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LES

LOIS EXPÉRIMENTALES
DE L’AVIATION

CHAPITRE Ier.

GÉNÉRALITÉS SUR LE PROBLÈME DU VOL.

Rôle de la théorie en aviation. — Difficultés de l’expérimentation. — 
Différents modes de vol. — Comment le problème se pose pour l'homme. 
— La loi des cubes. — Ceux qui ont résolu le problème.

Le présent ouvrage a pour objet d’exposer nos connaissances 
actuelles sur les lois expérimentales de la résistance de l’air, envi­
sagées aux points de vue qui intéressent l’aviation, et leur application 
à l'étude des lois du vol mécanique.

Le premier chapitre sera consacré à des considérations générales 
sur le problème du plus lourd que l’air, sur les difficultés particulières 
qu’il présente pour l’homme, et sur les diverses solutions qu’il 
comporte.

Nous étudierons ensuite en détail les lois de la résistance de l’air, 
telles qu’elles résultent des expériences les plus récentes; nous 
appliquerons ces lois, grâce à quelques calculs algébriques simples, 
à l’étude des problèmes qui se posent en aviation, notamment à la 
théorie des aéroplanes, à celle des hélices propulsives, hélices 
sustentatrices et hélicoptères, ainsi qu’au vol des oiseaux.

Chapitre Ier.
Généralités sur le
problème du vol

Rôle de la théorie en
aviation
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Nous disons: à l’élude des problèmes, notez bien que nous ne 
disons pas : à la solution des problèmes.

La théorie n’a guère, jusqu’ici, solutionné de problème en aviation, 
et il lui sied de montrer une grande modestie. Loin d'être établie 
d’une façon définitive, on commence seulement à l’entrevoir, et il y 
a bien des points qui lui échappent encore.

Nous irons donc au devant de l’objection que l’on pourrait nous 
faire: la théorie, dira-t-on, n’est jusqu’ici qu’un amas de raisonne­
ments faux qui sont invariablement contredits par les faits; loin de 
servir de guide aux chercheurs, elle n’a réussi qu’à les induire en 
erreur, à fausser les idées, à paralyser les initiatives, à déconsidérer 
leurs efforts et, somme toute, à retarder la réalisation du vol 
mécanique.

Nous n’y contredirons pas ; à l’heure actuelle tout le monde est de 
cet avis, et avec raison.

Lors de la visite des Parlementaires au Camp de Châlons, en 
février 1909, M. Painlevé disait:

« En fait, nous nous rendons compte que nous ne connaissons, 
rien d’exact en cette matière ; toutes les formules que nous croyions 
établies sur les résistances de l’air, sur les déplacements, les essais 
qui se poursuivent nous en montrent le vide ou l’erreur ».

Et M. Rateau, ingénieur des Mines, émet un avis semblable dans 
l'Aérophile du 45 juin 1909:

. « Nous ne sommes guère fixés sur les coefficients pratiques, ni 
même sur les principes à appliquer pour le calcul des surfaces 
sustentatricesou pour celui des hélices propulsives. En cette matière, 
comme en beaucoup d’autres, le génie des inventeurs a devancé la 
science, et fait son œuvre sans se soucier trop des idées plus ou 
moins erronées en cours. Il faut maintenant que cette branche de la 
mécanique des fluides soit aussi promptement que possible mise à 
hauteur, pour donner enfin aux ingénieurs les règles fondamentales 
qu’ils devront suivre et les coefficients numériques qu’il leur faudra 
appliquer ».



C'est déjà savoir quelque chose que de savoir qu’on ne sait rien. 
Il a fallu longtemps à la théorie de l’aviation pour en arriver à ce 
point, et pour s’apercevoir que les données sur lesquelles elle était 
partie étaient inexactes ; et c’est pourquoi elle a si longtemps failli à 
son rôle.

Est-ce à dire qu’il faille refuser de lui faire crédit? Ce serait peut- 
être tomber dans une autre erreur.

Elle peut, elle doit rendre des services dans cette branche comme 
dans toutes les autres, à condition d’y apporter, plus soigneusement 
encore que dans toute autre, l’ordre, la méthode et la précision qui y 
ont manqué ; et à condition que la théorie reste dans son rôle, qui 
n’est pas de deviner a, priori par le raisonnement les phénomènes 
et les lois physiques, mais simplement de les observer avec méthode 
pour pouvoir ensuite prévoir, par analogie, les circonstances de leur 
retour.

La théorie doit suivre l’expérience pas à pas. Il faut donc com­
mencer par l’étude expérimentale la plus rigoureuse possible, étude 
qui a pour complément l’établissement de lois expérimentales et 
empiriques destinées à en résumer les résultats.

Ces lois expérimentales pourront rester réfractaires à toute vérifi­
cation par le raisonnement; mais cela importe peu.

Le principal est qu’elles permettent d’exprimer numériquement 
les phénomènes entre des limites déterminées, et avec une approxi­
mation connue.

Ensuite, dans l’application de ces lois et des formules qui les tra­
duisent, on devra ne jamais perdre de vue les limites entre lesquelles 
elles sont applicables, et leur degré d’approximation. On se gardera 
d'extrapoler les formules, les lois physiques présentant souvent des 
changements d’allure brusques.

En posant les problèmes, on pèsera avec soin chacune des hypo­
thèses admises; les calculs basés sur des hypothèses admises à la 
légère, comme on en a fait trop souvent, sont non seulement inutiles 
mais nuisibles, en ce qu’ils répandent des idées fausses.
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On se défiera par dessus- tout des hypothèses implicites, celles 
qu’on fait involontairement sans s'en douter, rien que par la manière 
dont on aborde le problème.

Ces hypothèses implicites sont les plus dangereuses, parce qu’on 
ne se rend pas compte qu’on les fait, qu’on ne les formule pas, et 
qu’on ne les examine pas ; ce sont elles qui permettent de démontrer 
des absurdités au moyen d’un raisonnement qui a toutes les 
apparences de la rigueur.

En énumérant ces recommandations, nous avons l’air de prêcher 
des vérités évidentes, que M. de la Palisse n’eût pas désavouées. En 
réalité nous touchons du doigt l’écueil le plus grave auquel se soit 
heurté la théorie, et jamais on n’en signalera trop souvent le danger. 
Nous aurons l’occasion d’en montrer plusieurs exemples très frappants 
et très instructifs, principalement dans la théorie des hélices et dans 
celle du vol à voile.

D’ailleurs, nous parlerons plusieurs fois, et en détail, des erreurs 
commises dans le passé, en pratique comme en théorie. Ce ne sera 
ni dans un but historique, ni pour le vain plaisir de critiquer; c’est 
parce que ces erreurs sont des leçons pour nous; des esprits très 
éminents y sont tombés, elles sont, si on peut dire, naturelles, et il 
était tout indiqué qu’on s’y laisserait prendre. Elles n’en sont que 
plus instructives, parce qu’elles nous montrent les points faibles de 
nos intuitions et de nos raisonnements ; elles nous enseignent à nous 
défier de ce qui nous parait évident, et à serrer la rigueur mathéma­
tique de plus près. Rien n’est évident, en matière d’aviation ; tout 
est inattendu et paradoxal. Lorsque vous lisez, dans un ouvrage, le 
mot « évidemment », ou « il est évident que », méfiez-vous, et 
examinez bien si l’auteur n’est pas en train de dire une bêtise.

Voulez-vous quelques exemples pris dans l’ouvrage d’un auteur 
qui a pourtant une très longue expérience?

« Des plans superposés doivent évidemment se nuire mutuelle­
ment ».

« Il serait évidemment mieux de faire le rapport des 2 dimensions 
des plans plus grand que 6 ».



« Il est bien évident que le type hélicoptère est sans avenir ».
« Pour assurer la stabilité d’un aéroplane dans le sens longitudinal, 

on devra évidemment avoir recours à une queue; la pratique a 
toujours démontré, d'ailleurs, qu’elle était indispensable ».

C’est si évident, que l'appareil Wright n’en a pas. On cherche 
avec stupéfaction en quoi ces propositions sont évidentes, et on se 
demande comment des auteurs sérieux peuvent se contenter de 
pareilles bases de raisonnement.

Nous pourrions multiplier ces exemples ; il y a, en aérodynamique, 
une quantité de pièges presque classiques qui guettent notre raison­
nement ; ceux qui ne les ont pas étudiés ne manquent pas d’y tomber 
à leur tour, comme y sont tombés leurs devanciers ; et c’est réelle­
ment gagner du temps que de les connaître pour les éviter.

Prenons comme exemple le calcul du travail par seconde nécessaire 
au vol mécanique. Quand on se pose la question pour la première 
fois, il est rare qu’on ne fasse pas le raisonnement suivant: un corps 
tombe de 4m,90 dans la première seconde, donc pour ne pas tomber 
il doit s’élever de 4m,90 par seconde.

Ce raisonnement est-il juste? Si on considère une durée de deux 
secondes, le corps tombe de 19m,60 ; il devra donc s’élever de 
9m,80 par seconde, résultat contradictoire avec le précédent. Il y a 
donc une erreur. Si maintenant on remarque qu’il n’est pas question 
de la résistance de l’air dans ce raisonnement, on comprendra que le 
problème a été mal posé.

Des mathématiciens comme Babinet ont pourtant commis cette 
faute, et bien d’autres après lui. Elle est « classique ».

Maintenant, quels résultats utiles donnera la théorie? A cela, 
personne ne peut répondre d’avance. Peut-être des résultats tout à 
fait étrangers à l’aviation.

En cherchant la pierre philosophale, n’a-t-on pas découvert le 
phosphore? Lilienthal, le véritable père de l’aviation, ne croyait pas 
travailler à la solution du problème du vol mécanique; il cherchait 
seulement à imiter le vol à voile, dont il n'avait d’ailleurs pas 
compris le mécanisme.
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Est-ce que toutes les sciences n’ont pas commencé par tâtonner? 
Est-ce que l’astronomie, la géographie, la médecine n’ont pas com­
mencé par prôner les systèmes les plus fantaisistes?

Devons-nous renoncer à la chimie actuelle, sous prétexte qu’elle 
est en train d’être sapée de fond en comble, jusque dans ses prin­
cipes, par les découvertes récentes sur la radioactivité? La chimie 
actuelle nous rend de très grands services, et c’est là l’important.

Faisons donc crédit à la théorie de l’aviation, malgré ses incerti­
tudes actuelles.

Rappelons-nous ce mot du baron Thiébault. Dans ses Souvenirs 
de 20 ans de séjour à Berlin, parus en 4 804, le Baron Thiébault 
rapporte les conversations qu’il avait avec Frédéric le Grand sur 
les expériences de Montgolfier, qui venaient d’avoir lieu et révolu­
tionnaient l’opinion. Il raconte qu’il cherchait à convaincre le 
monarque de la nécessité de faire crédit aux inventions nouvelles, et 
il ajoute en note ce mot :

— « On demandait à un philosophe: à quoi servent les globes 
aérostatiques?

— A quoi sert, répondit-il, l’enfant qui vient de naître? »

Cette réponse est fort sensée.
L’enfant ne sert à rien pour le moment, c’est entendu ; prenons-en 

soin quand même, et élevons-le dans de bons principes, pour qu’il 
soit capable plus tard de se rendre utile.

DIFFICULTÉS DE L’EXPÉRIMENTATION.

Quelles sont donc les causes qui ont, jusqu’ici, paralysé la 
théorie ? Ce sont, d’une part, l'extrême difficulté de l’expérimentation 
en aérodynamique, et d’autre part, le caractère inattendu et paradoxal 
de certains phénomènes.

Les expériences sur la résistance de l’air sont extrêmement diffi­
ciles à faire avec précision. Les expérimentateurs n’ont pas manqué,

Difficultés de
l'expérimentation



I oI

mais chacun a trouvé des résultats différents. Nous citerons plus de 
30 valeurs différentes obtenues pour le fameux coefficient K, variant 
dans la proportion de 1 à 12.

Voulez-vous quelques noms au hasard ? Les travaux de Duchemin, 
Rayleigh, Von Loessi, Froude, Borda, Avanzini, Joessel, Maxim, 
Muller, Vince, Bossut, Dubuat, Goupil, Lilienthal, Piobert, Morin, 
Athanase et Paul Dupré, Hulton, Thibault, Wenham, Poncelet, 
Recknagel, Dupuy de Lôme, Kummer, Irminger et Vogt, Phillips, 
Hele-Shaw, Prechtl, et bien d’autres, auraient dû, semble-t-il, pro­
curer aux frères Wright quelques données utiles pour leurs expé­
riences de 1900 et 4901, d'où est sorti l’aéroplane actuel.

Il n’en est rien. « Nous constatâmes, écrivent ces derniers, que 
tous les chiffres qui avaient servi de base au calcul des aéroplanes 
étaient inexacts, et que l’on ne faisait que tâtonner dans l’obscurité. 
Partis avec une confiance absolue dans les données scientifiques 
existantes, nous étions arrivés à révoquer en doute une chose après 
l’autre, si bien qu’en fin de compte, après deux ans d’essais, nous 
jetâmes tout notre bagage par dessus bord, et décidâmes de nous en 
rapporter uniquement aux résultats de nos propres recherches.

« La vérité et l’erreur étaient en effet mélangées au point de 
constituer un fouillis inextricable.... L’unité, pour la pression du vent, 
est la pression exercée par un courant d’air d’une vitesse d’un mille par 
heure sur une surface d’un pied carré qu’il rencontre à angle droit (1). 
Les difficultés pratiques qu’en rencontre pour mesurer exactement 
une force de ce genre ont toujours été considérables. Les valeurs 
obtenues par diverses autorités scientifiques reconnues varient de 
l’une à l’autre dans la proportion de 50 °/o.

« Si cette mesure, la plus simple de toutes, présente des difficultés 
pareilles, que dire des obstacles rencontrés par ceux qui essayent de 
déterminer la pression pour tous les angles que le même plan peut 
présenter avec la direction du vent! Au XVIIIe siècle, l’Académie

(1) En France, bien entendu, nous employons nos unités de mesure.
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des Sciences françaises a publié des tables à ce sujet, et, à une 
époque plus récente, la Société aéronautique de la Grande-Bretagne 
a fait exécuter des expériences du même genre. Nombre de gens ont 
publié de même des chiffres et des formules, mais les résultats en 
étaient si discordants que le professeur Langley entreprit une nou­
velle série d’expériences dont les résultats ont servi de base à son 
célèbre ouvrage : Experiments in Aerodynamics.

« Mais un examen critique des données sur lesquelles il base ses 
conclusions relatives aux pressions exercées sous les petits angles 
donne des résultats assez variables pour montrer que ces conclusions 
ne sont guère que de simples hypothèses.

« Pour faire œuvre intelligente, il faut connaître les effets d’une 
foule de particularités qui peuvent intervenir dans la contexture des 
surfaces d’une machine volante. La pression exercée sur des surfaces 
carrées diffère de celles qu’on constate sur des rectangles, des cercles, 
des triangles ou des ellipses; des surfaces courbes ne se comportent 
pas comme des plans et se différencient les unes des autres suivant 
leur degré de courbure ; des arcs de cercles diffèrent des arcs de para­
boles, et ceux-ci diffèrent eux-mêmes entre eux; des surfaces 
épaisses se distinguent des surfaces minces, et des surfaces d’épais­
seur variable supportent des pressions variables suivant la position 
du point d’épaisseur maximum; certaines surfaces présentent une 
qualité meilleure sous un certain angle, d’autres sous un angle 
différent. Le profil de l’arête amène encore d’autres variations, si 
bien qu’une chose aussi simple qu’une aile se prête à des milliers de 
combinaisons ».

Voilà donc où on en était il y a moins de dix ans. A vrai dire, ce 
n’est que depuis ces toutes dernières années, notamment depuis les 
expériences de M. Eiffel, de M. Bateau et de M. Riabouchinsky, 
directeur de l’Institut aérodynamique de Koutchino, qu’on commence 
à connaître un peu les lois de la résistance de l’air. Qu’y a-t-il donc 
de si difficile dans l’expérimentation? Il y a qu’il est très difficile de 
créer un courant d’air de vitesse et de direction constantes et connues. 
Nous aurons l’occasion de voir au prix de quelles minutieuses pré-
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cautions les trois expérimentateurs que nous venons de citer y sont 
parvenus.

En particulier, c’est pour avoir négligé de vérifier la direction 
exacte du courant d’air que Goupil et Lilienthal sont arrivés à des 
constatations absurdes, qui ont pu tromper des théoriciens éminents, 
lesquels n’ont pas vu qu’elles aboutissaient au mouvement perpétuel.

En outre, l'allure paradoxale des faits observés a souvent dérouté 
les chercheurs, en les faisant douter de l’exactitude des résultats qu’ils 
trouvaient.

Nous allons en donner un exemple avec la fonction de l’angle 
d’incidence.

Voici un observateur qui cherche la loi de la poussée sur une surface 
aux diverses incidences. Comment s’y prend-il? Il présente la surface 
étudiée sous divers angles, et il mesure les pressions subies. Ensuite, 
sur un graphique, il porte en abscisses les angles, et en ordonnées les 
poussées, et il regarde comment les divers points obtenus se dispo­
sent. Leur disposition lui donne l’idée d'une courbe,mais entendons- 
nous bien, il n’obtient pas une courbe, il obtient seulement des 
points plus ou moins nombreux, mais toujours isolés. Mais il ne veut 
pas s’en tenir là. Quand il juge qu’il a assez de points, il veut tracer 
la courbe. En a-t-il le droit ? Rien n’est plus douteux, car il est obligé 
pour cela de faire, souvent sans s’en rendre compte, et c’est ce qui 
est grave, une foule d’hypothèses absolument gratuites.

Tracer une courbe, c’est admettre d’abord que le phénomène est 
continu. On dit qu’une fonction est continue quand à une variation 
infiniment petite de la variable correspond une variation infiniment 
petite de la fonction. Dans le graphique, cette propriété se traduit 
par l’existence d’une courbe ininterrompue.

Cette première hypothèse est-elle juste? Rien n’autorise à 
l'admettre. Précisément dans le cas présent elle est fausse, et celle 
hypothèse implicite a trompé un grand nombre d’expérimentateurs.

Ayant donc admis la continuité, notre expérimentateur va-t-il 
essayer de faire passer une courbe par tous les points obtenus? 
Pas le moins du monde. Il s’empresse de faire une seconde
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hypothèse, qui est que la courbe doit être simple. Une courbe 
compliquée et accidentée lui répugne, il lui semble qu’une loi natu­
relle doit toujours se traduire par une courbe très simple, autant que 
possible une ligne droite, ou une courbe du second degré, ou une 
sinusoïde, ou une exponentielle, ayant le moins possible de points 
d’inflexion.

C’est là une impression irraisonnée.
Guidé parce besoin de simplicité, et constatant avec déplaisir que ses 

points forment une ligne capricieuse et zigzaguante, il préfère admettre 
que ces zigzags sont dus aux erreurs d'expérience; il abandonne 
donc la seule chose qu’il connaisse, à savoir ses résultats d’expérience, 
pour y substituer une hypothèse gratuite, à savoir l’allure simple de 
la courbe. Hâtons-nous d’ajouter qu’en agissant ainsi il a souvent 
raison. Il cherche alors à tracer une courbe simple qui passe non pas 
par ses points, mais le plus près possible de tous ses points. En 
général, elle ne passera exactement par aucun des points trouvés, ce 
qui est assez curieux à remarquer, entre parenthèses.

Pourra-t-il même la faire passer très près de tous les points? 
Même pas; il sera souvent obligé de laisser complètement à l’écart 
un ou deux points qui ont vraiment voulu trop se singulariser. Pour 
s’en rapprocher, la courbe devrait faire un écart, un détour peu 
agréable à l’œil; il préfère admettre que ce sont des points anormaux

FIG. 1. — Courbe de la 
résistance de l’air aux di­
verses incidences, d’après 
les premiers expérimen­
tateurs.

‘
e
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résultats de grosses erreurs d’expérience, et 
qu’il ne faut pas en tenir compte.

C’est ainsi, sans aucun doute, qu’ont rai­
sonné la plupart de ceux qui ont étudié la 
fonction de l’angle d’incidence. Ils ont dû, 
pourtant, remarquer que, à un certain 
moment, la courbe semble redescendre pour 
remonter ensuite, mais ils ont dû attribuer 
cela à des erreurs d’expérience (fig. 1).

Les frères Wright ont fait la même
remarque, mais, doués d’un esprit scientifique exceptionnel, ce fait 
les a frappés et ils ont voulu en avoir le cœur net. Recommencer

Fig. 1. Courbe de la
résistance de l'air aux
diverses incidences,
d'après les premiers
expérimentateurs
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les expériences, c’eût été s’exposer à refaire les mêmes erreurs 
de mesure; ils ont préféré une vérification directe beaucoup plus 
élégante.

« Un plan de forme carré, écrivent-ils, nous donna à 35° une 
pression plus élevée qu'à 45°, contrairement à tous les résultats 
obtenus par nos prédécesseurs. Ce résultat nous parutsi anormal que 
nous étions tout prêts à mettre en doute la valeur de toutes nos expé­
riences antérieures, quand on nous suggéra une expérience fort 
simple. Nous fabriquâmes une girouette sur laquelle nous montâmes 
deux plans faisant entre eux un angle de 80°. D’après nos tables, 
une girouette de ce genre devait se trouver en équilibre instable 
quand elle était tournée directement contre le vent ; car si par hasard 
le vent arrivait d'un côté à 390 sur un plan et de l’autre à 410 sur le 
second plan, le premier plan recevant le vent sous l’angle le plus 
faible subirait la plus forte pression, et la girouette s'écarterait de 
plus en plus du lit du vent jusqu’à ce que ses deux faces supportassent 
de nouveau une pression égale, ce qui arriverait approximativement 
pour des angles de 30 et 50°. Or la girouette fonctionna précisément 
de cette façon ».

Depuis, les expériences de M. Raleau, poussant la précision plus 
loin, ontmontré que non seulement la courbe s’abaisse, mais qu’elle 
présente une discontinuité ; elle se subdivise en deux branches qui 
ne se raccordent pas. Voilà un résultat absolument inattendu.

Ainsi, l’hypothèse implicite de la continuité était fausse ; fausse,

A Eiffel
B Riabouchinski
C Rataau
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FIG. 2. — Courbe de la 
résistance de l’airaux diverses 
incidences.

la région de 30 à 50°. M.

l’idée d’une courbe simple ; fausse, l’idée 
de négliger les points qui faisaient redes­
cendre la courbe. Les frères Wright, en 
1901, et M. Riabouchinsky, en 1909, 
avaient, bien certainement à contre- 
cœur, fait infléchir la courbe et tracé 
une forme qui choquait leur intuition, 
sans même parvenir à s’approcher conve­
nablement des points d’expérience dans 
Eiffel, en 1907, ne pouvant se résoudre

Fig. 2. Courbe de la
résistance de l'air aux
diverses incidences
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à admettre une telle courbe, et renonçant à imaginer une courbe 
satisfaisante passant par les points trouvés, a simplement dit qu’on 
se rapprochait beaucoup de la réalité en remplaçant la courbe 
par deux droites, c’est-à-dire en subdivisant la loi en deux parties 
indépendantes, pour en simplifier l'expression dans les calculs.

Dans le même ordre d'idées, M. Riabouchinsky remplace la courbe 
par une sinusoïde et une droite, mais en s'excusant d’une telle 
incorrection. « Le principal défaut de notre formule, écrit-il, est 
qu’elle n’est pas continue, mais ce défaut est racheté dans plusieurs 
cas par la simplicité avec laquelle elle permet d’effectuer les calculs 
ultérieurs ».

Ainsi, l’idée de la discontinuité est tellement loin de son esprit, 
que même quand il l’adopte, il ne lui vient pas à l’idée qu’il puisse 
avoir raison, et que ce prétendu défaut puisse n’en pas être un.

Il a fallu attendre jusqu’à l’année dernière, en juillet 1909, pour 
que M. Rateau aperçut la véritable allure du phénomène, et lit la 
lumière sur l’anomalie trouvée par ses prédécesseurs.

Les difficultés de l’expérimentation, ou peut-être l’attrait des théo­
ries a priori, ont poussé nombre de calculateurs à essayer de prévoir 
et d’inventer par le raisonnement les lois de la résistance de l’air, 
sans s’appuyer sur l’expérience.

C’était tomber de Charybde en Scylla. C’est alors qu’on a sombré 
dans les pires erreurs, à commencer par la fameuse loi du sinus carré. 
Que d’absurdités on a dites en son nom ! Elle a cependant pour 
auteur Newton. Elle a été appliquée au vol des oiseaux par Navier, 
qui en conclut que la puissance dépensée par une hirondelle est de 
1/17 de cheval-vapeur. « Autant vaudrait, comme le remarque 
Joseph Bertrand, prouver par le calcul que les oiseaux ne peuvent 
pas voler, ce qui ne laisserait pas d’être compromettant pour les 
mathématiques ».

Rappellerons-nous cette phrase qui termine un rapporta l’Aca­
démie des Sciences : « Ainsi, l’impossibilité de se soutenir en frap­
pant l’air est aussi certaine que l'impossibilité de s'élever par la 
pesanteur spécifique des corps vides d’air ». Qui parle ainsi? C’est
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le mathématicien Lalande, un an avant l’ascension de la première 
montgolfière.

En 1780, le savant Coulomb calculait que pour se soutenir en 
l’air un homme a besoin d’ailes de 12.000 pieds de surface et de 
480 pieds de longueur. Cette conclusion a été confirmée dans un 
rapport présenté à l’Académie des Sciences et signé de noms comme 
Condorcet, Bossut et Monge. Et l’Académie a approuvé à l’unanimité 
ce rapport « propre, dit-elle, à détourner d’entreprises vaines et 
périlleuses».

Il faut rappeler ces exemples, quand on voit certains calculs 
publiés récemment, en particulier sur les hélices, et qui sont ce qu’on 
appelle de la théorie en chambre. C’est à nous montrer le danger de 
celle tendance, et l’impossibilité de nous fier à nos intuitions, que 
nous servira l’étude des erreurs passées ; à ce titre, elles n’auront pas 
été inutiles.

DIFFÉRENTS MODES DE VOL

On distingue la sustentation statique, réalisée par des appareils 
plus légers que l’air qu’ils déplacent, et qui s’élèvent en vertu du 
principe d’Archimède, et la sustentation dynamique, à laquelle 
onl recours les appareils plus lourds que l’air. Voici quel est le prin­
cipe de ces derniers. Le déplacement dans l'air de surfaces convena­
blement inclinées fait naître des réactions, qui dépendent de la 
vitesse, et dont la composante verticale tend à soulever l’appareil. 
Ce déplacement nécessite une certaine dépense de puissance motrice, 
produit de la projection de la force sur la direction du mouvement 
par la vitesse ; d'où ce nom de sustentation dynamique.

La sustentation dynamique peut être dépendante ou indépendante 
de la translation.

Dans la sustentation indépendante, le volateur agite ses surfaces 
portantes, d’un mouvement alternatif ou continu, mais sans être 
obligé de déplacer son propre corps. Exemples: les insectes, les 
petits oiseaux qui volent sur place, les hélicoptères. La translation ne

Différents modes de
vol
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leur est pas indispensable; néanmoins, elle leur est favorable, car 
nous verrons qu’elle diminue le travail à dépenser.

Dans la sustentation dépendante, au contraire, le volateur conserve 
ses surfaces immobiles ou presque, par rapport à son propre corps ; 
pour les déplacer dans l’air, il faut qu’il se déplace avec elles ; tout 
l’ensemble est animé d’un rapide mouvement de translation. 
Exemple, les aéroplanes, les oiseaux.

C’est aussi dans cette catégorie qu’il faut placer les cerfs-volants, 
malgré leur apparente immobilité. On les a appelés des aéroplanes 
captifs, ou des aéroplanes à l'ancre.

Ils ne se soutiennent en l’air que grâce au vent ; par rapport à l’air 
qui vient à leur rencontre, ils ont une vitesse relative précisément 
égale et contraire à celle du vent, et ils ne peuvent se soutenir que si le 
vent est suffisamment fort. Quand le vent est insuffisant, par exemple 
au moment où ils sont près de terre, l’enfant qui veut leur faire 
prendre l’essor est obligé de courir contre le vent pour créer la 
vitesse nécessaire à l’envol.

L’idée et l’exemple du vol par sustentation dynamique nous sont 
donnés par la nature, qui a résolu le problème sous plusieurs formes 
différentes, en n’utilisant que le seul mouvement dont elle dispose, 
le mouvement alternatif. A son tour, l’homme a pu créer des formes 
de vol nouvelles, en utilisant le mouvement rotatif, bien supérieur 
au point de vue mécanique, parce qu’il supprime les efforts dus à 
l’inertie des pièces, mais interdit à la nature à cause des nécessités 
de la nutrition des tissus.

Nous allons passer en revue ces différentes formes de vol : mais 
nous n’en ferons pas seulement une énumération, nous essayerons 
de suite d’en faire une sorte de classement par ordre de mérite ou de 
valeur.

Voici quel est le principe fondamental, fourni d’ailleurs par l’expé­
rience, qui préside à ce classement.

Une surface plane, ou sensiblement plane, qui se déplace dans 
l’air, orthogonalement ou obliquement, éprouve une réaction. Cette
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réaction n’est pas parallèle au mouvement; elle reste sensiblement 
normale à la surface, quelle que soit la direction du mouvement. Par 
conséquent, pour obtenir une réaction sustentatrice sensiblement 
verticale, il n’est pas nécessaire de déplacer la surface verticalement 
de haut en bas; il suffit de la placer dans une position à peu près 
horizontale (de façon que sa normale soit verticale), et ensuite de la 

déplacer dans une direction descendante quel- 
conque, plus ou moins oblique, et même, grâce 
à certains artifices, dans une direction horizontale 
ou légèrement ascendante (fig. 3).

R

FIG. 3.— Réaction Or — et c'est ici le point capital de toute 
sustentatrice obte- , .
nue par déplace- l’aérodynamique — 1 expérience montre que la 
ment oblique. , . , .réaction obtenue par 1 attaque oblique est plus 
économique que la réaction obtenue par l’attaque orthogonale, et 
qu’elle est d’autant plus économique que l’attaque est plus oblique. 
Ceci veut dire que la sustentation dynamique d’un poids donné exige 
un certain travail, et que ce travail est plus faible quand les surfaces 
portantes attaquent l’air obliquement que quand elles l'attaquent 
orthogonalement. Ce fait expérimental est facile à observer chaque 
fois qu’un oiseau prend l’essor; au moment de l’envol, sa vitesse 
de translation étant nulle ou très faible, les battements d’ailes sont 
sinon orthogonaux, du moins très peu obliques ; l’oiseau doit 
produire, visiblement, un effort très violent, faire des battements 
très rapides et de toute l'amplitude possible, au point que les 
ailes viennent se choquer en haut en produisant un claquement 
caractéristique. Puis à mesure que l’oiseau prend de la vitesse, 

la fréquence des battements diminue, en 
même temps que leur amplitude se réduit 
h peu près au tiers ; de sorte que le travail 
se réduit à peu près au cinquième, et 
que l’oiseau ne semble plus donner qu’un 
effort très minime qu’il peut soutenir

FIG. 4. — Obliquité de l’at­
taque de l'air dans le coup 
d’aile de l'oiseau.

pendant de longues heures. Or, il est facile de voir que, à mesure 
qu’il prend de la vitesse, la vitesse v d’abaissement des ailes (fig. 4) 

%

Fig. 3. Réaction
sustentatrice obtenue
par déplacement
oblique

Fig. 4. Obliquité de l'air
dans le coup d'aile de
l'oiseau
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se compose avec la vitesse de translation V pour donner une vitesse 
résultante W de plus en plus oblique.

Nous pouvons maintenant entreprendre le classement des différents 
modes de vol.

Nous distinguerons :

1° Le vol orthogonal ;
2° Le vol ramé sur place ;
3° Le vol godillé des insectes;
4° Le vol hélicoptère;
5° Le vol ramé propulsif;
6° Le vol aéroplane;
7° Le vol à voile.

(Ici ouvrons une parenthèse. On trouvera souvent dans les auteurs 
la classification suivante: le vol ramé, le vol plané, le vol à voile. 
Elle est à notre avis trop sommaire.

Le vol ramé comprend plusieurs types essentiellement différents.
Le vol godillé des insectes ne figure pas dans cette nomenclature ; 

il est cependant bien intéressant.
Quant au vol plané, c’est un terme impropre. L’oiseau qui descend 

en planant ne vole pas, il se laisse tomber ; il ne vole pas plus qu’un 
parachute ne vole. Le terme planement est préférable. Le même 
terme désigne aussi, chez certains auteurs, le vol à voile ; cela fait 
une confusion de plus).

'I0 Vol orthogonal. — La surface portante étant sensiblement 
horizontale, la première idée qui vient à l’esprit, pour produire une 
réaction verticale, est d’abaisser l’aile verticalement, c’est-à-dire 
perpendiculairement à son plan, ou suivant l’expression consacrée, 
orthogonalement. Pendant très longtemps on a cru que les oiseaux 
volent ainsi, parce qu’on les voyait battre des ailes verticalement ; 
on faisait abstraction de leur mouvement de translation, qui est 
cependant essentiel et ne doit pas être séparé du mouvement de
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battement des ailes, car c’est lui qui transforme, comme nous venons 
de le montrer, l’attaque orthogonale en attaque oblique.

Le vol orthogonal est le moins économique, comme dépense de 
travail, donc le plus mauvais de tous les vols, c’est un gaspillage 
inutile de travail, et, en fait, il n'existe pas dans la nature. Il 
n’est pratiqué par aucun être volant. Ce n’est que par une illusion de 
nos sens que nous avons cru l’observer.

De même, il n’a jamais pu être produit mécaniquement, et les 
appareils dits orthoptères (1), par lesquels on a tenté de l’obtenir, 
n’ont donné aucun résultat, si ce n’est avec des jouets très petits et 
pendant un temps infime. Il n’a donc qu’un intérêt théorique.

Depuis que l’on a constaté que le vol orthoptère n’est pas le vol 
pratiqué par les oiseaux, on à même presque renoncé à employer 
ce mot, qui ne correspond pas à la réalité, et on appelle ornithop- 
tères (2) les appareils à ailes battantes imitant le vol des oiseaux ; ce 
mot a l’avantage de n’impliquer aucune hypothèse sur le mode de 
vol des oiseaux, qui est d’ailleurs très complexe.

Le vol orthogonal, outre le défaut que nous avons signalé, a 
encore l’inconvénient d’avoir un temps mort; sur les deux mouve­
ments, abaissée et remontée de l’aile, un seul est utile; l’autre, 
pendant lequel la surface se relève, est inutile et même nuisible, car 
il absorbe toujours une certaine quantité de travail en pure perte 
(même si la surface se présente par la tranche pour se relever, ou si 
elle possède une quantité de petits clapets pour laisser passer l’air, 
comme l’ont proposé beaucoup d’inventeurs assurément bien inten­
tionnés).

Par suite, la surface portante n’est utilisée que pendant une 
fraction du temps.

On peut, par un calcul facile, voir que ce fait augmente le travail 
à dépenser. Nous n’avons besoin pour cela que de faire appel à la loi 
du carré des vitesses, dont nous parlerons dans le prochain chapitre.

(1) De opÛoç, droit, et wrspOY, aile.
(2) De opvic, oiseau, et ztépov, aile.
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La réaction de l’air sur une surface est proportionnelle au carré de la 
vitesse.

Soit un corps de poids P, et qui, pour se soutenir en l’air, a besoin 
d’une force sustentatrice égale à P si celle-ci s’exerce constamment. 
Supposons maintenant que l’oiseau ne soit soutenu que pendant une 
partie du temps ; supposons que, dans l’intervalle de temps I, il est 
soutenu pendant la fraction de temps t (t étant < 1) par une force 
sustentatrice F, et que pendant le reste du temps I — t il n’est pas 
soutenu (donc il tombe en chute libre). C’est ce que nous appellerons 
la sustentation intermillente.

Pour qu’il se maintienne en l’air, il faut qu’au bout du temps I 
son accélération soit nulle.

Pendant la période de chute, l’accélération, quotient de la force 
par la masse, est donnée par :

P
m

m étant la masse du corps; et au bout du temps I —t la vitesse 
P

prise sera — (1 —t].

Pendant la période de sustentation le corps est soumis à une force
F__ p 

ascensionnelle F — P, et l’accélération est ______ ; au bout dum
F-P 

temps t la vitesse prise sera ---- -----t.

Pour que finalement l’accélération reste nulle, il faut qu’on ait :

F-P F-- ; = — î-- 7
F1 — P t = P — P 1

P
Fl=P ou F= —

d’où cette loi :

Dans la sustentation intermittente, le produit de la force 
sustentatrice par la fraction de temps pendant laquelle elle 
agit est constant.
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Ceci est général et ne fait appel à aucune loi de la résistance 
de l’air.

Voyons maintenant comment varie le travail nécessaire à la susten­
tation dans l’air.

Si le corps est soutenu par la réaction de l’air, qui est proportion- 

nelle au carré de la vitesse, pour que cette réaction varie comme — 

il faut que la vitesse de refoulement varie comme V1 •

Dans la sustentation permanente, soit V la vitesse de refoulement; 
le travail T sera : T — PV.

Dans la sustentation intermittente, le travail TI sera :

T,=FVT: ou Tvvli ou PVVT ou VT
Donc, plus € est petit, plus le travail est grand.
En particulier, si € = 1/2, c’est-à-dire si l’abaissée et la remontée 

de l’aile durent chacune le même temps, on a pour le travail :

T, = TV2 = 1,414 T

C’est donc un désavantage considérable de la sustentation inter­
mittente en général, et du vol orthogonal en particulier (1).

Enfin, le vol orthogonal, tel qu’on l’imagine pour les oiseaux, est 
un mouvement alternatif.

En résumé, il présente les trois inconvénients suivants :.

4° Attaque orthogonale (peu économique) ;

2° Sustentation intermittente (temps mort) ;
3° Mouvement alternatif (forces d’inertie).

Le vol orthogonal, malgré ses imperfections, a tenté nombre

(1) Dans ce calcul, nous n’avons pas tenu compte des légers mouvements que 
prend l'ensemble de l’appareil sous l’effet de la force intermittente. Quand on 
en tient compte dans le calcul, on s’aperçoit qu'ils s’éliminent par raison de 
symétrie.



d’inventeurs qui ont cherché à l’imiter au moyen d'appareils dits 
orthoptères.

Par un système de roues à pales tournantes qui se présentent par 
la tranche au moment de la remontée, on peut éluder les inconvé­
nients du mouvement alternatif et utiliser le mouvement rotatif. Mais 
on n’élude pas les deux autres inconvénients, qui sont l'existence 
d’un temps mort (pendant que l'aile remonte elle est inutilisée) et 
l’attaque orthogonale. Aussi, les appareils orthoptères ne paraissent 
présenter qu’un intérêt très limité. •

Nous allons voir maintenant comment on peut, par d’autres genres 
de vol, éluder les uns après les autres les trois inconvénients que 
présente le vol orthoptère.

2° Vol ramé surplace. — Nous avons dit que le vol orthogonal 
n’existe pas. Il y a cependant, direz-vous, des oiseaux qui volent sur 
place, sans mouvement de translation. Au moment de l’essor, les 
pigeons, moineaux, etc., volent un instant sur place, avant d’avoir 
acquis de la vitesse. Il y a même les oiseaux-mouches qui peuvent

Fie. 5. — L’oiseau-mouche volant 
immobile au-dessus d’une fleur.

pratiquer ce genre de vol d’une 
façon continue pendant plusieurs 
minutes.

M. V. Forbin (!) a publié un 
article sur l’oiseau-mouche, accom­
pagné de photographies tout à fait 
remarquables, dont l’une représente 

l’oiseau-mouche volant immobile au-dessus d’une fleur, plongeant 
son petit bec effilé au fond du calice sans prendre de point d’appui, 
sans même effleurer les pétales (fig. 5).

Il donne du vol sur place la description suivante :

« Un bourdonnement sonore, presque bruyant, vous fait lever la 
» tête, et vous vous trouvez face à face avec la miniature ailée, qui 
» semble suspendue en l’air par une force mystérieuse. Le corps est

(1) L’oiseau-mouche dans son habitat, La Nature, 16 octobre 1909.

Fig. 5. L'oiseau-
mouche volant
immobile au-dessus
d'une fleur
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»

»
»
»

absolument immobile, en son plumage irisé, au point que vous 
distinguez nettement l’insolente curiosité des petits yeux fixés sur 
l’intrus que vous êtes. Mais les ailes battent d’un mouvement si 
vif, en produisant leur caractéristique bourdonnement, que l’œil 
humain est alors inhabile à constater leur existence ».

Quel est donc le mouvement des ailes? C’est un battement oblique, 
_ de haut en bas et d'arrière en avant (fig. 6), mou-

* vement beaucoup plus économique que le batte-
S ment orthogonal ; c’est facilé à comprendre si on

FIG. 6. — Obliquité remarque que dans ce mouvement l’aile balaye 
du coup daile. une surface d’appui beaucoup plus grande que sa 

propre surface (fig. 7).
Ce battement oblique est parfaitement visible sur la photographie

FIG. 7. — Le 
battement obli­
que augmente la 
surface balayée 
par l’aile.

de l’oiseau-mouche. Il est également vrai pour le 
vol ramé accompagné de translation, comme le 
montrent les chronophotographies de Marey (A) où, 
en superposant les images, on voit très bien le 
mouvement oblique (fig. 6), Marey a d’ailleurs 
tracé (page 112) la trajectoire elliptique décrite par 
la pointe de l’aile (fig. 8).

Nous n’insistons pas davantage pour le moment; 
dans le chapitre consacré au vol des oiseaux, nous 
montrerons comment ce mouvement est (très heureu-

sement) imposé à l’oiseau, qu’il le veuille ou non, par la conforma­
tion même de ses ailes.

Ce vol oblique marque déjà un progrès sur 
le vol orthogonal. Toutefois, il a, comme lui 
l’inconvénient d’avoir un temps mort, l'aile

Fic. 8- — Trajectoire étant inutilisée pendant la remontée. Il est donc 
elliptique décrite par
la pointe de l’aile, encore assez défectueux, et n’est employé 
qu’exceptionnellement, chez les oiseaux dont la surface alaire est 
grande par rapport au poids.

(1) MAREY, le Vol des oiseaux, Paris 1890, voir pages 158 à 161.

Fig. 6. Obliquité du
coup d'aile

Fig. 7. Le battement
oblique augmente la
surface balayée par
l'aile

Fig. 8. Trajectoire
elliptique décrite par la
pointe de l'aile
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30 Vol godillé des insectes. — Nous croyons devoir proposer le 
nom de vol godillé pour ce très intéressant genre de vol, que les 
auteurs passent généralement sous silence.

Ce terme nous paraît bon, parce qu’il évoque le mouvement de la 
godille qui rend bien compte de ce qui se passe, et parce que la 
comparaison complète bien celle du vol ramé, étant empruntée 
comme elle à la navigation aquatique.

Avec le vol godillé nous trouvons un très grand progrès sur les 
vols précédemment étudiés.

Nous avons vu que, pour obtenir une réaction sustentatrice sensi­
blement verticale, il n’est pas nécessaire d’abaisser l’aile verticale­
ment, et qu’il vaut même mieux l’abaisser obliquement.

Eh bien, si on

T
Fra. 9. — Réaction 

sustentatrice obtenue 
par le déplacement ho- 
rizontal. 

influence s’élimine.

incline un peu l aile, on peut même ne pas 
l’abaisser du tout, il suffit de la déplacer hori­
zontalement, sous un angle d’attaque très 
faible, et on obtient une réaction sustentatrice 
très énergique et très économique (fig. 9).

Il s’introduit une composante horizontale 
dans la réaction, mais elle est assez faible, et 
nous verrons tout à l’heure comment son

L’avantage capital de ce mouvement est que, comme l’aile ne s’est 
pas abaissée, il n’y a pas besoin de la remonter et de consacrer à 
cette remontée un temps mort qui cause une grande perte de travail. 
Quand l’aile est arrivée au bout de sa course, on la retourne, et on 
utilise son retour en arrière exactement de la même manière que 
l'aller. Les deux temps sont utiles au même titre. Il n’y a plus de 
temps mort, mais seulement un point mort. C’est, si on veut, comme 
une machine à vapeur a double effet, où l’aller et le retour du piston 
sont moteurs tous deux, par opposition à la machine à vapeur à 
simple effet dans laquelle il n’y a qu’un temps moteur sur deux. On 
voit combien ce vol est supérieur aux précédents.

Quant à la composante horizontale de la réaction de l’air, elle

Fig. 9. Réaction
sustentatrice obtenue
par le déplacement
horizontal



change de sens à chaque battement d’ailes, de sorte que finalement 
ses effets se détruisent.

La plupart des insectes agitent leurs ailes ainsi d’un mouvement 
alternatif et oblique analogue à celui de la godille : le mouvement des 
mains du nageur qui fait la planche en donne une idée encore plus 
claire.

Divers auteurs (Marey, Bell-Pettigrew) ont étudié ce mouvement ; 
mais c’est surtout M. L. Bull qui, récemment, l’a mis en lumière 
dans tous ses détails, grâce à l’emploi de la cinématographie très 
rapide, fait à l’Institut Marey.

Nous engageons le lecteur à lire sur ce sujet les deux communica­
tions de M. Bull à l’Académie des Sciences, des 22 novembre 1909 
et 10 janvier 1940. Il a étudié un agrion (libellule à 4 ailes). Les 
deux paires d’ailes décrivent d’ailleurs des trajectoires semblables, 
l'aile postérieure avec un retard de 1/8 à 1/4 de phase.

L’aile est rigide; elle présente un bord antérieur renforcé d’une 
épaisse nervure : elle attaque l’air sous un angle assez grand.

Ce n’est pas absolument une ligne droite que décrit l’extrémité de 
l’aile, mais une sorte de 8 de chiffre très 
allongé (fig. 10).

A chaque extrémité de la course, l’insecte 
doit retourner son aile, pour que le bord 
rigide soit toujours en avant. L’aile, par 
suite, attaque l’air alternativement par l’une 
et l’autre face. Elle doit donc être à peu 

n’a pas, comme l’aile des oiseaux, une face 
dorsale nettement différenciées. Elle est en 

Fie. 10. — Mouvement 
de l’aile d’une libellule.

près symétrique; elle 
inférieure et une face
outre susceptible d’un mouvement de rotation autour de son articu­
lation, mouvement que les oiseaux ne possèdent pas.

On pourrait croire que cette nécessité de retourner l’aile l’empêche 
d’avoir la courbure optima favorable à la sustentation. Il n’en est 
rien. On constate que l’aile, dans son mouvement, possède la conca­
vité caractéristique, et que celle concavité change de sens à chaque 
mouvement. Comme l’animal n’a pas de muscles qui puissent com-

Fig. 10. Mouvement de
l'aile d'une libellule
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mander ce mouvement, il faut qu’il se fasse automatiquement, rien 
que par la disposition des nervures.

Cela s’explique assez bien si on examine les nervures de l’aile,

A ------- 3 
Coupe AB

Fig. 11. — Courbure 
prise par l'aile de l’insecte 
sous la pression de l’air.

surtout a l’extrémité où le mouvement est le 
plus rapide et la réaction la plus forte. Une 
section y rencontre 2 nervures, la grosse 
nervure antérieure, et une nervure médiane ; 
il en résulte nécessairement la forme en S 
reconnue la plus favorable, prise automa­
tiquement sous la pression de l’air (fig. 1 4). 
Ce mouvement d’ailes, extrêmement rapide

(plusieurs centaines de vibrations par seconde, parfois un millier) 
embrasse une surface d’appui considérable (fig. 12), presque égale à 

la totalité du cercle que balayerait une
/ \ / N aile en tournant, car si le mouvement est 

FIG. 12. — Surface d’appui 
dans le vol de l’insecte.

limite en avant par le thorax, il n’est pas 
limité en arrière, les ailes pouvant se 
rejoindre au-dessus du dos.

La direction du vol s’obtient chez les 
insectes par deux procédés bien différents, 
suivant qu'il s'agit d’un diptère ou d’un 
létraplère.

En principe, elle s’obtient en modifiant la position d'équilibre et 
en inclinant le plan d’oscillation des ailes du côté où la propulsion 
doit s’effectuer.

Or, l’équilibre du système a lieu quand le centre de gravité est au- 
dessous du centre de sustentation.

D’où deux moyens de modifier l’équilibre : en déplaçant le centre 
de gravité ou en déplaçant le centre de sustentation.

Les tétraptères emploient le premier moyen. Ils ont un abdomen 
extrêmement mobile, relié au thorax par des articulations très fines, 
et souvent par toute une série d’articulations (guêpe, libellule). Cet 
abdomen est un contrepoids relativement volumineux dont l’insecte

Fig. 11. Courbure prise
par l'aile de l'insecte
sous la pression de
l'air

Fig. 12. Surface
d'appui dans le vol de
l'insecte
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se sert pour déplacer son centre de gravité et modifier son équilibre. 
Il ne peut pas agir sur son centre de sustentation ; mais en bougeant 
l’abdomen il incline en avant, ou en arrière, ou de côté le plan 
d’oscillation de ses ailes.

Par exemple, pour avancer, il porte l’abdomen en avant (fig. 13) ; 
sans plus de difficulté, il peut aller en arrière ou de côté. C'est

FIG. 13. — Libellule, vol 
sur place et p. opulsion en 
avant.

d’ailleurs exactement la même chose que 
le mouvement de jambes par lequel on 
s’équilibre sur un planeur qui n’a pas 
de gouvernail. Bull a constaté que dans le 
cas de la propulsion, l’aile est sensible­
ment horizontale à l’aller, et sensiblement 
verticale (donc surtout propulsive) au 
retour.

Chez les diptères, au contraire (mouche, volucelle, etc.), le méca­
nisme a été mis en lumière par le docteur Jousset de Bellesme en 
1878 (1). Leur abdomen n’a pas de souplesse, et ils ne peuvent pas 
modifier la position de leur centre de gravité par les mouvements de 
l’abdomen. Mais ils possèdent à la base du thorax deux petites tiges 
terminées par un bouton arrondi, appelées balanciers, et qui

balaucien

Fig. 14. — Diptère (mouche).

paraissent être la seconde paire d'ailes 
atrophiée (fig. 1 4). Ces organes servent à 
diriger le vol en limitant en arrière 
l’amplitude du mouvement de l’aile, qui 
vient buter sur eux par l’intermédiaire 

d’une partie appropriée, l’aérole axillaire, formée d’une écaille 
souple sans nervures.

L’ablation ou l’immobilisation des balanciers provoque le vol 
descendant; l’insecte pique du nez et tombe, l’aile allant trop loin en 
arrière.

(1) Voir La Nature, 21 septembre 1878.

Fig. 13. Libellule, vol
sur place et propulsion
en avant

Fig. 14. Diptère
(mouche)
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Le vol horizontal s’obtient en limitant un peu l’amplitude en

FIG. 15. — Mouche (vol des- 
cendant, vol horizontal et vol 
ascendant).

arrière, et le vol ascendant en la 
limitant davantage (fig. 15).

Le vol godillé est encore assez défec­
tueux, probablement à cause du mou­
vement alternatif qu'il nécessite ; aussi 
n’est-il pratiqué que par les insectes, 
qui ont, par rapport à leur poids, une 
surface d’ailes relativement énorme, 
et beaucoup plus grande que les 
oiseaux.

Voici quelques chiffres relatifs à la
surface portante des insectes :

POIDS
SURFACE 

par kilog.

KILOG S
a opar m

Cousin....................................................... 0 gr. 003 10.2 Ok.1
Petite libellule.......................................» 6,1 0,164

Papillon.................................................... 0 gr.2 8,3 0,120
Coccinelle................................................ Ogr. 1 4,5 0,222
Libellule commune.........:..................... » 4,4 0,227
Tipule............................................................... » 3 0,333
Abeille....................................................... » 1,03 0,970

; Mouche à viande..................................... » 1,15 0,870
Drone bleu................................................ » 1 1
Hanneton....................... ........................... » 1,02 0,980
Lucane...................................................... 1 gr. 4 0,93 à 0,77 lk.1 à 1,3
Scarabée................................................... » 0,63 1,6

40 Le vol hélicoptère. — Au lieu de limiter le mouvement de 
godille à une certaine amplitude, et de le faire ensuite revenir en 
arrière, on peut supposer que son mouvement se continue indéfini­
ment par une rotation continue autour d’un axe vertical. On obtient 
ainsi le mouvement de la pale d’hélice. On peut dire que l’hélice est 
une godille rotative ; de même on peut dire que la godille est une 
hélice alternative ; mais leur principe est exactement le même sous

Fig. 15. Mouche (vol
descendant, vol
horizontal et vol
ascendant)



I 8

deux formes, dont l’une est adaptée aux mouvements permis à l’être 
vivant, et l’autre adaptée au mouvement rotatif qui est le mouvement 
mécanique par excellence.

Ainsi, l’hélicoptère est très proche parent du vol godillé de l’in­
secte; une des principales différences est que la pale, avant un 
mouvement continu, n’a jamais besoin de se retourner ; ce qui permet 
de la faire dissymétrique, avec une face inférieure concave, une face 
dorsale convexe, et avec une torsion plus ou moins hélicoïdale, 
toutes conditions avantageuses pour le rendement.

Quant aux procédés de propulsion et de direction, ce sont exacte­
ment les mêmes que ceux de l’insecte, par l’inclinaison de l’axe des 
hélices sustentatrices.

A la vérité, ces procédés de direction sont encore du domaine de 
la théorie ; l’hélicoptère a bien été réalisé, et les remarquables essais 
de M. Louis Bréguet, à Douai, et de M. Cornu, à Lisieux, ont 
démontré qu’on peut s’enlever en hélicoptère. Mais les vols ont été 
très courts; aucun essai de direction n’a encore pu être fait; d’autre 
part, l’hélicoptère présente au point de vue pratique des inconvénients 
graves qui font que son emploi ne paraît pas avoir beaucoup 
d’avenir.

50 Le vol ramé propulsif. — C’est le vol habituel des oiseaux, 
consistant en une translation rapide, accompagnée de battements’ 
Nous venons de voir dans l’hélicoptère un premier moyen de perfec­
tionner le mouvement alternatif de la godille en le transformant en 
mouvement continu. Mais c’est un mouvement rotatif, qui est interdit 
aux êtres vivants.

Or, il y en a un autre encore plus simple, c’est le mouvement 
continu en ligne droite ; c’est la godille continuant toujours son dépla­
cement dans le même sens, sans jamais revenir en arrière. Elle aura 
donc un mouvement de translation continue que le corps de l’appareil 
volant doit suivre: ce mouvement est extrêmement simple, car il 
n’est plus besoin d’agiter les ailes, elles peuvent être fixées presque 
invariablement au corps, leur déplacement dans l’air étant obtenu
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par la progression de tout l’ensemble du volateur. Voilà donc le 
mouvement continu réalisé, sans rotation; les ailes n'ont besoin 
d’être aptes qu’à des mouvements peu étendus, destinés à assurer 
soit l’équilibre, soit la propulsion.

C'est le principe du vol ramé propulsif des oiseaux, et de son imi­
tation mécanique l’aéroplane.

Ici nous arrivons à la limite de perfection du vol; nous obtenons 
à la fois l’attaque oblique, la suppression du temps mort, la suppres- 
sion du mouvement alternatif et le mouvement continu sans rotation, 
donc accessible aux êtres vivants.

Nous devons expliquer cette affirmation, qui peut surprendre, que 
dans le vol ramé, il n’y a pas de mouvement alternatif. Le battement 
d’ailes est cependant bien alternatif. Mais en réalité la sustentation 
est continue, et le battement des ailes n’est qu’un procédé de propul­
sion, d’où le nom de vol ramé propulsif.

C’est par erreur qu’on acru longtemps que l’oiseau bat des ailes 
pour se soutenir, et que le temps de l’abaissée est seul utilisé pour la 
sustentation ; le temps de la remontée est également sustentateur, en 
sorte que l’oiseau fait aéroplane d’une façon continue, indépendam­
ment du battement d’ailes. Le battement n’a pour but que d’assurer 
la propulsion. Nous reviendrons sur ce point dans le chapitre consacré 
au vol des oiseaux.

Ainsi, le vol ramé propulsif est le plus avantageux de tous, et 
c’est pourquoi c’est le seul qui permette le vol aux animaux pesant 
plusieurs kilogs ; le vol ramé sur place et le vol godillé ne sont prati­
cables que pour les petits oiseaux ou insectes ne dépassant pas 
quelques grammes.

Le vol ramé propulsif est aussi le seul accessible aux animaux 
autres que les oiseaux et insectes, à savoir les mammifères (chauves- 
souris) et les poissons (poissons volants ou exocets). Il est aussi pratiqué 
par certains insectes.

La rançon de ces avantages est que le volateur est obligé à une 
progression incessante et rapide. Il ne peut jamais s’arrêter ; s’il veut



00I

rester au-dessus d’un point donné, il est obligé de tourner en rond. 
« Marche ou tombe », lui ordonne la nature.

C’est ce que nous avons appelé, au début, la sustentation dyna­
mique dépendante. Pour les gros oiseaux, cette obligation rend 
l'essor extrêmement pénible, à cause des efforts qu’ils doivent faire 
pour acquérir en courant la vitesse de régime nécessaire à l’envol.

Une variété du vol ramé propulsif est le planement, pendant 
lequel l’oiseau cesse quelques instants ses battements. On y saisit 
plus nettement le principe du vol. Mais l’oiseau n’étant plus propulsé, 
perdrait vite sa vitesse ; pour la conserver, il fait appel au travail de 
la pesanteur, et il se laisse descendre doucement de la quantité voulue 
pour conserver sa vitesse.

Si, en outre, il se trouve dans un courant d’air ascendant, qui 
monte précisément aussi vite que l’oiseau descend, l’oiseau se main- 
tientà hauteur fixe et peut ainsi planer pendant des heures. C’est une 
des variétés du vol à voile. L’énergie nécessaire à la sustentation y 
est fournie par des causes extérieures.

6° Le col aéroplane. — L’aéroplane est en somme le vol ramé 
propulsif adapté aux procédés de la mécanique. Les surfaces portantes 
sont fixes: le mouvement alternatif est entièrement banni, même 
pour la propulsion, et celle-ci est obtenue au moyen d’un organe 
indépendant à mouvement continu, l’hélice propulsive. C’est sans 
doute une grande simplification mécanique, mais c’est peut-être un 
désavantage au point de vue du rendement ; en effet, outre que cela 
ajoute le poids d’un organe nouveau et des frottements supplémen­
taires, on n’utilise pour créer la réaction propulsive qu’une petite 
surface, au lieu d’utiliser toute la surface des ailes. Il en résulte un 
recul assez important, qui est du travail perdu, et qu’on peut évaluer 
à 45 ou 20 °/0. Du reste la propulsion par coups d’ailes, qui est 
intermittente, doit avoir aussi des pertes de rendement, et il n’est pas 
prouvé qu’elle soit meilleure que la propulsion par hélices. Il faut se 
garder des affirmations trop hâtives.
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7° Le vol à voile. — Pour achever l’énumération des différents 
genres de vol, il nous reste à mentionner une manœuvre très curieuse 
qu'on appelle le vol à voile, dans laquelle l’oiseau emprunte l’énergie 
nécessaire pour sa sustentation aux intermittences et aux remous 
du vent.

Ce qui autorise à le placer au sommet de l’échelle des vols, c’est 
que c’est lui qui permet de voler aux oiseaux les plus lourds; les 
oiseaux pesant de 3 à 10 kilogs sont presque exclusivement voiliers; 
le vol par battements les fatigue trop. Nous reviendrons sur le vol à 
voile, auquel nous consacrerons un chapitre spécial.

GOMMENT LE PROBLÈME SE POSE
POUR L'HOMME.

Nous venons de voir comment la nature a résolu le problème du 
vol. Mais pourquoi s’est-elle arrêtée au poids maximum de 10 kilogs 
pour les animaux vivants?

En particulier, pourquoi l’homme ne vole-t-il pas par ses propres 
forces?

Est-ce parce que le moteur humain est un mauvais moteur, qui 
pèse trop lourd par cheval-vapeur?

