était implanté redevient libre,

3) Lorsque la correspondance est réalisée lors de 'exécution du programme,
toute adresse de espace virtuel est transformée par la fonction topogra-
phique en adresse de 'espace réel au moment ot elle est utilisée pour accéder
a la mémoire. Cette fonction fournit une adresse réelle ou signale que I'adresse
logique n'est associée a aucune adresse réelle. Cette traduction dvnamigue
des adresses autorise la réimplantation dynamique (« relocation ») d'un pro-
gramme au cours de son exécution [Randell, 68 ; Denning, 70].

Deux classes de mécanismes d’adressage permettent la réimplantation
dynamique : les registres de base et la pagination. La réimplantation par
registres de base impose de maintenir la contiguité physique du programme
réimplanté ; la pagination, au contraire, permet de découper ce programme
en morceaux digjoints. A chacun de ces mécanismes correspondent des techni-
ques d’allocation de memoire particulieres,

Dans ce qui suit, nous examinerons les sirategies d'allocation de meémoire
aux travaux, en mémoire uniforme et en mémoire hiérarchisée. Elles utilisent
deux techniques de gestion de la mémoire réelle : la gestion par zones de
tailles variables et la gestion par blocs de taille fixe. Dans ce qui suit, nous
réservons le terme de zone pour désigner un ensemble de mots consécutifs
de taille quelcongue.

Pour chacune de ces deux organisations, nous étudierons les mécanismes
d'adressage permettant leur mise en ceuvre et les techniques dallocation
applicables.

4.43 STRATEGIES D'’ALLOCATION DE LA MEMOIRE AUX TRA-
VAUX

Nous nous plagons d'abord dans le cas o les demandes de meémoire sont
formulées, soit par la partie du systéme chargée de lancer un nouveau travail,
soit par un processus d'un utilisateur. Pour améliorer 1'utilisation de I'ensemble
des ressources de l'installation, la plupart des systémes pratiquent la multi-
programmation, ¢’est-d-dire le partage de la mémoire entre plusieurs pro-
Cessus.

4.431 Allocation en mémoire uiforme

Les besoins en mémoire des processus peuvent varier au cours de leur
exécution. La solution qui consiste & laisser les processus effectuer eux-mémes,
aprés leur chargement initial, des demandes et des libérations de mémoire
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présente un certain nombre d'inconvénients quand ces demandes sont hono-
rees dans I'ensemble de la mémoire libre du systeme gérée en fonds commun.

1) Un phénoméne d'interblocage (cf. 4.7) peut survenir : tous les processus
sont en attente de meémoire, et aucun ne peut en libérer.

2) Cette technique d’allocation conduit & la fragmentation de la mémoire -
la mémoire libre est divisée en de nombreuses zones disjointes et il peut arriver
qu’une demande ne puisse étre satisfaite dans une seule de ces zones, bien que
I'espace libre total soit suffisant. Une fraction de Ia mémoire est ainsi inu-
tilisable. La fragmentation pénalise donc tous les travaux.

3) Il faut garder trace, programme par programme, des zones allouées,
pour permettre la récupération de I'espace (fin anormale du processus).

4) Rien n'empéche un programme erroné de boucler sur une demande
de mémoire et de s'approprier ainsi tout I'espace.

Pour toutes ces raisons. on adopte fréquemment une stratégie plus rigide,
en affectant 4 chague processus une zone dont la taille représente le maximum
estime de ses besoins et en Je contraignant 4 demeurer dans les limites de
celte zone ; apres le chargement initial dans la région allouée, il reste dans
cette région une partie libre a partir de laguelle sont satisfaites les demandes
ultérieures émises par le processus. Pour I'utilisation dynamique de la mémoire,
le processus n'est plus alors en concurrence quiavec lui-méme et la fragmen-
tation qu'il provoque est limitée 4 sa region.

Avec cette approche il existe deux fagons de réaliser 'allocation des zones
globales -

1) Le découpage de la mémoire en zones peut étre défini une fois pour toutes
lors de la création du systéme et modifiable seulement i certains moments
(initialisation du systéme par exemple). Il en résulte parfois une mauvaise
adaptation de la taille des zones aux besoins. car le mieux que I'on puisse
faire est de choisir la plus petite zone possible.

Exemple. Le systeme 0S/360 MFT utilise ce principe et découpe la mémoire en
un certain nombre de zones de taille fixe {« partitions »).

2) La taille de la zone allouée 4 un programme peut étre fixée lors de I'in-
troduction de ce programme en mémoire. Cette solution fait réapparaitre
le probléme de la fragmentation entre les zones mais permet par contre une
meilleure utilisation de la mémoire en présence d'une charge variable : en
effet, on peut adapter exactement Ia taille des zones aux besoins et aussi faire
varier dynamiquement le nombre de zones, donc le nombre de processus qui
s¢ partagent la mémoire. Nous verrons par ailleurs (4.442) que le compactage
peut parfois résoudre le probléme de |a fragmentation.

Exemple. Le sysiéme O85/360 MVT alloue dynamiquement la mémoire par zones
de taille variable (« régions »).
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4.432 Allocation en mémoire hiérarchisée

Une mémoire uniforme n'est pas adaptée au multiplexage de 'unité centrale
entre un nombre important de processus, En effet :

— comme ces processus coexistent en permanence dans la mémoire, la
taille moyenne de mémoire disponible pour chacun d'eux est d’autant plus
faible qu’ils sont plus nombreux,

— les processus inactifs occupent inutilement une partie de la mémoire
principale,

— un processus ne peut pas disposer d'un espace d'adressage de taille
supérieure a celle de la mémoire réelle.

L'utilisation d’une mémoire hiérarchisée permet de résoudre ces problémes
en muliiplexant également la mémoire principale.

1) Technigue du va-ei-vient global

La methode la plus courante consiste a utiliser le va-et-vient {« swapping »)
qui consiste a vider sur une unite secondaire (disque, tambour magnétique, ...)
le contenu de la zone de mémoire affectée 4 un processus puis a utiliser cette
zone pour un autre processus ; lorsquon décide de reprendre 'exécution du
premier processus, il faut recharger les informations nécessaires en mémoire
centrale. Plusieurs problémes sont liés a 'utilisation du va-et-vient.

a) Probléme des entrées-sorties dans la zone de Mutilisateur. Si des entrées-
sorties sont en cours au moment ou le systéme décide de vider un programme,
Ul faut attendre gu’elles se terminent ; pour limiter cette attente, on doit interdire
aux utilisateurs de lancer dans leur espace propre des entrées-sorties dont la
durée est longue ou indéterminée, comme la lecture d'une ligne sur un ter-
minal ; de telles opérations doivent utiliser une zone de meémoire non soumise
au va-et-vient.

b) Probléme de la réactivation. Pour reprendre l'exécution d'un processus
interrompu, il est nécessaire, en l'absence de mécanisme de reimplantation
dynamique, de replacer son programme au méme endroit. Cela peut entrainer
le vidage de plusieurs autres programmes, 4 moins que ['on ne fasse du va-et-
vient dans une partition fixe.

¢} Problémes de performances. Si chaque processus dispose de toute la
mémoire non réservée au systéme, il n'est pas possible de faire du travail
productif pendant les opérations de va-et-vient puisqu’il n’y a pas d’autre
processus prét. Pour que le systéme soit rentable, il faut alors que la durée
d'une opération de va-et-vient soit faible devant l'intervalle de temps entre
deux opérations de va-et-vient consécutives. A titre indicatif, il faut environ
deux secondes pour vider et restaurer une mémoire de 256 K octets sur un
disque de type 2314 relié 4 un IBM/360.

Sipar contre la mémoire est partagée entre plusieurs processus, il est possible,
pendant un transfert, d’activer un autre processus ; cependant. il se peut que
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les avantages tirés de cette multiprogrammation soient illusoires si les opeé-
rations d’entrée-sortie qui réalisent le va-et-vient freinent trop 'unité centrale
(cas d'une mise en commun d’organes entre I'unité centrale et les canaux
qui entraine un vol de cycles), ou empéchent le processus élu d’effectuer ses
propres entrées-sorties,

2) Technique du va-et-vienr & la demande

La technique du va-et-vient global améne & charger des parties de pro-
gramme qui ne serviront pas pendant le quantum suivant et & vider des par-
ties de programme non modifiées pendant le quantum écoulé. Cette remarque
conduit & I'idée d’un mécanisme de « va-et-vient a la demande » qui permet-
trait de déterminer dynamiquement les parties utiles du programme et de ne
les charger qu’au moment de leur utilisation.

Si I'on ne dispose pas d’un mécanisme de réimplantation dynamique, la
technique du va-et-vient a la demande est d'une mise en ceuvre difficile car
une information donnée doit toujours étre chargée dans les mémes empla-
cements physiques ; toutefois, il existe des algorithmes permettant de mini-
miser les transferts [Hoare, 72a).

Si I'on dispose d'un mécanisme de reimplantation dynamique, on applique
selon le cas une stratégie de « zone 4 la demande » (cf. 4.442) ou de « page 4
la demande » (cf. 4.453): la réimplantation permet alors d'utiliser au mieux
la place libre. En particulier, si le mode d’adressage permet de définir des
segments, il est naturel d'allouer une seule zone par segment (exemple ;
BURROUGHS B3500).

4.44 GESTION DE LA MEMOIRE PAR ZONES

L'allocation de mémoire par zones de taille quelconque suppose 1'existence
d'un mécanisme permettant la réimplantation dynamique. Ce mécanisme
est fourni par 'utilisation de registres de base.

4.44]1 Réimplantation dynamique par registres de base

Le principe de la réimplantation dynamique au moyen de registres de hase
est simple. Le contenu d'un registre particulier, ou registre de base, est auto-
matiquement ajouté & toute adresse engendrée par un processus et le résultat
est utilisé pour adresser la mémoire réelle. Un programme peut alors étre
chargé dans n'importe quel ensemble de cellules de mémeoire consécutives :
il s'exécute correctement si le registre de hase contient I'adresse d'implantation
(dans le cas d'un programme implanté & partir de I'adresse virtuelle zéro).
Les phases classiques d’édition de liens oy de chargement subsistent, mais
elles produisent comme résultat un programme chargé dans un espace virtuel.

Déplacer globalement en mémoire centrale un programme dont I'exécution
est commencée est alors possible, 4 la seyle condition d’ajuster ensuite la
valeur contenue dans le registre de base. L'utilisation de registres de base
distincts pour le programme et pour les données permet leur réimplantation
indépendante.
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Remarque. Plusieurs machines utilisent I'adressage par registres de base,
en particulier le CDC 6400, 'UNIVAC 1108 et le GE 635. L'IBM,360 n"appar-
tient pas 4 la classe des machines pour lesquelles la réimplantation dynamique
est possible sans conventions particuliéres. En effet, les regisires de base sont
accessibles par le programme qui peut les modifier ou ranger leur contenu
pour les recharger plus tard ; cela revient 4 garder trace d’adresses absolues
qui ne seraient plus valides aprés un déplacement du programme. De plus,
le seul fait que les registres puissent contemir au gré du programmeur autre
chose que des adresses rend impossible tout ajustement de ces registres aprés
un déplacement du programme. Dans ces conditions, une réimplantation
dynamigue n'est possible que si les programmes respectent des conventions
trés strictes pour l'utilisation des registres. Le systéme CALL/360, par exemple,
pratique la réimplantation dynamique des programmes ; le respect des conven-
tions d’utilisation des registres est garanti par les compilateurs du systéme.

4.442 Algorithmes de gestion de la mémoire par zones

Nous considérons ici une mémoire allouée 4 la demande par zones de tailles

quelconques : on doit alors résoudre les problémes suivants [Knuth, 68
Randell, 69] :

— choix d’une représentation des zones,

— définition de critéres de sélection d'une zone libre,

— politique de libération d’une zone occupée,

— decision a prendre quand aucune zone libre ne convient.

1) Représentation des zones

Une zone est définie par sa taille et son adresse de début, contenues dans
un descripteur. Si le découpage de la mémoire est établi une fois pour toutes
(nombre fixe de zones de tailles fixes), les descripteurs peuvent étre rassemblés
dans une table. Si par contre les tailles demandées sont variables. ils peuvent
etre placés dans les zones elles-mémes et chainés entre eux (liste simple ou
circulaire). Les informations de gestion éventuellement contenues dans
les zones allouées doivent étre protégées.

Lorsqu’on alloue des zones dans une mémoire virtuelle ayant pour support
une mémoire physique paginée, il est plus efficace de rassembler les descrip-
teurs dans une table unique : on évite ainsi la dispersion des accés sur plusieurs
pages.

L'ordre du chainage a une influence sur I'efficacité des algorithmes. Le
chainage peut étre construit dans l'ordre chronologique des libérations,
mais le plus souvent on utilise I'un des deux classements suivants :

— classement par adresses croissantes ou décroissantes.
— classement par tailles croissantes ou décroissantes.

Le choix dépend de I'algorithme utilisé pour satisfaire une demande.
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2) Algorithmes de sélection

Lorsqu’une demande est émise, une zone libre doit &tre choisie. Si les tailles
des zones demandées ont une distribution quelconque, la probabilité de
lrouver une zone libre satisfaisant exactement la demande est pratiquement
nulle. Une demande sera donc satisfaite le plus souvent a partir d'une zone
libre plus grande ; la différence, ou résidu, est rattachée a la liste si elle n'est
pas trop petite. Deux possibilités s'offrent, entre autres, quant au choix de
la zone libre pour satisfaire une demande de n mots :

= prendre la premiére zone possible (« first fit »), c’est-d-dire parcourir
la liste des zones librés jusqu'a ce que I'on en trouve une de taille ¢ =n;

— prendre la plus petite zone possible (« best fit ), ¢'est-d-dire choisir
celle qui donne le plus petit résidu.

Le temps pris par lalgorithme d’allocation dépend de la technique d'allo-
cation choisie. Il peut étre décomposé en deux parties : examen d'un certain
nombre d’entrées pour le choix d'une zone libre et placement du résidu dans
la liste. Si I"on choisit la plus petite zone possible, le classement par tailles
evile de parcourir toute la liste. Le résidu reste 4 sa place s'il n'y a pas de
classement ou si le classement est fajt par adresses ; il doit étre déplacé dans
le classement par tailles.

Le phénoméne d'accumulation de petits résidus en téte de liste ralentit
la recherche. On utilise alors une liste circulaire qui permet de commencer
exploration a partir de n'importe quel point de la liste,

La figure 13 montre un exemple d’allocation ; on remarque que la partie
allouee se trouve i la fin de la zone choisie, pour faciliter la gestion des résidus.

Va4 A

Ty :[ ¥I,I1 1'3

Avare allocagion Aprés allocasion

Figare 13. Allocation d’une zone de taille ¢ (premier possible, liste circulaire).
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On constate parfois que certaines tailles sont demandées plus fréquemment
que les autres [Margolin, 71]. On améliore alors 'efficacité de 'allocation
en réservant un certain nombre de zones possédant ces tailles privilégiées.
Le mécanisme classique d’allocation reste utilis® en cas d'épuisement des
zones réservées. Le nombre de zones & réserver pour chaque taille peut étre
déterminé par des mesures ou par une simulation du systéme.

Cette méthode de réservation, qui privilégie certaines tailles de Zones,
est couramment utilisée pour gérer la mémoire libre du systéme |ui-méme,
quand ses besoins en mémoire sont connus 4 I'avance : c'est le cas des blocs
de mémoire acquis dynamiquement par le systéme pour gérer les entrées-
sorties des utilisateurs.

3) Libération d’une zone

La libération d'une zone peut créer trois situations différentes selon que la
zone liberée est entourée de deux zones libres (a), d'une zone allouée et d'une
zone libre (&), ou de deux zones allouées (c).

T a b 1 f -
Chaque fois que cela est possible (cas a et b), il est utile de regrouper, dés
la libération, la zone libérée avec les zones libres voisines pour créer une seule
zone libre de taille plus grande : on évite ainsi une fragmentation excessive
de la mémoire. La rapidité de ce regroupement dépend encore du classement

de la liste ainsi que des informations de gestion utilisées. Un classement qui
est efficace pour I'allocation ne I'est pas forcément pour la libération.

4) Fragmentation er compactage

Dans une allocation du type « zone 4 la demande », le phénoméne le plus
génant est celui de la fragmentation de la mémoire, qui se manifeste au bout
d'un certain temps de fonctionnement ; il peut alors arriver que I'allocateur
ne puisse trouver une zone de taille suffisante. Une solution consiste 4 compac-
ter les zones allouées en les déplagant toutes vers une extrémité de la mémoire,
ce qui fait apparaitre 4 'autre bout une zone libre unique dont la taille est
la somme des tailles des zones libres primitives.

Cette méthode, qui est coliteuse, n'est pas toujours applicable, car I'absence
d'une possibilit¢ de réimplantation dynamique interdit dans certains cas
de déplacer I'information en mémoire. Par ailleurs, des résultats de simu-
lation [Knuth, 68] ont montré que lorsque I'algorithme d’allocation ne peut
satisfaire une demande, le taux de remplissage de la mémoire est souvent tel
qu’aprés compactage on retombe trés vite dans la méme situation qu'avant ;
le systéme consacre alors une grande partie de son temps au compactage.

Droits réservés au Cnam et a ses partenaires



172 Systémes d'exploitation des ordinateurs

Le compactage peut cependant étre utilisé avec suceés lorsque le nombre
de zones allouées est faible et que la durée des allocations est importante ;
cette siluation correspond, en particulier, 4 I'allocation d’espace aux pro-
grammes dans un systéme de traitement par trains de travaux.

Exemple. Le systtme EXEC 8 sur UNIVAC 1108 compacte la mémoire chague
fois qu'un travail se termine, pour ne conserver qu'une seule zone libre situde dans la
partiec haute de cette mémoire.

Le compactage peut étre réalisé de trois maniéres

— ¢n utilisant des instructions de transfert de mémoire & mémoire : cela
he permet pas & l'unité centrale de faire autre chose pendant le compactage,

— en utilisant les canaux d’entrée-sortie pour recopier sur une unité
périphérique les zones a déplacer, et pour relire les parties recopiées dans
une autre zone de mémoire,

— en couplant deux canaux d'entrée-sortie pour effectuer les transferts
de mémoire 4 mémoire sans utiliser I'unité centrale.

4.45 GESTION DE LA MEMOIRE PAR PAGES

La traduction dynamique d'adresses réalisée par 'emploi dun registre
de base impose que les programmes soient chargés en mémoire principale
dans des cellules contigués. Nous avons vu que les techniques d’allocation
associees conduisent & la fragmentation de la mémoire (4.431). Pour I'éviter,
il faut pouvoir implanter un programme dans plusieurs zones non contigués.
L’utilisation de registres de base multiples et explicites n'est guére envisa-
geable, car cela supposerait que le nombre et la taille des zones, couvertes
chacune par un registre de base, soient déterminés au moment de Iécriture du
programme.

4.451 Meécanismes de pagination

La solution apportée par les mécanismes de pagination consiste a découper
I'espace adressable, ou espace virtuel, en zones de taille fixe appelées pages
et & associer implicitement I'équivalent d'un registre de base &4 chacune de ces
pages. La mémoire réelle est également découpée en cases ayant la taille d"une
page de sorte que chaque page peut &tre implantée dans n'importe quelle case de
la mémoire réelle.

1} Pagination d un niveau

Une adresse est divisée en deux parties : un numéro de page p et un numeéro
de mot d, ou déplacement, 4 I'intérieur de la page. Les P bits de gauche d'une
adresse de N bits fournissent le numéro de page, et les N — P bits de droite
le déplacement dans la page. La taille de Ia page est égale 4 2V F,

La traduction des adresses utilise une fonction de topographie réalisée
au moyen d’une table de pages qui est située en mémoire centrale ou dans
des registres, et dans laguelle les entrées successives correspondent aux pages
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virtuelles consecutives. La p-iéme entrée de la table des pages contient le
numeéro r de la case ou est implantée la page p, et éventuellement des indica-
tions supplémentaires. L’adresse réelle (r, d) d'un mot d’adresse virtuelle
(p. d) est obtenue en remplagant le numéro de page p par le numéro de case r
trouvé dans la p-1eme entrée.

Adre sse virctuelle

Lo L] ¢

1
2 - T Numée de
P g—

Adresze réefle | r I d I

s 'F

bloc réel
{case)

Indications
complémentaires

Figure 14. Calcul d'adresse avec pagination & un niveau.
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Figure 15. Correspondance entre espace virtuel et espace réel.
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Lorsque le mécanisme de traduction des adresses utilise des tables de pages
¢ lrouvant en mémoire centrale, toute traduction entraine une référence 3
la mémoire et ralentit donc notablement le processeur. Pour éviter cela,
on peut implanter des mécanismes accélérateurs qui retiennent dans des
registres 4 accés rapide (par exemple des registres associatifs) les numéros
des pages les plus récemment référencées et les numéros de cases correspon-
dantes. La traduction d'une adresse consiste alors a consulter d’abord ces
registres et 4 n'effectuer I"acces aux tables que si le numéro de page virtuelle
ne s’y trouve pas. Lorsqu'une adresse est obtenue par consultation des tables,
le numéro de page virtuelle P et le numéro de case réelle r sont enregistrés
dans I'un des registres, choisi selon un algorithme approprié. La propriéé
de localité (cf, 4.23) permet, avec un petit nombre de registres, de traduire
la plupart des adresses sans avoir 4 consulter les tables en mémoire centrale,

Remarque. Il existe généralement un mode de fonctionnement du pro-
cesseur, indiqué dans le mot détat, qui ignore le mécanisme de traduction
d’adresses. Les adresses émises par un programme sont alors utilisées diree-
tement pour accéder 4 la mémoire réelle,

Les tailles de pages choisies par les constructeurs sont en général toutes
du méme ordre de grandeur (de 512 & 4 096 caractéres). Le choix de la taille
des pages est guidé par les considérations snivantes.

a) L'allocation par pages fait apparailre un nouveau type de fragmen-
tation, dit fragmentation interne [Randell, 69] : la derniére page d'un espace
virtuel est, en moyenne, utilisée 4 moitié seulement, mais occupe une case
compléte. Cette perte de place est aggravée lorsque I'on charge dans un méme
espace virtuel diverses sections de programmes, implantées chacune, pour
des raisons de protection ou d’efficacité, a partir d’un début de page. Plus
les pages sont petites, pius la fragmentation interne est réduite.

b) La taille de la table des Pages. pour un espace virtuel de taille donnée,
st proportionnelle au nombre de pages de cet espace; il est done préférable,
pour réduire cette taille, d’avoir peu de grandes pages plutst que beaucoup
de petites pages. Lorsque la table de pages est de petite taille, elle peut étre
constituée par des registres rapides; sinon, il faut utiliser |z mémoire princi-
pale comme support, et le probléme du temps d’aceés & cette table se pose
alors.

¢) Le temps de lecture dune page 4 partir d'une mémoire secondaire
(disque ou tambour magnetique) n'est pas proportionnel & la taille de cette
page ; ce temps fait intervenir la durée de positionnement de I'unité de lecture
qui est indépendante de la taille de la page, et la durée dy transfert qui est
proportionnelle 4 la taille mais qui ne constitue généralement qu'une faible
partie du temps total (cf. 4.5). Pour réduire ce temps de lecture, il est donc
preférable d'utiliser des grandes pages.
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d) Pour une mémoire réelle donnée, la taille de page détermine le nombre
de cases allouables; cela conduit & utiliser des pages plus petites sur des
machines dont la mémoire réelle est petite.

Certaines machines permettent l'utilisation de plusieurs tailles de pages
(généralement 2). La taille utilisée est alors indiquée dans un registre spéci-
fique ou dans les entrées de la table de pages.

Exemple. L'IBM/370 utilize, soit des pages de 2 048 octets, soit des pages de
4 (96 octets. La taille choisie est indiquée dans le registre de contrdle 0, chargé par
une nsiruction privilégee.

Associées 4 chaque entrée de la table de pages, figurent fréquemment des
informations de contrdle destinées 4 faciliter la mise en ceuvre de la pagi-
nation. On peut citer :

— Un bit d'invalidité associé 4 chague entrée. 5'il est 4 1, par exemple,
un déroutement pour défaut de page se produit au moment ol le processeur
fait référence a cette entrée lors de la traduction d'une adresse virtuelle. 11
est alors possible de n’amener les pages en mémoire réelle qu’au fur et 4 mesure
de leur utilisation ; on réalise ce que 'on appelle le chargement & la demande
(« demand paging ») qui garantit, en particulier, que I'on ne charge jamais
des pages qui seront inutilisées. Le traitement d’un déroutement pour defaut
de page consiste 4 obtenir une case libre en mémoire principale, & charger
la page virtuelle manquante dans cette case, 4 gamir 'entrée de la table de
pages avec le numeéro de cette case et 4 remettre a 0 le bit d'invalidité. L'exé-
cution du programme interrompu peut ensuite étre relancée a partir de I'ins-
truction qui avait provogqué le déroutement,

— Des bits d’utilisation, tenus a jour automatiguement. Ils permettent de
connaitre |'usage qui est fait d'une page (écriture, référence).

— Des verrous d'acceés associés a chacune des pages virtuelles. Ils indiquent
generalement si la page peut étre lue, modifiée, exécutée. L'absence de bit
d'invalidité peut étre compensée par 'emploi d'un verrou interdisant tout
accés 4 la page.

Exemple : mémoire topographigue du CII 10070.

Dans la machine CII 10070 {3.41). une adresse virtuelle occupe 17 bits, ce gui
permet d’adresser 128 K mots. La taille maximale de la mémoire réelle est également
de 128 K mots. L'espace virtuel est découpé en 256 pages de 512 mots. Les 8 bits de
gauche de |'adresse virtuelle fournissent le numéro de page et les 9 bits de droite le
déplacement dans la page. La traduction dynamique des adresses est réalisée par une
« mémoire topographique » constituée de 256 registres (de & bits) pouvant contenir
chacun un numeéro de case. Un verrou d'acceés virtuel de 2 bits est associé 4 chaque
enirée de la mémoire topographique ; sa signification est la suivante :

0 : tous accés autorisés,

(1 : écriture interdite,

10 : lecture autorisée,

Il : aucun accés permis.

Crorus. — Syseémes a exploitarion des ordineleuri
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On peut utiliser la valeur 17 de ce verrou d'accés comme indicateur dinvalidité ; on
interpréte alors le déroutement pour violation de protection d'accés comme un défaut
de page. La connaissance de la composition de I'espace virtuel d’un processus permet
de distinguer un déroutement pour page manquante d'un déroutement pour accés
hors des limites de cet espace virtuel.

2) Pagination d deux niveaux

Dans 'exemple précédent, la taille de I'espace virtuel et la taille maximale
de la mémoire réelle sont identiques (128 K mots). Cependant, la taille de
I'espace virtuel utilisable reste la méme si I'on dispose d’une mémoire réelle
plus petite (32 K mots par exemple). Les mécanismes de pagination four-
nissent donc un moyen d’adresser un espace virtuel plus grand que I'espace
réel et limité seulement par le nombre de bits de I'adresse,

Si l'espace virtuel est grand, la table de pages associée est grande et peut
méme remplir complétement la mémoire réelle,

Exemple. Une machine i adressage par mot dont I'adresse occupe 24 bits permet
d'adresser un espace virtuel de 16 384 K mots. Avec une taille de page de 512 mots,
€L €N supposant qu'une entrée de la table de pages occupe un mot, la table déerivant
un seul espace virtuel occupe 32 K mots en mémoire réelle,

La pagination & deux niveaux apporte une solution 4 ce probléme de la
taille de la table de pages. én permettant :

— de ne décrire par des tables de pages que la partie utile d'un espace
virtuel (les zones inutilisées a I'intérieur de I'espace ne sont pas décrites),

—— de partager entre plusieurs processus des descriptions de parties d’espace
virtuel.

L’espace virtuel est découpé en un certain nombre de grands blocs de tailie
fixe, chacun contenant un nombre entier de pages. On a ['habitude d’appeler
ces grands blocs des segments, bien que leur définition difféere fondamenta-
lement de celle utilisée au chapitre 3. Pour ne pas créer de confusion, nous
appellerons ces grands blocs des hyperpages dans la suite de ce texte.

Une adresse virtuelle est découpée en un numéro d’hyperpage 4, un numéro
de page p et un déplacement dans la page d. Les H bits de gauche d’une adresse
de N bits constituent le numéro d’hyperpage, les P bits du milieu le numéro
de page et les N-H-P bits de droite, le déplacement. Il y a 2% hyperpages
contenant chacune 2% pages. La fonction de topographie est définie par
une table d’hyperpages dont chaque entrée permet d'accéder 4 une table de
pages qui ne décrit que la partie de I'espace virtuel couvert par cette hyperpage.
Une entrée de la table des hyperpages peut également contenir :

— un bit d"invalidité qui indique quil 0’y a pas de table de pages associée
4 cette hyperpage ;

— des droits d’accés 3 I'hyperpage ; le droit d’accés effectif 4 une page est
fonction du droit d*aceés 3 I'hyperpage qui la contient et d’un droit particulier
attaché & chaque page,
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Adresse virtuelle
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Figure 16. Calcul d’adresse avec une pagination & deux niveaux.

Exemple : pagination & deux niveaux de I'IBM/370.

Dans 'IBM, 370 [IBM 72, une adresse virtuelle occupe 24 bits, ce qui permet d’adres-
ser 16 384 K octets. L'espace virtuel est découpé en 16 hyperpages de 1024 K octets
ou en 256 hyperpages de 64 K octets. La taille des pages peut elle-méme étre choisie
égale 4 2 K octets ou & 4 K octets, ¢¢ qui donne guatre possibilites de structuration
d'une adresse virtuelle. Le tableau suivant donne le nombre de bits utilisés par le
numéro d'hyperpage H, le numéro de page P et le déplacement D.

H P D

8 4 12 256 hyperpages contenant chacune 16 pages de 4 K
8 5 11 256 — - iz — 2IK
4 g 12 16 — — 2% — 4K
4 9 11 16 — -- 512 — 2K

La table des hyperpages et les tables de pages sont situées en mémoire
principale. Des registres de contrdle, accessibles seulement en mode maitre,

contiennent la taille d’hyperpage, la taille de page et I'adresse de la table
d’hyperpages définissant I'espace virtuel auquel Je processus courant a acces.
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Pour éviter une double référence i Ia mémoire lors de chaque traduction
d’adresse, des mécanismes accélérateurs implantés différemment selon les
modeles permettent de retenir dans des registres a acceés rapide les couples
(numéro d’hyperpage. numéro de page) récemment utilisés et le numéro de
case réelle correspondante,

Remarque. En général, et c'est le cas pour I'exemple précédent, un décoy-
page de l'espace virtuel en hyperpages et pages est tel qu'il ¥ a continuité
d’adresse entre le dernier mot de I'hyperpage n et le premier mot de I"hyper-
page n + 1. En particulier, une séquence d’instructions a cheval sur deux
hyperpages consécutives s'exécute sans discontinuité lors du passage d'une
hyperpage a I'autre.

Il existe cependant des réalisations dans lesquelles les hyperpages sont
disjointes : si I'on ajoute | par modification d’adresse a 'adresse du dernier
mot d'une hyperpage, on retrouve 'adresse du premier mot de cette méme
hyperpage. Dans ces conditions, I'espace virtuel directement adressable par
Un processus a la taille d’une hyperpage et non la taille définie par le nombre
de bits de 'adresse ; les liaisons entre hyperpages peuvent toutefois &tre assurées
par le systéme.

Exemple. La machine RCA SPECTRA 70/46 utilise une adresse de 21 bits ce qui
permel d’adresser 2 (48 K octets. Cet espace virtuel est découpé en § hyperpages dis-
jointes de 256 K octets chacune.

4.452 Représentation des espaces virtuels dans le systéme

La table de pages est utilisée directement par le mécanisme cablé de traduc-
tion d'adresses. Lorsqu'un défaut de page se produit, le systéme doit amener
la page correspondante depuis la mémoire secondaire dans une case de la
mémoire centrale. I! doit donc disposer d’une table, que nous appelons table
auxiliaire, et qui contient autant d’entrées qu’il ¥y a de pages dans I'espace
virtuel considéré; chaque entrée donne I'adresse de la page en mémoire
secondaire (cf. 4.53). La table auxiliaire est egalement utilisée lorsque 1'on
doil recopier une case contenant une page modifiée. A un instant donné,
il ¥ a autant d'ensembles (table de pages. table auxiliaire) que d'espaces virtuels
definis ; un seul de ces espaces est accessible au processeur.

Le systéme tient & jour par ailleurs une table d’allocation des cases. Lors-
qu’une case est allouée 4 une page d'un espace virtuel, on indique dans 'entrée
correspondante de la table d’allocation 'adresse de I'entrée de la table auxi-
liaire qui correspond 4 cette page. Lorsque I'on décide de recouvrir une case,
on connait ainsi directement I'adresse en mémoire secondaire ol elle doit
eventuellement étre recopiée, ainsi que I'entrée de la table de pages a invalider.
Le probléme est un peu plus complexe lorsque des pages sont partagées par
plusieurs espaces virtuels: on peut dans ce cas par exemple chainer entre
elles les entrées des diverses tables auxiliaires correspondant d une page
partagee, de maniére a retrouver toutes les entréeg de tables de pages 4 invalider
lors d'un recouvrement.
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4.453 Stratégie d’allocation des cases

Pour étudier la stratégie d'allocation des cases, nous utilisons le modéle
suivant.

1) Le systéme est constitué d'un processeur et d'une mémoire a deux niveaux.
La mémoire principale comprend m cases (emplacements de pages) allouables ;
la mémoire secondaire est également divisée en cases et nous la supposons
assez grande pour contenir toute 'information gérée par le systéme.

2) Le systéme est utilisé pour l'exécution d’un nombre fixe de processus ;
I'exécution d'un processus p; se traduit par une suite ¢ de références a un
espace virtuel de n; pages (in, > m)

w= {ryrary..r..}
r, = i signific que la page 7 fait 'objet de la i-iéme référence.

Soit M le temps d’accés 4 un mot d'une page chargée en mémoire principale
et § le temps de transfert d'une page entre mémoire secondaire et mémoire
principale.

Mémoire L - Méma:
e aire
Processeur O~T— principale P sevondiin

Une caractéristique importante du systéme est le rapport 4 = §/M. Dans
I'état actuel de la technologie (mémoire principale 4 tores, meémoire secon-
daire sur tambour ou disque a tétes fixes), ce rapport est de I'ordre de 10*.
Toutefois, I'évolution de la technologie peut le faire descendre a des valeurs
trés inférieures, ce qui risque de modifier fondamentalement les idées actuelles
sur la pagination.

L'objectif que I'on se fixe ici consiste 4 réduire le temps total d’exécution
des processus présents. Il en découle quelques considérations intuitives.

1) §i. 4 un instant donné, un seul processus occupe la mémoire, tout char-
gement de page entraine une période d’oisiveté de I'unité centrale de duree 5.
Pour avoir une bonne utilisation de ’unité centrale, on est conduit & admettre
des pages de plusieurs processus en mémoire principale (le temps de commu-
tation d’un processus A un autre est trés bref, de 'ordre de M).

2) Plus le nombre de processus entre lesquels on partage la mémoire prin-
cipale est grand, moins ces processus ont de cases 4 leur disposition. Il en
résulte une plus grande quantité de défauts de pages ce qui crée une forte
charge pour I'unité d*échange entre mémoires principale et secondaire.

Dans ce paragraphe, nous étudierons quand et ou amener une page
en mémoire principale. Deux stratégies de chargement de page somt
envisageables :
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— avant utilisation (pré-chargement) : on risque de charger des pages
inutilement mais cette méthode permet d'utiliser I'unité d’échange au moment
ou elle est peu chargée et de transférer plusieurs pages 4 la fois ;

— au moment de la premiére référence (chargement a la demande).

Nous nous limitons dans ce qui suit & cette derniére stratégie qui est la
plus fréquemment utilisée.

Quand le sysiéme a décidé de charger une page en mémoire principale, il
doit déterminer dans quelle case la placer ; s'il n’existe pas de case libre il faut
déterminer quelle page recouvrir en mémoire principale. L'algorithme qui
détermine quelle page recouvrir s'appelle algorithme de remplacement. I]
peut tenir compte des informations sur "utilisation passée des pages présentes
en mémoire principale.

4.454  Algorithmes de remplacement

De nombreux travaux ont été consacrés aux algorithmes de remplacement ;
en particulier des études théoriques [Coffman, 73] ont été faites pour le cas
0ol on se limite & un seul processus. Les algorithmes se différencient par les
informations prises en compte et relatives a 'utilisation passée des pages
(date de chargement, date de la derniére référence, ...). Citons :

1) FIFO(« First In First Out ») ot I'on remplace la page la plus anciennement
chargée,

2) RAND (« Random choice »), ou I'on choisit au hasard la page a rem-
placer,

3) LRU (« Least Recently Used »), olt I'on remplace la page la moins
récemment utilisée,

4) LFU {« Least Frequently Used »), ot I'on remplace la page la moins
fréquemment utilisée.

L'algorithme optimal OPT minimise le nombre de chargements mais il
suppose connue la chaine des références w du processus. Cet algorithme est
le suivanr :

— s'il existe des pages qui ne seront plus référencées, alors remplacer
l'une de ces pages,
— sinon, remplacer la page qui sera référencée le plus tardivement.
Pour comparer les algorithmes de remplacement, définissons le taux de
défauts de page par :
_ cim, w)
| @ |

{:-il_-::r" m, @) désigne le nombre de remplacements de pages provoqués par le
traitement, dans une mémoire de m cases, de la chaine de références w, et | w |
designe le nombre d'éléments de ¢,
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En faisant la synthése d'une série de mesures, on aboutit 4 des courbes
dont 'allure générale est représentée sur la figure 17 [Denning. 70].

Taux de défaw de page

E

S L: Frogramme « aléatoire »

~ 2-3: Zooe des algorithmes réalisables
N [LEL. LFLL FIFD. RAND)

Algorithme OPT

I\"' Taulle totale
» 3
+ ' = Taille de

1 My n m  mémojre

Figure 17. Influence de la taille de mémoire et de l'algorithme de remplacement
sur le taux de deéfauts de page.

On constate qu'il existe une taille de mémoire m, en dega de laquelle méme
OPT conduit & un nombre trés élevé de défauts de page par unité de temps ;
m, peut étre notablement inférieur 4 la taille totale du programme. La droite
« programme aléatoire » correspondrait 4 un programme ou chaque page
serait référencée avec la probabilité [/n, ce qui donne F = (n — m}/n pour
tout w et pour tout algorithme de remplacement.

On pourrait s'attendre & ce que F soit une fonction non croissante de m
pour un algorithme et une chaine de références donnés. En fait, cette propriete
n'est pas vraie dans le cas général : pour certains algorithmes (parmi lesquels
FIFO), il existe des chaines de références telles que

Fim,, w) > Fim;, @) avec my > m;

On appelle anomalie de Belady ce comportement contraire & l'intuition (exer-
cice 7). Une condition suffisante pour qu'un algorithme ne presente pas cette
anomalie est qu'il vérifie la propriété d'inclusion suivante :

Sim, ) = S5m+ 1,w) Wm,

oit S(m, w) désigne I'ensemble des pages présenies en mémoire principale
de taille m aprés traitement de la chaine w par I'algorithme considéré.
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Si la méme chaine & est trajtée par cet algorithme dans deux mémoires de
tailles différentes, la propriété d'inclusion exprime qu'a chaque étape de ce
traitement (c’est-a-dire aprés une référence r, donnée) toute page présente
dans la mémoire la plus petite est egalement présente dans la mémoire la plus
grande. On appelle algorithme & pile (« stack algorithm ») un algorithme
verifiant la propriété d'inclusion [Mattson, 70: Coffman, 71b). L'intérét
de cette classe d’algorithmes est qu’ils permettent de prévoir le comportement
d’un processus (nombre de défauts de page, identité des pages en mémoire &
tout nstant) dans une mémoire de taille #' si I'on connait le comportement
de ce méme processus dans une mémoire de taille m < m'. Il est difficile de
montrer dans le cas général qu’un algorithme est un algorithme a pile. Parmj
les algorithmes usuels, LRU et OPT sont des algorithmes & pile, RAND et
FIFO n'en sont pas (exercice 8).

4.455 Conclusions

Les mesures faites jusqu’a présent montrent (cf. 4.454) que les performances,
=N lermes de mouvements de pages, sont plus influencées par la taille de m
que par l'algorithme utilisé, De plus, il n'a pas été tenu compte dans cette
¢tude du fait que seules les pages expulsées et modifiées devaient effective-
ment étre recopiées sur mémoire secondaire. Il vaut mieux choisir un algo-
rithme de réalisation simple, plutdt qu'un algorithme optimal complexe et
collteux dans sa mise en @uvre.

4.5 GESTION DE LA MEMOIRE SECONDAIRE
4.51 INTRODUCTION

Dans ce paragraphe, nous nous intéressons aux mémoires secondaires
rotatives que sont les tambours et les disques magnétiques, et nous consi-
dérons successivement deux emplois de ces mémoires.

Iy Utilisation en tant que composant de la hiérarchie de mémoires et
support d’une mémoire virtuelle (cf. 4.4). Lorsque la mémoire secondaire est
utilisée a cette fin, on "appelle généralement la mémoire anxiliaire. Nous
nous limitons ici au cas d’une mémoire principale paginée. L unité d’infor-
mation échangée entre mémoire principale et mémoire auxiliaire est la page
et 'unité d'allocation est la Page ou un nombre entier de pages.

2) Utilisation en tant que support d'informations non directement adres-
sables (fichiers par exemple). La mémoire secondaire prend alors souvent le
nom de mémoire externe. [ 'uniis d'information échangée entre mémoire
principale et mémoire externe et P'unité d’allocation peuvent alors étre variables.

Dans chacun de ces cas, nous ¢tudierons les diverses techniques d’allocation

d’espace et nous envisagerons I'optimisation des transferts avec la mémoire
principale,
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4.52 CARACTERISTIQUES PHYSIQUES DES UNITES

Mous considérons deux classes d'unités de mémoire secondaire, les tam-
hours et les disques 4 1étes fixes d'une part, les disques 4 tétes mobiles d’autre
part. Chaque unité peut étre caractérisée par sa capacité et par le temps néces-
saire pour amener en memoire centrale une information résidant sur cetie
unité. La durée moyenne de lecture d'un bloc d'information fait intervenir
le temps de positionnement des tétes de lecture-écriture (nul pour les tambours
et les disques a tétes fixes), le temps d’attente du passage du début du bloc
sous les 1étes (en moyenne une demi-révolution) et le temps de transfert du
bloc lui-méme qui ne dépend que du débit de ["unité et de la taille du bloc.
Pour les disques a tétes mobiles, on introduit la notion de cylindre : un cylindre
est constitué par I'ensemble des pistes accessibles lorsque le bras portant les
tétes de lecture-écriture (toutes solidaires) se trouve dans une position donnée.
Cette notion peut étre utilisée lors de I'allocation d'espace et lors de la réali-
sation des transferts pour minimiser les déplacements du bras.

Les deux tableaux qui suivent résument les caractéristiques d'unités repré-
sentatives de la technologie en 1973. Pour obtenir des valeurs comparables,
nous avons ramené 4 la méme unité ('octet) les capaciteés et debits de ces
unités. '

1) Unités du type disque a tétes mobiles

. . Temps moyen
Capacv.@ Temps Depl?mr;cm Debit pour lire
par units | moyen moyen aes (octlets/s) | 4 096 octets
{octets) |d'acceés(ms)| bras{ms)
(ms)
IBM/3330 - | 100 = 10°® 2.4 30 0.8 = 108 43 4
UNIVAC — | 99 x 10° 35 58 0,115 = 10* 128
FASTRAND 2
2) Unités du type disque a tétes fixes ou tambour
Capacité Temps moyen Débit Temps moyen
par unité d’accés . pour lire
(octets) (ms) ( /%) 4 096 octets (ms)
IBM 23052 — 11 = 10° 5 1.5 = 10° 17
UNIVAC —| 1,18 = 10° 4.3 1.08 = 108 &1
FH-432
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Il est également intéressant de comparer les coiits de ces deux types de
memoires, 4 quantité égale d'information emmagasinée et directement acces-
sible (en excluant donc les informations se trouvant sur des disques non
montés) : en prenant I"exemple des unités IBM 3330 et 2305.2, si le cotit est
égal 4 1 pour la premiére il est de I'ordre de 50 pour la seconde ; par contre,
les tableaux montrent que les temps de transfert pour un bloc de 4 096 octets
sont seulement dans un rapport de 6 4 1. L'utilisation d’une unité a tétes fixes
doit étre justifiée par une augmentation du travail productif de 'unité cen-
trale. Nous verrons en particulier (4. 61) que le temps d'accés aux informations
situées en mémoire auxiliaire est I'un des facteurs importants du phénoméne
d'écroulement, Une diminution de ce temps d’acces, en repoussant les limites
d’apparition de ce phénoméne, améliore I"utilisation de l'unité centrale.

Dans la suite de ce paragraphe, nous utiliserons Je terme de tambours pour
designer 4 la fois les tambours et les disques 4 tétes fixes qui ont des carac-
téristiques identiques, et nous réserverons le terme de disques pour les disques
a tétes mobiles. La capacité relativernent faible des tambours conduit souvent &
les associer 4 des disques dans la hiérarchie de mémoires, L’un des problémes
de I'allocation de mémoire secondaire consiste alors & répartir les informations
entre ces deux niveaux.

4.53 GESTION DE LA MEMOIRE AUXILIAIRE

4.531 Allecation d’espace

Les unités de mémoire auxiliaire sont divisées en cases, chague case pouvant
contenir une page virtuelle, En reprenant 'un des exemples préceédents, il
est possible, compte tenu des intervalles entre en istrements, de loger
2 304 pages de 4096 octets sur le tambour IBM 2305.2 et 23 400 pages sur
un disque IBM 3330

L'espace allouable est généralement représenté par une chaine de bits,
chaque bit correspondant 4 une case (cf. 4.12).