Il est vrai que nous sommes peu avantagés sous ce rapport; notre 
musculature si complexe, qui nous permet une variété de mouve­
ments presque infinie, est un lourd bagage qui nous handicape forte­
ment: et mieux vaudrait, sous le rapport du vol, être comme les 
oiseaux qui n’ont que deux muscles vraiment développés, les grands 
pectoraux ou muscles du vol, qui pèsent parfois à eux seuls le cin­
quième du poids du corps. Tous les autres muscles sont négligeables 
comme poids auprès de ceux-là, et ne sont qu’un bien petit fardeau à 
porter pendant le vol.

Mais la vraie cause qui empêche l’homme de voler n’est pas là. En 
effet, les oiseaux n’ont pas besoin de donner leur maximum de force 
pour voler ; ils développent environ I cheval-vapeur par 100 kg. de

Comment le problème
se pose pour l'homme



I 8 I

poids en plein vol, et l’homme peut facilement fournir momentané­
ment ce travail et même bien davantage (il peut fournir pendant 
quelques secondes jusqu’à 2 chevaux i/2 par 100 kg. de poids). Il 
devrait donc pouvoir voler s’il ne lui fallait pas plus de force qu’aux 
oiseaux, par unité de poids. Mais il lui en faut davantage, et cela à 
cause de la loi des cubes, qui est d’une importance capitale en 
aviation.

La loi des cubes. — Dans une famille de corps géométriquement 
semblables, la loi des cubes exprime que les volumes, et par suite les 
poids, augmentent comme le cube des dimensions linéaires, alors que 
les surfaces n’augmentent que comme le carré. Les poids augmentent 
donc plus vite que les surfaces. Voyons comment cette loi fait varier, 
pour les corps volants, la densité alaire ou charge unitaire (poids 
porté par unité de surface).

Soit un corps de poids P, et la surface alaire s. Sa charge unitaire 
, P 

est d — —.S
Multiplions toutes ses dimensions par le rapport y., que nous 

appelons module de similitude.

Le poids devient gT, la surface p's, et la charge unitaire devient :

u3P ?- = y. --- = [L(1,
v.*S S

La charge unitaire croît donc comme le module de similitude. 
Ainsi, plus un corps est grand, plus il est désavantagé sous le rapport 
des surfaces. Nous montrerons plus tard, quand nous aurons établi 
les équations de l'aéroplane, que le travail nécessaire à la sustentation 
augmente comme la racine carrée de la charge unitaire, donc aussi 
comme la racine carrée du module.

Pour l’orthoptère la loi serait la même, et nous pouvons l’établir 
de suite, en nous appuyant seulement sur la loi de proportionnalité 
des pressions aux surfaces, et sur la loi du carré des vitesses, deux

3

La loi des cubes
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lois expérimentales sinon rigoureuses, du moins approchées, comme 
nous le verrons ci-après.

Soit un appareil de poids P, maintenu en l’air par une surface 
donnée qui s’abaisse verticalement. Soit V la vitesse de refoulement 
nécessaire à sa sustentation. Le travail par unité de temps sera :

T = PV

Le travail unitaire (par unité de poids) sera :
>IIII

Ainsi, la vitesse de refoulement mesure le travail unitaire.
Augmentons la charge unitaire dans le rapport y. La réaction à 

obtenir augmente dans le rapport p., la vitesse de refoulement devra 
augmenter comme Vu; donc aussi le travail unitaire, dont elle est 
la mesure.

Il faut encore voir si les
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FIG. 16. — Résistance d'une 
poutre supportant une charge en 
son milieu.

corps semblables de la série considérée 
seront semblablement résistants. Or, 
ici encore, la grandeur est un incon­
vénient. En effet, l’appareil peut être 
considéré comme un poids P suspendu 
au milieu 0 d’une poutre de largeur b 
et d'épaisseur h (fig. 16). Nous n’avons 
besoin de faire aucune hypothèse sur 
la forme de sa section.

Soit l la distance des centres de 
pression C et C' sur chaque aile. Le moment fléchissant qui s’exerce 

au milieu est M — —.4
Or, on démontre en mécanique que le moment fléchissant R auquel 

peut résister la poutre est proportionnel au produit bh”.

A II A

Fig. 16. Résistance
d'une poutre
supportant une charge
en son milieu
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Multiplions les dimensions par p. Le moment fléchissant, qui 

était , devient :
4

p3P.pl
4 — p M.

La résistance de la poutre devient:

n. pb. p2R2 = ».b12y.3 — p3R.

Le moment fléchissant augmente comme p.4, et la résistance n’a 
augmenté que comme ua. La résistance croît donc moins vite que les 
efforts à supporter.

Conclusion : plus l’appareil s’agrandit, plus il s’affaiblit.
Il faut donc le renforcer, c'est-à-dire augmenter les épaisseurs 

dans un rapport plus grand que p.
On peut facilement calculer qu’il faudrait, pour conserver les 

résistances, augmenter les épaisseurs dans le rapport u2.
Dans ces conditions le poids augmentera comme y.f, et le moment 

fléchissant comme p.
La résistance deviendra :

n. ub. y.‘l2 = n. bl2y.5 — y.5 R.

Elle augmente donc bien dans la même proportion que le moment 
fléchissant.

Ce fait nous est confirmé d’une manière générale dans la nature, 
où nous voyons les grands objets non pas semblables géométrique- 
ment aux petits, mais nettement plus massifs et plus ramassés. 
Comparez une grosse machine à vapeur avec une petite de la même 
série, c’est frappant. Comparez le tronc d’un grand chêne avec la 
tige d’un arbuste, le squelette d’un éléphant avec celui d'un petit 
mammifère.

Dans les êtres volants, on ne peut pas se plier à cette loi, qui 
conduirait à des poids trop élevés. Déjà l’augmentation par similitude 
désavantage beaucoup les grands volaleurs sous le rapport de la
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densité alaire ; ce serait bien pis s’il fallait augmenter les épaisseurs 
dans la proportion de u.2. Dans ce cas, le poids augmentant comme 
u.1 et la surface portante comme p2, la charge alaire augmenterait 
comme p2. Par suite, le travail par seconde et par unité de poids 

augmenterait comme p, (au lieu de Vy comme dans le cas de la simi­
litude).

Aussi la nature, dans les êtres volants, s'en est-elle tenue très 
sensiblement à l'augmentation par similitude, sans plus, comme le 
montre le tableau ci-dessous. La similitude se vérifie par le fait que 

zracine cubique du poids et la racine carrée de la surface restent 
dans un rapport à peu près constant.

P1/3
- = constante. 
sl/2

ESPÈCE POIDS SURFACE
POIDS 
porté 

par m2

VALEUR !

, P 1/3 
sue

Cousin...................................
Papillon................................
Nyctinome,............... ...........
Mésange................................
Hirondelle.............................
Martin-pêcheur....................  
Roussette..............................  
Caille....:............................  
Pigeon...................................  
Milan,....................................  
Canard..................................  
Cigogne.................................. 
Vautour oricou.....................  
Grue d’Australie...................

0 gr. 003
0 gr. 2

6 gr.
14
16
34
53

100
290
640
925

2,140
85,152
98,500

0cm2,3
16cm2,6

94cm2
62

124
131
303
222
750

2.874
837

6.152
11.129
8.510

0M 
04.12 
01,64 
2,3 
18,3 
2,6 
15,7 
4,5 
3* 
21,2 

11k
34,5 
7*,3 

11*

2,61 
1,43 
1,89 
3,05 
2,25 
2,8%
2,15 
3,12 
2,42 
1,61 
3,00 
1,05 
1,90
2,30

Dans ce tableau, nous avons exprès fait figurer des insectes, des 
chauves-souris et des oiseaux ; et nous avons choisi les animaux qui 
donnent pour le rapport PU3: s1/2 les valeurs les plus extrêmes. 
On voit que, malgré cela, d’un bout à l’autre de l’échelle des êtres 
volants, ce rapport varie assez peu, et surtout on remarque qu’il
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n’accuse aucune tendance générale à l’augmentation ni à la dimi­
nution. Sa moyenne reste voisine de 2,25 aussi bien pour les plus 
petits volateurs que pour les plus gros.

Le résultat de cette similitude est que les ailes des grands volateurs 
sont proportionnellement plus faibles; elles sont sans rigidité, molles, 
gauchissables, et supportent mal les violents efforts du vol ramé.

On voit que le problème du vol devient de plus en plus difficile à 
mesure que les poids augmentent (1). On peut suivre cette difficulté 
croissante avec une parfaite netteté chez les animaux volants. Plus 
ils sont petits, plus leur charge alaire est faible, et plus facilement 
ils se maintiennent dans l’air.

Les minuscules insectes, moucherons, papillons, quoique animaux 
à sans froid, volent sans effort, sur place, en avant, en arrière, en 
zigs-zags brusques, au gré de leur fantaisie. La forme de leur corps 
n’est nullement étudiée pour le vol ; ils sont aussi « mauvais projec­
tiles » que mauvais moteurs; ils utilisent le vol godillé, mode de vol 
assez médiocre, à cause de son mouvement alternatif. Cette forme de 
vol n’est possible que jusqu'à 1 ou 2 grammes.

Au delà de ce poids, nous trouvons les oiseaux rameurs, dont 
le poids atteint quelques hectogrammes. Déjà leur sang est le plus 
chaud de tous les animaux (43 à 44°, alors que l’homme n’a que 
37° en temps normal, et qu’une fièvre de 410 le met en danger de 
mort) ; leurs poumons sont extraordinairement développés ; leur 
aile, cette merveille d’architecture, a épuisé les ressources créatrices 
de la nature ; leur corps fuselé est un projectile parfait.

Les plus petits peuvent encore, avec effort, s’enlever sur place, 
mais ils doivent aussitôt, pour diminuer le travail, utiliser le vol ramé 
propulsif, le plus économique de tous. Seul, l’oiseau-mouche, le plus 
léger de la série, peut voler sur place pendant un temps appréciable.

(i) C'est pour cela qu'il est relativement facile de construire des modèles 
réduits d’appareils volants, et qu’il est infiniment plus difficile de les réaliser en 
grand.
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Les oiseaux franchement rameurs ne dépassent guère I kilogr. 
Au-delà de 1 kilogr., le vol devient déjà fatigant. Les oiseaux 
tournent la difficulté ; ils alternent le vol ramé avec le vol à voile, qui 
les repose. Ils ne peuvent déjà plus s’envoler sur place ; il leur faut 
une lancée, comme à nos aéroplanes.

Au-delà de 3 kilogr., les oiseaux deviennent exclusivement 
voiliers, étant incapables de soutenir longtemps l’effort du vol ramé. 
Ils donnent quatre ou cinq battements, et immobilisent leurs ailes 
grandes ouvertes pour utiliser les ressources du vent et diminuer 
leur propre travail. Quand il n’y a pas de vent, ils renoncent au vol ; 
ils restent perchés. L’essor leur est tellement pénible que, pour 
l’éviter, ils habitent dans les creux des rochers élevés, d'où ils n’ont 
qu’à se lancer dans l’espace pour acquérir, au prix d’une descente 
de quelques mètres, la vitesse de régime nécessaire au vol propulsif.

La nature a épuisé pour eux toutes ses ressources, jusqu’à les 
faire carnivores, les animaux carnivores étant plus aptes que les 
autres à donner un effort violent mais de courte durée.

Grâce à l’artifice du vol à voile, la nature a pu prolonger jusqu’à 
10 kilogr. la faculté du vol. Passé ce poids, elle est obligée de 
s’avouer impuissante; quelques essais malheureux, comme l’au­
truche, le casoar, l'émeu, confirment son échec. Et pourtant, que 
sont 40 kilogrammes auprès des sauriens géants, des mammifères 
énormes, qui atteignent des milliers de kilogrammes? Si la nature 
n'a pas fait de volatiles lourds, c’est que la loi des cubes le lui a 
interdit.

Appliquons cette loi à l’homme. Le travail par kilog de poids 
variant comme la racine carrée du module, donc comme la racine 
sixième du poids, il en résulte qu’un volateur de 75 kilogs environ 
exigerait 1,6 fois plus de travail, par kilogramme de poids, qu’un 
aigle de 4 kilogs ; 2,6 fois plus de travail qu’un pigeon de 250 gr. ; 
4 fois plus de travail qu’une hirondelle de 16 gr.. et aussi 17 fois 
plus de travail qu’un cousin de 3 milligrammes. Voilà pourquoi 
l’homme ne vole pas, et l’autruche non plus, bien qu’elle ait des 
ailes.
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Ceci nous montre deux choses.
D’abord, qu’en faisant voler des aéroplanes de plusieurs centaines 

de kilogr., l’homme s’est montré supérieur à la nature, en résolvant 
un problème qu’elle n’avait pas su résoudre.

Ensuite qu’il ne faut pas écouter ceux qui prétendent que la nature 
infaillible doit être prise pour modèle ; car ce problème que nous 
nous sommes posé, elle n’a pas su le résoudre ; et il est au contraire 
permis de penser que si nous avons réussi là où elle avait échoué, 
c’est précisément parce que nous avons pu utiliser des procédés et 
des ressources qu’elle n’avait pas à sa disposition.

CEUX QUI ONT RÉSOLU LE PROBLÈME.

De tout temps, l’imitation du vol des oiseaux a séduit l’homme, 
et a donné lieu à des tentatives aussi multiples que vaines. C’est 
qu’on ne comprenait pas la véritable nature du vol des oiseaux, qu’on 
avait insuffisamment observé ; on croyait que c’était le vol orthogonal, 
et on essayait de le reproduire ; en outre, dans l’ignorance de la loi des 
cubes, on croyait que si l’homme avait des ailes, rien ne s’opposerait 
à ce qu’il vole aussi facilement qu’une hirondelle.

Nous passerons sous silence toutes ces tentatives, qui n’ont qu’un 
intérêt historique et n’ont pas fait avancer la question.

Il est plus intéressant de rappeler quels sont les hommes de génie 
qui ont enfin aperçu la bonne voie, et ont contribué à la solution du 
problème.

C’est d’abord l’anglais Sir George Cayley qui, en 1809, dans des 
articles publiés par Nicholson's Journal, invente de toutes pièces 
l’aéroplane, avec tous ses organes, basé sur une compréhension exacte 
du vol des oiseaux. Moteur à mélange tonnant, sustentation par une 
voilure inclinée, propulsion par l’hélice, déplacement du centre 
de pression et équilibre automatique, empennage, formes fuselées, 
tout y est. Cayley construisit même un appareil qui fut brisé aux 
essais. Mais son effort resta ignoré ; ses articles passèrent inaperçus

Ceux qui ont résolu le
problème
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et tombèrent dans l’oubli, où ils seraient encore si Pénaud ne les 
avait exhumés 65 ans plus tard, en 1874.

Plus d’un demi-siècle s’écoule.
En 1864, il se produit une agitation considérable en faveur du 

plus lourd que l’air; Nadar, de la Landelle, le vicomte de Ponton 
d'Amécourt fondent la Société française de Navigation aérienne, 
et cherchent à frapper le public par des articles brillants et enthou­
siastes. C’est un véritable emballement, auprès duquel celui de notre 
époque actuelle est bien pâle. Car les fantaisies de nos écrivains 
modernes ne sont rien auprès de celles qu’on imprimait alors. On va 
en juger. Edgar Saveney (1), cherchant à calmer cet emballement, 
en montrant que le poids des moteurs (85 kilogr. par cheval, à 
l’époque), rendait tout espoir chimérique pour le moment, ajoute :

« Pourquoi nous représenter d’avance l’atmosphère sillonnée en 
tous sens de navires ailés ? Pourquoi, dès maintenant, nous énu­
mérer tous les types de la flotte aérienne : l'avicule, petite nacelle 
n’emportant que son aviateur; l'avicelle, barque portant deux à 
trois hommes; l'ave, grande barque ; l'aéronef, proprement dite, 
petit navire ; l'aéronave, corvette aérienne ; le mégalornis, vaisseau 
de la taille d’un aviso-vapeur de 120 à 130 chevaux, pouvant porter 
une trentaine d’hommes? Pourquoi nous donner le plan des gares 
d’atterrissement qui serviront aux steamers aériens? Pourquoi, dès 
aujourd’hui, esquisser les ordonnances de police qui régleront la 
circulation des véhicules atmosphériques? Pourquoi discuter dans 
leurs détails, ce qui paraît d’ailleurs de nature à effrayer les esprits 
timides, les différents genres d’accidents qui peuvent troubler cette 
circulation : chute sans renversement, avec ou sans démâtage ; 
chute sens dessus dessous après chavirement; choc contre un corps 
immobile, tour, montagne ou falaise; abordage entre aéronefs ? 
Pourquoi étudier d’avance les changements que subira la thérapeu­
tique, et étudier les nouvelles règles d’hygiène qu’il conviendra

(1) Revue des Deux-Mondes, 1865.
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d’adopter lorsque l'homme aura pris l’habitude de se transporter à 
travers l’atmosphère? Pourquoi nous inspirer l’horreur des chemins 
de fer où l’on voyage dans d’horribles boîtes d’une intolérable lenteur, 
au prix de mille supplices insupportables, où l’on est secoué par un 
affreux mouvement de lacet, au milieu d’un bruit infernal de chaînes, 
de bois et de vitres heurtées, tandis que des flots de poussière 
couvrent de leur linceul étouffant le voyageur infortuné? »

De fait, faute de moteur léger, cette époque n’a produit que des 
jouets volants.

Il semble que ce soient Julien et les frères Du Temple qui, en 
'1861, ont réalisé le premier aéroplane-jouet qui s’enlevait, et 
Alphonse Pénaud qui, en 187'1, a fait le premier appareil du même 
type, capable de voler et de conserver son équilibre. Le moteur était 
un caoutchouc tordu.

Mais ce n’étaien t que des jouets, et l’appareil capable d’en lever un 
homme présentait des difficultés incomparablement plus grandes, à 
cause de la loi des cubes.

Trois choses manquaient encore pour la réussite : le moteur léger, 
la méthode permettant de faire un apprentissage progressif, et enfin 
la mise au point du système de direction, du système de propulsion 
et la réalisation définitive de l’ensemble.

Le moteur léger n’a été réalisé que grâce à l’invention du moteur 
à essence de pétrole, invention qui est due à E. Lenoir, en 1863. 
L’industrie de l’automobile a ensuite perfectionné et allégé ce 
moteur.

Une place à part est due à l’ingénieur français, Clément Ader, 
parmi les précurseurs. Il a eu le grand mérite de réaliser un moteur 
léger à vapeur, ainsi que tout un appareil qui dénote une ingéniosité 
prodigieuse. Malheureusement il lui manquait la méthode d’appren­
tissage, sans laquelle le meilleur appareil ne peut donner aucun 
résultat. Aussi, les essais de son « Avion », en 1897, furent-ils peu 
concluants. Il est bien difficile, en l’absence de témoignages probants 
(les témoins déclarent qu’ils n’ont pas vu l’appareil en l’air, mais que 
ses traces par terre cessaient d’être visibles sur un certain parcours),
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de savoir ce qu’a fait l’Avion. A-t-il réellement volé? A-t-il été 
soulevé par une rafale comme une feuille morte? Pouvait-il voler? 
Etait-il stable, maniable, viable, en un mot? On ne le saura jamais.

Voici ce qu’un témoin, le lieutenant Binet, écrivait à Ader en 1 906, 
neuf ans après les essais :

« Mon opinion très nette, à la suite de ces expériences, a été et 
est encore la suivante : L’Avion N° 3 semblait posséder tout ce qu'il 
fallait pour voler, c’est-à-dire pour se soulever d’abord et pour se 
diriger ensuite ; mais il manquait surtout à l’Avion un pilote sachant 
le manœuvrer ».

Il ne semble pas que nous ayons le droit d’avoir de cet appareil 
une opinion plus précise.

De 1891 à 1897, un fait capital a lieu : ce sont les expériences de 
planement de l’ingénieur allemand Otto Lilienthal (1). Au cours de 
ses glissades aériennes faites avec des aéroplanes sans moteur, il 
précise les formes et dispositions les plus favorables, les conditions 
de l’équilibre, le meilleur profil des surfaces. A vrai dire, il ne 
pensait nullement travailler à la solution du problème du vol méca­
nique; il cherchait à reproduire le vol à voile, persuadé que sa 
solution était dans un certain profil des surfaces qui permettrait de 
voler sans dépenser de travail. En fait, ses essais ont eu l’utilité de 
« sérier les difficultés », et de réaliser d’abord le planeur sans 
moteur.

Vinrent ensuite les frères Wilbur et Orville Wright, fabricants de 
bicyclettes à Dayton (Ohio), qui, reprenant la même méthode, mirent 
l’appareil au point, avec ses systèmes de direction et de manœuvre ; 
cela fait, ils s’attaquèrent au moteur, le mirent au point également, 
et en décembre 1903 réalisèrent les premiers vols humains.

En dehors de l’aéroplane, le seul genre d’appareil avec lequel on 
ait réussi à enlever un homme est l’hélicoptère.

(1) Né en 1848, à Anklam (Poméranie), Lilienthal se tua le 9 août 1897 en 
tombant au cours d’un de ses vols.
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L’honneur en revient à l’ingénieur français Louis Breguet, en 
août 1907.

L’hélicoptère avait été réalisé sous forme de jouet en 1784, par 
Launay et Bienvenu.

Quant à l'ornithoptère, il n’a été réalisé jusqu’ici que comme 
jouet (par Hureau de Villeneuve et Pénaud, en 1872).
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CHAPITRE II

LES LOIS DE LA RÉSISTANCE DE L’AIR.

Les dispositifs d’expériences. — Lois de la résistance de l’air pour 
l'attaque orthogonale. — Loi des plans minces. — Le coefficient K. — 
Carènes. — Influence de l’accélération.

Un corps qui se déplace dans l'air éprouve une résistance. La 
résistance de l’air n’est pas complètement déterminée quand on 
connaît sa grandeur ; une force, dans le cas le plus général, nécessite 
6 paramètres pour être déterminée dans l’espace (un pour sa gran­
deur, deux pour sa direction, trois pour son point d’application) (4). 

Mais on n’envisage jamais ce cas général en aérodynamique.
On se borne à envisager deux cas plus simples : d’abord celui d’un 

corps ayant un plan de symétrie qui contient aussi la direction du 
courantd’air, conséquemment la résistance est dans ce même plan. Le 
problème est ainsi ramené à la géométrie plane ; la force est déter­
minée par 4 paramètres : 1 pour la grandeur, 1 pour la direction, 
2 pour le point d’application. Enfin, comme cas plus particulier 
encore, celui d’un corps ayant un axe de symétrie, suivant lequel est 
dirigé le courant de l’air. La résistance est dirigée suivant le même 
axe par raison de symétrie.

La force est alors déterminée par deux paramètres : un pour la 
grandeur, un pour le point d’application. Encore ce dernier est-il 
sans intérêt en aviation ; la position du centre de poussée sur la ligne 
droite représentative de la poussée n’a pas l’importance qu’on pour­
rait croire a priori ; la position du mélacentre, que nous définirons 
plus loin, est seule intéressante au point de vue de la stabilité.

(1) Dans le cas général, l'action de l’air se compose d’une force et d’un 
couple. On ne tient pas compte de ce dernier, sauf dans l’étude des.hélices.

Chapitre II. Les lois de
la résistance de l'air
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LES DISPOSITIFS D’EXPÉRIENCES

Les expérimentateurs, pour mesurer la résistance de l'air, ont 
adopté des dispositifs très divers, en vue de surmonter les difficultés 
considérables que rencontre l’expérimentation précise.

Il s’agit de déterminer l’action de l’air en repos sur un solide 
animé d’un mouvement rectiligne et uniforme de translation, ou, 
ce qui revient au même, l’action d’un courant d’air constant sur un 
solide immobile.

En vertu du principe du mouvement relatif, ces deux cas sont 
identiques, et les résultats trouvés doivent être les mêmes ; seules, 
les facilités de l’expérimentation doivent motiver le choix entre l’un 
et l’autre de ces dispositifs (1).

A première vue, il semble naturel d’opérer dans l’air calme et de 
déplacer le solide ; mais, dans ce cas, on se heurte à deux difficultés. 
D’abord, l’air n’est jamais rigoureusement calme ; même dans une 
salle close se produisent des phénomènes de brassage impossibles à 
éviter; on peut s’en convaincre en rendant l’atmosphère visible par 
un mélange de fumée.

En second lieu, la translation rectiligne ne peut, dans un labora­
toire, être réalisée que sur une petite longueur, et ne se prête pas à 
des observations suffisamment prolongées.

(1) Il s'est trouvé cependant des expérimentateurs qui n’ont pas aperçu ce 
principe, qui ont cru devoir faire des expériences dans les deux cas, et qui, 
chose admirable, ont trouvé des résultats entièrement différents.

Tel est le cas de Duchemin, qui enregistre des résultats comme celui-ci : 
« La résistance d’une simple surface plane qui se meut perpendiculairement à 
elle-même dans l'eau en repos n’est que les 2/3 de la résistance qu’une même 
surface supporte, toutes choses égales d’ailleurs, lorsqu’elle est exposée au choc 
direct de ce fluide en mouvement. La résistance d’un cylindre est plus grande 
dans le second cas que dans le premier, tant que le rapport de la longueur au 
diamètre de ce corps est au-dessous de 8/3, etc., etc. ». Une fois lancé dans cette 
voie, on se demande pourquoi, après avoir supposé que c’est le corps seul qui 
se déplace, puis l’eau, il n’a pas supposé qu’ils se déplacent tous deux, chacun 
prenant une part de la vitesse totale ; ce qui lui aurait donné l’occasion d’établir 
une infinité de lois différentes pour l'infinité des combinaisons possibles.

Les dispositifs
d'expériences

Lois de la résistance
de l'air pour l'attaque
orthogonale



I9
1

On a cru parfois pouvoir tourner cette difficulté en remplaçant le 
mouvement rectiligne par la rotation autour d’un axe; mais, lors 
même que le rayon est relativement grand, la rotation n’est pas 
comparable à une translation, parce que les divers points n’ont pas 
la même vitesse, parce qu’il s’introduit des forces centrifuges qui 
modifient le mode d’écoulement de l’air, et parce que le corps repasse 
toujours par les mêmes points.

Il est donc, à tous égards, préférable de laisser le solide immobile 
et de mettre l’air en mouvement.

Disons quelques mots des meilleurs dispositifs employés.

Expériences du colonel Renard. — Le colonel Renard expéri­
mentait, au moyen d’un manège circulaire à axe horizontal, dont il 

FIG. 17. — Balance dynamométrique 
du colonel Renard.

mesurait le couple résis­
tant en montant tout 
l'appareil, y compris son 
moteur électrique, sur 
une balance, et en réta­
blissant l’équilibre au 
moyen de poids(fig. 1 7).

La surface expérimen­
tée décrivait une circon­
férence de rayon très 
grand par rapport à ses 
dimensions, de sorte 
qu’on pouvait considérer 

son mouvement comme différant peu d’un mouvement de translation 
rectiligne. Cependant, l’air de la salle devait, peu à peu, se mettre 
en mouvement dans le même sens que la surface; aussi Renard 
n’a-t-il jamais considéré ses expériences comme donnant des valeurs 
absolues sûres pour les résistances, mais seulement comme permet­
tant de comparer les résistances des corps de diverses formes et à 
diverses vitesses dans des conditions bien définies. A défaut des
valeurs absolues, les rapports des valeurs peuvent être déterminés

Fig. 17. Balance
dynamométrique du
colonel Renard
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avec exactitude, et notamment la loi du carré des vitesses, que Renard 
a reconnue sensiblement exacte entre 4 et 50 mètres par seconde.

Expériences de Riabouchinsky. — Le dispositif employé par 
Riabouchinsky, directeur de l’Institut aérodynamique de Koutchino 
(Russie), fondé en 1904, consiste en un tunnel ou tube horizontal de 
44m,50 de longueur et de 40,20 de diamètre, parcouru par un 
courant d’air aspiré par un ventilateur, l’expérience ayant montré que 
l’aspiration donne un courant d’air plus régulier que le refoulement.

Les corps à expérimenter sont placés au milieu du tube, dont les 
parois sont munies de verres cylindriques à travers lesquels on fait les 

observations (fig. 18). Pour régu­
lariser le courant d’air, l’aspira­
tion se fait dans un tube cylin­
drique concentrique au premier, 
de 2m,20 de diamètre et de 

cp 

AA

Fia. 18. — Tunnel de l’Institut 
aérodynamique de Koutchino.

3m,60 de longueur. Dans ces conditions, et en n’utilisant pas la 
zone voisine des bords, où le courant d’air est ralenti sur une 
quinzaine de centimètres d’épaisseur, on constate que la vitesse est 
sensiblement uniforme, avec des écarts ne dépassant jamais 3,6 °/.

Un étalonnage préalable a permis d’établir une table de corres­
pondance entre la vitesse du courant d’air, mesurée à l’anémomètre, 
et le nombre de tours du ventilateur. La proportionnalité se vérifie 
sensiblement.

On a reproché à la méthode du tunnel de gêner l’épanouissement 
latéral des filets d’air. Elle n’est réellement précise que pour des corps 
dont la section est environ 100 fois moindre que celle du tunnel; on 
constate que les pressions sont majorées à peu près en proportion de 
l’étranglement dû à la présence du corps.

Expériences de M. Eiffel. — Ces expériences, faites à la tour 
de 300 mètres et publiées en 1907, sont d’une précision remar­
quable.

En voici le principe.

Fig. 18. Tunnel de
l'Institut
aérodynamique de
Koutchino
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FIG. 19. — Appareil 
de M. Eiffel.

Une masse pesante M dont en connaît la résistance à la pénétration 
(laquelle est d’ailleurs rendue aussi faible que possible) tombe en 
chute libre le long d'un câble vertical tendu entre le sol et le second 

étage de la tour (hauteur 415 mètres, hauteur 
de chute libre 95 mètres) ; elle entraîne dans 
sa chute la surface S à étudier; celle-ci est 
fixée en avant du poids par l’intermédiaire d’un 
ressort (fig. 49).

L’extrémité du ressort porte un diapason don­
nant 100 vibrations par seconde et dont une 
branche est munie d’un stylet qui appuie sur un 
cylindre recouvert d’un papier noirci à la fumée. 
Ce cylindre est mis en rotation par l’intermédiaire 
d’une molette qui roule sur le cable, et d’une vis 
sans fin. Son angle de rotation mesure donc le 
chemin parcouru.

Le diapason vibrant, porté par le ressort, trace 
une courbe ondulée dont l’ordonnée moyenne sur le cvlindre

indique la flexion du ressort et, par suite, la pression subie. En 
même temps, le nombre des vibrations inscrites mesures les temps 
écoulés.

La vitesse de chute s’obtient en mesurant la longueur occupée par 
10 vibrations consécutives.

Les vitesses expérimentées variaient entre 4 8 et 40 mètres.

Cette méthode, d'une élégance et d'une précision remarquables, a 
l’avantage de donner une mesure directe et très exacte de la vitesse. 
Elle a fait l’objet d’un rapport très élogieux présenté à l’Académie 
des Sciences, en 1908, par MM. Maurice Lévy et le général Sébert.

« Les résultats obtenus par M. Eiffel, disent-ils, représentent 
aujourd’hui les valeurs les plus précises que l’on connaisse pour la 
mesure de la résistance que l'air oppose au mouvement rectiligne de 
surfaces ayant les dimensions et formes qu’il indique, pour des 
vitesses de déplacement comprises entre les limites où il a opéré.

Fig. 19. Appareil de M.
Eiffel
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On peut considérer comme établies les conclusions principales qu’il 
indique ».

Toutefois, bien qu’on n’ait tenu compte que des expériences faites 
en air calme, il est impossible d’avoir l’assurance que l’air était 
absolument calme. D’autre part, celte méthode ne permet de mesurer 
ni la direction des forces obliques, ni la position de leur point 
d’application, ni la répartition des forces sur les divers points des 
deux faces du corps. Aussi ses applications sont-elles limitées.

Aussi, dans ses dernières expériences, dont il a rendu compte en 
janvier 1910 à la Société des Ingénieurs civils, M. Eiffel a-t-il adopté, 

à l’exemple de M. Rateau, un autre 
dispositif dans lequel le corps S à 
expérimenter est fixe. Le courant 
d’air est obtenu au moyen d’un 
ventilateur aspirant V (fig. 20). 
L’air aspiré dans la salle par une 

Fis. 20. — Dispositif d’expérience buse B de 4m,50 de diamètre tra- 
de M. Eiffel (avec ventilateur), verse, sous forme d’un eylindre, la 

chambre close G où se font les mesures. Une série de tubes T assure 
le parallélisme des filets fluides.

Expériences de M. Rateau. — Pour éviter le reproche qu’on 
peut faire à la méthode du tunnel de gêner l’épanouissement latéral 
des filets d’air autour du corps à étudier, M. Rateau s’est servi, en 
1909, d’un courant d’air très homogène obtenu en faisant sortir par 
une buse B convergente, de 70 centim. de diamètre à la sortie, l’air

FIG. 21. — Dispositif d’expérience 
de M. Rateau.

soufflé par un ventilateur de 
4m,20 de diamètre. L’air, avant 
de sortir par la buse, traverse 
une chambre étanche G de 
1m,60 de côté renfermant un 

treillage en lattes de bois destiné à rendre les filets bien parallèles.
Le corps S à étudier est fixe et placé tout près de la sortie de la 

buse (fig. 21).

if

Fig. 20. Dispositif
d'expérience de M.
Eiffel (avec ventilateur)

Fig. 21. Dispositif
d'expérience de M.
Rateau
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La vitesse de l’air se mesure au moyen d’un tube de Pilot; elle a 
varié de 7 à 35 mètres par seconde.

De toutes les méthodes employées jusqu’ici, c'est celle qui paraît 
donner la plus grande précision. Elle n’est cependant pas encore 
irréprochable ; car si la méthode du tunnel gêne l’épanouissement et 
la déviation des filets d’air, la méthode de M. Raleau, par contre, 
laisse cette déviation se faire trop librement ; les filets d’air ne sont 
pas, comme dans la réalité, accompagnés et, en quelque sorte, 
canalisés par d’autres filets d’air qui s’opposent à leur déviation ; de 
sorte que les trajets qu’ils suivront ne seront pas les mêmes que dans 
la réalité. La vérité paraît être intermédiaire entre les deux méthodes.

Une autre cause d’erreur est l’obligation, pour les filets d'air 
déviés, de subir une seconde déviation en sens contraire, assujettis 
qu’ils sont à sortir par une ouverture placée en face de la buse 
d’arrivée. Cette condition peut les amener à trouver un trajet de 
moindre résistance différent de celui qu’ils suivraient en réalité, et, 
notamment, à commencer leur déviation bien avant d’avoir rencontré 
le corps interposé, phénomène que M. Eiffel a constaté (4) et qui 
semble dû à cette cause d’erreur.

LOIS DES PLANS MINCES

L’expérience montre que les lois de la résistance de l’air et celles 
de la résistance de l’eau sont analogues, bien que l’air soit un fluide 
élastique tandis que l’eau est incompressible.

Il faut toutefois remarquer qu’aux vitesses expérimentées, les 
changements de densité de l’air dus aux mouvements produits ne 
dépassent pas I % (une compression de 1 % donnerait une force de 
125 kilogr. par mètre carré). Il n’est donc pas étonnant que 
l’influence de l’élasticité soit négligeable.

Les lois de la résistance de l’air sont complexes et ne peuvent pas

(1) Bulletin de la Société des Ingénieurs civils, janvier 1910, p. 44.

Loi des plans minces
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être représentées exactement par des formules simples. Les plus 
anciennes lois formulées sont dues à Newton, qui les avait établies 
par le raisonnement. Elles concernent les plans minces se déplaçant 
d’un mouvement de translation rectiligne et uniforme. Les voici :

1° La résistance est proportionnelle à la densité du fluide ;

2° Elle est proportionnelle au carré de la vitesse;

3° Elle est proportionnelle à l’étendue de la surface ;
40 Elle est normale à la surface;

5° Elle est proportionnelle au carré du sinus de l’angle d’inci­
dence.

On peut remarquer que ces lois ne déterminent pas la position de 
la résistance.

Nous allons d’abord supposer que l'attaque est orthogonale; 
dans ce cas, il n’y a à tenir compte que des trois premières lois. 
Elles peuvent s’exprimer par la formule :

R=kdSV2

R. Résistance.

d. Poids spécifique de l’air.

S. Surface.

V. Vitesse.

k. Coefficient constant.

Disons de suite que, sans être rigoureuses, ces lois sont assez 
approchées pour pouvoir être adoptées dans la pratique.

Examinons-les en détail.

DENSITÉ.

La proportionnalité à la densité a été étudiée, en 1893, par 
Cailletet et Colardeau qui l’ont trouvée sensiblement exacte, non 
seulement pour un même gaz, mais pour des gaz différents tels que 
l’air et l’acide carbonique. 3

Densité
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Celle loi a beaucoup d’importance, car l’air dans lequel nous 
devons nous mouvoir à des densités variables avec la pression 
atmosphérique, l’altitude et la température.

Si de est la densité de l’air à 00 et à la pression de 760 m/m de 
mercure, la densité d à la pression H et à la température t est donnée 
par la formule :

, A 1 d= d 760 i
T 273

La pression H varie suivant l’état de l’atmosphère et suivant 
l’altitude ; à 1.000 m. d'altitude elle diminue de 12 °l; à 2.000 m. 
elle diminue de 22 %; à 3.000 m. de 31 °/0.

La proportionnalité de la résistance à la densité quand la pression 
varie n’est pas contestée. Mais pour les variations de densité pro­
venant des variations de température, la loi a été contestée, notam­
ment par M. C. Mannesmann (Wiedemann’s Annalen der Physik 
und Chemie, 1899).

Il se pourrait aussi que l’état hygrométrique eût une influence sur 
la résistance de l’air, en modifiant sa viscosité. La question reste à 
élucider.

Dans la plupart des applications qui vont suivre, nous supposerons 
la densité invariable; d pourra donc rentrer dans le coefficient 
constant, et nous écrirons:

R = KSV%

LOI DU CARRÉ DES VITESSES.

La proportionnalité de la résistance au carré de la vitesse a été 
longtemps considérée comme rigoureuse, car c’est une loi simple, 
et on croyait autrefois à la simplicité des lois physiques. Elle n’est 
cependant qu’approchée.

En balistique on a établi des formules à plusieurs termes où entrent 
des puissances différentes de V. Il y a notamment un terme linéaire

Loi du carré des
vitesses
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en V qui paraît provenir de la viscosité. Aux très faibles vitesses, ce 
terme devient prépondérant, et on peut admettre qu’aux vitesses de 
quelques centimètres par seconde la résistance de l’air est propor­
tionnelle à V. Mais à partir de quelques décimètres par seconde ce 
terme devient négligeable ; on n’a donc pas à en tenir compte pour 
l'aviation.

Si on cherche à exprimer la résistance par une fonction de la 
forme V2 f(V), on trouve pour la fonction F(V) non pas une valeur

FIG. 22. — Courbe de la fonction f(V).

€ o fl

fixe, comme cela aurait lieu si 
la loi du carré des vitesses était 
rigoureuse, mais une courbe 
de la forme ci-contre (fig. 22).

Si on met à part les très 
petites vitesses, on constate 
que jusqu’à 1 00m. parseconde 

la loi est sensiblement exacte. Elle est de même sensiblement exacte 
au-delà de 500 m., mais avec une valeur plus grande du coefficient K. 
Aux environs de 330 m. par seconde, vitesse de propagation des 
ondes sonores dans l’air, il y a une singularité de la courbe, un 
maximum et un brusque changement d’allure. Gela s’explique si on 
remarque que le mouvement d’un corps dans l’air doit provoquer la 
création d’ondes vibratoires qui se propagent dans toutes les direc­
tions. On conçoit facilement que, suivant que le corps se déplace 
plus vite, moins vite ou avec la même vitesse que ces ondes, la forme 
des filets d’air autour de lui doit différer.

Une erreur assez fréquente consiste à croire que la vitesse d’écou­
lement de l’air dans le vide doit être un.point singulier de la courbe. 
Voici le raisonnement qu’on fait: à l’arrière du corps, il se produit 
une dépression qui exerce une résistance sur le mouvement. Cette 
dépression aspire l’air qui vient combler l’espace quitté par le coips. 
Or, la vitesse maxima que l’air peut atteindre en se précipitant dans 
le vide est donnée par la formule :

4 II < < W
I

Fig. 22. Courbe de la
fonction f (V)



H étant la pression atmosphérique exprimée en colonne d’air. On 
trouve :

V = 396 mètres par seconde.

Donc, si le corps dépasse la vitesse de 396 m. par seconde, l’air ne 
peut plus le suivre et il y a le vide derrière lui. La dépression va en 
croissant jusqu’au vide absolu ; ensuite elle ne peut plus augmenter; 
la loi change donc d’allure.

Ce raisonnement est inexact. Il y a bien une masse d’air qui suit 
le corps, mais c’est toujours la même, de sorte qu’elle n’a pas besoin 
d’acquérir à chaque instant la vitesse du corps. C’est une poupe d’air 
agitée par des remous et des tourbillons, et entraînée par le corps 
derrière lui ; les filets fluides déplacés par le corps se referment non

FIG. 23. — Poupe d'air entraînée 
derrière un corps en mouvement.

pas contre l’arrière du corps, mais 
en contournant cette poupe (fig 23). 
La vitesse avec laquelle ils se refer­
ment n’est donc pas la vitesse du 
corps, mais dépend de l’inclinaison 
du plan tangent a la surface de la 
poupe. Si le vide se 
sera quand la poupe d’; 
citée en arrière par 1

produit, ce 
ir sera solli.4 
: frottement

des filets d’air avec une force assez grande pour combattre la pression
atmosphérique. Il y a donc là une question de frottements, et une 
formule qui ne fait pas intervenir le frottement, ou la viscosité de 
l’air, ne peut pas représenter le phénomène. Si le frottement était 
nul, le déplacement du corps, à quelque vitesse que ce soit (vitesse 
uniforme, bien entendu), ne rencontrerait aucune résistance.

Quant à l allure générale de la courbe f(V) et à ses points sin­
guliers. ils dépendent de la viscosité de l’air, de la rugosité de la 
surface du corps, et ils doivent varier suivant l’importance relative 
de ces deux causes dans le phénomène général. La loi pour un corps 
fuselé, qui ne donne pas de remous, ou pour une surface arquée, 
pourrait être différente de la loi applicable aux plans orthogonaux.

Fig. 23. Poupe d'air
entraînée derrière un
corps en mouvement
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D’après les expériences de Renard, Kiabouchinsky, Eiffel et 
Raleau, qui sont les plus précises qu’on ait faites, la loi du carré des 
vitesses se vérifie bien et est suffisamment exacte pour la pratique 
aux vitesses utilisées en aviation. Le sens des écarts trouvés varie 
suivant les expérimentateurs ; cela indique que ces écarts sont de 
l’ordre des erreurs d’expérience, et qu’il ne faut pas en tirer des con­
clusions trop précises.

ÉTENDUE DES SURFACES.

La proportionnalité de la résistance à la surface n’est pas rigou­
reuse.

L’influence de la surface doit être étudiée au double point de vue 
de la grandeur et de la forme.

Marey a étudié la pression de l’air sur un disque entraîné par un 
manège tournant (fig. 24); en

CE
FIG. 24. — Expérience de Marey.

face d’un point quelconque de la 
surface, il plaçait l’extrémité d’un 
tube / qui communiquait par l'inté- 
rieur de l’axe du manège avec un 
manomètre différentiel très sensible 
(c'est ce qu’on appelle un tube de 
Pilot).

Marey constata que la pression a
une valeur sensiblement constante en tous les points du disque à 
l’intérieur d’un certain cercle de rayon ? — e, mais que, vers les

disque
FIG. 25. — Diagramme des pressions 

sur un disque, d’après Marey.

pr
es

sic

bords, sur une largeur annulaire e, 
il y a une perte de pression.

La figure 23 ci-contre représente 
le diagramme des pressions aux 
différents points d’un diamètre quel­
conque du disque. Les ordonnées 
de la courbe sont proportionnelles 
aux pressions.

L’expérience montre que la largeur e est relativement plus impor-

Étendue des surfaces
Fig. 24. Expérience de
Marey

Fig. 25. Diagramme
des pressions sur un
disque, d'après Marey
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tante pour les J petites surfaces, de sorte que la pression moyenne, 
sur les petits disques, est moindre que sur les grands. Ce diagramme 
est confirmé par les expériences de M. Eiffel (1), en ce qui concerne 
la pression sur la face antérieure du plan ; quant à la dépression sur 
la face postérieure, elle est sensiblement uniforme, et ne diminue pas 
près des bords ; elle augmente même plutôt un peu.

Borda, dès 1763, avait reconnu que la résistance augmente plus 
vite que la surface. Il avait proposé de faire intervenir S dans la 
formule non pas à la première puissance, mais à la puissance 1,1 :

R = KS1,1

Cayley, Hutton, Aubuisson, Hervé Mangon ont admis cette loi. 
Thibault a fait des réserves, estimant qu’on peut invoquer des erreurs 
d’expérience.

Diverses expériences de Langley, interprétées dans la même idée, 
conduisent aux exposants 1,112 et 1,054 pour la puissance de S.

Les expériences de Dines, en 1891, conduisent à la loi S1,042; 
celles de Canovetti donnent 1,04-4 à 1,102.

Les expériences de M. Eiffel, qui sont les plus précises, et qui 
sont faites sur des surfaces variant de 4/4 6 de mètre carré à 1 mètre 
carré, conduisent à la loi SI,wl.

Il parait résulter de la similitude de tous ces résultats que la 
pression varie réellement plus vite que la surface, et que, pour les 
surfaces variant entre 4/1 6 de mètre carré et 1 mètre carré, le phéno­
mène est assez exactement représenté par la loi S1044.

Il faut se garder d’extrapoler cette loi et d’en tirer des conclusions 
catégoriques soit pour les petites, soit pour les grandes surfaces. Il 
ne paraît pas que pour les petites surfaces le coefficient de résistance 
continue toujours à diminuer. D’autre part, il est tout à fait arbitraire

(1) Bulletin de la Société des Ingénieurs civils, janvier 1910.
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de donner à la loi la forme d’une exponentielle ; on aurait pu chercher 
à la représenter par un développement en série de la forme :

a + BS + CS2 + ...

ou par toute autre fonction de S. Enfin, en admettant la loi exponen­
tielle, l’expérimentation sur des surfaces variant dans le rapport de 
I à 16 n’est pas suffisante pour établir une loi applicable à la fois à 
un cousin de 30 millimètres carrés et à un aéroplane de 30 mètres 
carrés, les surfaces variant ici dans le rapport de 1 à 4 million, ce 
qui conduirait, pour l’efficacité des surfaces, à une variation presque 
du simple au double.

Il n’est nullement invraisemblable que la singularité de la loi soit 
due à des erreurs d’expériences, et notamment à la suivante: les 

expérimentateurs n'ont pas, en général, pris 
soin de réduire l’épaisseur des surfaces dans 
le même rapport que les autres dimensions. 
De sorte que plus les surfaces étaient petites, 
plus leur épaisseur était relativement grande 
(fis- 26)-

En continuant à réduire les surfaces, on 
arriverait à un cube d, et même à un parallé- 
lipipède allongé e. Or, l’expérience montre que 

FIG. 26. — Augmen­
tation des épaisseurs 
relatives dans les pe­
tites surfaces.

pour de tels corps la résistance est beaucoup moindre que pour un 
plan mince de même section. On conçoit donc qu’elle doit être plus 
petite pour c que pour b, et plus petite pour b que poura.

On peut se demander si la loi S1014, favorable aux grandes surfaces, 
ne contrebalance pas l’effet défavorable de la loi des cubes, ou au 
moins ne l’atténue pas sensiblement.

Voyons quel devrait être l’exposant de S dans la formule pour 
qu’il en soit ainsi. Soit x cet exposant; la formule devient :

PEKSV2 (1)

Elle exprime que le poids P est supporté par la surface S avec une

Fig. 26. Augmentation
des épaisseurs
relatives dans les
petites surfaces
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vitesse de refoulement V. Cette vitesse V. comme nous l’avons vu, 
mesure le travail par seconde et par kilogramme de poids.

Prenons maintenant un corps augmenté géométriquement dans le 
rapport y.. Son poids sera y3P, et sa surface y.2S.

S’il est soutenu en l’air avec la même dépense de travail par 
seconde et par kilogramme, V restera le même dans la formule, et 
on aura :

y.BP = K (».*S)= V2

ou :

^P = K p.2= S= VA (2)

Divisant membre à membre les équations (2) et (1) :

p.3 = .23

d’où: 3 =2x, d’où: x =4,5.
On voit que l'effet favorable obtenu en remplaçant la puissance 1 

par la puissance 1,044 est bien peu de chose, puisqu'il faudrait la 
puissance 1,5 pour contrebalancer la loi des cubes. Ce n’est même 
pas la dixième partie de la différence. La loi des cubes reste donc 
établie.

Considérons maintenant des surfaces de formes différentes. D'après 
les idées de Marey, on serait tenté de penser que si l’influence des 
bords se manifeste par l'existence d’une zone de pression décrois­
sante, la perte de pression sera proportionnelle au périmètre ; à 
surface égale, la résistance à l’avancement devra donc augmenter 
quand le périmètre diminue, et être maximum pour le cercle, surface 
de périmètre minimum.

Or, c’est le contraire qui a lieu. En réalité d’autres facteurs inter­
viennent. Il ne suffit pas d’examiner ce qui se passe sur la face anté­
rieure. les dépressions et remous qui prennent naissance à l’arrière 
du corps sont plus importants encore, et la pression résultante dépend 
surtout de la façon dont les masses d’air déviées finissent par se 
rejoindre à l’arrière.



S
I

M. Le Dantec a étudié spécialement ce problème, en mesurant la 
vitesse de régime prise par une surface qu’on laisse tomber le long 
d’un fil vertical. Il constata qu’à égalité de surface la résistance d’un 
triangle est plus grande que celle d’un carré, et celle-ci que celle du 
cercle: c’est juste l’inverse de la conclusion des expériences de 
Marev.

Il paraît assez facile d’expliquer cette contradiction par la diffé- 
rence dans le mode d’écoulement de l’air.

Dans la surface ronde, la courbe des bords étant régulière, les 
remous et tourbillons formés sur les bords sont réguliers et uniformes ; 
dans le triangle ou le carré, les remous venant .de deux côtés voisins, 
surtout au voisinage d’un angle, se contrarient, s’entrechoquent, et 
ces chocs nuisent à la reprise rapide de l’équilibre des masses d’air 
derrière le corps. Ce serait donc un phénomène secondaire dû à la 
présence des parties saillantes angulaires, qui masquerait le phéno­
mène signalé par Marey.

Il est imprudent d’en déduire, comme l’a fait Le Dantec, que 
l'augmentation de résistance est proportionnelle à l'augmentation de 
périmètre ; elle paraît plutôt due à la présence d’angles vifs.

Dines a également trouvé que le cercle résiste moins que le carré, 
et celui-ci moins qu’un rectangle.

Eiffel est arrivé à des résultats analogues, comme le montre le 
tableau suivant qui indique les valeurs du coefficient K trouvées par 
lui pour diverses surfaces :

SURFACE 
en mètre carré.

1
16

1 8
1 
4

1
2 I

Cercle.................................. .........
Carrë.............................................
Rectangle (allongement 2)........
Rectangle (allongement 4)........

0,068
0,070 

»
0,073

0,071
0,072 
0,073
0,074

0,074 
0,075
0,075 

»

0,077 
0,077 

»
»

» 
0,079

»
»

Un cas intéressant est celui des surfaces très allongées, rectangu- 
laires, par exemple.
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L’allongement augmente la résistance. Voici des chiffres dus à 
Dines :

Carré 4 x 4................................................. 0,074
Rectangle 16 X 1.......................................... 0,083

Que se passera-t-il pour des surfaces en treillis ou perforées? Si 
les ouvertures constituent une partie relativement petite de la surface, 
elles donnent naissance à des remous qui augmentent la résistance.

M. Eiffel a trouvé, pour un treillis métallique, 0,088 au lieu de 
0,075 pour la même plaque non découpée.

M. Dines a trouvé:

Plaque plane: 0,073;
Plaque perforée de 12 trous de 5 m/m,6 par pouce carré : 0,098 ;
Plaque perforée de 77 trous de 2 m/m par pouce carré: 0,118.

C’est d’ailleurs un fait connu des marins depuis bien longtemps, 
qu’on améliore les voiles des navires en y ménageant un ou plusieurs 
trous.

LE COEFFICIENT K.

Dans la formule :

R = %dSV2

On suppose généralement que l’air est ramené à 0° et 760 m/m de 
pression ; on peut alors faire entrer la densité d dans le coefficient 
constant et poser :

kd=K

d’où la formulé :

R = KSV%

K est ce qu’on appelle le coefficient de résistance orthogonale 
de l’air.

Le coefficient K



II

Sa signification s’obtient en faisant, dans la formule, S = I et 
V = 1. C’est la résistance subie par un plan mince de 4 mètre carré 
se déplaçant orthogonalement à la vitesse de 4 mètre par seconde.

Comme la résistance varie suivant la forme du plan, il faut pré­
ciser davantage. On convient de considérer, pour la définition de K, 
un plan mince carré.

Si on veut établir une formule de la résistance en fonction de la 
surface et de la vitesse, on devra écrire :

R = K/(S),(V)

f(S) et ç (V) étant des fonctions d’allure compliquée qui passent par 
la valeur 1 pour S=1 et pour V ==1. On peut même penser, avec 
Goupil, que ces deux fonctions ne sont pas indépendantes, et qu’il 
faut écrire :

R = K/(S, V).

Dans ces conditions K est, par définition, une constante.
Si on se contente de la formule pratique :

R = KSV?,

comme les termes S et V* ne représentent pas rigoureusement la 
loi réelle, il s’ensuit que le coefficient K ne restera pas tout à fait 
constant. Les expérimentateurs qui ont déterminé le coefficient K en 
employant des surfaces ne mesurant pas 4 m2 et des vitesses autres 
que 1“ par seconde, et en appliquant ensuite la loi KSV2 pour 
calculer K, ont donc fait une erreur de méthode Ils ont fait l’hypo­
thèse implicite que cette loi est exacte, ce qui n’est pas. C’est certai­
nement là une erreur systématique qui, jointe aux autres difficultés 
de l’expérimentation, a contribué à l’extraordinaire incertitude qui a 
longtemps régné sur la valeur du coefficient K.

Un seul expérimentateur s’est placé dans les conditions réelles ; 
c’est Le Dantec, qui faisait tomber un plan de I m2 en le chargeant 
convenablement jusqu’à ce qu’il prenne la vitesse de régime de 1in 
par seconde. Il a trouvé K = 0,081.
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Eiffel a expérimenté sur des plans de 4 m2 mais à des vitesses 
diverses. La moyenne de ses mesures donne, pour le plan carré de 
l m2, K = 0,079.

Nous avons vu que, pour des plans de dimensions ou de forme 
différentes, la valeur de la résistance n’est pas la même.

Voici un tableau des valeurs trouvées par divers expérimentateurs; 
on remarquera l'énormité des écarts.

Coefficient K.

Expér. de Zossen-Marienfeld..................
Recknagel.................................................
Cailletet et Colardeau.............:...............
Banet-Rivet...............................................
Edge...........................................................
Dines..........................................................
Hagen........................................ . .............
Eiffel...........................................................
Le Dantec...................................................
Hutton.............. ..........................................
Lâssl............................................................
Canovetti.....................................................
Piobert et Morin............ . ..........................
Langley.......................................................
Colonel Renard........................................
Poncelet.......................................................
Dubuat........................................................
Borda.......................................... ...............
Reichel............ . ............................. ............
Joessel........................................................
Didion . ....................................................
Thibault......................................................
Athanase Dupré.........................................
Ricourt........................................................
Desdouit................ ............... .....................
Goupil............... . ............... . .......... . .........
Marey.............................. ............................
Smeaton...................................... ............ .

0,0579
0,07
0,071
0,071
0,071
0,0732
0,075
0,079
0,081
0,081
0,083 à 0,093
0,084 (0,060 à 0,092)
0,084
0,08475
0,085 (0,07 à 0,09)
0,088
0,089
0,096
0,096
0,102
0,110
0,110
0,1272
0,1296
0,13
0,13
0,13
0,13
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Lilienthal.............................................. . 0,13 et 0,4
Fustegueras............................................ 0,132
Chanute.......................................................... 0,168et0,7(aéroplanes)
Ferber.........................:......................... 0,6 et 0,7 (aéroplanes)

Les deux valeurs les plus sûres sont celles de Eiffel et Le Dantec, 
0,079 et 0,084. On peut donc admettre définitivement pour le 
coefficient K la valeur 0,08 comme très approchée.

PEUT-ON CALCULER THÉORIQUEMENT
LA VALEUR DU COEFFICIENT K?

Plusieurs auteurs ont essayé de déterminer théoriquement la valeur 
de K. Newton a proposé de calculer ce coefficient par la méthode 
suivante : 

Soit (fig 27). un plan de surface S qui avance orthogonalement à 

FIG. 27. — Cylindre d’air 
balayé par un plan en mou­
vement.

la vitesse V. Soit R la pression. Le travail 
effectué par seconde est RV.

En une seconde, le plan a balayé un 
cylindre d’air AB de base S et de hauteur 
V, et l’a chassé devant lui en lui commu­
niquant sa propre vitesse V.

Le volume de ce cylindre est SV, et son poids dSV, d étant le 
poids spécifique de l’air.

La force vive communiquée au cylindre d’air est

al
- 5 1 11

2 g

Egalant la force vive avec le travail effectué, on a, en négligeant 
les frottements : .

W 4 II 
co

 - -2 10

R =

5 0 I 1 II 4%
 

0 1

Peut-on calculer
théoriquement la
valeur du coefficient K
?

Fig. 27. Cylindre d'air
balayé par un plan en
mouvement
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Ce qui semble démontrer que le coefficient K est égal à :

d 1,29
K = 2 = 2X9,81 = 0,086

Poncelet a également proposé cette formule.
On sait que l’expérience donne un chiffre différent.
M. Vallier admet que la pression sur une surface plane est repré­

sentée par le poids d’une colonne de fluide ayant pour base la surface, 
et pour hauteur le double de la hauteur de chute nécessaire pour 
obtenir la vitesse, ceci étant la conclusion d’un raisonnement dû à 
Rankine; il trouve ainsi: K— d — 0,132

9
M. Macaluso croit démontrer que K ne peut pas être plus grand 

que — ou 0,264. Pour cela, il imagine que la surface S glisse 

comme un piston dans l’intérieur d’un cylindre. La surface S 
transmet à la masse M de fluide heurté en une seconde sa vitesse V. 
En même temps, une masse égale de fluide est entraînée derrière 
la surface, avec la même vitesse, pour combler le vide qui se pro­
duirait sans cela. Soit MV la quantité de mouvement de la masse M, 
R la résistance ; on aura, d’après le théorème de la quantité de mou­
vement projetée, appliqué pendant un intervalle d’une seconde (et 
en négligeant toujours les frottements) :

R = 2MV

Mais comme M — 0
W II

2 0 4 II

xo 0 15

9 9

d’où on conclut : K — —.

Nous citons ce dernier raisonnement, parce qu’il nous fournit 
l’occasion de mettre en garde contre l'emploi du théorème de la
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quantité de mouvement en aérodynamique, emploi qu’on fait souvent 
à tort, dans des cas où il n’est pas applicable.

Déjà on voit qu’il y a contradiction entre ce résultat et celui que 
donnerait l’application de l’équation des forces vives. La quantité 
d’air qu’on suppose déplacée étant double de celle considérée par 
Newton, la considération de la force vive donnerait une valeur double

pour le coefficientK, soit —ou 0,132. Or le théorème de la quan­

tité de mouvement, avec les mêmes hypothèses, donne encore deux 
fois plus. Il y a contradiction, et nécessairement l’un au moins des 
deux raisonnements est faux.

L’application de l’équation des forces vives est correcte, les hypo­
thèses étant admises. Mais le théorème de la quantité de mouvement 
projetée n’est pas applicable. Sa démon tration suppose, en effet, que 
la force est directement appliquée à toute la masse considérée pendant 
tout l’intervalle du temps considéré. Or ici, la force n’est appliquée 
que successivement aux diverses tranches du cylindre d’air, au fur 
et à mesure que le plan les rencontre ; en outre, on suppose que la 
force n’est appliquée à chaque molécule que pendant un temps infi­
niment court, chaque molécule prenant instantanément la vitesse du 
plan au moment où elle est heurtée, et n’augmentant plus sa vitesse 
ensuite.