Nous avons vu (4.45) que tout espace virtuel est décrit dans le systéme
par une table, dite table auxiliaire, permettant de situer les cases de mémoire
auxiliaire associées aux pages de cet espace. Lallocation de mémoire auxiliaire
4 un espace virtuel, qui s'accompagne de la construction ou de la mise & jour
de cette table, peut étre réalisée a divers moments,

1) Allocation swatique lors de "initialisation dy systéme

Si le nombre et la taille des espaces virtuels utilisés simultanément sont
connus a 'avance, il est possible de définir lors de Iinitialisation du systéme
(et méme éventuellernent lors de sa genération), par quelle case de mémoire
auxiliaire chacune des pages de ces £Spaces sera représentée. Cette méthode
n'est & envisager que lorsqu’il n’existe qu'une seule unité de mémoire auxi-
liaire ; dans ce cas, en effet, le probléme de Ia répartition dynamique entre
les niveaux auxiliaires ne se pose pas et le probléme de I'équilibrage dynamique
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de la charge entre unités de méme type non plus; la solution de ces deux pro-
blémes passe par une allocation dynamique.

Exemple. Le systéme DOS/VS sur IBM/370 utilise un seul espace virtuel de taille
maximale égale & 16 384 K octets, découpé en régions (« partitions ») virtuelles dans
lesquelles s'exécutent les travaux. La taille de page utilisée est égale 4 2 048 octets.
L espace nécessaire sur memoire auxiliaire (fichier de pagination), qui doit tenir sur
une seule unité, est reserve, au plus tard, lors du chargement du systéme. Les cases
sont allowées sequentiellement 4 partir d'un début de cylindre et I'adresse en mémoire
auxiliaire associée 4 une page virtuelle se déduit du numéro de cette page (il n'y a pas
de table auxiliaire). La taille du fichier de pagination est liée 4 la raille de 'espace virtuel
definic lors de la génération du systéme.

2} Allocation lors de la premiére utilisation d'une page

La création par le systéme de l'espace virtuel d’un processus revient en
fait 4 la creation d'une table de pages qui est utilisée pour la traduction dyna-
mique des adresses, et d’une table auxiliaire. Le contenu de l'espace virtuel
est soit vide, soit initialisé avec certaines parties communes utilisables par
tous les processus. Certaines entrées de la table auxiliaire peuvent ainsi déja
étre garmies avec les adresses en mémoire auxiliaire des pages composant la
partie de 'espace initialisée (que nous supposons allouée de fagon permanente
en mémoire auxiliaire). Lorsqu'une page, autre que I'une des pages imitia-
lisées, est référencée pour la premiére fois par le processus, un défaut de page
se produit car I'entrée de la table de pages est invalidée. Comme l'entrée
correspondante de la table auxiliaire indique que cette page n'a pas d'image
secondaire, 'allocation peut étre effectuée 4 ce moment-la, ou encore différée
jusqu’au moment ot il faudra recopier pour la premiére fois la case de mémoire
principale que 'on alloue a cette page.

Exemple. Création d'un segment dans MULTICS.

Dans MULTICS, un segment comprend au maximum 64 pages de 1 024 mots. Lors
de la création du segment, la table auxiliaire associée (« segment map ») est créée ;
elle comporte I'identification de "unité sur laguelle vont étre allouces les cases pour
ce segment (on impose aux diverses pages d’un segment de se Lrouver sur une méme
unité), et 64 entrées contenant comme adresse auxiliaire 1'adresse d'une case fictive
qui serait pleine de zéros. Lors du premier défaut de page pour une page virtuelle
donnée, cette indication de case fictive conduit & remettre 4 zéro la case de meémoire
principale que I'on alloue & cette page (aucun transfert n'est effectué), a allouer une
case sur I'unité indiquée et 4 mettre 4 jour l'entrée correspondante. Sauf migration
globale du segment (exemple ci-dessous), cette case secondaire est utilisée par la suite
pour toutes les opérations de pagination concernant cette page virtuelle.

3) Réallocation dynamigue

L’utilisation rationnelle de plusieurs niveaux de mémoire auxiliaire in}pliqut
une distribution dynamique des pages dans les divers niveaux en fonction des
fréquences d’utilisation de ces pages. Le support d'un espace virtuel peut
étre choisi globalement pour cet espace ou au niveau de chacune de ses pages.
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a) Migration globale

Nous introduisons les notions d'espace virtuel temporaire et d’espaces
virtuels permanents. Les espaces virtuels temporaires sont ceux dans lesquels
s'exécutent les processus et qui disparaissent avec eux. A la disparition du
processus, la mémoire auxiliaire associée 4 son espace est libérée (sauf cas
particulier de I"allocation statique vue plus haut), et les emplacements corres.
pondants sont réutilisables pour d’autres espaces virtuels. Le volume de
mémoire auxiliaire nécessaire dans les systémes qui ne gérent que des espaces
virtuels temporaires est relativement faible. 1l suffit de pouvoir représenter
la mémoire virtuelle des processus existant simultanément, et cela nécessite
un nombre limité d'unités (le plus souvent une ou deux) connectées en perma-
nence. Les espaces virtuels permanents, au contraire, sont créés par un pro-
CESSUS €1 conserves aprés la disparition de ce dernier pour étre réutilisés ulte-
rieurement. Ce sont des segments, au sens du chapitre 3. La notion de mémoire
externe disparait, tout I'espace secondaire étant compose de segments décrits
par des tables auxiliaires. Dans ces conditions, le volume de mémoire auxi-
haire nécessaire pour stocker les informations permanentes peut devenir
important et meitre en jeu de nombreux supports non simultanément connec-
tables. Il importe alors, pour des raisons evidentes de performances, que toutes
les pages d'un segment se trouvent sur un méme support. Lors de la création
d'un segment, un support initial est choisi; ensuite, en fonction du taux
d’utilisation de ce segment, on pourra décider de déplacer globalement ses
pages vers un support plus rapide ou plus lent.

Exemple : migration d'un segment dans MULTICS,

La table auxiliaire décrite dans Pexemple précédent comporte une entrée supplé-
mentaire contenant, lorsqu'une migration a été décidée, I'identification de la nouvelle
unité, et zéro dans le cas coniraire. A chacune des 64 entrées est associé un indicateur
de page déplacée. Lorsqu’i la suite d'un défaut de page, une page doit étre lue, elle
I'est depuis I'ancienne ou la nouvelle résidence selon que I'indicateur est hors fonction
ou en fenction. Lorsqu'une case de mémoire principale doit étre recouverte et que la
page gu'elle contient est une page non déplacée d'un segment en cours de migration,
alors le recouvrement est preécédé de -

— lallocation d'une case sur la nouvelle unité,

== la libération de la case utilisée sur 'ancienne unité,

— la mise & jour de I'entrée correspondante de Ja table auxiliaire (v compris I'indi-
cateur de page déplacée),

— I'éeriture de la page depuis la mémoire principale sur cette nouvelle unité,

Nous voyons que cette méthode permet d'utiliser un segment en cours de migration.

Lorsqu’on veut retirer du descriptif (par exemple 4 la fin d'un processus) un segment
qui n'est pas en cours de migration, les cases de mémoire principale qu'il oecupe sont
libérées et les pages modifiges sont recopiées sur le support auxiliaire, Si le segment est
en cours de migration, toutes ses pages résidant encore sur l'ancienne unité sont réfé-
rencées pour les forcer 4 venir en mémeire principale. Fn fin de migration, il reste a
mettre d jour, dans la table auxiliaire, I'identification de "unité, I"entrée supplémentaire
et les indicateurs de page déplacée.
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Le mécanisme tel qu'il est décrit ici s'applique 4 un segment figurant dans le des-
criptif d'un processus. Pour déplacer un segment n'y figurant pas, il suffit de mettre
I'identification de la nouvelle unité dans sa table auxiliaire, de mettre ce segment dans
un descriptif puis de I'en retirer; il se retrouvera automatiquement sur une nouvelle
unité.

by Réallocation lors de chaque recopie d’une page

Cette technique, utilisée pour des espaces virtuels temporaires, consiste,
chaque fois qu'une page doit étre recopiée en memoire auxiliaire, a libérer
l'ancien emplacement et & en allouer un nouveau. Cette réallocation dyna-
migue a deux buts :

— assurer qu'a tout instant les pages les plus utilisées se trouvent sur les
unités les plus rapides ou que la charge des unités de méme type est équilibrée,

— optimiser les opérations d'écriture par un choix judicieux des empla-
cements alloués (cf. 4.532).

Les pages d'un méme espace virtuel peuvent ainsi étre réparties sur des
unités différentes. Pour éviter que les unités rapides ne soient progressivement
encombrées par des pages dont la fréquence d'utilisation est devenue faible
(aprés une période d'activité plus intense qui a conduit 4 les écrire sur ces
unités rapides). on peut, lorsque le taux d'occupation des unités rapides
dépasse un seuil fixé, provoquer la migration sélective des pages peu utiliseées.

Exemple : mémoire auxiliaire dans le systéme TSS 360 [IBM, 69].

Le systéme TSS (« Time Sharing System ») sur IBM, 360-67 utilise comme premier
niveau de mémoire auxiliaire | ou 2 tambours pouvant contenir chacun 900 pages
et comme second niveau des disques, dont chaque unité peut recevoir 6 496 pages.

Lors de la création d'un processus on caleule le nombre de cases dont il pourra dis-
poser sur tambour. Au cours d’une période d’activité de ce processus, les pages qui lui
appartiennent et qui doivent &tre recopiées sont allouées si possible sur tambour sans
tenir compte de la limite précédente. Cela permet de ne pas sous-utiliser les tambours
si des cases vy sont disponibles. Par contre, si le nombre des cases non allouges des
tambours descend au-dessous d'une valeur déterminée, alors le processus (pris sur la
liste des processus inactifs) dont I'excés de pages sur tambour par rapport a son allo-
cation calculée est maximum voit certaines de ses pages déplacées vers les disques.
Seules les pages référencées par le processus durant sa derniére tranche de temps
restent sur tambour, jusqu’a concurrence du nombre maximal calculé. Si 'on ne
trouve pas suffisamment de pages a4 déplacer appartenant & des processus inactifs,
on cherche dans la liste des processus actifs. A la fin d'une tranche de temps allouce a
un processus, toutes ses pages modifiées en mémoire principale sont écrites dans de
nouveaux emplacements de mémoire auxilizire et les anciens emplacements sont libérés.

4.532 Gestion des transferts pour un tambour

Chaque piste d'un tambour posséde sa propre téte de lecture-écriture et
est divisée en cases. Dans le cas oi la place perdue sur chaque piste, du fait
du découpage en un nombre entier de cases, est trop importante, on peut
placer des cases 4 cheval sur deux pistes. On définit alors la piste logique
comme étant formée du plus petit nombre de pistes consécutives contenant
un nombre entier de cases.
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Exemple. Le nombre de 2 304 pages que nous avons donné comme capacité de
l'unité IBM 2305.2 (cf. 4.531) correspond au cas ot 'on écrit huit pages sur Lrois pistes,
L’unité comporte 864 pistes, soit 288 pistes logiques.

1) Stratégies wtilisées

Dans ce qui suit, nous nous plagons dans le cas ol I piste logique et la
piste physique sont identiques. Les technigues que nous développons s’éten-
dent aisément au cas contraire.

Soit 5 le nombre de cases par piste. On dit que le tambour comporte s see-
teurs. L'adresse d'une case est complétement définie par son numeéro de piste
et son numero de secteur.

[—7P‘Em i

Sectewr |

Case (i j)

Pour gérer la file d’attente des demandes de transfert, on utilise surtout
les deux stratégies suivantes -

— la stratégie FIFO qui traite les demandes dans leur ordre d’arrivée,

= la stratégie SATF (« Shortest Access Time First ») qui consiste & exé-
cuter en premier lieu la demande qui nécessite le plus faible délai rotationnel
[Abate, 69; Denning, 70].

Voyons comment cette derniére stratégie peut étre mise en ceuvre. On
définit s files d’attente, une par secteur, rangées dans 'ordre de balayage des
secteurs ; une demande de transfert de page est placée en queue de la file
correspondant au secteur dans lequel se trouve la case concernée (« sector
queueing »). Lorsqu'un transfert s'achéve pour le secteur j, I'opération sui-
vante est initialisée 4 partir de la téte de la premiére file non vide suivant la
file / (modulo 5). Chacune des files est ainsi gérée par une technique FIFO
mais la gestion de I'ensemble des files s'apparente 4 une méthode de tour-
niquet (cf. 4.33).

Cette organisation suppose qu’il est possible d'initialiser un transfert pour
le secteur j + | entre I'interruption signalant la fin d’un transfert pour le
secteur f et le passage du début d'une case du secteur J + 1 sous les tétes de
lecture. La taille des intervalles entre cases sur une piste doit donc avoir été
choisie en conséquence. On peut également utiliser, lorsqu’il existe, le chai-
nage des commandes d’entrée-sortie. On prépare ainsi, en prélevant la demande
se trouvant en téte de chaque file non vide, une chaine de commandes corres-
pondant & une révolution compléte, et on lance cette chaine de commandes.
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Les intervalles entre cases doivent alors tre seulement suffisants pour per-
mettre la sélection électronique d'une téte de lecture-écriture. Un raffinement
possible consiste 4 préparer une nouvelle chaine pendant que s'exécute la
précédente et a la raccrocher dynamiquement a cetie derniére (technigue
utilisée par le systéeme TS5/360). Remarquons cependant que I'utilisation du
chainage de commandes ne permet pas de maniére simple de rajouter « au
vol », dans une chaine en cours d'exécution, une demande présentée pour
un secteur non utilisé dans cetle chaine. Cet inconvénient est réduit en pré-
sence d'une forte charge, car la probabilité d'avoir des chaines complétes
est alors plus grande.

Un tambour géré suivant la stratégie SATF est parfois appele tambour
de pagination (« paging drum »).

L efficacité d une stratégie en présence d'une charge donnée peut se mesurer
par le rapport entre le nombre de pages transférées par unité de temps et le
nombre de cases passant sous les tétes de lecture-écriture pendant ce méme
temps. Soit L le nombre de demandes de transfert de page se trouvant en file
d’attente. Nous supposons que L est constant (systéme en équilibre) et que
les demandes de transfert sont équiprobables pour les s secteurs. On montre
(exercice 4) que. lorsque les commandes ne sont pas chainées, I'efficacité
moyenne E, de la stratégie FIFO, et E, l'efficacite moyenne de la stratégie
SATF, s'expriment, pour tout L = I par :

EfL) =2{(s+ 1)
E(L) ~ (L+1)jis+L+1) (pour s = I}

Alors que 'efficacité de la stratégie FIFO est constante quelle que soit
la charge, I'efficacité du tambour de pagination est d’autant plus grande
que la charge est plus élevée, Pour tout L > fona E(L) = Eg(L ).

Une caractéristique importante du tambour de pagination est que le temps
moyen s'écoulant entre 'entrée d'une demande dans sa file d’attente et la
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fin du transfert est diminué par rapport a FIFO, sans que le temps maximal
soit supérieur 4 celui de FIFO. En effet, dans la stratégie SATF, les seules
demandes qui peuvent retarder la prise en compte d'une demande particuliére
sont celles situées devant elle dans la méme file.

2) Incidence des algorithmes d'allocation d'espace

Lorsque la demande correspond a une lecture, la case et done le secteur
sont, bien entendu, imposés. Pour une écriture, par contre, si le systéme
pratique la réallocation dynamique a chaque recopie de page, alors la case
allouée peut étre choisie de maniére a optimiser le transfert. Dans ce cas,
allocateur fait partie du tambour de pagination. Le meilleur résultat est
obtenu si I'on alloue la case dans le secteur qui a la plus courte file dattente.
Si plusieurs secteurs ont des files d’attente de longueur égale, on choisit celui
qui passera le premier sous les tétes de lecture-écriture {on ne connait pas
toujours cette information).

Remarque 1. Dans ce qui précéde. nous avons supposé que les demandes
de transfert de page étaient toutes indépendantes et pouvaient donc étre
exécutées dans un ordre quelconque. Cela n'est vrai que si certaines précau-
tions sont prises par l'algorithme de pagination. En particulier, lorsqu'une
page modifice doit étre recouverte en mémoire principale, il ne faut pas ranger
simultanément dans les files d’attente la demande d'écriture et la demande de
lecture, car elles pourraient étre exécutées dans 'ordre inverse.

Remarque 2. On peut chercher a privilégier, 4 I'intérieur d'un méme
secteur, les lectures par rapport aux écritures, en considérant qu'a une demande
de lecture de page correspond généralement un processus bloqué qui mobilise
des ressources. Le systéme MTS (« Michigan Terminal System ») sur IBM;
360-67 gere les transferts de cette maniére.

Remarque 3. On peut élever la charge instantanée du tambour. donc
augmenter l'efficacité, en groupant les demandes de transfert,

Exemple. Dans le systéme TSS, toutes los pages modilices par un processus sont
recopiées 4 la fin de sa tranche de temps, plutét que d’étre recopifes une 4 une au fur
et & mesure des besoins en cases de mémoire principale. Si une page ainsi recopiée
0'a pas £té recouverte lorsque le processus est i nouveau activé, elle est utilisable sans
relecture,

4.533 Gestion des transferts pour wm disque

Pour les disques, le temps de déplacement du bras portant les tétes de
lecture-écriture est prépondérant par rapport au temps de lecture ou d'écri-

ture et également par rapport au délai rotationnel. Les stratégies employées
tiennent compte de cette caractéristique.
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1) Siratégie minimisant les déplacements du bras

On peut penser & adopter la stratégie SATF pour les transferts de pages
entre les disques et la mémoire principale. La notion de cylindre s’ajoutant &
celle de secteur, cette stratégie revient alors a gérer une file d’attente par
cylindre, et a I'intérieur d'un méme cylindre une file par secteur. Lorsque le
bras se trouve dans une position donnée, on exécute toutes les demandes se
trouvant dans les files du eylindre correspondant, en gérant ces files a la
maniére du tambour de pagination. Lorsque ces files sont vides, on déplace
le brak, dans un sens ou dans ['autre, vers le cylindre le plus proche comportant
une file non wvide.

Cette stratégie n'est en général pas utilisée pour deux raisons principales :

a) Le temps moyen d’exécution d’une demande est diminué, mais le temps
maximum est augmenté. En effet, une demande concernant un cylindre
¢loigné du cylindre courant peut étre retardée indéfiniment si des demandes
concernant des cylindres plus proches arrivent avec une fréquence suffisam-
ment grande. On voit que si un processus est en attente d'un transfert de
page, cette stratégie peut par exemple aller & I'encontre de certaines régles de
priorités établies entre les processus.

k) Au niveau de chaque cylindre, une technique du type « tambour de
pagination » est souvent superflue, car, sauf cas particuliers, la probabilite
pour qu'il y ait plus d'une demande par cylindre & un instant donné est faible,
en raison du petit nombre de cases par cylindre.

2) Srratégie de 'ascenseur

11 est possible d’éviter que des demandes ne soient trop longtemps différées
en utilisant la stratégie dite de « l'ascenseur ». Dans cette méthode, le bras
se déplace dans un sens donné, par exemple de l'exterieur vers l'intérieur,
s'arréte au-dessus de chaque cylindre pour lequel des demandes existent et
les traite. Lorsque le dernier cylindre comportant une file non vide a été atteint
et traité, on change le sens de déplacement et on recommence.

Il subsiste le risque qu'une suite de demandes trés rapprochées pour le
cylindre situé sous le bras empéche I'exécution des demandes relatives aux
autres cylindres. Ce risque est peu probable en raison de la faible capacité
d’un cylindre. 11 peut, de toutes fagons, &tre évité en ne considérant que les
demandes qui se trouvent dans la file du cylindre au moment ou ce dernier
est atteint.

Ici encore, comme dans le cas des tambours, une liaison entre l'algorithme
d’allocation d’espace secondaire et la gestion des transferts est souhaitable.
En ce qui concerne les opérations d’écriture, une allocation dynamique des
cases lors de chaque recopie de page permet de choisir la case allou¢e en fonc-
tion de la position courante du bras. Cela suggére de décrire I'espace allouable
cylindre par cylindre et de rechercher une case dans le cylindre le plus proche
possible du cylindre courant, en tenant éventuellement compte du sens de
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“déplacement lorsque la technique de I'ascenseur est employée. I1 est plus
difficile d'allouer les cases de maniére & réduire le temps total de lecture puisque
I'identité des pages lues dépend du comportement dynamique des processus.
On peut cependant essayer de grouper dans des cylindres voisins [es pages
qui ont la plus grande probabilité d’étre utilisées pendant un intervalle de
temps donné.

4.54 GESTION DE LA MEMOIRE EXTERNE

Nous considérons que la mémoire externe est utilisée pour contenir des
fichiers, un fichier étant une collection d’objets que nous appelons articles,

Les articles sont lus, créés ou modifiss par les processus au moyen de
commandes explicites de lecture ou d’écriture. Ces articles sont en général
de taille variable. Ils peuvent étre écrits dans des cases (de taille fixe) ou dans
des zones (de tailles diverses).

L'emploi de zones permet a priori d’associer un article 4 un emplacement
et donc d’accéder a cet article par un transfert unique dans lequel la seule
information déplacée est celle composant ['article. En fait, on est souvent
ameneé, pour des raisons d’économie de place ou de temps de transfert, a
grouper plusieurs articles par zone ; on peut également étre conduit i utiliser
plusieurs zones pour un méme article lorsque la taille de ce dernier est SUpE-
rieure 4 la taille maximale de I'enregistrement que I'on peut créer sur I'unité
de mémoire secondaire considérée.

L'emploi de cases, au contraire, présente, par rapport i la création de
zones 4 la demande, des avantages importants.

1) Les algorithmes d'allocation et de libération sont simplifiés. Toutes
les cases sont équivalentes, quel que soit le type d’unité de mémoire externe.

Dans le cas d'une mémoire principale paginée, si la taille de case est choisie
egale a la taille de page, les transferts peuvent s’effectuer par des mécanismes
de couplage (cf. 3.4) : pour réaliser un transfert d’une case de mémoire externe
dans une page de I'espace virtuel, il suffit d'indiquer, dans la table auxiliaire
décrivant cet espace, 'adresse de la case en mémoire externe et d’invalider
I'entrée de la table de pages. Le mécanisme du défaut de page chargera la
page en mémoire lorsqu'il v sera fait reférence. Tous les transferts avec Ja
mémoire principale sont ainsi placés sous Je contrble d’un mécanisme unique.

Du point de vue de la gestion de I'espace, il faut associer au fichier la liste
des emplacements qu'il occupe. Cette information peut étre contenue dans e
descripteur du fichier, ensemble d'informations extérieures au fichier et
permettant en particulier de localiser chacun de ses articles dans la mémoire
externe. L'utilisation du chainage entre emplacements ou suites d’empla-
cements pour représenter I'espace libre oy I'espace occupé par un fichier
s'applique mal en mémoire secondaire, I'accés 4 chacun des maillons de la
chaine nécessitant une opération d’entrée-sortie.
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Alors que I'unité de transfert avec la mémoire externe est la case ou la zone,
I'unité d’allocation est généralement différente. Pour condenser la description
de I'espace alloué a chaque fichier, et aussi pour appeler moins souvent la
procédure d’allocation, on peut allouer en une seule fois plusieurs cases,
pistes ou cylindres consécutifs qui seront ensuite utilisés pour la création de
zones. L espace occupé par un fichier est alors décrit sous la forme d'une suite
d'extensions représentées chacune par un couple (adresse d’origine, nombre
d'unités élémentaires). L'espace libre peut aussi constituer un fichier dont
chacune des extensions décrit un ensemble d'unités élémentaires contigués
et libres. On retrouve alors des algorithmes d’allocation qui s’apparentent
4 ceux employés pour gérer la mémoire par zones (cf. 4.442).

Lorsqu'il existe plusieurs unités de mémoire externe et que le choix de
I'unité n'est pas imposé & l'allocateur, ce dernier peut utiliser I'une des deux
approches suivantes :

— allouer I'espace sur les unités les moins remplies,
— allouer I'espace de maniére 4 équilibrer, en termes de transferts, I'activité
des diverses unités.

Exemple. Dans le systéme OS/VS sur IBM/370, les fichiers temporaires {ceux,
par exemple, qui sont utilisés pendant une compilation et qui disparaissent ensuite)
sont alloués sur les unités qui ont été les moins sollicitées pendant I'intervalle de temps
précédent,

4.6 STRATEGIES GLOBALES

On constate 4 'expérience que la mise en ceuvre de stratégies individuelles
et indépendantes pour l'allocation de processeur et de mémoire principale
peut donner des résultats catastrophiques & partir d’une certaine charge du
systéme. Une conception globale de I'allocation des ressources permet de
maitriser ces phénoménes de dégradation brutale des performances.

4.61 PHENOMENE D'ECROULEMENT DU SYSTEME

Soit un systéme multiprogrammé, 4 mémoire paginée gérée selon une stra-
tégie de remplacement appliquée 4 I'ensemble des processus. Quand le nombre
des processus augmente, chacun d’eux regoit en moyenne moins de cases et
il est bloqué plus longtemps en attente de page : les temps de réponse sont
augmentés et les performances du systéme se dégradent. Dans de nombreux
cas, on constate que cette dégradation n'est pas progressive : il existe un seuil
de charge au-deld duguel elle est trés rapide et prend la forme d’'un « écrou-
lement » du systéme.

Ce phénoméne est di :

— 4 I'augmentation du nombre de transferts de pages,
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— au fait que I'on peut retirer des pages 4 un processus qui est lui-méme
en attente de page.

L'écroulement peut recevoir une explication qualitative [Denning, 68a]
Teposant sur I'observation du premier de ces facteurs. Considérons un pro-
cessus qui exécute ¥ instructions et soit p la probabilité de défaut de page par
instruction. Nous supposons que p n'est fonction que de la taille de mémoire
principale allouée au processus et qu'un régime permanent est atteint (I"effet
de I'initialisation de la mémoire est neglige). L'allure de la courbe représen-
tative de p en fonction de la taille de mémoire allouée, obtenue expérimen-
talement, est donnée par la figure 18.

B
1

Taille de la
M o e il]auéq-

Figure 18, Probabilité de défaut de page en fonction de la taille de mémoire.

Supposons maintenant la mémoire partagée de maniére égale entre n pro-
cessus. Quand n augmente, la taille de Ja mémoire allouée 4 chacun d'eux
décroit et p augmente. La courbe représentative de p en fonction du nombre
de processus est donnée figure 19,

o |

n

" Pracessus
o

Figure 19. Probabilité de défaut de page en fonction du nombre de Processus.
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A partir d'un seuil n,, I'introduction d'un processus supplémentaire pro-
voque un accroissement brutal de p. Etudions I'influence de cette variation
sur les performances du systéme. Définissons ['efficacite dutilisation du
PrOCEsSSEur par un processus, /p), par :

temps d'exécution
temps d'exécution + temps d'attente de page

e(p) =

Soit § le temps, exprimé en nombre d'instructions, séparant la demande
d’'une page de son arrivée en mémoire. On peut écrire :

oip) =V 1
P = vs " T+ps

La variation de e(p) en fonction de p est représentée sur la figure 20.

efp)

(ly: S=1
(F: 5= 10000

L — S= -
I P
Figure 20, Influence du temps de transfert de page sur I'efficacité du processeur.

Sil'on part d'un état initial ou p est faible, donc efp) €levé, on constate
qu’un accroissement de p se traduit par une chute de e(p), d'autant plus bru-
tale que S est grand. Deux phénoménes contribuent donc a I'écroulement :
l'accroissement rapide de la probabilité de défaut de page au-dessus d’une
certaine charge et la valeur élevée de S.

Exemple. Lorsque p passe de J0™* & 107", e(p) passe de J 40,9515 = 1 et de 0.5
a0.000! si § = 0%,

Les paragraphes qui suivent présentent deux approches qui permettent
d'éviter I'écroulement des systémes multiprogrammés. L’une est fondée sur
une régulation de la charge du systéme, I'autre sur une régulation de la taille
de mémoire allouée 4 chaque processus.
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4.62 REGULATION DE LA CHARGE

Les méthodes de répulation de la charge (« load levelling ») consistent A
agir sur le degré de multiprogrammation, c’est-a-dire sur Je nombre de pro-
cessus partiellement chargeés en mémoire. Elles différent par les points suivants.

1) Estimation de la charge : la mesure de charge utilisée pour la régulation
peut mettre en jeu divers paramétres tels que le nombre de pages utilisées par
processus, le taux d'activité de l'unité centrale et le nombre de transferts
entre niveaux de mémoire.

2) Mode d’action sur le degré de multiprogrammation : I'action peut étre
brutale, et dans ce cas le régulateur chasse provisoirement un processus de |a
meémoire ou en introduit un autre, ou progressive, et alors un processus se
voit retirer progressivement la mémoire qu’il occupe.

Diverses méthodes ont été expérimentées [Shils, 68 ; Wulf, 69 ; Alderson, ?2]-
¢t certaines sont effectivement en usage dans des systémes.

Exemple. Le systéme OS/VS sur IBM /370 utilise une méthode de régulation brutale
déclenchée lorsqu'une nouvelle demande de page ne peut etre satisfaite i partir d’une
liste de pages disponibles.

Nous illustrons le principe de la régulation de charge par une description
du systéme expérimental M44/44X [Shils, 68 ; Brawn, 68].

La charge est estimée par les deux parameétres suivants

— lactivité relative de I'unité centrale pendant un intervalle de temps Ar,

— le nombre de pages remplacées pendant Az,

Pourcenrage d'acrivieé
de I'unité centrale

wf

Chazge normale

Sous-charge Surcharge

_L_ - Nombre n de pages

remplacées pendant Al
n--u

Figure 21. Diagramme d’activité dy M44/44X [Shils, 68).
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Le diagramme d’activité est représenté sur la figure 21. Il comprend trois
parties :

— une zone de charge normale, caractérisée par une activité élevée de
I'unité centrale,

— une zone de sous-charge, ol le nombre de pages remplacées est faible
el ot 'unité centrale est relativement oisive,

— une zone de surcharge, qui correspond 4 un important remplacement
de pages et & une faible activité de |'unité centrale.

Dans I'exemple étudié, les limites entre les différentes zones ont été déter-
minées expérimentalement et I'intervalle Ar fixé & 10 secondes.
Le régulateur inspecte, tous les Ar, I'activite du systéme et :

— en cas de surcharge, exclut un travail de la mémoire,

— en cas de sous-charge, admet en mémoire, soit un nouveau travail,
soit un travail précédemment exclu, s'il en existe un,

— en cas de charge normale, ne fait rien.

L’effet du régulateur de charge est illustré par les deux matrices de la figure 22,
qui donnent les probabilités de transition d'une zone a l'autre avec et sans
régulateur. Par exemple, si le systéme est en surcharge, la probabilite de le

Zone finale
Sous-charge Normal Surcharge
Sous-charge 0,73 0,11 0,16
Zone
Normal 0,19 0.69 0,13
mitiale
Surcharge 0,33 0,23 0,44

a) Probabilité de transition avec le régulateur.

Zone finale
Sous-charge Normal Surcharge
Sous-charge 0,83 0,09 0,05
Lone
Normal 0,10 0.67 0.23
initiale
Surcharge 0,04 0,19 0,77

b} Probabilité de transition sans le régulateur.

Figure 22. Matrices des probabilités de transition du M44/44X [Shils, 68].
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retrouver encore en surcharge aprés un temps Ar est 77 77 sans régulateur ot
seulement 44 2% avec regulateur. Par contre, les effets du régulateur sont
brutaux ; ainsi la probabilité de passer de la zone de charge normale i Ja Zone
de sous—charge, qui n’est que de 107, sans régulateur passe a 19 Y, avec le
regulateur ; de méme la probabilité de passage de la zone de surcharge i |y
zone de sous-charge atteint 33 Y avec régulateur, alors quelle est de 4 %
sans regulateur. La régulation de charge, comme tout mécanisme de régulation,
peut done introduire des phénoménes d'instabilité [Wilkes, 71].

Les courbes de la figure 23 [Brawn, 68] montrent 'effet dy réegulateur de
charge au cours d’expériences o plusieurs copies du méme programme ont
€1é multiprogrammeées.

Durée des programmes
{=econdes)
1200
O sans régulatcur
1000 L
00 L X Avee régulstear
a0 1
400 L
200 L
} 4 } } + >  Mombre de
o 1 2 3 4 3 Proceasas

Figure 23, Influence du régulateur de charge [Brawn, 68].

4.63 STRATEGIES FONDEES SUR L’ESPACE DE TRAVAIL

La notion d’espace de travail (« working set ») est utilisée pour adapter,
en fonction du comportement dynamique de chague processus, la taille de
mémoire qui lui est allougée, Nous décrivons ici la mise en ceuvre de cette
régulation.

4.631 Notion d’espace de travail

On appelle espace de travail Wyt ) d'un processus, 4 I'instant ¢ et pendant
le temps ¢, I'ensemble des pages référencées entre les instants { — t et £, On
lrouvera certaines propriétés de I'espace de travail dans [Denning, 684].

Lorsque les programmes présentent la propriété de localité, un processus
4 une probabilité beaucoup plus grande de se référer 4 des pages récemment
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utilisées qu'a des pages quelcongques. En conséquence, si le paramétre t est
adapté au comportement du programme, W1, ) est une bonne approxi-
mation de l'ensemble des pages qui vont étre référencées entre f et 1 + 1.
On considére que T est adapté au programme si pendant des périodes assez
longues la taille et la composition de l'espace de travail varient lentement
avec le temps (I'échelle de temps étant fixée par la durée moyenne d'exécution
d’une instruction).

4.632 Mise en euvre de stratégies fondees sur 'espace de travail

Dans une stratégie fondée sur I'espace de travail, on cherche a4 garantir
que I"unité centrale n'est allouée & un processus que si les pages de son espace
de travail sont chargées en mémoire. D’aprés la formule

e(p) = 1/(1 +pS)  (cf. 4.61)

il faut essayer de maintenir p 4 une valeur aussi faible que possible pour pré-
venir I'écroulement du systéme dans le cas ol § a une valeur élevée. 51 chague
processus actif dispose 4 tout instant de son espace de travail en memoire
centrale, alors on est assuré que p reste petit, puisque W, t) est une bonne
approximation de W/t + 1, 7.

Comme la détermination de l'identité des pages de l'espace de travail est
coiiteuse, on se contente généralement de réserver pour chaque processus
un nombre de cases égal & la taille de son espace de travail. On admet alors en
mémoire de taille M un nombre n de processus tel que

Y Wit s M
i=1
et on retrouve ainsi, comme en 4.61, un nombre maximal n, ; ce nombre est
ajusté cette fois-ci en fonction du comportement individuel de chaque processus.
La valeur de t est un paramétre important de ces stratégies, on trouve
dans [Denning, 68b] une approche analytique de son choix. Donnons ici
quelques éléments d’appréciation.

1) La taille de I'espace de travail est une fonction non décroissante de 1.

2) Pour un 7 relativement grand, 'espace de travail occupe beaucoup de
pages; le systéme doit donc comporter une grande mémoire principale et
peut en contrepartie se contenter de mémoires secondaires 4 grand temps de
transfert.

3) Inversement, si t est petit, le systéme peut compaorter une petite mémoire
principale mais doit avoir des mémoires secondaires trés rapides.

4.633 Détermination pratique de D'espace de travail

La détermination, en temps réel, de I'espace de travail est plus ou moins
coliteuse selon les dispositifs ciblés disponibles.

Droits réservés au Cnam et a ses partenaires



200 Systémes d'exploitation des ordinateurs

Si on ne dispose que d'un mécanisme de protection des pages virtuelles,
on doit 4 I'instant + — 7 interdire tout acces aux pages ; a chaque déroutement
pour défaut de page on note la page utilisée et on autorise son accés. La
complexité du programme d'analyse du déroutement rend cette technigue
peu efficace.

Si on dispose d'un mécanisme cablé faisant passer 4 1, lors d'une référence
a la page, le bit d’utilisation associé (cf. 4.451), il suffit de remetire tous ces
bits 2 0 & I'instant ¢ — 7, et d’exclure de I'espace de travail 4 instant ; toutes
les pages dont le bit d’utilisation est resté a 0.

Si on dispose non plus d'un seul bit mais d'un compteur associé 4 chaque
page, alors on peut implanter dans de bonnes conditions des algorithmes LRU
[Corbato, 69a].

Drautres techniques sont proposées dans [Denning, 68¢].

4.634 Tentatives d’adaptation du comportement des programmes

Pour 1 fixé, la taille | Wyr, « J | est d’autant plus petite que les reférences
4 la mémoire sont moins dispersees. On peut donc essayer d'améliorer le
rendement global du systéme en organisant les programmes de maniére 3
réduire la dispersion des références.

Temps toral d'exécwion

{secondes)
'y
2500 & ? e Prgramme savec rahleags de taille fire
2000 1 Fa Programme avec tablesur de tajlle ajustde
L L (@] Programme avec tableaus de taille ajusrie
1500 4 1_‘ (1 lus eclonne par coloane
1000 4
oo
* 4 + 4 } " P Taille de mémeaine
principale utilisée
0 ] la 24 2 40 48 (en pombre de pages)

Figure 24. Influence du style de Programmation sur le comportement d'un programme
[Brawn, 68].
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Deux approches ont £té tentées.

1) Une permutation de l'ordre des modules d'un systéme [Comeau, 67,
Hatfield, 71] a conduit, dans un cas particulier et aprés quelques essais, 4
une diminution de 50 % du nombre de défauts de page.

2) L'écriture compléte de programmes en tenant compte de la pagination
[Brawn, 68] a permis d’obtenir une diminution du temps d’exécution beaucoup
plus importante que celle qui résultait de raffinements de I'algorithme de
remplacement.

Exemple. Un programme d'inversion de matrice, basé sur la méthode de Gauss,
a &1é écrit de trois facons différentes pour tenir compte de la pagination [Brawn, 68] :

a) avec des tableaux de taille fixe prévus pour des matrices de dimension maxi-
male 150,

b) avec des tableaux ajustés selon les dimensions des matrices, et lus ligne par ligne,

¢} avec des tableaux ajustés selon les dimensions des matrices et lus colonne par
colonne.

Les temps d'exécution correspondant sont donnés figure 24.

4.7 INTERBLOCAGE

4.71 INTRODUCTION

Dés quon alloue des ressources non sujettes 4 réquisition 4 des processus
qui s'exécutent concurremment, il apparait un risque de blocage mutuel de
ces processus lorsque, pour certains types de ressource, la demande totale
est supérieure au nombre de points d’accés. En effet, les demandes de ressources
de differents processus peuvent étre satisfaites dans un ordre tel que deux ou
plusieurs d'entre eux se bloquent indéfiniment : chacun de ces processus
accapare des ressources tout en attendant celles possédées par les autres.

Exemple 1. Un processus p doit mettre a jour un fichier sur disque et attend que
I'unique tourne-disque soit utilisable. Celui-ci est alloué & un processus g qui attend
pour le libérer que le fichier soit mis 4 jour.

Exemple 2. Deux processus p et g utilisent des sémaphores sJ, 2 initialisés 4 [.
Le processus p doit exécuter la séquence P(si); ... P(s2) et le processus g la séquence
P(s2); ...; Pisl).

Si I'unité centrale est allouée de maniére telle que p effectue FisI) puis que g effectue
P(s2), p et g se bloqueront dés ['opération P suivante.

Dans ces deux cas simples, les processus p et g sont interbloqués.

L'interblocage peut mettre en jeu un nombre important de processus et de
ressources, Le déblocage de tous les processus (guérison) peut étre trés complexe,
voire impossible sans destruction d'une partie ou de la totalité¢ des processus
interbloqués. I} est donc intéressant de rechercher des techniques d’allocation
évitant I'apparition de I'interblocage (prévention).
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4.72 DESCRIPTION INFORMELLE

Peut-on prévoir I'interblocage ? Caractérisons le degré de progression d'un
processus a I'instant r par le nombre T(1) d'instructions exécutées depuis
I'instant initial, fonction non décroissante du temps. Soit deux processus p, g
et T1, T2 leurs degrés de progression. Représentons la courbe de progression
relative des deux processus, définie par I'équation F/T!, T2} = () obtenye
par élimination de ¢ (Fig. 25). Cette courbe peut présenter des segments
paralléles aux axes indiquant qu'un des processus est bloqué.

Si p et ¢ ont besoin au cours de leur progression d’'une ressource R i un
point d'accés, I'exclusion mutuelle des processus par rapport & R détermine
un pavé P que la courbe F ne peut traverser.

e —

- T

R
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Considérons maintenant (Fig. 26) le cas ou les processus p et g demandent
'accés exclusif a deux ressources R/ et R2 de la maniére suivante :

p demande RJ puis R2,
g demande R2 puis RI.

Bien que I'interblocage ne soit effectif qu'au moment ol la courbe atteint
les cotés 4 ou B, il devient inévitable deés qu’elle pénétre dans le pave ABCD,
c’est-a-dire dés allocation de la seconde ressource (cotés C ou D).

La prévention de I'interblocage semble possible en examinant la situation
créée 4 chague allocation de ressources a condition de connaitre les demandes
ultérieures de ressources des processus. Si les requétes de p et g sur les res-
sources RI et R2 sont faites dans le méme ordre, 'interblocage ne peut appa-
raitre (Fig. 27). On montrera dans la suite (ol 4.742) que cette solution s ap-
plique dans des cas plus généraux.

i |

l— = = = m = =- -

- -7

Figure 27. Utilisation de deux ressources sans interblocage.

4.73 FORMALISATION ET DEFINITIONS

4.731 Systéme. Etat d’un systéme
Définition. Dans le contexte de ce chapitre, un systéme est constitue :

— d’un ensemble fini de processus séguentiels pouvant §'exécuter concur-
remment,

P = {Pn cres P } :
— d’un ensemble de classes de ressources a un point d’acces
E={Ry ... R,}.
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Nous appelons ici classe de ressources un ensemble de ressources banalisées,
L'état initial du systéme est décrit par le vecteur X donnant le nombre
total de ressources existant dans chaque classe :

Xy

A=

X

Par hypothése, nous supposons qgue :

— le vecteur X reste constant pendant la durée d’observation du systéme,

— tous les processus libérent au bout d’un temps fini toutes les ressources
qu’ils ont acquises.

Définition. A un instant ¢, I'état du systeme est défini par la matrice 477 )
des ressources allouées aux processus et par la matrice Dt} des ressources
demandées par les processus -

ault) ... ault)
Aft) = | - : = (Ay(t),..., A, (1))
@y (t) ... aft)
Ou ay;(1) est le nombre de ressources de la classe R, allouées au processus Py
dis(t) ... dyft)
Di1) = |- = (Dy(t), ..., D,f1))
Qs (1) ... dpft)
ol d;;(1} est le nombre de ressources de la classe R, demandécs par E pro-

cessus p.
L'allocation des ressources, les changements d'état du systéme se font
uniquement par les trois opérations suivantes -

— requéte : un processus p, fait une demande de ressources representée
par un vecteur N :
Di(t) = Dy1) + N

— acquisition : des ressources représentées par un vecteur M sont alloudes
du processus p, :
Aft) = A1) + M

— libération : un processus p; libére des ressources représentées par
un vecteur H :
-l"'!!fr!__.ll = A;{(IJ - .H

ﬂi“}' = Dit) — H
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Remarque 1. La matrice D n’est diminuée que lors d’une libération de
ressOUrces.

Remarque 2. Un_e requéte n'est pas toujours immeédiatement suivie
d'une allocation mais peut étre mise en attente ; cette remarque justifie 'in-
troduction des deux matrices D et 4.

Dans la suite nous utiliserons les notations ci-aprés :
Soit I’ et V des vecteurs & m éléments ; par définition :

UsV=U <V Vie[l, m]
U< Ve {U=<V) et (4i tel que U; < V)

Soit M et N des matrices 4 m = n éléments
M<N=M<N, Viel[ln
M<Ne=M<N) el (3 tel que M, < N,)

Les conditions suivantes doivent étre vérifides -

— un processus donné ne peut demander plus de ressources qu’il n'en
existe dans le systéme, ce qui se traduit par ;

(1) D) = X Yie [I, n)]

— un processus ne peut posseder a un instant donné plus de ressources
qu’il n'en a demandé, ce qui se traduit par :

(2) At} = Dit)  Yie[l, n]

— la somme des acquisitions de tous les processus 4 un instant donneé
ne peut dépasser la totalité des ressources du systéme, ce qui se traduit par :

&) 3 Af) <X

Définition. L'état du systéme 4 un instant r est un état réalisable si et
seulernent si A(r), D(t) et X vérifient les relations (1), (2) et (3).

Les vecteurs D,(1) et A,(1) définissent I’état d’allocation des ressources au
processus . Celui-ci est bloqué tant que D1} = A,ft).

Appelons R{t) le vecteur décrivant le nombre de ressources disponibles a
Finstant ¢ dans chaque classe :

Rit) =X — 3 A1)
i=1

La relation (3) peut s'écrire :
R(1) =0
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4.732 Interblocage

L’absence d’interblocage peut étre garantie a I'instant 7 s'il existe i partir de
cet instant une suite d'états réalisables du systéme tels que tous les processus
obticnnent les ressources qu'ils demandent et s'exécutent Jusqu'a leur fin,
Nous allons démontrer (théoréme 1) que trouver une telle suite d’états équivaut
& ranger les processus dans un ordre tel que leurs demandes puissent étre
satisfaites s'ils s'exécutent dans cet ordre.

Soit § une telle suite de processus: notons S {) le rang du processus p,
dans la suite S et supposons en outre qu'a I'instant ¢ considére, chaque processus
ait demandé toutes les ressources nécessaires a son exécution. La demande
non satisfaite du premier processus de la suite doit étre inférieure aux ressources
disponibles 4 I'instant 7 :

Siiy) =1 D ft)— A, (1)< Rit)
Ce processus s'exécute puis libére ses ressources. Le second processus peut

alors s’exécuter 4 condition que :
Sliz) =2 Dyt)— A, it)< R(1) + A rt)

et ainsi de suite pour les autres processus. La suite S vérifie done la relation -

e P Dft) — Aft) <R+ Y A1)
S1i1= 8(i)

Introduisons les définitions suivantes :

Définitions.

— Une suite § de processus est dite saine pour une demande 1) donnée,
s1 et seulement si elle vérifie la relation -
(4) Dift) — Aift) < Rit) + 2 At) Vp,e S

B = iy

— Une suite S est dite compléte sur P si et seulement si elle contient tous
les processus de P.

— Un état réalisable du systéme est dit sain si et seulement s'il existe une
suite saine compléte de processus dans cet état,

Supposons qu'a I'instant 1, les processus ont demandé toutes les ressources
nécessaires 4 leur exécution.

Théoréme 1. Si I'état du systéme est sain, alors il existe une suite d’états
réalisables du systéme telle que tous les processus obtiendront les ressources
qu’ils demandent, et réciproquement.

Soit S une suite saine pouvant étre construite 4 I'instant initial 1,. Consi-
derons la suite de n états E, = (A4(1,), D(1,), X}, définie comme suit -
Aifty) =0 Vi tel que S7i) < k
Ai(ty) = Dyfty) i tel que S(i) =k
Ai(t) = Aifty) Wi tel que Sri) > k
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D) =0 Vi tel que S7i} < k
Dit) = Dity) Vi tel que 5i) = k
Le vecteur X est constant par hypothése.

Montrons que ces états sont des états réalisables du systéme. L'etat
initial £, du systéme est sain et vérifie donc les relations (1), (2), (3) et (4),

D) = X Yie[l, n]
Ailte) < Dyf'ty) vie[l. n

Aty = X
1

Dity) — A1) < R(ty) + 3 Ajlty)  Viell n]
SN <8

Par définition de la suite des états E,, ceux-ci vénifient les conditions 1 et 2.

Montrons qu'ils vérifient la condition 3. Soit ¥ = Y Ai1). On a, par
=1

définition de Afr.) :
V= Z Aifty) + Z Afn) + A,

Siy<k s>k

ol i, est tel que S¢i,) = k. ou encore :
Y =0+ Y Afty) + D itg).

s(iy=k

En remplagant D; (1,) par son majorant (relation (4}), il vient :
Y< Rity) + 3 Aftg) + Y Ayfty),
SiEk s>k
ou V=X

Les états E, sont des états réalisables du systéme ; il est facile de verifier
que ces états sont sains.

Réciproguement, soit une suite d’états réalisables du systéme telle que tous
les processus obtiennent les ressources qu'ils demandent. On peut extraire
de cette suite la suite S, des états dans laquelle chaque état correspond a
I'acquisition par un processus des ressources demandées

S, = (D(y). A(t). X} Vis[l, n]

Chaque état (Drt,), A1), X) est caractérisé par : Ik tel que A (1) = Dit,),
oll A,ft) est une fonction non décroissante pour 1€ [fg, ;]

Soit S la suite des processus définie comme suit

S(1) = k si et seulement si p; est le processus dont I'annonce est satisfaite
A I'mstant 7,. Cette définition implique A,(%) = (Ai(tp) pour Sil) =z k.

Crocus. = Syrdres S egplairanion des ardinatenrs. 8
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Tous les états étant réalisables, on a

S A < X

=1
Pour tout instant r,, il existe p, tel que
D)+ Y At <X (S(l) =k

SUI# SUl)
d'ou : D) <X - T Aft)
SUVE S
D) <X~ ¥ Aft)
S > S
D) <X = ¥ Ay, Vi, <o,
Sijh= 51}
D) < Rft) + ¥ A1), ¥V <1,.
5= S0
Or on a, par hypothése
Dy(1,) = Difty) , vk
don : D) < R(t) + Y Aun), Vi, <1,
SUHE S

La suite § est donc une suite saine du systéme 4 tout instant.

Le théoréme | permet simplement de reconnaitre par examen de I'état du
systéme que celui-ci n'est pas en interblocage. Il ne garantit pas que les états
suivants soient sains; en effet, 'hypothése qu'aucun des processus ne fera
de nouvelles demandes n'est pas nécessairement vérifiée dans la réalité.

4.74 REMEDES A LINTERBLOCAGE

Une politique de prévention de I'interblocage doit contréler les opérations
d’acquisition de sorte que I'état du systéme reste sain. Une politique de gué-
rison doit étre capable de sortir le systéme d’un état d'interblocage en le
remettant dans un état sain.

4.74]1 Deétection. Guérison

Le premier probleme & résoudre est de savoir si le systéme est en inter-
blocage.
4.7411 Détection

La méthculie générale consiste 4 essayer de construire une suite saine de
processus. Si cette suite est compléte, il n'y a pas d’interblocage, sinon les

processus n'appartenant pas a cette suite sont interbloqués. Le théoréme
suivant facilite la recherche d'une suite saine compléte :
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Théoréme 2. 5i I'état du systéme est sain, toute suite saine incompléte S
peut étre prolongée en une suite saine compléte.

Comme I'état du systéme est sain, il existe une suite saine compléte Q

(5) D,<R+ Y 4 Vp, e Q
W EA Y]

Soit S une suite samne :

(6) D, <R+ E A Vp,eS
Sl = Sk}

Définissons une suite S, telle que :

S, (k) = S(k) Vp eS

Qrl) < Q(k)= 5,(I) = S,(k) VP meEQ — 8
{?} E AI = E J{I \fplE Q — 5‘

Oy = Ok Sully =80k}

car tout p, qui précéde p, dans ( le précéde aussi dans 8, par définition de §,.
Les relations (5) et (7) impliquent :

(8) D,<R+ Y} A VpeQ — S

5,11 £ Sk
Les relations (6) et (8) impliquent alors :

D,<sR+ Y 4 ¥p, € 8,
Syl Sqikd
La suite S, est donc une suite saine compléte.
Le théoréme 1 indigue que le systéme n’est pas interbloqué & un moment
donné s'il existe une suite saine dans son état actuel.

Corollaire 1. S'il n'existe aucune suite saine pouvant étre prolongée en
une suite saine compléte alors le systéme est interblogue.

L algorithme décrit ci-aprés recherche une suite saine compléte. Précisons
les notations :

{ } définit un ensemble,

@ désigne l'ensemble vide,

A @ B désigne I'union de deux ensembles A et B

A © B désigne 'ensemble complémentaire de B par rapport a 4

A* désigne I'ensemble complémentaire de A4 par rapport 4 I'ensemble P
des processus du systéme.

Algorithme 1
début booléen étaisain ; ensemble S, T entier [
S = &, {initialisation de la suite saine )
T:= P: (P = ensemble des processus du systéme)
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tant que T # & faire

début 1 = indice d un élément de T ;
r=Toi{p}:
- 5

alors début S == S® {p; }:
T:= 5"
fin
fin
Elatsain = (§* = @&}
fin

La suite .S est initialement saine, car elle est vide. On recherche un élément
de T pouvant étre ajouté 4 §'; si un tel processus est trouve, T est réinitialisé
et le procédé est réitére, sinon, d’apres le corollaire, le systéme est interbloqué.

Dans I'hypothése ou le choix de n éléments dans T se fait dans 'ordre
inverse de la suite S, le codt (temps d’exécution) de I'algorithme est propor-
tionnel 4 m + (n—1) + -+ I =nin + I1)/2; c'est le cas le plus défa-
vorable. Le colit peut étre réduit en prenant comme état initial la suite saine
de I'etat précédent. 1l est possible dans tous les cas de construire une suite
saine par un algorithme de coit linéaire par rapport 4 n [Holt, 71]. L’inconvé-
nient de cet algorithme réside en une phase importante d'initialisation (coit
de 'ordre de n).

Sous cette forme, ces algorithmes sont utilisables pour une détection occa-
sionnelle de l'interblocage, soit périodiquement, soit 4 la suite d'une baisse
de performance du systéme, détectée par exemple par I'opérateur. Ils peuvent
aussi étre utilisés a chaque changement d’état du systéme pour vérifier que
le nouvel état est sain. Tant qu’un processus ne fait pas de nouvelles requétes,
il existe au moins une fagon d’allouer les ressources demandées : c’est 'ordre
de la suite saine compléte de I'état initial Par contre, lorsqu'un processus
fait une nouvelle demande, l'interblocage peut apparaitre. La détection
continue n'est donc nécessaire qu'au moment de l'exéecution des requétes.

Théoréme 3. L'exécution d'une requéte par un processus fait passer d’un
état sain & un nouvel état sain s'il existe une suite saine contenant ce processus.

A et B étant deux suites, nous noterons 4, B la suite obtenue en concaténant
A et B dans cet ordre. Soit E, I'état initial 4 I'instant t, et p, un processus non
bloqué dans cet état; ona :

Difty) = Aif1y)
Soit £, I'état final obtenu 4 I'instant 1, par I'exécution d’une requéte de p;.

Dit;) = Dif1y)  ¥j#i
Ayty) = Ajty) ¥
Dift,) = Dy,
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On a : Rit,} = Rft,}
puisqu’aucune acquisition n’a eu lieu,
Soit § = 5,, { p; |} une suite samme dans 'état E,.

Dity) — A1) < Rt} + ¥ Ayt Vp, € S
5} < (i)
Les relations précédentes impliquent que § est une suite saine de 1'état E,.
D’aprés le théoréme 2, elle peut étre prolongée en une suite saine complete
S, pour I'état E,. Montrons que 5; est une suite saine de |'état E,. Posons
52 = S! 3]

Difty) — Aul1o) € R(1g) +  F  Ajfty) Wp, € S5
5x(f) < 520k

Les propriétés de |'état E,; impliquent :

Dyt ) — Agfty) = Riny) + Y At P e S;
a1 =520k
§ étant une suite saine dans l'état E,, la relation précédente implique que
§, est une suite saine compléte dans I'état E,.
Cette propriété est utilisée dans I'algorithme de détection continue qui
suit
Algorithme 2

debut booléen étaisain ; ensemble S, T ; entier i,
S=@, T=F;
tant que (p, & S) et (T + &) faire
 début sip e T alors i =k
sinon i = indice d'un élément de T ;
T=To{p}:
si Dy — A, < R+ } A,
- 3

alors début § == S @ {p; }+
T = S*

fin
fin;

étatsain == (p, € S)

fin

Des mesures ont montré que le temps d'exécution de cet algorithme est
de l'ordre de n’.

Cet algorithme permet la détection occasionnelle ou continue de I'inter-
blocage. 1] en existe d’autres qui s'appliquent & des cas plus simples [Holt, 71],
tels que :

— ressources d'une seule classe,

-— classes 4 une unité de ressources,

— requétes d’une unité 4 la fois.
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La mise en ceuvre d'un algorithme de détection ne peut appurler_qu‘une
information sur I'état du sysiéme : il est ou non en interblocage. 5'il y est,
il faut I'en sortir : ¢’est I'objet des méthodes de gueérison.

4.7412 Guérison

Seule une action extérieure au mécanisme normal d'allocation peut sortir
un systéme de l'interblocage, par la réquisition d'un certain nombre de res-
sources. Cette réquisition peut occasionner un coit non négligeable s1 elle
entraine la perte d'un travail et la destruction d’informations.

Il existe de nombreuses méthodes pratiques de puérison; la plus simple
consiste 4 détruire tous les processus interbloqueés, une autre consiste a regrou-
per les processus en classes de méme coilt (priorité, type de travail). La réqui-
sition des ressources est alors faite sur les processus des classes de plus faible
colit jusqu'a ce gue linterblocage soit éliminé. En dépit de leur brutalite,
ces méthodes sont d’un emploi courant.

Dans le cas d’une détection continue de Uinterblocage, la solution la plus
pratique consiste & détruire le processus qui vient de faire une requéte. Cette
méthode est insuffisante car elle ne détruit pas les processus qui causent
réellement I'interblocage en monopolisant les ressources; elle peut conduire
a détruire tous les processus qui font une nouvelle demande, alors que la
destruction d'un seul processus pourrait dénouer définitivement [inter-
blocage. Notons qu'il existe un algorithme [Shoshani, 70] qui permet de
dénouer l'interblocage pour un colit minimal de réquisition. Malheureu-
sement, son temps d’exécution et la taille de mémoire qu'il exige le rendent
inutilisable en pratique.

Pour conclure, nous pouvons dire que s'il existe des algorithmes de détec-
tion de I'interblocage dont I'emploi est pratiquement concevable, I'insuffi-
sance des techniques de guérison les rend inutilisables. Seules des méthodes
de guénson brutales sont effectivement utilisées pour résoudre les blocages
simples et peu fréquents (SIRIS 7).

Dans les cas plus critiques ou la destruction des processus n'est pas possible,
une politique de prévention doit étre envisagée.

4.742 Prévention

Une politique de prévention introduit dans le mécanisme d'allocation des
ressources une régle qui élimine toute situation pouvant conduire 4 un inter-
blocage ; cela suppose que I'état initial du systéme est un état sain. Deux
méthodes sont alors possibles :

— une méthode statique qui impose des restrictions aux demandes et aux
acquisitions de ressources de fagon a interdire une telle situation,

— une méthode dynamique qui reconnait qu'une demande peut conduire
4 un interblocage et qui différe 1'allocation correspondante jusqu’a ce que le
risque soit €limine. Nous ne nous intéresserons pas ici 4 la fagon dont un
processus demandeur est mis en attente.
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4.7421 Prévention statigue

a) Demande globale

La méthode la plus simple est celle de la demande globale : tout processus
doit demander et acquérir globalement ses ressources.

Dans ces conditions, il existe toujours une suite saine compléte § = §,, 55,
avec :

Wp. e 5, D, — A, =0

Tout nouveau processus arrivant dans le systéme est mis dans S, si on ne
peut satisfaire sa requéte, sinon il est mis dans §,. La libération de ressources
par un processus est suivie d’une recherche des processus de S, dont les
demandes peuvent étre intégralement satisfaites ; ces processus sont alors mis
dans §,. La nouvelle suite obtenue est toujours saine.

L'inconvénient majeur d'une telle méthode est de contraindre un processus
4 acquérir des ressources 4 un moment ou il n'en a pas nécessairement 1'usage
(thésaurisation) ; cet inconvénient est réduit dans la méthode suivante, dite
des classes ordonnges.

b) Classes ordonnées

Dans cette méthode [Havender, 68], les ressources sont regroupées en
classes et 'ensemble de ces classes est ordonné. On impose alors a tout
processus

— de demander globalement les ressources de chaque classe qui lui sont
nécessaires,

— de demander les ressources des differentes classes dans I'ordre des
classes,

Un processus ne peut done acquérir des ressources de la classe i que s'il
ne posséde pas de ressources des classes j telles que j = 1. _

Soit m le nombre de classes de ressources. Il existe toujours une suite
compléte $ = S, ... S, ... 8. Pour tout p, € 5, :

dg —ay =0 Vitel quej </,
ag =10 b’jtel_::[utj}!,

Les Suites Sy, Sy Sp_ 15 S Swe1 Smo 21 0e» SONL deS slLitES saines, et la suite §
est une suite saine compléte.

L’introduction d’un nouveau processus dans le systéme ne pose pas de
probléme : il peut toujours étre placé dans la suite So. Lors d'une libération
de ressources, le processus libérateur est éventuellement déplacé d’une suite S;
4 une autre. La suite S est parcourue pour essayer de satisfaire partiellement
ou totalement la demande d'autres processus en respectant les regles
precédentes.
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Une telle politique améliore la gestion des ressources. Les ressources les
plus coiiteuses doivent étre placées dans les classes supérieures de maniére 4
diminuer le temps pendant lequel elles sont inactives.

Exemple. La méthode des classes ordonnées est utilisée pour la gestion des fichiers,
des périphériques et de la mémoire centrale dans le systéme O5/360. 11 faur cependant
remarquer que pour des raisons liées 4 la structure de ce systéme, |a mémoire est allouée
avant les périphérigques.

Si I'on désire plus de souplesse, une méthode dynamique est préférable.

4.7422 Prévention dynamigue

La méthode de prévention dynamique impose & tout processus de déclarer
tous ses besoins (annonce) préalablement & son exécution et de rendre ses
ressources au bout d'un temps fini. Elle a é&té introduite initialement sous
le nom d’«algorithme du banquier » [Dijkstra, 67; Habermann, 69].

Dans un systéme a annonce, 1'état est réalisable si les relations (1), (2), (3)
sont vérifites (4.731). Soit C la matrice des annonces ou ¢; représente le
nombre maximal de ressources de la classe R, que pourra utiliser le processus
p;- On impose a un état réalisable de vérifier les nouvelles relations :

(9) =X Wi
[l{}] f‘!urU 5 Ci '.'-”JI
(11) Dft) < C, Vit

Cette méthode suppose qu'un processus peut exiger toutes les ressources
annoncées. Une allocation ne sera alors effectuée que si elle maintient le
systéme dans un état sain.

Définitions. Une suite S de processus est fiable si elle vérifie la relation :

(12) C; — A1) < Rft) + ) Ayt) VpeS
Sm= S(i)

L’état du systéme est fiable s'il existe une suite fiable compléte pour cet état.

La relation (11) implique que la condition (12) est plus forte que la
condition (4) :

Théoréme 4. Toute suite fiable S est une suite saine du systéme.

De méme que les relations (1), (2), (3), (4) entrainent le théoréme 2, les
relations (1), (9), (10), (12) entrainent le

Théoréme 5. Si I'état du systéme est fiable, toute suite fiable peut étre
prolongée en une suite fiable compléte.

Le théoréme suivant s’applique aux changements d’état :
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Théoréme 6. Une allocation de ressources i un processus p, fait passer
le systtme d'un état fiable 4 un nouvel état fiable s'il existe dans ce nouvel
état une suite fiable contenant p,.

Soit E; I'état du systéme & instant I, et E, I'état du systéme a ['instant ¢,

obtenu par allocation de ressources au processus p,. L'allocation de ressources
i p, se traduit par les relations :

(13) Aifte) = A1y} Wi # k
(14) A (ty) = Agfty)
(13) Rit,) + Ayty) = Rity) + Ayfto)
Soit 5 une suite fiable 4 l'instant , et contenant p,
S=58.1n}
C,— Ayt,) < Riyy) + z Aty ¥p, € S,
Sil) < Sii)
Cy — Ayfty) < R(1y) + Z Ayf'ty)
S(0) =< 51)

Montrons qu'elle est aussi fiable 4 I'instant 1. D’apreés les relations (13), (14),
(15)

C; — Aifty) < R(1tg) + )} Aifte)  TPiES,

S(Iy= St
La relation (15) entraine :
Co — Ay(ty) — Rity) = € = A1) — R(1y)
d'o
C, — Auftg) < Rity) + E Ayftg)
Sil) < Sk

La suite S est done fiable  I'instant f,; elle peut étre prolongée en une suite
fiable compléte 5, :

C; — Aitp) < Rity) + Y Aty WpE S,

Sqin=8z0
Montrons que S, est aussi fiable & I'instant 1. Posons S, = §, 5;.

C, — Aifty) < R(tg) + Y. Afty)  VPiE€Ss
$2(1) < S2li)
Les relations (13) et (15) entrainent :
C; — A1) < R(ty) + Ayfte) + z Ary)

Szl =5afi)
et Iwk

S Rty + 2 Al Wp, € 5y
Sa(l}=5afi)

La suite S étant fiable 4 'instant 1,, la suite S; est une suite fiable compléte a
l'instant 1.
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Théoréme 7. Si aucun processus ne libére ses ressources avant d’avoir regu
la totalité de son annonce, il existe au moins une maniére d'allouer les res-
sources sans interblocage si et seulement si I'état du systéme reste fiable.

Remarquons que dans le cas ot C = D, les concepts de suite fiable et de
suite saine, d’état fiable et d’état sain sont équivalents.

Considérons une suite fiable compléte. Si les processus exigent la totalité
de leur annonce (C = D}, les conditions du théoréme | sont wverifies. 1l
existe donc une suite d’états fiables tels que les processus obtiennent leurs
ressources. La réciproque est également vraie.

Corollaire. 5°il est possible de trouver une fagon d’allouer les ressources
dans le cas le plus défavorable (chaque processus demandant toute son
annonce), il est possible de trouver un ordre d’allocation dans tous les cas.

Si les processus ne s interbloguent pas, c'est qu'il existe une suile fiable
complete § telle que

C,< Ry + Y Ajry  Vire[ln].
S0 = Sy

Comme D1} < C pour tout 1, § est une suite saine pour le systéme 4 tout
instant.

Le théoréme précédent et son corollaire signifient que tant que 'état du
systéme reste fiable il existe au moins une fagon d’allouer les ressources aux
processus sans interblocage : elle consiste a satisfaire leur demande dans
I'ordre de la suite fiable.

Il n'est pas toujours nécessaire de respecter cet ordre d’allocation. Il faut
simplement s’assurer que toute allocation laisse le systéme dans un état fiable.
Cela se traduit par la régle suivante :

Reégle. Une allocation ne peut avoir lieu que si I'état résultant est un etat
fiable.

Dans la pratique, I'état initial du systéme est toujours fiable. On doit véri-
fier, avant toute allocation de ressources, que le nouvel état obtenu est fiable.
On utilise pour cette vérification un algorithme analogue & celui décnt en
4.7411, en remplagant la matrice des demandes par la matrice des annonces.

Il est important de noter qu'une suite fiable ne représente pas toujours
'ordre dans lequel les demandes doivent étre satisfaites. L'état est dit fiable
en ce sens qu il existe au moins une fagon d allouer les ressources aux processus
sans risque d'interblocage. L'allocation effective peut se faire de toute autre
fagon a la seule condition de conserver le systéme dans un état fiable. L'ordre
dans lequel les requétes des processus sont satisfaites dépend des stratégies
individuelles d’allocation de chaque ressource. En tout état de cause, la
prévention de l'interblocage est une stratégie globale qui doit prévaloir sur
les stratégies individuelles.

Droits réservés au Cnam et a ses partenaires



restion des ressources 217

Remarque.

_ Des créations ou des libérations de ressources maintiennent le systeme
dans un état fiable.

— Une diminution de I'annonce conserve la fiabilité d'un état ; toutefois
une augmentation ne peut étre autorisée que si elle maintient le systeme dans
un état fiable. '

— Lors de la création d'un nouveau processus, la suite obtenue en mettant
ce processus en queue de la suite fiable de I'état qui précéde la création est une
suite fiable, quelle que soit I'annonce du nouveau processus. La création d'un
processus est donc toujours possible.

__ La méthode de I'annonce peut conduire & un écroulement des perfor-
mances dés que le nombre de ressources libres décroit fortement, dés que les
annonces sont voisines du nombre total de ressources du systeme et dés que
les requétes des processus approchent de leur annonce.

4.75 CONCLUSIONS

Selon quel critére doit-on choisir entre prévention de Uinterblocage et
détection, puis guérison 7 Lorsque ['utilisation de la méthode des classes
ordonnées entraine une immobilisation des ressources tolérable, cette méthode
semble devoir étre retenue. Sinon, selon la fréquence probable des interblo-
cages, on pourra retenir :

__ une méthode de détection-guérison brutale (par exemple un simple
rechargement du systéme dans le cas ol I'interblocage survient rarement).

— la méthode de I'annonce dans le cas ol linterblocage risque d'étre
fréquent ou difficile 4 dénouer.

EXERCICES

1. [3] Un modéle mathématiyue de comportement local [Spim, 72]

On se propose de construire un modéle simple de comportement de programme
rendant compte de la propriété de localité (ef. 4.23). Etant donné un programme de
n pages numérotées de / 4 n, on cherche une loi de génération d’une chaine de réfé-
rences ry Fy ...y On définit une variable de temps discréte par les instants des références
successives, en disant que la référence r, a lieu au temps k.

1} On demande de construire un modele ayant la propriété suivante : quel que soitm
(0 < m < nJ, & tout instant ¢, la probabilité pour que la prochaine page référencée
r,+1 appartienne a I'ensemble des m pages distinctes avant fait 'objet des références
les plus récentes est égale 4 une constante p, indépendante de 1. Préciser le mécanisme
de génération des ry.

7) Dans quelles conditions les chaines de réferences engendrées par ce modéle
possédent-elles la propriété de localité ?

1) Particulariser le modéle pour obtenir le comportement suivant : & tout instant,
la probabilité pour que la référence suivante appartienne 4 I'ensemble des | pages le
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plus récemment référencées est égale 4 une constante 4. Quelle relation doit-il y avoir
entre 4 et [ pour que le modéle représente effectivement un comportement local 7
Quelle est la relation entre A, [ et les p_ du 1) 7 Comment définirait-on les L, (cf. 4.23)
et quelle est la durée de vie moyenne d'un L, ?

2. [1] Régle des 50 7, [Knuth, 68]

Montrer que dans une mémoire gérée par zones, lorsque le nombre N de zones
allouées est grand et que le systéme est en équilibre (c’est-d-dire que le nombre moyen
de zones libres est constant), le nombre de zones libres M est approximativement

égal & N/2.
3. [1] Pregrammation des algorithmes de gestion de la mémoire par zones

Programmer, dans un langage de votre choix, les algorithmes de gestion de la mémoire
par zones correspondant 4 « la plus petite zone possible » et 4 « la premiére zone
possible » (cf. 4.442).
4. 2] Efficacité de lu gestion des tambours

Démontrer les formules exprimant I'efficacité de la gestion d'un tambour (cf. 4.532) :

a) avec file unique

E; L) =2(s + 1)
b) avec une file par secteur (tambour de pagination)
EfL) = L+ 1)ffs+ L+ 1)

ol 5 est le nombre de secteurs du tambour et L le nombre moyen de demandes de
transferts de pages en attente.

5, [2] Anomalie de Belady

Pour un programme reéférengant cing pages distinctes, construire une chaine de
références w telle que Cf4, a) > C(3, @) pour l'algorithme FIFO.

6. [2]
Montrer que l"algorithme LRU posséde la propriété d'inclusion (4.454).

1. [1} Implantation d'un algorithme de remplacement de type LRU [Belady, 66]

L'implantation de l'algorithme LRU nécessite & chague accés un réarrangement
dynamique des pages qui, faute de mécanisme ciblé adéquat, se révéle trés coliteux
sinon impossible. On peut alors avoir recours 4 la technique suivante, plus grossiére
mais aisément realisable.

A chaque page physique est associé un bit d'utilisation, noté U, qui est mis & J 4
chaque accés & la page. On peut alors définir une partition de 'ensemble des pages :

— pages récemment référencées,

— pages non récemment référencées.

1) Lorsqu'un remplacement devient nécessaire, quelle page doit-on choisir 7 A guel
instant peut-on remettre 4 zéro les bits [/ 7

2) On dispose maintenant d'un bit supplémentaire, le bit d'écriture E, qui est mis
a I'a chaque opération d'écriture dans la page. Au moment du remplacement, quelle
page est-il préférable de choisir ?
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8. [2] Exemple de stratégie globale d'allocation de mémoire et d'unité centrale [Belady,
69].
Si I'on considére uniquement la partie convexe de la courbe e(s), représeniant en
fonction de la taille s de mémoire principale allouge, le temps moven séparant deux
défauts de page consécutifs {(cf. 4.23) on a la relation suivante :

efs) < [efs — As) + efs + As)])2 VAs

ol As représente un accroissement de la taille de mémoire principale allouée au pro-
gramme (5 et As sont exprimés en nombre de pages).

1) Interpréter cette relation ; comment est-il possible, en jouant sur le temps dallo-
cation d'unité centrale, d’améliorer le temps d'exécution du programme ?

2) Considérons le cas ou plusieurs processus sont en compétition pour ["utilisation
de la mémoire ¢t de I'unité centrale. L'algorithme de remplacement global utihise est
I'algorithme FIFO. En tenant compte du résultat précédent, de quelle fagon deit-on
modifier I"algorithme de remplacement FIFO, pour améliorer les performances globales
du systéme ?

9. [2] Représentation graphigue de l'interblocage [Holt, T1]

Un systéme (au sens du 4.731 et avec les mémes notations) peut recevoir linterpre-
tation graphigue suivante :
L'état d’allocation des ressources aux processus est représenté par un graphe o :

— les neeuds sont les éléments de 'ensemble des processus P et de 'ensemble des
ressources E,

— la demande par un processus p, d’une ressource de la classe R; est représentee
par un arc orienté (p;. R;J,

— la possession, par un processus p; d'une ressource de la classe R; se traduit par
un arc orienté (R, pJ.

La matrice 4 représente I'état d’allocation des ressources et la matrice DN = D — 4
les requétes insatisfaites.

Exemple

o i I 1 P
X =21 A= D=( DN =
o i o 1 o o

La demande d’une ressource par un processus donne lieu 4 la création d’un arc de
requéte qui change de sens lors de Pacquisition de la ressource et disparait lors de la
libération.
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Nous dirons qu'un graphe d'état est réductible par tout neeud qui n’est ni un pro-
cessus bloque ni un neeud isolé ni une ressource. La réduction du graphe par un pro-
cessus p est I'élmination de tous les arcs ayant p i une de leurs extrémités. Cette opé-
ration a le méme effet sur le graphe que I'acquisition par ce processus de ses ressources,
son exécution, puis la libération de toutes ses ressources. Le nouveau graphe obtenu
est toujours un graphe d'état : il vérifie les conditions (1), (2) et (3) (cf. 4.731).

Nous appellerons séquence de réductions une suvite de réductions du graphe par des
processus tels que le graphe obtenu ne puisse plus étre réduit par les autres processus
du systéme ; le graphe est alors dit irréductible.

Si le graphe obtenu ne contient que des naeuds isolés, la séquence est compléte.
Le graphe initial est alors complétement réductible.

Exemple 1. Graphe irréductible.

L]

Ezat initial Réduction par Py Réduction par P

Démontrer la proposition 1 : Si un graphe d'état G est réduit par deux suites 5, et
§; contenant les mémes provessus. alors les graphes H' et H? obienus sont iden-
tiques.

10. 2]

Avec les notations de "exercice [9], démontrer la proposition 2 :

Si un graphe d'état G réductible par un processus p, peut aussi étre réduit 4 un nou-
veau graphe H par une suite § de processus ne contenant pas p,, alors H est encore
reductible par p,.

11. [2)

Avec les notations de I'exercice [%], démontrer la proposition 3 :

Si un graphe G peut étre réduit au graphe H' par une séquence de réductions S,
alors toute autre séquence de réductions §, est composée des mémes processus et
conduit 4 un graphe H? identique a K.
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12. [2]

Avec les notations de I'exercice 9, démontrer la proposition 4 :

Une suite de réductions S = {p, ..... P, | d’un graphe d’état G est une suite sane
de processus el réciproguement.
13. 12

Avec les notations de I'exercice 9 et en admettant la proposition 4, démontrer la
proposition 5 :

La présence d'un circuit dans le graphe d'état est une condition nécessaire d'inter-
blocage.
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PROTECTION

5.1 PRESENTATION DU PROBLEME

5.11 INTRODUCTION

Le contrdle du bon emploi de I'information et, d'une maniére plus génerale,
des ressources d’un systéme est étudié sous le terme général de protection
[Denning, 71 ; Wilkes, 68 ; Lampson, 71]. Comme il parait naturel de faire
jouer les dispositifs de contrle au moment de I'accés & I'information ou de
la demande de ressource, 'étude de la protection aurait pu étre faite dans
les chapitres qui en ont traité. Toutefois, I'analyse de la protection a montre
qu'il existait une approche unique du probléme. C’est elle que nous essaierons
de dégager avant d’exposer quelques réalisations caractéristiques.

Nous écartons de notre présentation les problémes politiques et sociaux
que souléve la protection d'informations de caractére privé ou secret et nous
nous penchons sur les seuls problémes techniques.

La protection n'a pas comme role d'empécher la production des erreurs,
ou des malveillances, mais seulement leur incidence sur les objets protégés.
Ainsi est assurée la protection des usagers entre eux, du systéme contre les
usagers, des usagers contre le systéme et des processus d'un méme usager
entre eux. Aucun processus ne doit, par exemple, accéder a une donnée interne
d'un autre processus sans en avoir recu l'autorisation; un processus qui
utilise une procédure partagée, qu'elle soit du moniteur ou d’un autre usager,
ne doit pouvoir I'exécuter sans contréle; un programme de mise au point
doit étre 4 I'abri des erreurs du programme qu'il essaie d’analyser.

Tout systéme de protection général satisfait les fonctions suivantes :

— Assurer lindépendance des objets qui doivent rester logiquement
indépendants. Cette indépendance peut étre obtenue soit en ne donnant aucun
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chemin vers I'information, soit en interdisant I'accés si le chemin existe,
Dans le premier cas, I'information est inconnue : elle est en dehors de I'univers
de I'utilisateur. C'est le cas par exemple en ALGOL pour les variables d'un
bloc qui sont inconnues dans un autre bloc de méme profondeur.

— Permettre une protection de I'utilisation de I'information, fonction de
Fopération qui est tentée.

— Permettre une protection sélective de I'information partagée, en fonc-
tion de I'usager ou d’un groupe d’usagers.

Un bon principe pour lutter contre la propagation des erreurs est de limiter
au strict nécessaire les pouvoirs d'un utilisateur.

Il n’existe pas, pour I'instant, de solution unique en matiére de protection,
Ceci explique la part importante que nous réservons, dans ce chapitre, &
des réalisations particuliéres.

Dans une premiére partie, aprés avoir défini le probléme, nous esquissons
les propriétés d'un systéme de protection, et tentons de dégager a cette occasion
quelques principes généraux de conception, valables a la fois pour des méca-
nismes cablés et programmés. A partir des concepts introduits, nous décrivons
ensuite, dans le détail, les mécanismes de protection mis en jeu dans les deux
systémes ESOPE et MULTICS.

5.12 POSITION DU PROBLEME
5.121 Définitions

Soit :

— un ensemble d'objets. R = {r,} :ce sont les éléments a protéger
dont I'utilisation doit étre controlée (par exemple fichiers, segments, pages,
terminaux, processus, procédures, semaphores),

— un ensemble d'utilisateurs, I/ = {u;} :ce sont les entités capables de
produire ou de propager des erreurs (par exemple processus, client, procé-
dure),

— une matrice M dont chaque ligne correspond 4 un utilisateur wu; et
chaque colonne 4 un objet r

Chaque élément M; de la matrice mdigue I'ensemble des modes d'acces
de r; par u. Le mode d'accés peut &tre donné ou calculé par une fonction,
dépendante de I'utilisateur et de la ressource (exemples de modes d’accés :
lecture ou écriture d'un fichier, eréation d’un processus, exécution d'un seg-
ment). -

La matrice M définit les régles de protection a respecter. Nous supposons
que chaque objet (et chaque utilisateur) est désigné par le méme nom pendant
{.m.l;t]c la vie du systéme et que ce nom n'est pas réutilisé apres destruction de
‘objet.
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Remarque 1. Une entité peut étre 4 la fois objet et utilisateur : I'objet
« processus d'impression » une fois activé, agit comme un utilisateur en
demandant I'utilisation d'un tampon en mémoire.

Remarque 2. Certains objets doivent étre demandés simultanément ; ainsi
'aceés 4 un fichier nécessite un tampon en mémoire centrale.

La figure | est un exemple de matrice M. On note par « 'interdiction d’em-
ploi de I'objet par un utilisateur et & I'absence de chemin de I'utilisateur vers
I'objet.

R
e —— e — e e
Fichiers Consoles Processus

il 2 13 cl cl pl p2 p3

Ierctssus ] lire lire e.rémreraﬂﬁufrlaﬂ'aufr bloguer| acriver| activer
écrire détruire inlerrompre
Processus 2 | propriéraire] 4 g |allowerl & |activer|bloguer| détruire
U écrire deétruire]

Processus 3 lire  |écrire]l 4 A i |activer| & bloguer

. Processus 4 lire & | écrire A |allouer] 4 A A

Figure 1. Exemple de matrice M.

On appelle :

— droits (« capabilities ») d'un utilisateur & sur un objet r;, I'élément M,
— pouveir d'un utilisateur w, la higne M,

— matrice des droits (« access matrix »), la matrice M.

3.122 Limites du systéme de protection

Les droits traduisent les régles d’accés 4 un objet, propres a un utilisateur,
et non les contraintes d’utilisation qui sont déterminées par les propriétés
de T'objet, partageable, critique, ... (voir Chap. 4). Ces contraintes sont
établies par ailleurs et ne sont pas considérées ici. N

Les droits sont indépendants des actions entreprises par [utilisateur en
cas de refus. Le systéme de protection contrile seulement si I'utilisateur a
le droit ou non de se servir de I'objet avec 'accés qu'il précise. ‘

La politique & adopter en cas d’erreur n'est pas non plus du ressort du systéme
de protection. Par contre I'emploi des objets, lors de I'application de cette
pelitique, doit aussi étre contrile.
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5.123  Variation du pouvoir d’un utilisateur : nécessité et limites

Le pouvoir, tel que nous I'avons introduit, définit pour chaque utilisateur
I'ensemble de ses droits d’accés aux objets. Si le pouvoir associé 4 un processus
reste constant durant tout le temps de son exécution, cela signifie que tous
les programmes, toutes les procédures utilisés par ce processus ont les mémes
droits d’accés aux objets ; ces droits doivent donc étre les droits les plus élevés
quil utilisera bien qu'il n'en ait pas constamment besoin. La protection
sera toutefois plus efficace si on peut lui donner & tout instant les pouvoirs
minimaux dont il a besoin, et pas davantage.

Exemple 1. Lorsqu’un processus d'un utilisateur fait, en mode esclave, une opé-
ration d’entrée-sortie, il appelle généralement une procedure du systéme, dotée de
droits plus étendus, qui vérifie les paramétres d'appel et provogue l'entrée-sortie
proprement dite. Dés que I'entrée-sortie est terminée, le processus utilisateur retourne
en mode esclave.

Le systéme de protection doit permettre la modification du pouvoir d'un
processus d'utilisateur durant son exécution. Cette modification peut se
faire dans le sens d'une augmentation (ou d'une diminution) de pouvoir et
dans ce cas, les nouveaux droits d’accés aux objets sont un sur-ensemble
(ou un sous-ensemble) des anciens droits d’accés. La modification du pouvoir
peut aussi se traduire par I'acquisition de droits différents.

Exemple 2. Un processus a autorise un processus & 4 accéder 4 un segment de
données d ; cet accés ne peut se faire qu'au moyen d'une procédure de contréle p fournie
par a et dotée de droits suffisants pour effectuer les références au segment de données 4.
Le mécanisme de protection doit aussi garantir que les données propres du processus b
sont 4 I'abri des erreurs possibles de la procédure p. En conséquence, le pouvoir associé
au processus b lorsqu’il utilise la procédure p, doit autoriser I'aceds au segment o
mais interdire tout accés aux données propres de b.

Il n'y a pas ici augmentation de pouvoir, mais acquisition d'un pouvoir différent
par le processus b.

On ne peut pas modifier n'importe quand et n’importe comment le pou-
voir d'un processus. De méme, les droits d’un utilisateur sur un objet peuvent
dépendre du chemin d’accés a I’objet ou de la fagon dont I'objet est demandé.

Le systéme de protection peut parfois imposer que le chemin d’accés 4 un
objet (ou un ensemble d’objets) débute par un point de passage obligé, appelé
guichet (« gate »).

Exemple 3. L'utilisation d’une procédure P peut entrainer la demande d'autres
objets u, b, ... Le sysieme de protection remplit alors plusieurs fonctions -

— assurer que l'exécution de la procédure p ne peut commencer sans passer par un
guichet,

— vérifier, au guichet, que |'utilisateur a le drojt d’utiliser p,

= lui donner les moyens, en changeant son pouvoir, si c'est nécessaire pendant le
temps qu'il utilise p, et pendant ce temps-la seulement, d'accéder aux objets a, b, ...
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Pour simplifier le contrdle des valeurs prises par le pouvoir d'un utilisateur,
on peut éire amene a en limiter le nombre. On peut aussi introduire une
relation d’ordre entre ces valeurs ; on verra une telle approche avec les anneaux
de protection de MULTICS.

5.124 Problémes a résoudre

D'autres aspects du probléme, que nous n'avons pas évoqués, se posent
toutefois au concepteur de systéme :

— comment utiliser la matrice des droits, ou comment effectuer le contréle
de l'accés a un objet ?

— comment conserver les informations de la matrice M ?

— comment régler la variation de la matrice M au cours du temps, et
traduire la création de nouveaux objets ou la modification des droits d'un
utilisateur 7

— comment proteger le systéme de protection ?

La matrice M traduit, en fait, les relations existant 2 un instant donneé
entre les utilisateurs et les objets du systéme. Le passage de la représentation
des relations par une matrice M 4 la réalisation en machine dépend de la
nature des objets mis en jeu. Plusieurs techniques, ciblées ou programmées,
peuvent étre envisagées. C'est pourquoi, dans la pratique, le systéme de
protection se trouve réparti & des niveaux différents. L'implantation d'un
systéme de protection requiert toutefois |'existence d'un mécanisme céblé
initial (protection de meémoire et/fou mode maitre-esclave) pour assurer
justement sa protection. On peut noter I'analogie gui existe ici avec le pro-
bléme de I'exclusion mutuelle pour la solution duquel il est nécessaire de
disposer d'un mécanisme de base (masquage des interruptions et instruction
TAS dans le cas d'un multi-processeur).

Remarque. 1l est toutefois possible de réaliser un systéme de protection,
sur une machine qui ne dispose d’aucun mécanisme de protection ciblé. 11
suffit que le systéme interpréte toutes les instructions des utilisateurs et qu'il
contréle 'emploi qu'ils font des objets du systéme.

5.13 EXEMPLES D' IMPLANTATION DE LA MATRICE DES
DROITS

Nous exposons ci-aprés quelques techniques couramment utilisées pour
implanter la matrice des droits. Le choix d’une technique dépend de la nature
de la matrice M.

3.131 Liste d’accés

A chaque objet  est associée une liste des utilisateurs autorisés et de leurs
droits, appelée liste d*accés (« access list »}. Chaque €lément de la liste est
done de la forme (u, M(r, u)). Cette liste est consultée a chaque tentative
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d’acces a l'objet r. Cette méthode est couramment utilisée pour I'accés aux
fichiers et n’est efficace que si la liste est courte. Diverses techniques d’accé-
lération sont possibles :

— introduction de la liste complémentaire des utilisateurs non AuLorisés
lorsqu’elle est plus courte que celle des utilisateurs autorisés,
— groupement des utilisateurs ayant les mémes droits.

5.132 Liste des droits

La liste des droits est une représentation du pouvoir d'un utilisateur. A
chaque utilisateur  est associée une liste (« capability list ») specifiant, pour
chaque objet auquel il peut accéder, les droits d’accés correspondants. Chaque
¢lément se présente sous la forme (r, M/r, u/). Cette hste est parcourue i
chaque tentative d’accés de I'utilisateur u. Elle peut étre raccourcie avec les
mémes techniques que la liste d’accés. Un avantage de cette liste de droits
est que, étant liée & I'utilisateur. elle n’est employée que lorsque celui-ci est
actif. Ceci permet d'introduire des techniques d’accélération d’acees comme
une memoire associative, une antémémoire ou un mécanisme de couplage
(voir Chap. 3 et 4). Si la liste est longue, elle peut éire structurée en sous-listes,
chacune étant associée 4 un mode d'utilisation. Par exemple,

— chaque sous-liste correspond 4 un mode d'accés - lecture, écriture,
exécution, ...

— chaque sous-liste correspond a une classe d’objets : mémoire virtuelle,
fichier. ...

5.133 Clés et verrous

Les utilisateurs sont regroupés et chague groupe est identifié par un code
ou clé remis a chacun de ses membres. De méme. les objets réunis en groupe-
MENL SONt caraclérisés par un verrou identique pour chaque élément d'un
groupement. Il ¥ a une clé et un verrou par mode d’acces possible. L'accés
n'est permis que si la clé permet d'ouvrir le verrou. Dans ce cas, 'utilisateur
est représenté par la clé et I'objet par le verrou. Le probléme se simplifie
beaucoup.

Exemple. Le systéme ciblé de protection contre I'écriture dans un bloc de mémoire

du calculateur CII 10070 met en jen une technique de clés et verrous, L écriture est
permise si et seulement si -

{verrou = ()} ou (clé = () ou {clé = verrou)

Clé et verrou peuvent prendre 4 valeurs possibles. Ceci permet d’introduire 4 classes
d’utilisateurs, et 4 zones de mémoire différemment protégées contre [écriture.
5.134  Matrice des droits pour les modes maitre et esclave

Les objets accédés sont ici les instructions de la machine. Le pouvoir d'un
processus peut prendre deux valeurs, I'une ol toutes Jes instructions sont
autorisées et I'autre ol certaines seulement le sont.
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L'exemple suivant est issu du calculateur CII 10070. Le systéme de pro-
tection est cablé et intervient lors du décodage de I'instruction.

Objets = code opération

— — . ———

Lw STW LPSD HIO 510 CAL
Mode maitre ExXec exer o exec exer exec exer
Mode esclave EXEC £xec i i A exec

exec : droit dexécurer 'instruction

Figure 2. Modes maitre et esclave du CII 10070.

5.2 MECANISMES DE PROTECTION DANS LE SYSTEME ESOPE

Il n'y a pas de mécanisme unique, mais plusieurs méthodes qui dépendent
des ohjets 4 protéger et qui traduisent tout autant la diversité des mécanismes
cablés que l'évolution des techniques de protection durant la réalisation
du systéme.

5.21 RAPPELS SUR LE MATERIEL CII 10070

L'unité centrale peut fonctionner sous deux modes d'exécution, maitre
ou'esclave (cf. 5.134) et utiliser deux modes d’adressage, avec ou sans topo-
graphie. Ces diverses options sont précisées dans le mot d’état de programme
(PSD) de la machine. Seul un processus en mode maitre peut exécuter des
instructions d’entrée-sortie, agir sur les niveaux d'interruption, medifier
le PSD et charger les registres de la mémoire topographique et les registres
de protection de la mémoire.

Les restrictions d 'accés 4 I'information peuvent étre placées en deux endroits :
en mémoire physique (lors de I'accés 4 I'information) ou en mémoire virtuelle
{lors du calcul de I'adresse virtuelle).

Adresse virtuelle Adresse physique

—

Mémoire centrale

Topographie

Protection logique Protection physique
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A toute page physique est associé un verrou. Tout processus en exécution
dispose d'une clé dans le PSD. Clés et verrous sont représentés sur deux bits
el n'agissent que pour I'écriture (cf. 5.133). Toute tentative d'écriture non
autorisée se traduit par un déroutement, quel que soit le mode d’exécution
du processus fautif.

En mode « topographie », toute page virtuelle regoit une protection logique
de deux bits qui, pour tout processus, indique quel est I'accés permis dans
celie page.

() : tout accés permis,

1 : écriture interdite,

2 @ écriture et exécution interdite,

3 : tout accés interdit.

Il en résulte que deux processus s'exécutant dans la méme mémoire virtuelle
possédent les mémes droits d'accés aux pages virtuelles. Cette protection
n'existe pas en mode maitre.