Ce mode est complètement différent de celui que suppose le 
théorème de la quantité de mouvement, et ce dernier ne pourrait être 
légitimement appliqué que si on le démontrait au préalable en partant 
des hypothèses faites ; or, on trouverait, en faisant la démonstration, 
une autre loi, qui s’écrirait :

P = Imv.

C’est sous cette forme que la quantité de mouvement pourrait être 
utilisée dans les problèmes analogues à celui-ci.

Nous voilà donc en présence de deux formules théoriques, — et 

d ,. .— (la troisième formule — étant éliminée)-
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Laquelle choisir? Aucune.
Toutes deux négligent la véritable cause de la résistance de l’air, 

à savoir les frottements, qui sont en définitive le terme et l’unique 
aboutissement du travail.

L'idée du cylindre d’air déplacé est à côté de la réalité, et il ne se 
passe rien qui justifie cette hypothèse. L’air n’est pas refoulé; il 
s’écarte latéralement au passage du plan, puis se referme derrière lui.

Si on examine les mouvements que prennent les filets d’air au 
voisinage d’un plan qui s’y déplace orthogonalement, on constate 
qu’ils sont représentés par la figure 23 (pageX.54). L’air est troublé 
jusqu’à une certaine distance du mobile, dans un cylindre C de section 
plus grande que le mobile.

Les molécules fluides décrivent des trajectoires telles que abc, 
contournant le plan et reprenant ensuite leur position. Il y a compres­
sion en avant du plan, et dépression en arrière. Entre les filets qui 
s’écartent à l’avant et ceux qui se rapprochent à l’arrière sont empri­
sonnées deux masses d’air qui se déplacent avec le plan.

A l’avant est une masse m appelée la proue d’air, qui est com­
primée et transmet sa compression au plan. Elle est agitée de 
tourbillons qui, au voisinage de la surface du mobile, sont centripètes.

A l’arrière est une masse n beaucoup plus grande appelée la 
poupe d’air, qui est en dépression. Le frottement des filets tels que 
bc y engendre des tourbillons qui, au voisinage de la surface du 
mobile, sont centrifuges, et d’ailleurs trè%instables.
• Nous avons eu l’occasion de constater de visu d’une façon 
frappante, l’existence de la poupe d’air. En 1908, par un temps de 
brouillard très opaque, étant en gare de Valenciennes, nous avons vu 
un train qui entrait dans le hall de la gare, émergeant, en quelque 
sorte, du: brouillard qui régnait au dehors. Derrière le dernier wagon, 
on remarquait une tranche de brouillard opaque, très nette, comme 
solidifiée, entraînée à la suite du train et paraissant attachée derrière 
lui et en faire partie. Elle l’a suivi pendant une quarantaine de mètres 
pour se dissiper au moment où le train s’arrêtait.
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Un fait très curieux, confirmé par l’expérience, est que dans la 
partie axiale la vitessse des tourbillons s’ajoute à celle du mobile, de 
sorte que dans l’air entraîné il y a une partie qui avance plus vite que 
le mobile.

L’hypothèse qui sert de base au raisonnement de Newton ne corres­
pond donc nullement à la réalité, et si la valeur théorique qu’il trouve 
se rapproche de la valeur expérimentale, c’est un effet du hasard.

On peut remarquer, d’ailleurs, que la pression sur des corps ayant 
même surface, ou plus exactement même maître couple, est très 
variable suivant la forme du corps.

Pour un plan mince, elle n’est pas la même sur un carré, sur un 
cercle, ou sur un rectangle. Si l’on met deux plans minces à distance 
convenable l'un derrière l’autre, la résistance totale est moindre que 
celle d’un seul plan (Eiffel).

Si au lieu d’un plan on prend une surface concave, Ou convexe, 
ou fuselée, la résistance augmente ou diminue dans une proportion 
très grande, comme nous le verrons ci-après.

Pourtant le raisonnement théorique serait toujours le même, carce 
raisonnement ne se sert en rien de ce que le mobile est un plan, de ce 
qu’il est mince, de ce qu’il a telle ou telle forme, et il ne se sert pas 
davantage des propriétés des gaz. On ne voit pas ce qui l’empêcherait 
d’être applicable à un corps solide, ou pâteux, ou pulvérulent.

Un exemple dans lequel les efforts seront plus grands, et par suite 
les inexactitudes plus visibles, va nous mettre sur la voie. Cherchons 
quel est le coefficient de résistance du sable. Prenons un plan, appli- 
quons-lui une force F, et cherchons à quelle vitesse il va avancer 
dans une masse de sable. Ce sera, si on veut, la fondation d’une 
maison, et nous allons chercher de combien cette fondation va des­
cendre parseconde. Vous me direz que le sable n’est pas un gaz. Mais 
où donc le raisonnement invoque-t-il les propriétés des gaz? On n’a 
admis qu’une chose, c’est que le frottement est nul, ce qui est faux, 
aussi bien pour l’air que pour le sable. Si le sable pèse 1.500 k. par 

„ d ontrouvera: K =- 
2g

mètre cube,
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Ainsi, si une fondation de maison supporte seulement 76 kilogs par 
mètre carré, elle descendra de I m. par seconde. Or, on sait qu’on 
fait travailler couramment les fondations à 20.000 et 40.000 kilogs 
par m2, et qu’elles ne descendent pas du tout, même en un siècle.

Autre exemple : la résistance dans l’huile est bien plus grande que 
dans l’eau, et cependant l’huile est moins dense.

Ici on voit tout de suite le nœud de la question. L’huile est 
visqueuse ! Oui, l’eau aussi, les gaz aussi, mais dans une proportion 
différente. Avec un corps très visqueux tel que le goudron, la cire, 
on verrait la chose encore mieux.

La viscosité du fluide, les frottements moléculaires, tout est là. 
Tout le travail se perd en frottements. Si le fluide était parfait, si 
l’ensemble formé par la proue et la poupe d’air pouvait se déplacer 
sans frottement dans la masse, il suffirait d’imaginer cet ensemble 
très allongé et très fuselé, et il avancerait en déplaçant les masses 
d’air rencontrées avec une lenteur aussi grande qu’on voudrait, de 
sorte que la résistance due aux forces vives serait aussi petite qu’on 
voudrait. Le corps une fois lancé conserverait indéfiniment sa vitesse.

M. Henri Poincaré, dans son livre « Science et Méthode » résume 
excellemment la question dans les termes suivants:

« On sait qu’un corps plongé dans un fluide éprouve, quand il est 
en mouvement, une résistance considérable, mais c’est parce que 
nos fluides sont visqueux ; dans un fluide idéal, parfaitement dépourvu 
de viscosité, le corps agiterait derrière lui une poupe liquide, une 
sorte de sillage ; au départ, il faudrait un grand effort pour le mettre 
en mouvement, puisqu’il faudrait ébranler non seulement le corps 
lui-même, mais le liquide de son sillage. Mais, une fois le mouvement 
acquis, il se perpétuerait sans résistance, puisque le corps, en s’avan­
çant, transporterait simplement avec lui la perturbation du liquide, 
sans que la force vive totale de ce liquide augmentât ».

Ainsi, pour calculer théoriquement le coefficient K, il faudrait 
étudier le mouvement des filets fluides heurtés par un plan mince 
carré, en établir les équations différentielles en tenant compte des 
frottements, et intégrer. C’est un problème qu’on ne sait pas résoudre
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en l’état actuel de l’analyse mathématique. Il est peu probable qu’on 
y arrive jamais.

Nous conclurons donc qu'on ne peut pas calculer théoriquement 
le coefficient K.

RÉSISTANCE DES CARENES.

Si, au lieu d’un plan mince, on prend des corps de divers profils, 
on trouve des résistances très différentes.

Les résistances varient dans le rapport de plus de 1 à 30 pour des 
corps ayant même maître couple, c’est-à-dire même projection sur 
un plan perpendiculaire au mouvement, et paraissant, par suite, être 
rencontrés par des cylindres d’air égaux.

Une surface concave donne une résistance plus grande qu’une 
surface plane. Poncelet supposait que la résistance était proportion­
nelle à l’étendue de la surface développée, mais Thibault a montré que 
l’augmentation est beaucoup plus rapide, et qu’elle atteint 20 à 23 °/ 
pour un arc de 20°, dont le développement n’est que de 4 % supérieur 
à celui d’un plan.

Le colonel Renard a indiqué les valeurs suivantes (1) ; il appelait 
coefficient de réduction d’une carène le rapport entre sa résistance 
et la résistance d'un plan orthogonal de même maître-couple :

(1). Comptes rendus de l'Ac. des Sciences, 24 mai 1904.

SURFACE
COEFFICIENT 

de 
RÉSISTANCE

COEFFICIENT 
de 

RÉDUCTION

Plan............................................................. 0,085 1
Sphère........................................................ 0,0135 0,1585
Demi-sphère concave................................. 0,109 1,283
Demi-sphère convexe................................. 0,0333 0,392
Cylindre transversal.................................. 0,0507 0,596
Corps fusiforme, allongement 2 (courbure 

parabolique symétrique)..................... 0,00623 0,0733 (Vu)
Corps fusiforme, allongement 3................ 0,00273 0,0321 (1/3i)

» » allongement 2 (marche
transversale)............................................ 0,0368 0,433

Résistance des
carènes
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M. Eiffel (1) a trouvé les résultats suivants :
Coefficient 

de résistance.
Coefficient 

de réduction.

Cylindre vertical à base circul., hauteur! rayon....... , 0,071 1
do do 2 rayons.... 0,069 0,97
d° d° 3 rayons.... 0,051 0,71

Cône circulaire, hauteur égale au diam, de la base.... 0,015 0,21
Demi-sphère concave de 1/16 de m2 de surf, projetée. 0,072 1,07

d° do de 0m,50 de diamètre............:. 0,084 1,14

M. Eiffel a également trouvé que deux plaques planes placées l’une 
derrière l’autre à distance convenable, ont une résistance totale 
moindre que celle d’une plaque seule.

L’expérience a montré que le minimum de résistance s’obtient 
avec les profils dits ce fuselés » très allongés, terminés à l’arrière par 
une pointe effilée. La forme de l’avant a relativement peu d’impor­
tance.

Il n’y a pas avantage à terminer l’avant en pointe; on peut le 
terminer sans grande augmentation de résistance par un demi-cercle,

FIG. 28. — Carène à forme 
fuselée.

et même par une partie plane. Par contre, 
la forme effilée de l’arrière ne saurait 
être trop soignée ; elle doit être à courbes 
très douces et à pointe très aiguë, pour 
que les deux masses d’air qui se-rejoi­
gnent ne se heurtent pas et ne créent pas

de remous (lig. 28).
L’effet du fuselage est, en effet, de supprimer les remous, et 

d’emprisonner, en quelque sorte, la poupe d’air et la proue d’air 
dans le solide; les filets d’air qui contournent le solide sont ainsi 
guidés suivant des courbes très douces, mettant en jeu des forces 
vives très faibles; l’air revient au repos aussitôt que le solide est 
passé ; tout se réduit à une question de frottements entre l’air et le 
solide. Lorsque le solide est lisse et poli, le frottement de l’air sur lui

(1) Recherches expérimentales sur la résistance de l'air, 1907.

Fig. 28. Carène à forme
fuselée



I I

est beaucoup moindre que le frottement de l’air sur l’air, qui se 
produit dans le cas de la proue et de la poupe d’air. Si même le corps 
était infiniment lisse, il y aurait avantage à l’allonger indéfiniment.

L’application du fuselage à un corps isolé de tous côtés conduit à 
la forme dite « pisciforme » ou « en cigare », que la nature a donnée 
aux poissons et aux oiseaux. On remarque nettement, chez les pois-, 
sons les plus rapides (requins, brochets), que le maître-couple est 
rapproché de l’avant.

Le même principe appliqué à une ligne ou à une surface conduit 
au profil cylindrique que nous retrouvons dans l’aile 
des oiseaux.

Voici quelques résultats d’expériences :
Pour un cylindre à profil fuselé (fig. 29) avec 

1 — 4,5 e, la résistance est égale à celle d’un plan 
divisée par 12,5 (Maxim). Pour^— 6e?, le coefficient 
de réduction est I : 30 (colonel Renard).

Fin. 29. 
Cylindre fuselé.

M. Louis Breguet a trouvé les chiffres suivants :

Fie. 30. — Cylindre court.

Cylindre court à base circulaire 
(fig. 30), hauteur double du diamètre: 
K = 0,032.

Le même cylindre muni d’une poupe 
en pointe : K = 0,011.

Cylindre long à base circulaire 
(fig. 31), hauteur égale à 50 fois le diamètre : K = 0,058.

Fie. 31. — Cylindre long.

Le même cylindre avec poupe (allonge­
ment 4) K = 0,009.

Le même cylindre avec poupe effilée 
et proue arrondie (allongement 5) : 
K = 0,007.

La prépondérance de l’influence de la 
poupe sur la proue montre l’erreur de

principe que constituent les coupe-vent qu’on met parfois à l’avant 
d’un mobile, d’une locomotive, par exemple. Ce sont les remous de

Fig. 29. Cylindre fuseléFig. 30. Cylindre courtFig. 31. Cylindre long
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l’arrière qu’il faut éviter ; un coupe-vent à l’arrière serait beaucoup 
plus efficace.

D'après Maxim, un profil pisciforme, présentant une extrémité 
arrondie et l’autre effilée, présente notablement moins de résistance 
(0,23) quand la partie arrondie est en avant que quand la pointe est 
en avant et la partie arrondie en arrière (0,59).

Les remarquables « spectres aérodynamiques », publiés par 
M. Riabouchinsky (4), ont jeté sur les phénomènes d’écoulement de 
l’air autour d’une carène une lumière nouvelle. Ces spectres sont 
obtenus en plaçant dans le courant d’air une feuille de papier recou­
verte de poudre de lycopode ; la poudre dessine des lignes et des 
ondulations qui donnent une idée très nette du mouvement de l'air. 
On remarque une proue d’air qui affecte la forme d’une demi-sphère 
presque régulière quel que soit le corps ; suivant que le corps a une 
forme plus ou moins favorable à l’écoulement de l’air, le diamètre de 
cette demi-sphère diffère ; ainsi pour un corps en forme de demi- 
sphère concave, le diamètre de la proue d’air est deux fois et demie 
supérieur à celui du corps.

INFLUENCE DE L'ACCÉLÉRATION

Dans l'étude de la fonction de la vitesse, nous avons toujours 
supposé la vitesse régulière et constante et un régime permanent 
établi.

Le mouvement restant toujours rectiligne, supposons que la vitesse 
soit variable ; qu'arrive-t-il? La résistance continue-t-elle à suivre la 
loi du carré des vitesses ? Ou bien dépend-elle de l’accélération ?

C'est là un problème mal résolu jusqu’ici, et sa complexité est 
telle qu’il restera probablement longtemps obscur. Supposons un 
corps au repos dans l’air; supposons-le ensuite, au bout d’un temps 
très court, brusquement animé d’une vitesse V; les filets d’air

(1) Bulletin de l'Institut aérodynamique de Koutchino, fasc. III, 1910.

Influence de
l'accélération
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commencent leur mouvement de contournement autour de lui, et ce 
mouvement n’atteint son régime régulier qu’au bout d’un certain 
temps ; d’autre part, la poupe et la proue d’air, qui accompagnent le 
corps, passent brusquement de l’état de repos à l’état de mouvement, 
et une certaine force vive est mise en jeu en un temps très court; 
comme l’a fait remarquer M. Poincaré, il faut une force supplémen­
taire au départ, pour établir le régime, et la résistance sera pendant 
un moment beancoup plus grande que celle qu’indique la loi du 
carré des vitesses. Par contre, une fois le régime établi, si on arrête 
le corps, la force vive de l’ensemble tend à continuer le mouvement ; 
notamment la poupe d’air, continuant sa lancée, vient pousser le 
corps en avant.

Des phénomènes du même genre se passent si, au lieu de partir du 
repos, le corps passe d’une vitesse à une autre, ou s’il change 
constamment de vitesse suivant une loi déterminée.

Il apparaît nettement que, quand le corps accélère sa vitesse, la 
résistance est plus grande que celle qui correspond au carré de la 
vitesse qu’il a un moment considéré, et que, lorsqu’il ralentit, la 
résistance diminue.

Une idée assez naturelle est d’admettre que la formule de la 
résistance doit contenir un terme dépendant de l’accélération, terme 
qui disparaît quand l’accélération est nulle. C’est ce qu’a essayé 
d’établir Didion, qui a proposé la formule suivante :

R = S( 0,036 + 0,084 V3 + 0,164 “—)

formule dans laquelle — est l’accélération, qui n’est autre que 

la dérivée de la vitesse par rapport au temps, le mouvement étant 
rectiligne.

L’existence d’un terme constant dans cette formule suffit à la faire 
rejeter. D’autre part, comme la résistance dépend de l’établissement 
d’un régime qui nécessite un certain temps, il s’ensuit que la résistance 
dépend, non seulement de la vitesse et de l’accélération au moment



considéré, mais aussi des mouvements effectués pendant toute une 
période de temps antérieure, d’une durée d’ailleurs difficile à 
définir (1 ) ; et il ne suffirait même pas d’introduire dans la formule les 
accélérations du second ordre, du troisième ordre, etc., qui sont les 
dérivées seconde, troisième, etc., de la vitesse ; car les mouvements 
antérieurs peuvent ne pas suivre une loi continue. En particulier, le 
corps peut partir du repos ou y revenir. Donnons-en un exemple 
facile à concevoir. Soit un corps lancé ; arrêtons-le brusquement. La 
poupe et la proue d’air, ainsi que toutes les autres masses d’air 
lancées à une certaine vitesse, tendent à continuer leur mouvement, 
et poussent en avant le corps qui vient de s’arrêter, comme un wagon 
vient heurter la locomotive qui le traînait. Le corps éprouvera donc 
une poussée d’arrière en avant, force qui ne sera pas nulle, bien que 
la vitesse et toutes ses dérivées soient nulles ; cette poussée persistera 
un certain temps et disparaîtra progressivement au fur et à mesure 
que le calme se rétablira. Dans ce cas, la force sera fonction non pas 
de la vitesse ni de ses dérivées, mais du temps.

Cet exemple fait voir combien une loi générale de la résistance de 
l’air serait difficile à établir.

Diverses expériences ont été faites en vue de déterminer cette loi.
Lilienthal a indiqué, en 4889 (2), que la résistance éprouvée par 

des ailes battantes peut être 20 fois plus considérable que la résistance 
éprouvée en mouvement uniforme. Ce fait, très important au point 
de vue du vol des oiseaux, a été constaté également dans une mesure 
moindre, par d’autres observateurs.

Goupil a décrit en 1904 (3) une expérience sur un sustentateur à 
ailes, de laquelle il conclut que la pression moyenne dans un mouve- 
ment alternatif en arc de cercle est plus grande que dans le mouve­
ment uniforme et rectiligne.

(1) En réalité, un régime n’est parfaitement établi qu’au bout d’un temps 
infini.

(2) LILIENTHAL, Der Vogelflug als Grundlage der Fliegekunst.

(3) Bull, technol. des Anciens Elèves Arts-et-Métiers.



I al 1

Riabouchinsky (4) décrit une expérience qu’il a faite sur un 
plan B se mouvant sur une tige, par un mouvement commandé par 
—une bielle A B, le point A décrivant 

/ B unecirconférenceuniforme (Fig.32).
0 / Le plan B était pliant de façon a

- — , . n’offrir de résistance que dans un
FIG. 32. - Expérience pour me- 1

(1) Bull, de l'Inst. aérodyn. de Koutchino, fascicule II, 1909.

surer la résistance de l’air dans un sens. En calculant la loi du mou- 
mouvement alternatif. T.

vement du plan B, en lui appliquant 
la loi du carré de la vitesse et en intégrant, on obtenait un certain 
travail théorique. D’autre part, on pouvait mesurer le travail réelle­
ment dépensé sur l’arbre 0 ; de la comparaison de ces deux travaux, 
on déduisait le coefficient moyen de résistance de l’air applicable au 
mode de mouvement considéré: on a trouvé que ce coefficient était 
1,3 fois plus grand qu’en mouvement uniforme. Les expériences de 
ce genre sont très peu précises, et il convient d’attendre de nouveaux 
résultats avant de tirer des conclusions définitives.

Elles suffisent cependant à établir que la loi du carré des vitesses 
n’est applicable qu’en cas de vitesse sensiblement constante et qu’elle 
ne peut pas servir à étudier les problèmes où la vitesse est rapidement 
variable. Notamment, on n’a pas le droit de l’appliquer à l’étude du 
mouvement d’un corps pesant dans l’air en tenant compte de la 
résistance de l’air; elle ne peut servir qu'à chercher quel est le 
régime qui tendra à s’établir.

Fig. 32. Expérience
pour mesure la
résistance de l'air dans
un mouvement
alternatif
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CHAPITRE III.

LES LOIS DE LA RÉSISTANCE DE L'AIR (suite).

Loi des plans minces pour l’attaque oblique. — Fonction de l’angle 
d’incidence. — Influence de l’allongement. — Direction de la réaction. 
— L’auto-rotation. — Expression des composantes de la poussée.

LOI DES PLANS MINCES POUR L’ATTAQUE 
OBLIQUE.

Lorsque le plan mince se déplace obliquement, en faisant avec la 
direction du mouvement un certain angle i appelé angle d’incidence 
ou angle d’attaque (1), il y a lieu d’examiner les deux dernières lois 
formulées par Newton, savoir:

40 La résistance est normale au plan. — Cette loi est seule­
ment approchée ; nous l'admettons provisoirement comme première 
approximation ; nous y reviendrons ci-après.

2° La résistance est proportionnelle au carré du sinus de 
l’angle d’incidence. — Cette loi est complètement inexacte, et n’a 
aucun rapport même lointain avec la réalité.

Elle conduit à écrire la résistance sous la forme:

R = KSV2 Sin2 i.

FONCTION DE L’ANGLE D’INCIDENCE.

D’une manière générale, si la résistance orthogonale est exprimée 
par la formule

Rso° = KSV3,

(1) Il ne faut pas confondre l'angle d’attaque avec l'angle d’incidence du bord 
d'attaque, lequel n’a pas d’intérêt en aviation. Dans le cas d’un plan il n’y a pas 
de confusion possible; dans le cas d’une surface arquée nous définirons plus 
loin ce qu’on appelle l’angle d’attaque.

Chapitre III. Les lois de
la résistance de l'air
(suite)

Loi des plans minces
pour l'attaque oblique
Fonction de l'angle
d'incidence
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on peut mettre la résistance dans l’attaque oblique sous la forme :

R. = KSV2 f (0)
f(i) étant une fonction de l’angle d’attaque i.

D’où :

A= f@
Ego®

La fonction f(i) représente la variation de la résistance, lorsqu’on 
change l’inclinaison du plan. On admet, bien que ce ne soit pas 
certain, que f(i) n’est fonction que dei et ne dépend pas de S ni de V.

Nous commencerons par examiner ce qui se passe pour un plan 
carré ; nous verrons ensuite que la fonction f(i) n’est pas la même 
pour un plan allongé en forme de rectangle.

On a admis longtemps que la fonction f (i) était de la forme sin2 i. 
Faute d’expériences précises, on se contentait d’un raisonnement 
théorique dû à Newton.

Voici ce raisonnement, qui est très tentant et que la plupart des 
théoriciens ne manquent pas de faire quand ils commencent à aborder 
la question.

Soit un plan A (fig. 33) qui se déplace à la vitesse V, sous l’angle 
d’attaque i. Le mouvement peut être considéré comme étant la

Attaque oblique.

Vni- 
C

Fig. 33.

résultante de deux mouvements, l’un ortho­
gonal de vitesse AC, l’autre tangentiel de 
vitesse AD. Le mouvement tangentiel AD 
ne produit « évidemment » aucune réaction 
normale, et peut être négligé ; tout se 
passe donc comme si le plan n’était animé 
que d’un mouvement orthogonal de vitesse 

AC, auquel on applique la loi :

R = K.S. AC*
et, comme AC == V Sin i:

R = KSV2 Sin* i.

Si cette loi était exacte, la sustentation oblique exigerait plus de 
travail que la sustentation orthogonale.

Fig. 33. Attaque
oblique
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unité de poids et par seconde, un travail

En effet, nous avons vu que la sustentation orthogonale exige, par 
T 
P

la vitesse de refoulement nécessaire à la sustentation ; et, comme on 

a P = KSV2, on tire: T=v= VP.
P KS

Dans la sustentation oblique (fig. 34), le corps est soutenu par la 
composante verticale P de la réaction R ; le travail à effectuer consiste 

à vaincre la composante retardatrice F, et 
s’exprime par FV. On aurait, d’après la loi 
du sinus carré :

R = KSV2 Sin % 
P = R Cos i 
F = R Sin i.

exprimé par V, Vétant

FIG. 34.
Sustentation oblique.

Le travail T par seconde serait :

T = FV

En éliminant R, V et F on trouve facilement:

p3TS — _____
-, KSCosôi

T
Et pour le travail par unité de poids - :

TVE
P KS ycosi

On voit que le travail est le produit de 2 termes, l’un égal au 
travail dans la sustentation orthogonale, l’autre qui contient un cosinus 
en dénominateur, et est par conséquent plus grand que l’unité. Le 
travail est toujours plus grand que le travail dans la sustentation 
orthogonale, mais il se rapproche indéfiniment de ce dernier quand 
cos i tend vers 1, c’est-à-dire quand l’angle d’attaque devient infini­
ment petit.

Mais il faut en outre considérer que la translation de plus en plus 
rapide nécessite un travail de pénétration qui va en croissant quand 
l’angle d’attaque diminue.

Fig. 34. Sustentation
oblique
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En résumé, la sustentation oblique serait donc désavantageuse. 
Or, ce résultat est contredit par les faits ; les oiseaux dépensent visi­
blement moins de travail quand ils ont acquis une certaine vitesse 
que pendant l’essor ; les planeurs sans moteur ont une vitesse 
verticale de chute beaucoup moins grande lorsqu’ils sont animés d'une 

'vitesse de translation que lorsqu’ils tombent verticalement.
Le raisonnement qui aboutit à la loi du sinus carré est faux, en ce 

qu’il ne tient pas compte du mode d’écoulement de l’air; ce n’est 
pas précisément la décomposition de la vitesse qui est illégitime, c’est 
le fait de négliger la composante tangentielle et de croire qu’elle 
n’influe pas sur le phénomène. Elle change au contraire du tout au 
tout le mode d’écoulement de l’air. Il y a longtemps que Maxim a 
remarqué que si on considère un plan placé dans un courant d’air 
orthogonal, et si on le déplace dans son plan, la pression augmente.

Wenham (1) a constaté le même phénomène pour une plaque 
plongée dans un courant d’eau.

Athanase Dupré (2) et Paul la Cour (3) ont eux aussi remarqué 
cette particularité.

Riabouchinsky (4; a fait des expériences qui mettent le phénomène 
en évidence. Il a pris un double secteur plat découpé dans un disque 
(qu’on se figure une hélice à deux branches dont le pas serait nul), 
et pouvant tourner autour de son axe.

Il a mesuré la résistance éprouvée par ce secteur dans un courant 
d’air parallèle à l’axe, d’abord quand le secteur étaitau repos, ensuite 
en le faisant tourner dans son propre plan, autour de son axe, ce qui 
ne changeait pas la composante normale de la vitesse relative. Il a 
trouvé que la pression croissait très rapidement avec la rotation du 
secteur, et qu’elle finissait par se rapprocher beaucoup de la pression 
qui s’exercerait sur un disque plein.

L’angle au centre du secteur était de 18°, la surface des deux ailes

(1) Wenham, on aerial locomotion, Aeronautical Society, 1866.
(2) Athanase Dupré, Théorie mécanique de la chaleur, 1869.
(3) Poul la Cour, Forsog med smoa Môllenmodeller; Ingenioren, 1897
(4) Bull. Institut aérodyn. de Koutchino. fasc. I, 1906.
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était donc 1/10 du cercle total. Le diamètre était 0m,30. Voici les 
résultats obtenus dans un courant d’air de 3m par seconde, pour 
différentes vitesses de rotation du secteur, ainsi que pour le secteur 
en repos.

NOMBRE DE TOURS

du secteur

PAR SECONDE

PRESSION

RAPPORT DE LA PRESSION 

avec

• CELLE DU SECTEUR AU REPOS

0,0 0,0062 1
3,0 0,0085 1,37
3,4 0,0094 1,52
3,5 0,0096 1,55
4,1 0,0110 1,77
4,2 0,0113 1,82
4,3 0,0114 1,84
4,7 0,0133 2,15
5,0 0,0135 2,20
5,1 0,0140 2,26
5,1 0,0144 2,32
5,2 0,0144 2,32
5,3 0,0155 2,5
5,4 0,0155 2,5
6,6 0,0213 3,4
7,4 0,0253 4,1
8,6 0,0266 4,3
9,6 0,0317 5,1
9,9 0,0325 5,2

12,6 0,0380 6,1
14,3 0,0432 6,9
15,2 0,0431 7,0
18,9 0,0470 7,6
20,0 0,0452 7,3
21,3 0.0486 7,8
22,7 0,0497 8,0
2.% 0,0508 8,2
25,8 0,0528 8,5
29,9 0,0539 8,7
31,4 0,0542 8,8
38,9 0,0604 9,8

Si on représente ces résultats par une courbe, on trouve que la 
courbe paraît tendre vers la valeur qui représente la pression sur le 
disque plein (fig 35).
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Ainsi la pression devient dix fois plus forte que sur le secteur au 
repos par le fait de son déplacement tangentiel.

En prenant des secteurs d’angle plus grand ou plus petit, on tend

FiG. 35. — Pression sur un secteur 
en rotation.

10

1 : 
, $

1S 
31 43

toujours vers la pression 
du disque plein, de sorte 
qu’avec de petits sec­
teurs, l'augmentation de 
pression est relativement 
encore plus grande (avec 
un secteur de 44° 1/4 
la pression s’est accrue 
dans le rapport de 1 à 
13).

L’inexactitude de la loi 
du sinus carré étant reconnue, on a cherché à lui substituer d’autres 
formes de la loi, et tout d’abord la loi du sinus simple :

f(i) = Sin i.
D’où :

Ri = KSV2 Sin i.

Sans être exacte, cette loi, proposée par Von Lôssl (1), commence 
à se rapprocher de la réalité.

Si on cherche, en partant de cette loi, le travail nécessaire à la 
sustentation oblique, on a (voir fig. 34) :

R = KSV% Sin i
P = R Cos i 
F=R Sin i 
T = FV.

Eliminant R, V et F, on trouve :

-= 12
P VKS

V Sin i 

y cos i

(1) Von Lôssl, Die Luftwiderstandgesets, Vienne, 1876.

6

Fig. 35. Pression sur
un secteur en rotation
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Le travail unitaire est le produit de deux termes dont l’un est 
toujours égal au travail dans l’attaque orthogonale, mais dont l’autre 
tend vers zéro avec i ; de sorte que le travail tend vers zéro quand 
l'angle d'attaque.diminue, c’est-à-dire quand la vitesse augmente, 
fait conforme à l’expérience.

Et s'il n’y avait pas à vaincre la résistance de pénétration qui 
croît avec la vitesse, on pourrait dire qu’en augmentant la vitesse on 
peut rendre le travail de sustentation aussi petit qu’on veut.

On peut, par un raisonnement simple, légitimer l’emploi d’une 
formule telle que :

f() = Sin i

au moins pour les très petits angles, et sous réserve de choisir conve- 
nablement le coefficient K à introduire ensuite dans la formule de la 
résistance.

En effet, la fonction f(i), qui s’annule pour i= 0, peut toujours 
se développer en série suivant les puissances entières de i ou d’une 
fonction quelconque de i s’annulant pour i == 0, le sinus, par 
exemple. On peut donc écrire :

f(i) = a Sin i+b Sin2i + C SinBi +..

et pour les petits angles, les termes autres que le premier devenant 
négligeables, il reste :

f (i) = a Sin i

d’où pour la formule de la résistance :

R= Ka SV2 Sin i.

C’est bien la loi du sinus; mais le coefficient K est devenu un 
autre coefficient Ka différent de K, et qui ne serait le même que si a 
était égal à I, ce qui serait un effet du hasard. Telle est la raison pour
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laquelle la loi du sinus, qu’on applique souvent en pratique, pour les 
petits angles, à cause de sa simplicité, a brouillé les idées de beaucoup 
de personnes sur le coefficient K, et leur a fait croire que la valeur 
de ce coefficient était tantôt 0,07, tantôt dix fois plus ; c’est parce 
qu’elles négligeaient d’introduire dans la formule du sinus un coeffi­
cient a qu'elles supposaient a priori être égal à l’unité. Cette hypothèse 
venait du désir d’étendre la loi du sinus à tous les angles jusqu’à 90°; 
et en effet, pour qu’elle soit exacte pour i == 90°, il faut qu’on ait 
a=1.

Mais celle extension ne doit pas être faite, la loi du sinus étant 
spéciale aux petits angles.

On peut remarquer, en passant, que la loi du sinus carré serait une 
anomalie, en ce qu’elle exigerait que, dans le développementen série, 
le premier terme en sin i disparaisse, a se trouvant égal à zéro.

Pourtant, dans la formule de la résistance, la fonction de la vitesse, 
qui est V2, suppose bien aussi que l’on néglige le terme en V; mais 
ce n’est légitime que parce que nous ne considérons pas les très 
petites vitesses. Pour les vitesses de quelques centimètres par 
seconde, ainsi que nous l’avons dit, ce terme en V n’est pas négli­
geable et devient, au contraire, prépondérant.

On peut aussi, en développant f (i) en série suivant les puissances 
dei:

f.(i) = ai + bi? + cia + ...

aboutir pour les petits angles à la loi : R=KSVi.
Cette dernière loi est fréquemment employée en aviation, toujours 

à cause de sa simplicité; elle peut d’ailleurs se déduire de la loi du 
sinus en remarquant que, pour les petits angles, l’angle diffère très 
peu de son sinus, et que les deux formules sont pratiquement équi­
valentes jusqu’aux angles voisins de 45 degrés, c’est-à-dire pour les 
angles utilisés en aviation.

La loi du sinus n’est qu'une approximation valable pour les petits 
angles. On a cherché à établir une formule plus générale.
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Le colonel Duchemin a donné, en 1842 (4), la formule suivante :

o 
91 

s 
.S 

a+II

qui, pour les petits angles, se réduit à 2 sin i.
On a généralement attaché à cette formule une importance qu’elle 

est loin d’avoir. Elle n’est pas basée sur des expériences, mais sur un 
raisonnement théorique plus que discutable pour les grands angles 
et certainement faux pour les petits angles ; de plus, l’auteur n’a fait 
aucune hypothèse sur la forme de sa surface, et n’a pas dit si c’était 
un carré, un rectangle ou toute autre figure. Il a ensuite soumis sa 
formule au contrôle de l’expérience et il déclare lui-même ceci : 
« Celte valeur est conforme à l’expérience depuis i == 90° jusqu'à 
i = 45°, mais elle en diffère sensiblement, tantôt en plus, tantôt en 
moins, pour des angles d’incidence fort aigus. »

Duchemin, dans son ouvrage, constate que ni ses expériences, ni 
celles de Vince, de Bossut et de Langsdorff, qu’il rappelle, ne corro­
borent sa formule (2). Pour l’angle de 10°, l’écart est du simple au 
triple, et aucune vérification n’est mentionnée pour des angles 
inférieurs à 10° ; double raison pour ne pas appliquer la formule aux 
petits angles, ce qui serait une extrapolation. Les expériences plus 
récentes de Langley ont également abouti à des divergences notables 
avec la loi de Duchemin. La formule de Duchemin n’a probablement 
été prise en considération que parce que personne n’en proposait 
d’autre; elle doit être absolument proscrite dans tous les calculs 
relatifs à l’aviation.

(1) Duchemin, Recherches expérimentales sur les lois de la résistance des 
Alu ides.

(2) A titre de curiosité, mentionnons que, pour rendre sa formule conforme 
aux expériences, Duchemin avait imaginé de lui appliquer un terme correctif et 
de l’écrire :

2 Sin i / Sin i Cos i Cos 2 0/( = 1452; (1 - T8~ + 3,52)
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Le colonel Renard (4), par la discussion des anciennes expériences 
de Vince, Hullon et Thibault, a été conduit à la formule :

f (i) = Sin ila — (a — 1) Sin 2 i] 

a étant un nombre plus grand que 1 et probablement égal à 2 ; dans 
ce dernier cas, la formule devient :

f(i) — Sin i [2 — Sin 2 i].

Beaucoup d’autres formules ont été proposées. Lord Rayleigh (2) 
a donné la suivante :

— 2 . Sin i 409 54+ Sini

qui, a priori, ne peut convenir puisque pour i= 90° le second 
membre diffère de l’unité. Pour satisfaire à cette condition, Gerlach 
prit :

f( = (+7) Sini
. 4 + z Sin i

formule qu’on emploie fréquemment en Angleterre et en Allemagne. 
Dans les cours de l’Ecole d’application du Génie maritime, on a 

longtemps adopté la formule donnée par Joëssel, ingénieur de la 
marine, à la suite d’expériences faites dans la Loire à Indret :

f(E ___ Sini___7 1 0,39 + 0,61 Sin i

Indiquons encore les formules suivantes :

n T . 2 (1 + Cos i) Sin iDe Louvrie 3): -— ---------------------
1 + Cos i + Sin i

(1) Colonel Renard, Revue de l'Aéronautique, janv. 1889.

(2) Lord Rayleigh, On the resistance of fluids. Philos, mag. 1878.

(3) De Louvrié, Revue de l'Aéronautique, 1890.
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Goupil: 2 Sin i—Sin 2 2

Hullon : Sin i ü,as Cos i — 1)

ni 1> 2 Sin i / 0,62 Sin :)
1 Y Sin i 1 1 Sin i/

Weissbach : Sin ‘ i.

Aucune de ces formules ne donne d’ailleurs satisfaction.
Les expériences les plus récentes et les plus précises, celles de 

Wright, Riabouchinsky, Eiffel et Rateau, ont mis en lumière un fait 
remarquable qui n’avait pas frappé les observateurs précédents, 
lesquels, s’ils l’avaient remarqué, l’avaient attribué à des erreurs 
d’expérience.

La courbe représentative de la fonction f(i), parlant de 0 pour 
i= 0, passe par un maximum voisin de 4 aux environs de 30°, 
puis redescend nettement aux environs de 40°, pour remonter ensuite 
à la valeur 1 pour 90°. Ce fait paraît avoir été établi pour la première 
fois par les frères Wright en 4901 ; M. Eiffel en 1907 (1), puis 
M. Riabouchinsky en 1909 (2) l’ont également constaté; ne voulant 
pas, sans doute, considérer la chose comme certaine, ils ont simple­
ment admis que la fonction de i reste, pour les grands angles, très 
voisine de l’unité.

M. Eiffel a proposé de la représenter, pouri < 30°,par :

/0-

(fonction qui devient égale à l’unité pour i— 30°); puis, entre 
30° et 90°, par :

f(l

(1) Eiffel, Recherches expérimentales sur la résistance de l'air, 1907.
2) Riabouchinsky, Bull. Institut aérodyn. de Koutchino, fasc. n, 1909.
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M. Riabouchinsky a proposé, dans le même esprit, pour i < 45°:

f(i)= Sin 2 i

puis, entre 45° et 90° :

t() = 1

Ces'diverses formules sont résumées dans le tableau ci-contre 
(fig. 36). On voit qu’aucune ne rend bien compte de la réalité.

. V
t

2

oo •---===_______ _______ _______ _______ _______ _______
10 10° 2o‘ 30* 40° 50* 6o° 7o* 80‘ 20

Fie. 36. — Diverses lois proposées pour la fonction de l'angle d’incidence.

C’est M. Rateau qui, en 1909 (1). grâce à sa méthode d’expéri­
mentation plus précise que celle de ses devanciers, a indiqué la 
véritable allure du phénomène. Il a opéré sur un plaque plane de

(1) Rateau, Aérophile, 1er août 1909, et Comptes-Rendus.de l’Académie des 
Sciences, 26 juillet 1909.

Fig. 36. Diverses lois
proposées pour la
fonction de l'angle
d'incidence
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300 X500 (donc pas tout à fait carrée; le bord d’attaque était un 
des grands côtés. Les résultats numériques ne sont donc pas absolu­
ment applicables à un plan carré, mais le sens du phénomène reste).

Pour les petits angles, jusqu'à 1 5 ou 20”, la pression est propor­
tionnelle à l’angle d’incidence, ou, ce qui est à peu près la même 
chose, à son sinus.

A partir de l’angle de 20°, la courbe ne monte plus aussi rapide- 
ment, elle arrive même à redescendre (fig. 37).

Dans le voisinage de 30°, la courbe s’interrompt pour reprendre 
plus loin, à partir de 36°, avec une 
allure régulière, mais fort différente 
de la précédente

Entre 29 et 36°, l’on peut trouver 
des points différant d’une expérience 
à l’autre, et l’on constate que le cadre 
supportant la plaque sautille, ce qui 
indique bien qu’il ne s’établit pas de 
régime stable; le mode d'écoulement 

° w' 3o° 45 «•• 75 90°
Fig. 37. — Fonction de l'angle 

d'incidence d'après M. Rateau.

se transforme continuellement suivant l’un ou l’autre régime.
Ainsi, la courbe se subdivise en deux tronçons complètement 

distincts l’un de l’autre. Le premier, relatif aux petits angles, 
correspond vraisemblablement à un régime d’écoulement dans lequel 
les filets vont tous dans le même sens (c’est le seul régime intéressant 
pour l’aviation), tandis que le deuxième, relatif aux grands angles, 
correspond à un régime très différent du premier; dans ce régime, 
analogue à ce qui a lieu lorsque la plaque est exactement normale à 
la direction générale du courant, il y a rebroussement d’une certaine 
quantité de filets d’air au bord antérieur de la plaque. Dans la région 
avoisinant la jonction des deux courbes, les régimes sont instables, 
ils se transforment facilement l'un dans l’autre.

« Ces résultats, dit M. Rateau. montrent que la continuité que, 
jusqu’à présent, on a supposée dans ces phénomènes, pour des incli­
naisons croissantes de 0 à 90°, est complètement erronée ».

Il n’y a donc pas lieu de chercher à représenter le phénomène par

Fig. 37. Fonction de
l'angle d'incidence
d'après M. Rateau
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une formule unique valable de 0 à 90°; Eiffel et Riabouchinsky, 
qui ont proposé deux formules différentes, étaient dans la bonne 
voie. « Le principal défaut de notre formule, écrit Riabouchinsky, 
est qu’elle n’est pas continue. » Ce n’est pas un défaut, au contraire, 
c’est une preuve de clairvoyance.

Du reste, rien ne prouve qu’on puisse arriver à représenter conve­
nablement le phénomène par des formules simples, même en 
employant deux formules.

INFLUENCE DE L’ALLONGEMENT

Dans l’attaque orthogonale, la résistance d'un rectangle diffère 
relativement peu de celle d’un plan carré; il n’en est pas de même 
dans le cas de l’attaque oblique, où la différence est très importante. 
La résistance éprouvée par un rectangle se présentant par le grand 
côté (tel que les ailes des oiseaux dont l’envergure est très grande par 
rapport à la largeur), est notablement augmentée, surtout aux faibles 
incidences ; l’augmentation peut aller jusqu’à 2 fois et demie.

L’avantage d’une grande envergure est donc considérable.
Par contre, si le rectangle se présente par le petit côté, la résistance 

est diminuée de plus d’un tiers.
Ce fait s’explique, si on considère le mode d’écoulement de l’air,

FrG. 38. — Mode d'écoulement des filets 
fluides, d'après Duchemin.

dont une partie plus ou 
moins grande s’écoule par 
les côtés.

Duchemin a indiqué dans 
quel sens les filets d’eau 
s’écoulent à la rencontre 
d’une surface plane (fg.38); 
pour l’air, le phénomène 
est analogue.

Dans l’attaque orthogo­
nale, sur un cercle, l’écou-

lement est radial, ce qui est évident par raison de symétrie. Sur un

Influence de
l'allongement

Fig. 38. Mode
d'écoulement des filets
fluides, d'après
Duchemin
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carré ou un rectangle, l’écoulement est perpendiculaire aux côtés, 
et les lignes de séparation se rapprochent des diagonales.

Dans l’attaque oblique, il y a une zone de rebroussement limitée 
par une ligne de séparation courbe; sur les côtés, l’air s’écoule 
obliquement suivant le trajet de moindre résistance.

On conçoit que, sur un rectangle allongé perpendiculairement au 
mouvement, ces zones d’écoulement latéral ont relativement moins 
d’importance, et que la pression moyenne doit augmenter.

M. Tatin a proposé de représenter l’influence de l’allongement par 

la formule V, l et h étant les deux côtés du rectangle, et l le 

côté perpendiculaire au mouvement. Cette formule n’est pas accep­
table, d’abord parce que la fonction augmenterait indéfiniment avec 7, 
ce qui n’est pas conforme à la réalité, et ensuite parce- qu’elle ne

FIG. 39. — Influence de l'al- 
longement d'après Langley.

11। 33
 2

dépend pas de l’angle d’attaque, alors 
qu’il est constaté que l’influence de 
l’allongement est d’autant plus grande 
que l’angle d’attaque est plus petit.

Langley a fait des expériences sur trois 
plans de même superficie: un carré de 
305 X 303 m/m, un rectangle de 152 
X 61 0 attaquant l’air par le petit côté, et 
un rectangle de 4 22 X 762 attaquant 
l’air par le grand côté. Les courbes ci- 
contre (fig. 39) représentent la résistance 

éprouvée aux différents angles d’attaque.
M. Soreau a indiqué une formule générale destinée à rendre 

compte des résultats trouvés par Langley. Si on appelle m un terme 
qui caractérise l’allongement et qui est exprimé par :

I—I
272 = - ---------9
l h

on remarque que m == O pour un plan carré, m =1 pour 
un rectangle indéfiniment allongé dans le sens perpendiculaire au 
mouvement, et m = — 4 pour un rectangle indéfiniment allongé 
dans le sens du mouvement.

Fig. 39. Influence de
l'allongement d'après
Langley
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La fonction de l’angle d’incidence i et de l’allongement m est 
exprimée par M. Soreau sous la forme suivante :

1 — m tg i 
f(m, — Sin i 1 + 1 2 m . )

- + —— tg i+2tg2 i_ (1 m)2 11 m _

Cette formule se réduit à celle de Duchemin pour m = 0, 
c'est-à-dire dans le cas du plan carré. Pour un plan très allongé, 
dans le sens du mouvement, elle se réduit à :

J (i) — Sin i

Pour un plan très allongé dans le sens perpendiculaire au mouve­
ment, cas qui intéresse particulièrement l’aviation, elle devient :

/ (i) = Sin « [1 -t- --------- 1-gi----------1 
L 0,25 — tg i+ 2 tg2 i

L'influence de l’allongement s’atténue progressivement lorsque 
l’angle d’attaque augmente, pour disparaître tout à fait dans l’attaque 
orthogonale, pour laquelle la fonction est égale à 4, quelque soit m. 

Aux faibles angles d’attaque, on peut donner à la formule la forme 
approchée suivante :

f (m. i) = Sin i [ +( + m)4]

Le coefficient de Sin i varie alors de 1 (plans très allongés dans le 
sens du mouvement) à 5 (plans très allongés dans le sens perpendi­
culaire au mouvement) en passant par 2 pour le plan carré. En 
particulier, pour le cas qui intéresse particulièrement l’aviation, et 
pour un rectangle très allongé, on obtient :

f(i) = 5 Sin i

M. Soreau, dans son Mémoire intitulé : Etat actuel et Avenir de 
l’Aviation (I 909), a donné dans un tableau les valeurs du coefficient
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de Sin i pour divers allongements et pour divers angles d’attaque. 
Nous en extrayons ci-dessous quelques chiffres, indiquant le sens 
général de la loi.

Coefficient d’influence de l’allongement.

i
4=1 

(carré; 
m = 0

1,22

0,1

1,5

0,2

1,86

0,3

2,33

0,4

3

0,5

4

0,6

5,66

0,7

9

0,8

19

0,9

CO

I

00 2 2,21 2,44 2,70 2,96 3.25 3,56 3,89 4,24 4,56 5
2° 2 2,20 2,40 2,62 2,85 3,09 3,34 3,57 3,84 4,10 4,36
4° 1,99 2,17 2,36 2,54 2,74 2,93 3,12 3,30 3,47 3,65 3,82
6° 1,98 2,14 2,30 2,46 2,62 2,77 2,91 3,06 3,16 3,27 3,37
80 1,96 2,10 2,2% 2,37 2,50 2,61 2,71 2,80 2,88 2,94 3

10° 1,94 2,07 2,19 2,29 2,38 2,46 2,53 2,59 2,63 2,67 2,69
120 1,92 2,03 2,13 2,21 2.27 2 32 8

 
ci 2,40 2,42 2,42 2,42

Le graphique ci-contre montre comment varie le coefficient de 

5

4
0

0 2 6° ,8°, 10° (24
ag d. Un&OAAce

Fie. 40. — Coefficient d’influence 
de l'allongement.

Sin i suivant l’allongement, pour 
les divers angles d’incidence.

On voit clairement l’avantage 
qu’il y a à adopter des plans 
sustentateurs allongés ; mais il 
n’y a pas avantage sérieux à 
augmenter l’allongement au-delà 
de 5 ou 6. D’ailleurs, dès que 
l'angle d’incidence dépasse 8°, 
l’influence de l’allongement ne se 
fait plus beaucoup sentir.

DIRECTION DE LA REACTION

Nous avons dit que la loi de Newton, énonçant que la réaction de 
l’air est normale au plan, n’était qu’approchée.

Il est vraisemblable que cette loi serait rigoureuse s’il n’y avait pas

Direction de la réaction
Fig. 40. Coefficient
d'influence de
l'allongement
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de frottements. En effet, sans frottements on ne peut pas concevoir 
de pressions autres que des pressions normales. Supposons une 
pression A D sur un plan P (fig. 4 J). Si elle n’est pas normale, elle 
peut se décomposer en une pression normale A B et une force tangen- 

tielle A C. Cette dernière ne pourrait agir sur 
* la surface P, puisque nous supposons le frotte-
* ment nul ; elle n’agira donc que sur la masse 

/7 des molécules d’air, et aura pour effet de 
/ modifier leur vitesse. L’action sur le plan se 
c bornera à la seule composante normale AB.

FC 4i__ Réaction Mais les frottements existent ; à la pression 
de l'air dans l'attaque 
oblique. normale A B va donc s’adjoindre une compo­

sante tangentielle AC plus ou moins grande, 
et dirigée dans le sens de l’écoulement de l’air. De sorte que la 
pression sera en définitive A D, résultante de A B et A C, légèrement 
oblique et située, semble-t-il, en arrière de la normale A N.

C’est ce qui a eu lieu, en effet, pour les petits angles d’attaque.
Mais pour les grands angles d’attaque, il se

-/N passe exactement le contraire : la réaction A D 
11 est dirigée en avant de la normale AN, ce qui 

// montre l’existence d’une composante AC dirigée 
---- » 7 en sens contraire du courant d’air.
----? Ce résultat, absolument paradoxal au premier 

enVanacla Rentine: abord, a été mis en évidence par les expériences 
faites à l’Institut de Koutchino, à propos des 

phénomènes dits d’auto-rotation.

L’auto-rotation. — L'auto-rotation a été découverte par Patrick 
Alexander, qui, au IVe Congrès international d’Aérostation scienti­
fique h Saint-Pétersbourg, a montré l’expérience suivante : une 
planchette taillée en forme de demi-cylindre peut tourner librement 
autour d’un axe passant par son milieu. Il y a donc symétrie complète 
autour de cet axe. Lorsqu’on expose perpendiculairement au vent le 
côté plat de la planchette, elle reste donc immobile. Mais si on lui

Fig. 41. Réaction de
l'air dans l'attaque
oblique

Fig. 42. Réaction en
avant de la normale
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imprime un mouvement de rotation, elle continue indéfiniment à 
tourner. Un phénomène analogue a été observé par Poul La Cour en

FIG. 43. — Expérience de 
Patrick Alexander.

1897, sur un moulinet à ailes concaves 
mais symétriques exposées au vent sans 
inclinaison.

M. Riabouchinsky a décrit (1) les 
expériences systématiques qu’ilaentre- 
prises en vue de déterminer les lois du 
phénomène. Il a constaté que des pla­

ques minces planes sont soumises au même phénomène qu’il a 
appelé l'auto-rotation. Ses expériences, faites dans le tube de 
1m20 de diamètre, ont porté sur des doubles secteurs, d’angle 
variable, découpés dans un: cercle de 30 cm, de diamètre. On 
mesurait la vitesse de rotation prise par la plaque et la pression subie, 
ainsi que la vitesse du courant d’air. Pour éliminer les erreurs 
systématiques pouvant provenir d’une dissymétrie du modèle, on 
faisait sur chaque secteur quatre expériences, deux en tournant dans 
un sens, et deux dans l’autre sens. •

Les résultats de ces expériences sont résumés dans les lois sui­
vantes :

Lois de l'Auto-Rotation

1. Un secteur plan tournant librement autour d'un axe perpendi­
culaire a son plan, et frappé par un courant aérien parallèle à l’axe, 
continue à tourner lorsqu’il a reçu une impulsion initiale.

2. Un disque plein ne tourne pas.

3. Les vitesses de rotation sont proportionnelles à la vitesse du 
courant aérien.

4. La pression subie par le secteuren mouvement est plus grande 
qu’au repos.

(1) Bull, de l'Institut de Koutchino, fasc. i, 1906.

L'auto-rotation
Fig. 43. Expérience de
Patrick Alexander
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5. La pression sur le secteur animé d’un mouvement d'auto-rola- 
lion est proportionnelle au carré de la vitesse du courant.

G. Les coefficients de rotation et de résistance passent par un 
maximum lorsque la somme des angles au centre du secteur est de 
450 (deux secteurs de 22° 1/2).

La vitesse de rotation de la plaque étant proportionnelle à la vitesse 
du courant aérien, il en est de même pour la vitesse périphérique. 
Mais celle-ci peut dépasser de beaucoup la vitesse du courant aérien ; 
pour les secteurs de 22° 4/2, la vitesse périphérique a été égale à 
celle du courant multipliée par 2,8.

En expérimentant avec des secteurs de même angle mais de dia­
mètres différents, on a constaté que les vitesses périphériques sont 
sensiblement constantes si la vitesse du courant d’air est la même.

Ainsi qu’il est naturel de s’y attendre, l’auto-rotation est d’autant 
plus énergique que les plaques expérimentées sont plus minces, la 
réaction sur la tranche de la plaque étant nuisible au phénomène.

Les expériences faites dans un courant d’eau ont révélé des lois 
analogues.

Puisqu'il existe une force qui entretient la rotation des secteurs, il 
est certain qu’une certaine masse d’air doit être refoulée dans une 
direction opposée à la rotation des branches du tourniquet. Effective-

FIG. 44. — Réaction de 
l’air dans l'auto-rotation.

%
.__

 
—€

courant d’air de vitesse

ment, si on place derrière le secteur un 
moulinet portant des ailes placées dans des 
plans contenant l’axe, ce moulinet se met à 
tourner en sens inverse du secteur.

L’intérêt des phénomènes d'auto-rotation 
est qu’ils sont une démonstration directe 
et irréfutable de ce fait, que la réaction est 
dirigée en avant de la normale, au moins 
pour certains angles d’attaque. En effet, 
considérons la plaque A placée dans un 
V, et se mouvant à la vitesse AB = W par

auto-rotation (fig. 44). La vitesse relative de la plaque par rapport à

Fig. 44. Réaction de
l'air dans l'auto-
rotation
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l’air sera AD ; autrement dit, la plaque peut être considérée comme 
frappée par un courant d’air oblique ayant pour vitesse DA. La 
plaque continuant son mouvement dans le sens AB, il en résulte que
la réaction AR de l’air sur la plaque doit nécessairement être

FiG. 45. — Ecoulement de l’air 
aux faibles incidences.

inclinée du même côté que AB 
par rapport à la normale AN.

Le phénomène s’explique si 
on examine de près le mode 
d’écoulement de l’air. Nous avons 
vu que pour les petits angles 
l’écoulement de l’air se fait entiè­
rement dans le sens qui donne 
la moindre déviation (fig. 45).

Effectivement, pour les petits angles, jusqu’à 10° environ, la réac­
tion est en arrière de la normale.

Mais pour les angles plus grands, l’air se partage en deux parties, 
dont l’une rebrousse chemin pour passer en avant du bord d’attaque.

FIG. 46. — Ecoulement de l’air aux incidences 
plus grandes.

Il se crée à l’avant une 
proue d’air, et à l’arrière 
une poupe d’air, agitées 
de tourbillons, ainsi qu’il 
est représenté ci-contre 
(fig. 46).

On remarque que, sur 
les parties EB et AF de 
la face antérieure, et sur 
la partie DB de la face

postérieure, l’air au contact de la plaque circule en sens inverse de 
ce qu’on supposerait a priori ; d’autre part, on sait que les dépres­
sions de la face postérieure constituent la part la plus importante 
de la réaction de l’air, et on remarque que la partie DB sur 
laquelle règne le contre-courant constitue la majeure partie de la 
face postérieure. On conçoit donc que, dans l’ensemble des réactions, 
ce soit celle dernière qui l’emporte, et que la résultante de toutes les 
forces de frottement soit dirigée dans le sens DE.

Fig. 45. Ecoulement de
l'air aux faibles
incidences

Fig. 46. Ecoulement de
l'air aux incidences
plus grandes



EXPRESSION DES COMPOSANTES DE LA POUSSÉE 
POUR UNE SURFACE PLANE.

Fro. 47. — Compo­
santes de la poussée.

Nous supposons l’angle d’attaque Z très petit, et nous allons chercher 
à exprimer par des formules aussi rapprochées que possible les com­

posantes U et F de la poussée prises normale­
ment et parallèlement à la trajectoire. Nous 
avons vu que la réaction R s’exprime par :

R = K S V2 i

(1) Rapports présentés aux Lords commissaires de l'Amirauté, voir le
Hlémorial du Génie maritime, 1875.

Si la réaction était exactement normale au 
F 
s

plan, i étant très petit, on pourrait écrire en 
assimilant le sinus a l’angle et le cosinus à 

l’unité :

H=KSV2
F=KSV2

Mais cette perpendicularité n’est pas rigoureuse. Tout d’abord, 
pour i= 0, F n’est pas nul, tant à cause des frottements qu’à cause 
du choc de l’air sur le bord antérieur. Il en résulte une résistance 
sensiblement proportionnelle au carré de la vitesse, ainsi que l’ont 
montré les expériences de W. Froude en 1872 (1).

Si l’on admet que ce terme ne se modifie pas sensiblement lorsque 
l'angle d’attaque reste petit, on est amené à écrire :

F=KSVA+KSV2

Cette expression n’est pas encore suffisamment exacte, car elle 
n’exprime pas que la réaction puisse venir en avant de la normale.

Cette propriété, si on fait abstraction du terme correctif KSV2b, se

7

Expression des
composantes de la
poussée

Fig. 47. Composantes
de la poussée
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traduit par ce fait que l’angle a de la réaction avec la perpendiculaire 
à la trajectoire est plus petit que i.

Posons :

"cô e

r étant un coefficient constant, plus petit que 1. La projection de OR 
sur la direction du mouvement est alors:

F=KSVi=KSV2,i

Et, en ajoutant le terme correctif KSV*b :

F=KSV, +KSY2

Finalement, nous obtenons pour les deux composantes les expres­
sions suivantes :

+
 

* 
% 

2
 g 

oii 
M

M E

Ces formules, proposées par M. Soreau, constituent un progrès 
notable sur celles qu’on employait précédemment, grâce à l’intro­
duction du coefficient r.

L’étude des expériences de M. Riabouchinsky, qui a mesuré les 
composantes degré par degré, amènent pour r à la valeur 0,8.