D’autre part les instructions CAL peuvent étre employées pour définir
des instructions ou des primitives nouvelles (ou pour appeler des procédures
du moniteur). Elles permettent de réaliser des guichets et partant d'effectuer
des branchements a des adresses prédéterminées avec modification de mode
du PSD.

5.22 LA PROTECTION DANS LE SYSTEME ESOPE

Le systéme ESOPE gére des usagers qui sont constitués chacun d'un ou de
plusieurs processus et d'une mémoire virtuelle. Les programmeurs qui peuvent
utiliser le systéme sont appelés clients du systéme et sont identifiés par leur
nom ; lorsqu'ils utilisent le systéme, ils deviennent des usagers el regoivent
un numero.

Les utilisateurs des objets sont les clients, les usagers ou les processus,

5.221 Utilisation des segments

Tout segment a un client propriétaire et un seul. Tous les segments d'un
méme propriétaire ont leur nom et leur adresse ranges dans un catalogue
géneral. Pour chaque segment, le catalogue contient aussi -

— le mode d’accés que s’autorise le propriétaire,

— la liste des autres clients auxquels I'accés du segment a été autorisé
et, pour chacun, le mode d’accés permis.

Seul le propriétaire d’un segment peut modifier I'entrée correspondante &
50N segment.
5.222 Protection de la mémoire virtuelle d’m usager

Chaque mémoire virtuelle forme un espace d’adressage indépendant
(cf. 3.4). Les mémoires virtuelles ne communiquent que par les segments
couplés a plusieurs d’entre elles. Dans ce cas le mode d’aceés de chague usager
est précisé par les protections logiques de sa mémoire topographique.
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A lintérieur d'une mémoire virtuelle coexistent :
— une partie des données résidentes du moniteur,

— les procedures et les données de processus non résidents du moniteur,
— les procédures et les données des processus de I'usager.

On veut nterdire :

— a tout processus, de modifier les procédures,

— aux processus de I'usager, d’accéder aux données du moniteur,

— aux processus du moniteur, d'accéder aux données des processus de
I'usager.

MNous avons vu gque deux processus paralléles du méme usager ont les
mémes droits d’accés a une page virtuelle. Puisque chaque processus a sa
propre clé d’écriture pour les pages physiques, on ne peut interdire que les
processus lisent ou executent des pages qui leur sont interdites. Avec cette
restriction, ['utilisation des clés et des verrous est faite comme suit :

Données du moniteur | Procédures du moni- Dronnées
{résidentes ou non) teur ou des usagers | des usagers
Verrou = 2 verron = 3 verrpw = [
Processus usagers A i écrit
cléd = 1
, Processus du moni- écrit i A
teur, résident ou non)

clé = 2

Figure 3. Unlisation des cfés el rerrous dans ESOPE.

53.223 Pouvoir des processus

A tout processus est associée une spécification de I'ensemble des actions
qui lui sont permises. Les dispositifs ciblés disponibles sont indiqués par
plusieurs éléments du PSD

— masques d’inhibition des déroutements et des interruptions,

~— clé d’éeriture en mémoire physique,

— indicateurs de mode : maitre-esclave, avec ou sans topographie.

Ces dispositifs ont &té complétés par un systéme programmé plus genéral,
fondé sur une liste de droits, ou pouvoir, associé a chaque processus. A 'oppose
des dispositifs cablés qui mterviennent pour chaque instruction, les dispo-
sitifs programmés ne sont mis en jen que pour les opérations CAL d’appel
du superviseur.

Les processus sont divisés en 3 classes :

— les processus résidents du moniteur,

— les processus non résidents du moniteur,

— les processus des usagers.
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A chaque classe est attachée une valeur de pouvoir 4 donner aux processus.
Un processus peut recevoir un pouvoir différent de celui de sa classe lorsqu’il
utilise, au moyen d’un CAL, des primitives ou des procédures du moniteur
non résident. On donne (Fig. 4) un apergu des divers pouvoirs.

Processus | Processus |Sémaphore|Sémaphore|Segment [Segment

non résident| wusager | moniteur | usager du de
du moniteur systeme | |'usager
]
i! Moniteur Créer £ PV £ £ E
résident | dérruire
% | |Moniteur P créer PV créer ouvreir | fermer
z / non détruire detruire | fermer | détruire
% résident interrompre coupler
o
J Usager P CrEEr £ (o £) PV ) Créer
| détriiire CTERT coupler
muaodifier détruire détruire

Figure 4. Pouvoir des processus dans ESOPE.

Exemple. Considérons la matrice des droits précédente. Un processus de 'usager
a le droit de créer, de dérruire et de modifier les autres processus du méme usager. Il
n'a aucune action sur les processus non résidents du moniteur. 1) peut agir sur les
semaphores du méme usager, mais non sur ceux du moniteur bien que dans certains
cas il connaisse leur nom (ce qui est noté ). Il peut créer, coupler, détruire les segments
de l'usager mais pas ceux du systéme (catalogues, segments des traducteurs, ...).

5.214 Changement du pouvoir d’un processus de I'usager

Le changement du pouvoir d’un processus d'un usager ne peut se produire
que dans les cas suivants :

— lors de l'exécution d'une primitive,

— lors de I"appel d'une procédure du moniteur non résident et du retour
correspondant.

a) Les primitives (P, V, coupler, ...) sont réalisées par des procédures qui
ont accés uniquement aux données résidentes du moniteur et qui, pour cette
raison, s’executent en adresses physiques. Elles sont appelées par une opé-
ration CAL. Cette opération assure simultanément plusieurs fonctions.

— Elle permet de realiser un guichet d’appel : on vérifie que le processus
a bien le droit d’utiliser la primitive et on fait commencer I'exéeution de la
procédure 4 une adresse qui est un point d'entrée de la procédure.

— Elle permet de changer le pouvoir du processus, pour lui permettre
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d'accéder, par la procédure, aux données du moniteur (modification du PSD
pour obtenir la clé d’écriture du moniteur).

— Elle permet de changer d'espace d’adressage (virtuel — physique).

Le retour de la primitive et partant la restauration du pouveir du processus
usager est effectué par la procédure proprement dite. Ce mécanisme est suffi-
sant puisque la procédure dispose des droits nécessaires (mode maitre) pour
modifier le pouvorr (PSD, ...) du processus et effectuer le retour corres-
pondant.

Etant donne que la primitive accéde 4 des données communes, 'exclusion
mutuelle nécessaire est réalisée ici par masquage des interruptions.

b) Les procédures du moniteur non résident sont couplées dans la mémoire
virtuelle de chaque usager (cf. 3.441). Elles ont accés 4 des informations non
résidentes du moniteur, par exemple le catalogue du systéme ou les catalogues
des utilisateurs. Pour cette raison, 'exécution de telles procédures par un
processus usager requiert des droits supérieurs aux siens. Ainsi un processus
d’un usager ne peut se coupler aux articles du catalogue sans droits particuliers.
Pour simplifier la présentation, nous supposons ici qu'il n'y a qu'un processus
par usager.

L'appel d'une procédure du moniteur non résident est réalisé par une
opération CAL qui a pour effet :

— de réaliser un guichet d’appel,

— de changer le pouvoir du processus usager (modification du FSD
pour obtenir la clé d’écriture, autorisation de coupler le catalogue, autorisa-
tion d’agir sur les sémaphores du moniteur).

Ces actions nécessitent I'acces a4 des données résidentes du moniteur
elles sont réalisées en adresses physiques, toutes interruptions masquées,
aprés quoi le contrile est passé en virtuel, au point d'entrée de la procédure.

La restauration du pouvoir du processus ne peut pas étre assurce par la
procédure qui, cette fois, n'en a pas le pouvoir. Elle utilise alors une ope-
ration CAL dont la fonction est :

— de réaliser un guichet de retour : ce guichet de retour — qui est différent
du guichet d’appel — a dii étre créé au moment de I'appel de la procédure ;
il est associé au processus appelant. On vérifie alors que le processus a le
droit d’utiliser ce guichet, en regardant sl est créé: dans le cas contraire
une erreur est detectée.

— de restaurer le pouvoir du processus.

— de réaliser le retour proprement dit, dans la mémoire virtuelle du pro-
cessus, en utilisant 1'adresse de retour qui a été rangée dans le guichet de
retour au moment de l'appel

Pour les mémes raisons que précédemment, ces actions sont effectuées en
adresses physiques, toutes interruptions masquees.
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5.3 MECANISME DE PROTECTION DANS LE SYSTEME MULTICS

5.31 INTRODUCTION

MULTICS, comme CLICS, (cf. 3.2) utilise un mécanisme ciblé de seg-
mentation avec un dispositif de protection attaché a chaque segment. Le
segment constitue la plus petite unité d'information 4 laquelle il est possible
de donner une protection spécifique.

Pour appuyer la présentation qui va suivre, inspirée de [Schroeder, 72],
nous introduisons les précisions suivantes.

— Pour chaque usager qui veut utiliser le systéme, on crée un processus
et un espace adressable (ou descriptif); on associe 4 ce processus le nom de
I'usager.

— L’information présente dans le systéme est constituée d'un ensemble de
segments : une liste de contréle d’acces (cf. 5.131) propre au segment, permet
de conmaitre pour chaque usager les droits qu'il posséde sur le segment.
Cette liste détermine donc la colonne de la matrice M, relative a cet objet,
ainsi que les évolutions possibles de cette colonne.

— Lorsqu'un processus fait référence & un segment, ce segment doit &tre
introduit dans le descriptif du processus, s'il n'y était déja; cette opération
qui est effectuée par une procédure du systéme, n'est effectivement réalisée
que dans le cas ol le nom de I'usager associé au processus demandeur figure
dans la liste de contréle d’accés du segment. Les droits de I'usager sont alors
inscrits dans le descripteur du segment, attaché au processus.

L’évolution des droits d'un processus sur un segment est obtenue en asso-
ciant au processus un pouvoir intrinséque, indépendant des objets, et sus-
ceptible de varier suivant certaines conditions. Les valeurs possibles du
pouvoir sont ordonnées ; elles sont appelées anneaux de protection (« rings »).
Les droits d’accés d"un processus 4 un segment sont alors définis, pour chague
acces possible (lecture, écriture ou exécution), par la liste des anneaux dans
lesquels doit se trouver le processus pour étre autorisé a effectuer I'accés
requis au segment.

Remargue. On peut, dans les calculateurs classiques, assimiler les modes
maitre et esclave a la présence de deux anneaux.

5.32 DEFINITION ET PORTEE DES ANNEAUX

Dans MULTICS le nombre d’anneaux a été limité 4 8. Les anneaux sont
numérotés de 0 4 7. Cette numérotation exprime en outre un ordre total sur
les valeurs des pouvoirs possibles. Un processus posséde les droits les plus
étendus lorsqu’il s’exécute dans I"annean 0, et les droits les plus faibles lorsqu'il
s'execute dans 'anneau 7.
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La possibilité pour un processus d'accéder 4 un segment par exemple en
lecture, en écriture ou en exécution, dépend de I'anneau dans lequel évolue
le processus au moment ou il effectue I'accés. Cet anneau est appelé par la
suite anneau courant. L'ensemble des anneaux consécutifs, pour lesquels
I'accés au segment est licite, forme la parenthése de cet accés pour le segment.
On définit pour chaque segment des parenthéses d’écriture, de lecture et
d’exécution. Ces parenthéses sont prises dans la liste de contréle d’acces du
segment et recopiées dans le descripteur associé au processus, au moment
ou le segment est introduit dans le descriptif. Ces parenthéses sont propres
4 un couple segment-usager: en d'autres termes, les parenthéses associées
4 un segment donné peuvent étre différentes pour deux usagers autorisés a
partager le segment. Une parenthése peut &tre vide 5’1l n’existe aucun anneau
ol l"accés correspondant soit possible.

Schématiquement le contréle de la référence & une adresse d'un segment
est réalisé de la fagon suivante en verifiant :

— d’abord que la parenthése du segment correspondante a 'accés demandé
n'est pas vide,

— ensuite que I'anneau dans lequel évolue le processus, ¢’est-a-dire |'anneau
courant, est bien inclus dans cette parenthése d’accés.

La figure 5 illustre les parenthéses de protection associées 4 un segment
de données modifiables mais non exécutables.

- Pouvoir croissant
! 0 ! ! 1 2 | . 1 4 1 5 | § I 7 J Anneaux
! i
% .
Parenthése Parenthése
d'écriture de lecture

Figure 5. Parenthéses d'écriture et de lecture.

Exemple 1. Considérons le segment décrit dans la figure 5 pour un processus
donné. Ce dernier pourra lire le segment 5'il se trouve dans un anneau dont le numéro
est compris entre @ et 3. Il pourra écrire dans e segment seulement s'il se trouve dans
I'anneau 0; il ne pourra jamais |"exécuter.

La figure 6 illustre la parenthése d'exécution associée 4 un segment-pro-
cédure.

0 ; 3 _.-...3—_ Pouvoir rr%is'smt ;
L 1 | 1 | ¢ ] ’ 1 1 ] Anneaux

1 R T
Parenihese
d’exécution

Figure 6. Parenthése d'exécution.
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Exemple 2. L'exécution, par le processus, de ce segment-procédure ne peut se
faire que dans 'anneau 3. Les conditions 4 satisfaire par un processus pour I'exécution
d’'une procédure seront étudiées au paragraphe suivant.

Remarque. Les parenthéses de lecture et d'écriture commencent toujours 4
I'anneau 0 ; par contre la parenthése d’exécution peut commencer 4 un anneay
quelconque. Ceci permet d’éviter l'exécution accidentelle d'un segment-
proceédure dans un anneau offrant davantage de pouvoir qu'il n’en faut nor-
malement 4 la procédure pour référencer ses données. En pratique la plupart
des segments-procédure ont une parenthése d’exécution restreinte 4 un seul
anneau.

5.33 CHANGEMENT DU POUVOIR D'UN PROCESSUS. NECES-
SITE DU GUICHET

Une instruction de branchement vers un segment-procédure peut étre :

— soit un appel de procédure (instruction CALL),

— so0it un retour de procédure (instruction RETURN),

— s0it un branchement inconditionnel (instruction GOTO).

L’exécution par un processus d'une instruction CALL ou RETURN peut
donner licu au changement de son anneau d’exécution et partant i une modi-
fication de son pouvoir. L'instruction GOTO, par contre, ne peut donner
liew & aucun changement de pouvoir; elle permet de se brancher vers des
segments-procédure seulement dans le cas ol leur parenthése d’exécution
contient I'anneau courant du processus.

5.331 Augmentation de pouvoir

Lorsqu'un processus, en exécution dans I'anneau n, appelle un segment-
procedure dont la parenthése d’exécution est [m, u] avec n > wu, le pouvoir du
processus doit €tre augmenté; cette augmentation implique un contrdle.

Pour cela on impose que I'exécution dans un nouvel anneau commence
toujours & une (ou plusieurs) adresse(s) définie(s) du segment-procédure,
appelee(s) guichet(s) ; ainsi seuls les branchements vers un guichet sont autori-
sés, et c'est seulement an guichet que I'anneau d’exécution du processus prend
sa nouvelle valeur. On garantit ainsi que les programmes qui commencent 4
ces adresses référenceront leurs données avec les droits d’accés — ni trop
faibles, ni trop forts — qui correspondent au nouvel anneau d’exécution.
Les guichets sont spécifiés, en associant 4 chaque couple segment-usager une
liste d’adresses de guichets; ces guichets sont un sous-ensemble des points
dentrée externes (cf. 3.262).

De plus, afin de contréler plus strictement toute augmentation de pouvoir,
on definit pour tout segment exécutable et pour chaque usager, une parenthése
d’appel. La parenthése d’appel d'un segment-procédure spécifie 'ensemble
des anneaux de numéros consécutifs, immédiatement supérieurs a la paren-
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thése d'exécution du segment et & partir desquels tout branchement vers
un guichet du segment est autorisé. On garantit ainsi que des segments qui
sont executables dans un anneau doté de droits importants, ne pourront étre
utilisés par le processus s'il évolue dans un anneau doté d'un pouvoir trop
faible. L'exemple suivant illustre I'appel d'un segment procédure, avec aug-
mentation de pouvoir.

Exemple 3. La protection attachée au segment est donnée par la figure 7 -

- Pouvoir croissant
a { 2 3 4 J b 7

1 | | 1 1 Il 1 [l I Anneans

r I H H

L"-—-_I,-}"‘hf'_m___-"| i

Parenthése de lecture | I I
L__...-.,?...._____.-.__...--{..-...___,.I Adresses de guichets

Parenthése Parenthése dans le segment - X, ¥, Z.
d'exgcution d'appel

Figure 7. Exemple de protection d'un segment-procédure.

Toute tentative d'exécution de ce segment par le processus évoluant dans 'anneau 7
sera refusée. 5i le processus évolue dans I'anncau 5 {ou ), il peut exécuter le segment,
4 la condition d’en commencer I'exécution par un des 3 guichets, dont les adresses
respectives 4 I'intérieur du segment sont X, ¥ et Z. Dans ce cas le nouvel anneau d’exé-
cution du processus est fixé 4 la valeur de la borne supérieure de la parenthése d’exé-
cution (ici 4) du segment. Etant donné que le segment procédure a &1é construit pour
travailler indifféremment dans les anneaux 3 et 4, le choix de cette valeur peut paraitre
arbitraire ; il n'en demeure pas moins conforme 4 la philosophie des protections qui
veul que I'on donne & un processus le pouvoir juste nécessaire 4 son exécution, mais
pas davantage.

5.332 Conservation du pouvoir

I1'y a conservation du pouvoir d'un processus lorsque celui<i exécute une
instruction de branchement (CALL, RETURN ou GOTO) vers un segment-
procédure dont la parenthése d’exécution inclut I'anneau d'exécution du
processus. L'opération CALL donne cependant lieu & un contréle par guichet
de I'adresse de branchement. Ceci permet de prévenir des appels de procédure
& des adresses qui ne seraient pas des points d’entrée. L'instruction GOTO,
par contre, permet d'ignorer les guichets.

L'utilité de la conservation du pouvoir se pose pour l'utilisation de cer-
taines procédures partagées, couramment employées (ce sont par exemple
des sous-programmes de bibliothéque) qu'il est nécessaire d'exécuter avec
autant de pouvoir que la procédure appelante, mais pas davantage. Afin
d’éviter que tout appel d’une procédure de ce type ne provoque un changement
de I'anneau d’exécution du processus, la parenthése d’exécution qui leur est
associée englobe plusieurs anneaux de numéros consécutifs. Ainsi 'exécution
de ces procédures continuera a se faire dans 'anneau d’exécution du processus,
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si celui-ci est inclus dans la parenthése d'exécution de la procédure. Dans
I'exemple 3, I'exécution du segment-procédure se fera indifféremment dans
l'anneau 3 ou 4 suivant que le processus évolue au moment de 'appel dans
I'un des anneaux 3 ou 4.

5.333 Diminution de pouvoir

Lorsqu'un segment-procédure doté de la parenthése d’exécution [m, u]
est appelé par un processus en exécution dans l'anneau n (avec n < m), cet
appel s'accompagne d'une diminution du pouvoir du processus. Le change-
ment de I"anneau d’exécution d’un processus dans le sens d'une diminution
de pouvoir ne devrait pas nécessiter de contrdle, en lui-méme, Cependant
deux problémes se posent :

— un probléeme de programmation : la procédure appelante peut trés bien
spécifier des paramétres que la procédure appelée n’a pas le pouvoir de réfé-
rencer, dans son anneau d’exécution ;

— un probléme de réalisation : le retour (par une instruction RETURN)
vers la procédure appelante, se fera dans le sens d’une augmentation de
pouVoIr ; en conséquence c'est une opération qui doit étre contrdlée avec
SOin.

Le premier probléme peut étre résolu en interdisant 4 la procédure appelante
de spécifier des paramétres qui ne seraient pas accessibles 4 la procédure
appelée. Une deuxiéme solution consiste 4 copier les paramétres passés dans
des segments accessibles cette fois 4 la procédure appelee, puis a les recopier
dans leur emplacement initial une fois le retour vers la procédure appelante
effectué. Cette solution présente toutefois un inconvénient : elle ne permet
plus le partage des paramétres entre différents processus.

Le deuxiéme probléme peut étre résolu en imposant que le retour vers la
procédure appelante passe par un guichet. Ce guichet de retour — qui est
différent du guichet d'appel — est associé 4 la procédure appelée: il doit
étre créé au moment de l'appel et détruit lors du retour vers la procédure
appelante. Dans le cas ou la procédure appelée est une procédure récursive,
les guichets de retour doivent étre gérés dans une pile.

Remarque. Dans la pratique, les appels de procédures avec diminution
de pouvoir ont une application limitée pour la raison essentielle suivante.

Considérons une procédure p, en exécution dans I'anneau r. qui appelle
une procédure p,, ayant pour domaine d'exécution I'anneau s {avec r < s5);
les parameétres rendus par la procédure p,, déterminent 'évolution ultérieure
de la procédure p,. Dans la mesure ol la procédure appelante accorde une
grande conflance aux résultats obtenus (ils sont peut-étre erronés) elle peut
comprometire gravement la sécurité des données et des procédures égale-
ment accessibles dans I"anneau r. Toutefois, les appels de procédures avec
diminution de pouvoir sont utilisés sans danger lorsqu’il n’y a pas transmis-
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sion de paramétres; cette technique est employée dans MULTICS pour
commencer 'execution du programme d’un utilisateur a partir d'une procé-
dure du moniteur.

5.3 IMPLANTATION CABLEE DES ANNEAUX DE PROTECTION

Un projet de réalisation de mécanismes de protection ciblés, bitis sur la
notion d’anneaux, est présenté dans [Schroeder, 72]. La description que nous
en donnons présente ['organisation du processeur sous les seuls aspects qui
ont trait au controle de 'acoés 4 une adresse.

5.341 Descripteur de segment

L'ensemble des segments appartenant & la mémoire virtuelle d’un processus
est défini par le descriptif des segments (cf. 3.222). Chaque descripteur (noté
SDW) decnt un segment, et un seul, de la mémoire virtuelle du processus.
Le numero de segment est utilis¢ comme index pour accéder, dans le descriptif,
au descripteur considéré. Chaque descripteur SDW contient 'adresse absolue
du segment en memoire, sa longueur et des indicateurs utilisés par le méca-
nisme de protection.

Dans l'implantation proposée, les définitions des parenthéses d'accés
et des listes de guichets ont été restreintes afin :

— d'une part, de diminuer I'encombrement du descripteur,

— d’autre part, de simplifier les tests de validité d’accés effectués par le
processeur.

Spw adresse longueur X | x2 | xs |L|E| I guicher

Les 3 numéros d’anneaux, contenus dans les champs (SDW. X1, SDW. X2,
SDW. X3) délimitent les parenthéses de lecture, d’écriture et d'exécution,
de méme que la parenthése d’appel, de la fagon suivante :

SDW . X1 SDW X2 SDW. X3

° L N , X XF, 7 Ameeew

1
1
I
|
Ecritures 1 |
i ] i

’-n..__..--v‘--._.-i-.__.-;-;p:]-._.-‘

Exécution i

|

- -

|

Leacture

Figure 8. Disposition des parenthéses de protection.

Crorus, — Syardwps d'explaitation des erdimaiors,
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Des témoins de lecture, d'écriture et d’exécution, respectivement donnés
par les champs SDW.L, SDW.E, SDW.I, permettent en outre de specifier
si une parenthése est vide ou non.

Pour simplifier la définition des listes de guichets, les possibilités ont &té
restreintes : par convention, seules les premiéres adresses d'un segment-
procédure sont des adresses de guichets. La liste de k guichets, associée au
couple segment-usager est donc déterminée par les & premiéres adresses du
segment : c'est ce nombre k qui constitue le champ SDW _guichet. 1l en résulte
que deux usagers différents ne peuvent avoir des listes de guichets disjointes ;
le premier (ou les premiers) guichet(s) d’une liste est (sont) nécessairement
communis) 4 tous les usagers autorisés a partager le segment ; les guichets
dont I'emploi est restreint 4 un petit nombre d'usagers (ou 4 un seul) sont
situés en fin de liste.

On rappelle que les champs du SDW sont localisés par le nom de 'usager
dans la liste de contréle d'accés attachée 4 chaque segment. En outre un
programme d’un usager, en exécution dans 'anneau n, ne peut pas spécifier,
dans la liste de contrble d'accés, des valeursde SDW. X1, SDW _ X2, SDW . X3
inférieures a n.

3.342 Exécution d’une instruction

Nous avons vu que le compteur ordinal CO (cest le registre R0 dans
CLICS) contenait 'adresse segmentée (nseg, nmot) de la prochaine instruc-
tion & exécuter. Il contient aussi le numéro d’anneau dans lequel s'exécute le
processus.

Les tests de validité d'accés se font par I'intermédiaire d'un registre de
travall RT, inaccessible au programmeur, composé de trois champs

RT arnean nsey T

Nous verrons, par la suite, que tout nom est constitué de ces trois champs.
Les registres pointeurs RP, accessibles au programme, sont les seuls registres,
outre ceux déja cités, & contenir des noms. Ils ne peuvent étre chargés qu’au
moyen d’'instructions spéciales qui ont pour operande un couple (nseg, nmot ) ;
I'anneau attaché 4 ce couple sera déterminé automatiquement au cours du
calcul de "adresse.

L’exécution d’'une instruction est réalisée en 3 étapes -

— recherche de I'instruction 4 exécuter,

— formation de I'adresse segmentée de I'opérande,

— interprétation du code opération, avec accés 4 I'opérande.

Pour chaque étape, nous illustrerons par des organigrammes le controle
exerce par le processeur lors de P'accés 4 une adresse.
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a) Recherche de Uinstruction & exécuter

L’adresse segmenteée de I'instruction 4 exécuter est contenue initialement
dans le registre CO. Le numéro d’anneau d’exécution courant (CO .anneau)

qui définit le pouvoir actuel du processus est également contenu dans ce
registre.

Lecture du descriptenr du segment
contenant [instruction & exécuter
Commentaire 1 (SD¥ = descripsif.[RT. nsegll

r -

Test de la parenthi N
d'nécf:tinn - @-31 £ RT. snean ¢ Sﬂl‘.b—* Errenr |

0|

Test du témoin d"exécuion ( 50w .1 = vrai }—-H—- Erreur 2
-

o]

Recherche de [Ynstruction.
Jon odresse dans le Fegment
25t dornée par: RT.rmot

i
Erreur 1 : violation d'accés : I"anneau d’exécution courant n'est pas inclus dans

la parenthése d'exécution du segment référence.
Erreur 2 : violation d'accés : exécution interdite.

Commentaire 1 ; le numéro du segment dans le descriptif du processus est donné
par le champ RT . nseg. -

Figure 9. Recherche de I'instruction.

b) Formation de I'adresse virtuelle effective de 'opérande

Lorsque linstruction référence un opérande, son adresse segmentée est
obtenue (cf. 3.24) en ajoutant le déplacement (INST. dépl), spécifié dans
linstruction INST, au contenu du registre pointeur RPn spécifié dans I'ins-
truction par le champ INST.RPnwn. Ce registre contient également un

numéro d’anneau qui permet de contréler si I'accés demandé est licite ou
nomn,
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L'opérande définitif peut éventuellement &tre atteint & travers une suite
d'indirections ; un contréle est effectué par le processeur i chaque niveau
d'indirection. Les adresses successives des mots indirects sont élaborées dans
le registre de travail RT. L'accés aux différentes adresses qui ménent, via la
chaine d'indirection, & 'opérande définitif peut se faire avec un pouvoir
différent mais toujours décroissant. Ce pouvoir est également rangé dans le

registre RT.

fm = INST ., RP mum |
HT-F‘FEE‘_{ = RPn.n:rg
RT .nmot ;= RPn_nmor + INST.depl

RT.sracay ;= mox(RT.cnneau, KFn. anneau) Commentaire 2
|
Instruction avee adreszaxe indirect }
- ""\-..M -

Lecture du descriptenr du segment
confenaat le mol indirect
(SOF = desenptif . [RT . nsegl)

i

N
< AT.onnean ¢ SOW.X, >———i Test de la pacen
thése de lecture

| Er
0 SOW.L = prai > reur 3 Test du témoin
71 de lectute
{ RT .nseg = (0. nseg >_*'"' Commentaire 3
- Errear 4
Recherche du mot indirece (IND ],
Son adresse dans le segment est:
RT. [Pl
|
RT. nseg = IND, nse g
RT.WE = f.'ﬁ'D.mrl:l-l!
AT .awnean .= meximem (RT. soneaw, SDW. Xy, IND.anneau Commentajre 4
|
ﬂ( ladirection en chaine )
o )
Etape 3

Erreur 3 : violation d’accds : I'anneau effectif n’est pas inclus dans la parenthése
de lecture du segment contenant le mot indirect.
Erreur 4 - violation d’accds : lecture interdite par le témoin.
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Commeniaire 2 > le pouvoir avec lequel se fera I'accés i I'opérande ou au premier
mot indirect sera inférieur ou égal au pouvoir défini par I'anneau d'exécution courant.

Commentaire 3 : le schéma suppose ici qu'il est possible de lire un mot dans le
méme segment, bien que le témoin de lecture ne soit pas positionné.

Commienitaire 4 . chaque fois qu'un mot indirect est obtenu, on met & jour le pou-
voir (RT.anneau) qui permettra de valider le prochain accés. Pour fixer sa nouvelle
valeur, on considére que le mot indirect (/ND) obtenu, a pu étre modifié par une
autre procédure du méme processus influencant par 1a le résultat du calcul de Madresse
effective de I'opérande. Tenir compte de la parenthése d'écriture (SDW.X1) de ce
segment dans la mise & jour de RT.anneau, garantit que la référence a l'opérande
sera contrdlée avec le pouvoir le plus faible qui pourrait aveir influé sur Madresse
effective.

Figure 10. Formation de I'adresse de I'opérande.

¢} Interpréwation du code opération avec aceés d l'opérande

Au début de la presente étape (Fig. 11), on dispose dans le registre de tra-
vall RT

— de l'adresse segmentée de 'opérande,
— du numéro d’anneau, définissant "accés requis a cet opérande.

Nous traitons I'exécution des instructions de branchement /GOTO J et des
instructions d'écriture, en laissant de coté les instructions de lecture qui
n’apportent rien de nouveau a la compréhension des mécanismes. Les instruc-
tions de branchement ne donnent lieu & aucun changement de pouvolr, mais
seulement 4 un controle de validité d'exécution.

Remarque. Si I'instruction 4 interpréter est une instruction de chargement
d'un registre pointeur RP, alors le contenu du registre RT est recopié dans
ce registre pointeur. De cette facon, on est assuré que le numéro d'anneau
qui est recopié dans le registre RP, est dans tous les cas supérieur (ou égal)
a l'anneau courant du processus.

5.343  Appel et retour de procédure

L’appel d'une procédure s'accompagne de la passation de paramétres et
du rangement de 1"adresse de retour.

Pour qu'une procédure puisse étre partagée par plusieurs processus. un
mécanisme doit permettre 4 cette procédure de ranger ses données a des
emplacements différents, suivant le processus qui 'exécute. Dans MULTICS.
a cet effet, une pile de travail est associée 4 chaque processus. Chaque procé-
dure utilise alors, pour désigner ses données, un registre pointeur de pile
définissant dans la pile du processus pour le compte duquel elle s'exécute,
la zone de travail qui lui a été allouée (dans CLICS le registre pointeur de
pile est le registre R3).

Du point de vue de la protection. la zone de travail d'une procédure ne doit
éure accessible qu'aux procédures s'exécutant dans le méme anneau que la
procédure considérée ou dans un anneau doté d'un pouvoir supérieur. Pour
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It ruction a Iastruction de

d" &crimure branchement COTo

Lecture du deserptenr du segment
contenant [ Tadresse de branchement
(SDW = descripeif.[RT . nsegl)

Lecture du desenpteur du segment
coatenart | 'operande

{SIF = descripeif.[RT .nseg))

RT . annean £ Eﬂ'r.xl

Emeur §

Exécution { BT .anpeas = 0. annpay N
de ! instruction -
) | Erreur 7

Exécution
d¢ [instreciton
—

Erreur | - violation d*accés : (parenthése d’exécution).

Erreur 2 : violation d"accés : (témoin d’exécution).

Erreur 5 violation d"accés : (parenthése d'écriture).

Erreur 6 - violation d’accés : (témoin d’écriture).

Erreur 7 : tentative de changement d’annean d’exécution autrement gue par les
mstructions CALL et RETURN.

Figure 11. Imterprétation du code opération.

cette raison, I'implantation de la pile de travail associée 4 un processus est
obtenue en créant autant de segments-pile qu'il v a d’anneaux d’exécution
possibles (c’est-a-dire 8 segments). De méme pour chague procédure, il existe
autant de segments de liaison qu'il existe d'anneaux d’exécution possibles
{cf. 3.242).

Exemple. La zone de travail des procédures en exécution dans I"anneau n est
implantée dans un segment-pile doté des parenthéses de lecture et d’écriture [0, n].
Ainsi les zones de travail de ces procédures ne sont pas accessibles 3 partir des proce-
dures s'exécutant dans un anneau de numéro supérieur a n,

a) Instruction CALL. Passation des paramétres

L'instruction CALL permet d’effectuer simultanément I"'appel d'une proce-
dure et le changement d’anneau d’exécution du processus. Dans le cas ol
l'appel de la procédure correspond & une diminution de pouvoir, I'instruction
CALL provoque un déroutement ; 'appel sera alors effectué par une procé-
dure du moniteur. L'appel de procédure avec conservation de pouvoir peut
étre vu comme un cas particulier de I'appel avec augmentation de pouvoir.
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Nous ne considérons donc que le cas d’une procédure P en exécution dans
l'anneau n. appelant un segment-procédure g dont la parenthése dexécution
est [, u] avec n > u. Le pouvoir du processus doit étre augmente.

Pour que I'appel de la procédure g soit satisfait, 1l faur :

— qu'il soit dirigé vers un guichet du segment g,

— que l'anneau d'exécution n soit inclus dans la parenthése d'appel du
segment 4.

En supposant ces conditions remplies, examinons comment sont réalisés
la transmission des paramétres ainsi que le retour correspondant vers la
procédure p :

1) La procédure appelée posséde par hypothése un pouvoir suffisant pour
acceder aux paramétres spécifiés par la procédure appelante p et ensuite pour
retourner le contréle 4 la procédure appelante.

2) La procédure appelée doit créer un bloc local dans le segment pile
correspondant 4 son anneau d’exécution.

3) La procedure appelée doit avoir un moven de contréler les références
aux paramétres qui lui sont passés ; en particulier elle ne doit pas éire amenée
a lire ou & écrire un paramétre pour lequel la procédure appelante n'aurait
pas ce droit d’acecés.

4) Enfin, la procédure appelée doit avoir un moyen d’identifier I'anneau
dans lequel évolue la procédure appelante pour éviter de lui rendre le contrale
avec un pouvoir supérieur & celui qu’elle avait au moment de I'appel.

Le deuxiéme point est résolu en reliant implicitement le numéro du segment-
pile & utiliser au numéro d'anneau de la procédure appelée. De cette fagon
le processeur calcule automatiquement le numéro du segment-pile associé a
la procédure appelée et le lui communique. De plus, par convention. un mot
particulier (ici le premier mot) de chaque segment-pile, désigne toujours le
début du bloc disponible 4 I'intérieur du segment-pile ; la procédure appelée
peut ainsi, & partir du numéro du segment-pile, construire son propre pointeur
de pile et partant accéder 4 son bloc local. La préservation et la restauration
de la valeur du pointeur de pile, associé 4 la procédure appelante. sont 4 la
charge de la procédure appelée. Dans le cas qui nous intéresse ici, 'appel
avec augmentation de pouvoir, cette convention ne viole pas les régles de
protection puisque la procédure appelée posséde davantage de pouvoir que
la procédure appelante.

Pour résoudre le troisiéme point, on impose 4 la procédure appelante de
construire, dans sa pile associée, une suite d’emplacements dont les contenus
deésignent les différents paramétres a passer; elle doit fournir en outre, a la
procédure appelée, "adresse de début de cette suite, dans un registre pointeur
RPa fixé par convention de programmation {dans CLICS c’est le registre R5).
La procédure appelée peut alors désigner un paramétre en utilisant I'adressage
indirect.
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Puisque le numéro d’anneau spécifié dans le registre RPa a été chargé par
la procédure appelante au moven d’une instruction spéciale (cf. remargue du
5.342¢)). sa valeur est supérieure ou égale a la valeur de 'anneau dans lequel
s'exécutait la procedure appelante au moment de l'appel. Il s’ensuit que
toute référence aux parameétres, par la procédure appelée, se fait avec un
pouveir identique (sinon inférieur) & celui de la procédure appelante. La
manipulation des paramétres est protégée tant que la procédure appelée,
dotée d'un pouvoir supérieur, ne fait pas d'action explicite pour augmenter
les droits associés 4 une liste de paramétres (par exemple en modifiant le
numeroe d'anneau associé au mot indirect).

La solution du quatriéme point (voir b) ci-aprés) consiste 4 ranger I'anneau
de retour de la procédure appelante dans un registre accessible a la procédure
appelée. Le retour vers la procédure appelante se fait dans cet anneau, via ce
regisire. Ce mécanisme est fiable puisqu’on est assuré qu'une procédure ne
peut pas charger dans un registre pointeur un numéro d'anneau lui donnant
des droits supérieurs aux siens.

Le cycle suivi par le processeur, au cours de I'instruction CALL, est donné
par la figure 12. On suppose 4 ce stade de 1'exécution que I'adresse effective
de branchement spécifiée par I'instruction CALL se trouve dans le registre RT.
Le registre CO contient I'adresse de I'instruction CALL et le numéro d’anneau
d'exécution courant. RT .anneau désigne 'anneau dans leguel doit étre
commencée 'instruction CALL.

Ce schéma appelle quelques remarques.

Laccés demandé pour une instruction CALL est calculé par rapport au
numéro d’anneau associé A 'adresse de branchement. Comme cette adresse
est obtenue par l'intermédiaire d'un registre pointeur RP et par indirection,
le numero d'anneau associé, RT .anneau, a pu prendre une valeur plus élevée
que celle de I'anneau dans lequel s’exécutait I'instruction. En conséquence un
appel de procédure qui se présente comme s'il v avait augmentation de pou-
voir par rapport & la valeur de RT.anneau, peut en fait étre un appel avec
diminution de pouvoir par rapport & l'anneau d’exécution courant
(CO.anneau). Puisque dans des circonstances normales, ceci représente une
erreur, une violation d’accés est déclenchée en (A) méme si I'anneau courant
s¢ trouve inclus dans la parenthése d’exécution du segment appelé.

En (B), I'instruction CALL charge dans le registre RPo un pointeur vers
le mot d'adresse () du segment-pile correspondant au nouvel anneau d'exéeu-
tion. Par convention, on décide que le numéro du segment-pile est le méme
que le numéro du nouvel anneau d’exécution. A partir de 14, la procedure
appelée peut construire elle-méme son pointeur-pile, ce qui lui permet de
repérer son bloc local.

b) Instruction RETURN. Détermination de U'armeau de retour

Le retour d’une procédure et partant le changement d’anneau d’exécution
du processus est réalisé par I'instruction RETURN. Un retour de procédure
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Lecture du descriptenr du segment

contenant { ‘adresse de branchemens
SDF = descripeif . [RT

Témain
d'exéention
RoR posiblionne

{:ﬁr,“,g:m,m 2 On igeore la liste de
: - T guichers lorsque |'adresse
Tentative d ﬁppﬁ se mouve dans le méme
i ame odresse oulre -n——{r amor < 30T, gld} 1 sepment que | insrucrion
qu'un guichet 0 l
QT. annean > SDW I}L—- Appel ovec dimi=
[ nufion de pouvsi
Anneau effectif g

sitné au~dessus N ]
de la parenthise QET - anneau £ SDF . ‘% Tesr de la parenthise

3 d'appel
d'appel a ]

Caleul du souvel annean
d'exécurbon

A
RFy . nseg := RT.onmeaw ®) 4
. Créaton d'un poineur
RP..arneas = RT.aaneca de base de pile

RPy . mmot ;= {
] |

0 .= KT

Figure 12. Interprétation de I'instruction CALL.

dans le sens d'une augmentation de pouvoir provoque un déroutement : le
retour est alors & la charge d'une procédure du moniteur. Le retour avec
conservation de pouvoir peut étre vu comme un cas particulier du retour
avec diminution de pouvoir.

La figure 13 illustre le fonctionnement de cette instruction ; & ce stade de
I'exécution, on suppose que I'adresse de retour se trouve dans le registre de
travail RT.

L'anneau de retour, RT.anneau, est celui qui est attaché a I'adresse de
retour. Dans le cas d'un retour avec diminution de pouvoir, tous les numéros
d'anneaux figurant dans les registres pointeurs RP sont remplacés par un
numéro conférant un pouvoir inférieur (ou égal) 4 celui de I'anneau de retour.
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Inze.
RETUR,

Lecture du descriptesr du segment ‘

cortenant {edresse de retowr

(SDF = descripeif. [RT . nseg])

L T -
N Le nouvel annegs
@F’.Iﬁﬁtumcﬂuﬁmw-l dexéeution esr situs
I:I en dehors d1-E la
T émain parenthese d'wxd curion

d'exécution ."‘-( SOW .1 = oui '}

A pesitionné =

= Reto
AT.anneau ;- C0.annean >_-.': avee m;m:‘f o

de LA
o P

RFPr . ganeay = max| RPw anseau, BT, annegu)
pour m o= 0, i,

3 .= RT

Figure 13. Interprétation de I'instruction RETLRN

Cette substitution, associée au fait que les registres RP ne peuvent étre chargés
que par des instructions spéciales, garantit que les numéros d’anneaux figurant
dans ces registres ne conféreront pas un pouvoir supérieur  la procédure
appelante.

Détermination de l'anneau de retour

Puisqu'aprés une instruction CALL les registres RP (excepté RPo qui est
modifié par le CALL) sont encore ceux de la procédure appelante, ils contien-
nent des numéros d’anneaux qui définissent des pouvoirs inférieurs ou iden-
tigues a celui de la procédure appelante. Tout schéma de retour qui utilise
comme anneau de retour une de ces valeurs, ne viole donc pas les régles de
protection.

Avant d’exécuter l'instruction RETURN, la procédure appelée doit avoir
rechargé le registre pointeur de pile de la procédure appelante a la valeur qu'il
avait avant I'appel; elle peut donc utiliser ce registre RP pour repérer indi-
rectement I'adresse de retour. Ce mécanisme suppose bien siir que la procédure
appelante ait rangé "adresse de retour 4 une position fixée dans son bloc local,
avant d'exécuter I'instruction CALL. On garantit ainsi que [instruction
RETURN n’associe pas a I'adresse de retour un numéro d'anneau qui augmente
le pouvoir de la procédure appelante.
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Remarque 1. Lors d'un déroutement pour violation d’accés, le processeur
change automatiquement d’anneau d’exécution (l¢ nouvel anneau est I'an-
neau () et transfére le contrdle & une adresse donnée du moniteur. Une ins-
truction particuliére permet de recharger ultérieurement I'état du processeur
a la valeur gu'il avait au moment du déroutement.

Remarquel L’exécution des instructions privilégiées (opérations d entrées-
sorties, ...) n'est possible que dans 'anneau 0, ce qui restreint leur utilisation
aux prmedures du moniteur,

5.35 CONCLUSIONS

La structure imbriquée des anneaux permet de hiérarchiser I'information
(procédures et données) en fonction du niveau de protection souhaité. Ainsi
un processus qui évolue dans un anneau donné a le pouvoir d'exécuter libre-
ment les segments-procédure, de lire ou de modifier les segments de données
qui sont situes dans le méme anneau (ou dans un anneau de pouvoir moindre) ;
toute action sur des procédures ou des données qui sont situées dans un
anneau doté de droits plus grands est, sinon interdite, du moins rigoureu-
sement controlée.

Dans MULTICS, comme dans CLICS, 1l n'y a pas de processus moniteur
mais uniquement des processus d'usagers; les différentes fonctions du moni-
teur sont alors réparties dans chaque processus d’usager sous forme de seg-
ments-procédure dotés de droits différents suivant le miveau de protection
souhaité. La décomposition du systéme, béti sur ce principe est la suivante :

anneau 0 : c'est 4 ce nivean que sont implantées les fonctions vitales du
systeme : procédures d'entrées-sorties, procédures réalisant le
multiplexage de la mémoire et de 'unité centrale, ...

anneau | : on y trouve les divers services du moniteur : traducteurs,
procédures de gestion de fichiers, ...

anneau 4 | a ce niveau s'exécutent les programmes des utilisateurs.

Remarque. Les anneaux 2 et 7 peuvent de la méme fagon étre employés
par un utilisateur pour définir des sous-systémes protégés. partagés avec
d’autres.

EXYERCICE
1. [2]
On considére 2 usagers u, et u, du systétme MULTICS. Ces usagers se partagent :

— des segments-procédure identifiés par p,, p,. py et py.

— des segments de données identifiés par 5,. 5, ef 55.

L'ordre d'appel des procédures, et les actions qu'elles effectuent, varient suivant
I'usager &, ou u; pour le compte duquel elles s'exécutent. Ainsi la procédure p, appelle
la procédure p, ou la procédure p; suivant qu'elle est exécutée par le processus u,
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ou par le processus u;. De méme la procedure p, peut lire le segment 5; lorsqu’elle
est executée par u, ; elle peut aussi le modifier lorsqu’elle est exécutée par u,.

Toutes les interactions entre segments sont traduites sur les graphes suivants on
les accés en lecture, écriture, exécution sont notés par des fléches respectivement
étiquetées L E. [

Usager =y Usager Gy

On demande de définir, pour chaque segment et pour chaque usager, les parenthéses
d’acces qui figurent dans la liste de contrdle d accés du segment (on suppose que ['on
dispose de 8 anncaux de protection). On rappelle que les parenthéses d'accés des
procedures doivent traduire, pour chaque usager, I'ordre d'appel des procédures.
On suppose que le moniteur qui traite les appels de procédure avec diminution de
pouvorr les refuse pour les besoins de ce probléme.
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MESURES ET MODELES
DE SYSTEMES

6.1 INTRODUCTION

Ce chapitre est consacré aux divers modes d’analyse quantitative des sys-
temes. On y développe I'étude des systémes par les modéles mathématiques
et la simulation, puis on y décrit sommairement les techniques de mesure.
On examine I'aide apportée par chacune de ces méthodes danalyse 4 la concep-
tion et 4 la mise au point des systémes.