Toutefois, ces formules ne serrent pas encore la réalité d'une 
façon assez exacte pour pouvoir être définitivement adoptées ; nous 
indiquerons plus loin les nouvelles formules que nous proposons.
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CHAPITRE IV.

LES LOIS DE LA RÉSISTANCE DE L'AIR (suite).

Les surfaces arquées. — Composantes de la poussée. — Formules géné- 
rales. — Le profil optimum. — Répartition des pressions. — Position 
de la poussée. — Résumé.

Considérons un plan sustentateur S (fig. 47) qui se meut oblique­
ment à la vitesse V. Il reçoit une réaction R. Le poids P porté est égal 
à H composante verticale de R. Quant à la puissance motrice néces­
saire, elle est égale au produit de la projection F de la réaction sur la 
direction du mouvement, par la vitesse V. C’est donc FV.

La puissance T nécessaire par unité de poids est donc:

T _ F V 
PFH

On voit qu’elle est d’autant plus petite que le rapport I est plus 

petit, et.que V est plus petit. Remarquons qu’il ne faut pas seule­

ment chercher à rendre le rapport des deux composantes —

le plus petit possible, ce n'est qu’une partie de la question ; il faut en 
même temps que la réaction totale, pour une vitesse donnée, soit 
grande, car la formule de la puissance T contient V au numérateur; 
et il y a intérêt, pour diminuer le travail, à ce que la réaction suffi­
sante soit obtenue pour la plus faible vitesse possible.

On a remarqué que si, au lieu de plans, on emploie des surfaces

Chapitre IV. Les lois de
la résistance de l'air
(suite)
Les surfaces arquées
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arquées, dont le profil a une certaine courbure, on obtient une dimi­
nution du travail nécessaire.

C’est Lilienthal (4) qui, le premier, a fait des expériences systéma­
tiques pour déterminer les meilleures formes à adopter.

Vues en plan, les surfaces qu’il expérimentait avaient une forme

SX ,—
Fro. 48. — Surfaces 

expérimentées par Lilienthal.

allongée, terminée par deux pointes, 
représentée ci-contre (fig. 48) ; l'allon- 
gement était de 4,5, et la superficie 
de 1/2 mètre carré.

Des essais sommaires ont d’abord été 
faits en adoptant des courbures diverses 
représentées sur la fig. 48 ; la courbure 
représente le profil de la surface pris 
dans le plan de symétrie qui contient 
la direction du mouvement.

Lilienthal s’est finalement arrêté au 
dernier profil (n° 8), simple courbure régulière, en arc de cercle. 
Les concavités essayées ont été égales successivement à 1/40, 1/25 
et 1/12, ce rapport étant celui de la flèche maximum à la corde 
de l’arc.

Les surfaces étaient soit en tôle mince, soit en papier huilé, tendu 
sur un cadre, soit en bois ; dans ce dernier

FIG. 49. — Profils de sur­
faces expérimentées par Li- 
lienthal.

cas, on a essayé d’épaissir la surface soit 
au milieu, soit près d'un des bords.

Le profil 1 (fig. 49) s’est montré le 
moins avantageux ; les quatre autres ont 
donné des résultats à peu près égaux.

Lilienthal opérait de deux manières 
différentes: 4° en air calme avec un 
manège circulaire mû par des contrepoids, 
et 2° avec des surfaces immobiles exposées 

au vent. Ces deux méthodes étaient peu précises, la première parce

(1) Lilienthal. Der Vogelflug als Grundlage der Fliegekunst, Berlin, 1889.

Fig. 48. Surfaces
expérimentées par
Lilienthal

Fig. 49. Profils de
surfaces
expérimentées par
Lilienthal
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que le manège était de faible rayon, la seconde parce que la force 
et la direction du vent ne restent pas constantes, et que notam- 
ment le vent a été parfois ascendant. Aussi ne faut-il pas attacher 
aux chiffres trouvés une valeur définitive ; ils contiennent des erreurs 
manifestes. Nous les indiquons pourtant, à cause de l’importance 
historique notable qu’ils ont eue.

Le résultat principal des expériences est celui-ci : )
A égalité de surface portante et de poids porté, la puissance 

nécessaire à la sustentation est beaucoup moins grande avec une 
surface traînée obliquement dans l’air qu’avec un plan horizontal se 
mouvant orthogonalement, et en arquant la surface on diminue encore 
la puissance nécessaire.

D’après Lilienthal, pour l’incidence la plus favorable, le rapport des 
puissances nécessaires est le suivant, la puissance dans le cas du plan 
orthogonal étant 1 :

Plan oblique ...................................... 0,72

Surface de concavité.. — ................. 0,32
40

id. ..-—- .................. 0,25
25

id. 1 ............. - 0,23

Ces deux dernières surfaces donnent donc des résultats à peu près 
équivalents. .

LES FONCTIONS DE LILIENTHAL.

Lilienthal a étudié également la direction de la réaction de l’air.

Pour définir l’angle d’incidence i, il prenait l’angle que fait la 
direction du mouvement avec la corde du profil.

Composantes de la
poussée
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L’idée de cette définition provient sans doute de ce que Lilienthal 
croyait que la réaction ne se produit que sur la face inférieure ; 
l’angle d’attaque est nul lorsque la corde du profil est parallèle au 

vent, et il s’attendait à ce que, dans celle 
. position, l’air ne réagissant pas sur la face

TR: inférieure, la réaction totale soit nulle. En 
A réalité, il n’en est rien, la réaction sustenta- 
\ trice dans cette position est déjà considé- 
h. rable, et nous verrons ci-après qu’il est 

préférable d’adopter une autre définition
FiG. 50. — Poussée sur pour l’angle d’attaque.

tions de Lilienthal. La réaction R. correspondant à l’angle 
d'attaquei n’est pas normale à la corde du 

profil. Elle peut se décomposer en deux composantes, l’une N( nor­
male à la corde, l'autre T, appelée composante tangentielle, dirigée 
suivant la corde du profil et comptée positivement en sens inverse 
de la marche.

Lilienthal pose :

( Ni = 0,13 S V2 n(4)

( Ti = 0,13 S V2 0 (i)

Le coefficient 0,1 3 est la valeur du coefficient K de résistance ortho­
gonale que Lilienthal avait déduite de ses expériences.

Les fonctions 1 (i) et 6 (i) sont ce qu’on appelle les fonctions de 
Lilienthal. Le tableau ci-contre donne les valeurs de ces fonctions 
pour la surface de concavité 4/12. Si on adopte pour K la valeur 0,08, 

il suffit de multiplier les fonctions par le rapport

On voit, d’après le tableau, que la composante tangentielle s'an­
nule, c'est-à-dire que la réaction est normale à la corde, pour les trois 
valeurs suivantes de l’angle d’attaque :

i=30 i= 32 i=900

Fig. 50. Poussée sur
une surface arquée ;
fonctions de Lilienthal
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Valeur des fonctions de LILIENTHAL.

2 n 0 i n 0

- 96 0,000 — 0,070 11” 0,846 0,058
— 8° 0,040 - 0,067 120 0,864 0,064
— 70 0,080 — 0,064 130 0,879 0,070
— 60 0,120 — 0,060 14° 0,891 0,074
— 50 0,160 — 0,055 15° 0,901 0,076
— 40 0.200 — 0,049 160 0,909 0,075
— 3° 0,212 - 0,043 17° 0,915 0,073
— 2° 0,286 — 0,037 18° 0,919 0,670
— 10 0,332 — 0,031 190 0,921 0,065

00 0,381 — 0,024 20° 0,922 0,059
1° 0,434 — 0,016 25° 0,922 0,031
2° 0,489 — 0,008 300 0,910 0,008
3° 0,546 0 35° 0,896 — 0,010
4° 0,600 0,007 40° 0,890 — 0,016
50 0,650 0,014 45° 0,888 — 0,020
6° 0,696 0,021 50° 0,888 — 0,033
70 0,737 0,028 60° 0,900 — 0,028
80 0,771 0,035 70° 0,930 - 0,030

90 0,800 0,042 800 0,960 - 0,015
10° 0,825 0,050 90° 1,000 0

%

3027

5s

FIG 51. — Fonctions de Lilienthal.

Toutes les fois que l’angle i passe par l’une de ces valeurs, la 
résistance R, passe de l’autre côté de la normale. Quand la composante 

T est positive, elle 
augmente la résis­
tance au mouve­
ment d'avancement 
de la surface, elle 
diminue au con­
traire cette résis­
tance quand elle est 
négative.

Lilienthal a re­
présenté les résul­

tats de ses expériences sous la forme d’une courbe dont la disposition 
parle bien aux yeux (fig. 51). La surface ab étant placée au point 0,

Fig. 51. Fonctions de
Lilienthal
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soit oc la réaction de l’air. Pour les divers angles d'attaque, le point C, 
extrémité de OC, passe par une série de positions qui engendrent une 
courbe. »

Soit od la réaction orthogonale ; traçons le quart de circonférence 
ode de rayon oe. La courbe prend la forme représentée ci-contre. 
Pour l'incidence 0°, la réaction n’est pas nulle, ni parallèle au mou­
vement ; elle est déjà sustentalrice et à peu près égale au quart de sa 
valeur maximum. La réaction n’est parallèle au mouvement que pour 
l’incidence négative de — 8°,45Z.

Le meilleur rapport des composantes s’obtient en menant du point o 
la tangente à la courbe. Il correspond à une incidence d'environ 8°. 
Le pointillé indique la courbe des réactions sur une surface plane ; 
on voit qu’elles sont à la fois plus faibles et plus éloignées de la verti­
cale que dans le cas de la surface arquée.

Lilienthal a également tracé une courbe représentant les positions 
des extrémités de la réaction, en supposant la surface immobile et la 
direction du courant d’air variable; dans ce cas, la courbe resteau 
voisinage de la normale, et la traverse pour trois valeurs différentes 
de l’angle d’attaque.

M. Soreau (!) a fait ressortir l’arbitraire et l’incommodité de la 
définition de l’angle d’attaque i dans la méthode de Lilienthal, et par 

suite l’arbitraire de la définition des 
deux composantes de IL.

Pour supprimer l’obligation de défi­
nir l’angle d’attaque i, il projette les 
deux composantes de Lilienthal sur la 
direction de la trajectoire et sur la 
normale à la trajectoire ; soient H et F 
les composantes suivant ces nouvelles 

Fig. 52. — Composantes de la 
poussée sur une surface arquée 
(Soreau).

directions (fig. 52). On a :

j H = Nj cos i + T, sin i 
( F == T( cos i + Ni sin i

(1) R. Soreau, Etat actuel et Avenir de l'Aviation, Mémoires de la Société des 
Ing. Civils, juillet 1908.

Fig. 52. Composantes
de la poussée sur une
surface arquée
(Soreau)
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ou, en remplaçant N et T, par leurs valeurs :

H = 0,13S V2 [h (i) cos i±0 (j) sin Z]

F = 0.13 S V2 [0 (i) cos i ± t (i) sin 1]

D’après les données de Lilienthal, la composante H est nulle pour 
i = — 80,45%.

M. Soreau pose :

a=i+8045

a étant ce qu’il appelle par définition l’angle d’attaque. Cet angle 
est choisi de manière à ce que, lorsqu’il est nul, la composante 
sustentatrice soit nulle. On peut définir a l'angle que fait la position 
de la surface avec la position qui donne une composante sustentatrice 
nulle.

M. Soreau a remarqué qu’on peut représenter les composantes, 
déduites de celles de Lilienthal, par les formules ci-dessous, valables 
pour les valeurs de a comprises entre 3° et 12° qui sont celles qui 
intéressent l’aviation :

H = 0,333 S V2 «

F = 0,333 S V2 (2 - 0,0315)

Ou, si on remarque que 0,333 — 0,08 X4,16:

H = 4,16.0,08 S V2 a

F = 4,16.0,08 S V2 (a2 — 0,0315)

Ou encore, d’une manière plus générale :

H = K S V2 «

F = K S V2 (r a2 + 6)

? et b étant des constantes. Avec les chiffres de Lilienthal, on trouve 
que ? est égal à 1, mais on peut supposer que dans d’autres cas, il
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sera plus petit que 'I (les résultats numériques de Lilienthal sont 
d’ailleurs faussés par de fortes erreurs).

On remarque de suite que ces expressions sont exactement de la 
même forme que celles trouvées sur les surfaces planes; les coeffi­
cients constants K, 7 et b pourront seulement avoir d’autres valeurs, 
différentes de celles qu’on obtient pour les plans.

Dans ces conditions, tous les calculs auront exactement la même 
forme, et la théorie des surfaces arquées sera la même que celle des 
surfaces planes, l’angle a jouant le même rôle que l’angle d’incidence 
i du plan. Si les coefficients r étaient les mêmes dans les deux cas 
(ce qui n’est pas exact), on pourrait pousser plus loin l’assimilation, 
et conclure qu’une surface arquée est équivalente à un plan dont la 
surface serait multipliée par le rapport inverse des valeurs de K, et 
dont l’angle d’incidence serait a; ce plan ferait avec la corde de la 
surface arquée un angle constant égal à a — i; on pourrait donc 
dire qu’il est invariablement lié à la surface arquée. La seule 
différence résiderait dans la valeur de b; sib est plus petit pour la 
surface arquée, celle-ci serait plus avantageuse. On a vu ci-dessus 
que les expériences de Lilienthal conduisent pour b à la valeur 
— 0.0315 qui est négative; si ce résultat était exact il serait très 
avantageux ; mais il n’a pas été confirmé par les expériences plus 
précises qui ont eu lieu depuis celles de Lilienthal, et il provient 
uniquement des erreurs d’expérience. Ces erreurs sont manifestes, et 
il est regrettable que les résultats numériques des expériences de 
Lilienthal soient entrées en ligne de compte pour l’établissement de 
la théorie. C’est ainsi que les valeurs de la composante F parallèle au 
mouvement, pour les angles i compris entre — 9° et 1°, sont 
trouvées négatives, ce qui est inadmissible; la résistance opposée au 
mouvement de la surface serait négative, le mouvement, au lieu 
d’absorber du travail, en produirait : ce serait le mouvement 
perpétuel.

En réalité, b est toujours positif.
En ce qui concerne les valeurs de H, l’assimilation avec le plan 

équivalent est assez exacte, et cette notion peut être adoptée.
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Il n’en est pas de même en ce qui concerne les valeurs de F ; le 
coefficient , est loin d’être le même dans les deux cas ; il est beaucoup 
plus faible pour les surfaces arquées que pour les plans, et c’est en 
cela que consiste le véritable avantage des surfaces arquées.

Le coefficient K, en effet, ne change que' d’une manière peu 
sensible. Nous avons déterminé sa valeur moyenne pour les surfaces 
expérimentées par Riabouchinsky, en prenant un intervalle de 
10 degrés.

Le coefficient relatif au plan étant pris pour unité, on trouve :

Courbure .
'0 (plan)

1 1 1 I
de la surface 1 30 20 16 12

Coefficient K )
•apporté au plan ]

1 1,07 1,12 1,16 1,06

Il y a une petite amélioration, mais peu importante.
C’est plutôt l’amélioration de 7 qui est intéressante. En cherchant 

les formules qui traduisent le mieux (ou plutôt le moins mal, comme 
nous le verrons plus loin), les expériences faites par M. Riabouchinsky 
à l’Institut de Koutchino, nous avons trouvé :

Pour le plan........  ......... 1= 0,82
Pour l’arquée au 1/30............. r =0,77
Pour l’arquée au 1/20............. r = 0,73
Pour l’arquée au 1/16............. r — 0,67
Pour l’arquée au 1/12............. r = 0,55

Dans la pratique, on pourrait compter sur r= 0,75 en moyenne.
Quant au terme S, non seulement il n’est pas négatif, mais il est 

sensiblement plus grand pour les arquées que pour le plan, et il est 
d’autant plus grand que la courbure est plus prononcée. De sorte 
qu’aux très faibles incidences (jusqu’à 3°) le plan est meilleur que 
les surfaces arquées; l’avantage de celles-ci n'apparaît que lorsque 
l’angle d’attaque atteint 4°, et il provient uniquement de la faible 
valeur de r.
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On peut calculer l’angle pour lequel le rapport des deux compo­
santes est le plus faible. On a :

F ,0 46 %
— — ---------  —ra+ —
Ha a

Le minimum de la somme des deux termes va et b, dont le
a'

produit est constant, a lieu lorsqu’ils sont égaux, d’où :

Une expérience de Goupil(l), mal interprétée, a fait croire à certains 
auteurs que la composante retardatrice F pouvait réellement être 
négative, ainsi qu’il résulte des chiffres de Lilienthal.

Voici cette expérience. Un cadre entoilé d’un mètre carré pesant 
700 grammes et chargé à l’avant d’un poids de 3 kilogr. fut attaché 

par deux amarres (fig. 53) et présenté contre 
_ des courants aériens de vitesses croissantes. -----------

Au courant de 4m par seconde, il prit 
— l’inclinaison de 45°; aux courants de 5 et 

6m, des inclinaisons au 1/5 et au 1/6 ; au 
courant de 7m, l’appareil prit, au grand 
étonnement de l’auteur, la position indiquée 

Fig. 53. — Expérience . ,
de Goupil. par la figure: le peson interposé sur une 

des amarres ne marquait aucune traction, 
et même la surface chassait sur ses amarres contre le vent.

Cette expérience prouve simplement que le courant d’air était

(1) Goupil, La Locomotion aérienne, 1884.

Fig. 53. Expérience de
Goupil
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légèrement ascendant, et Goupil a reconnu lui-même depuis (1) qu’il 
en était probablement ainsi. Il ne faut donc pas tenir compte de cette 
expérience, qui aboutirait au mouvement perpétuel.

Expériences de Riabouchinsky. — Les deux composantes de 
la réaction, normalement’et parallèlement à la trajectoire, ont été 
l’objet de mesures récentes plus précises que celles de Lilienthal.

Nous dirons quelques mots des résultats trouvés par Riabouchinsky, 
Rateau, Turnbull.

M. Riabouchinsky (2) a donné les tableaux des résultats trouvés 
par lui en opérant avec des plaques d’aluminium planes ou arquées, 
de I,7 lu/m d’épaisseur et mesurant 0m,100 X 0m,300. Les conca­
vités étaient : O (plaque plane), 4/30, 1/20, 4/16, 1/12 et 1/8 ; il a 
opéré en outre sur un biplan formé de 2 plaques arquées au 4/30 et 
distantes de Om, I00.

Les pressions subies sont ramenées au mètre carré et au cas d'un 
gaz pour lequel la masse du mètre cube serait égale à 1. Les angles 
d’incidence sont définis au moyen de la corde de l’arc. Les résultats 
obtenus sont transcrits sur le tableau ci-après : (voir page I 10).

Le tableau ci-dessous indique les meilleures valeurs trouvées pour
H
F ’

le rapport des deux composantes,

ANGLES
COURBURE 

0 1/30 1/30 biplan 1/20 1/16 1/12 1/8

0 2,14 7,50 7,07 6,70 5,66 4,37 3,14
1° 5,25 9,75 8,47 8,35 6,70 5,46 3,76
2 7,00 12,1 9,69 9,88 7,68 6,35 4,25
3 8,17 13,8 10,06 10,8 8,59 7.20 4,67
4° 9,00 15,4 10,4 11,8 9,16 7,79 5,03
5° 9.00 15,7 10,2 12,0 9,35 8,28 5.28
6 9,20

8,96
15,0 9,56 10,8 9,05 8,50 5,40

7° 12,9 8,81 9,69 8,78 8,67 5,43
80 8,45 10,8 8,25 8,95 8,32 8,46 5,46
9° 8,09 9,19 7.45 8,24 7,68 8,27 5,48

10° 7,29 8,00 6,86 7,59 7,17 7,97 5,43

(1) L’Aérophile, 15 décembre 1908.
(2) Bull. Inst, de Koutchino, fasc. n, 1909.
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Nota. — Les Nombres expriment des millièmes

ANGLES
COURBURE 

0 1/30 1/30 biplan 1/20 1/16 1/12 1/8

F II F H F II F H F H F H F H

— 10° 46 -254 41 —195 56 -172 59 -188 76 —167 72 —142 90 -149
— 5° 16 —118 15 — 57 27 — 48 26—29 35-36 46 - 17 67-28

0° 7 15 12 90 14 99 17 114 26 147 33 144 57 179
1° 8 42 12 117 15 127 17 142 27 181 33 180 58 218
2° 10 70 12 145 16 155 17 168 28 215 34 216 60 255
3° 12 98 12 172 18 181 18 195 29 249 35 252 63 294
4° 14 126 13 200 20 208 19 223 31 284 37 288 66 332
50 17 153 14 227 23 233 21 251 34 318 39 323 70 369
6° 20 18% 17 255 27 258 26 280 39 353 42 357 75 405
7° 26 215 22 283 32 282 32 310 44 386 45 390 81 440
8® 29 245 29 312 37 305 38 340 50 416 50423 87 475
90 34 275 37 340 44 328 45 371 58 445 55 455 93 510

10 42 306 46 368 51 350 53 402 66 473 61 486 100 543
110 53 330 56 393 59 371 61 430 77 500 68 515 107 570
120 66 355 66 418 67 391 69 459 88 523 77 545 114595
130 80 378 78 443 76 410 78 483 99 545 86 575 122 620
14° 93 400 89 466 85 429 87 510 112 566 96 601 130 645
15° 108 421 100 488 96 446 100 535 124 586 106 628 138 667
200 176 504 165 580 163 517 180 617 197 653 177 714 196 776
25° 239 541 248 622 235 552 263 646 279 670 265 738 281 808
300 291 524 308 593 296 526 327 631 338 649 343 718 362 774
40° 361 439 372 472 349 420 388 498 389 504 403 549 442 578
50° 453 391 447 405 389 317 474 432 478 419 474 457 515 464
60° 554 328 546 338 375 214 566 349 560 342 575 372 602 373
70° 620 217 617 238 325 114 647 '262 629 238 649 243 663 254
80° 676 129 656 132 304 51 697 140 660 125 697 145 716 132
90° 698 0 677 0 297 0 717 0 676 0 718 0 732 0

On voit que, pour le rapport F , les valeurs les plus favorables 

sont fournies par la surface arquée au 4/30, et pour des angles de 
4 à 50. C’est dans ces conditions qu’on obtiendra la sustentation avec 
le plus faible effort de traction.

Si on considère non plus la force tractive, mais la puissance 
motrice nécessaire à la sustentation, elle dépend non pas du rapport
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H . H32
Pi mais du rapport F Nous verrons plus loin que la puissance

nécessaire est en raison inverse de ce rapport.
H3/2

Nous avons calculé les valeurs de F ; elles sont indiquées dans le

tableau suivant :

ANGLES
COURBURE 

0 1/30 1/30 biplan 1/20 1/16 1/12 1/8

0° 0,8 2,3 2,3 2.2 2,2 1,7 ,3
1° 1,7 3,3 3,1 3,0 2,9 2,3 1,7
2 C2 oi 4,6 4,1 3,8 3,5 3,5 2,1
3° 2,8 5,9 4,8 4,3 4,3 3,6 2,5
4° 3,2 6,9 5,5 4,7 4,9 4,2 to

 o

5° 3,5 7,7 6,0 4,9 5,3 4,7 3,2
6 3,9 7,6 D.7 4,9 5,4 5,1 3,5
7 4,1 6,8 5,4 4,7 5,5 5,4 3,6
8° 4,2 6,0 5,2 4,5 5,4 5,5 3,8
9° 4,2 5,4 5,0 4,3 5,1 5,6 3,9

10 
__

4,1 4,8 4,8 4,1 4,9 5,6 4,0

On remarque que les valeurs les plus favorables sont encore four­
nies par la surface arquée au 1/30, et pour des angles de 5 à 6°, à

peine supérieurs à ceux qui correspondent au maximum de
H
F*

Il semble donc que les conditions optima pour chacun de ces deux 
problèmes soient bien près de se confondre.

M. Riabouchinsky indique encore les valeurs des composantes de la 
réaction normalement et tangentiellement à la surface (définie par sa 
corde), ainsi que l’avait fait Lilienthal.

Ces valeurs étant moins intéressantes en raison de l’arbitraire de 
leur définition, nous ne les reproduisons pas ici ; le lecteur les trouvera 
dans l’ouvrage cité, ainsi que les graphiques représentant tous les 
résultats.

Les expériences de M. Riabouchinsky étant très précises, nous 
avons cherché si les formules établies ci-dessus :

H =KSV3o
F - KS V2 (r a2 + Z)



IQ

I

en représentaient les résultats d’une manière satisfaisante, en choi­
sissant au mieux a — i et les coefficients r et b. Nous avons constaté 
que non, du moins en ce qui concerne F. Ce résultat est important. 
Il ne faut pas, en effet, se contenter d’une correspondance approxima­
tive entre les formules et la réalité, sous peine d'entacher de nullité 
tous les calculs qui ont pour base ces formules.

On peut, à la rigueur, se contenter de formules approchées quand 
on se borne à calculer la valeur d’une fonction ; mais pour déterminer, 
comme nous le ferons, les maxima et les minima, une grande préci­
sion est indispensable.

Les formules (1) ne sont pas satisfaisantes pour le plan ; toutefois, 
l’écart n’est pas très grand, et, pour une première approximation on 
pourrait à la rigueur s’en contenter. Mais, pour les surfaces arquées, 
il n’y a pas moyen d’arriver à une correspondance acceptable pour 
les valeurs de F. Il en résulte que la théorie, telle qu’elle a été faite 
jusqu’ici, en prenant pour base les formules (4), est inexacte et ne 
correspond pas à la réalité.

Nous avons cherché à obtenir d’autres formules représentant 
mieux les faits. On peut y arriver d’une manière très simple qui ne 
change pas l’aspect des formules ni des calculs qui en découlent. Il 
suffit de changer l’exposant de a dans l’expression de F; au lieu de 
prendre l’exposant 2, il faut prendre un exposant plus grand que 2, 
à savoir: n == 2,5 pour le plan ; n == 3 ou 4 pour les surfaces 
arquées.

On obtient ainsi les formules suivantes :

H = KSV:%
F=KSV(+6) 02)

Nous allons montrer que les formules (2) permettent d’arriver à 
une correspondance aussi parfaite qu’on peut l’espérer, pour toutes 
les incidences utilisées en aviation.

Pour le plan, nous prenons:

F=KSV2 (2,8 02,5 + 0,009)



I —
 

& I

Voici la comparaison des valeurs d’expérience et des valeurs déduites 
de la formule, pour les angles a compris entre 0 et 4 5°. Les chiffres 
expriment des millièmes :

a.......... 0° 1° 2 3 46 5° 6° 70 8° 9° 10° 119 12° 130 14° 15°

Expérience........ 7 8 10 12 14 17 20 24 29 34 42 53 66 80 98 108

Formule....... 9 9 10 11 13 16 19 24 30 36 44 54 65 78 91 107

Pour l’arquée au 4/30, nous prenons:

FÉKSV2 (12,5 a- + 0,011)

avec a — Z = 3°

Voici la comparaison des valeurs, pour les angles a compris entre 
2 et 140:

a....... . 2° 3 4° 5° 6° 7° 8 9o 10 11° 12 13° 140

Expérience....... 11 12 12 12 12 13 14 17 22 29 37 46 56

Formule............ 11 11 11 12 13 14 16 19 23 29 36 47 59

Pour l’arquée au 1/20, nous prenons:

F EKSV2 (10,5 a4 + 0,017)

avec a — i= 4°

Voici la comparaison des valeurs, pour les angles a compris entre 
2 et 140;

C........................2 3° 4® 5° 6° 7® 8° 9® 100 110 12® 13® 14

Expérience........ 17 17 17 17 17 18 19 21 26 32 38 45 53

Formule............. 17 17 17 18 18 19 21 23 27 32 37 45 55

Ce
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Pous l’arquée au 1/16, nous prenons:

F = K S V* (2,9 «3 + 0,025) 

avec a — i=40

Voici la correspondance des valeurs pour les angles a compris 
entre 4 et 1 8° :

&.............4° 5° 6° 7 8° 9° 10 110 12 136 14° 15’ 160 17° 180

Expérience.......... 26 27 28 29 31 34 39 44 50 58 66 77 88 99 112

Formule.............. 26 27 28 30 33 36 4 0 45 51 59 67 77 88 100 114

Enfin, pour l’arquée au 1/12, nous prenons :

F=KSV2 (1,91 a3 + 0,031)

avec a— i= 4°

Voici la correspondance des valeurs pour les angles a compris 
entre 3 et 19°:

&.................3 40 5° 6° o 80 91’ 10 11’ 12’ 13’ 14’ 15® 16 17° 18® 190

Expérience 33 33 33 34 35 37 39 42 45 50 55 61 68 77 86 96 106

Formule... 31 32 33 34 35 37 40 43 47 51 56 61 68 77 85 95 106

On voit que la correspondance est pratiquement parfaite pour une 
échelle d’angles suffisante pour les besoins de l’aviation. Nous propo­
sons donc les formules (2) comme nouvelle base de la théorie, quitte 
à déterminer ultérieurement quelle est la valeur de l’exposant n qui 
convient pour les surfaces arquées les plus employées.

Il faut toutefois observer que les expériences de Riabouchinsky 
n’ont porté que sur des profils en forme d’arc de cercle. Les résultats 
seraient-ils les mêmes pour les profils optima, à courbure et à épais-
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seur variables? Il faut attendre de nouvelles expériences avant de 
pouvoir se prononcer.

On peut remarquer que le terme complémentaire b ne diminue pas 
pour les surfaces arquées, et ne devient pas négatif, mais qu’il 
augmente, au contraire, avec la concavité.

Il résulte de tout ce qui précède qu’une surface arquée n'est pas 
assimilable à un plan équivalent, à cause de la différence des valeurs 
de l’exposant de a que nous avons désigné par n.

Expériences de M. Rateau. — M. Rateau a publié en juillet 
-1909 (1) les résultats qu'il a obtenus avec deux plaques rectangu-

FIG. 54. — Courbes de la poussée et de 
ses composantes (Rateau).

B. 

-
 - 

3

FIG. 55. — Rapport 
des composantes (Rateau). 

laires de 0m,300 X 0m,500, épaisses de 1 "/m,25, l’une plane, 
l’autre arquée en forme d’arc de cercle de 20° de développement.

Les graphiques ci-dessus montrent les valeurs de la poussée

(I) Comptes Rendus de l'Ac. des Sciences, 26 juillet 190). — Revue de 
Mécanique, août 1909. — L'Aérophile, 1er août 1909.

Fig. 54. Courbes de la
poussée et de ses
composantes (Rateau)

Fig. 55. Rapport des
composantes (Rateau)
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totale, et des deux composantes normale et parallèle au courant aérien. 
On y voit nettement la séparation des courbes en deux branches, et 
la discontinuité de la loi.

En calculant le terme complémentaire que nous avons appelé b 
dans la théorie ci-dessus, M. Rateau n’a pas trouvé qu’il soit négatif. 

M. Rateau a étudié le rapport des deux composantes, et a tracé 
des courbes dans lesquelles sont portés en abscisses les angles à partir 
de la corde, et en ordonnées le rapport des composantes. Les surfaces 
expérimentées avaient les 6 profils reproduits ci-contre (fig. 55).

Le rapport maximum constaté a atteint 21 ; les maxima ont lieu 
pour des angles d’incidence de 4 à 40, pour lesquels la corde est 
presque parallèle au courant aérien, de sorte que la surface,à l’avant, 
rencontre franchement les filets d’air par sa face supérieure.

Ce n'est donc pas là une condition défavorable, comme beaucoup 
d’auteurs l’ont cru sur la foi de raisonnements a priori basés sur 
une prétendue « évidence ».

Lorsque la tangente au bord d’attaque est parallèle au courant aérien 
(c’est ce qu’on appelle, pour les turbines, l’entrée correcte), la réac­
tion est plus forte, mais le rapport des deux composantes est beaucoup 
moins favorable, de sorte que l’avantage au point de vue puissance 
motrice reste au premier cas.

Pour la direction de la résultante par rapport à la normale, dans le 
cas d’un plan, nous reproduisons (fig. 56) le graphique donné par

der

FiG. 56. — Ecart de direction 
de la résultante avec la normale (Rateau).

M. Rateau. En abscisses est 
porté l’angle d’incidence; en 
ordonnées l’angle de la résul­
tante avec la normale, compté 
négativement lorsque la résul­
tante est dirigée en avant de la 
normale.

L’angle négatif n’est jamais 
très grand, I à 2 degrés seule­

ment. Au reste, on conçoit que l’épaisseur de la plaque, sa nature, son 
degré de poli peuvent faire varier notablement cet angle; c’est ainsi

Fig. 56. Ecart de
direction de la
résultante avec la
normale (Rateau)
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que M. Eiffel ne le trouve négatif que pour l’incidence de 30 degrés, 
et égal à — 0°,1 seulement; cela tient vraisemblablement à ce qu'il 
emploie une plaque de 3 In/m d’épaisseur, tandis que celle de 
M. Râteau n’a que 1 m/m,25.

Expériences de Turnbull. — M. W. R. Turnbull (1) a effectué 
des expériences très intéressantes sur des surfaces arquées de 5 formes 
différentes, à simple et à double courbure, mesurant toutes 42 centi­
mètres sur 21. L’incidence variait de — 5° à + 20°. (Les angles 
d’incidence sont mesurés par rapport aux cordes des profils).

La fig. 57 montre la forme des profils, et indique les résultats 
trouvés pour les compo­

FIG. 57. — Composantes de la poussée 
(Turnbull).

santes normale et paral­
lèle au courant aérien 
(cette dernière en poin­
tillé).

Il y a lieu de remar­
quer que la plus forte 
sustentation est obtenue 
avec le type III concave 
par dessous; quant à la 
résistance à la propul­
sion, elle est également 
maxima pour le type III.

C’est le type IV, à double courbure en S, qui est le plus avantageux 
dans l’ensemble, comme rapport des composantes; il a de plus sur 
le type III l’avantage de la stabilité, comme nous le verrons plus loin.

(i) Physical Review, New-York, 1907, voir Revue de l'Aviation, 15 novembre 
1908.

Fig. 57. Composantes
de la poussée
(Turnbull)
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INFLUENCE MUTUELLE DES SURFACES 
SUPERPOSÉES.

Des expériences ont clé faites par M. B. Sellers (!) en vue de déter­
miner si deux surfaces sustentatrices superposées se nuisent mutuel- 
lement, et quelle est la meilleure position relative à leur donner.

Il a expérimenté avec deux et trois surfaces mesurant 1 2°/m X 36°/h 
arquées au 1/42, distantes de 6 à 42°/m, et placées dans les posi­
tions relatives suivantes :

A B. CD E FG
FIG. 58. — Expériences de M. Sellers.

Les poussées par unité de surlace sont indiquées dans le tableau 
ci-dessous (la poussée unitaire sur un plan unique étant représentée 
par 100):

ANGLE
D'ATTAQUE

DISTANCE
DES PLANS A B G D E F G

5°
6 e/m.............. 90 87 80 80 84 85 70

12 c/m.............. 94 90 87 88 89 89 83

10
6 c/m........ .. 89 85 73 72 73 82 65

12 c/m.............. 91 90 85 84 85 85 77

On voit qu’il y a avantage à placer le plan supérieur en avant du 
plan inférieur (positions A, B, F). On voit aussi que l'effet nuisible 
est encore sensible quand la distance des plans est égale à leur 
largeur.

(1) Voir Scientific American, 14 nov. 1908, Aeronautics, févr. 1910, et l'Aéro- 
mécanique, 10 févr. 1910.

Influence mutuelle des
surfaces superposées
Fig. 58. Expériences de
M. Sellers
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LE PROFIL OPTIMUM.

Toutes les expériences décrites ci-dessus ne donnent que des indi­
cations propres aux surfaces étudiées, surfaces définies pardes courbes 
simples, généralement des arcs de cercle. Mais il est probable qu’il 
existe une forme de profil meilleure que toutes les autres, un profil 
optimum. Il doit même en exister deux, suivant qu’on cherche à 
réaliser la sustentation avec le minimum de traction ou avec le 
minimum de puissance motrice ; dans le premier cas, il faut chercher

H
à rendre maximun le rapport — des composantes de la poussée;

dans le second cas, c’est, comme nous le verrons plus loin, le
H3^

rapport F qu’il faut rendre maximum.

La forme optima peut être composée de courbes compliquées, 
différentes pour la face inférieure et la face supérieure, et peut être 
également caractérisée par certaines particularités telles que le bord 
antérieur épais et le bord postérieur souple. Elle doit se rapprocher 
de la forme que la nature a donnée à l’aile des oiseaux.

Le bord antérieur épais et arrondi, préconisé par Edmond Seux, 
semble, en effet, être une condition favorable, malgré tous les 
raisonnements a priori qu’on peut faire. L’utilité du bord postérieur 
souple est que, ce bord se mettant dans la direction des filets fluides 
à la sortie, les remous à l’arrière sont atténués ou évités, ce qui peut 
être une condition favorable au point de vue de la résistance à 
l’avancement; il faut cependant se garder de croire que les remous 
soient nécessairement défavorables, puisque nous avons vu qu’ils 
peuvent provoquer une diminution de la résistance à l’avancement.

Les divers constructeurs ne sont pas d’accord sur le profil optimum 
qu’il convient d’adopter.

M. Ader préconise la spirale dite spirale logarithmique. 
« Une courbe constante, dit-il, se retrouve dans tous les vols ; dans 
la feuille de sycomore, aussi bien que dans l'aile de la mouche, du 
corbeau et de la chauve-souris; et je puis affirmer qu’il existe un

Le profil optimum
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principe dont ne se départit jamais la nature et qui semble être la loi 
fondamentale de l’aviation : l’existence, dans le sens de la translation, 
d’une spirale caractérisée par l’angle invariable du rayon avec les 
tangentes menées aux divers points de la courbe. Cette spirale 
présente une courbure plus ou moins accentuée selon la charge des 
ailes, mais se retrouve partout et toujours. »

Voici quelques autres données, qui ne sont d’ailleurs qu’approxi­
matives, chaque constructeur modifiant fréquemment ses types.

Dans le profil adopté par Wright en 1908, l’intrados est un arc 
de cercle de 20° d’ouverture suivi d’une partie plane. La flèche 
maxima est voisine de 1/20 ; elle est à peu près au tiers antérieur. 
L’extrados est une courbe à peu près parallèle ; le bord antérieur est 
arrondi, le bord postérieur est effilé.

Les profils « Voisin » et « Farman » ont aussi une flèche de 
1/20, mais située à 4/10 du bord d’attaque. Le profil est un arc de 

parabole, mais déformé par la présence 
des longerons. Le bord postérieur 
présente une certaine flexibilité.

La face inférieure du profil 
« Blériot » se compose de deux arcs 
de cercle, avec flèche de 4/14 placée 
à peu près aux 3/10. L’épaisseur 
maximum, de 70 m/m, est très près de 
l’avant. Les deux bords sont effilés.

Les appareils « Antoinette « ont 
un profil encore plus épais (05,20), 
compris entre deux arcs de cercle ; la 

T (T 
aie 
-1

FrG. 59. — Profils divers.

flèche de 1 intrados est très faible, 1/30 à 4/40 seulement. La flèche 
maxima est au milieu.

La figure ci-contre indique les angles que font les tangentes aux 
bords d'entrée et de sortie avec la corde.

Fig. 59. Profils divers
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RÉPARTITION DES PRESSIONS

Les phénomènes d’écoulement de l’air attaqué obliquement par 
une surface arquée sont très complexes et encore mal connus.

Diverses expériences ont montré que la dépression qui s’exerce 
sur la face supérieure est plus importante que la compression de la 
face inférieure.

M. A.-Ph. Kaptein, dans une conférence donnée le 9 octobre 1909 
à La Haye, à l'Institut royal des Ingénieurs (1), a donné les résultats 
d’intéressantes expériences qu’il a faites en vue de déterminer la 
répartition des pressions sur des surfaces courbes.

Il a d’abord expérimenté sur un cylindre, en mesurant les pres­
sions au moyen d’un tube de Pitot relié à un manomètre à membrane 
extrêmement sensible. Le tube s’adaptait par l’intérieur du cylindre 
sur un trou percé dans la surface. Le cylindre pouvait prendre toutes 
les positions en tournant autour de son axe.

Il a représenté les résultats par un diagramme obtenu en portant 
les pressions suivant les rayons du cercle, à partir de la circonférence,

FIG. 60. — Répartition des pres­
sions sur un cylindre (Kaptein).

de l’arrivée des filets d’air.

à l’extérieur du cercle pour les pres­
sions, à l’intérieur pour les dépressions 
(fig. 60). La zone A des pressions est 
très peu étendue, elle n’occupe que 
80° d’angle, même pas le quart de 
la surface; la zone de dépression en 
occupe plus des trois quarts, et la 
dépression a son maximum d'intensité 
dans les parties B et C situées du côté 

On peut le vérifier très simplement en 
collant un morceau de papier par un de ses bords sur un cylindre, 
dans la partie correspondante à B. On voit le papier se soulever, 
ce qui prouve l’existence d’une dépression énergique.

(1) Voir L'Aéro-mécanique, Bruxelles, 10 janvier 1910.

Répartition des
pressions

Fig. 60. Répartition des
pressions sur un
cylindre (Kaptein)



I

Rappelons que, en 4905, George Finzi et Nicholas Soldati ont 
trouvé pour une sphère un diagramme semblable à celui de 
M. Kaptein.

M. Kaplein expérimenta également sur une plaque arquée repré­
sentée ci-contre (fig. 61); le 

—* diagramme représente les pres-
-**== sions et dépressions sur la face 

, dorsale. La zone de dépression
rie. 61.—Répartition des pressions . ,

sur une surface arquée (Kaptein). est très importante et s’étend 
à presque toute la partie anté­

rieure qui semblerait devoir être frappée par le courant d’air ; la zone 
de pression à l’avant est au contraire très faible et ne donne pour 
ainsi dire pas de composante verticale.

M. Kaptein n’a pas indiqué quelles sont les pressions sur la face 
inférieure.

Expériences de M. Eiffel. — M. Eiffel (!) a étudié, au moyen 
du tube de Pitot, la répartition des pressions sur une plaque plane 
de 850 X 150 m/m et sur une plaque arquée de 900 X 150 m/mn 
(flèche 1/13,5), tant sur la face inférieure que sur la face supérieure, 
et pour diverses incidences.

Les figures ci-contre (fig. 62 et 63) représentent les courbes de 
pression dans la section médiane, sur les deux faces. Les chiffres 
indiquent les pressions ou dépressions en millimètres d’eau, corres­
pondant à la vitesse de 1 0m par seconde.

Pour l'incidence de 10°, la plus intéressante, on voit que la 
dépression sur la face supérieure au voisinage du bord d'attaque 
constitue la partie la plus importante de la réaction de l’air.

Pourtant, la tangente au bord d’attaque faisant avec la corde un 
angle de 16°, il en résulte que le bord d’attaque se présente sous un 
angle négatif de — 60 ; contrairement à ce qu’on pourrait se figurer,

(1) Bull, de la Société des Ing. civils, janvier 1910.

Fig. 61. Répartition de
pressions sur une
surface arquée
(Kaptein)
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il n’en résulte aucun effet défavorable à la sustentation ; c’est au 
contraire la partie la plus active.

0

Pressions dans 
la section médiane
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Fig. 62. — Répartition des pressions 
sur un plan (Eiffel).
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Pressions dans 
la section médiane
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FIG. 63. — Répartition des pressions 
sur une surface arquée (Eiffel).

Il est intéressant de remarquer que, sur la face inférieure, il y a 
une petite zone de dépression près de l’arête de sortie.

Pour l’incidence de 1 0°, sur la plaque courbe, la dépression sur la

Fig. 62. Répartition des
pressions sur un plan
(Eiffel)

Fig. 63. Répartition des
pressions sur une
surface arquée (Eiffel)
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face supérieure entre pour 63 pour cent dans la réaction totale, et la 
pression sur la face inférieure pour 37 pour cent seulement.

POSITION DE LA POUSSÉE

Nous avons examiné la grandeur et la direction de la poussée; il 
nous reste à déterminer sa position.

Cette position a une importance capitale au point de vue de 
l’équilibre et de la stabilité des machines volantes.

Pour une surface plane, on appelle centre de poussée le point 
d’application de la réaction de l’air sur les divers points du plan ; ce 
point d’application est lui-même un point du plan.

Pour une surface arquée, dont les divers points ne sont pas dans 
un même plan, le point d’application A de la résultante (fig. 64) n’est 

pas, en général, exactement situé sur la sur­
face; il en est à une petite distance. Pour 
simplifier, on considère souvent, au lieu du 
point A, le point B d’intersection de la résul­
tante avec la surface; mais il ne faut pas 
perdre de vue que le point B n’est pas le 
point d’application de la poussée.

On s’en rend encore mieux compte en

FrG. 64. — Centre 
de poussée.

considérant un biplan (fig. 65) dans lequel le point d’application A, 
situé à peu près à égale distance entre les deux surfaces, est très 

éloigné des points B et B, d’intersection de la 
R résultante avec les surfaces.

Fig. 65. — Centre 
de poussée dans un 
biplan.

Les points A, B et B, changent de position 
quand l’angle d’attaque varie.

Revenons, pour simplifier, à la figure 64. Les 
points A et B n’ont pas d’importance absolue par 
eux-mêmes; ils n’en prennent que parce qu’ils 
servent à déterminer la position de la résultante R.

Mais quant au point d’application A, peu
importe qu’il soit un peu plus haut ou un peu plus bas. Notamment, 
il n’y a aucune utilité à ce qu'il soit placé plus haut que le centre

Position de la poussée
Fig. 64. Centre de
poussée
Fig. 65. Centre de
poussé dans un biplan
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de gravité. Il ne faut pas assimiler le centre de poussée à une sorte 
de point de suspension par lequel l’aéroplane est maintenu en l’air.

Nous verrons, dans le chapitre sur la stabilité, que le point vérita- 
blement intéressant à considérer sur la résultante est le mélacentre, 
que nous définirons un peu plus loin.

L’étude des déplacements du point B, suivant les diverses valeurs 
de l’angle d’attaque, n’est utile que parce qu’elle permet de résoudre 
le problème de la stabilité dans le cas où le centre de gravité est très près 
de la surface. Mais quand il s’en éloigne, l’étude du point B ne suffit 
plus. Pourtant beaucoup d’auteurs se sont bornés à étudier, dans le 
cas d’une surface unique, la position du point d’intersection de la 
résultante avec la surface, ce point étant assimilé au centre de poussée 
dont il diffère assez peu.

Dans l’attaque orthogonale, le centre de poussée est, par raison de 
symétrie, au centre de figure.

Dans l’attaque oblique, le centre de poussée se déplace suivant une 
certaine loi, et cette loi n’est pas la même pour les plans et pour les 
surfaces arquées. Ce fait, mal élucidé au début, a induit en erreur 
nombre d’expérimentateurs et d’aviateurs, qui ont cru pouvoir, a 
priori, appliquer aux surfaces arquées, les lois expérimentales éta­
blies pour les surfaces planes. Non seulement c’est une inexactitude, 
mais elle peut provoquer de graves accidents ; et on doit s’étonner 
que certains auteurs aient récemment, par désir de simplification, 
repris cette idée fausse qu’on pouvait croire définitivement écarlée.

Surfaces planes. — Considérons d’abord (fig. G6) un plan 
rectangulaire ayant pour largeur 2h dans le 
sens du mouvement. Soit i l’angle d’attaque, 

. c o  et soit y la distance du centre de pression C 
w-a au centre de figure O. Lorsque i varie, la 

=5 distance y varie suivant une certaine loi pour 

Fis. 66. — Position laquelle le physicien A vanzini a proposé la 
de la poussée. . formule suivante :

3 = 0,3 (1 — Sin )
2 Æ

Fig. 66. Position de la
poussée
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C'est ce qu’on appelle la loi d’Avanzini. Elle exprime que, pour 
l’incidence orthogonale, y est nul, et qu’il augmente à mesure que i 
diminue, de sorte que le centre de poussée se rapproche progressi- 

vement du bord d'attaque. Lorsque i tend vers zéro, — tend vers 

0,3, autrement dit y tend vers 0,6 A. La distance du point C au bord 
d’attaque est alors 0,4 h, c’est-à-dire 1/5 de la largeur du plan.

En 4870, Joessel a proposé la formule suivante, établie pour 
l’eau, et qui diffère très peu de la précédente :

3 = 0,305 (1 — Sin i)

M. Soreau, à la suite d’expériences faites dans la Seine, à Argen- 
teuil, a obtenu la formule qui suit:

y _ _ 
2 h 4 (1 + 2 tg i)

Cette formule rend compte aussi bien des expériences dans l'eau 
que dans l’air, ce qui donne créance à cette opinion d’Helmholtz 
d’après laquelle aux faibles vitesses (et il convient de considérer comme 
telles celles qui ne provoquent pas de variations notables dans la 
densité de l’air en mouvement), les lois de l’aérodynamique seraient 
les mêmes que pour un fluide visqueux et incompressible.

Pour les surfaces courbes on a longtemps cru que la loi d’Avanzini 
pouvait s’appliquer. Ce sont les frères Wright qui, les premiers, ont 
remarqué qu’il n’en est rien. Ils ont constaté que, sur une surface 
légèrement concave, le centre de pression, qui se trouve, pour l’inci­
dence normale, au centre de figure, se porte vers le bord d’attaque 
quand i diminue jusqu’à une certaine valeur critique; puis il rétro­
grade rapidement, franchit le centre de figure, etse porte à l’arrière 
jusqu’à une position limite pour l’incidence nulle.

Il faut donc écarter d’une manière complète la loi d’Avanzini 
pour les surfaces autres que les plans, et étudier avec soin, pour 
chaque courbure des surfaces, la manière dont se déplace le centre 
de pression quand l’angle d’attaque varie.
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Fig. 67. — Déplacements du centre 
de poussée (Turnbull).

Expériences de Turnbull. — Des expériences extrêmement 
intéressantes ont été faites à ce sujet par M. Turnbull (1), sur les 
5 surfaces dont nous avons parlé ci-dessus (page 1 1 7). Il a figuré les 
résultats par des courbes, dans lesquelles les angles d’attaque sont 
portés en abscisses, et les distances du centre de pression au centre 

de figure (évaluées en pour­
centage de la largeur totale) 
en ordonnées. La figure 67 
reproduit ces courbes.

Avec le type I (plan) le 
centre de pression s’avance 
vers le bord d’attaque, puis 
rétrograde. Ce résultat, con­
traire à la loi d'Avanzini, a été 
confirmé par certains expéri­
mentateurs, mais la plupart ne 
l'ont pas constaté. Nous indi­

quons plus loin les résultats trouvés par M. Rateau et confirmés 
par ceux de MM. Eiffel et Riabouchinsky. Ce qui est certain, 
c’est qu’aux très petits angles les déplacements du centre de pres­
sion, soit dans un sens, soit dans l’autre, sont extrêmement peu 
sensibles.

Avec les types III et V, le centre de pression se rapproche du bord 
d’attaque, puis recule, franchit le centre de figure pour un angle 
d’attaque de 4 30 environ, et passe à l’arrière.

Ainsi le type III, qui est celui qu’on emploie le plus souvent, 
présente ce phénomène qui, comme nous le verrons, est défavorable 
à la stabilité.

Les types II et IV donnent un résultat remarquable : le centre de 
pression avance constamment vers le bord d’attaque, ce qui favorise 
la stabilité longitudinale pour ces deux types.

(1) Loc. cit.

Fig. 67. Déplacement
du centre de poussée
(Turnbull)
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Turnbull recommande le type IV, parce qu'il présente le double 
avantage de donner une résistance à l’avancement très faible, et d’être 
favorable à la stabilité. Il semble bien, en effet, que ce soit le meilleur 
type de surface.

Expériences de M. Rateau. — Des expériences très précises 
ont encore été faites sur le déplacement du centre de poussée, notam­
ment par MM. Rateau, Eiffel et Riabouchinsky. Malheureusement 
ces expériences n’ont été faites que sur des plans et des surfaces en 
arc de cercle. Il faudrait expérimenter sur des surfaces ayant la cour­
bure optima. Les résultats trouvés par Turnbull montrent combien 
les résultats changent avec la forme des courbures ; les résultats 
trouvés pour des surfaces autres que celles utilisées en aviation n’ont 
qu’un intérêt très limité.

Les expériences de M. Rateau se traduisent par les deux courbes 
de la fig. 68. La courbe I 
est relative à une plaque 
plane de 500 X 300 m/m) 
la courbe II à une plaque 
arquée (arc de cercle de 20°) 
de même étendue.

Le centre de poussée était 
déterminé de la façon sui­
vante : en assujettissant la 
plaque à tourner autour 

Arriè

1 3
 j g

h

FIG. 68. — Déplacements du centre 
de poussée (Rateau).

d’un axe fixe et en l’abandonnant à l’action du courant. Elle prenait 
alors une certaine inclinaison dépendant de la position de l’axe; et, 
pour cette inclinaison, le centre de poussée se trouvait déterminé 
puisqu'il se plaçait nécessairement sur l’axe même..

On remarque sur les deux courbes l’existence d'une disconti­
nuité.

« D’après ce graphique, écrit M. Rateau au sujet de la surface 
plane, on voit que pour de petites inclinaisons l’abscisse du centre 
de poussée (à partir du bord d’attaque) tend vers la valeur 0,236.

Fig. 68. Déplacements
du centre de poussée
(Rateau)
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A mesure que l’angle augmente, le centre recule, d’abord lentement, 
puis plus rapidement. La courbe se subdivise en deux tronçons 
complètement distincts l’un de l’autre. Le premier, relatif aux petits 
angles, correspond évidemment à un régime d’écoulement dans lequel 
les filets vont tous dans le même sens (c’est le seul régime à consi­
dérer dans la sustentation des aéroplanes) ; tandis que le deuxième, 
relatif aux grands angles, correspond à un régime très différent du 
premier. Dans ce régime, analogue à celui qui a lieu lorsque la plaque 
est normale au courant, il y a rebroussement d’une certaine quantité 
de filets d’air au bord antérieur de la plaque.

Dans la région avoisinant les extrêmes C et D des courbes, les 
régimes sont instables; ils se transforment facilement l’un dans 
l’autre.

Pour chaque position de l’axe, il n'y a qu’un seul angle d’équilibre, 
excepté dans le voisinage de X == 0,416, où il y a deux valeurs 
de a ; les deux régimes étant alors possibles. Nous avons effectivement 
obtenu deux positions d’équilibre bien distinctes avec cette valeur 
x = 0,416.

Chose singulière, il n’y a pas d’angle d’équilibre possible entre 
29 et 36° environ. Avec de tels angles d’inclinaison, un plan susten- 
tateur, analogue à notre plaque, ne peut pas donner lieu à un état de 
régime stable. Le même fait se présente avec toutes les plaques 
rectangulaires que nous avons soumises aux expériences, quel que 
soit leur profil. »

Pour la plaque courbe, l’allure de la courbe est analogue à la 
précédente pour les angles supérieurs à 15°. Il y a deux courbes 
distinctes, et deux positions d’équilibre pour x == 0,445. Pour 
o. =150 x = 0,325. C’est la position du centre de poussée la 
plus rapprochée du bord antérieur. Ensuite, il rétrograde rapidement 
repasse par le milieu de la plaque pour un angle voisin de 5° et 
continue à se rapprocher du bord de sortie.

Nous devons dire que, si tous les expérimentateurs précis ont 
constaté le changement d’allure des courbes, ils n’ont pas constaté la 
discontinuité trouvée par M. Rateau. Mais cela peut provenir du

9
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dispositifd’expériences ; celui de M. Rateau est extrêmement précis, et 
d’une manière générale une expérience positive n’est pas infirmée 
par une expérience négative.

MÉTACENTRE

La considération du centre de poussée tel que nous venons de 
l'étudier, c'est-à-dire du point d’intersection de la poussée avec la 
surface, ne permet de résoudre le problème de la stabilité que si le 
centre de gravité de la machine volante est lui-même situé sur la 
surface ou en est très voisin.

Dans le cas général, il importe de considérer la poussée à la fois 
dans sa direction et dans sa position. La droite qui figure la poussée 

prend pour les diverses incidences, une série de
Cl A positions. successives. Soit R (fig 69), une de ces 

R positions. Si on considère une incidence très voisine,
V on obtient une autre droite R qui rencontre R au

B point A. Lorsque le second angle d’incidence tend
- vers le premier, le point A tend vers une position 
/ / ~ limite B. Ce point B est ce qu’on appelle le

Fro.69.— Courbe métacentre.
métacentrique. , , .,

Nous verrons que c est lui qui est a considerer 
dans le problème de la stabilité.

A chaque angle d'attaque correspond un point tel que B ; tous ces 
points sont situés sur une courbe C appelée courbe métacentrique, 
à laquelle toutes les droites R sont tangentes. La courbe C est l’enve- 
loppe des droites R.

La détermination expérimentale des courbes métacentriques, pour 
diverses formes de surfaces sustentatrices, serait du plus haut intérêt 
pour l’étude générale de la stabilité longitudinale.

Si on considère non plus seulement les courants aériens parallèles 
au plan de symétrie des surfaces sustentatrices, mais les courants de 
direction quelconque, plus ou moins obliques ou latéraux, le lieu des

Métacentre
Fig. 69. Courbe
métacentrique
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métacentres n’est plus une courbe mais une surface appelée surf ace 
métacentrique, dont la connaissance permettrait de résoudre toutes 
les questions de stabilité.Mais, sous cette forme générale, le problème 
est tellement complexe qu’il n’est pas possible de l’aborder actuelle­
ment.

RÉSUMÉ DES LOIS DE LA RÉSISTANCE DE L’AIR 
APPLICABLES A L'AVIATION

Les lois de la résistance de l’air applicables à l’aviation sont celles 
qui concernent des carènes plus ou moins fuselées et des surfaces 
obliques, arquées ou planes, attaquant l’air sous de très petits angles. 
De tout ce qui précède, il résulte que les lois de Newton doivent être 
remplacées par les suivantes :

40 La résistance de l’air est sensiblement proportionnelle à la 
densité du fluide, au carré de la vitesse et à l’étendue de la surface.

2° Les composantes de la résistance normalement et parallèlement 
au courant aérien sont proportionnelles aux quantités a et ran+b, 
a étant l’angle d’incidence d’un certain plan invariablement lié à la 
surface, r étant un coefficient plus petit que 1, b étant une constante 
positive, et n étant un exposant compris entre 2 et 4.

Quant à la loi donnant la position de la résistance, on ne peut, 
pas en donner un énoncé général; il faut l’étudier dans chaque
cas.

Résumé des lois de la
résistance de l'air
applicables à l'aviation
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CHAPITRE V.

THÉORIE DE L’AÉROPLANE.

Nature du problème. — Qualité sustentatrice. — Equations d’équilibre en 
marche horizontale. — Vitesse minima de sustentation. — Vitesse de 
moindre traction. — Vitesse de moindre puissance. —Vitesses extrêmes 
réalisables avec une puissance utile donnée. — Vitesse de moindre 
travail. — Influence de l’altitude. — Montée et descente. — Cas de 
l’aéroplane sans moteur- — Maximum de poids utile enlevé. — Familles 
d’aéroplanes semblables. — Minimum de puissance permettant d'enlever 
un poids utile donné. — Influence de l’inclinaison de l’axe de l’hélice.
— La bicyclette aérienne est-elle possible?

La théorie de l’aéroplane doit envisager deux problèmes distincts.

Dans le premier, qui est le plus général, on cherche les relations 
qui lient les diverses données: poids, surface, angle d’attaque, 
vitesse, force tractive, puissance motrice, sans se préoccuper de la 
façon dont la force motrice est produite. On admet que la puissance 
et la force tractive peuvent varier indépendamment l’une de l’autre, 
la même puissance motrice pouvant, à volonté, produire une grande 
force avec une faible vitesse, ou une petite force avec une grande 
vitesse. On constate que, quand la puissance motrice est plus grande 
qu’un certain minimum, le vol est possible a diverses allures.

Ces considérations ne peuvent s’appliquer qu’à un aéroplane dont 
la partie motrice n’est pas encore mise en place ; elles permettent de 
calculer à l’avance les données d’un aéroplane, et, étant donné la 
puissance disponible, de déterminer les diverses possibilités que

Chapitre V. Théorie de
l'aéroplane
Nature du problème
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cette puissance motrice permet de réaliser. Mais pour chacune de ces 
possibilités on devra aussi calculer la force tractive, et choisir un 
propulseur approprié à cette force, propulseur qui ne restera pas le 
même dans tous les cas.

Le problème est tout différent lorsque l’aéroplane est construit, et 
muni d’un moteur et d’un propulseur déterminés.

La puissance et la force tractive ne sont plus indépendantes ; elles 
sont assujetties à certaines conditions inhérentes au fonctionnement 
des moteurs à explosion et des hélices aériennes qu’on utilise en 
pratique. La puissance normale du moteur ne s’obtientque pourune 
certaine valeur fixe de la force tractive, et pour une certaine vitesse 
angulaire; on ne peut pas modifier cette force et cette vitesse sans 
diminuer la puissance disponible ; le champ des possibilités est donc 
plus restreint que dans le premier cas.

Nous croyons qu’il y a avantage, pour la facile compréhension de 
la théorie, à ne pas commencer par établir des équations très géné­
rales et très complètes, très complexes aussi, dont on déduit ensuite 
des cas particuliers plus simples.

Nous préférons commencer par une théorie relativement simple et 
élémentaire, suffisante pour donner une idée de la question ; nous la 
généraliserons ensuite en complétant les données et en envisageant 
des cas plus complexes.

Disons d’abord quelques mots de la manière dont la question sera 
abordée. Dans ce qui va suivre, nous n'envisagerons que le mouve­
ment d’un aéroplane en régime établi, dans lequel les diverses forces 
appliquées se font équilibre, et dont le centre de gravité a un mouve­
ment rectiligne et uniforme.

Grâce à l’existence d’un plan de symétrie, dans lequel sont situées 
les résultantes des forces ainsi que la trajectoire du centre de gravité, 
les équations d’équilibre se réduisentà trois: deux pour exprimer 
que la somme des projections des forces est nulle, et une pour exprimer 
que la somme des moments par rapporta un point quelconque est 
nulle. Encore cette dernière équation, qui exprime ce que l’on appelle
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l’équilibre longitudinal, sera-t-elle mise de côté pour le moment, la 
question de l’équilibre longitudinal devant plutôt être traitée en même 
temps que la question de stabilité.

En somme nos équations se réduiront donc à deux ; nous nous 
bornons à la recherche du mouvement du centre de gravité dans 
un aéroplane en équilibre.

QUALITÉ SUSTENTATRICE.

Définissons d’abord ce que le Colonel Renard a appelé qualité 
suslentatrice d’une surface. Cette définition résulte de la comparaison 
de la surface avec un sustentateur-type, constitué par un plan mince 
carré orthogonal, qui, pour maintenir en l’air le même poids, dépen­
serait le même travail.

Soit S la surface considérée, qui supporte un poids P en dépensant 
un certain travail T par seconde ; soit 2 la surface du sustentateur 
carré orthogonal qui absorberait le même travail ; la qualité suslenta­

trice q de la surface S est par définition le, rapport 2 :

2

Considérons d’abord un sustentateur S orthogonal. Soit V la vitesse 
de refoulement, on a:

P = KSV%

K étant le coefficient de résistance applicable à la surface. Le travail T 
par seconde a pour expression :

T = PV = KSV3

Remarquons que l’on a:

T2 KPS2V6 1
p3 5 K3SBV6 = KS

Qualité sustentatrice
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La quantité — est donc une constante pour la surface considérée.

Pour le sustentateur-type composé d’un plan mince carré, pour 
lequel le coefficient de résistance est , quantité connue égale à 0,08, 
on a de même:

P = QEV2

T = ?SV3

T2 1
P35 ox

On a donc:

1 _ 1
KS oS

d’où :

-IR
 

II o 
M

II

La qualité est donc égale au rapport des coefficients —.

T2
Si on remplace K pares dans l’expression 'de — , il vient :

_ rII

91 
!»

H
IA (15)

Cette équation montre que le carré du travail nécessaire pour 
soulever un poids P avec la surface S varie en raison inverse de la 
qualité ~.4

Il y a donc avantage à augmenter la qualité pour diminuer le 
travail ; la qualité est la mesure de la valeur de la surface comme 
sustentateur.

Voyons ce que devient la qualité sustentatrice dans le cas de 
l’attaque oblique, c’est-à-dire pour un aéroplane. On appelle encore 
qualité sustentatrice le rapport entre la surface 2 d’un plan carré
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qui donne la sustentation orthogonale avec le même travail, et la 
surface S. Si la surface S se déplace horizontalement sous un petit 
angle d’attaque i, les composantes H et F de la réaction suivant la 
verticale et l’horizontale peuvent s’écrire :

H =SV2 = P

F = /SV2

k et /'étant des coefficients qui dépendent de la forme du sustentateur 
et de l’angle d’attaque. On a pour le travail : ■

T = FV

T2
P.:Formons l’expression

T2 /3S2V6 1 12

P3 5 À’S’V« S ka

On a donc :

T_1/1
P3 — S ha 5 qx

d’où :

II 
m

loII

% 
“ 

-lo-

h3
La qualité sustentatrice est proportionnelle au rapport — . Par 

suite le travail nécessaire à la sustentation est inversement propor-
R3 , 13/2

tionnel au rapport 7 . C’est donc ce rapport 7 et non le 

rapport * , dont le maximum caractérise le profil optimum.

On constate que l’on a, comme précédemment:

T1 1

% II H (15)



I 93 I

Si, comme on l’a cru longtemps avec Newton, la réaction de l’air 
était normale au plan et proportionnelle au carré du sinus de l’angle 
d’incidence, on aurait pour les petits angles :

R = KSV%/2

% — Ki
/ = KA

d'où:
1 K3j6 K

q= — ------- = — — constante.1 9K2i6 9

La qualité serait constante et de même forme que pour l’attaque 
orthogonale. Le travail du vol serait le même dans les deux cas. Or 
cela est contredit par l'observation, qui nous montre que les oiseaux 
volentavec beaucoup moins d’effort quand ils se propulsent de manière 
à obtenir l’attaque oblique. En réalité, nous avons vu que la réaction 
de l’air est, pour les petits angles, proportionnelle à l’angle d’inci­
dence, et qu’on peut écrire :

R = KSV^

*=Ki

f= Ki2,

d’où :

- 1 K30 K1
4 ® K‘i,2 qr2 i

La qualité n’est donc pas une constante caractéristique de la 
surface ; elle est fonction de l’angle d'incidence ; elle augmente indé­
finiment lorsque i tend vers zéro. Par suite, le travail nécessaire au 
vol peut être rendu aussi petitqu’on voudra. C’est en cela que consiste 
l’avantage énorme de la sustentation oblique sur la sustentation ortho­
gonale. Toutefois, plus l’angle d’attaque diminue, plus la vitesse doit
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augmenter, et avec elle le travail perdu en résistances de frottement. 
Il faut donc en tenir compte et traiter le problème plus complètement; 
nous verrons ainsi qu’il y a un certain angle d’attaque qui correspond 
au minimum de travail.

L’attaque oblique est donc un moyen d’augmenter la qualité. 
Deux autres moyens permettent de l’améliorer encore. Ce sont:

4° L’allongement des surfaces dans le sens perpendiculaire à la 
marche. Nous avons vu précédemment que cet allongement augmente 
la réaction par unité de surface dans un rapport qui peut allerjusqu'à 
5

—. La qualité est augmentée dans le même rapport.

2° La courbure des surfaces. La courbure a pour effet d’augmenter 
légèrement la grandeur de la réaction, et, sous certains angles 
d’attaque, de diminuer le rapport de la composante horizontale à la

composante verticale. Ainsi, h augmente, et — augmente également.

Pour cette double raison,

pour la qualité.

13

72 augmente. Il en est donc de même

Par suite, le travail nécessaire devient moindre (toutefois l’avantage 
de la courbure est très faible, beaucoup moindre qu’on ne le croit 
généralement).

Ce sont ces avantages de la sustentation oblique qui, joints à la 
suppression des mouvements alternatifs, font de l’aéroplane le susten- 
tateur le plus économique et le moins difficile à réaliser mécani­
quement.

THÉORIE DE L’AÉROPLANE.

La théorie de l’aéroplane a été donnée en premier lieu par Alphonse 
Pénaud, en 1873, et complétée par le colonel Charles Renard. Tous 
deux partaient d’hypothèses très simples sur la résistance de l’air, 
qu’ils considéraient comme normale à la surface sustentatrice supposée

Théorie de l'aéroplane
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plane, et proportionnelle à l’angle d’incidence ou à son sinus. De sorte 
que si S est la surface sustentatrice 

R.

FIG. 70.
Schéma de l'aéroplane.

qui se déplace horizontalement à la 
vitesse V sous l’angle d'attaque i, les 
deux composantes h etf de la réaction, 
perpendiculaire et parallèle au vent 
relatif, s’expriment par :

r h = R cos i = KSV2 Sin i cos i 
LIER Sin i = KSV2 Sin2 i

ou, comme les angles sont petits et 
qu’on peut assimiler le sinus à l’angle et le cosinus à l’unité:

h = KSV2i 
L/==KSVsis

K étant, comme nous l’avons vu, un coefficient qui dépend de la 
forme du plan. Outre cette force normale, qui existerait seule si les 
frottements étaient nuls, la réaction de l’air comporte une petite 
composante due au frottement et à la réaction sur l’arête antérieure, 
composante qui s’exprime par la formule générale de la résistance de 
l’air :

A = K,SV2 

ou, en posant:

K, = K6: 1 = KSV26

b étant un coefficient qui dépend de la forme du plan, de son épaisseur 
et de sa matière. Nos équations deviennent donc :

r h = KSVZi 
Lf= KSV2 (a + b).

Les premiers auteurs admettaient que la composante de frottement 
restait sensiblement la même quel que soit i, c’est-à-dire que b était

Fig. 70. Schéma de
l'aéroplane



I 6 I

une constante. La signification du terme KSV-b s’obtiendrait alors en 
faisant i — 0; c’est la résistance éprouvée par le plan quand il se 
présente par la tranche, sous une incidence nulle.

Or cette hypothèse n’est pas exacte ; lorsque l’incidence augmente, 
l’expérience montre que la réaction de l'air, d’abord inclinée en 
arrière de la normale, passe en avant de la normale. Le terme KSV2b 
ne reste donc pas constant; d’abord positif, il diminue et change 
même de signe.

Mais il y a un moyen de le laisser constant, ce qui est avantageux 
pour les calculs ; il suffit d’affecter le terme KSV222 d’un coefficient 
de réduction y un peu plus petit que 1.

On a alors :

h=KSV2
L f = KSV(ri+6) (T)

Cette modification a été, comme nous l’avons vu plus haut, 
proposée en 1908 par M. Sorcau.

Ainsi écrites, et b étant une constante, les formules (1) représen­
tent à peu près la réaction de l’air sur un plan aux faibles incidences 
utilisées en aviation.

Nous allons donc les prendre pour point de départ de la théorie 
de l’aéroplane, comme première approximation.

Toutefois, elles ne sont pas absolument exactes même pour des 
surfaces planes, et elles ne le sont réellement pas du tout pour des 
surfaces arquées. Nous referons donc la théorie avec les formules (2) 
plus exactes indiquées page 442; nous verrons que les théorèmes 
conservent la même allure, mais que les résultats numériques sont 
différents.

Reprenons pour le moment les formules (1).
Nous admettons qu’elles s'appliquent aux surfaces de l’aéroplane 

à étudier. Nous admettons même qu’elles s’appliquent à un aéroplane 
composé, pour des raisons de stabilité, de plusieurs surfaces ayant 
des angles d’attaque légèrement différents. Nous allons définir dans 
ce cas ce qu’on appelle l’angle d’attaque de l’aéroplane.
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Soient K. S. 0, K2 S2 ip, etc., les caractéristiques des diverses 
surfaces. Nous définirons la surface S de l’aéroplane par:

»S. = S.

Posons :

SK»S„ = KS

Cette équation définit K, coefficient de résistance applicable à 
l’ensemble de la surface.

Enfin posons:

SK,S,i,=KSi

Cette équation définit l’angle d’attaque Z de l’aéroplane. Montrons 
que cet angle varie de la même manière que les angles in, ip, etc. 
c’est-à-dire qu’il définit un plan fictif invariablement lié à l'aéroplane. 
Supposons en effet que l’aéroplane tourne de l’angle s. Tous les angles 
0, ip, etc., augmentent de e.

La quantité ZK„S,i devient:

S K. S. (in +0)=B K. S. i + SK„ S„ e

ou, d’après les définitions ci-dessus de K et de i :

SK.S (i + s) = KSi + KSE = KS (i + e)

On voit que l’angle i, ainsi défini, a bien augmenté lui aussi de s. 
Le plan fictif est donc resté invariablement lié à l’appareil.

L’expression de h restera donc de la forme :

% = KSV*;.

Nous admettons que l’expression de /'reste aussi de la même forme 
que pour un plan unique:

f = KSV2 (ri + 6)

grâce au choix convenable des coefficients ? et b. Celle hypothèse 
n’est pas rigoureuse, mais elle est du même ordre d’approximation 
que les formules (1). :
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EQUATIONS D’ÉQUILIBRE DE L’AÉROPLANE 
EN MARCHE HORIZONTALE.

Nous allons décrire que l’aéroplane est en équilibre sous l’action 
des forces qui lui sont appliquées. Ces forces sont au nombre de 4, 
savoir :

4° Le poids P.

2° La réaclion de l’air sur les surfaces sustentatrices, réaction qui
a pour composantes verticale et horizon­
tale h et f.

3° La réaction f de l’airsur les organes 
autres que les plans (bâti, haubans, train 
d’atterrissage, moteur, etc.);

Cette réaction entièrement nuisible, est 
horizontale et de la forme

ct. in 8II %

FIG. 71. — Forces 
appliquées à l'aéroplane. S'étant la surface totale que ces organes 

opposent à l’avancement, et K' un coef­
ficient de résistance dépendant de leur forme ;

4° La force tractive F, que nous appellerons traction. On sait 
par expérience qu’elle est beaucoup plus petite que P. Elle n’est pas 
tout à fait horizontale, et sa direction n’est pas absolument constante,, 
puisqu’elle varie avec l’angle d’attaque ; néanmoins en pratique elle 
ne diffère jamais beaucoup de l’horizontale, de sorte que sa projection 
sur la verticale est très petite et peut être négligée, ce qui revient à 
considérer la traction comme sensiblement horizontale.

En projetant les forces sur la verticale et sur l’horizontale, et en 
exprimant qu’elles se font équilibre, on obtient :

I--
--

1 

II
 II + $

Équations d'équilibre
en marche horizontale

Fig. 71. Forces
appliquées à
l'aéroplane
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ou, en remplaçant h, f et f par leurs valeurs précédemment 
indiquées :

004 • 0 II II R
R

 
C

A
 Ch 

A
 % 

18
 1

0
~ ci. 15

 + 5 10
 + 7 0 — 19

Le terme KSV2ri2 peut s’écrire Pri.
Le terme K,SV2, étant une résistance de pénétration analogue à 

K'STV*, peut rentrer dans ce dernier terme, qui comprendra ainsi 
l’ensemble de toutes les résistances de pénétration de l’appareil. 
D'où enfin :

P=KSV (3)
LF= Pri+ K‘S/V2 (4)

Telles sont les équations d’équilibre de l’aéroplane en marche 
horizontale. Pri sera appelée résistance de sustentation; c’est elle 
qui permet d’obtenir la composante sustenlatrice. La résistance de 
sustentation dépend de i ; elle tend vers zéro lorsque l'angle d’attaque 
tend vers zéro.

K'S'VZ est la résistance de pénétration; elle ne dépend pas de 
l’angle d’attaque, du moins directement; mais comme elle est 
fonction de la vitesse, qui elle-même dépend de l’angle d’attaque, la 
résistance de pénétration varie avec l’angle d’attaque.

Nous allons déduire diverses conséquences des équations (3) et (4).
D’après /2), on voit que V2i reste constant : le carré de la vitesse 

varie en raison inverse de l’angle d’attaque.

VITESSE MINIMA DE SUSTENTATION.

A chaque valeur de i correspond une valeur de la vitesse. Mais la 
réciproque n'est pas vraie, car si la vitesse est faible l’angle corres­
pondant donné par la formule (3) sera grand, et on sait que pour les 
angles de plus de 150 la formule n’est plus valable. Il faut donc se 
garder de raisonner comme suit : la formule P == KSW montre

Vitesse minima de
sustentation



qu’à chaque vitesse V donnée correspond un seul angle d’attaque 

possible, donné par i = =

Il est nécessaire de reprendre la courbe expérimentale donnant la 
composante verticale de la réaction aux diverses incidences sur une

Régimes de sustentation.

% 30°
FIG. 72.

sy-

surface égale à l’unité et pour l’unité 
de vitesse (fig. 72). Coupons cette
courbe par la droite d’ordonnée 

P
SV:' on obtient ainsi deux points 

d’intersection correspondant aux 
angles d’attaque il et i; pour ces 
deux angles, à la vitesse V, la 
composante verticale de la réaction 
est P. Ainsi, à une vitesse donnée 

correspondent deux angles d’attaque différents.
Mais pour que la solution existe, il faut que la droite d’ordonnée
P 1 k

------ coupe la courbe. SV- *

Appelons a l'ordonnée maxima de la courbe, il faut que :

ou :

P
SV2

Il y a donc un minimum pour V, une vitesse minima de susten- 
talions si la vitesse n’atteint pas ce minimum, la sustentation est 
impossible avec l’appareil considéré, quel que soit l’angle d’attaque 
et quelle que soit la puissance du moteur. Sous cette réserve, à 
chaque vitesse correspondent deux angles d’attaque, mais l’angle ig 
n’est pas donné par les formules classiques, qui ne tiennent pas 
compte de la branche descendante de la courbe.

Fig. 72. Régimes de
sustentation
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VITESSE DE MOINDRE TRACTION.

Nous allons montrer qu’il y a une certaine vitesse pour laquelle 
l'effort de traction est minimum.

Eliminons i dans l’expression de F donnée par l’équation (3). On 
obtient :

P2, 
= KV: * KSV

Cette équation exprime la variation de la traction en fonction de la 
vitesse.

F est la somme de deux termes, qui varient en sens inverse l’un 
de l’autre, et dont le produit est constant. F passe donc par un 
minimum quand les deux termes sont égaux. D'où ce théorème :

Théorème I. — Le minimum de traction a liez quand la 
résistance de sustentation est égale à la résistance de pénétra­
tion.

On a alors :

d’où :

v. = P
KS K‘S°

ainsi la traction est minimum pour une certaine vitesse V1 que nous 
appellerons vitesse de moindre traction et qui est définie par 
l’équation :

p2,
— -------- ----- (6)1 KSK'S' .

La vitesse de moindre traction est très intéressante pour plusieurs 
raisons.

10

Vitesse de moindre
traction
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C’est elle qui permet d’effectuer un trajet donné en dépensant le 
minimum de travail utile, puisque le travail est le produit de l’effort 
par le chemin parcouru.

A égalité de rendement, c’est donc la vitesse qui permet de 
parcourir un trajet donné en dépensant le minimum de combustible. 
C’est aussi celle qui permet de parcourir le plus grand trajet possible, 
aveé une provision de combustible donnée. Par suite, elle est 
avantageuse à adopter pour un concours de consommation ou un 
cconcours de distance.

D’ailleurs, au point de vue du rendement elle est également très 
favorable, car, comme nous le verrons, le rendement des hélices 
propulsives est d’autant plus grand que la traction est plus faible.

La valeur du minimum de traction se calcule facilement en 
remarquant que, quand les deux termes dont se compose la traction 
sont égaux, ils sont tous deux égaux à la racine carrée de leur

i P2,K‘Sproduit, lequel est constamment égal a ——— .

Le minimum de traction Fi a donc pour valeur :

A
 

O
R11

j 
0

8

La formule (5) peut se représenter par une courbe obtenue en

F

FrG. 73. — Courbe de la traction 
en fonction de la vitesse.

portant les vitesses en abscisses et 
les tractions correspondantes en 
ordonnées. La courbe a un mini­
mum Fi pour la vitesse V1. En deçà 
et au delà de cette vitesse, la traction 
augmente.

V, est la vitesse minima de sus­
tentation. Les courbes en pointillé 
représentent la résistance de sus­
tentation, qui va en décroissant, et 
la résistance de pénétration, qui va

en croissant avec la vitesse.

Fig. 73. Courbe de la
traction en fonction de
la vitesse
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Le travail utile par seconde à la vitesse de moindre traction est :

à 
ch 

H
Eco

C
AIIXGII

ET

Pour obtenir l’angle de moindre traction 0, il suffit d’écrire, dans 
l’équation (4), que les deux termes dont se compose F sont égaux :

Pri = K‘SV2

d’où, en éliminant V par l’équation (3) :

- K'SP Pri -   —
KSi

d’où :
4

II

KS (8)

on remarque que l’angle 0 est indépendant du poids P.
On peut exprimer le rapport E (traction rapportée au mini-

V
mum de traction) uniquement en fonction du rapport — (vitesse rap­

portée à la vitesse de moindre traction).
On a en effet :

3 II 51
 

—
 1

10

II R
 0 4 1

P2r P2r
F _ KSV: K‘SV2 _ KSV2 K‘SV2
F, F, T F, 2P2, T 2KSV,2

KSV,2

2 4 94 19
. 19 + V2

2V,2

F 
F
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Telle est la formule très simple qui permettra de calculer comment 
varie la traction lorsqu’on s’écarte de la vitesse de moindre traction.

Voyons notamment ce qui se passe si on double la vitesse. La 
traction ne quadruple pas, comme on le croit souvent à tort; elle 
: V

devient, en prenant — — 2 :
33

 
H

20
 -

co
 5 II 40
 7 C

Elle ne fait donc que doubler, à peu de chose près. Elle prend du 
reste la même valeur si, au lieu de doubler, on diminue de moitié la 
vitesse.

Elle ne devient quadruple que si la vitesse est multipliée par 2,8.

On peut de même exprimer l’angle d’attaque i, rapporté à 11, en 

fonction de —. Comme W est une quantité constante, on a :

V*£ = V,24,

d'où :

FIG. 74.
Courbe exacte de la traction.

i 1

Rappelons que les formules ci-dessus 
ne sont pas valables pour les très faibles 
vitesses; nous avons vu en effet que 
la vitesse a un minimum V , corres­
pondant à un certain angle d’attaque; 
si on augmente cet angle, il faut de 

nouveau augmenter la vitesse. A chaque vitesse V correspondent 
deux angles, et par suite deux valeurs de la traction ; la courbe exacte 
est représentée fig. 74.

Fig. 74. Courbe exacte
de la traction
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VITESSE DE MOINDRE PUISSANCE.

La puissance motrice T utilisée, autrement dit le travail utile par 
seconde, est le produit de la traction par la vitesse :

T = FV.

D’après l’équation (5) on a :

p2,
T= ksv * KST 00)

Cette équation exprime la variation de la puissance T en fonction 
de la vitesse. La puissance se compose de deux termes ; l’un est le 
travail de sustentation, qui tend vers zéro quand la vitesse 
augmente; l’autre est le travail de pénétration, qui augmente 
indéfiniment avec V.

Comme la traction, la puissance passe par un minimum pour une 
certaine valeur de V.

On obtient ce minimum en égalant à zéro la dérivée de T par 
rapport à V :

P2, 
-^^^^-"^ 011)

d’où: 4

3 KS K'S'

Il existe donc une vitesse de moindre puissance Vo définie par :

p2.
Va = E (12)

L’équation ( 10) peut se traduire par une courbe de la puissance en

Vitesse de moindre
puissance
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fonction de la vitesse. Cette courbe a un minimum T0 pour la 
vitesse Vo. Les courbes en pointillé indiquent le travail de sustenta­

tion et le travail de pénétration. De 
même que la courbe des tractions, 
la courbe de la puissance n’existe 
qu’au dessus d’une certaine valeur 
minima de la vitesse.

De l’équation (1 I) on tire :

10 V V V

Fig. 75. — Courbe de la puissance 
en fonction de la vitesse.

P y M CII + 
% 

5

Le premier terme est la résistance 
de sustentation ; le second est la 

résistance de pénétration multipliée par 3. D’où ce théorème :

Théorème II. — Le minimum de puissance a lieu lorsque la 
résistance de sustentation est triple de la résistance de péné­
tration.

La vitesse de moindre puissance est celle qui permet de voler avec 
le minimum de puissance motrice, donc avec le moteur le plus faible ; 
ou encore, c’est celle qui permet d’enlever le maximum de poids avec 
une puissance donnée ; enfin, c’est celle qui permet de voler avec le 
minimum de consommation de combustible par unité de temps. Par 
suite, elle est à adopter dans un concours de durée, ou dans un 
concours de poids utile enlevé.

Théoriquement elle est donc très intéressante; mais il ne s’agit ici 
que de la puissance utile, toute question de rendement mise à part. 
Or, dans la réalité le rendement des propulseurs varie avec la vitesse, 
de sorte que le minimum de puissance dépensée n’a pas lieu en 
même temps que le minimum de puissance utilisée. Il y aurait donc 
lieu de considérer la vitesse de moindre puissance dépensée; elle 
serait un peu plus grande que celle que nous venons de trouver. 
C’est celle qu’adoptent nécessairement les aéroplanes qui ne disposent

Fig. 75. Courbe de la
puissance en fonction
de la vitesse
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que de la puissance strictement nécessaire. Mais nous ne pourrons 
l’étudier que quand nous aurons vu la théorie des hélices propul­
sives.

Si on compare Vo avec Vi, on remarque que :

= 3

ou encore :
4- II 9 II1 &

tDE6 II 
Plp

Ainsi, les deux vitesses V, et Vo sont dans un rapport invariable, 
égal à V3.

La vitesse de moindre puissance est la plus petite; en réalité 
l’écart est moindre que ne l’indique la formule, puisque nous venons 
de voir que la vitesse de moindre puissance dépensée est plus grande 
que Vo.

Les angles d’attaque, variant dans le rapport inverse des carrés 
des vitesses, sont dans le rapport de 1 à V3. On a donc :

c. II -le
 

H
R

 
0c

La puissance minima se calcule facilement ; on trouve :

* = 4 k’s PM
0 33 K’S3

Cette formule permet d'étudier l’influence des divers facteurs du 
problème. Ainsi on peut voir que, comme pour l’orthoptère, le 
carré de la puissance varie comme le cube du poids.

Si on compare la puissance minima To à la puissance T. nécessaire 
dans le cas de la moindre traction, on trouve :

1 = 39/511422
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QUALITÉ MAXIMA.

Lorsque la puissance est minima, la qualité est maxima.
La qualité s’obtient par l’équation trouvée précédemment :

T21
P3 q4S

d’où :

1 P3 
45 @S T2

Dans le cas où T est égal à la puissance minima T0, on a, en 
remplaçant To par la valeur trouvée ci-dessus :

332 K /-RS" 
152,-0

K KS
Telle est la valeur de la qualité maxima. Les rapports — et E'S 

sont très grands; la qualité peut ainsi, dans les appareils actuels, 
dépasser 40, de sorte que la puissance nécessaire à la sustentation 
est 6 à 7 fois plus faible que celle qui serait nécessaire à un 
orthoptère de même surface.

On peut exprimer la puissance, rapportée à la puissance minima, 
V 

en fonction du rapport — entre la vitesse considérée et la vitesse de 

moindre puissance. On a en effet :

4 P2,. T - 4KSV,2 = 3 KSV
P2, 

T_ KSV- , K‘SV3 
T 4 P2, T 4K‘SV,3

3 KSV
1
4

3

v +

Qualité maxima
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Telle est la formule simple qui permet de calculer les variations 
de la puissance quand on s’écarte de la vitesse de moindre puissance. 
En particulier, si on double la vitesse, la puissance n'est pas multi­
pliée par 8, comme on le croit souvent à tort; elle devient :

T 6 ch 
ciII 

œ
o - +

 
0 

00

II ceO
R 

—|* 
+4II g

La puissance est donc un peu plus que doublée. Si on triple la 
vitesse, la puissance est multipliée par 7. Il faut multiplier la vitesse 
par 3,1 pour que la puissance soit multipliée par 8. Le tableau 
ci-dessous permet de suivre les variations de la puissance avec la 
vitesse :

• - & U
x 8 —
 

oi
 

U
 

al
 

co
 

w
* ct

— 3 1,5 1,1 1 1,1 1,34 1,74 2,4 7 16 31 
10

On voit que, pour tripler ou quadrupler la vitesse, il faudrait 
disposer d’une puissance énorme ; mais par contre, quand la vitesse 
se maintient aux environs de Vo, la puissance varie très peu ; autre­
ment dit. un léger excès de puissance disponible permet de faire 
varier la vitesse entre des limites assez étendues. Ainsi, avec un 
excédent de puissance de 10 °/0, la gamme des vitesses possibles est 
comprise entre 0,75 V0 et 1,25 V0 ; c’est-à-dire, si V = 70 kilo­
mètres à l’heure, entre 52 k. et 87 k.

Si l’excédent atteint 16°/, la vitesse pourra varier entre 0,68 V 
et 1,36 V0 (du simple au double) ou entre 48 et 96 k. à l’heure.

Si l’excédent atteint 100 °/0, par exemple si l’on a un moteur de 
400 chevaux alors que 50 chevaux peuvent suffire, la vitesse peut 
varier de 0,38 V, à 1,85 V., soit de 27 k. à 130 k. à l’heure.
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C’est dans ce sens qu’on peut chercher l’augmentation des vitesses
actuelles.

Par contre, il y a peu à gagner en réduisant les résistances de 
pénétration.

La formule (4 2) montre que V0 varie en raison inverse de la racine 
quatrième de K'S'; pour doubler. Vo, il faudrait que K'S' fût divisé par 
16, ce qui n’est guère imaginable. Si on arrive à réduire K’S de 
moitié, on n’augmentera Vo que dans le rapport de 1 à 1,19.

complément à la formule (13), exprimer le rapport

Comme la vitesse Vj de moindre traction est pratiquement plus 
intéressante que celle de moindre puissance, nous allons, comme

T 

T, (puissance

V 
rapportée à la puissance de moindre traction) en fonction de —.

On trouve facilement :

(14)
1
2

1 
v+ 

V,

Rappelons que l’on a d’après l’équation (9) .

F _ 1 ~ 1 /V 124
F,52 (V.)2 + v,) 

telles sont les expressions de la traction et du travail en fonction de 
la vitesse.

Il est préférable de les exprimer ainsi que de les exprimer en 
fonction de l’angle d’attaque, comme l’a fait M. Soreau, pour celte 
raison que l’angle d’attaque est une chose fictive qui ne correspond 
à aucune représentation matérielle ; ce n’est qu’un artifice de calcul 
qu’il faut éliminer des formules le plus tôt possible. Au contraire la 
vitesse est le véritable résultat tangible.
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Le tableau suivant donne quelques résultats numériques relatils à 
la variation de V, F et T :

V 
V,

F
Fi

T 
T

V
Vo

F
. F’

T
To

0,38 3,5 1,3 0,5 3 1,5
0,5 *2,125 1,06 0,66 1,85 1,2
0,70 1,15 0,88 1 1 1 (min.)
1 1 (min.) 1 1,32 0,87 1,14
1,52 1,37 2,1 2 1,2 2,4
2 2,125 4,25 2,04 1,85 4,8
2,28 2,7 6,1 3 2,35 7

On peut remarquer que la vitesse de moindre traction permet, 
avec tin excédent de puissance de 14°/ seulement d'augmenter la 
vitesse de 32 °/o. Elle paraît donc avantageuse, si toutefois on peut 
l’atteindre. Car si on ne dispose que de la puissance strictement 
nécessaire, la vitesse de moindre puissance seule peut être atteinte. 
De toute manière, c’est cette dernière qui fatigue le moins le 
moteur, et on ne doit pas oublier que « qui veut voyager loin 
ménage sa monture ». Un moteur trop poussé chauffe et grippe 
bientôt. Du reste, nous verrons ci-après que, pour les surfaces 
arquées, les vitesses V0 et V, sont en réalité beaucoup plus voisines 
l’une de l’autre que les formules précédentes ne l’indiquent. La 
considération du rendement les rapprochant encore, on arrive à la très 
importante conclusion pratique suivante :

La vitesse de moindre traction et la vitesse de moindre 
puissance dépensée sont très peu differentes, et dans la pratique 
on peut les con fondre.

A ce propos, signalons l’incertitude qui s’attache souvent à 
l’expression fréquemment employée de vitesse de régime, expression 
dont on donne souvent des définitions contradictoires entre elles.
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On doit, selon nous, réserver cette appellation pour quelque 
chose qui n’est aucune des vitesses ci-dessus définies.

Ce sera la vitesse que prend réellement un aéroplane marchant en 
ligne horizontale sous l’impulsion de ses hélices. Nous la définirons 
plus loin (v. page 4 99).

VITESSES MAXIMA ET MINIMA REALISABLES 
AVEC UNE PUISSANCE UTILE DONNEE.

La formule (4 3) :

T
T,

3 1 / V V
4V f 4V)

Vo

permet, si on dispose d’une puissance utile T plus grande que To, de 
calculer les vitesses qui lui correspondent.

Sur la courbe (fig. 76) on

Fis. 76.
Vitesses maxima et minima.

trouve immédiatement ces vitesses en 
coupant la courbe de la puissance 
par l’horizontale d’ordonnée T.

On trouve deux vitesses Va et V4, 
l’une plus petite, l’autre plus grande 
que Vo. Ces vitesses sont les vitesses 
extrêmes réalisables avec la puis­
sance donnée. Toutes les vitesses 
intermédiaires sont également réali­
sables, et laissent même un excédent 
de puissance disponible. On peut 

utiliser cet excédent pour emporter un supplément de poids utile, 
ou pour monter.

Maximum de poids qu’on peut enlever avec une puissance 
donnée et un aéroplane donné. — On obtient ce maximum P en

Vitesses extrêmes
réalisables avec une
puissance utile donnée

Fig. 76. Vitesses
maxima et minima



écrivant que, avec ce poids, la puissance disponible T est la moindre 
puissance :

* 
ch 4 3

 

c. C
o

d’où :

H p.

A
. 0 P % 1=

 

R
E * Co

VITESSE DE MOINDRE TRAVAIL.

La vitesse de moindre traction est aussi celle de moindre travail 
sur un parcours donné, pourvu toutefois qu’il n’y ait pas de vent.

Si on tient compte du vent qui est rarement nul, il existe une 
vitesse de moindre travail distincte de la précédente. On pourrait 
sans grande difficulté envisager un vent variable ou oblique; 
bornons-nous à envisager le cas simple d’un vent constant et paral­

Vitesse de moindre travail, 
en fonction de la vitesse du vent.

S.
 2. i %

1 g P
lèle au mouvement, c’est-à-dire vent 
arrière ou vent debout.

Le calcul du travail nécessaire 
pour accomplir un parcours donné 
se fait sans difficulté en partant des 
formules précédentes. La vitesse de 
moindre travail est donnée, en 
fonction de la vitesse du vent, par 
une équation du 5° degré, qui peut 
se traduire par une courbe dont la 
branche utile est représentée ci- 
contre (fig. 77).

Dans le cas du vent arrière, la vitesse de moindre travail est 
intermédiaire entre les vitesses de moindre traction et de moindre 
puissance, et elle se rapproche d’autant plus de cette dernière que 
le vent est plus fort.

Dans le cas du vent debout, la vitesse de moindre travail est

Vitesse de moindre
travail

Fig. 77. Vitesse de
moindre travail, en
fonction de la vitesse
du vent
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supérieure à celle de moindre traction, et elle augmente indéfiniment 
quand la vitesse du vent augmente indéfiniment.

Supposons un aéroplane concourant pour un prix de distance ou 
de durée en circuit fermé. S’il y a du vent, il ne devra pas adopter 
la même allure à l’aller et au retour ; il devra adopter deux allures, 
l’une plus rapide et l'autre plus lente que l’allure de moindre 
traction.

INFLUENCE DE L’ALTITUDE.

L’influence de l’altitude se traduit par une diminution de la 
densité de l’air. Il suffit donc d’étudier l’effet de la diminution de la 
densité de l’air, qui peut également être due, dans une certaine 
mesure, à l'élévation de la température ou à une dépression baromé­
trique d’ordre météorologique.

Nous avons vu que la résistance de l’air est proportionnelle à sa 
densité; on peut donc, dans les coefficients K et K', mettre la 
densité d de l’air en facteur, et les écrire Kd, K'd.

On trouve ainsi pour la vitesse de moindre traction :

2
: 

30
4 

4%

II•
~

-2O28B

TIÉOnÉME. — La vitesse de moindre traction varie en raison 
inverse de la racine carrée de la densité de l’air. 

Elle augmente donc avec l'altitude.

La traction minima est 2P(, KS - 
V KS ’

K‘
K en facteur, elle est indépendante de d.

comme elle contient

Théorème. — La traction minima est indépendante de la 
densité de l’air et de l'altitude.

Influence de l'altitude
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Ce résultat a une conséquence curieuse, qui est la suivante :

Théorème. — Le travail nécessaire pour aller d’un point à 
un autre est indépendant de la densité de l’air et de l’altitude.

Ce travail est, en effet, le produit de l’effort de traction minimum, 
qui est constant, par le chemin parcouru.

Ainsi, dans un concours de distance ou de consommation, quelle 
que soit l’altitude adoptée, en dépensant le même travail on franchira 
toujours la même distance, à l’allure de moindre traction.

L’angle d’attaque de moindre traction est indépendant de d, car 
d’après l’équation (8) il contient € en facteur.

La vitesse de moindre puissance, qui est dans un rapport constant 
avec la vitesse de moindre traction, varie comme elle en raison inverse 
de Vd. De même pour le minimum de puissance, car T04, qui 

contient en facteur — varie comme — ou —.
K3 d3 d2

Ainsi, la puissance nécessaire au vol augmente avec l’altitude et 
varie en raison inverse de Vd. On peut par là calculer la puissance 
utile nécessaire pour atteindre une altitude donnée.

Si l’on a un moteur dont la puissance n'est pas sensiblement 
influencée par la densité de l’air, par exemple un moteur à vapeur, un 
accumulateur, un moteur animé, il n'y a pas d’autre correction à 
faire.

Mais si l’on a un moteur à explosion, il faut tenir compte de ce que 
la puissance qu’il peut développer varie en raison inverse de d (1).

Par suite, la puissance du moteur nécessaire, évaluée à l’altitude 

zero, devra être multipliée non pas par Va ’ mais par w

Exemple : pour monter à l'altitude de 4000m, où la densité de 
l’air diminue d’environ 42°/, la puissance du moteur doit être

(1) D'après les expériences de M. Sainturat, la variation de puissance serait 
un peu plus rapide que ne l’indique cette loi.
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(100)3/2
majorée dans le rapport gg-) - 1,21. Pour monter à 2.000m,

/lOOV13
la densité diminuant de 22 0/0> la majoration sera 1 =1 ,*5.

Pour monter à 3.000m, la densité diminuant de 31 %, la majoration

(100 3/2 „ sera (69 ) =17*

Influence de l’altitude sur la vitesse maxima réalisable avec 
une puissance utile donnée. — Nous avons vu (équation 10) que 
la puissance utile a pour expression :

PV
T= RSV + KSV

celle équation fait connaître les valeurs de V qu’on peut obtenir avec 
une puissance T.

Si on met la densité de l’air en évidence, on obtient :

P2,
T=- + dKSV3 (15)

équation qui permet d’étudier l’influence de d sur les valeurs de V.

FIG. 78 — Influence de la densité 
de l'air sur la vitesse de susten­
tation.

Elle est représentée par la courbe 
ci-contre (fig. 78), dans laquelle les 
vitesses sont portées en abscisses, et 
les densités en ordonnées.

La partie utile de la courbe (corres­
pondant aux chiffres de la pratique) est 
la partie supérieure, en général. A une 
densité di correspondent deux vitesses. 
Quand d diminue, ces deux vitesses 
augmentent d’abord, mais la plus 
grande passe par un maximum V, pour 
une certaine valeur dm, et redescend 
ensuite. Discutons en effet l’équation, 

en la résolvant par rapport à d qui n’entre qu’au second degré :
KS K’S Vi d2 — KSVTd + P2r = 0

Fig. 78. Influence de la
densité de l'air sur la
vitesse de sustentation
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A chaque valeur de V correspondent deux valeurs de d; la 
condition de réalité de ces valeurs est :

KAS2V2T2 _ 4 KSK'SV P2r > 0

d’où :

Il y a donc quelle que soit la valeur de d, une valeur maxima de V 
qui ne peut pas être dépassée , c'est la vitesse maxima réalisable avec 
la puissance utile donnée. Elle a pour expression :

£ 
-

La valeur de d correspondante est :

II

%
 0H 2 P 
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Fia. 79. — Trajectoire inclinée.

MONTÉE ET DESCENTE.

Supposons que l’aéroplane suive 
une trajectoire en pente, inclinée 
d’un angle B, B étant compté posi­
tivement si c’est une montée, et 
négativement si c’est une descente. 
Soit Fs la traction.

La fig. 79 montre quelles sont 
les forces en jeu. On suppose 
3 assez petit pour pouvoir assimiler 
le sinus à l’angle et le cosinus à 
l'unité.

Projetons les forces sur la paral­
lèle et la perpendiculaire à la trajectoire ; on a :

F =/+/+ PA
P_= h

II

Montée et descente
Fig. 79. Trajectoire
inclinée
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Remplaçons dans les équations ci-dessus f.f et h par leurs 
valeurs, nous obtenons :

. r P = KSV2i
[ F, = Pri + K‘SV2 + Ps (6)

Telles sont les équations d’équilibre en marche inclinée.
De suite on remarque ce théorème :

THÉORÈME. — La traction en marche inclinée est égale à la 
traction en marche horizontale augmentée du produit du 
poids par la pente de la trajectoire.

Les équations (16) nous montrent aussi l’influence d’une variation 
de traction sur le mouvement de l’appareil. L’angle d’attaque est une 
donnée déterminée par la position du centre de gravité, lequel 
détermine la position de la poussée et par suite la valeur de l’angle 
d’attaque. Quand la traction varie, i ne varie donc pas. La première 
équation (16) montre que V ne peut pas varier non plus si i est fixe ; 
donc, sur les trois termes dont se compose Fs , le dernier seul peut

FIG. 80.
Position de la reaction de l’air.

%

=0* vitesse 
AM

varier. C est sur 3 que se portera la 
différence d’allure ; l’appareil montera 
ou descendra, sans que sa vitesse 
change. Ainsi, contrairement à ce qui 
se passe dans tous les autres modes de 
locomotion, on ne peut pas changer la 
vitesse en changeant la traction; la 
vitesse reste constante, la pente de la 
trajectoire seule est modifiée.

Cette proposition qui est pratique­
ment exacte, ne l’est cependant pas 
d’une façon absolue. Nous avons dit 

que l’angle d’attaque est déterminé par la position du centre de 
gravité.

En réalité, ce n’est pas le centre de gravité G qu’il faut considérer, 
mais le point A (fig. 80) d’intersection entre le poids P, appliqué

Fig. 80. Position de la
réaction de l'air
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en G, et la traction F, appliquée en M. Pour qu’il y ait équilibre, il 
faut que la réaction de l’air R passe aussi par ce point A; on 
l’obtiendra en menant par A une tangente à la courbe métacen- 
trique C. Cette réaction correspond à un angle d’attaque bien 
déterminé. Mais si, par exemple, F diminue, l’appareil s’incline vers 
l'avant, le poids P se trouve dirigé suivant P'; le point A vient 
en A'. La réaction de l’air devra passer par A’; elle va donc aussi 
changer de position, donc l’angle d’attaque ne sera pas le même. Il 
ne resterait le même que si A était fixe, c’est-à-dire si la traction F 
passait par le centre de gravité G, condition qui n’est pas en général 
exactement remplie.

Du reste, même dans ce cas la vitesse ne serait pas tout à fait 
constate, car, F variant de grandeur, la grandeur de la réaction R 
doit également varier un peu. Mais ces variations sont pratiquement 
négligeables.

Que se passe-t-il lorsque l’aéroplane, pour une cause quelconque, 
perd sa vitesse relative (par exemple, lorsqu’il rencontre un courant 
d’air allant dans le même sens que lui)? L’expérience montre que 
l’appareil fait une abatée, c’est-à-dire une sorte de plongeon, 
descend un peu, regagne de la vitesse en utilisant le travail de la 
pesanteur, et repart en ligne horizontale, mais à un niveau plus bas 
que précédemment.

Inversement, si sa vitesse se trouve augmentée, il se cabre, monte 
et repart horizontalement à un niveau plus élevé.

Revenons à l’équation (1 6).
Si on fait varier la vitesse sans changer la pente 3 de la trajectoire, 

les termes qui varient dans l’expression F3 sont les mêmes que dans 
le cas de la trajectoire horizontale ; ils ne contiennent pas B. Donc 
leur minimum ne dépend pas de B :

Théorème. — La vitesse de moindre traction est indépendante 
de la pente de la trajectoire.

La puissance motrice nécessaire est :

- II 4 4 II 5 
•

4 
-

+ K 0 4 C9 + - X
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On peut remarquer que le terme en 3 n’est pas indépendant de V, 
de sorte que la vitesse de moindre puissance est fonction de p. Le 
minimum de Te a lieu lorsque sa dérivée par rapport à V s’annule :

p2,0 —-------- ------- L 3 K‘SV2 + PSKSV2T T

3 K'S'V + PV2 — - =0

Telle est l’équation qui donne la vitesse de moindre puissance.

CAS DE L’AÉROPLANE SANS MOTEUR.

C’est le cas de l’aéroplane qui descend en vol plané, moteur arrêté, 
ou du planeur sans moteur. La force tractive est nulle.

Si dans l'équation (16) on écrit que la traction F, est nulle, on 
obtient :

Pri + KS/V2 = — P3

Le premier membre est la traction en marche horizontale. D’où 
ce théorème :

Théorème. — La traction en marche horizontale est égale au 
poids multiplié par la pente de la descente en vol plané 
(le signe — indique que la pente est descendante).

Par suite, la traction est minima lorsque l’angle d’attaque est réglé 
de façon h obtenir la plus faible pente possible de descente en vol 
plané. D'où ce théorème: •

Théorème . — La vitesse de moindre traction est celle qui donne 
la plus faible pente de descente en vol plané.

Le théorème suivant a parfois été énoncé, notamment par le 
colonel Renard et le capitaine Ferber : « Le meilleur angle d’attaque 
(correspondant à la moindre traction) est la moitié de la plus faible

Cas de l'aéroplane
sans moteur
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pente de descente en vol plané ». Ce n’est pas exact. Nous avons vu 
en effet que l’on a, d’après les équations (2) :

F = Pri + K‘S/V2

A la vitesse de moindre traction, les deux termes dont se compose 
F sont égaux, et on peut écrire :

F = 2Pri

On a donc :
2 Pri =— Pe 

ou :

Ce n’est donc pas i, mais ri qui est égal à la moitié de la pente de 
descente. Le théorème ne serait vrai que si ? était égal à 4 comme on 
l'admettait encore récemment ; mais c’est loin d'être exact.

Détermination de K par les glissades aériennes. — Le moyen 
pratique de déterminer le coefficient K appliqué à un aéroplane donné 
est de lui faire faire des descentes en vol plané, sous divers angles 
d’attaque, et de mesurer la plus faible pente —3 obtenue et la 
vitesse V, correspondante. La plus faible pente est obtenue par le plus 
long trajet.

La traction à cette vitesse V est :

F = - Ps

On sait que la vitesse de moindre traction a pour expression :

P2r
V, = -T (17)

et que la moindre traction est :

K’S
F,2 = 4 P2,------
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d’où :

4PS= P292
KS

, K'S-
4r-KS = P 5

On connaît S ; le coefficient ? est une constante supposée connue. 
Les deux équations (47) et (18) permettent de calculer les deux 
inconnues K et K'S'. Il suffit de multiplier et diviser membre à 
membre ; on obtient:

2 Pr
V,26S

j 4 PG
2V,2

Il faut prendre de grandes précautions pour que la vitesse V. soit 
mesurée par temps absolument calme, et que la pente ne soit mesurée 
que sur une trajectoire bien rectiligne, après que l’appareil a pris sa 
vitesse de régime.

MONTÉE MAXIMA.

On a pour l’expression de la puissance nécessaire à une montée de 
pente B:

II - - 9 4 + 7 0 + g

Cherchons la plus forte pente qu’on peut atteindre lorsqu’ondispose 
d’une puissance motrice donnée.

L’équation précédente, résolue par rapport à 3, donne:

II 34 I

w
 97 I 40

4 18 5

Montée maxima
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Il faut rendre B maximum. Annulons la dérivée de B par rapport àV :

:T 2P, 2K‘SV 
6=0= p * KSV3 P (20)

équation d’où on tire la vitesse qui permet la plus forte pente. La 
pente s’obtient alors en éliminant V entre les équations (4 9) et (20).

Quant à la vitesse de montée maxima (maximum d’élévation par 
seconde), on voit a priori que c’est la vitesse de moindre puissance, 
tout l’excédent de puissance disponible étant employé à la montée , 
et que la vitesse d’élévation sera le quotient de l'excédent de puissance 
par le poids.

De même la vitesse de descente minima (minimum de chute par 
seconde) dans le cas de la descente en vol plané, est aussi la vitesse 
de moindre puissance, car la puissance absorbée est le produit du 
poids par la hauteur de descente par seconde. C’est la vitesse qui 
permet d'atterrir le plus doucement possible.

MAXIMUM DE POIDS UTILE ENLEVÉ 
PAR UN AÉROPLANE DONNÉ.

Le poids total enlevé par un aéroplane comprend :

40 le poids propre de l’appareil (surfaces, dispositifs de manœuvre 
ou de sécurité, châssis);

2° le poids du moteur et de ses accessoires indispensables ;

3° le poids utile (passagers, combustible, approvisionnements),

Nous supposons donné un aéroplane, et nous nous proposons de 
chercher le maximum de poids utile qu’il peut enlever, connaissant 
le poids 0 par cheval des moteurs dont on dispose, mais la puissance y 
du moteur étant indéterminée.

Maximum de poids
utile enlevé
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Soient P le poids total enlevé, P,, le poids de l’aéroplane proprement 
dit sans moteur, Pu le poids utile, 01 y le poids du moteur (4). On a :

P = P. + P. + sy 
d’où :

P. = P - P - y. (21)

La puissance minima est donnée par l’équation (17) indiquée 
précédemment :

T* _ 1
P’ — Q4S

On a donc :

P3 = qqST?

Comme nous appelons y la puissance en chevaux-vapeur, le travail 
par seconde est 75y ; et si P est le rendement, le travail utile par 
seconde est 75 py. D'où :

P8 = 752,29qSy2

L’équation (21) devient:

P. = 75 % (p* ?i?S) 1,373 —y—P

Le maximum de Pu s’obtient en annulant sa dérivée par rapport 
ày:
2P.' =0 =5752/3 (p2 oqS) 1/3 y- 1/3 — 5, 

d'où :
23 752,2 45
38 85,8

formule qui donne la puissance correspondant au maximum de poids 
utile enlevé.

(1) On suppose le poids du moteur proportionnel à la puissance. En réalité il 
croît un peu moins vite que la puissance.



I 8 I

D’où le poids utile maximum, en substituant la valeur de y dans 
l’équation précédente:

N22 752 62 94S 
33 20,2

FAMILLES D'AÉROPLANES SEMBLABLES. 
MAXIMUM DE POIDS UTILE ENLEVÉ.

Nous considérons un aéroplane donné, et tous ceux qu’on peut 
obtenir en faisant varier ses dimensions suivant les lois de la simili­
tude géométrique. C’est ce que nous appelons une famille d’aéroplanes 
semblables. Nous allons chercher celui qui enlève le maximum de 
poids utile.

Nous allons d’abord, à l'exemple du calcul que le colonel Renard 
a fait à propos des hélicoptères, envisager la similitude exacte, dans 
laquelle le poids de l’appareil varie comme le cube de ses dimensions 
linéaires, et la surface comme le carré. Soit 55 le poids qui caractérise 
la famille d’aéroplanes considérée : ce sera le poids de l’aéroplane 
ayant 1 mètre carré de surface. Si les dimensions de l’appareil aug­
mentent dans le rapport de similitude x, son poids deviendra z,03, 
et sa surface x2 (1).

Le poids du moteur est comme précédemment zy.
On a comme ci-dessus :

P, = P—P - ^

Pa est égal à 03.
Pour P, on a comme tout à l’heure :

P = 75 2/3 (~2~qS)1/3 y2/3

(1) Dans la Revue de Mécanique (1904-1905), le colonel Vallier étudie le 
problème en faisant l'hypothèse que le poids de l’aéroplane par unité de surface 
reste constant quand les dimensions varient. Cette hypothèse est contraire aux 
lois de la résistance des matériaux ; elle est à rejeter, ainsi que les résultats 
auxquels elle conduit.

Familles d'aéroplanes
semblables. Maximum
de poids utile enlevé
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q est invariable, car il a pour expression, ainsi que nous l’avons 
vu :

38 K —— 
152* V Es-

S
Il dépend donc de — , qui ne varie pas.

On a donc, en remplaçant S par sa valeur x2 :

P - 7583 (0294)13 08/3 92/3 

d’où enfin :

P. — 752/3 (292)1/3 22/3 y/2/3 — 85,43 — 8,y (22)

équation de même forme que celle qu’a obtenue le colonel Renard 
pour les hélices.

Quand x et y varient, le maximum de Pu s’obtient en annulant 
ses dérivées. On obtient finalement :

_ 23 756,6 4323 
"5 313 65,5 05,=

Le poids utile varierait comme l’inverse de la sixième puissance 
du poids du moteur par cheval.

Mais l’hypothèse de la similitude géométrique exacte est inadmis­
sible, car nous avons vu, dans le premier chapitre, qu’elle 
correspond à une solidité qui va en décroissant. Nous devons faire 
varier la solidité de la surface en raison de la charge unitaire C, ou 
charge par mètre carré, que l’appareil a à porter, et pour cela faire 
varier les épaisseurs de matière non pas suivant la similitude, mais 
en raison de la résistance à supporter.

Si on considère un appareil dont la charpente est composée de 
poutres de hauteur donnée et d’épaisseur variable, on vérifie 
aisément, par les lois de la résistance des matériaux, que le poids de 
matière à employer est proportionnel à la résistance à obtenir.
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11 en est de même si la charpente est en tubes creux de dimensions 
extérieures données et d’épaisseur variable.

On constate aussi qu’en agrandissant l’appareil suivant les lois de 
la similitude exacte, il est capable de supporter toujours la même 
charge par mètre carré, car dans ce cas les moments de flexion et les 
moments résistants varient tous deux comme le cube des dimensions 
linéaires. Par suite, le poids Pa de l’appareil devra être proportionnel 
à la charge unitaire c et au cube des dimensions linéaires, et pourra 
s’écrire 55 cod, % étant le poids qui caractérise la famille d’aéro­
planes considérée, ou poids de l'aéroplane ayant 4 mètre carré de 
surface et 1 kilog. de charge unitaire.

La surface sera x2, et la charge totale portée sera cx”.
La puissance minima est comme précédemment donnée par 

l’équation :

T — 1
P3 = qqs

En remplaçant dans cette équation P par ca®, S par 22 et T par 
75py, on obtient :

754p2ya - 1
c3a6 9qa2 

d’où :

3 _ 752e* qgy

ou, en posant : e=752, 94

3 ey2

on obtient ainsi :

P,, = co2 — 050 ca3 — 0
P. = el/3a8r3 yê,3 — sgel/3a5/3y8,3 - y (23)

Telle est l’équation qui donne le poids utile P„ en fonction de la 
dimension x et de la puissance y.
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Pour obtenir le maximum de Pu, annulons ses dérivées partielles 
par rapport à IC et à y. Annulons d’abord (PL)'s :

2 5(Pu)'a = 0 = — el/3 a=1/y2/3---- — Spel3a2/y2/8

2 — 58,0 = 0 

- 32 ^

De celte équation (24) résulte le fait très curieux suivant :

THÉORÈME. — L’aéroplane qui enlève le maximum de poids 
utile a une surface constante, indépendante de la qualité, du 
poids du moteur par cheval, de la résistance de l’air et du 
rendement. Elle ne dépend que du mode de construction 
employé.

Annulons maintenant (Pu)", :

(P.), =0=2 03483 (1 — 2) y-1/3—%, 

d’où :
23ea2(1 —304)3

5 33 60,3

ou, en remplaçant x par sa valeur tirée de (24) :

25e
5 35,57 (25)

Enfin, remplaçant x et y par leurs valeurs dans l’équation (23), 
on obtient le maximum de poids utile :

ose
P.= 3m,m* (20)

Le maximum varie donc en raison inverse du carré du poids du 
moteur par cheval.

Si ce poids 21 diminue indéfiniment, le maximum de Pu augmente
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indéfiniment; il n’y a donc pas de maximum absolu de poids utile 
enlevé.

P, varie en raison directe de e, donc en raison directe de la 
qualité q. Ceci veut dire que si, grâce à l’attaque oblique, la qualité 
sustentatrice de l’aéroplane est 40 fois meilleure que celle d’un 
orthoptère, l’aéroplane permettra, avec le même degré de perfection 
des moteurs, d’enlever un poids utile 40 fois plus grand.

En effectuant Pa, dy poids du moteur, et P, on trouve

55 002 3,2

23e °W = 58629*0,* = 2F.

ze = 5 P
54 3502 052

D’où ce théorème :

THÉORÈME. — Dans un aéroplane qui enlève le maximum de 
poids ville, le poids de l’appareil entre pour les 2/5 du poids 
total, le poids du moteur pour les 2/5, et le poids utile 
pour 1/5.

Tous ces résultats sont analogues à ceux que nous obtiendrons 
ci-après à propos des hélices sustentatrices.

Enfin, on trouve pour la charge unitaire C :

22e

On voit qu’elle est d’autant plus grande que $5 est plus petit.

APPLICATION NUMÉRIQUE.

D'après le poids des aéroplanes actuels, le coefficient ®0 à appli­
quer est à peu près 0k ,07.

On aura donc :
2 2 x =   ===   — 5,7

5 X 0,07 0,35

Application numérique
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La surface portante sera x2 = 33 m2. Ainsi un aéroplane, pour 
enlever le maximum de poids utile, doit avoir environ 33 m8 de 
surface (mais il aura un poids variable suivant les moteurs dont on 
dispose).

Cherchons quel est le poids utile qu’on pourra enlever, pour 
diverses valeurs du poids du moteur par cheval.

En prenant: ? = 0,08, ÿ = 40 et P = 0,6,

on obtient : e—6.500

Ce qui donne : 
_ 21 6.500 1 _ 6.800

" = 55(0,07)2 .65,2 = 6,2

se II 

g = • O o

Quant aux vitesses prises, on voit facilement qu’elles varient en 
raison inverse de %.

D’où le tableau suivant :

POIDS
DU MOTEUR 

par cheval

001

POIDS UTILE
ENLEVÉ

Pu

PUISSANCE

y

CHARGE UNITAIRE

C

10 kilog. 68 kilog. 13,6 chevaux 10 kilog.
9 84 19 13
8 106 27 16
7 138 37 21
6 190 64 29
5 260 11 40
4 425 21 65
3 750 503 115
2 1.700 1.700 260
1 6.800 13.600 1.040

On voit qu’on peut enlever un homme avec un moteur de 
4 9 chevaux pesant 9 kilos par cheval.

Il faut remarquer qu’une légère diminution de 350 permettrait une 
grande amélioration de ces résultats.
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On peut d’ailleurs espérer sensiblement mieux pour l’avenir, car 
les coefficients que nous avons adoptés sont des valeurs actuelles 
susceptibles de perfectionnements.

Si on compare ces chiffres avec ceux qui sont donnés plus loin 
pour les hélicoptères, et qui sont également basés sur les données de 
la construction actuelle, on constate ce fait intéressant qu'actuelle- 
ment les hélicoptères ne sont pas moins économiques que les 
aéroplanes, et qu’ils permettent de voler avec un moteur de même 
poids et de même force.

L’opinion très répandue que les hélicoptères gaspillent le travail 
et sont très inférieurs aux aéroplanes est donc une erreur complète. 
Il est bien vrai que leur qualité sustentatrice est beaucoup moindre (1), 
mais par contre le coefficient % est beaucoup moindre aussi. 
M. Louis Breguet s’est d'ailleurs élevé en hélicoptère avec un moteur 
analogue à ceux des aéroplanes actuels. Ce qui fait l’infériorité de 
l’hélicoptère, c’est la difficulté de le manœuvrer, et le danger de 
chute à pic.