6.11 INTERET ET IMPORTANCE DES ETUDES QUANTITATIVES

L’étude quantitative des systémes permet de mieux comprendre leur fone-
tionnement en vue de 'améliorer. Le coiit et la complexité du matériel et des
programmes ont tendance 4 augmenter; l'intérét économique d'une bonne
utilisation de ces ressources est donc certain. Indiquons les principaux champs
d’application des techniques d’évaluation :

1) Choix ou modification d'une configuration ou d'un systéme

Le choix ou la modification d’un systéme complet nécessite la connaissance
des conditions d’exploitation et des performances que 'on désire en obtenir.
Des mesures sur les systémes existants permettent parfois de prévoir quel
sera le comportement du nouvean systéme. Les intéréts économiques mis en
Jeu demandent a cette prévision d'étre aussi juste que possible. Une simulation
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ou un modéle analytique permettent, entre autres, d’apporter des éléments
de réponse aux questions suivantes :

— & colit donné, doit-on acheter un bloc de mémoire supplémentaire ou
un nouveau tambour ?

~— dans un systéme d’exploitation utilisant une partition fixe de la mémoire,
comment choisir cette partition 7

2) Comprabilité

La connaissance du taux d’utilisation des diverses ressources d’une instal-
lation (temps d’unité centrale, mémoire centrale et secondaire, périphériques,
traducteurs...) permet de répartir les frais de cette utilisation parmi une
communauté d'usagers, en fonction des ressources effectivement utilisées
par chacun. Les statistiques ainsi recueillies peuvent également servir de guide
pour une extension du systéme, une modification des conditions d’utilisation,
une amelioration du service fourni.

3) Optimisation des programmes

Les performances d'un programme accomplissant une tiche donnée peuvent
varier dans des proportions considérables. 11 est important de vérifier 1'effi-
cacité des programmes fréquemment utilisés. L’optimisation des perfor-
mances est particulidrement importante pour les programmes (compilateurs
ou systémes d'exploitation) utilisés par un ensemble d’usagers. Des mesures
permettent de déceler les parties les plus fréquemment utilisées. Lorsque le
choix est possible entre plusieurs algorithmes, un modéle peut permettre de
prévoir celui qui donnera les meilleurs résultats. Enfin tout programme est
modifi¢ au cours de son existence et il est utile de vérifier que ses performances
ne sont pas altérées par ces modifications.

4) Conception et construction de systémes d’exploitation

La conception d’un systéme est toujours fondée sur certaines hypothéses,
parfois non explicitement formulées. Il est utile de disposer de renseignements
quantitatifs sur des systémes analogues au systéme projeté, afin de pouvoir
établir ses spécifications et de formuler les hypothéses initiales. Celles—ci
concernent aussi bien le fonctionnement interne du systéme que I'environne-
ment dans lequel il doit travailler (charge, comportement des usagers). Au
stade de la réalisation, les mesures permettent, par évaluations et modifica-
tions successives, d’obtenir les résultats attendus. Par ailleurs, si un modéle
de simulation est utilisé pour aider aux choix de conception, la validité des
resultats qu'il fournit dépend de celle des données de la simulation : il est
donc utile que ces données puissent étre Stayées par un ensembie de mesures
faites sur le systéme réel,

J) Conception de matériel

Plus encore que pour la conception de programmes, les modéles et les
mesures sont utiles pour la conception du matériel car une modification du
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cdblage peut étre trés coilteuse et trés longue 4 mettre en ceuvre. La connais-
sance des caractéristiques de la charge est ici encore essentielle. Un exemple
typique d’application est la détermination des fonctions qu'il est rentable
de cibler ou de microprogrammer, dans des conditions données d’utilisation.

6) Recherches sur les sysiémes

Le développement de modéles théoriques de programmes et de systémes,
et la comprehension du fonctionnement des systémes existants nécessitent
une bonne connaissance du comportement de ces programmes et de ces
systémes. On est donc amené & définir des grandeurs caractérisant ce compor-
tement et & obtenir, par des mesures, des valeurs numeriques de ces grandeurs,

6.12 METHODES DE MESURE ET D’EVALUATION

Les méthodes d’etude quantitative des systémes se divisent en deux classes,
selon que I'on s'intéresse au systéme réel ou & une représentation de ce Y5~
téme ; dans chaque cas on dispose de moyens différents d’investigation.
Schématiquement, on peut établir la classification suivante

Etude des systémes réels mesures cablées
et des programmes : MEesures programmees

Représentation de systémes | modéles de simulation
et de programmes : modéles analytiques

Il est important de souligner qu’aucune de ces méthodes, en raison des
limitations propres qui seront examinées plus loin, n'est suffisante a elle seule
pour toutes les tiches d'évaluation. Les résultats les plus fructueux sont obtenus
en combinant deux ou plusieurs des techniques ci-dessus.

Exemples. Les données d'entrée d'un modéle de simulation (ou des ordres de
grandeur pour ces données) peuvent &tre oblenues par des mesures sur un systéme
réel.

Un simulateur de charge programmé peut étre utilisé pour étalonner un équipement
de mesure cibleé.

Dans un modéle de simulation, un sous-ensemble du systéme étudié peut étre rem-
placé par un schéma mathématique, pour augmenter la rapidité d’exécution du pro-
gramme de simulation.

6.2 LES MODELES DE SYSTEME

6.21 LES OBJECTIFS DES MODELES

Pour étudier le comportement d’un systéme quelcongue, que ce soit une
usine ou un systéme d’exploitation d’ordinateur, on peut en construire un
modéle contenant un certain nombre de paramétres ajustables. On n’envisage
ici que la représentation d’un systéme d’exploitation ou d’'une partie d'un
tel systéme,
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Suivant le degré de fidélité souhaité, on construit un modéle mathématigue,
en général trés simplifie, ou bien un simulateur qui peut atteindre une grande
complexité. L'interét du modéle analytique est qu'une formule fournit rapi-
dement une réponse, pour toutes les valeurs des paramétres. Le simulateur a
I'avantage de permettre I’étude de systémes plus complexes, la modification
d’algorithmes et I'utilisation de lois de probabilité quelconques pour lesquelles
peu de propriétés mathématiques sont connues.

Une difficulté majeure des modeéles provient du comportement aléatoire
des systémes. Les résultats obtenus sont des statistiques qui peuvent présenter
des fluctuations telles qu’il ne soit pas possible de tirer des conclusions bien
nettes. Pour cette raison, il est parfois plus utile de construire un modéle
mathématique, méme trés simplifié, plutdt qu'un simulateur élaboré, 11 faut
noter en outre qu'un programme de simulation de grande taille peut se révéler
coliteux a I'exécution et difficile 4 mettre au point, ce qui le rend peu maniable
pour I'expérimentation.

6.22 EXEMPLES DE MODELES ANALYTIQUES

La recherche dans le domaine des modéles mathématiques se développe
rapidement et dans des directions trés diverses [Coffman, 73]. Citons quelques
exemples : comportement global d’un systéme [Mc Kinney, 69; Coffman,
68]. algorithmes de remplacement [Mattson, 70], comportement des pro-
grammes [Denning, 72|, gestion des disques [Frank, 69).

6.221 Echange de pages avec un disque 3 tétes fixes

Nous nous intéressons uniquement au calcul des temps d'accés (cf. 4.532)
pour deux politigues de gestion des demandes [Denning, 67).

Considérons un disque & tétes fixes, tournant uniformément avec une
période de révolution r. Une piste de disque comprend un nombre entier m
de secteurs, le secteur étant 'unité d’adressage. Nous poserons

y =

F~

Nous supposons que la commutation d'une téte entre les modes lecture et
écriture peut se faire pendant I'intervalle séparant deux secteurs consécutifs,
* si bien qu'il est inutile de distinguer le sens du transfert ; nous négligeons
la wvérification d’écriture.

Lorsque les demandes sont traitées dans 'ordre d’arrivée (politique FIFO),
la premiére demande risque d'étre éloignée de Ia position courante des tétes,
d’otl une perte de temps qui, dans le pire des cas, atteint un tour de disque ;
une politique courante consiste 4 réordonner les demandes en attente, de
fagon & réduire les temps d’accés : lorsque le transfert d'un secteur est terminé,
on choisit alors la demande la plus proche des tétes (politique SATF « Shortest
Access Time First »). Nous allons calculer le temps d’accés moven aux secteurs
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pour les deux politiques FIFO et SATF: nous supposons les demandes
réparties uniformément sur le disque.

Le temps d'acces & un secteur donné, A partir d’un instant arbitraire, se
décompose en une somme de deux variables aléatoires indépendantes :

— une variable r. de distribution uniforme 1/5 sur [0, 5], représentant le
temps d’accés au début du prochain secteur,

— une variable aléatoire discréte u représentant le temps d’accés au sec-
teur demandé a partir du début du prochain secteur : cette derniére variahle
peut prendre, avec la méme probabilité J/m, les valeurs 0, 5, ..., (m — | J 5

Le temps d’accés moyen 4 un secteur quelcongue, 4 partir d'un instant
arbitraire, est donc égal a :

£
B LTS L
ﬂ—‘[:l f? +,E='.u HE—E-FFM"IJE—E

Ce resultat était aisément prévisible. En se plagant sur une limite de sec-
teur et non plus & un instant arbitraire, le temps d’accés moyen est /m — 1) %

Considérons maintenant un paquet de n demandes indépendantes, ordon-
nées en fonction de la politique suivie. Les nouvelles demandes arrivant
pendant le transfert sont ignorées tant que le paquet n’est pas épuisé.

Calculons la moyenne du temps total d’accés en fonction de a.

a) Politiqgue FIFO
Le temps d’accés moyen de la premiére demande est r/2, comme nous

venons de le voir ; celui des suivantes est égala fm — 1) 5 car, aprés exécution

d’'une demande, les tétes se trouvent sur une limite de secteur. Pour les n
demandes le temps d'accés total est donc, en moyenne :

Ap(n) =5+ (n— 1) 251

£

b) Politique SATF

Nous commencerons par démontrer un résultat préliminaire :

Soit un ensemble de h variables aléatoires indépendantes 1, ..., [,, de méme
distribution p(t). Considérons la variable aléatoire x, toujours égale a la plus
petite des variables ¢, :

x =min { fy, f3, ... by }

Nous avons, Pr désignant une probabilité :

Prix>u) =Prft, >ut;>u..,t,>u)
= (Pr{t>u))
= (Gfu))*
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Giu) =Pritr>u) = Jﬂp{r} dr

W

Dot le résultat : la moyenne du minimum est

X = L Pr (x > u) du =J‘n (Glu))* du

Soit a le temps d’accés 4 un secteur donné, en se plagant sur une limite de
secteur. La fonction de répartition Pr fa < u) est une fonction en escalier -

oo b’ D
—_——— —
FJ
45 4
&
Ea
-
35 & L

2/8 |

15 |

i : P
Js 4 58 =r 1

Figure 1. Fonction de répartition du temps d’accés i un secteur.

Remplagons l'escalier par la droite en tirets D' passant par le milieu des
marches ; nous obtenons :

0 =
! u . 1
Pria < u) ~ E_r;-i_F O<u=U oun U=( -E)s
u=>yU

En appliquant le résultat précédent nous obtenons la moyenne du temps
d’accés au secteur le plus proche :

o
! ul\" r I\t
dg(n) =~ — e — = = - =—
s(n) L( e r)du H+!(I Em)

Sil'on se place en un point quelconque du disque et non plus sur une limite
de secteur, la fonction de répartition est représentée par la droite D d’équa-
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tion u/r, pour 0 < u < r: le temps d'accés au secteur le plus proche a pour

moyenne
o r n+ 1

Au total, pour les n demandes, le temps d’accés a pour moyenne approchée
(exercice 1) :

r

As(n) “a+ 1

+oasfn~ 1) +agfn—2) + - + ag(l)

La figure 2 monire clairement le gain obtenu avec la politique SATF.

Movenne du temps
total d'acces (en ms)

FIFD
00 3=
8 L
6 4 SATF
4 A
m=
. r= i) ms
b I '
i
]
1
!

¥ - NMombre de
demandes

I 2 3 4 3 n
Figure 2. Comparaison de FIFO et SATF dans le modéle du disque.

6.222 Un modéle d*allocation de processeur [Coffmann, 73 ; Schrage, 66]

Considérons un systéme monoprocesseur dans lequel le temps d’unité
centrale est alloué par quantum g entre les différents travaux. La politique SET
(« Shortest Elapsed Time ») a pour objectif de favoriser les travaux de faible
durée, sans connaitre par avance le temps d'exécution des travaux.
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La politique SET est la suivante : tout travail recoit un seul quantum g
a la fois, sans réquisition. Un travail libére I'unité centrale lorsqu’il est terminé
ou arrivé en fin de quantum. Dés que I'unité centrale est libre, on active |e
travail ayant regu le moins de quanta.

Il s’agit donc d'une politique d’ordonnancement 4 plusieurs niveaux (cf. 4. 3),
Les travaux sont rangés dans des files de priorités différentes : tous les travaux
non terminés et ayant épuisé k quanta entrent dans la file k + I, dans I'ordre
d'arrivée (FIFO). La priorité décroit avec le numéro de la file k.

T Drurde totale dy
travail
k= 3 C . T

D

- g

1

Arrivie } — k=] | = g

—t

Nous supposons que les demandes arrivent suivant une distribution de
Poisson, de débit moyen 4. Leurs temps d’exécution suivent une distribution
discréte quelconque, g; représentant Ia probabilité de durer i quanta.

Nous nous proposons de calculer le temps de réponse moyen Wik} pour
un travail de k quanta. Ce temps de réponse se décompose en deux parties :

— le temps d’attente moven 4. di aux autres demandes,
— le temps d'exécution.

Nous negligerons le temps de commutation d’un travail & un autre.
Nous avons donc

(1) Wik) = 4 + kg

Considérons un travail donné 1, de k quanta; ce travail va attendre d’une
part parce qu'il y a des travaux commencés avant lui et non encore termings,
d’autre part parce que de nouveaux travaux arriveront pendant son traitement
€l recevront leurs premiers quanta en priorité,

Nous décomposons le temps d’attente 4 ep -

[2} A——.Ar-l—_d”

— A’ est le temps moyen mis pour terminer le quantum en cours et pour
Servir toutes les demandes arrivées avant r et situdes dans les k premiéres
files dattente.
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— A" est le temps pour servir les demandes arrivées apres I, jusqu’au
(k — i)-1éme quantum inclus; & partir du moment ou ¢ entame son dernier
quantum k les nouvelles arrivées n’ont plus a étre prises en compte.

a) Calcul de A" ¢

Soit G(n) la fonction de répartition des temps d'exécution, ¢’est-a-dire

Gin} = Z i
i=1

Le temps moyen d'unité centrale consommé par une demande ayant regu
au plus n quanta s’écrit -

S(n) =} igg, + ng(l — G(n))

i=1

le second terme correspondant aux travaux de plus de n quanta.
Pendant 'attente de durée 4 du travail 1 et I'exécution de ses k — 7 pre-
miers quanta, le nombre d'arrivées croit en moyenne de

A4 + (k — 1) g]

Tant que ¢ n'aura pas regu son dernier quantum, chacun des nouveaux
travaux prendra, en moyenne, S/k — /) quanta ; d'ou :

(3) A" = iA + (k—1)q)Srk = 1)

b) Calcul de 4",

Nous allons modifier artificiellement la politique de facon a faciliter le
calcul du terme A4

Considérons donc une politique ot toutes les demandes dans la premiére
file peuvent recevoir jusqu'a k quanta, mais un seul quantum dans les files

de priorité inférieure :
------ Durée totale du
travajl
T

C’ o k+2)g

o (k+ 1)g
Travaux non cerminés
Arrivées 3 —.' I I £ ky
—
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Un travail donné ¢ de k quanta attendra donc uniquement dans la premiére
file et sera servi en une seule fois.

Soit A, le temps d’attente de 1; ce temps d'attente est dii aux demandes
précédant ¢ dans la premiére file et au travail en cours. Nous allons montrer
que I'attente A, est égale 4 I'attente 4’ dans la premiére politique.

Portons, sur I'axe du temps, les périodes oisives de 'unité centrale, dési-
gnées par les phases 0 sur la figure ci-dessous

& k
;;il}.l-l ﬁklf-‘ % >k = Temps
I | ]
Phase ' 1 ; 2, o ' 112 j 1§z 0
H i | i i 1
] : : i i i [
Processeur |  Aceit | Oisif | | I
i i

Dans les deux politiques, le temps de gestion des travaux est négligé ;
le temps total d'exécution d’un groupe donné de travaux ne dépend donc
pas de la politique : la distribution des intervalles d'oisiveté est la méme pour
les deux politiques.

Dans un intervalle d'activité, nous distinguons les phases de type | pen-
dant lesquelles les travaux recoivent uniquement des quanta d’ordre k au
plus, et les phases de type 2 o les quanta sont d’ordre supérieur 4 k ; les dis-
tributions de ces phases sont également indépendantes de la politique choisie.

En résume la distribution des trois phases est la méme dans les deux poli-
tiques.

Reprenons la demande r de k quanta -

—— si elle se présente alors que le systéme est dans une periode d’oisiveté,
I'attente est nulle dans les deux politiques

— si elle se présente alors que le systéme est dans une phase 2, la demande ¢
attend la fin du quantum en cours, et cette attente est la méme dans les deux
politiques ;

— si ¢elle se présente alors que le systéme est dans une phase 1, on peut ne
considérer que les travaux arrivés avant ¢ et ayant requ moins de k quanta.
Le temps d’exécution de ces travaux jusqu’au k-iéme gquantum est indépen-
dant de la politique. Le temps d’attente de r est égal au temps total d’exécu-
tion de ces travaux, identique dans les deux politiques, moins la somme
des temps déja regus. Cette somme est ¢égale au temps séparant le début de
la phase 1 de I'arrivée de ¢ elle est donc la méme dans les deux politiques.
En conséquence, le temps d'attente de ¢ est le méme.

Dans les trois cas, I'attente de ¢ est indépendante de la politique. Il en est de
méme des probabilités respectives de ces cas. I en résulte que :

A, = 4
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~ Nous pouvons écrire, pour la seconde politique :

A, = R(k) + mS5(k)
ol -

— R{k) est le temps moyen pour terminer le travail en cours,

— m la longueur moyenne de la premiére file.

Nous ferons appel & la relation de Little [Little, 61] qui s'applique 4 un
systéme en équilibre, dans lequel entrent des demandes avec un débit moyen
d'arrivée a; 81 § est le temps moyen de résidence dans le systéme alors le
nombre moyen L de demandes dans le systéme est égal a :

L = a8

quelle que soit la fagon dont les demandes sont traitées (exercice 2).
Nous obtenons ici :

m = 4id,
1l vient :
__Rik)
(4) A = TS0

Soit §,(k) la moyenne du carré du temps de service jusqu’au k-iéme quan-
tum :

k
Si(k) = "_gl (ig)* g; + (kq)* [I — Grk)]

Nous admettrons le résultat suivant, sans démonstration :

) Rik) =5 (S:00 + ¢ 5 11— 600)
i=k
En substituant (4) et (3) dans (2) nous obtenons I’équation :
. Rik)
A=A+ (k=1)q)Stk = 1) + T=5<75

d’oll nous pouvons extraire la valeur de A.

Finalement le temps de réponse moyen (1) s’écrit :

S:(k) + ¢° E-Et [1 — Gfi)] k—1)q

wrk)=”' +q

20 = ASk U - iS5k = 1)1 " T—- iS(k = 1)
Dans le cas d'une politique FIFQ, le temps de réponse est donné par la
formule suivante [Conway, 67] :
S;
I - i§

A
W=S+E
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[~18
[=1#

S =

(ig) g; et 51=_
I

(ig)* g;
1

La figure 3 compare les politiques SET et FIFO ; elle montre que le temps
de réponse des travaux d’un quantum demeure voisin du quantum dans la
politique SET.

Temps de réponse
moYen (secondes)

4

t t 4 i 4 (175)
o a.a 0.2 0.3 0.4 05

Figure 3. Comparaison des politiques FIFO et SET pour l'allocation de processeur.

6.223 Un modéle de systéme conversationnel

La complexité d'un systéme n'implique pas nécessairement qu'il faille
un modéle compliqué pour calculer certaines de ses caractéristiques. C'est
ainsi que Scherr a construit un modéle qui, en dépit d’hypothéses simplifi-
catrices, représente convenablement le temps de réponse du systéme CTSS
[Scherr, 65] (Fig. 4).

Dans ce systéme, les demandes provenant des consoles sont traitées en FIFO
et une seule a la fois (monoprogrammation).

L'usager conversationnel a un comportement cyclique avec une phase
de réflexion (usager oisif), pendant laquelle le programmeur réfléchit et
tape sa demande, suivie d'une phase d’attente de la réponse (usager actif).

Dans ce modéle le temps de réflexion est representé par une distribution
exponentielle. de moyenne R, soit -

Pr { réflexion < ¢} = | —exp(—%)
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Le temps de traitement d'une demande est représenté également par une
distribution exponentielle, de moyenne T'; ce temps de traitement comprend
le temps de chargement du programme correspondant et le temps de son
exécution.

Si un usager donné est oisif & I'instant 1, la probabilité qu'il quitte I'état
oisif entre ¢ et ¢ + dr est égale a di/R ; s'il est actif 4 instant 1, la probabilité
qu'il devienne oisif est ; dy/'T.

Soit n le nombre de consoles en interaction, nombre que nous supposerons
constant. A un instant donné 7, on observe (), 7, ... ou n usagers actifs ; soit
Polt). ... Pa(t) les probabilités respectives d'observer ces divers états a
Iinstant ¢. A l'instant 1 + dt ces probabilités ont changé, car pendant 1'in-
tervalle d7 le premier usager actif a pu devenir oisif, et un ou plusieurs usagers,
oisifs a I'instant ¢, ont pu devenir actifs. Nous négligerons les transitions
avec changement d’état de deux usagers ou plus, car les probabilités corres-
pondantes sont de I'ordre de (dr)®.

Supposons qu'a I'instant ¢ + dr on observe i usagers actifs, avec i % 0
eti v n:autemps il yavaiti — I, ioui+ J usagers. La probabilité de la
transition { + / — iest égale 4 dt/T. Celle de i — [ — 7 est égale 3

n—E’—JJdL

caril yan — (i — 1) usagers & l'instant ¢ susceptibles de passer 4 I'état actif,
Enfin la probabilité de la transition i — i égale / moins la probabilité de quitter

Jar.

ve . ) !
I'état i, & savoir : | = +

Probabilités 4 'instant ¢ Probabilitésa 'instant ¢ + dr
n—i+1

Pi—yi't)

pilt) . T dr — (i) pift + dt)

. = i
Pisi(l) T

Appliquons le théoréme des probabilités composées :

Prii,t+dt) =Pr(i—1,t)xPrii—1-i
+ Priit) x Prii—=i) (fi#0, i #n)
+Pr(i+1,1) x Pri+1—i
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d’oil
Pt + di) = py(t) + dr[— pir:;("; L+ ji,) +

n—1i+1 i
+Pi—1f’f}_'_ﬂ""'—+.ﬂi+1{” T]

On vérifiera que pouri = feti=nona :
n !
Polt + dt) = paft) + d:[— Paft) & + py(t) T‘]

. {
Palt + dt) = p.ft) + d![— .ﬂJU%hﬂu-.fU ﬁ]

Ces équations peuvent s'écrire en utilisant les dérivées :

. n—1 f) - i+ 1 )
pift) = —PanI: R I+T]+Fu—||’Uu—R——+P.-+1|’U?
, )
polt) = —Fn”f% +P1FIJ?
(1) = — pft E - (t 4
Fﬂ .-"I - PI! .-"IT Pﬂ—l ,-‘IR

Au bout d’'un certain temps, le systéme atteint un régime d’équilibre si n
reste constant; ce régime d'équilibre est caractérisé par des probabilités
indépendantes du temps, soit :

pift + dt) =pift) =p, Vi
d'oi pit) =0 Wi

Le systéme différentiel se réduit a un systéme d’équations linéaires qui
donne, aprés quelques calculs algébriques :

_ n! Ty
Pi= =i 1\R) Po

Utilisant la relation de normalisation -

on en déduit :

I 2 n! Ty
p_u‘fétornﬂ;:!(ﬁ)

La quantité p, représente la fraction du temps pendant laquelle le systéme
est oisif, C'est-d-dire sans usagers actifs.
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Le nombre moyen d’usagers actifs, 4 I'équilibre, sécrit -

g= 3 ip;
i=0

Le temps de réponse moyen W représente, par définition, la durée moyenne
de la période d'activité d'un usager. Pour le calculer nous remarquerons
qu'il y a, en moyenne et par unité de temps, autant d'usagers entrant dans
I'état actif que d’usagers quittant I'état actil ou, ce qui revient au méme,
entrant dans I'état oisif.

Appliquons la formule de Little (cf. 6.222) aux deux ensembles d'usagers
actifs et oisifs. Considérons uniquement des valeurs moyennes : s'ill y a g
usagers qui restent pendant une durée W dans I'état actif et si 4 est le débit
des arrivées dans I'état actif, nous avons

g =iW
De méme, §'il y a n — g usagers oisifs, qui demeurent pendant une durée R
dans cet état et 51y est le debit des arrivées dans 1'état oisif nous avons :
n—g= uk
Ecrivons que £ = u, soit :
g n—4g

W R

d’ou I'on peut tirer, en utilisant la définition de g (exercice 3) :
nT
I—pg
Cette expression peut s'écrire sous une forme facilement interprétable :

ni
I=P=wTR

La quantité /] — p, représente I'activité relative moyenne du systéme. Un
cycle d'usager dure en moyenne W + R ; pendant un cycle moyen les n usagers
sont passés une fois et une seule en movenne par ['état oisif ; durant ce cycle
le systéme a été actif pendant une durée totale nT.

W= - R

6.23 EXEMPLES DE SIMULATION

Nous n’entrerons pas dans les détails de mise en ceuvre d'une sirnula‘tit:m_
On pourra consulter & titre d'exemple [Scherr, 65] et [Pinkerton, 68). Signa-
lons qu'il existe de nombreux langages spécialisés (SIMULA, SIMSCRIPT,
GPSS, ...

Le domaine d’application de la simulation n’est pas limité a priori : confi-
guration d'un IBM 360/67 [Nielsen, 67], algorithmes d'ordonnancement
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pour le TSOS du RCA [Oppenheimer, 68], organisation d'une mémoire
[Pirtle, 67]. échanges de pages dans le systéme ESOPE [Bétourné, 72], compa-
raison de divers algorithmes de gestion de disques [Teorey, 72], etc. ..

Il parait utile d’exposer quelques résultats pour montrer 'intérét de I'outil,
ce qui nous permettra en outre d'illustrer des notions présentées dans les
chapitres précédents.

Exemple 1: le sysiéme CTSS [Scherr. 65].

Ce systéme conversalionne] a €1é simulé par Scherr qui est en outre parvenu & for-
muler un modele analytique simple (cf. 6.223). Le systéme réel a fourni les paramétres
caractéristiques de la charge (cf. 4.2).

La figure 4 montre des points expérimentaux oblenus par mesure sur le systéme
reel. En ordonnée, on a porté le temps de réponse moyen divisé par le temps movyen
d’unité centrale par demande. La simulation et la théorie sont en bon accord avec les
MCSUres.

__Temps de réponse moyen
Temps moyen d'unité cenuale

. 1|
L ]
15 4=
In 4
== Coutbe théorique
. *  Mesures sur CTSS
s L Q  Simulation
i [ [l il ] 1 1 h
3 o 15 20 23 30 35 Nombse de

ferminaux

Figare 4. Temps de réponse de CTSS en fonction de la charge [Scherr, 63].
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Exemple 2 : le systéme TSOS [De Meis, 69].

Le systéme 'J."SDS de RCA utilise un ordinateur SPECTRA 70/46. 11 gére des tra-
Vaux conversationnels en multiprogrammation. L allocation de mémoire se fait par
page avec chargement 3 la demande {cf. 4.441).

Les programmes utilisateurs sont simulés par des ; i i i

: ut; processus cycligues qui dét -
nent la chaine des références aux pages de la mémoire, tant en ]ectu?e qu{‘lcn écr;!;?;

Tl.-mps d= réponse
moyen | secondes)

6 4

500 ms
30 ms
5k
4
3
P R
I me
| 49—_’/"@'//’3
i
L : L L T ‘|. T : L] lI H :ﬂt
&m
0 10 X 30 0 H cerminmux
&0 ACLIviLE

Figure 5. Temps de réponse de TSOS en fonction de la charge
et du temps moyen d'unité centrale par interaction [De Meis, 69).

La figure 5 montre I'influence du temps moyen d’unité centrale par demande sur le
temps de réponse moyen. On note pour les deux courbes supérieures une montée rapide,
le coude correspondant & une utilisation de 1"unité centrale dépassant 90 %,

Le phénoméne de 1'écroulement du systéme (cf. 4.61) est remarquablement illustré
par la figure 6, o I'on constate une montée brutale du temps de réponse pour une
charge de 44 consoles. Cette rupture est due & une saluration de la mémoire, entrainant
des vols de pages entre les tiches. Cette succession de vols, une fois amorcée, va en
samplifiant ; les échanges avec la mémoire secondaire se multiplient et "activité de
Funité centrale chute brusquement (de 80 & 50 % lors de I'écroulement). On évite ce
phénoméne en pratiquant une politique de réservation : une tiche nest admise en
mémoire qu'a la condition qu'il y ait suffisamment de place libre pour son espace de
travail, et qu’elle puisse ainsi acquérir Pessentie]l de ses pages sans devoir en voler aux
autres,
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Figure 6. Simulation de I'écroulement du systéme TSOS [De Meis, 69).
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6.3 MESURES SUR LES SYSTEMES REELS

Les mesures sur un systéme réel servent, comme celles obtenues avec un
modeéle, & améliorer les performances ; en outre le systéme peut les exploiter
dynamiquement, pour contrbler la charge par rétroaction (cf. 4.6). Un
systéme réel permet de mesurer les caractéristiques des demandes (cf. 4.2)
et de vérifier la validité d'un modéle.

6.31 NATURE DES MESURES

Les donneées élémentaires collectées par les mécanismes de mesure sont,
pour la plupart, des contenus de mémoire, des événements, des comptages
d’événements (fréquences). On peut classer ces données en guatre groupes :

a) les mesures d'intervalles de temps et les mesures instantanées de gran-
deurs autres que le temps (longueur d'une file d’attente, volume de mémoire
occupé, longueur d'un message, ...),

b) les dénombrements dans le temps (fréquence d’événements),

¢) les contenus d’ensembles 4 un instant donné (files d’attente, mémoires
virtuelles, ...),

d) les suites d’événements, représentant la succession des actions dans le
temps.

Un nombre seul est inutilisable : il faut connaitre le contexte dans lequel
il a été obtenu. Pour relier la mesure & I'évolution du systéme, on peut :

— soit noter I'heure de la mesure,
— soit se reférer 4 des événements connus du systéme.

Par exemple, on peut mesurer la longueur d’une file d'attente, périodique-
ment toutes les 100 ms, ou encore chaque fois qu'un processus donné est
activé. On distinguera donc deux méthodes d’acquisition de données :

— les mesures non synchronisées avec les changements d’état du systéme
(mesures périodiques par exemple),

— les mesures synchronisées avec I'évolution du systéme ; dans ce cas.
on possede une information supplémentaire qui est en corrélation avec I'acti-
vité du systéme.

6.32 METHODOLOGIE DES MESURES

Pour contréler la validité des mesures diverses méthodes sont possibles :

— multiplier les points de mesure de fagon & mesurer une méme grandeur
de plusieurs fagons indépendantes,

— mesurer indépendamment des grandeurs reliées entre elles et vérifier
que la relation entre ces grandeurs est satisfaite,

— comparer les résultats avec les prédictions d’un simulateur ou d'un
modéle mathématique,
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— faire des mesures sous une charge artificielle, de caractéristiques trés
simples, permettant de calculer les résultats par avance.

Lors de la prise des mesures, il est utile de connaitre leurs ordres de gran-
deurs de fagon & detecter dés que possible toute anomalie.

La reproduction d'une expérience est un probléme délicat en raison de la
nature aléatoire des phénoménes; en outre le systéme peut évoluer et il est
alors nécessaire de connaitre sans ambiguité et d'enregistrer, a chaque expé-
rimentation, 'état de la version utilisée.

6.33 MECANISMES DE MESURE
6.331 Généralités

On peut distinguer les mécanismes ciblés, externes au systéme, et les méca-
nismes programmes. Il n'y a pas en fait de distinction nette entre ces deux
classes : en effet, 'appareillage peut étre entiérement externe ou encore uti-
liser une partie du systéme, a savoir des alimentations ou un canal; quant
aux mesures programmees, elles font appel 4 des mécanismes ciblés internes
au systeme tels que les horloges, voire a des instructions ciblées spécialement
congues pour faciliter ces mesures,

Nous distinguerons cependant, pour la commodité de 'exposé, mécanismes
externes et mécanismes internes, ces derniers étant soit ciblés, soit programmes.

6.332 Appareillage de mesure externe

Un montage classique comporte un ensemble de sondes de haute impédance
connectables aux circuits de la machine, un choix de circuits logiques permet-
tant de combiner les signaux des sondes. un systéme d’enregistrement sur
bande magnétique et des horloges de haute fréquence (1 MHz) pour noter
I'heure des événements enregistrés. Parfois un ordinateur est chargé de traiter
les données en temps réel.

L'intérét de cette technique est d’éviter les interférences avec le systéme
étudié. On enregistre une grande quantité d’information qui est traitée ulté-
ricurement. En combinant les sondes entre elles, au moven de circuits élec-
troniques, on diminue le nombre d'enregistrements en ne conservant que
I'information utile. Il est possible d’obtenir des mesures trés fines, au niveau
de la microseconde, sur toutes les parties du systéme.

Etant donné I'importance croissante des mesures, on peut supposer que les
machines futures se préteront plus aisément a I'expérimentation ; un panneau
de connexion, fourni par le constructeur, protégera la machine contre les
fausses manceeuvres ; des mécanismes divers permettront la collecte de rensei-
gnements sur ['utilisation des processeurs, des canaux et des mémoires:
quelques mesures bien choisies, affichables sur le panneau de commande,
avertiront I'opérateur des situations anormales.
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Exemple 1 : mesure dactivité d une unité centrale,

On suppose qu'une bascule indique si le processeur est oisif ou non (Fig. 7) -

] . JUUJUUIUIL

Horloge

Comprewr ] Comprear 2

Al

Figure 7. Mesure de I'activité d'un processeur.

Un circuit ef entre la bascule et une horloge permet de mesurer la durée totale
d'activité dans le compteur 1 ; le compteur 2 donne le temps total de la mesure et le
rapport compteur ljcompteur 2 mesure I'activité relative du processeur.

Exemple 2 : le TS/SPAR pour IBM 360 [Schulman. 67). ,

Cet appareil, congu pour étudier I'activité d'un IBM 360/67, contrdle jusqu’a
256 sondes et 48 compteurs d'événements ; le systéme COMPOrte en oulre un enregistreur
sur bande magnétique et des horloges.

De nombreuses mesures sont possibles

a) activité des processeurs : temps passé en attente, en mode maitre, en mode
esclave ; fréquence et types des interruptions par processeur; fréquence d'exécution
de programmes donnés, des instructions SVC ;

&) multitraitement : nombre moyen d’arréts d'une tiche ; nombre de pages deman-
dées, libérées et modifiées pendant la tranche de temps ; temps de réponse :

¢} programmes et données partagés : ralentissement des processeurs en cas de conflit
d’accés & la mémoire ; fréquence d utilisation des programmes ; pourcentage de temps
de processeur en exécution de procédure réentrante

CRicus. — Syandwies d explofeation des ardimarors, 10
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) utilisation de la mémoire associative : pourcentage de transformations d'adresses
effectuées par la mémoire associative ; nombre de modifications de la mémoire
associative ;

¢) entrées-sorties : activité de chagque canal ; fréquence et durée des ordres de lecture
et d'écriture pour chaque périphérigue ; recouvrement d activite entre un canal et une
unite centrale ; trafic de pages avec les disques et les tambours ; nombre dinstructions
d'entrées/sorties exécutées.

6.333 Meécanismes ciblés internes au systéme

L'appareillage de mesure peut utiliser des ressources propres au systéme,
comme des horloges ou un canal. Un montage intéressant consiste a faire
jouer a I'appareil le réle d un périphérigue, connecté 4 un canal. Dans certaing
cas, les mesures sont exécutées par un ordinateur satellite, adapté aux pro-
blémes en temps réel ; de cette facon le systéme a la possibilité de commander
les mesures, de les lire pour les traiter, voire de les utiliser pour améliorer
son propre fonctionnement.

Exemple 1 ¢ les horloges du CII 10070

Le CII 10070 posséde 4 horloges, déclenchant périodiquement des interruptions ;
une interruption d'horloge est acquittée par une seule instruction MTHW (« Modify
and Test Word ») qui augmente de | un compteur de temps ; l'instruction MTH peut
adresser indirectement le compieur, si bien qu'il est possible de changer dynamiguement
e compteur affecié a I'horloge, en changeant simplement la valeur du pointeur sur le
compteur (Fig. ).

€, c, c,

I Compoeur 2 Compreur 3
-

Comptears des

inte rruptions Compteus |

FOINTEUR I

Int i
;:::E;f "> | wrw sroinTELR)

(Iastruction 2 l'emplacement du niveau d'imterruption)

Figure 8. Partage d'une horloge par plusieurs compteurs.

Considérons, a titre d’application, la mesure du parallélisme entre I'unité centrale
et le canal ; 51 'on ne distingue que deux états, actif et oisif, pour chacun de ces deux
processeurs, la mesure se programme trés simplement en utilisant 4 compteurs contigus
en memoire, correspondant aux 4 cas suivants :

Compteurs I c2 C3 (]
Unité centrale active active oisive aisive
Canal actif oisif actif oisif
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On constate qu'il suffit de faire + 2 sur le pomnteur du compteur lorsque I'unité
centrale change d'état, et + | lorsque le canal change d'&tat; dans tous les cas une
seule instruction suffit pour la transition (MTW sur le pointeur du compieur).

Exemple 2 : systéme MULTICS.
Le systéme MULTICS utilise trois mécanismes de mesure [Saltzer, 70] :

a) une horloge calendrier de 52 bits, de résolution | us, indépendante des processeurs,
donne le temps du systéme. & partir de I'année 1900 s elle permet de dater sans ambiguité
tout evénement du systéme ;

b) une horloge, attachée a chaque unité centrale, mesure le temps virtuel du pro-
cessus, ¢'est-d-dire le temps qu'il faudrait 4 la tache pour s'exécuter si elle n’érait jamais
interrompue et si elle était seule a utiliser la mémoire ; Ja différence entre le temps réel
d'execution. donné par I'horloge calendrier, et le temps virtuel est due aux interruptions
et aux conflits d’aceés 4 la mémoire

¢) un canal est affecté 4 la sortic des mesures ; celuici exécute indéfiniment un pro-
gramme cyclique et sort les données sur un ordinateur DEC PDP-8 pourvu d’un écran
de visualisation.

Exemple 3 : ordinateur [BM 370,

L'ordinateur IBM,370 posséde un ensemble de 16 classes d'instructions dappel au
moniteur (instruction MC); un masque de 16 bits permet de metire en service sélecti-
vement chacune des classes. Une instruction MC provoque un déroutement si elle est
en service, sinon elle est sans effet. Ces instructions permeltent de réaliser aisément
diverses mesures : fréquence d'utilisation ou durée d'exécution d'un programme
donne, traces, etc., ...

6.334 Mesures programmées

L'implantation de mesures programmées SUPPOSE UNE CONnaissance appro-
fondie du systéme. Elle est facilitée par la présence d'interfaces normalisés
et de points de passage obligé bien définis. On a donc intérét a prévoir les
mesures dés la conception du systéme.

Une difficulté sérieuse provient de la perturbation due aux mesures elles-
memes ; cette interférence n'est pas simple & évaluer, car il ne suffit pas de
calculer la durée de la mesure, la perturbation étant également fonction de la
fréquence de ces mesures.

Les mesures par échantillonnage sont simples 4 implanter, bien que I'infor-
mation puisse ne pas étre aisément accessible 4 tout instant. La période d’échan-
tillonnage ne doit pas étre synchronisée avec le comportement dynamique du
systeme étudié, sinon les mesures seront plus ou moins déformées : une telle
coincidence semble d'ailleurs peu probable pour un systéme complexe, de
comportement trés variable. Si par exemple on enregistre périodiquement la
valeur du compteur ordinal, on a une mesure de la fréquence d'utilisation
des différents programmes du systéme ; si on analyse le code opératoire de
I'instruction courante on obtient les fréquences d’utilisation des instructions
du répertoire de la machine. '
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6.34 UTILISATION DES MESURES

Diverses applications possibles des mesures ont €& énumérées en 6.11.
Nous en développons ici deux 4 titre d'exemple : I'évaluation des systémes et
I'amélioration de leurs performances.

6.34]1 Evaluation des systémes

Le probléme de I'évaluation des systémes se présente sous deux aspects :
définition des grandeurs caractérisant les performances et spécification des
caractéristiques de la charge du systéme. Toute estimation de performance
doit en effet se référer 4 une charge bien définie.

Les performances d'un systéme d'exploitation peuvent s'exprimer, par
exemple, en terme de temps de réponse, cette grandeur n'etant generalement
pas considérée en valeur absolue, mais compte tenu de la durée du travail
demandé. La valeur absolue du temps de réponse prend toute son importance
dans le cas des travaux conversationnels ot la durée du travail demandé est
generalement négligeable vis-d-vis du temps de réponse consideéré comrme
admissible (quelques secondes).

Deux grandeurs caractérisant globalement le fonctionnement d un systéme
sont le débit des travaux et le taux d'utilisation des diverses ressources. Cetle
derniére grandeur doit étre interprétée avec précaution : le taux d utilisation
d'une ressource donnée dépend non seulement de la demande mais aussi de
la gestion de I'ensemble des ressources par le moniteur.

En général, la charge réelle d'un systéme est vanable et non reproductible.
On est donc amené a définir des charges artificielles satisfaisant aux conditions
suivantes :

— etre représentatives, dans un sens a préciser, des conditions d’exploitation
réelles du systéme a évaluer,

— étre reproductibles,

— étre faciles 4 paramétrer.

Donnons un apergu des principales techniques utilisées. Le lecteur pourra
se reporter & [Lucas, 71] et [Ferrari, 72] pour une étude plus compléte et une
bibliographie.

a) Assortiment d'instructions

Un assortiment d’instructions (« instruction mix ») est une charge simulée
ou des instructions de divers types (arithmétiques, comparaison, transfert)
figurent chacune avec une fréquence déterminée, fréquence qui peut étre
fournie par des mesures sur une charge réelle. On essaie ainsi de caractériser
un type donne d’application. Pour un assortiment simple, le temps d’exécution
peut étre calculé 4 la main.

b) Noyaux

La méthode du noyau (« kernel ») est une extension de la méthode précé-
dente, utilisant cette fois un ensemble des sous-programmes.
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Les méthodes a) et b) servent surtout & comparer entre elles des perfor-
mances d'unités centrales différentes : ne compaortant pas d opérations d’entrée-
sortie, elles ne peuvent servir a évaluer des systémes.

¢) Jeux d’essai

Un jeu d’essai d'un systéme (« benchmark ») est un ensemble de programmes
considéré comme représentatif d'un certain type de charge. Les jeux dessaj
peuvent comporter des programmes réels ou des programmes fabriqués
spécialement pour cet essai. Selon leur composition, ils peuvent étre utilisés
pour mettre & I'épreuve toutes les parties d'un systéme, y compris les program-
mes de service (compilateurs) et les entrées/sorties.

d) Simulateurs de charge

Un simulateur de charge est un programme utilisant de fagon connue et
parametrée les différentes ressources d'un systéme. On peut ainsi étudier
I'effet, sur les performances d'un systéme, de divers paramétres de la charge
(fraction du temps consacrée au calcul, aux opérations sur des fichiers, distri-
bution et type d’accés des références 4 la mémoire. .-). Dans le cas d’un systéme
conversationnel 4 accés multiple, le simulateur de charge doit en outre simuler
le comportement des divers usagers: il doit done comporter ou utiliser un
dispositif de gestion de processus paralléles. Une difficults consiste & séparer,
dans les mesures, l'effet de la charge simulée et I'effet de |a gestion interne du
simulateur, qui utilise lui-méme les ressources du systéme, Cette difficulté
peut etre évitée en faisant exécuter le programme de simulation sur un autre
calculateur relié au systéme mesuré. Cetie technique se préte bien 4 la simu-
lation d'usagers conversationnels e, plus généralement, de tout phénoméne
dépendant du temps réel.

6.342 Amélioration des performances

Un exemple de I'utilisation des mesures pour améliorer les performances
d’un programme a é1é indiqué au paragraphe 6. 11 : si l'on sait & quelles parties
d’'un programme est consacrée la majorité du temps d'exécution, on peut
porter son effort sur I'optimisation de ces parties; si le programme s’exécute
dans une mémoire paginée, des mesures peuvent détecter une dispersion des
références aux pages, dont la correction pourra améliorer les performances
du programme.

Une autre application concerne I'amélioration des performances dun
systéme d’exploitation, pour lequel des goulots d'étranglement pourront étre
décelés par des mesures. Un exemple en est donné dans [Cantrell, 68] : les
auteurs y signalent un gain de 10 4 50 % sur le débit des travaux d"un systéme
multiprogrammé obtenu 2 la suite de modifications mineures suggérées par
des mesures. Deux exemples de telles modifications sont

— la réservation pour le moniteur d’un espace de mémoire dépendapt de
sa taille (variable suivant les configurations), au lieu d'un espace fixé une
fois pour toutes :
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— la modification de la valeur du quantum d’unité centrale pour éviter
que des travaux effectuant beaucoup d’entrées-sorties ne soient freinés par
des travaux utilisant surtout I'unité centrale. Le gain est obtenu en choisissant
un quantum inférieur au temps moyen d'exécution d'une demande d’entrée-
sortie.