MINIMUM DE PUISSANCE MOTRICE PERMETTANT 
D’ENLEVER UN POIDS UTILE DONNÉ.

Ce problème est celui qui se pose le plus généralement dans la 
pratique ; c’est proprement le problème fondamental de l’aviation.

La relation entre le poids utile, la puissance et les dimensions de 
l’aéroplane est donnée par l’équation (23) ci-dessus, qui peut s’écrire 
ainsi :

el3a83y8fa— 6g el/3 45/873 — s,y — Pu — 0 (27)

Étant donné un certain poids utile Pu à soulever, nous cherchons 
le minimum de y lorsque x varie. L’équation (27) est de la forme

f(,y) = 0

(1) Cela tient à ce que la qualité est définie d’une façon un peu différente.

Minimum de puissance
permettant d'enlever
un poids utile donné
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Le minimum de y s'obtient en annulant la dérivée de y par 
rapport à x ; or on a d’une manière générale :

F 
y‘=------—

7 y

Il faut donc annuler f, ce qui conduit de nouveau à l’équation 
(24) trouvée plus haut :

2 
T = —-----

D’où ce théorème :

Théorème. — L’aéroplane qui dépense le moins de puissance 
pour enlever un poids utile donné a une surface constante, 
indépendante du poids utile à enlever, du poids du moteur par 
cheval et de la résistance de l’air.

Il en résulte cette conséquence inattendue que pour enlever dix 
passagers il ne faut pas construire un aéroplane plus grand que pour 
en enlever un ; il faut seulement renforcer la charpente et mettre un 
moteur plus fort.

Remplaçons x par sa valeur dans l’équation (27), il vient :

2 15/3
—— 32/3 - æy — P. = 0ot

 8%
 3 t S a % 65

ou en simplifiant :

3 2 123— el/3 (—---- 32/3 ~ 05,9 — P. =0 (28)
5 V50 /

Telle est l'équation qui donne le minimum de puissance utile y 
nécessaire pour enlever un poids utile donné P..

Elle est du 3e degré en y. Il y a toujours une racine, mais c’est 
une racine négative qui n'a pas de signification. Les racines positives 
n’existent que si Pu est inférieur au maximum de poids utile compa­
tible avec des moteurs pesant 5 par cheval.

Le théorème ci-dessus est pratiquement exact pour les fortes
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charges ; mais pour les faibles charges il conduirait à des surfaces 
portantes extrêmement légères, suffisantes certes pour les charges 
prévues, mais incapables de résister à un choc ou à un coup de 
vent.

Il y a un minimum de résistance au dessous duquel il serait 
imprudent de descendre, quelles que soient les charges unitaires à 
enlever. Ce minimum peut être pris égal à 10 kilogs par mètre 
carré (c’est à peu près le taux de travail que le colonel Renard 
admettait pour les hélices).

Or précisément nous avons vu que dans le tableau ci-dessus la 
charge unitaire est toujours supérieure à 10 kilos, fait qui est du 
reste confirmé par la pratique. La loi que nous avons adoptée est 
donc bien applicable. Il n’y a qu’au cas où on serait amené à des 
charges unitaires moindres que 10 kilogs qu’il y aurait avantage, 
plutôt que de faire des surfaces très légères et peu résistantes, à les 
réduire pour ramener la charge unitaire aux environs de 10 kilogs.

INFLUENCE DE L’INCLINAISON DE L’AXE 
DE L’HÉLICE.

Nous avons supposé a priori, pour simplifier, que la direction de 
l’axe de l’hélice était sensiblement horizontale.

FIG. 81. — Cas où la traction 
n’est pas horizontale.

Cette condition est-elle favo­
rable ? Rien n’autorise à l’affir­
mera priori ; nous allons montrer 
qu’il n'en est rien, et qu’il ya 
avantage, pour obtenir l’effort de 
traction minimum, à incliner l’axe 
de l’hélice d’un certain angle.

L’appareil étant en marche 
horizontale, traçons (fig. 81) les 
différentes forces en jeu, et soit F 
la traction inclinée d’un angle Y.

Nous allons déterminer y par la condition de rendre F minimum.

65

Influence de
l'inclinaison de l'axe
de l'hélice

Fig. 81. Cas où la
traction n'est pas
horizontale
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Ecrivons que la somme des projections des forces sur l’horizontale 
et la verticale est nulle :

r P = h+Fsiny = KSV2+ Fsin Y
L F cosy =/ + / = KSV2,43 + K‘S/V2

Eliminant V entre ces deux équations, et résolvant par rapport 
à F, il vient :

TL ____ (KSrR+K’S) P____
KSi cos Y + (KSri2+-K‘S) sin y

Telle est l’équation qui définit F en fonction des deux variables 
à et y.

On rend F minimum en annulant ses dérivées partielles par 
rapport aux deux variables.

Annulons d’abord Fi ; on obtient sans difficulté :

cos Y (KSri2 — K'S) = 0

Ecartons la solution cos Y=0 qui correspond à un maximum 
de F (c’est le cas où la traction est verticale, le cas de l’hélicoptère).

Il reste donc :

KSrit — K'S' = 0

d’où :

; = 1/1 K’S
V ? KS

Cette équation nous donne la valeur de i. On voit que l’angle de 
moindre traction reste le même quel que soit Y, et de fait cette 
formule est la même que celle trouvée précédemment dans le cas 
de F horizontal (formule 8).

Tenant compte de ce résultat, l’expression de F se simplifie et 
devient :

cos y + 2ri sin Y
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Annulons F'y ; on obtient:

— Sin 7 + 2ré cos Y = 0 

t*=2r

Comme i est petit, et que r est inférieur à l’unité, y est également 
petit, et on peut écrire finalement :

v = 2 ri

Telle est l’inclinaison la plus favorable pour la traction. Si ? était 
égal à 4, on pourrait dire, avec le capitaine Ferber, que l’incli­
naison optima est double de l’angle i; en réalité 7 est voisin de 
0,75, de sorte que y est à peu près égal à une fois et demie 
l’angle i.

Si i = 6 à 8°, Y==9 à 12°. On voit que l’angle y n’est pas 
négligeable.

On peut également, en remplaçant i par sa valeur, écrire y sous la 
forme suivante :

"12V*ks
Si on effectue la valeur du minimum de F, on trouve :

2 
C
eII

H
R

 
0 0 * c % II o

+ 4 55 C
R

(28)

/ K’S”
Or, le terme 2 PV r- est la traction minima dans le cas * KS

de F horizontal (voir équation 7) ; c’est ce que nous avons appelé F. 
On obtient donc :

0O II

Si y est voisin de 10 à 120, le cosinus est entre 0,98 et 0,99.
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On gagne donc 1 à 2° sur la traction. Mais l’avantage ne se 
borne pas là.

L’effort de traction étant moindre, on perdra moins par le recul 
des hélices.

De plus, la vitesse est également moindre. On a en effet :

P 0 w II o I 2 II H ---
-1

I 1 K'S'
KS - Sin Y cos y

11
 

11
 

1
A

 
= 

=

T 
I 

I

2.
 6

8 
%

 - g. C
U
 0 

o - 8 — 10

/POr 1 /=- est précisément la vitesse de moindre traction VI dans Y Kl
le cas de la traction horizontale ; on a donc :

V = Vj cos Y.

On gagne donc aussi 1 à 2°/0 sur la vitesse. De sorte que sur le 
travail on gagnera 2 à 4°/.

On ne peut cependant pas chiffrer exactement le travail, car la 
traction et le chemin parcouru’ne sont pas parallèles, et il n’est pas 
légitime, à cause du recul, de multiplier la vitesse par la projection 
de la force sur elle. L’expression ainsi trouvée donnerait le travail 
utile; mais on pourrait être tenté de chercher le minimum de ce 
travail utile, et on trouverait que le minimum a lieu pour les hélices 
à axe vertical, et qu’il est égal à zéro ; ce qui veut simplement dire 
que la traction est perpendiculaire à la trajectoire. Le travail utile est 
bien nul, mais le travail réel est considérable.

Si on effectue complètement la valeur de V, on trouve :

____ 1 
KS K’S’ (1 +4 KS)3T KS )
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C’est là une nouvelle vitesse remarquable, à ajouter à toutes celles 
que nous avons déjà trouvées, et qu’on pourrait appeler vitesse de 
moindre traction absolue.

Dans le chapitre consacré à l’inclinaison optima, le capitaine 
Ferber, après avoir démontré l’existence de cette inclinaison, repousse 
aussitôt le résultat en disant :

« Toutefois on gagnerait fort peu de cette manière, et l’hélice 
travaillerait mal. Il vaut mieux laisser l’axe horizontal ».

La question nous semble mériter un examen moins superficiel.
Gagner 2 à 4°/ sur la puissance n’est pas négligeable. Cela repré- 

sente un gain d’une dizaine de kilogs de poids, ou de I à 2 HP. 
Quant à la question de savoir si l’hélice travaillerait mal, nous distin­
guerons deux cas :

1° Hélice à l’avant. — L’hélice se présentera à l’air un peu 
obliquement. Est-ce un inconvénient? Est-ce que les pales de l’hélice 

FIG. 82. — Hélice à l'arrière travaillant 
dans des filets déviés vers le bas.

Fig. 83. — Hélice à l'arrière. 
L’axe horizontal est illogique.

n’attaquent pas déjà l’air obliquement? Sir Hiram Maxim, et plus 
tard Joukovsky, à l’Institut de Koutchino, ont constaté que lorsqu’une 
hélice se trouve dans un courant d’air latéral sa traction augmente, 
et son rendement aussi. Il ne faut pas a priori condamner les hélices 
inclinées.

2° Hélice à l’arrière. — La simple inspection des figures 82 et 
83 montre que c’est l'hélice inclinée qui est la plus logique, puis­
qu’elle travaille dans des filets d’air déjà déviés vers le bas. Peut-être

Fig. 82. Hélice à
l'arrière travaillant
dans des filets dérivés
vers le bas

Fig. 83. Hélice à
l'arrière. L'axe
horizontal est illogique
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même, dans ce cas, conviendrait-il d’accentuer davantage l’incli­
naison de l’hélice.

Fis. 84. — Aile d’oiseau 
pendant le coup d’aile pro- 

ulsif. La poussée est 
irigée en bas et en ar­

rière.

Remarquons en passant que l’hélice inclinée a quelque analogie 
avec le mode de propulsion des oiseaux. La fig. 84 montre que 
l'oiseau se propulse en exerçant sur l’air, par le battement du fouet 

de l’aile, une poussée dirigée en bas et en 
arrière, tout comme l’hélice à axe incliné. 
Est-ce que celle-ci serait un terrain d’entente 
rapprochant les partisans de l’aéroplane et 
les partisans de l’ornithoptère ?

Il ne faut toutefois accepter les résultats 
quantitatifs qui précèdent que sous réserves. 
Nous verrons ci-après que, si on change la 

forme des équations fondamentales de la théorie pour serrer de 
plus près les expériences, l’angle Y devient très petit (voir page 207), 
de sorte que l’avantage des hélices à axe incliné, bien que réel, 
serait peu important.

LA BICYCLETTE AÉRIENNE EST-ELLE POSSIBLE?

Qu'on se rassure, nous ne nous faisons pas d’illusions sur l’avenir 
de la bicyclette aérienne. Mais est-elle radicalement impossible, n’y 
a-t-il aucun espoir de jamais voler par nos propres forces, ne fût-ce 
que quelques secondes ?

Celui qui l’affirmerait serait téméraire. Le problème ne présente 
pas d’impossibilité théorique; si nos moyens actuels sont encore 
insuffisants, le degré de perfectionnement auquel il faudrait les amener 
ne paraît pas très difficile à atteindre. Hâtons-nous d’ajouter que les 
difficultés pratiques n’en restent pas moins très grandes, et l’effort 
nécessaire ne pourra être soutenu que quelques secondes tout au plus.

On croit assez communément que l’homme ne vole pas parce qu’il 
ne peut pas fournir, par unité de poids, le travail que fournissent les 
oiseaux. C’est une erreur, Il est établi que les oiseaux de taille

La bicyclette aérienne
est-elle possible ?

Fig. 84. Aile d'oiseau
pendant le coup d'aile
propulsif. La poussée
est dirigée en bas, et
en arrière
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moyenne, en plein vol, ne dépensent pas plus de l cheval-vapeur 
par I 00 kilogrammes de poids, et l’homme peut facilement produire 
ce travail pendant quelques instants, et même le double.

Si on faisait un referendum sur la puissance maxima que peut 
développer un homme, on recevrait des réponses bien variées! 
Certains croient qu’il faut considérer le travail développé par un alpi­
niste, 10à 45 kilogrammètres par seconde. C’est bien peu ; mais 
aussi quelle idée de choisir un alpiniste, homme prudentqui ménage 
ses forces pour une ascension d’une journée entière, et qui au surplus 
pratique un sport dans lequel le travail est utilisé avec un rendement 
détestable !

La vérité est qu’un homme vigoureux peut pendant quelques 
instants, fournir jusqu’à 2 chevaux-vapeur, c’est-à-dire 450 kilo­
grammètres par seconde. En effet, un homme peut, avec un peu 
d'entraînement, monter un escalier, deux marches à la fois, à raison 
de 5 et même 6 pas par seconde. Pour un homme qui, habillé, pèse 
75 kilogs, cela fait bien environ 2 HP. d

D’où vient donc que l’homme ne vole pas? C’est que la difficulté 
du vol augmente avec le poids, à cause de la loi des cubes.

C’est cette loi qui a obligé la nature à renoncer au vol pour les 
animaux dépassant 10 kilogs. Mais là où la nature a échoué, peut-être 
réussirons-nous. L’homme dispose de moyens mécaniques interdits à 
la nature (par exemple les mouvements rotatifs, les poutres évidées, 
etc.), grâce auxquels il a déjà réussi à faire voler des appareils de 
plus de 600 kilogs, ce que la nature n’avait pu faire.

L’homme dispose d’environ 2 HP. Avec cela et les ressources de 
a mécanique, peut-il espérer voler? Voilà la question.

Certains théoriciens, notamment le capitaine Ferber (4) ont cru 
pouvoir répondre par la négative, sous prétexte qu’en choisissant au 
hasard des valeurs pour la surface portante et le poids total de l’en-

(1) Ferber. — A propos de la bicyclette aérienne, La Nature, 9 oct. 1909.
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semble, ils arrivaient à un mauvais résultat. Ce procédé n’est pas 
sérieux ; rien ne prouve que les valeurs choisies étaient les meilleures 
possibles.

Il n’y a pas de raison pour ne pas traiter ce problème de la même 
manière que les précédents. Le poids total à porter se compose du 
poids de l'aviateur, du poids du système propulseur, et du poids de 
la surface portante.

Le poids de l’aviateur est supposé être 75 kilogs. Le poids du 
système propulseur (bicyclette et hélice) sera d’environ 45 kilogs. 
(N’oublions pas qu’on a construit des bicyclettes de course ne pesant 
que f> kilogs). Soit un total de 90 k.

Le poids de la surface portante sera, comme dans les problèmes 
précédents, exprimé par «CX3. On a donc pour le poids total porté :

P = ca2 =90 + 350023

De cette équation on déduit immédiatement, en éliminant c :

P - 
1 -- SoX

Pour la puissance motrice y, on a comme précédemment l’équa­
tion :

P3 = 75*,2 qqaly?

Remplaçant P par sa valeur, on obtient :

( —------------ 1 —• 752 02 oqxly?
\1— 05,2-/ 1

d’où :

903 1
752,2,4 «2(1—6502)3
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Nous allons chercher le minimum de Y2 quand x varie. Annulons 
la dérivée de y:

2a (1 — 52)2 — 35502 (1 — 80)2 = 0
2 — 585,2 — 0

2

équation qui détermine la surface portante.
Nous retrouvons une fois de plus ce résultat, qui paraît être 

commun à tous les problèmes de l’aviation, de la constance de la 
surface portante. Il vient alors pour y :

903 55 35,2y2 = --------------- — 5,2 = 3750 -
752294 2233 0294

Dans les planeurs dont il s'agit, on peut adopter une construction 
plus légère que dans les aéroplanes, car il ne s’agit que d’une démons­
tration de possibilité, et non d’un appareil résistant à la fatigue et aux 
coups de vent et muni d’organes de manœuvre et d’atterrissage.

D’après les planeurs existants, on peut admettre pour o la valeur 
0,05.

On en déduit:

PL _ 2 8
7 5.0,05

d’où :
S = a = 64

L’appareil devra être très grand comme surface (64m2).
La charge unitaire C est donnée par :

90
C = --------- ---------

w2 (1 — 09) 
d’où:

53 
c - 42— 90 6,2
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Ce qui donne ici :

c = 2,34.

C’est à peu près la charge alaire du pigeon, de la mouette, du milan. 
Si l’on calcule le poids total P, on obtient :

P — C^ = 490----- =90 5= 150k
I.oc 3

Et pour le poids de la surface portante, on trouve :

2 
3oca3 = 90. — = 60k

D’où ce théorème: La surface portante doit entrer pour 
les 2/5 dans le poids total.

Tous ces résultats sont, jusqu’ici, indépendants du rendement P, 
de la qualité q et de la résistance de l’air p.

Admettons comme précédemment p == 0,06, q=40 et = 
0,08. La valeur de y est alors :

y2 = 8,15

y = 2,86 HP

avec une vitesse d’environ 7m par seconde.
Cette puissance, de près de trois chevaux, est supérieure à ce que 

l’homme peut produire, mais il ne s'en faut pas de beaucoup, et on 
conçoit qu’il suffirait d’améliorer légèrement quelques-unes des 
données du problème pour arriver au but. Ainsi, sans même changer 
la qualité, on peut espérer porter le rendement à 0,7. Dans ces 
conditions, on constate qu’il suffirait pour ramener y à IHP, de 
réduire % à 05,04. Cela paraît facilement possible, pour peu qu’on 
cherche dans cette voie.

Ce qui est certain, c’est qu'il faut chercher dans la voie des très 
grandes surfaces portantes.
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Nous nous garderons de conclure. Eussions-nous résolu la ques­
tion de la surface portante, qu’il resterait beaucoup d’obstacles 
pratiques, tels que l’essor et l’équilibre. Nous avons seulement voulu 
montrer qu’il faut se garder d’être affirmatif ni dans un sens ni dans 
l’autre ; et si, dans un an ou deux, on nous annonçait qu’une bicy­
clette aérienne a volé en terrain plat pendant quelques secondes, il 
ne faudrait pas a priori nous montrer incrédules.
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CHAPITRE VI.

THÉORIE DE L’AÉROPLANE (suite).

Régimes de marche de l’aéroplane. — Fonctionnement du moteur. — 
Discussion des cas possibles. — Descente en vol plané. — Descente avec 
moteur en marche. — Choix de la vitesse de régime. — Perfectionne­
ment à la théorie de l’aéroplane.

RÉGIMES DE MARCHE DE L'AÉROPLANE.

La théorie qui précède envisage le problème de l’aéroplane dans 
sa généralité, la vitesse et la traction pouvant varier indépendamment 
l’une de l'autre.

C’est, comme nous l’avons dit, le problème qui se pose lorsque 
l’aéroplane n’est pas encore construit, et qu’il s’agit de calculer ses 
diverses parties, de connaître la puissance minima nécessaire, et de 
déterminer les conditions de possibilité du problème.

C’est aussi, entre certaines limites assez restreintes d’ailleurs, 
celui qui se pose lorsqu’on fait varier la carburation du moteur ; cette 
manœuvre équivaut à avoir un moteur de puissance variable, et on 
peut alors faire varier indépendamment la traction et la vitesse ; elle est 
du reste fréquemment employée, dans le but de ménager le moteur, 
toutes les fois que cela est possible, en ne lui faisant pas donner toute 
sa force. ,

Ce serait le problème général de l’aéroplane, si on pouvait, quelle 
que soit la vitesse de translation, maintenir le moteur à son régime 
normal, caractérisé par une vitesse de rotation déterminée, par 
exemple 1.200 ou 1.400 tours par minute. Mais ceci exigerait que 
les hélices propulsives aient soit un pas variable, soit une démultipli-

Chapitre VI. Théorie de
l'aéroplane (suite)
Régimes de marche de
l'aéroplane
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cation variable; ces dispositifs ne sont pas encore entrés dans la 
pratique courante.

Nous devons donc maintenant étudier un autre problème, à savoir 
le régime de marche de l’aéroplane une fois construit. L’appareil 
étant muni d’un moteur suffisamment puissant réglé une fois pour 
toutes, et d’hélices propulsives, l’aviateur ne touchant plus au moteur 
ni au propulseur après la mise en marche, quel sera le régime de 
marche, quelles seront les vitesses possibles, et comment se compor­
tera l’appareil en dehors de ces vitesses ?

On suppose que le pilote peut régler l’angle d’attaque, et par suite 
la vitesse, par la manœuvre du gouvernail de profondeur.

Lorsque la vitesse de translation variera, la vitesse angulaire du 
moteur ne restera pas constante ; elle variera également.

Ceci nous oblige à préciser un peu les conditions de fonctionnement 
des moteurs à essence de pétrole utilisés en aviation.

FONCTIONNEMENT DU MOTEUR.

Le couple moteur dépend de la pression moyenne des gaz sur le 
piston. On peut, comme première approximation assez grossière, 
remarquer que cette pression moyenne est sensiblement constante,

Fig. 85. — Réaction 
sur un élément d'hélice.

indépendante de la vitesse angulaire. Par 
suite, le couple moteur sur l’arbre est à 
peu près constant. Soit G ce couple.

D’autre part, si le propulseur est une 
hélice géométrique de pas h, et si la 
résistance de l’air est exactement normale 
à la surface en chaque point, la traction 
sera proportionnelle au couple moteur, et 

par conséquent constante aussi.
En effet, considérons un élément de surface S de l’hélice, placé à 

une distance x de l’axe, et incliné d’un angle a (fig. 85) ; la considé­
ration du pas nous donne la condition :

à aEA
 11

Fonctionnement du
moteur
Fig. 85. Réaction sur
un élément d'hélice
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Soit C le couple moteur élémentaire appliqué en S; la force 
exercée / sera donnée par :

fa — C

Soity la traction produite sur l’arbre. On voit immédiatement que :

*=g=

d’où :

puissance

Et si Y est la traction totale, on a en faisant la sommation (1) :

2. 2*Y = Zy = — 2c = - C

La traction Y est donc bien constante si le couple moteur C est 
constant. (Nous donnerons plus loin, dans la théorie des hélices, 
une démonstration beaucoup plus générale de cette propriété).

S’il en était ainsi, quelle que soit la vitesse de translation, le 
moteur produirait une traction constante, à condition qu’il ne dépasse 

pas sa vitesse de régime, et la traction aux 
diverses vitesses pourrait être représentée 
par une droite horizontale interrompue 
en un certain point A (fig. 86).

Mais les hypothèses que nous avons 
énoncées ne sont qu’approximatives, et 
il est indispensable d’examiner les choses 
de plus près.

Si on mesure expérimentalement la 
un moteur à essence aux diverses vitesses,

Fic. 86.
Traction constante.

F
A

! 
%
.

par

(1) Pour qu’on ait le droit de faire une sommation appliquée aux éléments de 
surface d’une hélice, il faut qu’on considère des propriétés qui ne sont pas sen­
siblement modifiées par la présence des éléments voisins. C’est le cas ici, 
puisque nous ne considérons que la direction de la réaction élémentaire, sans 
faire aucune hypothèse sur sa grandeur.

Fig. 86. Traction
constante
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on constate qu’il ne fonctionne convenablement qu’entre certaines 
limites de vitesse angulaire, et que la courbe des puissances est sem- 
blable à celle représentée fig. 87.

Il y a une vitesse minima a au-dessous de laquelle le moteur ne 
peut pas descendre sans « caler », c'est-à-dire s’arrêter, les explo­
sions étant trop espacées pour entretenir le mouvement. Cette vitesse 
dépend de l’inertie des pièces tournantes telles que le volant, mais

0 e tours 
pur minute

FiG. 87. — Courbe de la puissance 
d’un moteur à explosion.

etfonctionnement devient possible,

elle ne dépend pas que de cela, 
car aux faibles vitesses le fonc­
tionnement est mauvais et le 
rendement faible. A la vitesse 
minima, le couple moteur et la 
puissance disponibles sont tous 
deux nuls, puisque le moteur 
ne peut même pas tourner à 
vide. Cette vitesse est, dans les 
moteurs employés, voisine de 
150 tours par minute.

A partir de la vitesse a, le 
le rendement augmente rapide­

ment, c'est-à-dire qu’à carburation égale le couple moteur augmente. 
Il passe par un maximum pour une certaine vitesse b; c’est la 
meilleure vitesse, celle pour laquelle le moteur fonctionne le mieux ; 
c’est celle qu’on appelle la vitesse de régime du moteur. Il est 
facile de voir que, sur la courbe, le point B correspondant au 
maximum du couple moteur doit avoir sa tangente passant par 
l’origine.

On peut, sans inconvénient, dépasser un peu cette vitesse, et aller, 
sans que le rendement s’en ressente notablement, jusqu’à une 
vitesse C. Du reste, au voisinage du point B, la courbe est presque 
droite et diffère très peu de sa tangente, de sorte que le point B est diffi­
cile à déterminer exactement. Au-delà de la vitesse C, le fonctionne­
ment devient mauvais, principalement parsuite de l’inertie des pièces 
en mouvement etdes difficultés de l'alimentation etdu refroidissement;

Fig. 87. Courbe de la
puissance d'un moteur
à explosion
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le moteur fatigue, chauffe, et « grippe » très rapidement; aussi ces 
vitesses ne peuvent-elles être maintenues que quelques minutes. 
Cette partie de la courbe est représentée en pointillé.

Il est très important de noter que, au point C, la puissance croît 
encore, car si le couple moteur diminue, par contre la vitesse aug­
mente, de sorte que le maximum de puissance I) a lieu pour une vitesse 
d qui est déjà en dehors des limites de bon fonctionnement. On ne 
peut donc faire donner à un moteur son maximum de puissance qu’en 
le fatiguant rapidement, et il ne faut pas confondre la puissancenor- 
male avec la puissance maxima. Nous insistons sur ce point géné­
ralement mal compris : la vitesse de régime n’est pas celle qui corres­
pond au maximum de puissance, mais bien au maximum du couple 
moteur.

Au-delà du point C, le couple moteur diminue beaucoup et devient 
rapidement nul. Les limites de bon fonctionnement pour une marche 
d’une certaine durée sont a et C.

La courbe du couple moteur se déduit facilement de la courbe de 
la puissance (fig. 88). En B il y a un maximum, puis la courbe 
commence à redescendre. Au point D qui correspond au maximum de

FIG. 88. — Courbe du couple moteur.

C
D
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 t

puissance, le couple moteur 
est déjà en décroissance. La 
partie de la courbe repré­
sentée en pointillé correspond 
aux vitesses qui fatiguent le 
moteur.

La traction exercée par les 
hélices serait proportionnelle 
au couple moteur si la direc­
tion des réactions de l’air sur 

les éléments de surface de l’hélice restait constante.
En réalité, cette direction varie, mais faiblement, de sorte que la 

courbe des tractions est analogue à la courbe des couples moteurs 
représentée fig. 88. Toutefois, la tangente en B n’est plus exactement 
horizontale ; le point B n’a plus de propriété bien caractéristique,

Fig. 88. Courbe du
couple moteur
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aussi l’incertitude qui règne sur sa position exacte n’a-t-elle pas 
d’importance.

Les vitesses angulaires du moteur et des hélices et les tractions 
correspondantes étant données, les vitesses auxquelles doit marcher 
l’aéroplane se trouvent par là même déterminées. Nous verrons, dans 
le chapitre des hélices propulsives, comment on peut les calculer. Il 
suffit pour le moment de savoir qu’en pratique la vitesse de transla­
tion V de l’aéroplane varie dans le même sens que la vitesse du 
moteur. Nous pourrons donc représenter la traction donnée par les 
hélices, en fonction de la vitesse V de l’aéroplane, par une courbe Y 
qui, elle aussi, sera analogue à celle de la fig. 88.

D’autre part, la traction nécessaire au vol horizontal est représentée 
par la courbe F que nous avons vue aux fig. 73 et 74. Suivant la façon 
dont ces deux courbes se coupent, plusieurs cas peuvent se présenter.

Les diverses positions respectives des deux courbes vont nous 
permettre de faire la discussion complète du-problème, sans écrire 
aucune formule, et beaucoup plus exactement qu’on ne pourrait le 
faire par le calcul, car les courbes en question ne peuvent pas se 
représenter exactement par des équations ; et notamment la formule 
classique de la traction nécessaire au vol ne représente qu’une partie 
de la courbe F.

DISCUSSION DES CAS POSSIBLES.

1° Les deux courbes ne se rencontrent pas. — La courbe Y

FIG. 89. — Les deux courbes 
ne se rencontrent pas.

des tractions de l’hélice est entière­
ment au-dessous de la courbe F des 
tractions nécessaires au vol hori­
zontal (Fig. 89).

L'aéroplane n’est pas viable. 
Quelle que soit la vitesse adoptée, 
la traction des hélices est toujours 
trop faible. Notons que cela ne veut 
pas dire que la traction Y est toujours

Discussion des cas
possibles

Fig. 89. Les deux
courbes ne se
rencontrent pas
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inférieure à la moindre traction F.. Elle peut lui être supérieure, 
comme nous l’avons précisément représenté sur la figure ci-contre, 
mais pour des vitesses mal appropriées, trop faibles ou trop fortes.

Il faut faire rentrer dans ce cas celui où les deux courbes sont 
tangentes; l’aéroplane pourrait à la rigueur se maintenir en l’air, 
mais ne disposant d'aucun excédent de puissance, il ne pourrait 
jamais s’enlever de terre.

2° Les deux courbes se coupent en deux points A'et A". — 
Ce cas se subdivise en plusieurs autres.

Nous supposerons d'abord que les deux points A' et A" sont 
dans la bonne partie de la courbe Y(fig. 90). Deux allures sont 
alors possibles, dont les vitesses sont V' et V". On les appele 
vitesses de régime.

Pour ces deux vitesses, la marche sera horizontale ; entre les deux, 
il y a excès de force, et on pourra monter. En dehors de l’intervalle 
V'V", la traction est trop faible, et la trajectoire sera descendante.

FIG. 90. — Deux allures possibles, 
toutes deux durables.

© 0 VY

Fig. 91. — Diverses dispositions 
possibles.

La plus forte pente de montée s’obtiendra à la vitesse v pour 
laquelle l’excès de force, mesuré par la différence d’ordonnées Y—F 
des deux courbes, est maximum.

Ce cas est le cas normal, celui qu’il faut chercher à obtenir.
Notons que la moindre traction F peut se trouver placée d’une 

façon quelconque par rapport aux points A‘ et A". La figure 91 repré-

Fig. 90. Deux allures
possibles, toutes deux
durables

Fig. 91. Diverses
dispositions possibles
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sente les trois dispositions possibles. On voit que les deux vitesses 
de régime peuvent être toutes deux inférieures à la vitesse de moindre 
traction Vi, on toutes deux supérieures, ou enfin encadrer V,.

La vitesse V., purement théorique, n’a aucune propriété particulière 
dans le problème actuel. C’est une erreur de croire, comme cela a 
été dit parfois, que les vitesses de régime encadrent toujours V1, et que 
les vitesses supérieures à Vi sont seules réalisables en pratique.

Du reste, les vitesses voisines de Vi sont toujours les meilleures, 
en ce qu’elles sont les plus économiques et qu’elles fatiguent le moins 
les organes propulseurs.

Nous désignerons les deux vitesses de régime par régime rapide 
et régime lent.

Nous verrons plus loin que, des deux vitesses de régime possibles, 
c’est la plus grande, V", qu’on préfère dans la pratique et qu’on 
adopte habituellement.

30 Les deux courbes se coupent, mais les points A' et A" 
sont tous deux dans la mauvaise partie de la courbe Y(fig. 92). 
— Alors il y a bien, au moins momentanément, deux allures possi­

bles, mais à condition de

FIG. 92. — Deux allures possibles, 
mais non durables.

forcer le moteur, de le faire 
tourner plus vite que sa 
vitesse de régime ; il chauf­
fera, et le vol ne pourra se 
prolonger au-delà de quel­
ques minutes.

C’est forcément ce qui 
arrivera si le moteur n’est 
que strictement suffisant et 

doit donner son maximum de puissance ; les deux allures A' et A" 
seront voisines de ce maximum qui est, comme nous l’avons vu, situé 
sur la mauvaise partie de la courbe Y.

Ceci explique pourquoi, en 1907 et 1908, nos aviateurs ne par-

Fig. 92. Deux allures
possibles, mais non
durables
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venaient à voler que pendant un temps très court, après lequel 
le moteur chauffait et refusait tout service.

Il importe de remarquer que, dans ce cas, la moins mauvaise des 
deux allures est V’, la plus lente, celle qui s’éloigne le moins des 
vitesses admissibles.

4° Enfin, un dernier cas est celui où le point A' est sur la bonne 
partie, et le point A" sur la mauvaise partie de la courbe Y 
(fig. 93).

Ce cas n’a rien de paradoxal, et il a dû se produire bien des fois 
dans la réalité.

Des deux allures possibles, une seule, la plus lente, est bonne et 
durable. La plus rapide ne peut pas être maintenue sans provoquer 
l’échauffement du moteur. Malheureusement, on adopte habituel­
lement en pratique l’allure la plus rapide, simplement parce que 

l’éducation des pilotes est faite dans 
ce sens, comme nous le verrons 
plus loin. On n'arrivera donc pas à 
maintenir le vol, bien que l’aéro­
plane soit parfaitement viable à 
condition qu’on prenne l’allure 
lente V’. Ce cas a dû se présenter 
plus d’une fois dans la réalité; les 
aéroplanes de 4907 et 1908 
auraient certainement pu voler plus 

FrG. 93. — Deux allures possibles, 
la plus lente la seule durable.

longtemps si, au lieu de la vitesse V", on avait manœuvré de façon 
à adopter la vitesse V‘ qui eût moins fatigué le moteur. Ce résultat 
eût été très utile à l’époque, et il peut l’être encore; il nous paraît 
assez important pour justifier, à lui seul, l’intérêt de l’étude qui 
précède.

Influence d’une augmentation de poids. — Si on augmente la 
charge de l’appareil, par exemple par l’adjonction d’un passager, la 
traction nécessaire au vol augmente; la courbe F remonte, sans

Fig. 93. Deux allures
possibles, la plus lente
la seule durable
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changer d’aspect, et devient G située au-dessus de F (fig. 94). Nous
H

Augmentation du poids.

3

Fr. 9%.

l’allure inférieure.

supposons bien entendu qu’elle 
rencontre encore Y.

On voit que les deux allures B' 
et B" sont comprises entre A' et A". 
Si, comme d’habitude, on adopte 
l’allure supérieure, l’augmentation 
du poids se traduit donc par une 
diminution de vitesse, contraire- 
ment àune croyance assez répandue. 
Le contraire arriverait si on adoptait

DESCENTE EN VOL PLANÉ.

Ce cas peut s’étudier par la même méthode que le précédent si on 
remarque que, d’après un théorème précédent, la traction en marche 
horizontale est égale au poids multiplié par la pente de descente en 
vol plané.

Ainsi, descendre en vol plané à une certaine pente —3 équivant. 

%

0

FiG. 95.
Cas de la descente en vol plané.

au point de vue des vitesses réali­
sées, à disposer d’une traction 
égale à la pente s multipliée par 
le poids :

F = — pP

Figurons la courbe des trac­
tions, comme précédemment 
(fig, 95).

Figurons aussi la traction —3P
dont on dispose en descendant à la pente —3, traction qui est indé­
pendante de la vitesse, et qui est représentée par une droite hori-

Descente en vol plané
Fig. 94. Augmentation
du poids
Fig. 95. Cas de la
descente en vol plané



J 8 1

zontale. Si la droite —BP coupe la courbe F, il y a deux vitesses 
possibles. Elles sont données par l’équation :

11 II 92
 

+ 0 4 18 “2

Si la droite est tangente, il n’y a qu’une vitesse possible, qui est 
la vitesse de moindre traction V,. La pente correspondante est donnée 
par la condition :

- pP = F,

C’est la plus faible pente possible. Pour toute pente inférieure à 
cette valeur, —SP est plus petit que Fi, la droite ne coupe pas la 
courbe ; la pente considérée n’est pas réalisable.

On peut représenter ce problème d’une façon très parlante aux 
yeux en adoptant, comme l’a proposé M. Soreau, les coordonnées 

FIG. 96.
Descente en vol plané 
(coordonnés polaires).

polaires, avec B et V comme coordonnées 
(fig. 96).

On considère une pente B, on mène 
le rayon O V" incliné de l’angle B, et on 
prend les longueurs 0 V' et 0 V" égales 
aux vitesses de régime. On obtient ainsi 
la courbe de la fig. 96, qui a aussi pour 
équation l’équation (29).

Les vecteurs 0 V' et 0 V" représentent 
à la fois par leur direction et par leur 
longueur, les vitesses possibles de des­
cente en vol plané. On voit qu’il y a une 
pente minima qui donne 0 V. vitesse de 
moindre traction.

La vitesse de moindre puissance 0 Vo est caractérisée par ce fait 
que Vo est le point le plus haut de la courbe.

La discussion qui précède s’applique au vol plané des oiseaux 
comme aux aéroplanes.

Fig. 96. Descente en
vol plané (coordonnés
polaires)
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DESCENTE AVEC MOTEUR EN MARCHE.

Ce cas équivaut à avoir un supplément de force tractive provenant 
de la pente de la trajectoire. Dans les figures 89 à 95 ci-dessus, on 
obtient ce cas en remontant toute la courbe Y d’une quantité propor­
tionnelle à la pente de descente, d’où la courbe Z (fig. 97).

On peut voir que cela augmente le champ des vitesses possibles,

Fie. 97.
Descente avec moteur en marche.

:-------  
V

les allures B. et B comprenant 
entre elles les allures A' et A". 
Mais on voit aussi que cette 
manœuvre présente un grave 
danger, c’est que le point B" aura 
grandes chances de se trouver sur 
la partie mauvaise de la courbe Z, 
correspondant à une vitesse exa­
gérée du moteur. D’où danger de 
grippage, et même d’éclatement. 
La descente avec moteur en 

marche est donc à éviter, et il convient, en règle générale, de descendre 
avec moteur éteint, c’est-à-dire en coupant l’allumage.

On peut étudier de la même façon le cas de la marche ascendante, 
en abaissant la courbe Y d’une quantité proportionnelle à la pente 
de montée.

CHOIX DE LA VITESSE DE REGIME.

Nous allons maintenant examiner les avantages respectifs des deux 
vitesses de régime V‘ et Y", et la manœuvre à faire pour adopter 
l’une ou l’autre. Elles correspondent à des angles d’attaque ï et i". 
La plus grande correspond au plus petit angle d’attaque. On sait que 
l’aviateur peut régler à volonté l’angle d’attaque par la manœuvre 
du gouvernail de profondeur. S’il augmente progressivement l’angle

Descente avec moteur
en marche
Choix de la vitesse de
régime
Fig. 97. Descente avec
moteur en marche
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d’attaque à partir de zéro, la trajectoire est d’abord descendante. 
Lorsque l’angle atteint il", la marche devient horizontale (régime 
rapide). Entre i" et i, la trajectoire devient ascendante, passe par 
une pente maxima, puis revient à l’horizontale pour l’angle i‘ (régime 
lent). Au-delà de i, la trajectoire est descendante.

Ainsi, lorsqu'on constate que l’on monte, on peut revenir à l’hori­
zontale soit en diminuant, soit en augmentant l’angle d’attaque. 
Abstraction faite des avantages de la vitesse, le régime rapide n’est 
pas nécessairement le plus économique des deux.

Le régime lent a l’avantage de moins fatiguer le moteur, et de 
faciliter l’atterrissage. En cas de vent variable, les perturbations que 
l’appareil subit sont plus amples qu’avec l’autre régime, mais moins 
brusques, moins soudaines, et on a en mieux le temps d’y parer.

Ce régime lent présente ceci de curieux, que lorsque le moteur 
faiblit, la vitesse de translation de l’appareil s’accélère.

Le régime lent donne une meilleure stabilité longitudinale que le 
régime rapide. La pratique montre, en effet, que pour augmenter 
l’angle d’attaque il faut accentuer le V formé par le gouvernail de

s

profondeur G et les surfaces principales S 
(fig. 98), et ce V a un effet favorable à la 
stabilité automatique ; au contraire, pour 
diminuer l’angle d’attaque, il faut dimi­
nuer le V, et on peut alors diminuer et 
même perdre tout à fait la stabilité auto­
matique. II y a une position du gouvernail

FIG. 98. — Le V longi­
tudinal du gouvernail de pro­
fondeur.

de profondeur au-dessous de laquelle il y a danger d’instabilité, et 
il est utile que l’aviateur ne puisse pas, même s’il le voulait, 
dépasser cette position (1).

L’efficacité des organes stabilisateurs (gauchissement, ailerons) et 
du gouvernail de direction étant d’autant plus grande que la vitesse

(1) On ne saurait trop insister sur ce point. L’abaissement excessif du gou- 
vernail de profondeur, notamment lorsque l’aviateur veut descendre, peut faire 
piquer du nez l’appareil. Beaucoup de chutes et d’accidents graves sont impu­
tables à cette cause.

Fig. 98. Le V
longitudinal du
gouvernail de
profondeur
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est plus grande, le régime rapide a, à ce point de vue, l’avantage de 
donner à l’appareil plus de maniabilité. C'est pourquoi on recommande 
aux aviateurs, par dessus tout, de ne jamais perdre leur vitesse, car 
non seulement la sustentation en dépend, mais aussi la maniabilité de 
l’appareil. Le régime lent présente à cet égard un sérieux inconvénient, 
c’est qu’une rafale risque davantage d’annihiler subitement la vitesse 
relative, ce qui a pour effet de provoquer la chute verticale ou même 
la chute en arrière, sans que le pilote ait aucune action sur les appa­
reils de manœuvre.

Etant au régime rapide, pour monter il faut augmenter l'angle, et 
pour descendre le diminuer. *

Le contraire a lieu si on est au régime lent.
Or, actuellement l’éducation des pilotes est faite de la manière 

suivante : pour monter, augmenter l’angle d’attaque; pour 
descendre, le diminuer. Cette manœuvre aboutit nécessairement à 
fixer l’appareil à la vitesse de régime rapide.

Mais si on adoptait le principe contraire, partir d’un grand angle 
d’attaque, le diminuer pour monter, l’augmenter pour descendre, 
on aboutirait au régime lent sans plus de difficulté. Ce n’est qu’une 
question d’éducation; les réflexes à acquérir sont inverses, mais ne 
sont pas plus difficiles dans un cas que dans l’autre, et c’est une 
erreur de croire, comme cela a été dit par plusieurs auteurs (1), que le 
régime lent est instable ou acrobatique.

Quelle que soit la vitesse de l’appareil à un moment donné, pour 
se fixer à l’une ou l’autre vitesse de régime il suffit de donner à 
l’appareil l’angle d’attaque correspondant.

La vitesse voulue s’établira d’elle-même, et restera fixe (2), après 
une courte période de transition, pendant laquelle l’appareil montera 
ou descendra un peu.

Si on se trouve a une vitesse inférieure à celle qu’on veut

(1) Notamment par M. Painlevé.
(2) Nous supposons bien entendu qu’il s’agit d’un aéroplane bien étudié et 

muni de surfaces stabilisatrices convenables.
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atteindre, l’appareil, aussitôt l’angle d’attaque fixé, fera une abatée 
pour gagner de la vitesse. Cette abatée peut avoir des inconvénients si 
on est près de terre, et dans ce cas il faut manœuvrer progressivement.

Si on se trouve à une vitesse supérieure à celle qu’on veut 
atteindre, l’appareil se cabrera et montera un peu, ce qui n’a pas 
d’inconvénient.

Si donc on se pose le problème suivant : étant à une vitesse 
quelconque, passer à l’une des vitesses de régime sans faire 
d'abatée, sans descendre (mais avec faculté de monter), il y a trois 
cas à distinguer :

4° La vitesse est plus petite que V'. Il faut atteindre une vitesse 
supérieure ; on ne peut pas éviter de descendre.

20 La vitesse est entre V' et V". On peut bien passer au régime 
lent; mais pour passer au régime rapide il est indispensable de faire 
une abatée.

3° La vitesse est supérieure h V". On peut passer à l’un ou l’autre 
des régimes sans faire d’abatée.

Le régime lent est, à ce point de vue, plutôt plus facile a adopter 
que l’autre.

Une fois atteintes, les vitesses de régime sont toujours stables, 
aussi bien l’une que l’autre, et se rétablissent d'elles-mêmes si une 
cause extérieure les a altérées. Seule la préférence personnelle de 
l’aviateur, ou ses réflexes acquis par éducation, déterminent le choix 
entre elles.

Ces conclusions sont contraires à celles que M. Painlevé a déve­
loppées dans la Technique aéronautique (1), et qui sont les 
suivantes :

C’est toujours le régime rapide qui s’établit de lui-même; le 
régime lent est instable et ne peut être conservé à moins d’une 
acrobatie invraisemblable.

(1) Painlevé, Etude sur le régime normal d’un aéroplane, la Technique 
aéronautique, 1er jany. 1910.
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Ces conclusions proviennent de la façon défectueuse dont l’auteur 
s’est posé le problème. Il astreint l’appareil à changer d’allure 
sans monter ni descendre, en restant à hauteur constante même 
pendant la période transitoire. Le problème ainsi posé est, par lui- 
même, nécessairement acrobatique, à peu près au même titre que 
celui qui consisterait, étant à bicyclette, h suivre rigoureusement une 
ligne tracée sur le sol, sans autoriser les légères sinuosités nécessaires 
au maintien de l’équilibre.

Poser la question ainsi n’a aucun intérêt ; il est à la rigueur admis­
sible qu’on astreigne l’aviateur à ne pas faire d’abatée, mais on doit 
lui laisser au moins la faculté de monter.

En l’obligeant à suivre une horizontale, on lui interdit par là-même 
les véritables manœuvres usitées en pratique. Quand un aéroplane 
est stable, il rétablit automatiquement sa vitesse au moyen de légères 
oscillations en hauteur. En posant un problème qui ne permet pas 
ces oscillations, et qui par conséquent exclut d’avance le jeu de la 
stabilité automatique, M. Painlevé arrive à cette conclusion contra­
dictoire que, à l’allure lente, la vitesse est instable si l’aviateur 
gouverne, et stable s’il ne gouverne pas ! (Sic).

Une autre conclusion inexacte de l’étude précitée est que, lorsque 
la vitesse initiale V est intermédiaire entre

9

FIG. 99. — Passage de la 
vitesse initiale V à une vitesse 
de régime.

V' et V", en manœuvrant à hauteur cons­
tante la vitesse augmente nécessairement 
et aboutit au régime A" (fig. 99). En 
réalité, à la vitesse V correspondent deux 
angles d’attaque; l’un donne l’allure M 
considérée par l’auteur, l’autre donne 
l’allure N qui exige une plus forte traction 
et qui, par suite, fera ralentir l’appareil 
et le rapprochera du régime A'.

Seulement celte allure N est sur la 
partie de la courbe des tractions qui n’est

pas contenue dans les formules que M. Painlevé a prises pour base. 
Cet exemple montre le danger qu’il y a à faire la discussion d’un

Fig. 99. Passage de la
vitesse initiale V à une
vitesse de régime
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problème sur des formules qui n’en représentent qu’une assez faible 
partie; la discussion en implique alors l’extrapolation, qui peut 
ne pas être légitime. Il est préférable de discuter sur des courbes 
expérimentales.

Tout ceci montre une fois de plus qu’en aviation la grande difficulté 
est de bien poser les problèmes sur leur véritable terrain, avec un 
choix d’hypothèses conformes à la réalité.

PERFECTIONNEMENT A LA THÉORIE 
DE L’AÉROPLANE.

La théorie que nous avons développée ci-dessus est basée sur les 
formules' proposées par M. Soreau en 1908 pour représenter les 
composantes de la réaction de l'air sur une surface plane ou arquée, 
formules qui sont les suivantes :

| H = KSV2;
I F = KSV2,4 + K‘SV2

Or, nous avons vu, au chapitre IV, que ces formules ne sont pas 
satisfaisantes, et qu’il convient de les remplacer par les suivantes :

I H = KSVA;
F= KSVArin + KSV2

dans lesquelles l’exposant n est plus grand que 2, et compris 2 et 4.
Il n’y a aucune difficulté à reprendre toute la théorie de l’aéroplane 

en partant de ces formules générales; on trouve une série de 
théorèmes analogues à ceux qui ont été indiqués ci-dessus, peu 
différents comme forme, et dans lesquels les coefficients numériques 
surtout sont changés.

Nous ne développerons pas de nouveau toute la théorie, ce serait 
long et sans grand intérêt; nous nous bornerons à étudier rapide­
ment le cas de n = 3. Pour les types de surfaces expérimentés par 
M. Riabouchinsky, nous avons vu qu’on trouvait n tantôt égal à 2,5, 
tantôt à 3, tantôt à 4.

Perfectionnement à la
théorie de l'aéroplane
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En prenant comme valeur approchée n = 3, nous devons être 
dans une bonne moyenne applicable à la pratique; les résultats que 
nous trouverons seront à coup sûr plus exacts que ceux de la théorie 
qui précède.

En marche horizontale, on a H = P, et on peut écrire :

I P = KSV«»
| F = Pria + K‘SV2

Cherchons la vitesse de moindre traction V,.
On peut écrire :

p3,
*= ksi * KST

Annulant la dérivée de F par rapport à V, on obtient :

équation qui peut se mettre sous les deux formes suivantes :

2p3, 
k*S-V,» KSVA

1 K2SA K’S’

La première équation montre que le minimum de traction a lieu 
quand la résistance de pénétration est double de la résistance de 
sustentation. Ce théorème est plus exact que le théorème classique 
dû à Pénaud. Il explique ce fait que, dansles aéroplanes, la résistance 
de pénétration est beaucoup plus importante qu’on ne s'y attend 
d’après la théorie de Pénaud, fait que les théoriciens ont souvent 
remarqué sans en trouver la raison.

Dans la théorie générale où on laisserait l’exposant n, on trouverait 
que la résistance de pénétration doit être n — I fois plus grande que 
la résistance de sustentation.

La deuxième équation donne la vitesse de moindre traction V,.



I 8I

On trouve d’une manière anologue, pour la vitesse de moindre 
puissance, le théorème suivant : le minimum de puissance a lieu 
quand la résistance de pénétration est égala à la résistance de

2n__I 
sustentation (en général, —— fois plus grande).

Ce théorème est également plus exact que le théorème classique 
de Pénaud.

Pour la vitesse de moindre puissance V, on trouve :

ps,V.G — _________
0 KAS2 K'S

Remarquons que Vi et Vo sont liés par la relation :

d’où :
% = 1,12

Les angles d’incidence correspondants sont dans le rapport de 4 à 
1,23.

On voit que Vi et V0 diffèrent beaucoup moins l’un de l’autre que 
dans la théorie de Pénaud qui donnait un rapport de 4,32. Pratique­
ment V1 et Vo se confondent.

De même si on calcule les puissances To et Ti, on trouve :

*-#--

au lieu de 4,14 dans la théorie de Pénaud.
Ainsi les allures de moindre traction et de moindre puissance 

diffèrent beaucoup moins qu’on ne l’a admis jusqu’ici, et prati­
quement elles se confondent, résultat très important.

Précisément nous avons vu, au chapitre IV, que, parmi les surfaces 
expérimentées par M. Riabouchinsky, si on cherche celles qui
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correspondent à la moindre traction et à la moindre puissance, on 
trouve que c’est la même surface (l’arquée au 30e) qui répond à ces 
deux conditions, et pour des angles d’incidence sensiblement égaux ; 
tandis que la théorie de Penaud aboutit à des angles très différents, 
dans le rapport de I à 1,73.

Si on prend n — 4, comme cela paraît être indiqué pour certaines 
arquées, les deux régimes se rapprochent encore davantage l’un de 
l’autre.

Il y aurait lieu de modifier de la même manière les théorèmes 
relatifs à la montée et à la descente de l’aéroplane.

Par contre, rien ne sera changé à l’étude des familles d’aéroplanes 
semblables, où ne figure que la notion de qualité', rien non plus à 
l’étude des régimes de marche.

Dans la recherche de l’inclinaison optima de l’axe de l’hélice, le 
résultat subit un changement important ; on trouve :

Y = 3ri2

Il en résulte que y est d’un ordre de grandeur beaucoup plus petit 
que i; sa valeur n’est que de I à 2°; l’hélice doit être à axe presque 
horizontal. C’est du reste ce que font les constructeurs; une théorie 
trop sommaire semblait leur donner tort; notre théorie plus exacte 
semble leur donner raison, tout au moins pour certaines formes des 
surfaces sustentatrices.

Nous bornons ici cette théorie nouvelle. Lorsqu’on possédera des 
résultats d’expériences plus nombreux, il y aura peut-être lieu de 
l’adopter définitivement à la place de celle que nous avons 
développée.
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CHAPITRE VII.

LE VOL DES OISEAUX

Nature du vol. — Mouvement de l’aile. — Le vol ramé propulsif. — 
Vitesse des oiseaux. — Travail dépensé par les oiseaux. — L'orthoptère 
et l'ornithoptère.

Nous n’examinerons que brièvement le vol des oiseaux, la question 
ayant été élucidée dans ses grandes lignes par les admirables travaux 
de E.-J. Marey; nous renvoyons le lecteur à son ouvrage capital 
Le vol des oiseaux (1), où l’auteur a indiqué le résultat de ses 
études chronophotographiques sur le mécanisme du coup d’ailes, 
tant à l'abaissée qu’à la remontée.

Toutefois, le sujet n'est pas épuisé, et tout en admirant sans 
réserves la très haute valeur de l’œuvre personnelle de Marey, on 
peut regretter qu’il ait, dans les chapitres de documentation, accueilli 
sans un contrôle suffisant des affirmations et renseignements émanant 
de sources peu autorisées.

En outre, d’une manière générale, sa méthode chronophotogra- 
phique a été appliquée pendant la période d’essor de l’oiseau, période 
où il n’a pas encore pris toute sa vitesse, et où le mouvement n’est 
pas le même qu’en plein vol.

Nous avons, dans le premier chapitre, expliqué en partie le méca- 
nisme du vol. Nous avons vu que le vol orthogonal n’existe pas. 
Ce vol serait un extrême gaspillage d’énergie ; c’est parce qu’il 
croyait à sa réalité que Navier (2) arrivait par le calcul à cette conclu-

(1) Paris, Masson, 1890.
(2) Navier, Mémoires de l’Institut, t. II, 1829.

Chapitre VII. Le vol des
oiseaux
Nature du volMouvement de l'aile
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sion célèbre que 13 hirondelles dépensent en volant un cheval-vapeur. 
Ses calculs sont un exemple du danger des hypothèses arbitraires, 
qui ne sont basées sur aucune donnée sérieuse et contrôlée. Ainsi il 
admet que l’hirondelle, quand elle vole avec une vitesse de 1 5 mètres 
à la seconde, donne 35 battements d’aile par seconde, et que la vitesse 
de l’aile est 3 à * fois plus grande que celle de la translation de 
l’oiseau. C’est de la fantaisie ; ce n’est pas ainsi qu’on doit étudierles 
phénomènes naturels.

Nous avons mentionné le vol oblique sur place, qui comporte 
toujours un mouvement oblique dans lequel la surface balayée est 
bien supérieure à la surface de l’aile; ensuite le vol ramé propulsif, 
qui est l’allure habituelle des oiseaux.

Enfin nous avons mentionné le vol à voile, cas particulier qui doit 
être étudié à part (1).

Revenons sur le vol ramé propulsif. En principe, il est analogue 
au vol aéroplane; ce qui le prouve, c’est que pendant la remontée 
l’aile est frappée en dessous par l’air; elle a donc une action susten- 
tatrice, en même temps que retardatrice, exactement comme un plan 
d’aéroplane.

Pour remonter son aile, l’oiseau n’a pas à faire travailler ses 
muscles élévateurs, qui sont du reste très peu développés, mais 
seulement à relâcher un peu ses muscles pectoraux qui abaissent 
l’aile, de façon à céder sous l’action de l’air.

L’aile est toujours frappée en dessous par l’air.
L’hypothèse que les plumes, à la remontée, s’écartent comme des 

clapets est reconnue fausse depuis longtemps, sauf au moment de 
l’essor, quand l’oiseau n’a pas encore pris sa vitesse. On peut à ce 
sujet faire remarquer que les chauves-souris, qui n’ont pas de plumes, 
volent cependant.

L’abaissée de l’aile ne se fait pas verticalement, mais obliquement 
d’arrière en avant. Qu’est-ce qui produit cette obliquité? La direction

(1) A. Sée, Le vol à voile et la théorie du vent louvoyant, Paris, Vivien, 1909.

L.

Le vol ramé propulsif
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des fibres musculaires des pectoraux y contribue un peu ; mais 
ce n’est pas là la vraie cause, et, comme dit Marey, « on chercherait 
vainement, dans l’appareil moteur de l’aile de l’oiseau, un muscle 
puissant dont les fibres expliqueraient, par leur direction, le mouve­
ment en avant de l’aile qui s’abaisse (1). »

La vraie cause est dans la forme de l’aile, comme l’a montré 
Muller (2) ; en abaissant une surface en forme d’aile dans de l’air 
rendu visible par de la fumée, cet expérimentateur a remarqué que 
l’air chassé s’échappe exclusivement du côté du bord arrière de l’aile. 
Il est possible que le bord antérieur épais forme un bourrelet qui 
s’oppose à l’écoulement de l’air de ce côté; Müller, au moyen d’un 
éventail en papier qu’il bordait d’un côté avec une bandelette de 
papier formant un léger relief, a obtenu le résultat attendu. La flexi­
bilité du bord arrière est certainement aussi pour beaucoup dans le 
phénomène; un coup d’œil sur la figure 84 (page 1 82) fait comprendre 
que la partie postérieure de l’aile, fléchie sous la pression de l’air, 
repousse cet air obliquement en arrière.

Par réaction, l’aile est poussée en avant.
Mentionnons encore, comme troisième cause du phénomène, 

l’ingénieuse assimilation que le commandant Thouveny en a faite 
avec les phénomènes d’auto-rotation (3); l’aile, animée à la fois 
d’un mouvement de translation et d’un mouvement d'abaissée, 
attaque l’air exactement dans les mêmes conditions qu’un élément 
de plan en auto-rotation, et, par suite, l’action propulsive du coup 
d’aile peut s’expliquer, même sans faire intervenir la forme des bords 
antérieur et postérieur de l’aile; une aile plane pourrait obtenir une 
action propulsive, mais vraisemblablement beaucoup plus faible.

La force propulsive éprouvée par l’aile est facile à constater ; le duc

(1) Loc. cit., p. 262.

(2) Müllcr, Comptes rendus de l'Acad. des Sciences, t. G, p. 1317.

(3) Thouveny, le vol ramé et les formes de l’aile, Revue d'Artillerie, juillet 
1909.
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D’Argyll (1) a montré qu’on peut s’en convaincre en prenant à la 
main l’aile d’un oiseau, desséchée en extension, et en cherchant à 
l’abaisser vivement; le coup éprouve alors une déviation latérale qui 
entraîne le bras du côté du bord rigide l'aile.

Une expérience fort simple de J. Pline est également très caracté- 
ristique. On prend un bambou et l’on fixe à son extrémité flexible une 
corde qu’on tend comme celle d’un arc, en l’attachant au corps même 
du bambou, vers son tiers inférieur. Deux autres petits morceaux de 
bambou sont liés à la tige principale, également courbés en arcs et 
reliés à la corde qui en rattache tous les sommets entre eux. Sur cette 
carcasse légère, on colle de l’étoffe ou du papier. Si on saisit cet 
appareil par son manche, et qu’on essaie de frapper l’air à plat, il 
sera absolument impossible de diriger le coup directement en bas. 
Plus on y mettra de force et par conséquent de vitesse, plus le bras 
sera violemment dévié par l’aile factice qui se porte du côté de sa ner­
vure. Rien de plus saisissant que cette petite expérience, qui donne 
mieux que toute explication la sensation de la réaction propulsive de 
l’air.