EXERCICES

11

Pour la politigue SATF de gestion des disques (cf. 6.221), faire le calcul exact du
temps d’accés moyen en intégrant sur 'escalier. Veérifier la formule générale pour les
cas particuliers n = Jetn = 2,

2. [2] Formule de Little

Numérm du
travajl

4 L D.‘
3 a4 D,
L. -D;_l-
o
o F, Temps

On considére un systéme exécutant des travaux suivant une politique queleonque.
Les travaux arrivent suivant une distribution quelconque ; ils commencent aux ins-
tants [y, D, ... et se terminent aux instants F,, F,, ... dans un ordre qui n'est pas
nécessairement celui des arrivées. L'intervalie £, — D, représente le temps de résidence
R; pour le travail i.

a) Soit N1} le nombre de travaux dans le systéme & 'instant ¢; la zone hachurée,
délimitée par la fin F, du n-iéme travail, a pour aire :

Fa
J. Nt} de
1]

A linstant F, les n — I premiers travaux ne sont pas tous nécessairement terminés.
Soit u;(t) la fraction de temps de résidence restant encore au temps ¢ pour le travail i ;

monirer gue :
Fn

Nit)dt = ¥ (1 —u(F,)) R,
o =1

b) Seit N(0, F,) le nombre moyen de travaux dans le systéme entre les instants 0
et F,. c'est-a-dire :

R Fa
N0, F,) = T‘LJ‘ Nft) de
]
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Soit R, le plus grand des R, i < n.

Montrer que :
— b, R, 1
N(0, F,) [? + T] < aEﬁ

— D R, i NiF )R
N(0. F.J [?*?] > TR~ ~(0e) Roe

En déduire que, si le systéme atteint un équilibre, alors -
N=TRi
ol 4 est le nombre moyen d'arrivées par unité de temps.
3. [2] Modéle de Scherr (cf. 6.223)

277

Calculer la probabilité p, 4 partir du systéme d’équations linéaires du régime d’équi-

libre. Calculer le temps de réponse moyen W.
En utilisant :

S m—ip+ Y ip=n
=0 =0

monirer que :

R
”_q=rf_Pan
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METHODOLOGIE
DE CONCEPTION
ET DE REALISATION

Nous nous intéressons dans ce chapitre aux movens d'augmenter la fiabilité
des systémes, la fiabilit¢ d'un objet étant définie par la probabilité pour que
cet objet remplisse pendant un temps donné des fonctions specifiées dans
certaines conditions d'exploitation. Nous avons deja éwudié aw chapitre 5
comment on pouvait améliorer cette fiabilité en incluant dans les systémes
des dispositifs de protection destinés 4 détecter les erreurs en cours de fonc-
tionnement et 4 limiter leurs conséquences. Nous allons examiner & présent
certaines méthodes de conception, de réalisation et de mise au point qui
tendent & accroitre la probabilité de bon fonctionnement des systémes produits
par ces méethodes.

7.1 INTRODUCTION

A I'heure actuelle, la mise au point des programmes (c’est-a-dire la recherche
et la correction des erreurs) tend 4 consommer la majeure partie du temps
et de I'énergie des programmeurs. Au-dela d'un certain degré de complexité,
on peut dire qu'un programme ne sort jamais de sa phase de mise au point,
Cest-a-dire qu'il y subsiste toujours des erreurs. Nous nous intéressons aux
moyens d’améliorer cette situation, en ayant surtout en vue le cas des gros
programmes, ol le probléme se pose avec le plus d’acuité. Nous ne tenterons
pas ici de fixer des seuils de taille, de durée de réalisation, de complexité, de
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nombre de programmeurs, au-dessus desquels un programme peut étre qualifié
de « gros », nous contentant de mentionner que tous ces facteurs interviennent.

On peut distinguer schématiquement trois étapes dans le traitement d'un
probléme sur ordinateur :

1) établissement d’'un modéle par formalisation d’un probléme concret,

2} description d'un algorithme de traitement dans un langage non ambigu,
qui peut ou non étre destiné a I'interprétation par une machine; tous les
renseignements nécessaires 4 la construction de cet algorithme sont contenus
dans le modéle établi a la premiére étape,

3) construction d'un programme exécutable, dont l'interprétation met en
ceuvre I'algorithme sur une machine donnée.

Nous considérons ici la derniére de ces étapes. Pour que le programme
résolve effectivement le probléme posé, 1l doit satisfaire & un certain nombre
de propriétés qui définissent son comportement dans des circonstances deéter-
minées. On appelle spécifications I'ensemble de ces propriétés. Elles doivent
caractériser le comportement du programme de fagon compléte et, de prefé-
rence, simple et non redondante. Le probléme de I'établissement des speci-
fications ne nous intéresse pas ici; remarquons simplement que le passage du
modéle 4 l'algorithme et de l"algorithme au programme peuvent introduire
des distorsions dues aux limitations introduites par le langage ou par son
implantation.

Exemple. Les propriétés des opérations arithmétiques sur des nombres repré-
sentés dans des mots de longueur finie ne sont pas identigues a celles des opérations
usuelles ; ainsi, si @ = b est interprété comme |a — b | = 27 % alosa=betb=c
n'entrainent pas nécessairement a = ¢,

Un programme est dit valide s’il répond 4 ses spécifications. Pour étre
utilisable, on demande en outre 4 un programme de posséder certaines pro-
prietés qui influent sur son mode de réalisation :

— respect de contraintes économiques : minimisation d’une fonction de

coiit 4 définir par le concepteur, encombrement, date limite d’achévement,
etc..

possibilité de compréhension et de medification.

Cette derniére propriété est particuliérement importante. L'expérience
montre en effet que les spécifications des programmes évoluent, que des
erreurs sont découvertes pendant leur utilisation. Au cours de son existence,
tout programme doit étre adapté aux modifications de ses conditions d'uti-
lisation. Une condition pour qu'un programme soit aisément modifiable
est que I'éventualité d'une modification soit explicitement prévue dans sa
construction. Cela peut étre réalisé de deux facons -

— en restreignant les possibilités de modification a4 un choix dans
un ensemble fixé une fois pour toutes {assemblage conditionnel),

_ — en concevant le programme de maniére a faciliter Je remplacement ou
I'addition de parties de programmes (modularité).
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Une autre condition pour qu'un programme soit modifiable est qu’il en
existe une description permettant de comprendre sa structure et son fonc-
tionnement, 4 un niveau de détail suffisant. Cette description est souvent
donnee sous forme de commentaires mais elle n’est pas necessairement dis-
tincte du texte du programme lui-méme.

Compte tenu des contraintes ci-dessus, on cherche donc & réaliser des
programmes valides. Le probléme de la validité peut étre abordé sous deux
aspects :

~- etant donné un programme existant, établir sa validité vis-a-vis d'un
ensemble donné de spécifications,

— ¢tant donné un ensemble de spécifications, construire un pProgramme qui
les verifie.

Pour établir la validité d’un programme existant, on pourrait imaginer de
faire exécuter le programme dans les conditions définies par ses spécifications,
et de verifier que les résultats obtenus sont ceux spécifiés. Dans la pratique,
une telle démarche est impossible, car le nombre de cas 4 examiner serait
trés grand : ainsi, la vérification d’une procédure de racine carrée devrait
comprendre I'essai de tous les nombres réels non négatifs représentables !
Suivant la formule de Dijkstra, les tests peuvent servir a détecter la présence
d'erreurs, non 4 prouver leur absence. La validité d'un programme ne peut
donc en général se déduire du seul examen de son comportement, elle doit
etre démontrée & partir des propriétés de la structure du programme. L'état
actuel des connaissances est encore loin de permettre une telle démarche -
nous donnons en 7.2 quelques indications sur les techniques utilisées dans
les preuves de validité.

En ce qui concerne la construction d'un programme a partir de ses spéci-
fications, on ne dispose pas non plus d’un moyen automatique. Toutefois,
on peut utiliser des méthodes qui permetient. & défaut d'une certitude, d’accroi-
tre considérablement le degré de confiance que I'on peut avoir dans les pro-
grammes construits, tout en rendant plus aisées leur modification et leur
mise au point. Ces méthodes sont examinées en 7.3 sous le titre général
de « Programmation structurée ». Les langages utilisés pour I'écriture de
systémes et les outils de mise au point sont examinés en 7.4. Enfin, un exemple
tiré d'un probléme réel illustre en 7.5 I'application des méthodes présentées.

7.2 VALIDITE DES PROGRAMMES

Nous donnons ici un apergu des méthodes utilisées pour démontrer qu'un
programme est valide, ¢’est-d-dire qu’il vérifie ses spécifications. Nous suppo-
sons que celles-ci sont données sous la forme de relations, ou assertions
[Floyd, 67), entre les variables d’entrée et les variables de sortie du pro-
gramme ; nous supposons en outre gue le programme ne comporte pas d’exécu-
tion paralléle.
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Plus précisément, nous deéfinissons :

— une assertion d’entrée spécifiant les relations existant par hypothése
entre les données du programme,

— une assertion de sortie spécifiant la relation souhaitée entre les variables
de sortie et celles d’entrée, ou entre certaines vanables de sortie.

Exemple 1. Soit une procédure de caleul de la racine carrée y d'un nombre donné x,
avec une précision &

Assertion d'entrée @ x = 0.

Assertion de sortie : | p? — x| < &

Exemple 2. Soit 4 spécifier dans un systéme 4 mémoire paginée la procédure [oc
de recherche de la localisation physigue x d’une page virtuelle v, la mémoire virtuelle
contenant nmax pages. A la sortie de la procédure, la variable booléenne mem indigue
s1 x doit étre interprété comme une adresse en mémoire ou sur disque. L'en-téte de cette
procédure s'écrit -

procédure focv, mem, x),
entier v, x ; booléen mem ;

Assertion d'entrée : 0 = v < nmax.

Assertion de sortie © (mem et (v = mémoire{x)}) | (=1 mem et (v = disque(x}))
mémoire ct disque représentent des tables d'implantation des pages en mémoire prin-
cipale et sur disque.

Il est naturel de considérer un programme comme une suite d'étapes
a chague étape correspondent des assertions d’entrée et de sortie. Prouver
la validité d'un programme (ou d'une étape), c'est démontrer :

— que le programme se termine, c'est-a-dire qu'il atieint en un nombre
fini d’opérations I'un des points de sortie prévus,

— que les assertions correspondant & ce point de sortie sont vérifiées.

Exemple. Calcul de a* (J. King, cité dans [Dijkstra, 72]).
Etant donné deux entiers a et b (g > 0,5 = 00}, la suite d'instructions ci-aprés
affecte 4 z la valeur a" (on suppose déclarés les entiers x, v, 2 .a ,b).
x=a;ye=p5z:=1;
tant que v # 0 faire

début

st impair(y) alors
débur
ye=y-—1I,
Tre=zax
fin;

y=p2 x=xex

Jin

l'fa l'm?ctinn booléenne impair(y) prend la valeur vrai si et seulement si 'entier ¥
est impair. o
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Remarque. L'interprétation de cette suite d'instructions fait appel 4 un certain
nombre d’axiomes implicitement admis, mais qu'il faudrait en toute rigueur énumérer
dans une preuve compléte de validité. Ces axiomes traduisent sous forme d’assertions
les propriétés des divers opérateurs introduits et de |a représentation des nombres.
Ainsl, une propriété de I'opérateur = est traduite par le fait que I"assertion de sortie
pour x = y est

L'assertion d'entrée est :

) | a>0 et b0
L'assertion de sortie est :

(2) z=a
La démonstration comporte deux étapes

1} Désignant par [ I'instruction composée suivant tanr que ... faire, nous allons
d‘abord démontrer que 'exécution de [ laisse invariante la relation -

(3) x>0 et y20 et @ =zax

D’aprés (1), cette relation est vraie avant la premiére exécution de [,
Nous distinguerons deux cas pour la preuve d'invariance :

@) y impair. Posons y = 2p + I {p = () et désignons par x°, ¥, 2 les nouvelles
valeurs prises par x, y, = aprés exécution de [ -

X =x* y=p; F=zsx

On a donc
Zex” =rexe (x)P =z X = zaxr
&t _x'::;.ﬁ-l y';ﬂl

Si x, y, z vérifient (3), alors x', ¥, 2’ vérifient (3) également.
b) y pair. Posons y = 2p (p = 0). Avec les mémes notations qu'en al, on trouve -
I;_xz'_ -Fr=p; z.-=z
d'od
Zax" = 2o (X )P =zax =z X’

et =0, y=z0

el I'invariance de (3) est encore assurée. )
On remarque que y a toujours une valeur paire avant I'exécution de y = y/2 ce
gui garantit que y conserve des valeurs entiéres.

2) Nous allons & présent démontrer que la boucle rant gue se termine. Si 'on note
¥o la valeur initiale de y et y; sa valeur aprés la i-idme exécution de [, alors on a pour
tout i = 0, ou bien 3, = 0, ou bien ¥, < ;. Les y, élant non négatifs, il existe donc
un entier k tel que y, = 0, ce qui garantit 'arrét de la boucle aprés k itérations. La
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relation (1), vraie initialement, reste vraie aprés k exécutions de [. Les valeurs finales
de x, y, z verifient donc :

x>0 et y=0 e g = zex"

L'assertion de sortie = = a® est donc verifiée.

On pourra trouver dans [Hoare, 71] un autre exemple de preuve de validite,
pour un programme plus complexe (tn).

Les méthodes de preuve de validité de programmes sont encore trés loin
d’étre entrées dans la pratique courante, mais on peut prévoir 4 long terme
le développement d’outils (probablement interactifs) permettant la construc-
tion de la preuve parallélement a celle du programme [Floyd, 71 ; Snowdon,
T1].

La possibilité d'exécution d'opérations paralléles introduit des difficultés
supplémentaires dans les preuves de validité. Pour écrire les assertions, on a
besoin d'introduire des axiomes supplémentaires liés au temps (indivisibilité
de certaines opérations). Cela peut étre fait en spécifiant un mécanisme de
synchronisation entre processus, les démonstrations ne s'appliquant alors
qu'aux ensembles de processus utilisant ce mécanisme. C'est ainsit que le
fonctionnement correct du systéme producteur-consommateur (cf. 2.3)
a pu étre démontré en utilisant un théoréme sur les sémaphores. On trouvera
dans [Dennis, 70] plusieurs tentatives de formalisation des proprietes des
Processus.

Dans tous les cas présentant quelque intérét pratique, la complexité de la
demonstration est telle qu’elle exclut a Fheure actuelle 'uulisation courante
des preuves de validité, notamment dans les systermes. Nous développons
done dans ce qui suit une voie d’approche moins formelle.

7.3 PROGRAMMATION STRUCTUREE

Considérons maintenant le probléme sous un autre angle * au lieu de prouver
quun programme donné satisfait certaines spécifications, on se propose de
construire un programme satisfaisant des spécifications données.

Une solution idéale serait naturellement de construire automatiquement
le programme. Ainsi [Simon, 63] décrit un constructeur automatique de
programmes IPL V dont les spécifications sont exprimées dans un sous-
ensemble de 'anglais. L'impossibilité ot 'on se trouve en général d'exprimer
formellement les spécifications d’un probléme rend une telle solution inexploi-
table dans la pratique.

On tente donc, de fagon plus pragmatique, de tirer parti de la liberté dont
on dispose dans 'écriture du programme pour lui donner une structure
propre a faciliter 4 la fois la construction du programme et la démonstration
de sa validité. On désigne sous le terme général de programmation structurée
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[Dijkstra, 72 ; Mills, 72 ; Wirth, 73], un ensemble de méthodes mises en cuvre
pour atteindre ces objectifs. On peut citer en particulier ;

— la décomposition des programmes en sous-ensembles pour aboutir
i des elements de complexité acceptable, -

— le choix d’une décomposition telle que les interactions entre sous-
ensembles soient les plus simples possibles,

— la specification pour chaque partie de programme d’assertions d’entrée
et de sortie.

Dans ce qui suit, nous allons développer de fagon plus detaillée les méthodes
de déecomposition et de spécification des programmes. Nous présenterons
d’abord des méthodes applicables aux gros programmes”séquentiels, puis
nous essaierons de les généraliser aux cas ol le parallélisme intervient.

7.31 PROGRAMMES SEQUENTIELS

Il est généralement admis que la complexité de la réalisation d’un programme
(sans chercher & définir précisément cette notion) croit beaucoup plus rapi-
dement que le nombre d'instructions de ce programme. Dans ces conditions,
si on parvient a4 décomposer la réalisation d’un programme d'une part en la
réalisation d'un ensemble de parties plus simples et d'autre part, en I'assem-
blage de ces parties, on aura réduit la complexité globale de I'opération.
Nous allons examiner deux méthodes de décompaosition.

7.311 Modules

La décomposition d’un programme en modules est considérée comme
classique depuis la réalisation de 1"0S/360 [Mealy, 66]. Un module est un
« morceau de programme » a plusieurs entrées et plusieurs sorties pouvant
réaliser un ensemble de fonctions. La décomposition offre les avaniages
suivants :

— simplification de la conception : on peut définir d’abord la fonction
réalisée par chague module et ses relations avec les autres modules; on ne
s'interesse qu'ensuite 4 la réalisation des différents modules.

— facilité de modification du programme par remplacement de modules :
la réalisation de chaque module est indépendante de la réalisation des autres,

— accélération de I'implantation si on peut affecter une équipe a la réali-
sation de chague module,

— accelération de la mise au point.

) Décomposition en modules

On ne connait pas de méthode générale de décomposition des programmes.
On doit donc s"appuyer sur I'expérience, c'est-a-dire suivre dans la pratique
une démarche essai-échec-nouvelle décomposition. On demande généralement
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4 une décomposition les qualités suivantes :

— la taille présumée de chaque module doit étre assez petite pour que la
réalisation d'un module puisse étre confiée a une équipe réduite, voire a une
seule personne,

— si I'on représente par un graphe les interactions entre modules (les
modules étant des sommets, les arcs orientés représentant les appels d'un
module par un autre), ce graphe doit &tre le plus simple possible pour faciliter
la démonstration de la validité du systéme.

Chaque module obtenu par décomposition peut lui-méme, s'il est trop
complexe, faire I'objer d'une nouvelle décomposition.

2) Spécifications d’un module. Interface

Une décomposition en modules doit s’accompagner d'une spécification
précise et compléte de la fagon dont le module se comporte vis-a-vis des autres
modules. Une telle spécification est appelée interface. Pour conserver les
avantages de la décomposition, et en particulier permettre le remplacement
d'un module par un module de méme interface, il est impératif qu'un module
donné ne soit accessible aux autres modules qu'en utilisant son interface.
Un programme appelant un module ne doit pas, en particulier, exploiter
des renseignements sur la réalisation interne du module qui ne font pas partie
de I'interface. Une fagon efficace de parvenir 4 ce but [Parnas, 71] consiste a
laisser les programmeurs d'un module dans I'ignorance de la réalisation des
autres (cette méthode autoritaire pouvant sans doute étre remplacée par une
auto-discipline des programmeurs).

Une déhnition plus formelle des notions de module et d'interface est pro-
posée dans [Parnas, 72]. Un module est considéré comme un dispositif pouvant
se trouver dans un certain nombre d’états. Chaque état est défini par les valeurs
d'un ensemble de variables d'état. Les changements d’'état sont provoqués
par l'appel de procedures d'utilisation (avec ou sans parameétres). L'interface
est définie comme I'ensembledes variables d’état et des procédures d'utilisation.

Les variables d’état peuvent étre consultées, mais ne peuvent étre modifices
que par l'appel des procédures d'utilisation ; la donnée de leurs valeurs initiales
fait partie de l'interface. Le module peut comporter en outre des procédures
et des variables internes, maccessibles de 'extérieur du module, mais qui
peuvent apparaitre dans les procédures d’utilisation. Le traitement des cas
d’erreur (utilisation incorrecte du module) doit étre envisagé. Une solution
possible consiste 4 prévoir lors de la programmation du module tous les cas
possibles d’erreur et 4 appeler dans chaque cas une procédure appropriée
extérieure au module. Ces procédures d'erreur doivent étre spécifiées au
moment de 'appel du module.

Exemple. Module de gestion d'une pile [Parnas, 72).

On déhnit ici les spécifications d'un module chargé de la gestion d'une pile. L'inter-
face du module est définie comme suit ;
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Variables Type Valeur initiale
sommet entier nil
hatteur Entier 0
Procéduras Parameétres Effet
empiler(a) enltier a 5 hauteur = max

alors errl sinan
aébut sommet = a:
hauteur = hauteur + 1

fin

désempiler — si hautewr = 0 alors err .
la séquence

{empileria) ; désempiler)
équivaut & une action vide s'il n'y
a pas d’appel de errl.

max est la hauteur maximale de la pile, errl, err2 sont des procédures d'erreur, empifer
et désempiler sont les fonctions de changement d’&tat ; les variables d’état sont sommer
{valeur courante de I'élément en sommet de pile) et haurenwr (hauteur courante de la
pile). La valeur nil correspond 4 une pile vide.

Remarque. La définition implicite de la fonction désempiler peut 4 premiére vue
surprendre : elle a en fait été réduite au strict minimum nécessaire pour éviter toute
hypothése sur le mode de réalisation du module. En effet, une définition explicite de
désempiler nécessiterait d'expliciter le mécanisme de passage d'un élément de la pile
au suivant et au précédent, mecanisme qui doit rester inconnu a ['extérieur du module.
Le mode de spécification ici utilisé a deux avantages :

— laisser toute liberté au réalisateur pour la gestion interne de la pile (tableau,

liste chainée, ...)
— éviter que les utilisateurs du module utilisent (voire modifient) les variables du

module autrement qu'a travers l'interface.

7.312 Niveaux

La décomposition en niveaux [Zurcher, 68; Wirth, 71b; Dijkstra, 72]
ne différe pas fondamentalement de la méthode précédente : on se restreint
4 des découpages en modules tels que le graphe des interactions soit sans
circuit,

On peut alors classer les différents modules par niveaux numerotés dans
I'ordre des entiers naturels de la fagon suivante :

— au niveau /, on place les modules qui n'en appellent aucun autre,

— au niveau 2, les modules qui n'appellent que des modules du niveau I,

— au niveau /, les modules qui n’appellent que des modules des niveaux
1,2,...,i— L
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Mivean 3

Miveau 2

Miveau 1

Si on se place & un niveau donné, 'ensemble des fonctions introduites 4
ce niveau définit un langage ou, ce qui revient au méme. une machine, Les
modules de niveau inférieur au niveau considéré forment l'interpréteur du
langage (ou I'implantation de la machine); les modules de niveau supérieur
forment un programme écrit dans ce langage (ou s’exécutent sur cette machine),
Le systéme lui-méme fournit & ses utilisateurs un langage ou une machine.

On peut utiliser la conception par niveaux pour simuler des ressources
virtuelles a partir de ressources physiques. Ces ressources virtuelles peuvent
étre utilisées a des niveaux supérieurs a celui de leur définition. Les commen-
taires du 7.311 sur la définition et I'interface des modules restent valables.
De plus, maintenant, on dispose de deux approches pour définir le décou-
page :

— conception descendante (« stepwise refinement ») : on part du résultat
que I'on souhaite obtenir et on définit par étapes son implantation ; 4 chaque
etape, certaines fonctions sont complétement définies alors que I'implantation
des autres reste floue et sera précisée dans une étape ultérieure,

— conception ascendante @ on part de la machine réelle et on construit
des modules qui étendent progressivement son jeu d'instructions et de données
pour obtenir une machine de plus en plus proche de celle désirée.

Comme la mise en cuvre d'une seule de ces approches est délicate (et
demande en tout cas une grande expérience de la conception de programmes
comparables), on procéde dans la pratique alternativement de haut en bas et
de bas en haut, jusqu’a ce que I'on obtienne une solution convenable ; par
contre, la programmation se fait généralement de bas en haut : on met d’abord
3: point les modules du niveau J, puis on intégre ceux du niveau 2 et ainsi

suite.
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Exemple. Un programmeur désirant construire un programme d'analyse synta-
xique utilisant des piles pourra commencer par étendre son langage en définissant des

instructions de gestion de pile comme dans Uexemple du 7.311. 1l devra réaliser ces
instructions avec les outils dont il dispose.

7.32 PROGRAMMES PARALLELES

Une des difficultés des méthodes exposées ci-dessus réside dans la part
d’arbitraire de la décomposition en modules. Lorsqu'on admet la possibilité
d’exécution paralléle de certaines phases de travail, on introduit un degré de
libert¢ supplémentaire car la décomposition en processus est elle aussi, dans
une certame mesure, arbitraire. La conception et la réalisation sont donc
beaucoup plus complexes. Il semble que 'on puisse procéder de la facon
suivante : au départ, on fixe la décomposition en processus du sysiéme global,
ainsi que les primitives de synchronisation que I'on va implanter. On emploie
pour cela une approche par niveaux : les niveaux inférieurs doivent fournir
des outils adéquats pour la programmation des autres niveaux. On commence
ainsi par programmer le niveau le plus bas ot I'on implante la gestion des
processus et des semaphores ; puis on ajoute 4 chaque niveau un ou plusieurs
processus de gestion de nouvelles ressources réelles ou virtuelles. On retrouve
ainsi les systémes a « noyau extensible » [Brinch Hansen, 70], dans lesquels
le realisateur du systéme ne fournit qu'un certain nombre d'outils (synchro-
nisation, gestion des fichiers, ...} qui correspondent aux niveaux inférieurs
d’un systéme complet. L utilisateur peut compléter le systéme de fagon adapiée
a ses besoins propres.

Exemple. Donnons pour terminer un exemple de décomposition en niveaux d'un
systéme réel : le systéme THE [Dijkstra, 68]; on rappelle gqu'il s’agit d'un systéme
multiprogramme a nombre fixe de processus, utilisant le sémaphore comme mécanisme
de synchronisation.

Niveau 0. On désire tout d'abord multiprogrammer I"unité centrale entre plusieurs
processus ; on implante donc au niveau le plus bas les primitives P et ¥ qui réalisent
I'allocation de I'unité centrale. Pour assurer une répartition équitable du temps d’unité
centrale, on ajoute la programmation d'une horloge permettant de changer périodi-
quement le processus £lu. A partir du niveaun 7, le nombre de processeurs réels est
sans importance. Corrélativement, si on change le nombre de processeurs, on n'aura
a modifier que le niveau 0.

Niveaw I. Au niveau I. on introduit le processus de gestion du tambour, qui
transfére des pages du tambour vers la mémoire centrale 4 la demande des processus
de niveau supérieur. Ce processus est un processus cyclique ; pendant Uexécution
d'une entrée-sortie, il est blogué derriére un sémaphore (le systéme d'interruption de
la machine ELXS8 sur laguelle est implanté le THE est trés proche du sémaphore).
Au-dessus du niveau /, on dispose donc d’une mémoire virtuelle.

Niveau 2.  Au niveau 2 se trouve le processus de gestion de la console de l’np&rgtcur
(ef. 7.5). Ce processus, chargé de gérer les conversations entre I"opérateur et les divers

processus de niveaux supérieurs, est placé au niveaun 2 pour qu'il puisse utiliser la
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mémoire virtuelle. 8i ce processus avait été placé au niveau /, il aurait fallu lui réserver
une zone fixe de mémoire centrale et donc condenser les différents messages dispo-
nibles. Au-dessus du niveau 2, les processus peuvent communiquer avec 'opérateur.

Niveau 3. A ce niveau se placent les processus d'entrées-sorties. Les entrées-sorties
s¢ font par I'intermédiaire de fichiers sur tambour (auxquels les processus du niveau 4
ont acces par des requéies au processus de gestion du tambour) ; les processus du
niveau 3 sont chargés de remplir (ou de vider) les fichiers tampons & partir (sur) des
périphériques. Les demandes d’entrées-sorties sont faites par des processus de nivean
supérieur ; pendant I'exécution physique des transferts, les processus d'entrées-sorties
sont blogués derriére un sémaphore. On les place & un niveau supérieur 4 2 car ils
utilisent la mémoire virtuelle (niveau /) et communiquent avec I'opérateur {niveau 2.
Au-dessus du niveau 3, les processus peuvent exécuter des entrées-sorties.

Niveau 4. A ce niveau se placent les processus des différents usagers. Comme
ceux-ci font appel aux processus du niveau 3, on doit les placer & un niveau supérieur,
c'est-4-dire au niveau 4. Remarguons que les processus des usagers appellent également
les processus des niveaux f et 2 et utilisent évidemment les mécanismes du niveau 0.

D¥ou le graphe des interactions entre niveaux :

7.4 OUTILS D’ECRITURE ET DE MISE AU POINT

Nous nous intéressons ici aux modalités pratiques de la réalisation des
systémes. Il s’agit d’un champ d’étude encore peu exploré, et faisant I'objet
de nombreuses recherches. Nous nous restreindrons i deux aspects parti-
culiers : les langages d’écriture de systémes et les outils d’aide a la mise au
point.

7.41 LANGAGES D’ECRITURE DE SYSTEMES

Un systéme doit remplir des fonctions spécifiques, souvent trés dépendantes
du mateériel (gestion des dispositifs ciblés de protection, des interruptions,
des déroutements, des entrées-sorties, ...), et ces fonctions ne sont pas tou-
Jours aisément descriptibles dans un langage de programmation. On peut
€tre ainsi amené 4 concevoir 'ensemble des outils de construction de systéme
comme un autre systéme. Ce systéme de construction peut étre considéré
comme un sous-ensemble du systéme & construire (en constituant ainsi un
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premier niveau) ou congu comime entiérement distinct. Dans tous les cas,
on doit disposer d'un langage permettant d’exprimer les algorithmes du sys-
teme & construire. Ce langage doit permettre de construire des programmes
dont les caractéristiques ne dépendent pas de celles du systéme de construc-
tion. Nous allons examiner divers aspects des langages de programmation
et tenter de dégager des propriétés souhaitables pour un langage destiné a
la réalisation de systémes ; nous passerons ensuite en revue les principaux
types de langages utilisés.

7.411 Caractéristiques des langages

Sans chercher & étre exhaustifs, nous énumérons ici les caractéristiques
qui nous paraissent les plus importantes.

1} Adéquation. Le langage doit étre adapté au mode de conception et 4 la
nature des algorithmes qu’il exprime : si des processus paralléles interviennent,
le langage doit pouvoir exprimer le parallélisme. Ce probléme n'est pas
résolu actuellement de fagon satisfaisante. Le langage doit non seulement
pouvoir décrire des propriétés des objets manipulés mais comporter un moyen
de garantir & I'exécution que ces propriétés sont satisfaites, Par ailleurs, les
programmes de systémes sont le plus souvent constitués 4 partir de morceaux
separés. Un langage d’écriture de systémes doit done pouvoir décrire aisément
les liaisons entre modules ou au minimum permettre d’assembler aisément
des morceaux de programmes compilés séparément.

2) Clarté. Un langage de programmation est destiné aussi bien 4 la commu-
nication entre hommes qu'a I'interprétation par une machine. De plus, il
influence le mode de pensée de ceux qui l'utilisent. La clarté est donc une
propriété & rechercher, pour les instructions comme pour les données :

— instructions : le langage ne doit pas permettre de constructions dont
leffet n'est pas immédiatement apparent (effets de bord, par exemple). Les
instructions de séquencement (« control statements ») doivent permettre une
programmation structurée qui facilite la lecture et réduit le risque d’erreur
(utilisation des constructions tant gue ... faire, répéter ... jusqu’d, ... plutét
que aller g),

— données : le langage doit permettre de décrire des données composées
(tableaux, classes) et d"associer 4 toute donnée une procédure d’accés imposant
des conditions d'utilisation bien déterminées.

3) Efficacité. L'efficacité a 'exécution du programme résultant doit étre
recherchée, mais non au détriment de la clarté et de la sécurité. Ainsi, on ne
doit pas systématiquement exclure diverses opérations 4 I'exécution (contrdle
des indices de tableaux, gestion d’une pile) qui permettent des possibilités
étendues de vérification. L'efficacité du compilateur est également un faqtcm
important pour des programmes qui doivent étre fréquemment modifiés et
recompilés.
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7.412 Classification des langages

Nous énumérons, par ordre d'éloignement croissant du langage de la machine,
les principaux types de langages utilisés pour I'écriture de systémes.

1} Langages d'assemblage

Les opérations décrites dans un langage d’assemblage sont les instructions
d'une machine donnée ; aussi ces langages se prétent-ils assez mal & une pro-
grammation claire et structurée en raison de la nécessité de décrire les algo-
rithmes & I'aide d’opérations trés élémentaires. De méme les structures de
données sont rudimentaires et déterminées par le matériel. On peut remédier
dans une certaine mesure a ces défauts, par :

-— l"utilisation d'un macro-générateur,
— le respect d'une stricte discipline de programmation.

Exemple. On peut implanter des structures de données munies d'un mécanisme
d'accés si on s’impose de n'accéder i ces données que par un jeu de macro-instructions.
Certains langages facilitent cette discipline par des directives permettant d'adjoindre
au repertoire d'instructions un cnsemble donné de macro-instructions (directive
SYSTEM du METASYMBOL sur CII 10070) ou de limiter la portée des identificateurs.

En résumé, les langages d’assemblage permettent d'utiliser toutes les
possibilités d'une machine, mais au prix d'un travail souvent fastidieux et
sujet aux erreurs. Deux voies sont envisageables pour remédier 4 ces défauts :

— utilisation de macro-assembleurs, qui ne limitent pas les possibilités
de génération.

— utilisation de langages de plus haut niveau, qui restreignent les possi-
bilités de génération.

2) Langages de tvpe PL360

Le langage PL360 [Wirth, 68] et les langages analogues congus pour d’autres
machines représentent une tentative de compromis entre la clarté d'expression
et la souplesse de génération. Les langages de ce type sont congus pour une
machine donnée. Leurs caractéristiques peuvent se décrire comme suit :

— les instructions de séquencement du type si ... alors, tant que ... faire ...
sont commandées par des tests sur des expressions booleennes, évitant la
programmation détaillée des branchements et comparaisons ;

— les registres sont représentés par des identificateurs, les opérations de
chargement, de rangement et les opérations arithmétiques et logiques par
des instructions analogues & celles d’ALGOL 60 -

— des structures de blocs définissent la portée des déclarations ;

— les structures de données sont réduites a des variables simples ou a des
tableaux d’éléments adressables sur la machine donnée (mots, octets...);

— Tl'utilisation des sous-programmes, représentés sous forme de procé-
dures, est analogue 4 celle I’ALGOL 60 -
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— toute instruction du répertoire de la machine peut étre engendrée ;
— le code objet engendré par toute instruction est connu précisément.
Cette derniére caractéristique n'est pas en fait utilisée trés souvent.

Par rapport aux langages d’assemblage, le gain en clarté apporté par les
instructions de séquencement, les instructions d'affectation et I'écriture des
expressions est considérable. 11 subsiste des inconvénients : nécessité de
gerer les registres (risques d'erreur), structures de données rudimentaires.
pauvreté du mécanisme d’appel de procédures, absence de tout controle i
'exécution. Des extensions sont possibles permettant de remédier dans une
certaing mesure a4 ces défauts -

— possibilité de laisser la gestion des registres (ou de certains registres)
4 la charge du compilateur,

— mécanisme de définitions de données plus fines (champs dans un mot)
et d'accés 4 ces données.

3) Langages de haut niveau

Etant donné les inconvénients signalés plus haut, la tendance actuelle est
d’utiliser des langages de niveau plus élevé que les langages d'assemblage ou
de type PL360. Les premiéres tentatives en ce sens ont été "écriture des sys-
témes MCP BURROUGHS B5500 (en ALGOL étendu [Burroughs, 64])
et MULTICS (en EPL, sous-ensemble de PL/1 [Corbato, 69b]). On assiste a
diverses tentatives de définition d'un langage de haut niveau adapté a I'écriture
de systémes, l'effort portant plus particuliérement sur les points suivants :

— structures de données : défimtion conjointe des structures de données
et de leur algorithme d’accés, vy compris la protection de cet accés ; inclusion
dans le langage de la notion de pointeur; possibilité de définir de nouveaux
types de variables et d'en créer et détruire dynamiquement des représentants,

— procédures : mécanismes de transmission de parameétres ; spécification
du mode d'accés des paramétres.

On pourra trouver dans [Clark, 71b; Wirth, 7la; Wulf, 71 ; Berthaud, 72 ;
Ichbiah, 72], des descriptions de langages de haut niveau congus en vue de
I'écriture de systémes.

7.42 OUTILS DE MISE AU POINT

Dans les paragraphes précédents, nous avons passé en revue deux appro-
ches en vue d’obtenir des programmes valides : la preuve a priori de leur
validité et la programmation structurée. Comme les techniques de preuve
restent encore inapplicables pratiquement, surtout aux gros programmes,
on doit se contenter de vérifier expérimentalement (dans une certaine mesure)
que chaque programme répond a ses spécifications ; il ne suffit pas de detecter
la présence d’erreurs, il faut encore disposer de renseignements permettant
de situer et de corriger rapidement ces erreurs. Quant aux techniques de
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programmation structurée, leur application systématique facilite aussi bien
la mise au point expérimentale que la démonstration de la validité : dans le
cas d'une conception par niveaux, par exemple, on commence par mettre an
point les programmes du niveau ), puis ceux du niveau / en admettant que le
nivean 0 est valide, et ainsi de suite.

Pour une étude détailiée des outils de mise au point, le lecteur peut se repor-
ter 4 [Evans, 66 ; Gaines, 69 ; Rustin, 71]. Nous nous contentons de donner
ici quelques idées générales et le principe de leur application 4 la mise au
point des systémes d’exploitation.

Pour détecter puis corriger les erreurs, le programmeur a besoin de ren-
seignements sur I'exécution de son programme dans les instants précédant
et suivant 'apparition de I'erreur ; les outils de mise au point ont pour rile
de lui fournir ces renseignements. Il peut s’agir de la valeur de certaines varia-
bles, prélevées lors de phases déterminées de I'exécution, de la suite des ins-
tructions exécutées, de mesures de performances (la connaissance des régions
de programmes les plus fréquemment exécutées permet d'améliorer les per-
formances globales en reprogrammant soigneusement ces régions).

Un outil de mise au point doit posséder plusieurs propriétés :

1) Toute information imprimée doit 1'étre sous une forme la plus proche
possible de celle du langage source (si le « dump » hexadécimal peut &tre
accepte, faute de mieux, lorsque 1'on programme dans le langage de la machine,
il est pratiquement inutilisable si on écrit dans un langage de haut niveau),

2) La mise au point doit pouvoir étre limitée 4 certaines variables ou

régions.

3) Les performances du programme engendré par le compilateur ne doivent
pas étre trop dégradées par l'outil de mise au point ; en particulier les procé-
dures non analysées doivent occuper leur taille de mémoire définitive et
s'exécuter a la vitesse maximale.

4) La sélection des variables et des régions de programme que I'on désire
analyser doit se faire avec le moins possible de modifications du programme
source ; I'emploi de cartes de commandes de mise an point et d'options par-
ticuliéres du compilateur parait approprié. Il est également intéressant de
disposer de certaines instructions de mise au point conditionnelle, ne donnant
des informations que lorsqu'une certaine condition est réalisée (expression
booléenne de variables du programme ou condition anormale : déborde-
ment d'un tableau, d'une liste d’instructions cas, utilisation d'un pointeur qui
ne repére plus rien, ...). o

5) La structure du langage de mise au point doit autant que possible étre
identique & celle du langage source. Les deux langages manipulent en effet
les mémes structures de données. Signalons I'importance du choix des options
par défaut pour la sortie des résultats de mise au point : entre une feuille
blanche et des centaines de pages imprimées, un compromis satisfaisant n'est
pas facile 4 trouver.
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Lors de Décriture d'un systéme d'exploitation, la mise au point se fait
geénéralement en deux phases : en utilisant un systéme préexistant, on écrit
et on met au point des modules isolés; puis on intégre progressivement les
différents modules sur la machine pour laquelle on construit le svstéme. On
a tout intérét & munir le systéme préexistant d'un bon compilateur assorti
d’outils de mise au point adéquats et & utiliser ces outils le plus longtemps
possible en simulant I'environnement définitif du programme. L'expérience
montre que le colt de réalisation de ce simulateur est trés largement compensé
par le gain de temps a l'intégration ; on limite ainsi les heures de rravail au
pupitre de la machine, qui génent d’autres utilisateurs de 'ordinateur. Quant
au systéme en construction, il est fondamental d'y inclure dés le départ un
certain nombre d’outils de mise au point, méme si ces outils sont rudimentaires
aux miveaux inférieurs.

Citons entre autres

— l'impression sous une forme claire des structures de données globales
du systéme lors de la détection de certaines conditions ou 4 la demande de
'opérateur (interruption au pupitre). Notons que la mise au point est facilitée
si on détecte les erreurs le plus tét possible ;

Exemple. Dans une procédure d'extraction d'un élément d'une liste, il est judi-
cleux de toujours prévoir le cas oi la liste est vide, méme si des précautions extérieures
semblent garantir que la liste n'est jamais vide lors de I'appel de cetie procédure.

— l'enregistrement de 'histoire récente du systéme : dans un systéme a
processus paralléles, il est difficile. sinon impossible, de reconstituer la suite
des différents processus exécutés avant I'apparition d’une erreur ; on évite
aisément cette recherche en notant a chague allocation de processeur le nom
du processus allocataire, 'adresse a laguelle on lance I'exécution, et 'heure
de I'allocation.

En ce qui concerne la correction des erreurs détectées, il est utile de pouvoir
maodifier le programme-objet en mémoire centrale pour permettre une expeé-
rimentation rapide. Toutefois, il est recommandé de reporter ces modifications
dans le texte-source. Des outils permettent de faciliter ces différentes correc-
Lions.

— Au niveau du programme-objet : commandes permettant de modifier
des mots de la mémoire, ou d'insérer des instructions dans un programme.
Ces commandes doivent étre placées au premier niveau du systéme construit.

— Au niveau du programme-source : gestion de fichiers permanents,
éditeurs de texte, possibilités de compilation séparée.

7.43 TECHNOLOGIE DE LA PROGRAMMATION

Nous n'aborderons pas ici les problémes divers que pose la construction
de systémes informatiques en tant que technigue industrielle, et qui ont
donné lieu 4 de nombreuses publications. Le lecteur pourra consulter en
particulier [Corbato, 68 ; Naur, 69; Buxton, 70; Wemberg, 71].
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7.5 EXEMPLE : REALISATION D'UN SYSTEME D’ENTREE-SORTIE

Nous nous proposons dans cet exemple d'illustrer les concepts suivants -

— spécification d'un module et de son interface,
— realisation d'un module (découpage en processus coopérants, commu-
nications entre processus, conception descendante des algorithmes).

Le programme étudié est une version simplifiée du systéme de gestion des
entrées-sorties du systéeme ESOPE [Baudet, 72] dans leguel nous avons
supprimé des détails de programmation, mais laissé inchangés le découpage
en processus et la synchronisation entre ces processus,

Le systéme auguel on veut ajouter un systéme d’entrées-sorties est a accés
multiple : 4 un instant donné, des processus de différents usagers coexistent.
Les usagers peuvent conserver des informations (programmes ou données)
dans des fichiers sur disques (un fichier est un ensemble d’articles, I'article
est l'unité logique d'accés aux informations). On veut construire un pro-
gramme permettant a un usager d'imprimer le contenu dun fichier; aprés
la demande, I'impression a lieu 4 un instant dépendant unigquement des
demandes en attente et ['usager ne regoit aucun message en fin d'impression.
Nous supposons de plus que le systéme comporte une seule imprimante et
que les erreurs de fonctionnement (fin de papier, erreur de transmission)
sont gérées par un opérateur qui peut également mettre I'imprimante en
service ou hors service.

7.51 SPECIFICATION DU MODULE D'ENTREE-SORTIE

Avant de spécifier le module d'entrée-sortie, donnons guelques complé-
ments sur la notion d’interface, ainsi qu'un schéma général de conception
qui sera utilisé dans le reste du paragraphe.

1) Lorsqu'on spécifie I'interface d'un module, on ne précise que la nature
des éléments qui le constituent, ainsi que les relations qui doivent exister
entre ces elements & l'entrée et 4 la sortie du module. Cette définition est
indépendante du mode de réalisation choisi. Selon la complexité du module,
on peut s¢ contenter de cette définition ou donner des directives de réalisation.

2) Les éléments de l'interface d’'un module peuvent étre accessibles soit
par tous les autres modules avec les mémes conventions, soit par tous les
modules, mais avec des conventions différentes selon I'appelant, soit par
certains modules seulement. Dans les deux derniers cas, la notion d’interface
n'est plus suffisante : il faut parler de I'interface entre module appelant et
module appelé ou plus simplement d'interface appelant-appelé.

En conséquence, spécifier un module, ¢’est ;

~ fournir une description de la machine de base, ¢’est-a-dire des instruc-
tions utilisables pour la programmation du module,
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— définir avec précision le mode d utilisation et éventuellement le contenu
du module.

Le mode d'utilisation est défini par I'interface du module, ¢'est-d-dire
I'ensemble des procédures et des données (entrées et résultats) accessibles de
Pextérieur du module, ainsi que leurs conventions dutilisation.

Des indications sur le contenu du module sont données par :

— des directives pour son implantation (nombre de processus par exemple),
— la liste des sous-ensembles du module dont Ie mode de réalisation est
sans importance pour le systéme global.,

Dans 'exemple décrit dans ce paragraphe, nous disposons avant la réali-
sation du module d’entrée-sortie d'une machine de base dont les instructions
sont interprétées soit par ciblage, soit par des programmes implantés a des
niveaux inférieurs au niveau considéré. Le rdle du nouveau module est de
compléter la machine de base par I'introduction d'une instruction

imprimer(nom de fichier)
permettant a un usager de sortir sur I'imprimante le contenu du fichier nommé.

7.511 La machine de base

La machine de base interpréte les instructions ciblées du calculateur
CII 10070 (I'adressage et le jeu d'instructions sont classiques) et les extensions
programmées suivanies :

— gestion de processus paralléles synchronisés a l'aide de sémaphores
et des primitives P et V, .
— utilisation de primitives permettant d’accéder 4 des fichiers sur disques.

Ces extensions programmées sont utilisables par I'intermédiaire d’instruc-
tions d'appel au superviseur (instruction CAL).