Cette action propulsive explique l’obliquité du mouvement de l’aile, 
et explique aussi le mécanisme du vol ramé propulsif. Puisque la 
remontée de l’aile est sustentatrice, le coup d’aile n’a pas pour but 
la sustentation ; le planement avec ailes immobiles y suffirait ; le coup 
d’aile a pour but la propulsion.

Pendant l’abaissée se produit une force propulsive énergique; 
pendant la remontée il existe une force retardatrice, mais moins 
grande.

Le battement d’ailes joue le même rôle que l’hélice d’un aéroplane. 
Chez les oiseaux de mer à grandes ailes étroites, la plus grande 
partie de l’aile reste immobile comme un plan d’aéroplane ; seule 
l’extrémité de l’aile, appelée le fouet, a un battement propulsif, 
comme s’il constituait un organe propulsif spécial.

(1) D'Argyll, l'Aéronaute, juin 1868.
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La théorie de l’aéroplane, dans ses grandes lignes, est applicable 
au vol ramé propulsif des oiseaux. Il existe pour eux une vitesse de 
moindre travail et une vitesse de moindre puissance, probablement 
très voisines l’une de l’autre ; et une vitesse maxima qu’ils obtiennent 
en donnant toute leur force, par exemple lorsqu’ils fuient un 
ennemi.

Dans le planement, l’analogie avec les aéroplanes est presque 
complète, sauf que l’oiseau possède la faculté de modifier la forme 
et l’étendue de ses ailes. Il règle sa vitesse et son angle d’attaque en 
portant les ailes plus ou moins en arrière.

VITESSE DES OISEAUX.

La question de la vitesse des oiseaux a été généralement envisagée 
d’une façon si peu scientifique, qu’on ne sait à peu près rien sur ce 
chapitre.

On ne connaît exactement la vitesse d’aucun oiseau.

« Très variable pour les différents oiseaux, dit Marey (1), la vitesse 
du vol n’a été exactement mesurée que pour les pigeons voyageurs, 
à cause de la facilité particulière qu’on a de noter l’heure du lâcher 
et celle de l’arrivée au colombier. Leur vitesse moyenne se déduit 
exactement du temps qu’ils ont employé à franchir une distance 
connue. » Nous serons plus réservés. S’il n’y avait pas de vents et de 
courants aériens, on pourrait effectivement procéder ainsi ; mais il 
existe des courants qui, aux diverses altitudes, ont des vitesses 
différentes; il paraît certain que les pigeons voyageurs recherchent 
et utilisent les courants favorables ; la méthode ci-dessus perd donc 
toute valeur.

On a publié des tableaux donnant les vitesses des oiseaux : caille, 
pigeon, faucon, canard, aigle, hirondelle, martinet; tableaux que

(1) Loc. cit., p. 35.

Vitesse des oiseaux
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les auteurs se transmettent religieusement, sans contrôle. Nous ne les 
reproduirons pas ; insistons au contraire sur leur inanité ; profitons-en 
pour détruire, s’il se peut, cette absurde légende qui veut que le 
martinet fasse 89 mètres parseconde. Quel est l’auteur responsable 
de cette affirmation, et comment a-t-il bien pu faire pour mesurer 
ces 89 mètres par seconde, ce qui ne devait pas être facile du 
tout?

Nous avons trouvé la phrase suivante dans un ouvrage de A. de 
Brevans intitulé La Migration des oiseaux- (Bibliothèque des 
Merveilles, 1880):

« Toussenel rapporte que le naturaliste italien Spallanzani a 
calculé que les martinets faisaient quatre-vingts lieues à l’heure, ce 
qui fait un vol de 89 mètres par seconde. »

Ainsi, voilà la source : c’est Toussenel, auteur estimé mais autorité 
scientifique contestable, qui rapporte une affirmation de Spallanzani.

Nous avons dernièrement (4) fait appel aux érudits pour recher­
cher ce qu’a dit exactement cet auteur, et si ses mesures méritent 
confiance ; nous n’avons reçu aucune réponse.

Dès maintenant il semble bien établi que ce fameux chiffre de 
89 mètres provient tout simplement de cette évaluation de 80 lieues à 
l’heure, évaluation très vague et en nombres ronds, qu’il serait dan­
gereux de prendre au pied de la lettre.

Nous craignons bien que tout cela ne soit que de la pure fantaisie. 
C’est le même Toussenel qui prétend que la frégate dort en l'air. 
M. d’Esterno a fort justement critiqué cette assertion en demandant 
à quoi on peut reconnaître qu’un oiseau dort en l’air. M. de Brevans, 
lui, s’étonne qu’on exige des preuves, et il n’hésite pas à affirmer 
que les martinets aussi dorment en l’air. « J’en ai maintes fois vu, 
dit-il (2), se tenir en l’air, en quelque sorte immobiles, c’est-à-dire 
ne faisant que de minimes mouvements pour se maintenir contre la

(1) A. Sée, Quelle est la vitesse des martinets, l'Aérophile, 15 mars 1910.
(2) Loc. cit., page 128
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brise. De là à supposer qu’ils faisaient une sieste, il n’y avait qu’un 
pas ; et je l’ai admis, n’en voyant pas d’autre explication (sic). »

Quelle admirable méthode de raisonnement !
Voilà, n’est-il pas vrai, des autorités bien dignes de foi ! On voit 

combien il est nécessaire de passer au crible de la critique toutes les 
affirmations et légendes qu’on se repasse de main en main.

Quelle est donc la vitesse des oiseaux?
D’abord, ce terme est très vague. Un oiseau n’a pas une vitesse, 

comme les auteurs semblent le croire; chaque oiseau dispose d’une 
certaine gamme de vitesses, depuis la plus faible qu’il peut soutenir, 
pour l’essor, jusqu’à la plus rapide, lorsqu'il fuit un ennemi. Lorsqu’il 
voyage, ou lorsqu’il chasse, il adopte des vitesses intermédiaires. Si 
on pouvait mesurer la vitesse d’un oiseau à un moment donné, on ne 
saurait pas si c’est son allure normale, ou une allure accélérée ou 
ralentie. Il y a donc là, d’avance, une grande cause d’indétermination.

Quoi qu’il en soit, quels renseignements sérieux possède-t-on sur 
la vitesse des oiseaux?

Marey a mesuré par la chronophotographie la vitesse d’un goéland 
qui venait de prendre l’essor; il a trouvé 8 mètres par seconde 
(environ 30 kilomètres à l’heure). Mais il est clair que l’oiseau 
n’avait pas encore acquis toute sa vitesse.

D’après les mesures des colombophiles, les pigeons voyageurs 
feraient un peu plus de 80 kilomètres à l’heure.

Wilbur Wright a constaté qu’en 1905 son aéroplane, qui faisait 
entre 60 et 65 kilomètres à l’heure, dépassait tous les oiseaux, et il 
estime que la vitesse des oiseaux reste comprise entre 30 et 60 
kilomètres à l’heure.

En chemin de fer, tout le monde peut constater que les passereaux 
et corneilles sont fortement distancés par les trains express, même 
lorsque ceux-ci vont à une vitesse modérée voisine de 75 à l’heure, et 
quel que soit le sens du vent. On peut en conclure que ces oiseaux ne 
dépassent guère 50 à l’heure. Marey prétend (1) que les pigeons,

(1) Loc. cit., page 37.
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hirondelles et martinets dépassent les express; pour notre part, nous 
en doutons fort, ayant toujours observé le contraire, et très 
nettement.

En 1909, à Steenwerck (Nord), par un vent assez violent d’environ 
20 à 25 mètres par seconde, nous avons observé que les hirondelles 
étaient clouées sur place et même reculaient nettement, malgré des 
efforts visibles pour avancer. Un pigeon qui passait, avançait, mais 
fort lentement. Ce qui prouve que l’hirondelle vole moins vite que le 
pigeon, et qu’elle ne peut dépasser 80 à l’heure environ, même en 
s'employant à fond.

Un renseignement extrêmement intéressant nous a été donné à 
l’occasion du Circuit de l’Est, en août 1910. Dans l’étape Douai- 
Amiens (80 kilomètres), 50 pigeons voyageurs ont été làchés en 
même temps que partaient les aéroplanes Blériot montés par Leblanc 
et Aubrun.

Leblanc est arrivé premier en I h. 7 m. 31 s., avec une vitesse 
moyenne de 72 à l’heure, distançant de six minutes le premier pigeon 
qui a fait du 65 à l’heure. Aubrun, qui a fait du 57 à l’heure, se 
classe au milieu du lot de pigeons, dont la moitié a par conséquent 
fourni une vitesse moyenne moindre que 57 à l’heure.

Reste à faire la correction du vent. Il est difficile de faire une 
évaluation certaine ; toutefois, on peut remarquer que, dans les six 
étapes du Circuit de l’Est, la vitesse du premier aéroplane a varié 
entre 60 et 87 à l’heure, tantôt avec vent en arrière, tantôt avec vent 
debout; la vitesse propre a donc dû être de 75 à 80 à l’heure 
environ ; il faudrait par suite majorer légèrement les chiffres trouvés 
ci-dessus, ce qui nous amène à cette conclusion que les pigeons 
voyageurs font entre 60 et 75 à l’heure. Nous croyons qu’on peut 
considérer cette donnée comme exacte.

Résumons-nous. La vitesse des oiseaux est moins grande qu’on ne 
l’a supposé. Les oiseaux rapides ne font guère plus de 70 à 80 
à l'heure. La plupart font entre 30 et 60 à l'heure.
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TRAVAIL DÉPENSÉ PAR LES OISEAUX

Quel est le travail dépensé par les oiseaux pour voler ?
Voilà encore une question mal élucidée, et même mal posée.
D’abord, les diverses espèces d’oiseaux dépensent, par unité de 

poids, des quantités de travail très différentes, suivant leur taille.
Les oiseaux grands et petits sont, à peu de chose près, géométri­

quement semblables. Nous avons constaté ce fait général dans le 
1er chapitre, à propos de la loi des cubes, par la comparaison des 
surfaces et des poids (1). On peut le constater également par la com­
paraison des envergures et des poids. Sans doute il y a des variations 
notables, mais dans l'ensemble la similitude apparaît nettement du 
haut en bas de l’échelle.

Par suite, la loi des cubes est applicable ; d’où il résulte que le 
travail dépensé varie comme la racine carrée de la charge alaire, ou 
comme la racine carrée des dimensions linéaires, ou encore comme la 
racine sixième du poids.

Ainsi, entre un oiseau-mouche et un albatros, le rapport des poids 
est à peu près de I à 1.500; le rapport des quantités de travail 

nécessaires par unité de poids sera de 4 à y 1.500, ou de I à 3,4. Un 
albatros doit dépenser proportionnellement trois ou quatre fois plus 
de travail qu'un oiseau-mouche pour voler. Aussi voyons-nous que 
les gros oiseaux ne pratiquent pour ainsi dire jamais le vol ramé; ils 
ne font que du vol à voile, et lorsque le vent n’est pas favorable ils 
restent perchés. Le vol ramé est pour eux un effort violent qu’ils ne 
font pas sans absolue nécessité.

Le résultat physiologique de ce fait est que les oiseaux voiliers ont 
des muscles pectoraux beaucoup moins développés que les oiseaux 
rameurs ; chez le pigeon les pectoraux constituent-L du poids du 

corps, et seulement — chez la mouette.
1 10,5

(1) Voir page 480.

Travail dépensé par les
oiseaux



Les moyens de mesurer le travail dépensé par les oiseaux sont peu 
précis.

Le docteur Richet a essayé de. l’évaluer en considérant la quantité 
de nourriture prise parl’oiseau.

On peut aussi, comme pour les aéroplanes, considérer un oiseau 
descendant en planement, et évaluer sa vitesse et son angle de chute.

Marey a essayé, par la chronophotographie et la trajectoire du 
centre de gravité, de déterminer le travail dépensé et les forces 
mises en jeu. Les calculs ont été présentés par le capitaine Ch.-M. de 
Labouret, dans un appendice placé à la suite de l’ouvrage de Marey. 
L'oiseau expérimenté était un goéland de 623 grammes, photographié 
pendant l’essor et non en plein vol. Malheureusement, les résultats 
sont d’une invraisemblance telle, qu’ils amènent à douter du principe 
même de la méthode. L’oiseau déploierait à certains moment une 
force verticale cinq fois plus grande que son poids, tantôt sus tenta­
trice, tantôt descendante (1), et une force horizontale de même 
importance, tantôt propulsive, tantôt retardatrice ! Quant au travail 
produit par seconde, il aurait été de 7 kgm., 495, ce qui représente, 
par 100 kilogs de poids, 1.200 kgm. ou 16 chevaux-vapeur; à peu 
près le triple de ce que dépense un aéroplane Wright. Ce résultat 
est absurde, même pour le travail pendant l’essor: il montre que les 
méthodes de laboratoire les plus séduisantes en principe ne sont pas 
toujours d’une application facile.

On admet généralement que les oiseaux de la taille d’un pigeon 
dépensent environ de 0,6 à 1 cheval-vapeur par 4 00 kilogs de poids. 
A l’essor, l’oiseau dépense probablement 4 ou 5 fois plus de puissance. 
De même lorsqu’il monte; on voit souvent les oiseaux monter 
d’environ 2 mètres par seconde, ce qui représente 2 à 3 chevaux- 
vapeur par 100 kilogs de poids, en plus du travail ordinaire du 
vol.

Admettons le chiffre de 4 HP par 100 kilogs, dans le cas d’un 
pigeon de 500 grammes en plein vol.

Pour un aéroplane de 500 kilogs, mille fois plus lourd, la loi 
des cubes nous montre que le travail nécessaire par unité de poids,
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dans l’hypothèse de la similitude, est V4.000 ou 3,16 fois plus 

élevé. Il faudrait donc 3,1 6 HP par 4 00 kil., ou 15,8 HP pour l’appa­
reil de 500 kilogs. Or l’aéroplane Wright, avec deux passagers (près 
de 600 kilogs)‘et un moteur d’environ 30 HP, n’utilisait pas toute 
sa puissance, puisqu’il pouvait monter et évoluer. On voit que, eu 
égard à la loi des cubes, le vol de nos aéroplanes est comparable 
comme économie au vol des oiseaux ; s’il y a quelque chose à gagner, 
ce n’est pas énorme.

Beaucoup d’auteurs, en faisant la comparaison ci-dessus sans 
tenir compte de la loi des cubes, ont conclu un peu étourdiment que 
nos aéroplanes gaspillent déplorablement leur puissance, qu’ils sont 
très inférieurs aux oiseaux, et que l’aile battante est d’un rendement 
beaucoup meilleur que l’hélice. On voit que ces conclusions sont 
imprudentes.

L/ORTHOPTÈRE ET L'ORNITHOPTÈRE

L'orthoptère et l'ornithoptère, appareils mécaniques destinés à 
imiter le vol ramé des oiseaux, n’ont qu’un intérêt théorique, et nous 
ne les mentionnerons que pour mémoire, leur réalisation en grand 
ne paraissant pas prochaine.

L’orthoptère est basé sur l’ancienne croyance erronée que le 
battement d’ailes est orthogonal. Nous avons vu que le vol ortho­
gonal exigerait 6 à 7 fois plus de puissance que le vol oblique. Il n’a 
aucun intérêt pratique.

L’ornithoptère, terme plus général signifiant l’imitation du vol des 
oiseaux quel qu’en soit le mécanisme, est encore cherché à l’heure 
actuelle, pour les deux raisons suivantes :

Premièrement à cause de l’opinion erronée signalée ci-dessus, que 
les aéroplanes seraient beaucoup moins économiques que l’aile 
battante. Rien n’est moins certain ; si la nature emploie le mouve­
ment alternatif, c’est que le mouvement rotatif lui est interdit. Ce qui

L'orthoptère et
l'ornithoptère
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est certain c’est que la nature, avec l'aile battante, a dû s’arrêter au 
poids de 10 kilogs, tandis qu’avec l’aile fixe et la propulsion par 
hélice l’homme a pu faire voler un poids de plus de 700 
conclusion s’impose.

O C
Q
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Deuxièmement, les inventeurs croient que l'ornithoptère permettra 
l’essor sur place. Rappelons que l’essor sur place, exigeant beaucoup 
plus de travail que le vol propulsé, n’est accessible qu’aux petits 
oiseaux au prix d’un effort exceptionnel, et est totalement interdit aux 
grands oiseaux. Si donc l’ornithoptère était réalisé, rien n’autorise à 
croire que l’envol sur place lui serait possible ; il faudrait qu’il disposât 
d’un excédent de force supérieur à celui dont disposent les grands 
oiseaux. Comme eux, il devrait se donner une lancée pour pouvoir 
s’enlever. Dans ce cas, autant s’en tenir à l’aéroplane, qui paraît à 
tous égards être le chaînon supérieur logique de la chaîne des êtres 
volants.

On a essayé de faire la théorie du vol ramé, tant pour les oiseaux 
que pour les ornithoptères. Lesrésultats sont peu certains. Une grande 
difficulté de principe se présente : le mouvement des ailes n’est ni 
rectiligne ni uniforme ; il est en arc de cercle, de vitesse variable en 
chaque point et à chaque instant. On ne connaît rien de précis sur 
la résistance de l’air dans le cas d’un pareil mouvement, et tout 
calcul manque de base. L'application de la formule KSV2 serait une 
faute de logique.
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CHAPITRE VIII.

LE VOL A VOILE.

Explications diverses. — Théories fantaisistes. — Théories anti-mécaniques.
— Théories sérieuses: le vent ascendant; la théorie de Langley. — Les 
faits observés. — Les variations du vent. — Théorie du vent louvoyant.
— Explication des faits observés. — Calcul de la théorie des montagnes 
russes. — Calcul de la théorie du vent louvoyant.

On appelle vol à voile le vol sans battements d’ailes, pratiqué par 
certains oiseaux; manœuvre paradoxale, dont l’existence est cependant 
certaine.

Dans la présente étude nous rappellerons d’abord les nombreuses 
hypothèses ou théories proposées pour expliquer le vol à voile.

Nous montrerons que, dans le nombre, deux théories seulement 
méritent d’être prises au sérieux, et à ces deux, nous ajouterons une 
troisième, la théorie du vent louvoyant, basée sur les variations de 
la direction du vent.

Une étude détaillée des formes et attitudes de l'oiseau, voilier, 
nous permettra de choisir, entre ces trois explications, celle qui est 
conforme aux faits observés. C’est là le critérium qui, appliqué à la 
bonne théorie, permettra de la reconnaître. Aucune de celles pro­
posées jusqu’ici n’avait résisté à cette épreuve. Il se trouve que la 
théorie du vent louvoyant s’adapte d’une manière complète aux faits 
observés. Il est donc vraisemblable qu’elle constitue l’explication 
exacte et définitive du vol à voile.

Chapitre VIII. Le vol à
voile
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EXPLICATIONS DIVERSES.

Il existe plus de vingt explications diverses, tant l’imagination des 
chercheurs s’est mise à la torture pour comprendre un phénomène 
qui pourtant ne sort pas de la mécanique la plus élémentaire ; seule­
ment l’épure à tracer appartient à la géométrie dans l’espace, et non 
à la géométrie plane, à laquelle on a cherché vainement à la ramener.

Nous distinguerons : les théories fantaisistes, les théories anti- 
mécaniques et les théories sérieuses.

THÉORIES FANTAISISTES.

Ce sont les plus nombreuses.
Il y a d’abord la négation pure et simple. C'est la première idée 

qui vient à l’esprit.
Galien croyait à une tension psychique de l’oiseau. Bélon admet 

une répugnance de l’air à la légèreté de la plume. Aldrovande 
parle d’un mouvement tonique des ailes.

D’autres croient que l’oiseau se remplit les os et les tubes des ailes 
avec de l’air chaud, ou qu’il exerce une répulsion électrique sur l’air; 
n’a-t-on pas été jusqu’à invoquer la radioactivité qui rendrait l’oiseau 
réfractaire à la pesanteur!

Johnson (1) croit à des mouvements individuels des plumes, ou à 
des mouvements giratoires de la queue. Beaucoup penchent pour 
une trépidation imperceptible des ailes.

Pour Bell-Peltigrew (2), tout s’explique par une torsion des ailes 
en hélice.

Nous en passons, et qui ne sont pas meilleures.

(1) Congrès de Chicago, août 1893.

(2) La locomotion chez les animaux, 1874.

Explications diversesThéories fantaisistes
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THÉORIES ANTI-MÉGANIQUES.

Nous appellerons ainsi celles qui sont en contradiction avec les 
principes de la mécanique, et qui conduisent au mouvement per­
pétuel. Il est curieux de constater que des savants éminents, comme 
MM. Marey et Drzewiecki, pour ne citer que ceux-là, n’ont pas su se 
garder de pareille erreur.

Le vol à voile, comme tout mouvement quelconque, exige, pour 
se maintenir, un certain travail. Si ce travail ne provient pas de 
l’oiseau, il provient nécessairement de sources d’énergie extérieures, 
et si ces sources d’énergie n’existent pas, il faut qu’il y ait erreur de 
raisonnement.

Le poids. — I. Lancaster (1) et Gamuset (2) trouvent naturel que 
la force motrice soit le poids. Bell-Pettigrew, en termes peu précis, 
semble bien partager la même idée. Rappelons que si l’oiseau avance 
horizontalement, ou s’il revient au bout d'un certain temps à sa 
hauteur primitive, la pesanteur ne peut accomplir aucun travail 
moteur, puisque la projection du chemin parcouru sur la force est 
nulle.

Il n'y a travail moteur de la pesanteur que si l’oiseau descend, 
mais alors c’est le simple planement et non pas le vol à voile.

L’aspiration du vent. — Mentionnons la fameuse aspiration du 
vent, dont parle Mouillard, au dire de M. Bazin (3). Certaines 
surfaces favorables éprouveraient, au lieu d’une résistance, une aspi­
ration. M. Goupil a penché pour la même explication, sur la foi d’une 
expérience qu’il avait faite sur une surface arquée, en 1884 (4),

(1) American Naturalist, 1885-86.
(2) L’aviation et le vol des oiseaux, 1907.
(3) Comptes rendus de l’Ac. des sciences, 17 avril 1905.
(4) La locomotion aérienne, 1884. Nous avons mentionné cette expérience, 

page 108.

Théories anti-
mécaniques
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mais dont il a reconnu lui-même, récemment, le peu de certitude (1), 
le courant d’air ayant probablement été ascendant.

Cette explication conduirait au mouvement perpétuel ; si elle était 
vraie, la surface en question, une fois lancée en air calme, pourrait 
continuer indéfiniment son mouvement sans intervention d’aucune 
source d’énergie, ce qui est absurde.

Certains ont remplacé le mot aspiration du vent par contre- 
résistance ou résistance négative. Ce changement de nom ne fait pas 
disparaître l’impossibilité mécanique.

Les rafales artificielles. — Cette théorie a eu beaucoup de 
partisans, bien qu’elle soit aussi anti-mécanique que les deux précé­
dentes, et que M. R. Soreau en ait fait justice en termes très clairs, 
il y a treize ans (2).

Rappelons d’abord ce principe, si souvent méconnu: un vent 
horizontal de vitesse uniforme ne peut pas être une source d’énergie 
pour l’oiseau, puisque ce vent n’existe que relativement à la terre à 
laquelle l’oiseau n’est relié par rien; l’oiseau, libre dans l’air, est 
entraîné dans le mouvement général de l’atmosphère, et ce mouve­
ment, auquel il participe, ne peut exercer sur lui aucun effet.

Pour l’oiseau, le vent horizontal uniforme est équivalent à l’air 
calme, et seule la vue de la terre lui permet de faire une distinction 
entre ces deux cas.

Ainsi le vent horizontal et régulier ne peut, pas plus que l’air 
calme, fournir d’énergie à l’oiseau ; si donc l’oiseau n'en fournit pas 
lui-même, quelles que soient d’ailleurs l’habileté et l’ingéniosité de 
ses manœuvres, il ne pourra pas créer de l’énergie avec rien, et son 
mouvement ne pourra pas être durable.

Il n’en serait pas de même si le vent était variable, car dans ses 
variations de vitesse il y aurait une source d’énergie.

La théorie des rafales artificielles ou des rafales relatives.

(1) L’Aérophile, 15 décembre 1908.
(2) Le vol à voile et l’aviation, Revue scientifique, 30 mars 1895.
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imaginée par d’Esterno (!) en 1864, suppose que l'oiseau, par 
certaines manœuvres, sans dépense de travail, change de vitesse par 
rapport à l’air, et utilise ensuite ces variations de vitesse pour remonter 
plus haut que son point de départ.

D’Esterno, Davidson (2), Mouillard (3), Basté (4), Bretonnière (5), 
Marey (6), et bien d’autres, admettent que le vol en orbes, souvent 
pratiqué par les voiliers, a précisément pour but d’obtenir une vitesse 
plus grande en allant contre le vent, et plus petite en allant dans le 
sens du vent.

D’Esterno, Bretonnière, attribuent le même but aux zigzags qu’on 
remarque également dans le vol des voiliers ; Drzewiecki (7) suppose 
que l’oiseau fait une série de passades en ligne droite, se laissant 
descendre puis remontant par la vitesse acquise plus haut que son 
point de départ ; Basté parle de passades analogues sur place en vol 
stationnaire ; et tout cela en air calme ou par vent régulier.

Ni ces artifices, ni aucun de ceux qu’on pourrait encore imaginer, 
ne peuvent créer de l’énergie si aucune source n’en produit. Aussi 
n’y a-t-il pas lieu de s’attarder à discuter ces diverses hypothèses.

Mais nous avons hâte de quitter le mouvement perpétuel, et d’en 
venir aux théories sérieuses.

LES THÉORIES SÉRIEUSES.

Le vent ascendant. — On a cru quelque temps, et beaucoup de 
personnes croient encore que le vol à voile ne peut s’expliquer scien­
tifiquement que si le vent est ascendant. Nous trouvons déjà cette

(1) D’Esterno, le Vol des oiseaux, 1861.
(2) Davidson, Scientific american, 27 mars 1871.
(3) Mouillard, l’Empire de l’air, 1881.
(4) Basté, l'Aéronaute, sept., oct. et nov. 1887.
(5) Bretonnière, l'Aéronaute, 1889 et 1890 ; et Congrès de Chicago, 1893.
(6) Marey, le Vol des oiseaux, 1890.
(7) Drzewiecki, le Vol plané, 1891.

Théories sérieuses : le
vent ascendant ; la
théorie de Langley



idée chez de Louvrié en 1868 et chez Penaud en 1875, puis chez 
Lilienthal (1) en 1889. On a vite reconnu que, si cette hypothèse 
explique certains cas particuliers, elle ne saurait s’appliquer au 
phénomène général du vol à voile qui se produit sur d’immenses 
étendues ; il faudrait supposer que toute l’atmosphère monte pendant 
des journées entières, ce qui ne peut être pris au sérieux.

Déjà Mouillard en 1881, elMarey en 1890, ne mentionnent celle 
théorie que pour mémoire, en déclarant qu’il ne faut pas compter 
sur elle.

M. Soreau a très clairement résumé la question dans les termes 
suivants (2) :

« Maints observateurs ont vu de nombreux voiliers disséminés au 
même instant un peu partout dans le ciel. Les uns, désireux de rester 
à proximité de leur nid ou de leur proie, décrivaient des orbes 
au-dessus d’une région déterminée, tandis que d’autres se plaisaient 
à suivre une direction rectiligne, brisée de loin en loin par quelques 
crochets. Est-il possible d’admettre que les courants ascendants 
soient en assez grand nombre pour expliquer des manœuvres aussi 
variées? Une autre objection me paraît tout à fait concluante: on 
sait que les petites espèces ont, par unité de poids, une surface alaire 
plus forte que les grandes espèces ; dans l’hypothèse des courants 
ascendants, le vol à voile serait donc plus facile aux oiseaux les plus 
petits ; or, c’est le contraire qui a lieu. Assurément, il existe des 
vents ascendants, et l’oiseau, heureux de pouvoir se livrer à ses 
exercices sans dépenser d’énergie, se garde bien de les négliger; 
certaines observations donnent même à penser qu’il peut les découvrir 
aisément et s’y repose volontiers; mais si les courants ascendants 
facilitent le vol à voile, ils ne sauraient en fournir une explication 
générale ».

Il n’est pas douteux que les oiseaux recherchent volontiers les

(1) Lilienthal, der Vogelflug als Grundlage der Fliegekunst, 1889.
(2) Loc. cit.
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vents ascendants, qui se produisent au-dessus d’un pli de terrain, 
d’une falaise, ou d’un obstacle tel qu’un pont traversant une vallée. 
Beaucoup d'observations sont très nettes à cet égard. Citons la des­
cription bien connue de Langley au Congrès de Chicago en 4893 :

« Je traversais le grand aqueduc du Potomac par une rafale de 
novembre extrêmement forte. Aux deux tiers environ de l’aqueduc à 
partir de la rive gauche, juste au-dessus du parapet de droite et à 
une hauteur de 20 mètres au plus, planait un busard qui se plaisait à 
rester en cet endroit, comme s’il eût voulu se maintenir au-dessus de 
quelque objet. Cependant la tempête remontait le courant du ileuve, 
s'engouffrant avec violence dans cette tranchée où aucun obstacle ne 
venait la briser ».

L’obstacle qui venait la briser n’a rien de mystérieux ; c’est 
l’aqueduc lui-même qui occasionnait un remous ascendant.

Citons aussi les observations faites par M. Goupil (!) au-dessus de 
la digue du port de Granville, digue qui mesure 1.400 mètres de 
longueur et près de 50 mètres de hauteur. « Quand le vent, écrit-il, 
est perpendiculaire a la direction du barrage, on voit les goélands en 
foule prendre leurs ébats; j’en ai tenu en station pendant 40, GO, 
80 secondes au bout de ma jumelle. Si le vent a une autre direction, 
ils disparaissent et vont en un autre lieu chercher un vent 
ascendant ».

Les exemples analogues ne manquent pas.
Il faut rattacher à la théorie du vent ascendant le fait, souvent 

observé, des oiseaux voiliers qui suivent les navires en mer, lorsque 
ceux-ci marchent contre le vent. Paraissant suspendus en l’air, ils se 
maintiennent pendant des heures à peu près au même point par 
rapport au navire.

Voici une observation très précise de E. Lapointe (2) :

« L’auteur a, pendant près d’une heure, observé à une distance

(1) Bull, technol. des Anc. Elèves des Arts et Métiers, septembre 1908.
(2) E. Lapointe, Essai sur la navigation aérienne, Paris 1896.



5 I

ne dépassant jamais 3 mètres, une mouette suivre le navire sans faire 
aucun battement d’ailes, sans qu'à cette faible distance il pût cons- 
tater le moindre frémissement des plumes, des ailes ou de la queue ; 
il a remarqué simplement un léger balancement, du reste lent et 
irrégulier, de tout le corps de l’oiseau ; il y avait même des intervalles 
de plusieurs minutes pendant lesquelles ce balancement lui-même 
n’était pas perceptible... Il se maintenait ainsi sans que son niveau 
baissât, et cependant le vent était horizontal, la fumée qui s’échappait 
de la cheminée du navire montrait qu’il ne pouvait venir d’en bas ».

Il y a lieu de recourir à la théorie du vent ascendant, malgré 
l’affirmation de l’auteur. Il est clair que la carène du navire, ses 
bastingages, ses dunettes, ses diverses saillies, heurtées par le vent, 
créent des remous, des tourbillons, et que ces remous comportent des 
parties ascendantes que l’oiseau sait choisir; à un mètre de là, la 
fumée peut être horizontale, cela ne prouve rien. Le navire jouerait 
ici le même rôle que l’aqueduc du Potomac dont parle Langley.

Il est donc certain que la théorie du vent ascendant s’applique dans 
beaucoup de cas particuliers, et on aurait tort de la rejeter; mais ce 
ne sont que des cas particuliers, et les deux objections, si clairement 
exprimées dans le passage de M. Soreau cité plus haut, l’empêchent 
d’être la théorie générale du vol à voile.

Un regain d’actualité a été donné récemment à la théorie du vent 
ascendant par M. Marcel Deprez (4) qui a même cru l’avoir décou­
verte, et qui démontre qu’elle est indispensable à l’explication du 
phénomène. Nous indiquerons plus loin en quoi son raisonnement est 
en défaut; disons de suite qu’il n’a pas pensé que les diverses forces 
en jeu peuvent n’être pas dans un même plan, et que, outre les 
réactions sustentatrice et propulsive qu’il considère, il peut exister 
une troisième composante latérale qui change tout le problème.

L'énergie interne du vent. — C’est à Mouillard que revient 
l’honneur d’avoir, en 1881, aperçu la véritable source d’énergie

(1) Comptes rendus de l'Acad. des Sc., 13 avril 1908.
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utilisée dans le vol à voile, sans d’ailleurs se rendre compte de son 
importance capitale. Elle est dans les intermittences du vent.

« L’angle juste, dit-il (4), la force irrégulière du vent bien 
employée.. . toutes ces conditions réunies rendent le problème facile 
à comprendre. .. Une étude attentive du vol des oiseaux fait voir 
qu’il y a des bouffées irrégulières non seulement à la surface, mais 
même jusqu’aux confins de l’atmosphère visible ».

La théorie des montagnes russes. — Par quel mécanisme 
utiliser ces variations du vent ? Mouillard esquisse la théorie dite des 
montagnes russes. Il suppose que l’oiseau, allant contre le vent, se 
laisse descendre pendant l’accalmie pour acquérir de la vitesse ; puis 
quand vient le coup de vent, dont la vitesse s’ajoute à celle qu’il vient 
d’acquérir, il en profite pour remonter plus haut que son point de 
départ.

Pour mieux faire comprendre son idée, il imagine un cerceau qui 
descend une pente suivie d’une montée :

« Si nous supposons qu’on puisse, lorsque le cerceau est en train 
de remonter, déplacer le sol, de manière à ce qu’il aille en sens 
contraire du jouet, c’est-à-dire lui venir dessus, nous activerons 
encore l’ascension en lui communiquant une force supplémentaire, 
indépendante de son individu, dont la résultante sera encore une 
élévation ».

L'exactitude de cette idée a été vérifiée par Bazin, qui a réalisé 
matériellement l’expérience imaginée par Mouillard au moyen d’une 
bille roulant sur une piste en forme de montagnes russes. Cette expé­
rience est décrite dans le Vol des Oiseaux, de Marey, page 317.

Mais l’oiseau n’est pas un cerceau ou une bille, c’est un aéroplane 
porté par l’air, et il reste à démontrer que l’oiseau peut utiliser 
l’énergie interne du vent pour obtenir une sustentation continue.

M. René de Saussure a donné un calcul (2) tout à fait insuffisant,

(1) Loc. cit., p. 45.
(2) Reçue de l’Aéronautique, 1893.
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malgré sa grande complication, à cause de ses nombreuses hypo­
thèses injustifiées ; il suppose notamment que l’oiseau se laisse tomber 
verticalement et remonte verticalement, ce qui n’a aucun rapport avec 
la réalité,

L’essai de calcul de M. Le Clément de Saint-Marcq (1) n’est pas 
plus heureux, car il suppose a priori que l’oiseau fait un angle 
de 45° avec l’horizontale, et qu’il reçoit alternativement le vent 
debout et le vent arrière !

Nous indiquons ci-après un calcul un peu plus serré.

Expériences de Langley. — Le professeur Langley, secrétaire 
de l’Institut Smithson, à Washington, a apporté au Congrès de 
Chicago, en août 4 893, un fait capital qui a donné beaucoup de force 
à la théorie des montagnes russes. C’est la constatation scientifique 
de l’existence des variations de vitesse du vent. Non seulement la 
vitesse du vent varie constamment, mais les variations sont rapides et 
beaucoup plus importantes qu’on ne le supposait jusqu’alors.

Les graphiques obtenus par Langley à l’aide d’anémomètres précis 
montrent à chaque instant des variations brusques de 5 m., 6 m., 
8 m. par seconde ; parfois la vitesse s’annule tout à fait pendant une 
seconde, puis saute à 12 ou 15 m. L’amplitude des variations est 
d’autant plus grande que le vent moyen est plus fort, ce qui fait com­
prendre pourquoi le vol à voile n’a lieu que lorsqu'il y a du vent ; 
mais ce n’est pas l’importance du vent lui-même qui est en cause, 
c’est l’importance de ses variations. Quant à la durée des sautes de 
vent, elle est fort courte ; Langley indique 5 secondes environ.

M. Fines, directeur de l’Observatoire de Perpignan, a fait, avec 
M. G. Sorel, des experiences analogues à celles de Langley, mais 
avec des appareils plus précis (2). Les résultats confirment en tous 
points ceux de Langley.

(1) Commission perman. internat, d’aéronautique, session de Bruxelles, 
septembre 1907.

(2) G. Sorel, Revue scientifique, 11 mai 1895 ; voir aussi le Bulletin météoro­
logique des Pyrénées-Orientales, 1886 et 1888.
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Mentionnons encore les observations de A. Lancaster, Church et 
Hazen, Helmholtz, Angot, Houzeau, Lilienthal, Le Clément de Saint- 
Marcq.

L’existence des variations de vitesse du vent est donc un fait établi, 
et il en résulte une importante source d’énergie que Langley appelle 
l'Énergie interne du vent (The internai Work of Wind).

Aussi la théorie dite des montagnes russes ou de Langley a-t- 
elle été généralement acceptée, à défaut d’autre mieux adaptée aux 
faits observés.

Les variations du vent sont-elles périodiques? — On s’est 
demandé comment l’oiseau pouvait saisir au passage des choses aussi 
invisibles et aussi fugitives que les intermittences du vent.

« Il est nécessaire, écrit M. Soreau (4), que les pulsations se régu­
larisent pour que le voilier puisse les utiliser. L’utilisation de mou­
vements heurtés supposerait en effet chez l’oiseau un instinct prodi­
gieux, hors de proportion avec l’instinct des autres créatures ».

M. Soreau part de là pour supposer qu’à une certaine altitude, les 
variations du vent se régularisent et se font sous un rythme constant.

On est obligé de constater que rien, jusqu’ici, n’élaie sérieusement 
celle hypothèse, et que, pour en voir la trace sur les diagrammes, 
il faut beaucoup de bonne volonté. D’autre part, le vol à voile n’a 
pas seulement lieu aux grandes altitudes; il a souvent lieu très près 
de terre, à 30 mètres et moins, ainsi que près des flots de la mer, 
c’est-à-dire à une hauteur analogue à celle où l’on a pu placer des 
anémomètres, et où il est tout à fait certain que la régularité du 
rythme n’existe pas. Il est donc certain qu’elle n’est pas indispen­
sable, et que l’oiseau peut utiliser des variations irrégulières.

Nous montrerons plus loin, dans la théorie du vent louvoyant, 
que cette utilisation ne nécessite nullement un instinct extraordinaire;

(1) Navigation aérienne, Bulletin de la Société des Ing. civils, octobre 1902.
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elle ne nécessite même pas d’instinct du tout, car elle se fait automa­
tiquement.

Quant à la cause des intermittences du vent, c’est un problème 
qui n’est pas bien résolu, et que nous n’aborderons pas ici.

Insuffisance de la théorie des montagnes russes. — La théorie 
des montagnes russes a été acceptée, faute de mieux, par la plupart 
des auteurs, mais non sans réserves.

C’est qu’elle a un grave défaut: elle ne s’adapte nullement aux 
faits observés.

Marey déclare qu’elle « ne paraît pas expliquer complètement les 
manœuvres de l’oiseau voilier » et il trace un « plan d’expériences à 
faire pour éclairer le mécanisme du vol à voile ».

Bazin écrit (1) : « Il y a dans le vol des voiliers quelque chose 
d’incompréhensible en l’état actuel de nos connaissances méca­
niques ».

Jos. Martin (2), écrivait récemment: « Quant au vol plané (vol à 
voile), il est encore, selon moi, une sorte d’énigme, quoiqu'il soit 
expliqué par certains auteurs en mettant en jeu les variations d’inten­
sité du courant aérien ».

C’est justement cette insuffisance de la théorie qui a provoqué 
tant d’explications fantaisistes et abracadabrantes.

Il est bon de préciser en quoi la théorie de Langley est contredite 
par l’observation. Nous allons, pour cela, passer en revue les diverses 
particularités de structure et d’allure observées chez les oiseaux 
voiliers, particularités dont les théories proposées jusqu’ici n’ont 
guère tenu compte, dans l’impossibilité où elles étaient d’en donner 
une explication.

(1) L’Aérophile, 1er août 1908.
(2) L’Aéro-mécanique, Bruxelles, décembre 1908.



LES FAITS OBSERVÉS.

Nous dirons quelques mots des points suivants :
1° Structure des ailes; 2n Attitude des ailes; 3° Direction 

du vol ; 4° Masse ; 5° Tangage, balancement et vol en zig­
zags.

Structure des ailes. — Déjà, en 1784, Huber (4) remarquait 
que les oiseaux voiliers se distinguent des oiseaux rameurs par une 
conformation particulière. « L’aile voilière, écrit-il, est large, 
émoussée. On constate que les pennes voilières sont beaucoup plus 
molles que les pennes rameuses » .

Mouillard et tous les observateurs ont fait les mêmes constatations.
« Le vol h voile, dit Marey, n’est possible qu'à certaines espèces 

qui présentent une conformation particulière... L’aile rameuse se

FIG. 100. — Aile rameuse d’un faucon (Prechtl).

LLLUNSS
FIG. 101. — Aile voilière d’un aigle (Prechtl).

termine par une pointe formée d’un groupe de fortes rémiges 
(fig. 400). L’aile voilière au contraire a son extrémité arrondie et

(1) Observations sur le vol des oiseaux de proie, Genève, 178%.

Les faits observés
Fig. 100. Aile rameuse
d'un faucon (Prechtl)
Fig. 101. Aile voilière
d'un aigle (Prechtl)
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obtuse (fig. 104 et 402), elle est découpée et comme déchiquetée par 
suite de l’étroitesse et de l’écartement des rémiges du fouet.

« En examinant d’en bas le vol d’une corneille, on voit très bien 
ces intervalles entre les pennes qui s’écartent comme les doigts d’une
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Fie. 102. — Aile voilière d'une cigogne de 4 kilogrammes 
(d’après Lilienthal).

FIG. 103. — Rémige d’un voilier (Prechtl).

FIG. 104. — Rémige d’un rameur (Prechtl).

FIG. 105. — Relèvement des rémiges (vautour oricou) (Mouillard).

main ouverte. Cet aspect tient à la conformation des rémiges pri­
maires des oiseaux voiliers. Ces plumes sont rétrécies à leur pointe 
par des échancrures » (fig. 403). « On voit l’extrémité des premières 
rémiges se relever en forme de crochet » (fig. 105).

Fig. 102. Aile voilière
d'une cigogne de 4
kilogrammes (d'après
Lilienthal)

Fig. 103. Régime d'un
voilier (Preschtl)
Fig. 104. Régime d'un
rameur (Preschtl)

Fig. 105. Relèvement
des régimes (vautour
oricou) (Mouillard)
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La forme arrondie de l’aile voilière lient à ce que la plus longue 
rémige n’est jamais la première, comme chez les rameurs, mais au 
contraire la 2°, la 3e ou la 4e.

Les figures 100 à 105 montrent les formes en question.
En résumé: l’aile voilière est arrondie, obtuse, la première 

rémige est plus courte que les suivantes, les rémiges sont molles et 
flexibles, rétrécies à leur extrémité et recourbées vers le haut.

Tels sont les caractères de l'aile des voiliers ; les meilleurs voiliers, 
comme le vautour oricou, les présentent à un degré exlraordinaire- 
ment net et frappant; ils sont un peu plus atténués chez les oiseaux 
qui ne pratiquent pas exclusivement le vol à voile (mouette, corneille, 
crécerelles) et pour lesquels nous proposons le nom de semi- 
voiliers.

Ces particularités de conformation doivent avoir leur utilité dans 
le vol à voile ; mais on ne voit pas du tout à quoi elles serviraient 
dans la théorie de Langley, qui n’est qu’une succession de plane- 
ments montants et descendants ; d’après cette théorie il n’y aurait 
pas de différence essentielle entre le planement et le vol à la voile, et 
les bons planeurs seraient aussi les bons voiliers. Or il n’en est pas 
ainsi.

Attitude des ailes. — Bien mieux, planeurs et voiliers n’ont pas 
la même altitude des ailes.

« Quand les oiseaux de proie, écrit Marey, décrivent en l’air 
leurs orbes sans donner un seul coup d’aile, on observe toujours

Fie. 106. — Attitude d'un oiseau voilier (Mouillard).

chez eux la même attitude que Mouillard a fort bien représentée 
(fig. 4 06, 1 I 0 et 1 11). Les ailes sont largement déployées et portées

Fig. 106. Attitude d'un
oiseau voilier
(Mouillard)
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en avant. Au contraire, l’oiseau qui avance en ligne droite contre le 
vent ou qui, profitant de sa hauteur acquise, se laisse glisser rapide­
ment, serre plus ou moins les ailes (fig. 407 et 409). Du reste, à la

FIG. 108. — A, Courbure des ailes dans le vol A voile. 
B, Courbure des ailes dans le vol ramé (Marey).

B

FiG. 107. — Attitude d’un oiseau planeur (Mouillard).

Fig. 109. — Ombre du faucon pèlerin, rameur (Mouillard).

simple courbure que l’aile présente suivant sa longueur, il est facile 
de distinguer le vol à voile du vol ramé. Dans le premier, les extré­
mités des ailes sont relevées; dans le vol ramé, au contraire, les 
pointes des ailes sont constamment dirigées vers le bas (fig. 408).

Tous les auteurs, Audubon, Langley, Bazin, etc., ont également

Fig. 107. Attitude d'un
oiseau planeur
(Mouillard)

Fig. 108. A, Courbure
des ailes dans le vol à
voile. B, Courbure des
ailes dans le vol ramé
(Marey)

Fig. 109. Ombre du
faucon pèlerin, rameur
(Mouillard)
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remarqué que dans le vol à voile les ailes sont largement étalées en 
croix, pointant plutôt en avant (fig. 110 et 41 I).

Mouillard a évalué l’angle obtus formé par les ailes en avant. 
« Le percnoptère a les ailes parfaitement rectilignes, dit-il; le

FIG. 110. — Ombre de la cigogne, voilier (Mouillard).

gypoierax calhartoïde commence à faire passer ses pointes légèrement 
en avant; le gyps fulvus les avance tellement, que, si on prend la 
mesure de l’angle en avant qu’il produit, on trouve qu’il est de 
465 degrés (fig. 441). L'otogyps oricou va plus loin: pour faire un

Fig. 111. — Ombre du vautour fauve, voilier (Mouillard).

croquis satisfaisant de sa tournure au vol, il faut arriver jusqu’à 
1 40 degrés ».

Les figures 440 et 444 ci-dessus, empruntées à Mouillard, mon­
trent cette attitude caractéristique, bien différente de l’attitude des 
rameurs et des planeurs (fig. 409).

La théorie de Langley est encore muette sur ce point.

Fig. 110. Ombre de la
cigogne, voilier
(Mouillard)

Fig. 111. Ombre du
vautour fauve, voilier
(Mouillard)
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Direction du vol. — Si l’oiseau utilisait les variations de vitesse 
du vent, la direction de celte vitesse restant fixe, il ne pourrait voler 
à voile que parallèlement au vent ou en orbes. Or le vol à voile a 
lieu dans toutes les directions à la fois. « L'aigle, dit Bazin (4), évolue 
librement dans toutes les directions. Les voiliers croisent leur vol 
dans tous les sens. » Mouillard, Soreau, Drzewiecki ont fait des 
descriptions analogues.

Masse. —- Les espèces les plus lourdes sont aussi les meilleures 
voilières. « Dès qu’un oiseau devient gros, dit Mouillard, il devient 
voilier ».

Tels sont les pélicans, les vautours, qui pèsent de .6 à 10 kilo­
grammes. On peut dire qu’à partir de deux ou trois kilogs les oiseaux

FIG. 112. — Ailes voilières (cigogne, milan) et ailes rameuses (pigeon, 
chauve-souris, hirondelle, mouette en vol ramé) (Lilienthal).

ne peuvent plus que difficilement soutenir le vol ramé, et force leur 
est de recourir à l’artifice du vol à voile.

On a essayé d’expliquer cette influence du poids, ou de la masse, 
en disant qu’elle empêche l’oiseau d’être trop facilement entraîné par

(1) Aérophile, 15 août 1908.

Fig. 112. Ailes voilières
(cigogne, milan et ailes
rameuses (pigeon,
chauve-souris,
hirondelle, mouette en
vol ramé) (Lilienthal)
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les rafal.es du vent. Il est très exact que l’inertie de l’oiseau joue là 
un rôle utile, mais examinons les choses de plus près.

L’inertie aurait, en somme, pour effet de vaincre les résistances 
de pénétration dans le sens horizontal (1).

On voit que la qualité qu’on attribue à la masse n’est autre que 
celle de rendre l’oiseau « bon projectile ». On sait que le travail de 
sustentation est d’autant plus faible que la vitesse est plus grande. 
Le voilier a donc intérêt à voler vite, tout comme le planeur, d’ail­
leurs ; et la masse interviendrait, en définitive, pour permettre à 
l’oiseau bon projectile une vitesse relative considérable, en dépit des 
résistances de pénétration.

Le voilier a encore une autre raison de voler vite : plus sa vitesse 
de régime est grande, plus la force vive rendue disponible par les 
variations de vitesse du vent est grande. V étant la vitesse de régime 
de l’oiseau, et W la variation du vent, l’accroissement de force vive 
disponible est proportionnel à :

(V + W)2 - VA = 2VW + W2

elle augmente donc avec V.
On doit donc s’attendre à voir les voiliers lourds se distinguer par 

une grande vitesse.
Or, c’est le contraire qui a lieu ! Les voiliers vont moins vite que 

les rameurs. Mouillard l’a nettement remarqué: « Les pélicans, 
dit-il, se meuvent avec une lenteur curieuse. » En parlant d’un vol 
de voiliers voyageurs, qui dans l’espèce étaient des cigognes ,il écrit : 
« On voyait avancer lentement cette masse.. .ces oiseaux avançaient 
lentement. »

Les meilleurs voiliers ne sont pas les plus rapides, mais, au 
contraire, les plus lents ; Mouillard les classe en deux catégories:

(1) Il ne saurait être question de la faire intervenir dans les déplacements en 
hauteur que suppose la théorie de Langley, car les variations de hauteur qui 
résultent des variations de vitesse sont indépendantes du poids et de la masse ; 
elles sont régies par la loi v = VZgh.
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« les planeurs rapides, hirondelle, martinet, milan, naucler; et les 
planeurs lents à ailes larges : le type de ce genre est le vautour. »

Tous les observateurs ont été frappés par la lenteur du vol à voile, 
qui lui donne quelque chose de majestueux. Bazin (1) a vu un grand 
vautour raser « d’un vol égal et lent » les terrasses du Caire.

« Ce qui est tout à fait remarquable, dit Marey en parlant du 
goéland, c’est l'extrême lenteur de sa progression contre le vent. »

Voici à ce propos une observation du plus haut intérêt, parce 
qu’elle a permis de comparer à un même moment la vitesse d’un 
voilier à celle d’un rameur. Elle est de M. Fernand Scrive, président 
du Nord-Aviation. Dans une lettre qu’il nous a adressée le 3 février 
1909, il rapporte avoir vu ce jour-là, par une violente tempête 
d’Ouest, deux mouettes passant sur Lille ; elles essayaient vaine­
ment, en vol à voile, de remonter le vent, mais la tourmente les 
dominait et les faisait dériver vers l'Est, malgré elles : ce Au même 
instant, écrit-il, tournoyait une bande de pigeons aux ailes solides, au 
battement tenace et répété, se dirigeant vers l’Ouest aussi et rentrant 
au pigeonnier. Le planeur pigeon rentrait chez lui ; le voilier mouette 
était entraîné à 1 00 kilomètres de la côte ! ».

Que devient dans tout cela l’influence de la masse?
Bien mieux, le voilier ne cherche même pas à prendre une position 

favorable à la vitesse, comme dans le planement rapide. Au lieu de 
porter ses ailes en arrière du centre de gravité, et de leur donner des 
lignes fuyantes, il étale largement ses ailes en avant et il écarte les 
rémiges, comme s’il faisait exprès d’augmenter la résistance à la 
pénétration. Cette position spéciale, nuisible à la vitesse, doit donc 
être une condition nécessaire par ailleurs au vol à voile.

Nous montrerons plus loin que ce qui intervient en réalité, ce 
n’est ni la masse, ni l’inertie, ni le poids, mais la flexibilité propre 
aux grandes ailes.

Tangage, balancement latéral, louvoiement. — Non seule-

(1) Aérophile, 15 août 1908.
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ment le mouvement de tangage accompagné de changements de 
hauteur, qui est la clef de la théorie de Langley, n’a presque jamais 
été constaté, mais des observateurs prévenus, qui ont porté leur 
attention sur ce point, ont remarqué son absence complète.

Le mouvement qu’on observe est tout autre ; c’est un balancement 
latéral de l’oiseau, accompagné de zigzags ou crochets, formant une 
sorte de louvoiement.

Citons Bazin (1) : « Cette théorie (de Langley) explique presque 
toutes les manœuvres connues des voiliers; nous disons presque, 
parce qu’il en est une, au moins, qui lui échappe et nous paraît 
défier toute explication mécanique. Placé sur une falaise, nous 
observons des goélands planant à peu près à notre hauteur. A un 
moment donné, tous s’orientent le bec au vent et filent... jusqu’à 
perte de vue sans monterni descendre et sans autres mouvements 
que de légers balancements latéraux ».

L’observation suivante de Bazin (2) est d’une précision inatta­
quable : « Du haut de la Grande Mosquée du Caire, nous vîmes avec 
Mouillard, au-dessous de nous, un grand vautour, les ailes étendues, 
immobiles, rigides, traverser tout un quatier de la ville, rasant d’un 
vol égal et lent les terrasses des maisons. Son ombre portée per­
mettait d’apprécier sa hauteur. Donc, pas d’erreur possible, son vol 
était bien horizontal. Toutes ces terrasses étaient sensiblement de 
niveau ».

Voici encore une observation très nette de Jos. Martin (3) : « J’ai 
observé minutieusement au moyen d’une forte longue-vue le vol de 
quelques grues qui luttaient à 30 m. seulement de hauteur contre un 
vent très violent du S.-O. ; or, pendant plus d’un quart d’heure que 
je les ai ainsi observées de près (ce qui était facile car elles ne pro­
gressaient que très lentement), je n’ai constaté aucun battement

. (1) Comptes rendus de l'Ac. des Sciences, 17 avril 1905, et Revue scientifique, 
juin 1905.

(2) Aérophile, 15 août 1908.

(3) L'Aéro-mécanique, Bruxelles, décembre 1908.
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d’ailes ; je n’ai pas non plus constaté ces montées et ces descentes 
au moyen desquelles on explique la progression des oiseaux planeurs 
contre le vent; j’ai seulement remarqué des variations assez pro­
noncées dans l’orientation de leur marche, elles louvoyaient vérita­
blement; j’ai aussi observé un certain balancement de l’oiseau 
entier ».

Ce balancement latéral, tous les auteurs l’ont observé, et il est 
vraiment curieux que l’on n’ait pas eu l’idée d’y chercher la clef de 
l’énigme, et qu’on l’ait toujours considéré comme accessoire. Cela 
tient, sans aucun doute, à la sensation de bercement indolent et passif 
qu’il donne, et qui exclut toute idée de volonté en même temps que 
toute idée d’utilisation. On n’y a vu que des mouvements d’équilibre. 
Choisissons parmi les observations les plus caractéristiques :

Langley commence ainsi son célèbre mémoire au Congrès de 
Chicago : « On a remarqué, il y a longtemps déjà, que certaines 
espèces d’oiseaux peuvent planer presque indéfiniment dans l’air, 
c’est-à-dire s’y maintenir sans battement d’ailes et sans autre mou­
vement qu’un léger balancement du corps »,

Et plus loin, en parlant du busard : « Un très léger balancement 
le faisait progresser contre le vent aussi bien que latéralement ; 
il semblait s’abandonner nonchalamment au bercement de vagues 
invisibles ».

« On est stupéfait, dit Bazin (1), de l’aisance avec laquelle ils 
(les martinets) avancent contre le vent, presque sans coups d’aile, 
car il ne faut pas prendre pour des battements leurs rapides balan­
cements latéraux qui ne sont que des mouvements d’équilibre. ».

« Le goéland, dit Marey, ne donne pas un seul coup d’aile, seu­
lement il présente un léger balancement, comme celui d’un 
acrobate marchant sur la corde raide ».

« On les voit arriver de tous côtés, dit Drzewiecki (2), les ailes

(1) Aérophile, 15 août 1908.

(2) Drzewiecki, le Vol plané, 1891

16
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déployées, sans un battement, se balançant régulièrement, en un 
rythme constant et majestueux, avec une facilité et une désinvolture 
qui font paraître au spectateur ces manœuvres toutes naturelles et 
exécutées sans le moindre effort ».

On verra plus loin que notre nouvelle théorie du vent louvoyant 
se sert du balancement de l’oiseau ; mais nous reconnaissons que ce 
n’est pas l’observation qui nous a mis sur la voie : c’est un raisonne­
ment théorique qui nous a fait prévoir ce balancement, alors que 
nous ignorions encore qu’il avait été observé, et il n’a été pour 
nous qu’une vérification de l'exactitude de notre hypothèse. Non 
seulement, en imaginant la théorie du vent louvoyant, nous 
n’avions, personnellement, jamais vu pratiquer le vol à voile, et nous 
ignorions les particularités dont il s’accompagne, mais à l’heure qu’il 
est, nous ne l’avons pas vu davantage, ne le connaissant que par les 
récits d’observation.

Donnons enfin quelques observations relatives au vol en zigzags ou 
en crochets. Ce phénomène est si net, que Bretonnière (!) en a fait 
la base d’une théorie qui se rattache à la théorie antimécanique des 
rafales artificielles.

Soreau le décrit ainsi (2) ; « D’autres se plaisaient à suivre une 
direction rectiligne, brisée de loin en loin par quelques crochets 
destinés à corriger la déviation du vent ».

Nous trouvons encore dans Soreau le passage suivant (3) : 
« Quand il (l’oiseau) voyage, par exemple lors des grandes migra­
tions, il suit de longues trajectoires rectilignes, brisées par des 
crochets qui corrigent la déviation sur la direction générale qu’il veut 
suivre ».

Dans le passage cité plus haut de Jos. Martin, rappelons la phrase : 
« J’ai seulement remarqué des variations assez prononcées dans 
l’orientation de leur marche, elles louvoyaient véritablement ».

(1) Mémoire au Congrès de Chicago, 1893.
(2) Le vol à voile et l’aviation. Revue scientifique, 30 mars 1895.
(3) Bull, de la Société des Ingénieurs civils de France, octobre 1902.
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M. Gommès a vu, dans les Pyrénées, des vautours subir des 
déplacements latéraux qu’il évaluait à 200 mètres, d’une durée de 
1 5 secondes environ.

Il faut remarquer que l’oiseau, dans ses crochets, ne change pas 
la direction de l’axe de son corps ; il est seulement ballotté tout d’une 
pièce, de droite et de gauche.

Conclusion. — Résumons brièvement les faits observés. L’aile 
voilière a une conformation spéciale ; son extrémité est arrondie, les 
rémiges sont étroites, écartées et recourbées par le haut; les ailes 
sont portées en avant: le vol est lent, sans tangage ni variations de 
hauteur, mais accompagné d’un balancement et d’un louvoiement. 
Ces caractères ont nécessairement leur raison d’être ; or, la théorie 
de Langley non seulement n’en explique aucun, mais est contredite 
formellement par plusieurs d’entre eux.

La théorie de Langley est donc à rejeter complètement, inférieure 
en cela à la théorie du vent ascendant qui, elle, est parfois applicable.

Toujours est-il qu’il faut trouver autre chose.
Avant d’aborder la théorie du vent louvoyant, basée sur les 

variations de direction du vent, il faut que nous précisions un peu. 
la notion de variation du vent, dont on se fait souvent une idée 
incomplète.