7.512 Conséguence de I'extension souhaitée

On désire qu'un processus d'un usager puisse demander I'impression
d'un fichier. Le module chargé de réaliser I'impression doit exploiter les
possibilités de parallélisme entre les différentes unités d’entrée-sortie (disque
et imprimante) ; d"autre part, il ne doit pas empécher le processus demandeur
de poursuivre son exécution. Le systéme doit étre protégé contre toutes les
erreurs commises par |'usager dans ['appel de la procédure d’impression.

L'extension souhaitée a donc plusieurs conséquences.

|) Pour permettre au processus appelant de poursuivre son exé‘cuti-::m.
le transfert du fichier doit étre réalisé par une famille de prOCEsSUS {dﬁllﬁpl}l’ﬂ-
cessus d’entrée-sortie) distinets du processus appelant. Ce dernier n'exécute

que la procédure, écrite dans le langage de la machine de base, permettant
de faire appel aux processus d'entrée-sortie.
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2) Pour tirer parti du parallélisme, nous devons introduire au moins un
processus d’entrée-sortie par organe périphérique et mémoriser les demandes
de transfert qui ne peuvent étre satisfaites immédiatement, c’est-i-dire celles
qui surviennent alors qu’un fichier est en cours d’impression.

3) Pour protéger le systéme contre les erreurs ou les malveillances des
usagers, un processus utilisateur ne doit pas avoir accés directement aux
variables constituant |'interface du module d'entrée-sortie ; on lui impose de
passer par une procedure appelée par I'intermédiaire d’un appel au super-
VisSeur. :

7.513 L’interface du module d’entrée-sortie

A la suite des considérations précédentes, I'interface du module dentrée-
sortie comprend : '

— une zone de mémoire destinée 4 conserver les demandes d'impression
en attente : la boite aux lettres,

— un moyen de signaler aux processus d'entrée-sortie qu'une demande
vient d'étre déposée dans la boite aux lettres.

La structure des fichiers 4 imprimer n’appartient pas a I'interface du module
d’entrée-sortie. Les processus d'entrée-sortie, comme les processus utilisateurs
ont acces aux fichiers par l'intermédiaire d’instructions de la machine de
base.

1) La boite aux lettres

La boite aux lettres est un fichier du systéme, de nom BAL. Elle est gérée
en tampon circulaire et contient des messages de longueur fixe (6 mots =
24 caractéres = longueur maximale d'un nom de fichier).

Sa structure d'ensemble est la suivante :

{
'_. Mmax [
_ -

A, [T

q

— les conditions initiales sont r = g = 0,
— un nouveau message est placé en queue :

BAL (q) == message;
q =g + 6 mod Imax ;
— les messages sont extraits en téte par un processus d’entrée-sortie :
message-regu == BAL(1) ;
[:= 1 + 6 mod Imax ;

— la boite aux lettres est pleine si t = g + 6 mod Imax. Les actions entre-
prises par un processus demandeur qui trouve la boite aux letires pleine
sont indépendantes des processus d’entrée-sortie,
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— enfin, comme la boite aux letires est un fichier accessible en lecture-
ecriture & plusieurs processus, tout accés doit étre inclus dans une section
critique ; on utilise pour cela un sémaphore smurexbal de valeur imtiale /.

2) Synchronisation entre processus demandeur et processus d'entrée-sortie

On utilise simplement un sémaphore privé ses d'un processus d’entrée-
sortie. Quand aucune demande de transfert n'est en cours de traitement, ni
en atiente, ce processus est bloqué derriére le sémaphore ses. Aprés dépdot
d’un message dans la boite aux lettres, le processus demandeur exécute un
Fises) qui déblogque le processus d’entrée-sortie,

3) Protection

L'ensemble des processus demandeurs d’entrée-sortie ne pouvant &tre
considére comme fiable, il n'est pas question de donner 4 ces processus un
acceés direct i l'interface du module d'entrée-sortie. On interdit donc aux
processus des usagers d’accéder 4 la boite aux lettres et au seémaphore ses
autrement que par |'intermédiaire d’une procédure particuliére dotée d'un
pouvoir suffisant. Cette procédure doit alors étre appelée par une instruc-
tion d’appel au superviseur jouant le réle d’un guichet d'appel (cf. 5.224).
Les actions suivantes y sont effectuées :

— wérification des droits du processus 4 demander le transfert du fichier,

— modification du pouvoir du processus pour qu'il puisse accéder a la
boite aux lettres,

—- acces 4 la boite aux lettres ; si celleci est pleine, il y a retour au Processus
demandeur avec un code d'erreur, sinon on note dans la boite aux lettres le
nom du fichier 4 imprimer et on exécute un ¥/ses).

Nous ne décrivons pas ici la programmation du guichet d’appel.

En résumé, le systéme comprend une procédure effectuant 1'accés a la boite
aux lettres et l'instruction Vses). L'instruction imprimer du langage de
P'utilisateur est traduite 4 la compilation en un appel au superviseur et tout
S¢ passe comme si message el nom de fichier étaient les paramétres formel et
effectif’ de la procédure.

7.514 Choix laissés an réalisateur do module d'entrée-sortie

Les spécifications précédentes (que nous avons volontairement réduites au
minimum) laissent au réalisateur du module un bon nombre d'initiatives.
Signalons seulement les principales :

— découpage des modules en processus (dans la mesure oi le parallélisme
est exploité) et choix des modes de communication entre ces processus,

— traitement des erreurs d'entrée-sortie et communication avec 'opérateur,

— détails de réalisation (mise en page des en-téte de fichiers sur I'impri-
mante, par exemple).
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7.52 CONCEPTION DU MODULE D'ENTREE-SORTIE

Nous appliquons a la conception d'un module particulier la méme approche
que pour un systéme global, & savoir :

— découpage en modules (les critéres de décomposition sont les mémes
que dans le cas général),

— définition globale des interfaces des différents modules,

— conception descendante de chaque module et définition plus fine des
interfaces.

7.521 Décomposition

Pour exploiter au mieux le parallélisme entre les différentes unités du SYs-
téme, nous introduisons un processus pour chagque organe fonctionnant de
maniére autonome, ¢'est-d-dire :

— un processus attache au disque, ou FACTEUR, chargé de la lecture
des articles de fichier,

— un processus attaché i l'imprimante, ou PILOTE, charge de I'impression
des articles de fichier,

— un processus SERVANT, associé 4 la console de I'opérateur.

Processus Processus
usager i usager j

FACTEUR SERVANT

e == =

Tampans

- — —

PILOTE

1 Interraption
ST d'entrée-sartie

= Activation
== Transfernt d"information

Figure 1. Schéma d’ensemble du systéme d’entrée-sortie.
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Le couple FACTEUR-PILOTE coopére & la réalisation des sorties de
fichier tant que celles-ci se poursuivent normalement ; s'il se produit des
erreurs de transmission, ou s 'opérateur arréte un transfert, le processus
SERVANT intervient. Enfin, un processus d'un usager n’intervient que pour
transmetire la commande de transfert d'un fichier au couple FACTEUR-
PILOTE.

La boite aux lettres est représentée par un fichier sur disque ; en conséquence,
c'est le processus FACTEUR qui est responsable de sa consultation. De
méme, le sémaphore ses introduit au paragraphe précédent est un sémaphore
prive du processus FACTELR,

Examinons brievement deux autres décompositions possibles et les raisons
qui nous ont amené a les écarter.

[} Ilest possible d"introduire un nombre de processus supérieur au minimum
requis pour assurer le fonctionnement simultané des différents organes : par
exemple, un processus supplémentaire accéde a la boite aux lettres, puis
active le processus FACTEUR. Cette solution n'est intéressante que si les
usagers peuvent demander des transferts de fichier sur plusieurs organes par
I'intermédiaire d'une seule boite aux lettres.

2) Il est possible d'utiliser le fait que le calculateur CII 10070 est mono-
processeur et dispose d'une seule interruption d'entrée-sortie. Dans ces
conditions, un processus unigue, activé par I'interruption d’enirée-sortie (via
un semaphore), peut étre programmeé de maniére a assurer un fonctionnement
simultané du disque et de I'imprimante. Des arguments d’efficacité sont
souvent invoqués A 'appui de cette solution qui présente néanmoins des
Inconvénients majeurs :

— elle revient & programmer sous une ‘orme ad hoc des mécanismes
de synchronisation qui existent déja dans la machine de base,

— la mise au point est délicate car les problémes de synchronisation ne
sont pas resolus au moyen de mécanismes généraux diment éprouves,

~— la clarté due 4 la décomposition est perdue : le programme final est
moins facilement modifiable.

La décomposition en modules que nous retenons correspond 4 la décom-
position en processus. Ce choix est justifié par la simplicité des interfaces et
de la programmation de chaque processus.

7.522  Interfaces

1} Interface FACTEUR-PILOTE

Le FACTEUR et le PILOTE ne peuvent fonctionner en parallélisme réel
que si I'on dispose de plusieurs tampons d'entrée-sortie (on ne peut a un
instant donné remplir un tampon 4 partir du disque et le vider sur I'imprimante).

Soit # le nombre des tampons disponibles.
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La technique du producteur-consommateur est bien adaptée au probléme
de la synchronisation FACTEUR-PILOTE. Nous l'employons donc, le
FACTEUR étant le producteur, le PILOTE le consommateur : sprod (valeur
initiale n) et scons (valeur initiale 0) sont les deux sémaphores utilisés. L'inter-
face entre ces deux processus se réduit donc :

— a |'ensemble des tampons, dont les adresses et les longueurs sont connues
des deux processus,

-—— aux sémaphores sprod et scons.

2) Interface du processus SERVANT

Le processus SERVANT est associé 4 la console de 'opérateur ; il peut
étre activé de deux facons :

— 4 la demande de 'opérateur (interruption pupitre), qui désire intervenir
sur le déroulement des entrées-sorties,

— & la demande d’un processus quelconque, pour sortir un message sur
la console.

Dans le premier cas, on ne désire prendre en compte qu'une seule demande
4 la fois et un booléen, ipup, suffit &4 mémoriser la demande. Au contraire,
dans le second cas. on utilise une boite aux lettres intermédiaire, casier, gérée
suivant le schéma producteur-consommateur 4 I'aide de deux procédures :

extraire-message(m) : prélever un message dans casier et affecter sa valeur

am,

déposer-message(m) : déposer le message m dans casier,

Dans ce schéma, le producteur est unique ; la présence de plusieurs péri-
phériques nécessiterait un schéma & producteurs multiples.

Au repos, le SERVANT est bloqué derriére son sémaphore privé sservant ;
toute demande d'intervention doit donc s'accompagner d'un F{sservant),
L'interface du processus SERVANT comprend donc :

~ le semaphore sservani,

— le booléen ipup (accessible & I'opérateur seul),

— la procédure dépaser-message.

7.523  Conception des différents modules

1}y FACTEUR et PILOTE

Une premiére approche de la programmation du FACTEUR et du PILOTE
est la suivante :

FACTEUR ; P{ses); PILOTE : P{scons) ;
prélever un imprimer le tampon ;
message dans Visprod) ;
la boite aux lettres ; _ aller a PILOTE ;

tant que  articles faire
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Pisprod) ;
transférer un article
du disque dans une
page tampon ;
Viscons )
@ :

aller @ FACTEUR ;

L’exclusion mutuelle 4 chacun des tampons a été démontrée au chapitre 2
(modéle du producteur et du consommateur).

En ce qui concerne le processus FACTEUR, I'opération transférer un
article dans une page tampon se fait par une instruction de la machine de base :
quant 4 la ligne prélever un message dans la boite aux lettres, elle peut s'écrire,
en admettant que [a boite aux lettres est un fichier d'un seul article :

P smutexbal)

transférer l'article boite aux lettres dans un tampon ;
message-regu = BAL(1);

t =t + 6 mod lmax;

vider le tampon dans le fichier boite aux letires ;
Vismutexbal) ;

En ce qui concerne le processus PILOTE, précisons la ligne imprimer le
tampon. Chaque tampon contient un ensemble de lignes 4 imprimer. On a
choisi, pour alléger la description, de ne pas imprimer plus d’une ligne par
instruction d'entrée-sortie. En attendant la fin de 'exécution de I"'mpression,
le PILOTE se blogue derriére un sémaphore sif (valeur initiale ) ; le traitement
de I'interruption d’entrée-sortie exécute un Fsit.

imprimer le tampon peut alors s'écrire :

ne={;
INCR : tant que n < nmax faire
début
me=n+ I,
lancer la sortie de la ligne n;
Pisit);

traitement des erreurs
fin;
Les opérations lancer la sortie de la ligne n et traitement des erreurs seront
définies plus tard, en liaison avec le processus SERVANT.

2) SERVANT

Le processus SERVANT est un processus cyclique blogue au repos demere
son sémaphore privé sservant. Nous admettrons que les interventions de
'opérateur bénéficient d’une priorité plus grande que les sorties de message.

. 11
Chocus, — Svarémes dexpleiration Lo ordingt e
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La procédure associée au processus SERVANT a done la structure suivante :

SERVANT : P{sservant);

si itpup alors

T debut
lire une ligne sur la console :
décoder le message eniré ;
exécuter laction demandée ;
itpup = faux
fin

sinon
débur
extraire-message(m) ;
imprimer le message m
fin;

aller @ SERVANT ;

Pendant chaque entrée-sortic de message, le SERVANT est blogué derriére
un sémaphore sitservant (valeur initiale 0); Uinterruption de fin d’entrée-
sortie sur la console déclenche un V{sitservant).

Nous allons maintenant exposer deux actions exécutées par le SERVANT,
ainsi que les instructions correspondantes du processus PILOTE : le traitement
des erreurs d'entrée-sortie et le verrounillage de I'imprimante,

3) Traitement des erreurs d’entrée-sortie
Trois classes d’anomalies peuvent se produire -

— passage en mode manuel (appui sur le bouton « manuel » de I"impri-
mante, fin de papier). Si I'imprimante est en mode manuel, une demande de
sortie (S/0) est acceptée; elie doit attendre pour s'exécuter que I'opérateur
ait appuyé sur le bouton « automatique » de I'imprimante. Dans ce cas, le
SERVANT se contente donc de demander & I'opérateur d'intervenir.

— Imprimante non opérationnelle (par exemple 4 la suite d une panne de
secteur). Le lancement d'une entrée-sortie est alors refusé.

— erreur de transfert.

Dans les deux derniers cas, il faut avant de relancer la sortie que "opérateur
appuie sur le bouton « remise & zéro» de 'imprimante. On lui donne alors
la possibilité soit de reprendre I'impression de la ligne erronée, soit de pour-
suivre purement et simplement l'impression du fichier. En attendant I'inter-
vention de I'opérateur, le PILOTE se bloque derriére un sémaphore sop ;
on mémorise ce blocage au moyen d'un booléen atiend-op. Dans le processus
PILOTE, 1a ligne lancer la sortie de la ligne n s'écrit donc :

SORTIE : SI0;
i manuel alors
déposer-message (« imprimante en manuel » J:
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i non opérationnelle alors
debur
attend-op := vrai;
déposer-message (« impr. non opérationnelle » ) ;
Pisop) ;
Si réponse opérateur = « continuer » alors
aller @ INCR sinon aller ¢ SORTIE ~

fin

De méme, la ligne traitement des erreurs s'écrit -

Si erreur de transfert alors
début
attend-op = vrai;
déposer-message [« erreur de transfert » ) ;
Plsop) ;
Si réponse opérateur = « continuer » alors aller G INCR
sinon aller ¢ SORTIE -

fin

Quant 4 'action du processus SERVANT, elle peut s'écrire :

s 7 attend-op alors erreur
Sinon -
réponse opérateur = message lu d la console
artend-op = faux;
Visop)
fin

Remarque 1. Le booléen attend-op, la chaine réponse-opérateur et le
scmaphore sop font partie de I'interface PILOTE-SERVANT.

Remarque 2. Le sémaphore sop est un sémaphore privé du processus
PILOTE ; les variables attend-op et réponse-opérateur peuvent étre placées
indifféeremment dans I'un quelconque des deux modules.

4) Verrouillage de I'imprimanie

On désire parfois arréter |'imprimante entre deux transferts de fichier,
pour permettre certaines opérations d'entretien. On prévoit donc deux
commandes utilisables par 'opérateur, le verrouillage et le déverrouillage de
I'imprimante.

Une premiére approche est la suivante :

~— on positionne au verrouillage un booléen verrou, .

— le FACTEUR consulte verrou au sortir de sa position de repos Pyses) : s'il
le trouve vrai, il se bloque derriére un sémaphore shloc (valeur initiale 0),
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— au déverrouillage, il faut bien sir remettre verrou 4 faux ; de plus, si le
facteur s'est bloqué, il faut exécuter un ¥(shloc). On doit donc disposer d'un
indicateur supplémentaire facteur-bloqué positionné par le facteur avant son
blocage, et faire attention aux exclusions muruelles d'accés 4 cet indicateur.

Dans une deuxiéme approche, on désire se dispenser de I'indicateur Jacteur-
blogué et exécuter systématiquement F(sbloc) au déverrouillage. Pour cela,
on peut faire une analogie avec un passage a niveau : au verrouillage, on
baisse la barriére, au déverrouillage on la reléve. Quand une voiture trouve la
barriére fermée, elle s'arréte et repart quand la barriére est levée. Avec les
sémaphores, on obtient les instructions suivantes (shloc a pour valeur initiale
1)

VERROUILLAGE DEVERROUILLAGE
si 1 verrou alors si verrou alors

debut debut
VEFroW = Vrai, verrou = foux;

P(sbloc) Vi sbioc)
fin: fin;
FACTEUR
Pises);
Pishloc) ;
Visbloc) ;

Remarques

— Le sémaphore shloc appartient 4 'interface FACTEUR-SERVA NT.

— Dans le FACTEUR, on fait suivre le P(sbloc) d'un V/sbloc) pour
ramener le sémaphore & sa valeur initiale de [.

— On peut dans le FACTEUR tirer parti de l'indicateur verrou pour
n'exécuter les primitives sur sbloc qu’au moment opportun ; verrou appartient
alors a I'interface FACTEUR-SERVANT.

7.524 Récapitulation

La figure 2 donne un schéma général des relations entre processus dans le
systéme d’entrée-sortie.
Donnons pour terminer la liste des modules et de leurs interfaces :

1) Module d’entrée-sortie

— semaphores ses, smutexbal,
— boite aux lettres : fichier de nom BAL.

2) Sous-modules
a) FACTEUR

— sémaphores sprod, scons, ses, .
— tampons d’entrée-sortie. } interface (FACTEUR-PILOTE)
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b) PILOTE

e e e’ {imeface (PILOTE-FACTEUR)

— sémaphores sop, sbloc,
— booléen attend-op, interface (PILOTE-SERVANT)

— chaine réponse-opérateur.

c) SERVANT

- *ﬂ;ﬁ;tf E"{;’;’;ﬁﬂ essage }interfac—e (PILOTE-SERVANT)
— 'p[ i s
— booléen itpup. interface SERVANT-OFPERATEUR]

Toutes les variables de communication entre le PILOTE et le SERVANT
sont définies dans le programme associé au processus PILOTE; dans ces
conditions, I'extension & un systéme comportant plusieurs périphériques,
donc plusieurs processus PILOTE, est immediate.

EXERCICES

Les quatre exercices qui suivent se rapportent au modéle d'entrée-sortie présenté
en 7.5. La terminologie utilisée est celle dz 7.5.

1. [1] Transmission des messages du processus SERVANT (cf. 7.311)

Ecrire les procédures utilisées pour la communication avec le processus SERVANT.
On prévoira le cas de producteurs multiples.

déposer-incssage place un message dans la boite aux lettres (casier) du SERVANT,
extraire-mevsuge est appelée par le SERVANT pour prélever un message dans casier.

2. [2] Verrouiliage de ['imprimante
a) En utilisant la premiére des deux methodes exposéss en 7. 5234), éerire

— les commandes de verrouillage et de déverrouillage de 'imprimante,
— la phase initiale du processus FACTEUR (test aprés activation).

&) On suppose maintenant que le systéme gére deux imprimantes.
Modifier la séquence de verrouillage de fagon que la mise hors service d'une impri-
mante n'empéche pas |'impression d'un fichier sur I'autre.
3. [2] Arrét de Uentrée-sortie en cours

Implanter une commande permettant a 'opérateur d’arréter un transfert en cours:
51 une demande de transfert est en attente, elle doit alors étre prise en compte immé-
diatement.

4. [2) Signal de fin d'impression

On désire que 'usager soit prévenu a la fin de l'impression (et puisse donc attendre
celle<ci). Modifier les programmes en conséquence.
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SOLUTIONS DES EXERCICES

CHAPITRE 2

Exercice 1
1} S(p1, S(pa S(pa.pa))).
2) P(py. P(ps. P(ps.pa))).
3) S(p1. S(P(py. P(S(ps, P(pa. ps) ). ps))s P(pr. Pa))).
4) Description impossible.

Exercice 2

AN\
A NVA N

/N\ /N

1} Structure d'arbre 2y  Graphe des processus

3) S{P(S(P(1,, 1), 1), 13), 1s).
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310 Systémes d'exploitation des ordinateurs

Exercice 3
1) Cas de deux processus.

1} Une seule variable booléenne commune. Pour Iécriture du pro-
gramme de p; on désigne « l'autre processus » par pj; c'est-a-dire
j=1sii=2etj=2sii=1{(=3-i)

contexte commun : booléen ¢
¢ = faux;
Processus p; . début fi=12)
Ai © si ¢ alors aller d Ai;
¢ o= Vrdai,
section critigue i;
¢ = faux;
reste du programme i;
aller a Ai
ﬁ_li! -

Supposons que ¢ = faux. Sichague processus teste ¢ avant que I'autre
ne lui ait affecté la valeur vrai, les deux processus s'engagent dans
leur section critique. L'exclusion mutuelle n'est donc pas assurée.

2) Une seule variable commune, fonctionnant en bascule.

contexte commun : entier I
[ 1= I N

processus p; - debut (i=12)
Ai : sit = jalors aller d Ai;
section critigue i;
= j;
reste du programme | ;
aller g Ai

J@;

Le processus p, ne peut entrer dans sa section critique que si t = i
I'exclusion mutuelle est donc garantie par lindivisibilité de 'opé-
ration d'accés 4 +. Toutefois, la modification de r & chagque fin de
section critique impose un fonctionnement en bascule des deux
processus, incompatible avec la propriété d'indépendance (condi-
tion ¢) du 2.31) de la solution. En particulier, 'arrét de p; dans la
partie reste du programme | empéche p; d'exécuter plus d'une fois
sa section critique.

3) Deux vanables communes.

On pose encore j = 3 — i. Une solution conforme aux conventions
de I'énoncé peut s'écrire :
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contexte commun :
booléen tableau o[l : 2] ;
cl] = ¢f2] = faux ;
processus p, - début fi=1,2
Arv o si el j)] alors aller & Ai
eli] = vrai;
section Efqu i;
c[i] = faux
reste du programme i ;
aller g Ai
Jin;

On a traduit ici le fait qu'un processus p; ne peut entrer en section
critique que si 71 ¢[f]. Considérons toutefois la ségquence suivante

I} p; consulte c[ ] et trouve faux:

2) p; consulte ¢[i] et trouve faux -

3) p, fait ¢[j] == yrai et entre dans sa section critique :

4) p; fait ¢[i] = vrai et entre dans sa section critique.

L'exclusion mutuelle n’est done pas garantie, et la solution est inaccep-
table. On peut songer 4 modifier le programme de facon 4 faire I'affec-
tation de ¢[i] avant le test de ¢[ ], remplagant les deux instructions
suivant A7 par :

Af :eli] = vrai;
si c[f] alors aller a Ai;

L'exclusion mutuelle est cette fois garantie : en effet, si p, trouve
c[j] = faux, p; ne se trouve pas en section critique, et ne peut v
entrer puisque ¢[i] = vrai au moment du test de c[j]. Mais la condi-
tion &) n’est maintenant plus vérifiée. Soit en effet la séquence suivante :
1) p; exécute I'instruction étiquetée Ai . ¢[i] = vrai;
2) p; exécute I'instruction étiquetée Aj - c[j] = vrai;
3} p; consulte ¢[f], trouve vrai et réexécute Aj;
4) p; consulte c[i], trouve vrai et réexécute A7
Les deux processus sont désormais engagés dans une boucle infinie,
On pourrait encore songer a améliorer la derniére solution en remet-
tant temporairement c[i] 4 foux 4 I'intérieur de la boucle d’attente
de p, pour laisser passer p; : =
Ai o cli] = vrai;
si c[j] alors
o début
c[i] = faux;

aller & Ai
fin ;
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Le lecteur vérifiera que la possibilité d’attente infinie subsiste, en
faisant exécuter les deux processus 4 la méme vitesse, avec une ins-
truction de retard.

4) Trois variables communes.

On pose toujours j = 3 — 7.

contexte commun : enfier {;
booléen tableau c[d : 2);
tw=I;¢[l] = c[2] = faux;

processus p; - début fi=12)
Ai - eli] = vrai;
Li:  siclj] alors

deébur
Sin= f@dﬁerﬁ Li;
cli] = faux;

Bi : si 1 = jalors aller d Bi ;
alfer a Ai
Jin,

section critique i ;
t=j; eli] = faux;
reste du programme i;
aller a Ai

fin;

La solution précédente est due 4 Dekker [Dijkstra, 67]. Montrons
qu’elle satisfait aux conditions requises. Nous distinguons deux cas.

I} I 0’y a pas conflit d’accés a la section critique, cest-a-dire que
I'un des processus (soit p,) exécute Li alors que ¢[j] = faux; p, entre
alors en section critique ; comme cf7] a alors la valeur vrai et la gardera
tant que p; sera en section critique, p; ne pourra entrer en section
critique avant que p; en soit sorti.

2) Ny a conflit d’aceés, c’est-a-dire que 'exécution des instructions A7,
Li est entrelacée avec celle de 4j, Lj. On utilise alors le fait que la
variable 7 n'est pas modifiée par I'exécution des instructions Ai, Li.
311 = i, alors p, entrera dans la boucle étiquetée Bj aprés avoir remis
e[ J ] 4 J@E cela permet donc Pentrée en section critique de p,,
qui était engagé dans la boucle Li. A la fin de sa section critique,
p; remet £ & la valeur J, ce qui libére p; de la boucle By, lui permettant
de tenter & nouveau I'entrée en section critique par A4j. On évite donc
aussi bien I'attente infinie que I'entrée simultanée puisque le processus p,
et lui seul entre en section critique en cas de conflit.
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2) Cas de n processus.
La solution ci-aprés a été publiée dans [Dijkstra, 65].
contexte commun : entier | -
booléen 1ableau B[O n], e[ - n];

pour 1= {} pas 1 jusqu'd n faire
b[t] v=c[t] = Jaux;
=0 T

PrOCESSUs p, . début entier j; fi=12..n)
Ai [ b[i] = vrai;
Li:sit # i alors

débur
cli] = jaux ;
st 71 b1 alors 1= i ;
aller g Li
fni
cli] = vrai;
pour j := I pas I jusqu'a n faire
début
si j# ietcfj]alors aller a Li
fin;

section critigue i

t = 0; ¢e[i] = b[i] == faux,
reste du programme i
aller d Ai

J'_?E :

On remarquera que la variable ¢ peut prendre la valeur 0. Cela est
dit au souci de conserver une solution symétrigue ; si en effet ¢ n'était
pas remis 4 0 4 la fin de la section critique d'un processus p,, celui-ci
resterait privilégié en cas de conflit lors de sa prochaine entrée en
section critique ; les variables b[0] et ¢[0]. initialisées 4 faux, ne sont
jamais modifiées. T

Le lecteur pourra consulter [Dijkstra, 65] pour 'explication de cette
solution, ainsi que [Knuth, 66] pour une solution modifiée, garantis-
sant que tout processus demandant 4 entrer en section critique y
parvient dans un temps fini {on notera que cette condition est plus
contraignante que la condition &) du 2.31, qui spécifie simplement que
tout conflit d’acces est résolu en un temps fini).
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Exercice 4
Cas a
sémaphore 5 = 0 ;
Processus 1 Processus 2 Processus 3
P(sj; Vis): Vis):
Pis); , .
Cas b
sémaphore s = (;
Processus [ Processus 2 Processus 3
Pis); Vis). ' Vis),
Exercice §
sémaphore m = 1.t =0
booléen masque = faux;
Materel :
arrivée du signal d'interruption : P{m};
Vit):
Vim) ;
masquage de interruption : si 71 masque alors
début
masgque = vrai;
FPim)
fin
démasquage de l'interruption :  si masque alors
debut
masque = faux ;
Vim)
fin

—

Cette solution suppose que le masquage et le démasquage ne peuvent se faire
en paralléle.
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Processus cyclique de traitement de I'interruption :

Exercice 6

A Pit);
procédure de traitement ;
aller d A ;

[Courtois. 71]

Cas 1

Solution ) (utilisation de sémaphores privés).

Procedures de lecture et d’écriture utilisées par le processus i -
DEMANDE DE LECTURE

début début
P(mutex ) ; miex,ﬁ ;
si 71 e alors si(—e) et (nl =0) alors
début début T
Hl = ni+1; €= vrai,
Vi sprivii]) Vispriv|i])
fin fin
sinon ajouter(i, filelect ) ; ﬂ‘ﬁ_ﬁjhuffrr’ i, flered) ;
Vimutex) ; Vimurex) ;
Bispriv[i]) Py spriv]i])
FIN DE LECTURE
début
entier j;
Pimutex) ;
nl == nl—1 .
si (nl = 0) et {compte de filered 7 = () alors
dter [j, filered) ;
e = vrai,
V(spriv[j])
ﬁﬂ '
Vimutex)
E -
FIN D'ECRITURE
deébut
entier j;
Pimutex}) ;
€= faux;

DEMANDE D'ECRITURE

il5
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st fcompte de filelect 7 = (1) alors
répéter
~ dbue
nl= ni+1;
drer(j, filelect) .
Vispriv[j])
fin
Jusqua compte de filelect = 0
sinon si (compte de filered = = 0) alors
début
g i= E N
dter(j, filered) :
Vispriv j])
fin

fin;

Solution &)

entier nl = 0 ;
sémaphore mutex] = I, mutex2 = L w = 1;

LECTEURS REDACTEURS
Pimutex! ) Pimutex?) ;
nl=nl4+1]; Piwj;

sinl = I alors P(w) ; “
Vimutexl ) ; écrire;

lire ; Viw) ;

‘e Vimutex?) ;
Pimutex! ) ;

nl = nl—1;

sinl = Oalors Viw) ;

Vimutexl ) ;

Remarques

1} w est un sémaphore d'exclusion .mutuelle pour tous les rédacteurs.
I1 sert au premier lecteur qui occupe le fichier et au dernier qui le libére.

2) mutex] est un sémaphore d'exclusion mutuelle pour les lecteurs seu-

lement. Il protége le compte de lecteurs nl. Si un lecteur est bloqué par w,
tous les autres lecteurs le seront par mutex/,

3) mutex2 permet de garantir la priorité des lecteurs. Sans mutex? on

pourrait avoir plusieurs rédacteurs en attente sur w, avant le premier lecteur
blogué par w.
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Cas 2
entier nl = ),
sémaphore mutex = I, w = ] -
LECTEURS REDACTEURS
Plmutex)
nl=nl + I
sinl = I alors P{w) ; Piw);
Vimurex) ;
ecrilure
lecture
Viwi;
Pimutex) ;
al=n -1
sinl = 0alors Viw);
Vimutex) :
Remarques

1) w est un sémaphore d'exclusion mutuelle pour tous les rédacteurs. Il
sert auss: au premier lecteur qui occupe la ressource et au dernier qui la libére,

2) mutex est un sémaphore d’exclusion mutuelle pour les lecteurs seuls :
1l protége le compte de lecteurs, nl.

Cas 3

entier nl = 0;
semaphore mutex = I, r=1,w=1;

LECTEURS REDACTEURS
Pir):

Pimurex) ;

nl=nl + I,

sinl = 1 alors P(w);

Vimutex) ; Prr);
Vir): Plw);
lecture ; ecriture ;
P(mutex) ; Viw)
il e=nl = 1; Fir);
sinl = 0 alors Viw) ;

Fimutex)
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Remarques

1) r bloque tous les lecteurs nouveaux dés qu'un rédacteur est arrivé.

2) w bloque toute &criture tant que les lectures ne sont pas finies. Il y a
au plus un rédacteur bloqué dans la file associée a w.

3) Dés gu'un lecteur passe ou est réveillé, il incrémente Je compte des lec-
teurs, bloque éventuellement la ressource et réveille le processus suivant de
la file associce a r.

4) Comme 'ordre P(r), Pfw) est respecté dans chague processus. 1l ne
peut y avoir de blocage par étreinte fatale.

5) Pour rendre la solution plus symétrique, le rédacteur peut exécuter la
primitive ¥(r) immeédiatement aprés P{w .

6) Cette solution n’assure de service selon l'ordre d’arrivée (FIFO) que
s1 toutes les files sont gérées selon ce principe.

Cas 4
entier nl = 0, nr = 0,
sémaphore mutex! = I, mutex? = I, mutex3 = 1,
w=J1r=1;
LECTEURS REDACTEURS
Prmutex3) ; Pimutex2) ;

Pir): nra=nr + I
Pimutexl) ; sinr = [ alors Pr);
nl=nl+ I; Vimutex2) ;
sinl = I alors P(w); Piw);

Vimutexl) ;
Vir):

Vimutex3);

lecture ; ecriture ;

Pimutexl]) ; Viw},;

ali=nl — I; Pimutex2) ;

sinl = 0 alors Viw); nr=nr — I;

Vimurexl ) ; sinr = O alors Vir}:
Vimutex2) ;

Remarques

1) muiex! et w jouent le méme role que murex et w dans le cas |,

2) r est utilisé par les rédacteurs pour se réserver l'accés 4 la ressource,
tout comme w par les lecteurs dans le cas 1. Le premier rédacteur, en faisant
P(r), bloque les lecteurs avant leur entrée dans la section critique controlée
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par mutex!. Il est important qu'il le fasse en dehors de cette section car mutex]
contrdle une autre section critique dans laquelle les lecteurs libérent la
TESSOUrce.

3) Sans mutex3, on pourrait trouver un rédacteur et plusieurs lecteurs
dans la file dattente de r. On n’assurerait pas la priorité absolue aux rédac-
teurs ; mutex3 garantit qu'un lecteur au plus utilise r. Donc la file d’attente
de r ne peut plus contenir qu'un lecteur ou qu'un rédacteur (pendant qu'un
lecteur incrémente n/).

Exercice 7

Cas 1. Le carrefour peut contenir une voiture.

sémaphore mutex] = | mutex2 = ], feul = ], feu2 = 0;

TRAVERSEE 1 CHANGEMENT TRAVERSEE 2
P{mutexl ) ; booléen a = vrai; Pimurex2)
Pifewl) ; C : artendre(m) ; Pifeu2; ;
Iraversée cortrentaire m est le délai danente ; [raversee
du carrefour; si a alors du carrefour
Vifeul) ;  débur Vifeu2, ;
Vimutexl ) Pifeul ) : Fimutex2) ;
Vifeul)
a = foux
fin T
sinon
T débur
Pifeu2)
Vifeul ) ;
d = VFai
fin;
allera C;
Remarques.

1) feul et feu? réglent chaque file. Ils évitent aussi toute modification de
feu tant qu’une voiture est dans le carrefour.

2) mutex] et putex2 ont pour fonction de prévenir toute Gﬂaﬁliﬂl:l de
voitures voulant bloguer le feu. En conséquence il y a au plus une voiture

bloquée par feul ou feul.
1) m indique un délai d attente.

Cas 2. Le carrefour peut contenir k voitures.
sémaphore mutex] = k, mutex2 = k, feul = 1, feu2 = 0;

sémaphore mutex = I, w = 1
entiern = 0
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TRAVERSEE | CHANGEMENT TRAVERSEE 2
Pimutexl ) ; booléena = vrai; P{mutex2):
Pifeul ) ; C . aitendre/m) ; Pifeu) ;
Pimutex) ; si a alors Pimutex) ;
ne=np 4+ 1 = début n=n o+l
sin = I alors Pfw); Pifeul ); sin= 1alors Piwj;
Vimutex) . Piw}; V{mutex) ;
Vifeul ), Vifeu2) Vifeu2)
Fiw),
traversée du a = faux traversée du
carrefour ; Sfin carrefour ;
Snan
P{mutex) ; début Pimutex) ;
ne=gn— 1 Pl"fe'u.?j,‘ H=n-=[;
E_IH=D@ Firw): Piw); sin = Oalors Viw) ;
Vimutex ) ; Fifeul ) ; Vimutex);
Fimurex!} Frw); Vimutex2) ;
g = vrgi
fin;
aller a C;

Systémes d'exploitation des ordinateurs

1) mutex] et mutex2 ne laissent passer que k voitures au plus.

2) feul et feu2 servent & arréter les voitures lorsque les feux vont changer.
Le processus CHANGEMENT n'est jamais bloqué longtemps derriére feul
(ou feu?) car s'il est blogqué aucune voiture ne peut se bloquer par P(w).

3) wsert & bloquer le changement de feu tant qu’il y a des voitures dans le

carrefour. A cause des deux primitives P{feu), Piw), seul le processus CHAN-
GEMENT peut étre bloqué par w.

Exercice 8 [Vantilborgh, 72]

1)
sémaphore w = n;
LECTEURS REDACTEURS
Pl w); Pin,w);
lecture ; écriture ;
Vil w),; Fin,w);
2} Posons :

ns : valeur maximum prise par le rang n

blogue(i] : nombre de processus de rang i, bloqués dans la file dattente
du sémaphore 5.
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Il vient :

sémaphore mutexs = | ; sémaphore tableau semprivil : ns) = 0[] : ns];
entier n, 5, 1, j; entier tableau blogue(! : n3) = 01 : ns);

programme de Pin, 5] - P{mutexs) ;
$i e(s) = nalors début efs) = e{s) — n; Vimutexs, fin
sinon début
bloque{n] = blogueln] + 1,
Fimutexs) ;
P semprivin]
fin;

——

programme de Vin, 5) ; P{mutexs) ;
efs) =egfs) +n;
pour { = ] pas I jusqu'a ns faire
pour j _-b.l’aque{i]_pﬂs — I jusqu'a I faire
siefs) = ialors débw—
blogueli] = blogue{i] — 1.
ers) = efs}) — i:
¥ semprivii],
fin

sinon aller @ FIN ;

FIN : Fimurexs};

3)
a)
sémaphore priorité = 2n — |
PROCESSUS CLASSE i
Pin + i — 1, priorité) ;
utilisation de la ressource ;
Vi, priorité) ;
pour j :== I pas I jusqua n — 1 faire
Vil priorité) ;
b)

sémaphore mutex = 1, sémaphore tableau semprivil - n] = O[I - nl;
entier n‘r.spambﬂe entier tableau bloque[l : n] = 0[1 - n];

" disponible =
PROCESSUS CLASSE i
P(mutex) ;
si disponible = 1 alors début
disponible == 0,
Vimutex)
fn
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sinon début
blogueli] == bloqueli] + 1
Vimutex) ;
P(sempriv|i]}
E'-
ulilisation de la ressource ;
Pimutex) ;
pour j == 1 pas I jusqu'd n faire
si blogquel j] > 0 alors début
blogue[ j] = blogue[j] — 1.
Visemprivij])
aller a FIN
E;
disponible == 1
FIN : Vimutex) ;

Exercice 9

Seit avec les hypothéses de 2.411, nprod (respectivement necons) le nombre
de cycles complets (phase 1 + phase 2) exécutés par le producteur (respec-
tivement consommateur) depuis 'instant initial. On se place dans une situa-
tion ou les deux processus ont exécuté I'opération P sur leurs sémaphores
respectifs mais n’ont pas encore exécuté I'opération ¥ du méme cvcle. On a
alors :

nvide = n — nprod + ncons — I
nplein = nprod — ncons — |

Par ailleurs, on a les relations suivantes entre les valeurs de nplein (respec-
tivement nvide) et I'état du producteur (respectivement consommateur) :

nplein = — | : producteur blogué
nplein = 0 : producteur dans sa phase 2

On a donc le tableau suivant -

PROD . .

Phase de retrait (2) 0 < nprod — ncons < n nprod — ncons = )

nprod — neons = 0

Bloqué nprod — ncons = n {
nprod — ncons = n
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Les propriétés 1 et 2 se déduisent immeédiatement de ce tableau.

Pru!:riété l._ !..'h}-]}nthéms que les deux processus sont simultanément
blogués conduit & deux relations incompatibles si n > 0.

Pr!:prlété 2. Lla relation réte = queue, avec les deux processus en phase
de dépdt ou retrait implique nprod = neons mod n, incompatible avec

(} < nprod — ncons < n .

Exercice 10

I)
sémaphore mutexres = |, réserve = m
sémaphore tableaw mutex{1:n] = I[1:n),
nplein[l n] = O[1.n) ;
début entier x début entier x
PROD, : Produire( article) : CONS; : P(nplein(i]; ;
P(reserve ) ; Pimutex|i)) ;
Pimutexres) ; Exrraire(x, i)
Demander-case(x ) ; Vimutex[i]) ;
Vimutexres) ; Prélever(arricle, x) ;
Dépaoseriarticle, x) ; P(mutexres) ;
Pimutex[i]) ; Restituer case (x);
Chainerix, i) ; Vimutexres) ;
Vimutex|i]) Viréserve) ;
Vinplein[i]) ; Consommer (article ) ;
aller @ PROD, aller a CONS,

fin fin
2) On note msémaphore le déclarateur de sémaphore avec message.

msémaphore réserve = m ;

Initialiser la file de messages de « réserve » avec les
adresses des m cases de la réserve ;

msémaphore tableau nplein[l:n] = 0[1:n);

début entier x ; début entier x ;
PROD, : Produire{article) ; CONS; : Py(nplem[i], x) ;

Py (réserve, x); Prélever(article, x) ;

Déposer(article, x) ; Vyglréserve, x ) ;

Vi (mplein[i], x) ; Consommer {article) ;

aller a PROD, aller a CONS,

fin fin

On notera que les procédures permettant de réaliser le chainage des cases
sont devenues inutiles : les chainages sont en effet établis dans les files de
messages des sémaphores.
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3) Si le nombre de cases d'un tampon ¢, est limité a /, il suffit d'introduire
le tableau suivant :

sémaphore tableau nvide{i:n] = I{I:n);

Dans le programme des producteurs, aprés I'instruction Produire(article ),
ajouter :

Pravide[i]) ;
Dans le programme des consommateurs, avant U'instruction
Consommer{article),
ajouter :
Vinvide[i])
Exercice 11

1) booléen rableau cf0:4) = faux[0:4];
PHILOSOPHE i
L : penser;
avee o lorvgie 1 ofi — f]ﬂ = i + I]@E
e[f] = vrai;
manger;

avec ¢ faire cfi] = faux;

aller a L ;

2) [Brinch Hansen, 72]

Nous donnons la solution dans le cas ol les rédacteurs sont plus priori-
taires que les lecteurs. On désigne par v une variable composeée constituée de
deux entiers n/ et nr; linstruction avec v faire assure I'exclusion mutuelle
a nl et nr; la variable w est une variable simple.

LECTEURS REDACTEURS

avec v lorsque nr = 0 faire avec v faire

nl=nl + 1; nr:= nr + I et attendre nl = 0 ;
lecture ; avec w faire écriture :
mu@zni==n!~1; @uﬁ:lgnr:nr—f;

3) début entier j, compte ;
sémaphore mutex= 1,5 = ();
compie = (};
A Pimutex) ;
si b alors
b

Il
pour j = 1 pas I jusqu'd compte faire Vis) .
compre = () ;

Vimutex)

fin
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Sinon

débur
comple == compte + | ;
Vimutex) ;
Pis);
aller d A
H

fin =

Commentaires

On suppose que I'évaluation de b ne provoque pas d'effets de bord sur les

éléments de la variable v; sinon il faut activer tous les processus en attente
de 5 & chaque sortie de section critique.

2) On suppose que chaque processus est laissé dans I'gnorance des condi-

tions attendues par les autres ; on ne peut alors que réveiller tous les Processus
en attente.

Exercice 12

sémaphore tableau murex(0:4] = 1[0:4];
FPROCESSUS PHILOSOPHE i
Li : débur
penser ;
Pimutex{i], mutex[i + 1]);
manger ;
Vimurex[i]} ;
Vimurex|i + 1),
aller  Li

fin

CHAPITRE 3
Exercice 1

S'il n'existe qu'un seul anneau de protection, les objets rémanents et les
liens associés 4 une procédure sont en un seul exemplaire, dans un seul seg-
ment de liaison associé au segment procédure. Appelons Zfp) la région
groupant ces emplacements pour un segment-procédure p donné.

S’il n'existe qu'un seul segment de liaison, soit L, par processus, il faut
ranger 'ensemble des régions Z{p,) dans ce segment. On rappelle que :

a) Z(p) est de 1aille fixe,

b) sa durée de vie est égale a celle du processus.

On fait abstraction ici des probléemes de taille. Autrement dit, si | Z(p) |

est la taille d'une région, on suppose que, pour tous les p nommés par le
processus :

|Zp)| <2
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Quatre problémes se posent :

@) comment le processus connait-il le segment de liaison L ?
b) comment créer une région Z/p) ?

¢) comment lier Z{p) au segment-procédure ?

d) comment désigner I'un des emplacements de Z(p) ?

a) Désignation de L

On peut supposer que lorsque le processus est créé, deux segments sont
Crees :

— l'un est destiné 4 contenir la pile unigue (puisgqu’il 'y a qu'un seul
anneau) ; 1l a pour nom 0,

— lautre est destiné 4 contenir les régions Z/p,); il a pour nom / par
exemple.

Par la suite, on désigne par / le nom du segment de liaison.
b) Créarion

Soit k régions Z{ p;) créées successivement dans L. Considérons le moment
ol un segment-procédure p,,, est amené dans ’espace adressable du pro-
cessus (une entrée est créée dans le descriptif). Soit J; le premier mot du segment
de liaison, dont le contenu repére le premier emplacement libre dans I et
s0it f; ce contenu. Les opérations nécessaires, effectuées par 'éditeur de liens
d la premiére référence au segment-procédure Py+1. SO0t les suivantes :

L
/3 iy N a) recopier le modéle de Z(p,,,/), rangé dans
Prs1, dans les emplacements :
“ew (L) & (Li+ | Z(pyar) | = 1)
1 b) faire :
fo= iy + [ Z(pesq) |
Zipg )

[

c) Le catalogue des segments connus

Considérons un second appel 4 un segment-procédure déja lié, soit p,.
L'editeur de liens, appelé pour transformer lidentificateur associé a Jyen un
nom consulte le catalogue des segments connus. L'examen de ce catalogue
permet de déduire le nom du segment p, et le nom de Z (py) : ce nom est en

théorie un couple (/, i,), mais, en pratique, il peut se réduire 4 la seule donnée
de i,.
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d) Adressage

Considérons ILT registre R4, contenant ke couple (/, i) (au lieu du seul nom
du segment de liaison). Alors toute désignation d’un objet externe et d'un
objet rémanent s’effectue par indexation composée, soit respectivement

* {ic, R4, d) sile nom de I'objet externe est ran gé dans le {d + 1)-iéme mot
de Z(p,)
(ic, R4, d) si I'objet rémanent est le contenu du (d + / J-iéme mot de
Z(p;).

Remarque. La valeur i, pourrait étre rangée dans le descripteur de [,
en tant que taille de L. Cette solution implique une succession de modifications
de taille de L qu'il est souhaitable d’éviter.

Exercice 2

S'il n'existe qu'un seul anneau de protection, une seule pile est nécessaire.
Dans ce cas, au prix de quelques aménagements de Pappel de procédure,
un seul registre suffit pour désigner la région des locaux et celle des arguments
(dans ce cas la zone de sauvegarde des registres doit étre de taille fixe, ou encore
elle doit étre située aprés les objets locaux ou avant les arguments).

Si le segment contenant la pile est supprimé et que celle-ci est répartie dans
les segments de liaison, tout se passe comme si on avait autant de piles que de
procedures différentes. Aussi la solution la plus simple est de ne pas modifier
la répartition des informations entre la pile de I'appelant et celle de I'appelé.

Considérons I'appel d'une procédure P; par une procédure p,. Etant donne
un segment-procédure p;, on appelle :

— L, le segment de liaison associé et /; son premier mot,

— Z{p,) la région des objets rémanents et des liens.

— V(p;) la région des objets locaux, 4/p;/ celle des paramétres,

— Si(p:) et 5,(p) les zones de sauvegarde des regisires représentant
l'environnement de p,

5, est la zone de sauvegarde garnie par programme, S, est la zone de sau-
vegarde gamie automatiquement & 'appel de procédure. Avant I'appel de
P on suppose qu'on a la situation décrite sur la figure [.

L’appel de procédure agit exactement comme décrit en 3.25 ; on aura donc,
apres 'appel la situation indiquée sur la figure 2.

Pendant I'exécution d’une procédure p,. les registres R3 et R4 contiennent
respectivement (7, d) et ([, 0/, c'est-a-dire une adresse segmentée désignant
un emplacement du segment de liaison.

L’adressage des locaux s’effectue par indexation composée sur R3. L'adres-
sage dans Z(p, ) s'effectue par indexation partielle sur R4. Il en résulte qu'un
seul registre suffit pour les deux types d'adressage, par exemple le registre R3.
Ainsi, grice a cette technique, on peut supprimer un registre, le registre R4,
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L; L;
1
LY
| 2 I""\ %
LY \
N "i
Zip,) \ Zp;) !

Figure 2.

Exercice 3

Lorsqu'un segment est détruit, son nom devient disponible. Lorsqu'il
s'agit d'un segment-procédure, les noms de ses segments de liaison (un par
anneau d’appel effectué) deviennent aussi disponibles.

Pour pouvoir les réutiliser sans risque, il faut étre certain qu'aucune chaine
d’accés ne peut plus conduire aux segments détruits.
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Soit § le segment détruit, d'identificateur TOUAMOTOU. Toutes les
références 4 § sont faites :

— dans §, par des instructions de branchement, si S est un segment-pro-
cédure,

— dans des segments-procédure 8 qui ont comme objets externes des
objets de §,

— dans des segments-procédure §” qui ont comme paramétres effectifs
des obyets de §.

On peut retrouver les segments-procédure S° a 'aide du catalogue général
des segments. En effet on y trouve pour Iidentificateur TOUAMOTOU,
la liste des processus qui le désignent par un nom et le nom donné par chaque
processus. Soit p, un tel processus et 5; le nom par lequel il désigne 5. On
procéde comme suit :

Dans tous les segments de liaison L{5", i) associés aux segments-procédure
§" ayant un nom dans p;, on recherche, dans Ia région des noms des objets
externes tous les emplacements qui contiennent une adresse segmentée avec
le nom de segment 5, Dans tous ces emplacements, on remet l'indicateur de
déroutement.

Cette opération est a effectuer pour tous les processus p; qui sont cités dans
le catalogue général, dans la liste associée a 'identificateur TOUAMOTOU.

Il est beaucoup plus difficile de retrouver les paramétres effectifs qui sont
des objets de §, car il faut faire une recherche dans les piles, dans les zones des
paramétres effectifs de chaque procédure en cours d'exécution.

Une fagon de faciliter cette recherche serait de mettre dans les emplacements
réservés aux paramétres effectifs qui sont des objets externes, non pas les
noms de ceux-ci, mais le nom du lien qui figure dans le segment de liaison.
On se raménerait alors au cas précédent. Cette méthode n'est réalisable que si
I'adressage indirect 4 deux niveaux est possible.

Exercice 4

1 Accés aux objets

1.1 Désignation d'une procedure

Considerons les n segments-procédure numeérotés, selon un ordre fixé
par le compilateur, de # a n — 1. Au début de I'exécution, les n descripteurs
sont ranges dans des emplacements de numéros e, e + [, ...,e +n — 1

dans le descriptif. Ces emplacements sont inconnus du compilateur. Aussi,
une procédure est désignée, dans le programme, par un nom

(@, i)

oll { est un entier compris entre 0 et n — 1. Le contenu du registre de numéro p
désigne la base d'une zone de liaison contenant les n adresses segmentées
fe+ i,0),i=40..,n—1I
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Cette zone peut indifféremment étre rangée dans un segment de liaison,
unique pour un processus, ou en début de pile. Soit, par convention, a = ]2,

1.2 Désignation des objets de 'environnement d'une procédure

Soit p une procédure de niveau d'emboitement i. A 'aide de noms de la
forme (k, xJ, oli k est un numéro de registre et x un indice, elle désigne :

a) Les objets locaux et les paramétres de toutes les procédures de 'envi-
ronnement. Par définition, celui-ci est formé de i régions de la pile, chaque
région groupant les objets locaux et les paramétres d'une procédure de niveau
d'emboitement j (] < j = 1),

b) Ses propres instructions, dans le segment-procedure.

¢) Les procédures de l'environnement.

d) La zone d’évaluation, rangée en sommet de pile, et clle-méme gérée
en pile.

On choisit les conventions suivantes

— R0 est le compteur ordinal ; son contenu designe I'instruction en cours
de la procédure active.

— Le contenu des registres RJ 4 Ri désigne la région de 'environnement de
de niveau d'emboitement i. Les registres R/ a RIJ sont disponibles a cet
effet, ce qui fixe 4 /7 la valeur maximale du niveau i.

— Lecontenu de RJ2désigne la zone des descripteurs de segment-procédure,

— Le contenu de R73 désigne le sommet de la zone d’évaluation.

— Ri4 et RIF sont utilisés pour les calculs.

On a ainst (voir Fig. 1) :

— nom d’une étiquette locale a la procédure : (ip. 0, x/,

— nom d'un objet local de I'environnement : {ic, i, x), I < i< I,

— nom d'un paramétre de I'environnement : * {ic, i, xJ, ] < i < 1,

— nom d'une procédure (elle appartient a l'environnement par construc-
tion) : (ip, 12, 1),

— nom du sommet de pile (ic, 13,0/,

2 Commutation d'environnement

Dans cette mise en ®uvre, on observe :

— que les registres RO (compteur ordinal), K14 et RIS sont 4 sauvegarder.
Une zone de liaison (hachurée sur la figure) contient la valeur de ces registres,
— que le sommet de pile est constamment désigné par le contenu de Ri3.

2.1 Appel dune procédure

Par définition, depuis la procedure p de nivean d'emboitement i, on ne
peut appeler qu'une procédure g de niveau d'emboitement j, avec | < j i + 1.
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Procédure en
touts d'exécuton

Zore des File
segments—p o édures

Figure 1.

L'effet de l'appel de procédure est le suivant :

— création d’une zone de liaison en téte de pile, et sauvegarde des regs-
tres RO, Ri4 et RIS,

— évaluation des paramétres et rangement de leur adresse segmentee
aprés la zone de liaison ; le k-iéme parametre est rangé a I'adresse (ic, 13, v/,
avec v = taille de la zone de haison + k.

— rangement de i et du contenu du registre Ri (partie déplacement unique-
ment) dans la zone de Liaison,

— rangement de I'adresse segmentée du premier mot de la nouvelle zone
de liaison dans le registre Rj,

— mise 4 jour de RO, création des locaux de g et mise & jour de RIJ.

2.2 Retour de procédure

Le contenu de Rj désigne la zone de liaison de la région courante. Celle-ci
contient le niveau d’emboitement i de la procédure appelante et I'adresse z/
de la zone de liaison de la région associce.

Si i = j—1, les contenus des registres I, 2, ..., i désignent déja les regions
de I'environnement de retour. Dans le cas contraire (i = jJ, il faut remettre
4 jour les contenus des registres i, i — [, ..., j. L'adresse z/ est alors rangee
dans le registre i; dans pife{z/], on trouve I'adresse de la zone de haison 4
ranger dans le registre i — I, etc...

RO, RI4 et RIS sont remis & jour grace 4 la zone de liaison. RI3 prend
comme valeur le contenu du registre j avant commutation diminué de 1.
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Exercice 5

Le deuxiéme mot de la zone de liaison de la région appelée permet de rétablir
le registre pointeur d’instruction. L'élément de chaine dynamique, qui contient
un déplacement d, permet de retrouver la zone de liaison Liappelante) de
la région appelante, ol figure le niveau d'emboitement n de la région appe-
lante. Le registre d’environnement d'indice n regoit la valeur d; ceux d'indice
n =1, n = 2 etc... recoivent des valeurs obtenues d’aprés la chaine statique
commencant dans Liappelanie). Le registre de sommet de pile regoit le
contenu du registre de région courante diminue de 7 ; ce dernier registre regoit
ensuite la valeur d. L'exécution peut ensuite reprendre.

Exercice 6

Les registres d'environnement ne sont pas indispensables puisque dans la
région courante seé trouve aussi la représentation de son environnement,
sous forme de la chaine statique. L’utilisation de la chaine statique serait
évidemment peu intéressante car il faudrait éventuellement effectuer plusieurs
accés dans la pile (en lisant la chaine statique) avant d'accéder &4 un objet.
La connaissance de la région courante est indispensable.

Exercice 7

On voit qu’il faut écrire deux procédures plJ et p22 qui n’apparaissent pas
dans le systétme BURROUGHS (elles devraient se trouver représentées dans
le processus-racine), parce qu'elles n'ont pas la méme durée de vie que les
autres objets du processus-racine.

Exercice 9

A chaque segment de nom f, on associe :

— le numéro d’article courant (c'est celul qui est en cours de remplissage)
noté aff),

— un index de remplissage, noté r(f), pointant vers le premier caractére
non éerit (0 = r = ) dans larticle.

La procédure proprement dite utilise une page virtuelle de numéro v comme
espace de travail. Elle s'écrit :

procédure écrire (u, n, ) entier u, n, f; valewr u, n, f;
3 r - —
entier long, dep, nombre ;
long == n;
tani que long > 0 faire
et
coupler (v, a(f). f),
sir(f) + long = I alors
début
dEP H— .ﬂ I"
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nombre == | — r(f);
alf) =aff) + 1
fin

sinon
début
nombre = long ;
dep == r{f) + long
dﬁn;
transferer (nombre, u, v+ + r{f});
u = u + nombre;
r(f) = dep;
long = long — nombre

fin

—

Remarque. La procédure rfransférer (m, u,,u,) recopic n octets
débutant a 'adresse d'octet w;, dans les n octets suivant 'adresse d'octet u,
{(instruction MBS du 10070).

Exercice I0
1 Cas d’une mémoire virtuelle par processus
a) Partage d'une procédure P

Pour assurer la réentrance, étant donné que |'on ne dispose d’aucun méca-
nisme de réimplantation en mémeire virtuelle, il suffit d’éditer et de coupler
la procédure P aux mémes adresses dans les difféerentes mémoires virtuelles,
et d'associer les données a des pages physiques différentes (Fig. 1).

b) FPartage des domnées D

Le partage des données entre deux procédures différentes associées a des
processus distincts est résolu de fagon différente suivant que :

— les données ne contiennent aucune référence 4 des adresses,

— les données contiennent des adresses qui font référence 4 la procédure
appelante,

— les données contiennent des adresses qui font référence aux données
elles-mémes.

Si les données ne contiennent aucune référence 4 des adresses, elles peuvent
etre couplées & des adresses différentes, dans les deux mémoires virtuelles ;
il suffit que les procédures appelantes soient éditées pour les nommer i ces
adresses (Fig. 2a).

Si les données contiennent des adresses qui font référence 4 des adresses
de la procédure appelante, elles peuvent étre couplées i des pages virtuelles
différentes ; par contre les procédures doivent étre éditées et couplées aux
mémes adresses dans les deux mémoires virtuelles (Fig. 2b).
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Espace
physique

DA représente les données du processus A
DB représente les données du processus B

Processus Processus

A B

Figure 1. Partage d'une procédure P entre 2 processus A et B associes
4 des mémoires virtuelles differentes.

Espace
physique

Processus P rpeessus Processus Processus Processus Processus
] A g A B

aj & cf

PA représente la procédure associee au processus A
P8 représente la proeédure associée au processus B

Figure 2. Partage d'une zone de données D entre deux processus A et 8.

$i les données contiennent des adresses qui font référence aux donnces
elles-mémes (par exemple par adressage indirect), elles doivent &tre éditées
et couplées aux mémes adresses dans les deux mémoires virtuelles (Fig. 2c).

2 Cas de plusieurs processus travaillant dans la méme mémoire virtuelle

a) Partage d'une procédure P

Dans ce schéma 'ensemble des registres constitue le seul espace d adressage
propre i chaque processus. Cette restriction n'interdit pas le partage d'une
méme procédure P; elle impose simplement de tenir compte de certaines
régles dans le codage de la procédure.

Ainsi la réentrance peut étre assurée,

— soit en programmant la procédure de telle fagon que son espace de
travail soit restreint aux registres seuls, si cette restriction est possible,

— soit en programmant la procédure de fagon qu'elle puisse désigner
ses données alternativement avec des adresses différentes suivant le processus
qui I'exécute ; dans ce cas I'adresse de la base des données propres & chaque
processus doit constituer un parameétre de la procédure.
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by Partage des données D

Le partage des données entre différents processus travaillant dans la méme
mémoire virtuelle est résolu sans mécanisme particulier par le seul fait que
les processus ont acceés a un espace commun d'adressage,

CHAPITRE 4

Exercice 1

I} Le mécanisme de génération de la chaine r, peut étre décrit comme suit
[Spirn, 72} : on entretient une pile (dite pile LRL) telle que le numéro de
la page la plus réecemment référencée figure 4 tout instant au sommet. Soit
P,= xy x5 ... x, (les x; sont des numéros de page) la composition de la pile
a I'instant ¢, en partant du sommet. Si la référence r,, , est la page x,. le nouvel
etat de la pile est @ Poo, = xpx; x50 .. X X4 ... X, Soit a1/ la proba-
bialité & I'instant 1 pour que la référence r,., soit la page x,/1 = ). On doit
avoir, quel que soit m(0 =< m < n, :

aft) = p,
a (1) + a;ft) = p;
ay(t) + ax(t) + - + ant) = pn
d'ou :
a,ft) = p, et (1) = py — Pi-y pour i=23 ..n
Les a;, sont donc des constantes indépendantes de ¢ (sauf pendant la phase
d'initialisation de la pile LRU, on on assigne une probabilité égale aux pages

non encore référencées). La donnée des a; (ou des p,) définit complétement
le modéle.

2) Le modéle a un comportement de localité si :
a =a; =" =a,

Les références récentes sont d’autant plus privilégiées que les a; d'indice
faible sont élevés. On doit avoir Za;, = p, = 1.

3) Les [ pages le plus récemment référencées sont les / pages au sommet de
la pile LRU. On a donc pour le modéle proposé :

= Al

dy = dy = d
a, = (1 = i)jin = 1}

iy = g2 =
La propriete de localité s’exprime par :
Al = (1 — a)ifn — 1)

Crocus, — Synémes & ecploiiaiion dis ordingjewrs, 12
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Le modéle est entiérement défini par la donnée de [ et 4. L; est défini a
tout instant comme I'ensemble des [ derniéres pages réferencées, et la duree
de vie moyenne de L, (intervalle de temps pendant lequel L, garde la méme
composition) a pour valeur moyenne J/4.

Exercice 2

Les N zones allouées se répartissent en 3 classes suivant qu'elles sont conti-
gués a 2, 1, ou 0 zones hibres (voir schéma).

A i} L c B

Soit N,, Ng, N le nombre de zones de chaque classe et M le nombre de
zones libres, 4 un instant donné. Nous supposerons que 'allocation se fait
toujours a partir d'une des extrémités d'une zone libre et gu'une zone libérée
est fusionnée avec toute zone libre adjacente. On a les relations :

N =N, + Ny + N
M =1/2N, + Ng). &4 + I prés selon la configuration aux extrémités de la
meémoire.
Soit p la probabilité pour qu'une demande de zone ne soit pas satisfaite
par une zone libre de méme taille (en général p = ).

La diminution AM, du nombre de zones libres, consécutive a une allocation
gst en moyenne :

‘5*'“1=U‘—F}

L’augmentation AM, du nombre de zones libres, consécutive 4 une libération
est :

N N N N-2IM
a.w1=§.ﬂ+?"(-u+fm=—~—

Lorsque le systéme est en équilibre, AM, = AM, ;il vient :
M=1pN

Exercice 4

Nous considérons un systéme en équilibre, avec L > [ de fagon que la
file d’attente ne soit jamais vide; dans ce cas le temps d’accés 4 une page
demandée se mesure en nombres entiers de pages, mis 4 part le premier trans-
fert.

Nous appliquerons la formule de Little (cf. 6.222) : soit 4 le débit moyen
des arrivées des demandes et soit S le temps moyen de résidence d’une demande
dans la file; la formule de Little nous donne

L=4i§
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Lorsqu'une demande arrive dans la file elle trouve L demandes devant elle
en moyenne; soit e le temps moyen d’exécution d'une demande, ce temps
comprenant le temps d’accés moyen a et le temps de transfert ¢ ;

e=a+ 1

Le temps de résidence d'une demande est done, en moyenne
§=Le

Introduisons le temps de révolution R du disgque ; nous avons

R

==

5

L'efficacité est égale au rapport
E=A+__%R
OB
R
Ce qui peut s'écrire
LR R R

En FIFO le temps d’accés moyen a, lorsqu'on se place sur une limite de
page, est égal a

R R
a—?(ﬂ+1+2+--~+$—ﬂ ,-'S=Er’s—1,i'

d'ou
2
£y = 5+ 1
Avec la politique SATF, le temps moyen d’accés est approximativement
(cf. 6.231)
R JERCA R
a =~ ] - — o
L+ 1 ( 2 s) L+1
d’onr
L+1
E = s+ L+ 1
Exercice §

Soit la chaine de références [Belady, 69)
w=1 2 3 41 2 5123 435
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On obtient avec m = 3 et m = 4 pour FIFO et pour LRU 4 titre de compa-
raison
FIFO

1 341 2 5 5 5 3 404
1 2 3 41 2 2 2 5 3 13
m=3 1 234111255
Ci3,w) =9
1 34 4 4 51 2 3 45
1 2 3 3 3 4 51 2 3 4
m o= 4 1 2 2 2 3 4 51 2 3
1 11 2 3 4 51 2
Cid. w) = 10
LRU
1 2 3 41 2 51 2 3 45
1 34 1 2 51 2 3 4
m =3 1 23 41251 23
Cid,w) =10
1 2 3 41 2 5 1 2 3 4 5
1 23 412 51 2 3 4
m= 4 1 23 41 2 51 23
I 2 3 4 4 4 51 2
Cid,m) =8
Exercice 6

Comme S¢m, @) contient toujours les m pages les plus récemment réfé-
rencées, S/m, w) est un sous-ensemble de S¢m + I, w), ce qui démontre
la propriété (cf. exercice 5).

Exercice 7
1) Les bits I peuvent étre remis a

— soil au moment ou intervient le remplacement, et dans le cas ou tous
les bits U/ ont &té mis a /, _

— soit immeédiatement (et automatiquement) dés que le dernier bit U est
mis a [.

Dans les 2 cas, le dernier bit mis a J n'est pas remis a 0.

2) Les pages sont réparties en 4 groupes disjoints suivant la valeur du
couple (U, E}. Ces groupes sont classés comme suit : (0, 0}, (0, 1), (1,0},
(1, 1). '

La page 4 remplacer est choisie, de fagon aléatoire , dans le premier groupe
non vide (en commengant par le groupe (0, 0)).
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Exercice &8

1) La relation de I'énoncé s'interpréte comme suit : pour une taille s de
mémoire principale allouée au programme pendant un temps ¢ donné, il
est préférable (en nombre d'instructions exécutées) d’exécuter le programme
en lw allouant pendant un temps /2, une taille de mémoire égale & (5 — As)
et pendant /2 une taille de mémoire égale & (5 + As), plutdt que de lui allouer
pendant un temps 1 une taille de mémoire constante s,

2) Pour tenir compte du résuliat précédent on peut privilégier pendant
un intervalle de temps donné, chacun des processus en compétition. On
peut, par exemple, décider que les pages de mémoire principale appartenant
au processus privilégié, ne seront pas choisies par l'algorithme de rempla-
cement pendant une période de p remplacements successifs; aprés quoi
on decide de privilégier un autre processus. En conséquence, pendant un
certain temps (le temps requis pour effectuer p remplacements) I'espace
alloué au processus privilegié augmentera de As pages ; aprés quoi le processus
perdra ses pages plus rapidement que &1 un simple algorithme FIFO était
utilise. L'algorithme ainsi modifié est appelé BIFO (« biased FIFO »).

Exercice 9

Les deux graphes H, et H, sont caractérisés par les mémes matrices d'allo-
cation et de demande. En effet, puisque les suites S, et S, contiennent les
mémes processus & 'ordre prés,

‘_{SL = :{S;
ol 4% est la matrice décrivant les allocations aux processus de la suite S.

DN°' = DN®:

ol DN® est la matrice décrivant les demandes non satisfaites des processus
de la suite 5.
On a done :

AT =4 — A% = 4 — 4% = 4H:
DNY = DN — DN = DN — DN¥%: = DNH:

Exercice 10
Appelons R les ressources libres dans 1'état G :

RE=X— % Af
i=1i
Le graphe G est réduit par S dans le graphe H :
AH = .-"IG - AS

donc R”-_—X—i.-tf;r—EA}‘::RG

=1 i=1
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Mais le graphe G est réductible par p,, donc :
DN, < R < RY
H est aussi réductible par p,.

Exercice 1

Supposons H, # H,.
La proposition 1 implique que les suites S, et §, ne contiennent pas les
mémes processus. Supposons qu'il existe un processus p; tel que :

Pi€ S, et pigS;

Remarquons que les réles de S, et 5, sont symétriques. Soit § le début
de la suite 8, jusqu’au processus p; exclu (S est éventuellement vide).
Tous les processus de § appartiennent aussi a 5, :

RE+ % A;2R°+ Y A4,z DN,

Pie5; TR ]

Si aprés réduction de & par § le graphe obtenu est encore réductible par p,,
alors a fortiori le graphe obtenu aprés réduction de G par S, est encore réduc-
tible par p;. Cela est contraire 4 I'hypothése que 5, est une séquence. Donc
tout processus de 5, appartient 4 5, et, par symétrie, tout processus de S,
appartient a §,.

La proposition | implique alors H, = H,.

Exercice 12

Soit G, = G et soit G, le graphe obtenu aprés réduction de G,_, par le
processus p,, .

1)} Soit 5 une suite de réductions. Lorsqu'on réduit G, par p, . on obtient :
DN, <R® e R'=R"+ 4,
ot R¥ est le vecteur des ressources libres dans I'état G,. A la k-iéme réduction
(par pg) on a :
DN, < R*™' @@ R'=R'V'+ 4,

L
ou encore DN, < R" + hzt.{“.

Soit §(i) = k I'indice de p, dans S. Alors :
{qaffﬂh{k}={j|5fjj-—.-h et Ish<k}
= {J18(j) < 87i)},

dot : DN, <R+ } A
8071 < St

Ceci est vrai pour tout p, de S; cette suite S est donc saine.
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2) Soit 5 une suite saine, p; un processus apparienant 4 S, et soit S(/)
I'indice de p; dans S,

DN, <R+ } A4

SU < Sii)
Pour i = ¢, soit 5(i) = I, on a:
DN, s R°=R
Le graphe G, (= G peut étre réduit par P, et
R'=R" + 4,

Pouri= gq,ona:
DN;=DN, <R+ % 4,
51 < Sih)

Raisonnons par récurrence et admettons que

R¥' =R" 4 Y 4
Sy =<Sigx _ )
Alors
DN, < R*"!

et le graphe G, _, peut étre réduit par un processus p, tel que 5(i) = g, et le
graphe G, obtenu vérifie bien la relation admise. § est donc une suite de
réductions.

Exercice 13

Il peut exister des composantes connexes dans le graphe d’état, c'est-a-
dire des ensembles disjoints de processus demandant ou possédant des ensem-
bles disjoints de ressources. Considérons une de ces composantes G et
supposons qu'il n'y existe pas de circuit.

On démontre en théorie des graphes le théoréme suivant : s'il n'existe pas
de circuit dans un graphe connexe, il existe une suite non vide § de nceuds
du graphe telle que le nceud N précéde le nceud M dans S si et seulement si
il existe un chemin de N &4 M dans le graphe. Les premiers nceuds sont les
racines, les derniers sont les feuilles.

On peut extraire de S la suite S, des processus, par élimination des nceuds
ressources. Le graphe G peut étre réduit par la suite S, inverse de la suite S,

S1= (P wos Pa) S22 = (Pyps - Pg,)

Gy = G peut étre réduit par P,_en un graphe G,

Eneffet si P,_a des requétes en attente, ce ne peut étre que sur des ressources
fewilles dans la suite S, ¢'est-a-dire des ressources toutes libres. De méme
Gy peut étre reduit en un graphe G, par p,, car les demandes insatisfaites
de p, ne peuvent concerner que des ressources feuilles dans § ou des res-
sources suivant p, dans , ¢’est-a-dire possédées par les processus p,, ., ..., P,
Ces ressources ont alors été libérées lors des réductions précédentes.
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S, est une séquence de réduction compléte du graphe connexe G. Il en est
de méme pour toutes les composantes connexes du graphe d’état. L’ensemble
des séquences 5, constitue une séquence de réduction compléte du graphe
d’état. Cette séquence est aussi une suite saine (proposition 4), et le systeme
n'est pas en interblocage. L'existence d'un circuit dans le graphe d'etat est
bien une condition nécessaire d’interblocage.

CHAPITRE 5

Exercice 1

Une disposition possible des parenthéses d’accés, pour chaque couple
segment-usager est, en notant 4 la parenthése d'appel :

Segments Usager 4, Usager uy
L.t ¢ v 1 1 | 11 [ P I L1 Anneaux
a 5 2 3 4 5 6 7 a r 2 3 4 5 & 7
P Liidy LAy
Ps |f|.-‘|! |f .-‘il
Fa LiiA4) Lip 4]
Pa WA AN
I O I 5 | Lt 1Ly 1 1
" R | | I 2
2 L EL ) Lt 1EL |
Ll 1Ll
B 1EL L1E] |

Remarque. Cette solution nécessite 4 anneaux au minimum (2, 3, 4 et 5).
Toute solution obtenue par translation est également valable.

CHAPITRE 6

Exercice 1
En intégrant sur l'escalier (Chap. 6, Fig. 1), on obtient :

am) = 3. - (1 - %)
m—1
=N,

= L]
M j=1
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Pour n = I, un raisonnement élémentaire conduit a -

rl 0 ! m—1 r "
atly m[m+m+ A ] P 2/

Exercice 2
a) La formule -

s'obtient aisément en décomposant la surface hachurée en rectangles
horizontaux.

b) Soit N¢0, n) l'aire de la zone -

L

NiO, n) = ZRf — Y w(F,) R,

On a : _
Nid.n) F, = N{0O,n)
d'oun
_ . R !
_.!"'.rl"'ﬂ_, f‘!'_,i (—- + _) = __i - _EquFn.-'r 'RI
n n s
- jo
=Rh_zy|rFr:.-"IR4
e
Il vient :
—_ n R _
N I
oy (n + n)ﬁER

En remplacant R; par R,,.. on obtient :

Z ”irFrh'l Ri % N{Fn;" RITI.HI
doil ’

- D, R, .
N(O. nj ( -+ T) = R - Hﬁ'r'F..J R

M1

Si le systéme atteint un état d’équilibre, le terme R,/n tend vers zéro lorsque
n augmente ; les termes N/ F, ) et R_,, sont finis ; donc

— D -
NiO, n} —n-" - R lorsque n — oo

~Le terme D, /n représente I'intervalle moyen I/4 entre deux arrivées succes-
sives, d'ou la formule de Little :

| =)

R ==

Y
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Remarque. Cette démonstration donne une interprétation simple de la
relation de Little ; en considérant un intervalle de temps trés grand T, on
peut écrire :

NT = (iT) R

Cette égalité s'obtient intuitivement en evaluant de deux fagons l'aire de
la zone hachurée : en prenant les sections verticales d'une part, les rectangles
hornzontaux d’autre part.

Exercice 3
Le systeme d'équations linéaires s'écrit :

Py n
T—Pnﬁ—ﬂ

P n—1 I no_
T_PL[T"'T]"'P“R_&
P n—2 I n—1
p —_— = — =0
T FE[R "'T]“" R

D'on

En additionnant les deux premiéres équations :

P n=1
T PR

En additionnant la seconde et la troisiéme :

Pa n—2
TR

I1 vient :

. T\ ! TH
p=ponn =) n =i+ 1) (2] = o=y (3)

Nous avons I'identite :

ifﬂ-f,lp|+ ifPi=” .EPJ=”

i=0 i=0 i=0
Soit :

nma= Lot I""’(T)*

i
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La somme peut encore s'écrire, en ignorant le temps nul pour i = n :

R ! Ty
m—q=pomg ¥ ( )
P

S (n—i—1JI\R
Faisons le changement de vanable j =i + [ :

A D LR ) iy (R )

"TATPT | L4 Tn—j) I\R m—0) I \R
R[=~ a! [TV R[ I

‘““T‘[Eorn—ﬂ f(ﬁ) - *'] =F"?[E' ’]

MNous obtenons :

R
"—E‘=U—Pai‘T

d'on :
(1 — py) T ¢
CHAPITRE 7
Exercice |
exiraire-message{m) : lire le message m dans casier ;
Visprodeasier) ;
déposer-message(m) : P{sprodeasier)
P(smutexcasier) ;
copier le message m dans casier ;
V( smutexcasier) ;
Vi sservant) ;
Exercice 2

345

Il faut remarquer que le verrouiliage et le déverrouillage, exécutés par un

processus unique, sont en exclusion mutuelle.
a) VERROUILLAGE DEVERROUILLAGE

si ™ verrou alors P(smutex-verrou) ;
L verrou = vrai; si verrou alors

début

verrou = faux,;

st facteur-blogue alors
début
facteur-blogue = faux;
Vi sbioc)

fin
ﬁr-: -
Vi smutex-verrou) ;
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FACTEUR : P{ses);
P smutex-verrou) ;
si = verrou alors V(sbloc)
sinon facteur-blogue = vrai ;
V( smutex-verrou) ;
Pishloc)

Remarque. La section critique prolégée par smufex-verrou €vite la suite
d’événements suivante :

— verrouillage,
— test de verrou par le FACTEUR, qui le trouve vrai,
— déverrouillage,
— blocage du FACTEUR derriére shloc.
b) VERROUILLAGE DEVERROUILLAGE
si 1 verrou alors si verrou alors
début début
verrou = vrai, verrou = faux;
Pishloc) Vishloc)
fin fi

FACTEUR  FP(ses);
si verrou alors
debur
Fizes ),
P(shloc) ;
Visbloc)
afler d FACTEUR

fin

Exercice 3
Les idées directrices sont les suivantes :

1) L'arrét du transfert ne peut pas étre instantané : on peut arréter le
FACTEUR (production), mais le PILOTE doit consommer tous les tampons
produits de fagon 4 ramener les sémaphores sprod et scons a leurs valeurs
initiales.

2) On souhaite que l'opérateur ait I'impression que l'entrée-sortie est
arrétée dés I'introduction de la commande d’arrét ; pour cela, on n'imprime
effectivement une ligne que si un booléen avort est & la valeur faux.

3) Dans le schéma simplifie donné ici (un S/O pour chaque ligne), on peut
se contenter d'un arrét « 4 une ligne prés »; il est alors inutile d’arréter physi-
quement une entrée-sortie (par I'instruction HIQ).
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D'ou la solution suivante :

FACTEUR : Pf{ses)
tant que (3articles) et (1 avert) faire
débur
P(sprod) ;

Vi 3;:-0?:.':}

fin:
avorl = faux;
aller a FACTEUR ;

PILOTE :  P(scons);

n=10;
tant que (n < nmax) et (= avort) faire
debut
fin;
VE : Visprod) ;

aller a PILOTE ;

Dans I'analyse d'une réponse de I'opérateur, on commence par consulter
avort.

si avort alors aller a VE
sinon si réponse operateur = « continuer » alors ...

Dans le processus SERVANT, on réalise les actions suivantes aprés détection

de la commande d'arrét .
avort = vrai;

si attend-op alors

"~ début
attend-op = faux ;
Visop)

fin

Remargue. Si on se contente de ce schéma, on peut demander des inter-
ventions superflues & ’opérateur, par exemple :

— entrée dans la boucle tant gue,

— mise 4 vrai de avort par le processus SERVANT,

— detection d'une imprimante non opérationnelle par le PILOTE, et
demande d’intervention de 'opérateur.

On peut pallier cet inconvénient en rendant indivisible le test d’avorr et
le lancement de la sortie (avec un sémaphore savort de valeur initiale 7).
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Exercice 4

Le message transmis dans la boite aux lettres doit comporter le nom d'un
sémaphore sattente, supposé initialement 4 la valeur 0. Le processus deman-
deur attend la fin du transfert en exécutant P(sattente) ; lorsque le PILOTE
a terminé la lecture du fichier sur disque, il effectue un V{satrente) avant de
se brancher 4 FACTEUR.
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pp. 331-346.

Wulf W., Levin R., Pierson C.
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[Brinch Hansen 77] décrit un langage de haut niveau congu pour I'écriture de systémes
et illustre son usage par plusieurs études de cas traitées en détail. [Ritchie 74] décrit un
systéme d'exploitation fonctionnant en temps partagé sur un mini-ordinateur. L'é¢tude
des systtmes HYDRA [Cohen 75, Wulf 73] et Plessey 230 [England 75] illustre la mise
en ceuvre de schémas de protection programmeés ou ciblés utilisant des descripteurs
(« capability »). Une &tude de synthése sur I'adressage et la protection dans les systemes,
illustrée par "analyse des systémes MULTICS et Plessey 250, est présentée dans [Banino
78). [Lauesen 75) donne un exemple d’utilisation des sémaphores dans la construction
d'un systéme d’exploitation. On trouvera dans [IBM 73] et [Whitfield 74] I'application
de méthodes d’auto-adaptation pour la gestion d’un systéme multiprogrammé. [Whit-
field 74) contient en outre des résultats de mesure sur le dispositif de régulation.

77 : The architectural of concurrent program. Prentice Hall (1977).
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Descripteur de segment, 3.22, 3.43,
5.341.
Drescriptif, 3.222, 3 373, 5.31.
Désigner, (fonction), 3.111, 3.112.
Détection de l'interblocage, 4.7411.
DOS (systéme), 4.42.
Droits {« capabilities »), 4.451,5.12,5.13,
5.3
matrice de —, 5.13, 5.223.
liste de —, 5.132.
Durée de vie, 3. 114, 3,122, 3.511.

Echange de pages, 4.432.
Echéance (« deadline »), 4.35.
Ecroulement (« thrashing »), 461, 6. 224
Edition de liens, 1.22, 3,132, 3.261.
Emplacement, 3.112, 3.511.
Environnement d'un processus, 3,343,
3.524.
ESOPE (systéme), 2.224, 2,24, 3.4, 3.5,
5.222, 7.5
Espace
— adressable, 3,342, 3,523,
— de travail (« working set »), 4.63.
— virtuel, 4.452.
Etat des processus, 2.221.
Etat fiable, 4.7422.
— réalisable, 4.731.
— sain, 4.731.
Evaluation des systémes, 6.1, 6. 341,
Evénement. 2.431.
Exclusion muotuelle, 2.222, 2.3, 2.61,
4. 72.7.5.
EXEC B8 (systéme), 4.442

Fiabilite d'un systéme, 7.
FIFO (First In First Out), 4.32.
Filed'attente, 41,4 .32, 4,33, 6.2
Fonction d’accés, 3.11, 3.5

— contenir, 3. 112,

— deésigner, 3,111, 3.112, 3.13.

— fournir, 3.112, 3.13.

— renfermer, 3.112, 3.13.

— repérer, 3111, 3,112, 3.13.
Fragmentation, 4.431, 4.443, 4 45].

Gestion
— de linformation, 3, 3.1
— des noms, 3.2, 3.3
— de la mémoire, 4.4,
— de la mémoire secondaire, 4. 5,
— des processus, 2.62.
— des ressources physiques, 4.
— des transferts, 4,532
Guérison de I'interblocage, 4.71, 4.7412.

_ Guichet (« gate »), 5.123, 5.224, 5.331,

5.333,
Hyperpage, 4.451.

Identificateur, 311, 3.26, 3.43,

Indicateur de déroutement (« fault bit »).
3.261.

Indivisibilité, 2.21, 2.33.

Interblocage (« deadlock »), 4.431, 4.7.

Interfaces, 7.311, 7.5.

Interruption, 2.64.

Jeu d'essai, &.341.

Langage d'écriture de systemes, 7.41.
Lexique, 3.341, 3.524.
Liaison, 3,13, 3,26
segment de —, 3.242 3 262,
Liens édition de —), 3.13, 3.261.
Little (formule de —), 6.222, 6,223,
Liste d'accés (« access list ») 5.131, 5.31.
— de droits (« capability list »), 5.132.
Localité {propriété de —), 4.23, 4.631.
LFU (Least Frequently Used), 4.454,
LRU (Least Recently Used), 4.454,
4,633

Machine virtuelle, 2.221.
Matrice de droms, 5,13, 5,223
Mémoire
— fictive, 3.122, 3.22, 3.522.
— hiérarchisée, 4.41, 4.432,
— secondaire, 4.12, 4.13, 4.5,
— segmentés, 3,22,
— topographique (& memory map »).
3.412, 4.451.
— uniforme, 4.41, 4.431.
— virtuelle, 3.422, 4.451,
gestion de la —, 4.4,

5.222.
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Mesures, 4.22, 4.454, 6.1, 6.3
Meéthodologie, 1.32, 6.32, 7.
Migration d'un segment, 4.41, 4.531
Mise au point (aide & la —), 7.4.
Mode (maitre-esclave), 5.134, 5.31.
Modele, 6.2, 7.1.
— analytique, 6.22.
— de simulation, 6.23.
Module, 7.311, 7.1, 7.312, 7.5.
MUS (systéme), 2,532
MULTICS (systéme), 3.2, 4.531, 5.3,
f.333, 7.412
Multiprogrammation, 4.13, 4.22, 4.6.

Niveau de conception, 7.312.
— de mémoire, 4.41, 4.432
— d'observation, 4.21.

Nom, 3.112, 3.521.

MNoyau (« kernel »), 6.341.

Objet, 3.1, 5.1
— composé, 3,113
représentation d'une partie d'un —,

3.11, 3.512, 3.513 '

OPT (algorithme de remplacement),
4 454

Ordonnancement (« scheduling »), 4.3,
6,222,

08/360 MFT, MVT (systéme), 4. 13,4.42,
4.431.

Page. 4.23, 4.42, 4.45, 4.5,
défaut de — (« page fault »), 4.23.
taille de —, 4.451.
Parallélisme, 2.222, 1.23, 7.32, 7.5.
Paramétre d'une procédure, 3. 132, 3,245,
3.251.
Parenthése d’accés (« access bracket »),
5.32, 5.33.
Partage d'un objet, 3.121, 3.37, 338,
3.513.
— d'un nom, 3.121.
— d'une ressource, 2.222, 1.21.
— des segments, 3.45, 3,221,
Performance, 6.1, 6. 341,
Pile (d'un processus), 3.3, 3.323.
Point d'accés, 2.222,
— observable, 2.21.

Index R

Pouvoir. 5., 2.223.
Prévention de U'interblocage, 4.71, 4,742,
Primitives de synchronisation, 2.3, 2.4,
2.6,
implantation des —, 2.6,
protection des —, 2.63, 5.223.
utilisation des —, 2.432, 2.8, 7.5,
Priorité, 4.34.
Procédure, 3.116, 3.232, 3,241, 3.25
3.26, 3352, 3.36, 3.38, 5.343,
Procédurus, 3.116, 3,35,
Processeur, 2.21, 4.3, 6.222
Processus, 2., 3.221, 3.224, 3 37, 33§,
7.5,
— indépendants, 2.222.
— en exclusion mutuelle, 2.222, 2.3,
7.5,
— paralléles, 2.222, 2.
coopération des —, 2.3, 2.4, 2.5, 7.5
création, destruction des —, 2.231,
3.371.
gestion des —, 2.62.
pile d'un —, 3.323,
synchronisation des —,
7.513
Producteur (modéle du producteur et
du consommateur), 2.521, 7.5.
Programmation structurée, 7.3.
Protection, 2.7, 5., 7.513.
anneau de —, 5.3, 3.245, 3,262,
clé et verrou de —, 5.133, 5.222,

2.4, 3.374,

Quantum, 4.33, 6.222.

RAND (algorithme), 4. 454

Référence 4 la mémoire, 4.23, 4.4353,
4.63.

Registre d environnement (« display regis-
ter »). 3.343.

Région, 3.34.

Régulateur de charge («load leveler »),
4.62, 4.142

Remplacement (algorithme de —), 4.453,
4.41.

Renfermer, {fonetion), 3.112, 3.13.

Réimplantation dynamique (« reloca-
tion »), 4.42, 4.432, 4 441.

Repérer, (fonction), 3. 111, 3.112.
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Répertoire des ressources, 4.12.
Représentation d'un objet, 3.111, 3,112,
3.33 3.5
— des ressources, 4.12.
Réquisition (« preemption »), 4.11.
Ressource, 2.22, 1.21, 4.
— partageable, 2.222.
— locale, 2.222.
— commune, 2 222
— critique, 2,222,
allocation des —, 4.1, 4.3, 4.4, 4.5,
libération des —, 4.442, 4 531,
partage d'une —, 2.222,
répertoire des —, 4.12.
représentation des —, 4.12.
Restriction d'acces, 3.221, 3.511, 5.21,
5.3

SATF (Shortest Access Time First), 6. 221,

Section critique, 2.3.
Segment, 3.115,3,123,3.2,3.322 3,421,
3.43,4.22, 5.221, 5.34L.
Sémaphore, 2.34,2.432,2.531,7.32,7.5.
— avec message, 2.53L
— d'exclusion mutuelle, 2343,
— privé, 2.432
implaniation des —, 1.64.
utilisation des —, 2.432, 7.5
SIRIS 7/8 (systéme), 1.22, 2.64, 3.13.
Simulation, 6.23, 6.21.

Suite (de demandes de ressources).
— compléte, 4. 732,
— fiable, 4.7422.
— saine, 4,732,
Synchronisation, 2.4, 3.374, 7.513.

Table de pages, 3.441, 4.451.

Tailles des pages, 4.451.

Tambour de pagination (« paging drum»},
4.532.

THE (systéme), 7.32.

Témoin d'éveil 2.42.

Temps de réflexion, 4.22, 6.223.
— de réponse, 4.141, 6.223, 6.13,
6.341.

Test And Set (instruction), 2.32.

Topographie (« mapping »}, 3.412, 4.42,
4.451.

Tourniquet (« round robin »), 4, 33.

TSOS (systéme), 6.23.

TSS 360 (systéme), 4.531.

Usager (d’ESOPE), 2.24, 3.42, 3.45
5.22, 7.5

Va-et-vient (& swapping »). 4.432,
Validité des programmes (« program
correctness »), 7.1, 7.2,
Vecteur d'état, 2.21, 2.224, 2.62.
Verrou de protection, 5.133, 5.222.
— de synchronisation, 2.33.

Zones (de mémoire), 4.44, 4,12, 4. 141,
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maticien : aprés avoir resitué la place de I'informatique dans le champ plus
vaste des systémes d'information des organisations, Charles Berthet a choisi
de regrouper les éléments les plus fréquemment utiles, en éliminant les concepts
trop théoriques et peu mis en ceuvre, ou trop spécialisés.

Il convenait d’abord de préciser la représentation et I'organisation des
données. L'auteur a donc rappelé la fagon dont les principaux constructeurs
ont résolu ce probléme. Puis il a résumé les concepts essentiels relatifs aux
fichiers, et, plus généralement, aux bangues de données.

La pratique de 'informatique est, concrétement, celle de la programmation.
C’est pourquoi une part relativement importante de ce livre corcerne les trois
langages les plus utilisés : Fortran. Cobol et FL[1. Le développement de la
téléinformatique est considérable, parce que vital : un chapitre a &t& consacré
a ses techniques particuliéres.

Essentiellement pratique. cet aide-mémoire est pour I'informaticien un guide
et une référence précieux, un compagnon indispensable.

Sommaire

1. Les systémes d'information. — 2. Représentation «e l'information. —
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