LES VARIATIONS DU VENT.

La théorie de Langley ne s’appuie que sur les variations longitu­
dinales de la vitesse du vent, variations parallèles au vent lui-même, 
et qui ne changent que la grandeur de sa vitesse, sans changer sa 
direction.

Or, ces variations ne sont pas les seules. Le vent varie aussi en 
direction, tant dans le sens horizontal que dans le sens vertical.

Variations de hauteur. — Le vent n’est pas constamment 
horizontal, il y a des rafales montantes et d'autres plongeantes. Sans

les variations du vent
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faire une élude méthodique de la question, Lilienthal, en 1889 (1), 
a été amené, par ses recherches sur la direction de la réaction de 
l’air sur les surfaces arquées, à vérifier si le vent qu’il utilisait était 
bien horizontal ; il a construit une sorte de girouette verticale enre­
gistreuse, et a obtenu les premiers diagrammes de la hauteur du 
vent. On y remarque (fig. 113)une continuelle variation de hauteur, 
et on y constate également qu’à l’emplacement de l'appareil le vent 
moyen était ascendant d’environ 3 degrés.

Le commandant Le Clément de Saint-Marcq a également étudié la 
question dans un remarquable mémoire communiqué à la session de
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Fie. 113. — Diagramme des variations du vent en hauteur pendant une minute (Lilienthal).

la Commission permanente internationale d'aéronautique, tenue à 
Bruxelles en septembre 1907, et intitulé : « Recherches sur les 

’ changements périodiques de vitesse et de direction dans les masses 
d’air en mouvement ».

Etudiant le panache de fumée des cheminées d’usine, il a observé 
que la tangente au panache, au point de sortie de la cheminée, 
indique la direction instantanée du vent. Or, cette tangente subit 
des oscillations dans le sens vertical : tantôt le vent monte et tantôt 
il descend. La durée des périodes serait de 12 à 15 secondes; la 
valeur maximum de la composante de la vitesse dans le sens vertical 
a paru être au plus de 3 m. par seconde.

L’auteur remarque que, comme l’air n’est pas comprimé dans le 
bas par des rafales descendantes, il faut qu’il y ait des répartitions 
latérales, nécessitant des variations de direction horizontale.

(1) Loc. cit.

Fig. 113. Diagramme
des variations du vent
en hauteur pendant
une minute (Lilienthal)
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Variation de direction horizontale. — Tout le monde a 
remarqué qu’il y a fréquemment des sautes de vent, que les girouettes 
oscillent sans trêve, que les flocons de neige sont chassés dans des 
directions variables.

Chose curieuse, ce n’est pas avant 1907 que nous trouvons une 
étude précise sur cette question. Le Clément de Saint-Marcq, dans le 
mémoire précité, expose qu’il a observé méthodiquement les fumées 
des cheminées, l’agitation des branchages et l’oscillation des 
girouettes. Si on se place exactement sous le vent d’une cheminée 
d’usine, on voit la fumée s’échapper tantôt vers la droite, tantôt vers 
la gauche. L'observateur n’a pas pu évaluer la grandeur de la compo­
sante latérale de la vitesse. L’observation des balancements des 
branchages lui a révélé parfois la transmission latérale d’ondulations 
ayant un caractère périodique. Quant aux girouettes, il les a vues 
subir des oscillations de 40 à 50 degrés d’amplitude, séparées par 
des temps égaux voisins de 1 minute environ.

La variation générale du vent.— Nous conclurons, comme 
Le Clément de Saint-Marcq, que la variation de vitesse du vent peut

o

FIG. 114.
Effet de la variation du vent W. 

V est le vent moyen.

être, à tout moment, représentée par 
un vecteur W (fig. 1 14), dont l’orien­
tation n’est pas la même que celle du 
vent moyen, et évolue au contraire 
dans les trois dimensions de l’espace. 
Le vent moyen étant représenté par le 

vecteur V, les vecteurs V et W se composent géométriquement pour

Fig. 115. — Les trois composantes 
de la variation du vent.

W avec ses trois composantes : la

donner le vecteur V, vitesse 
instantanée du vent.

Cette vitesse instantanée, 
perpétuellement variable, 
ne reste ni égale ni parallèle 
à V.

La figure I i5 représente 
composante longitudinale (celle

Fig. 114. Effet de la
variation du vent W. V
est le vent moyen

Fig. 115. Les trois
composantes de la
variation du vent
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de Langley) qui modifie la vitesse du vent; la composante verticale 
qui modifie sa hauteur, et la composante latérale qui modifie sa 
direction.

Quelle est la grandeur relative des trois composantes de W? La 
question n’a pas été étudiée. Peut-être sont-elles égales comme 
amplitude moyenne. Peut-être aussi la présence de la terre dimi­
nue-t-elle l’amplitude de la variation verticale.

D’autre part, ces variations sont-elles périodiques? Ou bien n'y 
a-t-il qu’une agitation irrégulière sans caractère bien net?

En l’absence d’expériences précises établissant la périodicité, 
nous ne sommes pas en droit de compter sur elle, et nous devons 
nous ranger à la dernière hypothèse, celle d’une agitation sans loi 
définie.

Variation perçue par l’oiseau. — On sait que, pour un 
mobile libre dans l’air, la vitesse moyenne du vent absolu ne se fait 
pas sentir, et que le vent horizontal et régulier est pour lui identique 
à l’air calme, abstraction faite de la terre qu’il voit fuir.

Mais il ressent les variations du vent. Or, ces variations ont lieu 
en tous sens, elles ne restent pas parallèles au vent; la direction du 
vent moyen ne se manifeste donc à lui par rien de tangible. Il ne 
perçoit qu’une agitation irrégulière en tous sens, sans orientation 
dominante.

Aussi, dans une théorie rationnelle du vol à voile, la direction du 
vent moyen n’aura pas plus à intervenir que la vitesse absolue du 
vent moyen, et il est superflu de chercher à distinguer le vol contre 
le vent, avec le vent, ou oblique au vent.

Ceci posé, considérons l’oiseau voilier qui vole avec une certaine 
vitesse moyenne relative, qui est sa vitesse de régime.

Cette vitesse relative est constamment modifiée en grandeur et en 
direction par sa composition géométrique avec le vecteur W variation 
du vent; elle varie : 4° en grandeur; 20 en hauteur; 3° en 
direction.

Nous pouvons encore, comme nous l’avons fait tout à l’heure à
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propos de la vitesse moyenne du vent, décomposer le vecteur W en 
trois composantes, mais cette décomposition ne sera pas la même que 
tout à l’heure, car elle se rapporte maintenant à la direction du 
mouvement propre de l'oiseau, et non à la direction du vent absolu 
qui ne nous intéresse plus.

Les trois manières d'utiliser les variations du vent. — Sur 
chacune des trois composantes de la variation du vent, on peut baser 
une théorie rationnelle du vol à voile.

La composante longitudinale, qui fait varier la grandeur de la 
vitesse relative de l’oiseau, est celle que Langley a envisagée. Nous 
avons montré les points faibles de sa théorie ; aussi pensons-nous que 
l’oiseau n’utilise pas cette composante. Il la subit, mais il ne s’en 
sert pas. Tout au plus aurait-elle pour résultat, lorsqu’elle présente 
des variations très brusques, de faire un peu monter et descendre 
l’oiseau, malgré lui.

La composante verticale, qui fait varier la vitesse relative en 
hauteur, pourrait servir aussi. C’est même, croyons-nous, la pre­
mière qu’on ait envisagée. En 1869, Moy, devant la Société aéronau­
tique de la Grande-Bretagne, expliquait le vol des albatros au-dessus 
des vagues par l’utilisation du vent alternativement montant et 
descendant le long des sinuosités des vagues.

En 1907, Le Clément de Saint-Marcq (4) a développé la même 
idée, dans un essai de calcul assez rudimentaire.

Plusieurs des objections que nous avons faites à la théorie de 
Langley s’appliquent également à la théorie de la composante verti­
cale ; aussi pensons-nous que l’oiseau la subit comme la première, 
mais sans l’utiliser.

Remarquons que ces deux théories aboutissent à un cycle à deux 
temps; premier temps : l’oiseau descend en gagnant de la vitesse; 
2e temps : l’oiseau s’élève en perdant de la vitesse.

(11 Loc. cit.
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Il nous reste à envisager la troisième composante, la composante 
latérale, qui fait varier la direction du vent relatif que reçoit l’oiseau. 
Elle va servir de base à notre théorie du vent louvoyant (4).

THÉORIE DU VENT LOUVOYANT.

La composante latérale de la variation du vent a pour effet de 
dévier alternativement à droite et à gauche la direction du vent relatif 
que reçoit l’oiseau. Soient V la vitesse de régime de l’oiseau, W. la 
variation latérale ; le vent relatif que reçoit l’oiseau est BO (fig. 11 6).

L’instant d’après, la variation du vent a changé de sens et est 
devenue W2, qui est égale et de sens contraire à WI, puisque par

V //V.

FiG. 116. — Déviation du 
vent relatif que reçoit 
l'oiseau.

hypothèse OA est la direction moyenne. A 
ce moment, le vent relatifque reçoit l’oiseau 
est CO.

L’oiseau reçoit donc un vent relatif 
oblique. Il est dans la situation d’un navire 
qui marche au plus près du vent. De même 
qu’un navire peut avancer contre le vent en 
louvoyant, de même on conçoit qué l’oiseau 
pourra avancer contre le vent relatif moyen, 
avec cette différence qu’il n'aura même pas 
besoin de louvoyer, puisque c'est le vent 
lui-même qui louvoie et arrive tantôt par 

la droite, tantôt par la gauche.
Si même on savait construire des navires aussi habiles que l’oiseau 

à profiter de ce louvoiement du vent, on pourrait espérer les faire 
avancer contre le vent sans louvoyer.

L’oiseau n'aura qu’à placer ses ailes convenablement, à chaque 
saute de vent. Nous allons tracer l’épure ; mais, comme elle est un

(1) M. A. Bazin (Théorie et imitation du vol à voile, Revue scientifique, 
AI et 21 juin 1905), avait, dans un esprit analogue, imaginé des couches d’air de 
vitesses différentes, traversées transversalement par l’oiseau.

Théorie du vent
louvoyant

Fig. 116. Déviation du
vent relatif que reçoit
l'oiseau
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FIG. 117. — Marche du 
navire au plus près du 
vent.

peu compliquée, nous croyons bien faire en traitant d’abord un cas 
simple, plus facile à comprendre ; nous ferons pour un moment abs­
traction de la sustentation, pour ne considérer que la propulsion 
seule.

On sait comment un navire peut avancer au plus près du vent 
fig. 117).

Le bateau placé en 0 se dirige suivant OA, et reçoit le vent 
oblique DO. Il oriente sa voilure dans l'angle AOD. La réaction R de 

l'air, perpendiculaire à la voilure, possède 
une composante OA dirigée dans le sens du 
mouvement, et qui est seule utile; et une 
autre composante 0B perpendiculaire au 
mouvement, et qui n’est d’aucune utilité; 
cette composante latérale OB est détruite 
par la résistance opposée par l’eau à tout 
déplacement latéral de la quille. Il ne reste 
donc que la composante OA, qui pousse 
le bateau en avant.

Essayons d’appliquer un raisonnement 
analogue à l’oiseau.

Supposons (fig. 118) un oiseau en 0, se 
dirigeant suivant OE. Sous l’influence de la 
variation latérale W, du vent, le vent relatif 

prend la direction Di 0, venant par exemple de gauche. Si l’oiseau 
oriente ses ailes de la même manière que le bateau sa voile, c’est-à- 
dire dans l’angle EODi, il reçoit une réaction OR. La composante 
OA. sert à la propulsion ; mais par quoi sera détruite la composante 
latérale gênante OB,? Par rien, et cependant elle restera sans effet 
notable, grâce à son fréquent changement de sens. Pendant quelques 
secondes elle entraînera l’oiseau ; combattue par son inertie (1), elle 
le fera dériver progressivement à droite. Mais l’instant d’après, la

(1) On pourrait être tenté de voir, dans cette obligation de résister aux oscil­
lations latérales par l’inertie du corps, un avantage à l’actif des grandes masses. 
Mais ici encore il faut être très réservé. La composante latérale n’est pas, en effet.

Fig. 117. Marche du
navire au plus près du
vent
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variation du vent aura changé de sens, et sera devenu W2 (fig. 14 9); 
la nouvelle épure est symétrique de la précédente; le vent relatif 
DO viendra de droite, et la réaction OR, aura changé de côté. La

' 3
0

O

Fig. 118. — Propulsion de 
l’oiseau par le vent rela­
tif oblique.

2
O

m XD 
- A /S

Fig. 119. — Meme figure 
que ci-contre lorsque la 
variation du vent a 
changé de côté.

composante OA2 continue à propulser l’oiseau. La composante laté­
rale 0B, repousse vers la gauche l’oiseau qui commençait à dériver à 
droite, et ainsi de suite.

En définitive, sous l’influence d’une des composantes, dite compo- 
sante de propulsion, l’oiseau est constamment poussé en avant; 
l’autre composante, dite composante de dérive, le fait dériver à 
droite et à gauche, elle le fait osciller comme un pendule ou comme 
une balle renvoyée par deux raquettes, de sorte qu’il décrit une 
trajectoire horizontale en crochets.

une simple résistance de pénétration, qui diminue d’importance quand la masse

Fig. 120. — Schéma de 
l’aéroplane théorique.

voiliers sont les voiliers

augmente; c’est une composante nécessaire de la 
réaction de l'air, à peu près au même titre que la 
composante retardatrice f= OF dans l’aéroplane 
théorique (fig. 120).

Or on sait que la composante /est proportionnelle 
au poids P:

/= P tg i.

Elle ne diminue donc pas d’importance quand la 
masse augmente ; elle ne diminuerait que si l’on 
diminuait l’angle d’attaque, c’est-à-dire si on 
augmentait la vitesse. Or on a vu que les meilleurs 

lents.

Fig. 118. Propulsion de
l'oiseau par le vent
relatif oblique

Fig. 119. Même figure
que ci-contre lorsque
la variation du vent à
changé de côté

Fig. 120. Schéma de
l'aéroplane théorique
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Nous voyons déjà apparaître les deux mouvements caractéristiques 
du vol à voile : le balancement nécessité par les changements d’orien­
tation des ailes, et les zigzags ou crochets.

On pourrait en rester là, et admettre, comme on l’a généralement 
fait jusqu’ici, qu’il suffit d’expliquer la propulsion de l'oiseau, en lui 
laissant le soin de transformer ensuite l’accroissement de vitesse en 
accroissement de hauteur, par un cycle à deux temps.

Mais ce n’est pas ainsi que les choses se passent; nous allons 
montrer que l’oiseau obtient la sustentation d’une manière directe et

X YR,G
8,

FIG. 121. — Épure de la théorie du vent louvoyant.
Propulsion et sustentation simultanées par le vent relatif oblique.

permanente, comme la propulsion et en même temps que la propul­
sion ; de sorte que son cycle n’a qu’un temps, propulsif et sustentateur 
à la fois (1).

L’épure appartient à la géométrie à trois dimensions (fig. 42i).

(1) Bien entendu, à chaque changement de sens de la variation du vent, il y a 
un point mort, comme dans une machine à vapeur à chaque extrémité de la 
course du piston.

Fig. 121. Epure de la
théorie du vent
louvoyant. Propulsion
et sustentation
simultanées par le vent
relatif oblique



Pour la comprendre facilement, il faut la rapprocher de la 
figure 418.

L’oiseau se dirige toujours suivant OE et reçoit le vent relatif 
oblique D.O.

Nous allons chercher à déterminer l’orientation du plan des ailes 
de manière que la réaction OR de l’air soit à la fois propulsive et 
sustentatrice.

Soit / l’angle que fait la réaction de l’air avec la normale au vent 
relatif. Le plan alaire sera tangent à un cône d’angle i ayant pour 
axe D,0. La réaction OR, de l’air sera sur le cône MON d’angle

Nous supposons (c’est une condition nécessaire du problème) que 
l’angle a du vent relatif avec OE est plus grand que i, de sorte que le 
bord ON du cône MON se projette au-dessus de OY.

Prenons dans l’angle NOY. c’est-à-dire au-dessus de OY, un point 
R, du cône.

Nous savons que l’oiseau peut orienter ses ailes de manière que la 
réaction soit dirigée suivant OR.

Construisons les trois composantes de OR.

La composante OA est propulsive, puisque Ri est au-dessus 
de OY.

La composante latérale est OB).

Enfin, il y a une troisième composante verticale O'C', qu’on cons­
truit facilement en coupant le cône MON par le plan vertical FG 
passant par R., et en rabattant le cercle ainsi obtenu. Cette compo­
sante O'C' est dirigée vers le haut, si l’on a soin de prendre pour R. 
le point du cône MON situé au-dessus du plan horizontal passant par 
0 (il y a, projeté au même point R., un autre point du cône qui est 
situé en dessous de ce plan).

Là composante O’C’ est donc sustentatrice. Si maintenant on 
suppose que la variation Wi du vent change de sens, on construira 
l’épure symétrique. La composante OA, restera propulsive : la com-
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posante O’C’ restera sustentatrice ; la composante de dérive OB, sera 
de sens contraire à OB. et aura pour effet de faire zigzaguer l’oiseau.

Résumons ce résultat dans un énoncé.

Sous l'influence de la variation de direction du vent, l’oiseau 
peut choisir l’orientation de ses ailes de manière que la réaction 
de l’air comporte: une composante constamment propulsive; 
2° une composante constamment sustentatrice ; 3° une compo­
sante latérale dite composante de dérive, dont l’effet reste négli­
geable à cause de son fréquent changement de sens.

Il reste à faire la discussion du problème, c’est-à-dire à chercher 
quelles sont les conditions nécessaires pour qu’il soit possible. Nous 
donnons cette discussion plus loin.

Il n’est pas facile de représenter la figure en perspective ; nous 
l’avons cependant essayé (fig. 122).

Cette figure nous fait saisir comment il est possible, contrairement 
à ce que pense M. Marcel Deprez, d’obtenir une réaction à la fois

sustentatrice et propulsive, sans que le vent soit ascendant. Il suffit 
que le vent soit oblique. Le problème est alors possible grâce à 
l’existence d’une troisième composante latérale OB.

Telle est la théorie du vent louvoyant, que nous croyons avoir

Fig. 122. — Représentation en perspective de la théorie 
du vent louvoyant.

Fig. 122.
Représentation en
perspective de la
théorie du vent
louvoyant
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été le premier à imaginer et h coordonner en un tout « qui se 
tient » (1).

Voilà donc une nouvelle explication, ajoutée à tant d’autres,
A quoi reconnaîtrons-nous la bonne théorie? A ce qu’elle fournira 

une explication des faits observés. Ce sera le critérium.
Nous allons montrer que tous les faits observés peuvent s’expliquer 

par la théorie du vent louvoyant.

EXPLICATIONS DES FAITS OBSERVÉS.

Balancement. — Nous avons vu que l’oiseau doit changer 
l’orientation de son plan alaire à chaque changement de sens de la 
variation du vent. C’est en cela que consiste le balancement latéral 
que l’on a si souvent observé.

Ce mouvement, malgré son apparence passive, est donc la clef du 
vol à voile. Il est effectivement passif et automatique, comme nous 
le montrerons plus loin.

Remarquons que l’orientation favorable du plan alaire peut 
s’obtenir de trois manières.

Premièrement, par une inclinaison du corps et des deux ailes, tout 
d’une pièce. C’est ainsi qu’elle se produit chez les semi-voiliers aux 
ailes relativement rigides et peu gauchissables, tels que crécerelles, 
mouettes, martinets. Dans ce mouvement, la masse entière de 
l’oiseau bascule autour d’un axe. On conçoit que ce mouvement exige 
de la part du vent moins d’énergie que le mouvement des montagnes 
russes, puisque dans ce dernier non seulement l’oiseau doit basculer 
dans un mouvement de tangage, mais de plus il est nécessaire que 
toute sa masse monte et descende. Peut-être est-ce pour cela que 
l’oiseau préfère le premier mouvement au second.

(1) Nous avons, pour prendre date, déposé à l’Académie des Sciences, sous 
pli cacheté, un résumé de cette théorie, à la date du 28 septembre 1908. En 
même temps nous présentions à l’Académie une note exposant la question; 
nous l’avons ensuite développée dans L'Aérophile du 1er juin 1909.

Explication des faits
observés
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Secondement, par un gauchissement des ailes. C’est ce qui se 
produit chez les grands voiliers aux ailes souples et facilement 
gauchissables, tels que les aigles et les vautours. Ce mouvement 
exige de la part du vent une énergie encore moindre que le précé­
dent, puisqu’il ne déplace pas la masse du corps, mais seulement la 
masse des ailes qui est très minime. Aussi se produit-il sous des 
variations de vent beaucoup plus faibles. Il serait exagéré de dire 
qu’il suffit à lui seul ; mais il a tout au moins l’avantage de diminuer 
l’amplitude des balancements du corps nécessaires, et c’est pour cela 
que les grands voiliers présentent le balancement du corps d’une 
façon beaucoup moins nette que les semi-voiliers.

Troisièmement, par un gauchissement des plumes. Certes, celle 
troisième manicre ne peut suffire seule, et vient tout au plus en aide 
aux deux premières; mais il semble bien qu’elle fournisse l’expli- 
cation de l’écartement des rémiges.

Ecartement des rémiges. — Cet écartement, outre qu’il facilite 
le gauchissement de l’aile, permet aux rémiges rendues indépen­
dantes de se gauchir individuellement pour prendre l’orienlalion 
favorable, ce qui exige de la part du vent une énergie encore beau­
coup moindre.

Nous croyons d’ailleurs que le rôle de ce gauchissement des 
remiges serait surtout de provoquer et d’entraîner le gauchissement 
de l’aile entière dès l’arrivée du moindre souffle de vent oblique.

On ne peut s’empêcher d’admirer la nature qui, pour ne rien 
perdre de l’effet utile des souffles obliques, si légers et si fugitifs 
qu’ils soient, a su trouver, pour les déceler et les recueillir, ce moyen 
d’une délicatesse infinie : le gauchissement d’une plume !

L’écartement des rémiges paraît encore avoir pour but de présenter 
le maximum de prise au vent sous le minimum de poids; elles 
constituent un muiliplan, plus efficace qu’un plan unique.

Absence de tangage. — Notre théorie justifie le vol horizontal 
sans tangage ni alternatives de montées et de descentes. Elle permet
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également de comprendre que l’oiseau puisse monter d’une façon 
continue.

Vol en zigzags. — Nous avons vu que les zigzags se produisent 
nécessairement sous l’action de la composante de dérive. Ce n’est pas 
un mouvement essentiel, il est au contraire parasite, et pour qu'il ne 
prenne pas une importance exagérée il faut que les saules de vent 
soient fréquentes et rapides.

Vol en toutes directions. — Notre théorie explique le vol en 
toutes directions indistinctement. La théorie de Langley était en 
défaut sur ce point.

On observe cependant que les voiliers volent de préférence contre 
le vent, mais c’est probablement dans le but de rester au-dessus 
d’une même région terrestre.

Lorsque le vent n’est pas très fort, et qu’il est sensiblement 
inférieur à la vitesse de régime de l’oiseau, celui-ci n’a pas besoin 
de faire constamment tête au vent, et il se maintient en décrivant des 
orbes.

Position des ailes en avant. — Cette position en V renversé 
(fig. 106 et 11 4), est défavorable à la fois à la vitesse et a la stabilité 
de route.

Or, dans le cas d’un vent variable en direction, la stabilité de 
route serait un inconvénient, car elle forcerait l’oiseau à faire face au 
vent relatif qui varie à chaque instant.

Pour que l’oiseau conserve une direction fixe, il faut qu’il soit, au 
point de vue de la slabilité de route, non pas en équilibre stable, 
mais en équilibre indifférent.

Au point de vue de la vitesse, l’oiseau n’a pas intérêt à aller très 
vite, car nous avons vu (fig. 121), qu’une des conditions du vol à 
voile est que l’angle a, qu’on pourrait appeler déviation du vent 
relatif, soit assez grand. Or, pour une même valeur de la varia-
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lion W, l’angle a est d’autant plus grand que la vitesse de régime de 
l’oiseau est plus petite ; et plus l’oiseau pourra s’accommoder d’une 
vitesse de régime faible, plus il pourra utiliser de faibles variations 
du vent. C’est ce qui permet de comprendre pourquoi les meilleurs 
voiliers sont, suivant l’expression de Mouillard, des voiliers lents.

La position des ailes en avant a encore pour avantage de tendre, 
pour ainsi dire, au vent relatif la partie la plus gauchissable de l’aile 
c'est-à-dire les rémiges, et de donner à celles-ci leur maximum 
d’écartement et d’indépendance.

Conformation des rémiges. — Les rémiges voilières sont 
recourbées vers le haut, comme on le voit sur la figure 4 05. Il est 
facile de voir que, quand le vent relatif oblique arrive sur une aile 
ainsi faite, il a beaucoup de prise sur les rémiges disposées de la 
sorte, parce que, grâce à leur courbure vers le haut, elles lui pré- 
-sentent toute leur surface.

On peut s’en rendre compte sur la figure 105, en remarquant que 
l’oiseau est représenté un peu de côté, et que, pour se donner une 
idée de l’effet du vent, le lecteur n’a qu’à souffler sur le dessin. Il 
saisira de suite que l’effet du vent sera de gauchir l’aile et d’incliner 
l’oiseau dans la position de la figure 122. Même si les ailes sont 
horizontales, les rémiges relevées offrent prise au vent latéral et 
produisent le soulèvement de l’aile, comme on le voit sur la figure 123.

Grâce au fait que les rémiges vont en croissant à partir de la 
première, le vent agit en plein sur les quatre ou cinq premières 
rémiges au moins, c’est-à-dire sur des parties de l’aile assez éloignées 
du bord antérieur rigide et qui ont, par suite, un moment de torsion

1'7

Fig. 123. — Les rémiges relevées offrent prise au vent latéral.

Fig. 123. Les rémiges
relevées offrent prise
au vent latéral
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considérable. Les figures 124 et125 font comprendre l’utilité de 
cette disposition des rémiges. Sur l’aile d’un rameur (fig. 125), le 
vent oblique n’atteindrait que la première rémige, qui coïncide avec

FIG. 124. — Ombre du vautour fauve d'après Mouillard), montrant l’utilité 
de la disposition des rémiges pour le gauchissement de l’aile.

FrG. 125. — Oiseau rameur. Le vent oblique n’aurait d’action 
que sur une seule rémige.

le bord antérieur rigide de l'aile, et ne produirait aucun gauchis­
sement.

Les rémiges voilières apparaissent ainsi comme un gauchisseur 
automatique toujours prêta utiliser la moindre variation de direction 
du vent. Ce sont elles qui expliquent la passivité du balancement, et 
rendent inutile tout acte volontaire ou même instinctif, de même que 
toute régularité ou périodicité des ondes aériennes.

L’oiseau n’a qu'à exercer sur ce mouvement automatique un 
contrôle supérieur, une sorte de réglage, à peu près comme le pilote 
d’un bateau a voiles vérifie si le vent gonfle convenablement ses 
voiles, et conserve la main sur la barre.

Par contre, c’est l’absence de cet organe approprié qui rend le vol 
à voile quasi-impossible aux petits oiseaux (hirondelles, martinets) ;

Fig. 124. Ombre du
vautour fauve d'après
Mouillard, montrant
l'utilité de la
disposition des
rémiges pour le
gauchissement de
l'aile

Fig. 125. Oiseau
rameur. Le vent
oblique n'aurait
d'action que sur une
seule rémige



I 88
 

CD 1

on les voit s’y exercer parfois, par grand vent, mais maladroitement 
et sans arriver au réglage convenable des mouvements.

Influence de la masse. — Plus l’oiseau est lourd, plus il lui 
faut de grandes ailes. Or, la nature, dans la construction des grandes 
ailes, s’est heurtée à une loi physique, suivant laquelle les poids 
augmentent comme le cube des dimensions, alors que les surfaces 
n’augmentent que comme le carré.

Supposons, par exemple, qu’un aigle pèse quatre fois plus qu’un 
pigeon. Si on lui donne des ailes quatre fois plus grandes en surface, 
ces ailes pèseront huit fois plus. Elles seront donc deux fois pluslourdes 
relativement au poids de l’oiseau. On voit combien, sous ce rapport, 
les grands volatiles sont désavantagés. Pour ne pas exagérer le poids 
des ailes, la nature a dû, à mesure qu’elle augmentait le poids des 
oiseaux, réduire leur surface alaire comparée au poids. Chez les 
grandes espèces, elle a dû, en même temps, rogner sur la solidité, de 
sorte que les grands oiseaux ont des ailes trop faibles, sans rigidité, 
déformables et se ployant sous l’effort. On les a parfois comparées à 
des chiffons.

Par suite, ces ailes rendent très pénible le vol par battements, 
surtout à l’essor; mais cet inconvénient se transforme en avantage 
pour le vol à voile, qui exige précisément des ailes gauchissables 
sous un faible effort, pour obéir au moindre souffle oblique du 
vent.

Ainsi, plus un oiseau est bon voilier, plus il est mauvais rameur.

Chez les grands oiseaux, aigles et vautours, l’essor est presque 
impossible : ils doivent se lancer d’un point élevé. De même ils ont 
peine à soutenir le vol ramé, et par temps calme ils restent perchés. 
Tributaires des circonstances atmosphériques, ils sont en état d’infé­
riorité sur l’oiseau rameur qui, lui, est toujours maître de l’air. Le 
vol à voile n’est donc pas le vol parfait ; c’est un pis-aller, un artifice 
grâce auquel la naturea pu donner la faculté du vol à quelques grosses 
espèces qui ne peuvent pas soutenir longtemps le vol ramé.
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CALCUL DE LA THEORIE DES MONTAGNES 
RUSSES.

Soit v la vitesse relative moyenne de l’oiseau, et soit + v la 
variation de vitesse du vent. Pendant un temps t la vitesse 
relative de l’oiseau est v — w, pendant un autre temps t elle est 
v+w. Nous allons montrer qu’au bout du second temps l’oiseau 
peut se trouver plus haut que sa hauteur initiale.

Nous supposons le temps t assez court pour que les variations 
de la vitesse absolue de l’oiseau soient négligeables.

Pendant le premier temps (fig. 126) l’oiseau se laisse descendre 
suivant la direction OY, Soit en l’inclinaison de l’aile et soit i, l’angle

FiG. 126. — Théorie des monta- FIG. 127. — 2e temps, 
gnes russes, 1er temps. ‘ ~

d’attaque. La réaction de l’air est R,; elie est inclinée d’un petit 
angle s en arrière de la normale ON au plan de l’aile. Nous 
admettons que ces angles sont petits et assimilables à leurs sinus, 
les cosinus étant égaux à l’unité.

Soient P le poids de l’oiseau, S sa surface alaire.
La réaction R, de l'air a une composante verticale égale à P, 

et une composante horizontale F. qui est propulsive. On a :

R, == K S (v—1)2 i, 
P = R, cos e, R, =KS(o --  2)2 4, (1)

F, =P(-)
La figure 127 représente le mouvement de l’oiseau pendant le

Calcul de la théorie
des montagnes russes

Fig. 126. Théorie des
montagnes russes, 1er
temps
Fig. 127. 2e temps
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second temps. L’oiseau monte suivant la direction OV,. La réaction 
IL de l’air a une composante horizontale F, retardatrice.

On a de même :

R,=KS(+ 10)2 ig
P=R,=KS(+1)4 (2)

F =P(+

Pour que la vitesse moyenne de l’oiseau se conserve, il faut que 
les accélérations dues aux forces F, et F, se détruisent, et, comme 
elles agissent pendant des temps égaux, on doit avoir :

F, = F, 
d'où :

ey = 61 — 2 s.

Évaluons maintenant les déplacements verticaux.
Pendant le premier temps, l’oiseau, qui se déplace suivant OV,, 

est descendu de la quantité (~ — w) (e.i) t.
Pendant le second temps, il est monté suivant OV2 de la quantité 

(v+w) (ex---^ t ou (v+w) (e. ---- 2 € — i) t.
De ce double mouvement, effectué pendant le temps 2 , résulte 

une vitesse moyenne ascensionnelle, positive ou négative, que nous 
appelons A, et qui est, en grandeur et en signe :

(v: w) (es +4)

-
 

ciIV
J

+6

-
 loII

4

ou, en remplaçant 4, et 12 par leurs valeurs tirées de (!) et (2) :

P »A=wei— ——  ------ , -( w)s

telle est l’équation qui nous indiquera si l’oiseau peut se sustenter. 
Pour cela, il faut que A soit nul ou positif.

Il y a pour w une valeur qui est la plus favorable, et qui rend A 
maximum.
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Prenons un exemple numérique. Supposons: P =7 kilogs, 
S = 1m2, K= 0,7, e, = 0,26 (15 degrés), € =0,035 (2 degrés) 
et v = 465,66 (60 k. à l’heure). On trouve facilement que le 
problème est possible si w est supérieur à 5ra et inférieur à 1 4m par 
seconde.

CALCUL DE LA THÉORIE DU VENT 
LOUVOYANT.

Pour nous placer sur la limite de possibilité du problème, repro­
duisons (fig. 428) la figure 121 en annulant la composante OA,,

R'

G

Fis. 128. — Discussion de la théorie du vent louvoyant.

c’est-à-dire en supposant que la réaction de l'air, normale à la 
vitesse V, n’est ni propulsive ni retardatrice.

Soient R la réaction de l’air, et 9 l’angle d’attaque. La vitesse 
relative est OD,.

On a (fig. 128) :

P
 

a
 

S 
+

 
415

 
0MII
A

(1)

Calcul de la théorie du
vent louvoyant

Fig. 128. Discussion de
la théorie du vent
louvoyant
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D’autre part, on a :

Ri = OG- = OT + TG2 = OL2 + RLA + LR = R'L» + OR,2

or il faut que R’L soit égale au poids P ; donc on a :

RA = P + OR,2 
P = R3 — OR,2

Or on a :

bina bina bina V 102

d’où :
( ®2 422) P=R1—i —— 

\ 102 /

et, d’après l’équation (4) :
22 — 402)P2 = K? S2 02 (02 + w2)2 1 - 12 ——. (2)

. 102) 1

i est un angle déterminé, que l’oiseau cherche à rendre le plus petit 
possible. Étant donné une valeur de w0, la valeur de v rend P 

maximum s’obtient en annulant la dérivée du second membre de 
l’équation (2) par rapport à v. On trouve sans difficulté :

C 1
9

9
1

6

1
9 (3)

On voit que, si w est petit, il y a avantage à ce que v soit également 
petit ; or on sait que le vol des grands voiliers est remarquablement 
lent.

Portons cette valeur de va dans (2), il vient :

4 10* 
P2 = K2 S2 02. - - 

27 i* 
ou :

P=KS03‘ (
Cette équation donnera la valeur de w nécessaire pour que l’oiseau
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de poids P puisse se soutenir ; nous supposons que i et 0 soient 
connus approximativement.

Faisons une application numérique analogue à celle qne nous avons 
faite pour la théorie des montagnes russes. Posons: P~ 7kilogs, 
S= 4 mï, K= 0,7, et prenons i et 0 voisins de 0,4 (6 degrés). 
On obtient :

w = 1m,60

Si on compare ce résultat avec la valeur w = 5m obtenue avec la 
théorie des montagnes russes, on voit que la théorie du vent louvoyant 
permet d’utiliser des variations de vent beaucoup plus faibles.

La valeur correspondante de v est 4 3m (47 kil. à l'heure environ).
Ainsi, avec l’exemple que nous avons choisi (et nous l’avons 

choisi dans des conditions moyennes), si la variation totale 2 w du 
vent atteint 3 à 4 mètres, le vol à voile devient possible. Ces 
conditions sont très ordinaires; nous avons vu que les graphiques 
anémométriques de Langley décèlent des variations de vitesse qui 
atteignent fréquemment 5 à 8'".
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CHAPITRE IX.

L’HÉLICE AU POINT FIXE

Divers types d’hélices. — Mouvements de l’air au voisinage d’une hélice. 
— La cavitation. — L’hélice au point fixe. — Théorie de Renard. — 
Qualité. — Influence des éléments de construction de l’hélice sur la 
qualité. — Influence d’un courant d’air perpendiculaire à l’axe. — 
Rendement Actif.

DIVERS TYPES D’HELICES.

Qu'est-ce qu’une hélice ?
C’est un corps qui, en tournant autour d’un axe, est susceptible 

de produire, par sa réaction sur le fluide ambiant, une poussée 
parallèle à cet axe. L’hélice sert à transformer un couple moteur en 
une poussée axiale.

Si la rotation ne s’accompagne pas d’un mouvemet de translation 
suivant l’axe, l’hélice est dite au point fixe. Elle produit une force 
statique. Tel est le cas des hélices sustentatrices, utilisées dans les 
appareils du genre hélicoptère.

Si la rotation s’accompagne d’une translation suivant l’axe, l’hélice 
est dite propulsive ; elle produit une poussée destinée à propulser un 
appareil. Tel est le cas des hélices marines et des hélices d’aéroplanes. 
Au point de vue de l’aviation, nous envisagerons donc deux grandes 
classes, les hélices sustentatrices et les hélices propulsives.

Quelle forme doit avoir une hélice? Toute forme susceptible de 
produire une poussée axiale. On peut concevoir une infinité de 
formes; il n’est pas possible de savoir d’avance quelle sera la 
meilleure.

Chapitre IX. L'hélice au
point fixe
Divers types d'hélices
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Beaucoup d’auteurs définissent a priori l’hélice au moyen de 
l'hélicoïde géométrique. C’est une faute; rien ne démontre que 
cette forme soit la meilleure possible.

On connaît la définition de l'hélice géométrique ; mais cette 
hélice là n’est qu'une ligne, et non un corps solide. On appelle 
hèlicoïde droit la surface engendrée par une droite perpen­
diculaire à l’axe de l’hélice géométrique et qui rencontre l’axe 
et l'hélice. Ce n’est qu’une surface sans épaisseur. On peut essayer 
de constituer une hélice aérienne au moyen d'un secteur de cet 
hélicoïde compris entre deux génératrices, ou au moyen d’une portion 
d’hélicoïde limitée d’une façon quelconque ; tout au moins on pourra 
se rapprocher de cette surface, autant que le permettra l’épaisseur 
indispensable à donner à la matière dont est formée l’hélice. Mais, 
à cause de celte épaisseur, l’hélice matérielle a toujours deux faces 
différentes, dont l’une au moins diffère de l’hélicoïde géométrique.

L’hélicoïde géométrique jouit de la propriété de pouvoir rester en 
coïncidence avec lui-même, lorsqu’on lui donne à la fois une trans­
lation axiale et une rotation. On dit vulgairement qu’il se visse 
exactement dans le fluide, et on appelle pas de l’hélicoïde le dépla­
cement axial correspondant à une rotation d’un tour.

L’hélicoïde non droit, dans lequel la génératrice fait un angle 
quelconque avec l’axe, jouit de la même propriété. Il en serait de 
même avec tout hélicoïde engendré par une courbe quelconque qui 
tournerait autour d’un axe en se déplaçant parallèlement à l’axe d’une 
manière proportionnelle; il n’est pas nécessaire que cette courbe 
rencontre l’axe. Exemples : une surface de vis à filet triangulaire, une 
colonne torse ou tore hélicoïde. Tous ces hélicoïdes sont à pas 
constant.

Mais rien n’oblige à constituer une hélice aérienne au moyen 
d’une portion d’hélicoïde géométrique. N’importe quel corps peut 
constituer une hélice ; par exemple deux portions de plan mince. Les 
hélices à pales planes ne sont pas mauvaises ; on les utilise beaucoup 
dans les jouets. Elles ne sont plus à pas constant ; le pas, si on le 
définit pour chaque point de la surface, est variable. Mais on pourrait
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dire que les hélices à pales planes sont à angle d’attaque constant 
lorsqu’elles sont utilisées au point fixe, en supposant toutefois que 
l’air attaqué soit préalablement au repos, ce qui n’est pas exact.

M. Drzewiecki a imaginé' l'hélice propulsive à angle d’attaque 
constant (toujours en supposant que l’air attaqué soit préalablement 
au repos) ; c’est en quelque sorte un intermédiaire entre l’hélicoïde 
et l’hélice à pales planes.

Une autre forme a été préconisée en 1889 par le DT Amans sous 
le nom d’hélice zooptère ; ses pales imiteraient la forme et les carac­
tères des ailes des insectes et des oiseaux : élasticité, courbure, bord 
antérieur épais, arête d’attaque en forme de courbe à double cour­
bure ; forme générale triangulaire plus large à la base qu’à la péri­
phérie ; torsion positive, c’est-à-dire que l’inclinaison de la pale 
augmente à mesure qu’on s’éloigne de l’axe, au rebours de ce qui a 
lieu pour l’hélicoïde droit. A ce dernier point de vue, l’hélice à pales 
planes serait intermédiaire entre l’hélicoïde et l’hélice zooptère. Le 
Dr Amans a préconisé les hélices zooptères comme étant les meilleures; 
malheureusement il a constaté lui-même que les hélices de 1903- 
1904 du colonel Renard sont supérieures aux siennes, et on a fait 
encore mieux depuis (Wright, Breguet, Chauvière).

On peut imaginer beaucoup d’autres formes d’hélices, par exemple 
une hélice à pression unitaire constante, dans laquelle l’angle d’incli­
naison de la surface serait inversement proportionnel au carré de la 
distance à l’axe.

Les théoriciens et les constructeurs parlent ordinairement du pas 
d’une hélice comme d’une donnée précise, bien définie et connue 
d’avance. Dans une hélice à pas variable, on peut définir le pas en un 
point donné, mais l’expression le pas de l’hélice n’a, a priori, aucune 
signification. On tente parfois de le définir « la quantité dont l’hélice 
avancerait par tour si elle se vissait dans un écrou solide » ; mais on 
oublie qu’une telle hélice n’est pas géométriquement susceptible de 
se visser dans un écrou solide. Cette définition est mauvaise et 
antiscientifique ; elle est à rejeter. Insistons sur ce point ; on parle
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du pas comme de quelque chose de bien déterminé, et on n’en possède 
même pas de définition.

Nous en donnerons une plus loin, basée sur la considération 
de l'hélice propulsive, et qui est la suivante : le pas est la longueur 
dont l’hélice doit avancer par tour pour que la poussée soit nulle.

L’hélicoïde non droit a été réalisé par le colonel Renard dans ses 
hélices articulées; leur principe repose sur l’idée très ingénieuse de 
supprimer les efforts de flexion dans le bras de l’hélice, pour ne laisser 
que des efforts de traction (1).

Si on considère la pale d’hélice en rotation, elle est soumise à trois 
forces (fig. 128): la force centrifuge perpendiculaire à l’axe, la 
composante axiale de la réaction de l’air, et la composante tangentielle 

de la réaction de l’air. Ces trois forces sont 
perpendiculaires entre elles. L’expérience

A  montre qu’elles sont toutes trois proporlion- 
( 0_____ 1 nelles au carré de la vitesse (du moins au point

fixe) ; de sorte que leurs rapports sont cons- 
— % tants, et que leur résultante a une direction

fixe. Si donc on articule le bras à la Cardan, 
Fis. 128. — Forces il prendra une direction fixe suivant celle 

qui s’exercent sur une résultante ; et on pourra le fixer une foispale d’hélice. ’ -
pour toutes dans cette position; il ne 

travaillera qu’à l’extension.
Le colonel Renard a constaté que les hélices articulées peuvent 

être construites plus légères, sans rien perdre de leur qualité du fait 
de l’obliquité des bras.

En pratique, il est clair que les pales d’hélice ne sont pas des 
surfaces géométriques sans épaisseur, mais des solides épais présen­
tant deux faces différentes. On ne peut donc pas réaliser un hélicoïde 
parfait; on peut bien faire l’une des faces en forme d’hélicoïde 
parlait, par exemple la face inférieure, celle qui attaque l’air; mais

(1) Golonel Renard, Sur un nouveau mode de construction des hélices aériennes, 
Comptes rendus de l’Acad. des Sciences, 7 nov. 1904.

Fig. 128. Forces qui
s'exercent sur une pale
d'hélice
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alors l’autre face, dite dorsale, est différente, et nécessairement bom­
bée. Dès lors, comment définir le pas? Le pas de la surface hélicoïde 
qui constitucl’une des deux faces, ce qu’on appelle souvent le pas 
de construction, mérite-t-il le nom de pas de l’hélice ? Nullement. En 
outre, on fait souvent les pales légèrement arquées, à l’exemple des 
ailes d’aéroplane ; il en résulte une difficulté encore plus grande pour 
définir le pas; c’est exactement l’analogue de ce qui se passe pour 
tes ailes d’aéroplanes, lorsqu’on définit l'angle d’incidence d’une 
surface arquée au moyen de la corde de l’arquée. Cette confusion 
initiale a beaucoup contribué à l’obscurité qui règne actuellement 
dans la théorie de l’hélice ; c’est elle qui a fait croire que les hélices 
propulsives des navires avaient parfois un recul négatif; c’est elle 
aussi qui est cause que M. Auclair (1) a cru constater des rendements 
supérieurs à l’unité et dépassant même 1,3.

Qu’appelle-t-on hélice optima ? Pour une hélice au point fixe, 
c'est celle qui, avec un diamètre donné, permet d’obtenir une poussée 
donnée avec le minimum de puissance motrice.

Pour une hélice propulsive, c’est celle qui, avec un diamètre et 
une vitesse de translation donnés, permet d’obtenir une poussée 
donnée avec le minimum de puissance motrice.

Il n’y a donc pas une hélice optima, mais une infinité, corres­
pondant aux diverses vitesses de translation possibles.

MOUVEMENTS DE L’AIR
AU VOISINAGE D’UNE HÉLIGE.

Il est indispensable, pour ne pas se lancer dans de fausses direc­
tions avec la théorie des hélices, de se faire une idée .nette de la 
forme que prend le courant fluide créé par une hélice, tant dans l’air 
que dans l’eau.

On a, en effet, une tendance à admettre a priori comme évidentes

. (i) Auclair, lissais d’hélices au point fixe, Société française de Navigation 
aérienne, 24 mars 1910.

Mouvements de l'air au
voisinage d'une hélice
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certaines idées fausses, à savoir : 1° que l’air attaqué par les pales 
est préalablement au repos ; 20 que l’air est chassé vers l’extérieur 
par la force centrifuge.

On peut étudier expérimentalement le mouvement des filets d’air 
au voisinage d'une hélice tournant au point fixe, soit au moyen de 
fils légers qui s’orientent dans le sens du courant, soit au moyen de 
fumées (1), soit à l’aide de petits anémomètres (2), soit enfin par la 
photographie de la veine fluide, comme l’a fait Flamm (3) sur des 
hélices de modèles réduits de navires ; cette dernière méthode a été 
appliquée par lui à des hélices en propulsion. Nous engageons le 

lecteur à lire les très intéressantes

Fig. 129. — Mouvements de l'air 
au voisinage d’une hélice.

notes que nous mentionnons ici, 
En voici les résultats, qui sont 

les mêmes, que l’hélice soit au 
point fixe ou en propulsion.

Le courant fluide prend la 
forme générale indiquée fig. 129.

L’hélice aspire au devant 
d’elle, ainsi que latéralement 
dans son plàn, et même en arrière 
au delà de son plan, c'est-à-dire 
dans plus de la moitié des direc- 
lions de l’espace.

Les filets d’air provenant de toutes ces directions convergent vers 
l’hélice, et lorsqu’ils passent dans le plan de l’hélice ils sont loin de 
se mouvoir parallèlement à l’axe ; ils vont en se rapprochant de l’axe, 
de sorte que la veine fluide va en se rétrécissant. Elle continue à se 
contracter après avoir franchi le plan de l'hélice, et a son minimum

(1) A.-P. Thurston, The Aeronautical Journal, voir l'Aéro-mécanique, 
10 déc. 1909. — A. Tanakadaté, Acad, des Sciences, 18 juillet 1910.

(2) Riabouchinsky, Bull. inst. de Koutchino, fasc. II, 1909.

(3) Oswald Flamm, L’hélice marine et son action sur l'eau, Munich, 1909, 
voir Engineering, juin 1909, et La Nature, 16 avril 1910.

Fig. 129. Mouvements
de l'air au voisinage
d'une hélice
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de section en ab un peu plus loin ; ensuite elle est sensiblement 
cylindrique, avec une tendance à peine sensible à s’évaser.

Ainsi, non seulement la prétendue action centrifuge n’existe pas, 
mais au contraire, à son passage dans le plan de l’hélice la veine fluide 
est' nettement convergente. Le cercle ab a un diamètre inférieur à 
celui de l’hélice.

On se rend compte qu’il ne se passe rien de comparable au choc 
du fluide au repos par les pales de l’hélice. L’hélice, en chassant la 
veine d’air, crée devant elle une dépression, un vide relatif. L’air 
afflue de tous côtés vers cette dépression, dont l’effet se fait sentir 
assez loin ; il se précipite vers l’hélice, et au moment où il passe dans

Fie. 130. — Mouvement de rotation 
de la veine refoulée.

le plan de l’hélice il pos­
sède déjà une vitesse très 
grande, dont la direction est 
fortement oblique à l’axe 
et nettement centripète.

Toute théorie qui oublie 
de tenir compte de cette 
vitesse antérieure au choc 
est par là même à rejeter.

Au sortir du plan de 
l’hélice, les filets d’air, en
vertu de la vitesse acquise, 

continuent à se rapprocher de l’axe, puis la veine fluide devient 
cylindrique.

En outre, le choc des pales inclinées de l’hélice communique à la 
veine fluide un mouvement de rotation, de torsion sur elle-même en 
spirale, comme l’indique la figure 1 30. Ce mouvement est nettement 
visible sur les photographies d’hélices marines prises parM. Flamm ; 
on peut suivre les mouvements du liquide grâce à de petites traînées 
de bulles gazeuses qui s’y forment (voir fig. 132). Ce sont les gaz 
dissous dans l’eau qui se dégagent, sous l’influence de la dépression 
créée à l’avant de l’hélice.

On peut se demander pourquoi chacune des molécules, au sortir

Fig. 130. Mouvement
de la rotation de la
veine refoulée
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du plan de l’hélice, ne continue pas son mouvement en ligne droite 
(ce qui engendrerait un épanouissement de la veine fluide en forme 
d'hyperboloïde à une nappe, voir fig. 131), et quelle est la force qui 
courbe leurs trajectoires en forme de spirale. Eh ! bien, c’est simple-

FIG. 131. — Direction initiale 
des filets d'air refoulés.

ment la pression atmosphérique. Si la 
veine fluide s’élargissait, sa section 
augmenterait, il se créerait un vide 
au milieu ; la pression atmosphérique 
l’empêche de se dilater et la maintient 
cylindrique Le mouvement des molé­
cules, qui est centripète jusqu’à la 
traversée de la section contractée ab, 
devient ensuite centrifuge : il se crée, 
le long de l’axe de la spirale, par suite 
de ce mouvement centrifuge, une dé­

pression énergique qui se manifeste, sur les photographies de 
M. Flamm, par l’existence d’une file de bulles gazeuses suivant l’axe. 
On peut dire, pour employer une autre tournure de phrase, que 
c’est cette dépression qui retient le fluide et l’empêche de s'écarter.

LA CAVITATION.

Faisons ici une courte digression sur la cavitation, phénomène
simple mais généralement mal

B

FIG. 132. — Hélice marine.

Devant l’hélice, en AA, règne

expliqué et sur lequel les auteurs 
répandent des idées fausses. Ce 
sont encore les photographies de 
M. Flamm qui nous feront com­
prendre ce qui se passe.

Considérons (Fig. 432) une 
hélice marine, qui propulse un 
navire, et qui est plongée dans 
l’eau à une certaine profondeur 
au-dessous de la surface.

une zone de dépression qui attire

La cavitation
Fig. 131. Direction
initiale des filets d'air
refoulés
Fig. 132. Hélice marine
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le fluide au devant de l’hélice. Cette zone de dépression fait baisser 
le niveau de l’eau au-dessus de l’hélice, elle crée un creux B dans la 
surface du liquide, creux dont la profondeur mesure la dépression 
produite.

Ainsi, si la dépression est de 1/10 de la pression atmosphérique, 
le niveau de l’eau baissera de 1 mètre.

Si l’hélice est à une profondeur insuffisante, le niveau de l’eau 
s’abaisse jusqu’à elle, comme dans la fig. 433, et l’hélice tourne

FIG. 133. — La cavitation.

partiellement dans l’air, d’où résulte 
une énorme diminution de la 
poussée produite et une brusque 
discontinuité dans la loi de la 
poussée.

On empêche la cavitation en 
plaçant l’hélice à un niveau plus bas 
dans l’eau, en l’éloignant de la sur­
face ; ou parfois en plaçant au- 

dessus d’elle une plaque horizontale qui l’isole de la surface et 
empêche la poche d’air de se former.

En résumé, la cavitation a lieu lorsque la hauteur d’eau qui mesure 
la dépression à l’avant de l’hélice est plus grande que la profondeur 
de l’hélice au-dessous de la surface.

Il peut y avoir cavitation lorsque cette dépression est de 140 de 
la pression atmosphérique, si l'hélice n’est qu’à I mètre de la 
surface.

Pour expliquer la cavitation, on a souvent dit que l’hélice fait le 
vide, qu’elle tourne dans le vide. C’est une grosse erreur; la dépres­
sion créée n’est jamais qu’une faible fraction de la pression atmo­
sphérique ; l’hélice tourne non pas dans le vide, mais dans l’air 
atmosphérique.

Le phénomène de la cavitation est donc spécial aux hélices marines 
placées à proximité de la surface de séparation de l’air et de l’eau. 
Rien d’analogue ne peut exister pour les hélices aériennes; les

Fig. 133. La cavitation
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auteurs qui ont prononcé le mot de cavitation, à propos des hélices 
aériennes, ont parlé à la légère (4).

VITESSE ET DIRECTION DE L’AIR 
REFOULÉ PAR UNE HÉLICE.

M. Riabouchinsky (2) a étudié expérimentalement la circulation de 
l'air autour d’une hélice tournant au point fixe, et il a mesuré à 
l'anémomètre les trois composantes de la vitesse des filets d’air 
suivant trois directions, la parallèle à l’axe de l’hélice, la parallèle au 
rayon et la perpendiculaire à ces deux directions.

Il a fait cette mesure pour les divers points d’une section droite 
prise tout contre l’hélice en avant et en arrière du plan de celle-ci.

Les résultats numériques n’ont pas en valeur absolue une grande 
importance, parce qu’ils dépendent de l’hélice choisie, et aussi parce 
que la précision des mesures est fort sujette à caution; néanmoins, 
on peut considérer comme acquis certains résultats intéressants.

Le fluide refoulé n’est pas projeté vers l’extérieur en vertu de la 
force centrifuge, mais au contraire, comme pour le cas de l’écoule- 
ment par un orifice en mince paroi, il y a contraction de la veine.

Auprès du centre de l’hélice, l’air est presque au repos, toutes les 
composantes sont très faibles.

A l’aspiration, la composante radiale est considérable près dès 
bords. La troisième composante n’est pas nulle, mais elle est rela­
tivement négligeable.

Au refoulement, la composante axiale, nulle au centre, croît 
rapidement jusqu’aux 4/5 du rayon où elle passe par un maximum 
très marqué; elle retombe ensuite très rapidement à zéro à la dis­
tance des 95/100 du rayon, et devient ensuite négative sur les 
bords de l’hélice, c’est-à-dire que l’air y passe en sens contraire ;

(1) Notamment M. Painlevé, L’Aéroplane, Mémoire au Congrès de Nancy 
1909.

(2) Bull. Institut aérodyn. de Koutchino, fasc. II, 1909, page 28.

Vitesse et direction de
l'air refoulé par une
hélice
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ce qui montre qu’une partie du fluide traverse deux fois le cercle de 
l’hélice.

Ainsi, l’air chassé passe par

Fig. 134. — Courbe de la vitesse 
axiale de l’air refoulé.

un cercle n ayant que 95/100 du 
rayon de l’hélice, et 90/100 de 
sa section environ. Et ce cercle 
se rétrécit encore sensiblement 
après. .

La courbe ci-contre (fig. 134) 
représente la vitesse axiale de 
l’air refoulé, aux divers points 
d’un même diamètre. On voit 
combien elle est variable, et 
combien l’expression vitesse 
moyenne de la veine fluide est 
peu précise, d’autant plus que la 

direction de la vitesse varie en chaque point.
La composante radiale centripète est considérable surtout près des 

bords ; elle atteint plus de la moitié de la composante axiale.
Enfin, la troisième composante, qu’on pourrait appeler compo­

sante de rotation, est presque constante dans toute la veine fluide.
Si on fait tourner l’hélice à diverses vitesses, les vitesses de l’air 

varient proportionnellement.

L’HÉLICE AU POINT FIXE.

La théorie analytique des hélices n’existe pas, et il est permis de 
croire qu’elle ne peut pas exister, qu’elle n’existera jamais.

Il est, à la vérité, facile de considérer une portion de surface, de 
la décomposer en éléments infiniment petits, de supposer que l’air 
attaqué est préalablement immobile, d’appliquer à chaque élément 
les formules du plan mince, et d’intégrer.

Mais on fait ainsi une telle quantité d’hypothèses implicites 
fausses, que les résultats n’ont aucune espèce de valeur.

Ainsi, on suppose l’air préalablement immobile. Or l’air, qui

L'hélice au point fixe
Fig. 134. Courbe de la
vitesse axiale de l'air
refoulé
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converge vers l’hélice, possède, en arrivant à son conlact, une 
vitesse considérable et oblique au plan de symétrie de l’élément; 
c’est là un cas qui n’est pas traité dans la théorie du plan mince, et 
sur lequel on ne sait rien.

Ensuite, la théorie du plan d’aéroplane, lequel n'est ni infiniment 
mince ni rigoureusement plan, introduit un angle d’attaque fictif très 
différent de celui qu’on obtient par la corde du profil, et qui ne peut 
être déterminé que par l’expérience. Il est impossible de faire une 
expérience du même genre pour chaque élément de l’hélice.

On suppose que chaque élément agit comme s'il était isolé ; rien 
n’est plus inexact.

On suppose que les formules du plan mince, établies pour une 
surface sensiblement plane animée d’une translation rectiligne et 
uniforme, peuvent s’appliquer à une surface gauche tordue en héli- 
coïde, animée d’un mouvement circulaire et dont les divers points 
ont des vitesses très différentes. Rien n’est plus illogique.

En résumé, les formules du plan mince ne sont pas applicables, et 
l’intégration est illégitime.

Peut-on au moins, sans analyser le phénomène, le calculer dans 
son ensemble et déterminer théoriquement la poussée totale? Pas 
davantage, car on est encore obligé de faire une série d’hypothèses 
fausses. On n’est pas obligé de supposer que la veine fluide ait un 
diamètre égal à celui de l’hélice, mais alors quelle valeur adopter? 
Il faut considérer la vitesse moyenne de la veine fluide, et on a vu 
combien cela est vague et impossible à préciser. Il faut supposer que 
cette vitesse moyenne est égale au pas de l’hélice multiplié par le 
nombre de tours, et cela suppose qu’on ait défini d’une façon précise 
le pas, ce dont on serait bien en peine.

Enfin, il faut supposer que la poussée est provoquée par la force 
vive de l’air chassé, ce qui est faux, car on oublie ainsi l’influence 
des frottements qui ont une part importante dans la poussée obtenue.

Aussi, cette méthode n’aboutit-elle qu’à des résultats absurdes; 
grâce à elle, on peut démonlrer que la qualité qu’on obtient avec les 
hélices actuelles est impossible à réaliser. C’est une méthode de ce
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genre qu’a essayée sans succès M. Drzewiecki (1) dans le but de 
démontrer l’impossibilité de l'hélicoptère, alors que Breguel et Cornu 
venaient précisément d’en démontrer expérimentalement la possi­
bilité; l’erreur était aggravée par ce fait que l’auteur employait à 
tort le théorème de la quantité de mouvement, qui est inapplicable, 
ainsi que nous l’avons dit plus haut, et que, de plus, il soutenait 
avoir fait un raisonnement rigoureux et inattaquable.

En réalité, il n’y a rien à tirer de cette méthode ; tout au plus 
peut-on, a posteriori, essayer de l’employer à titre d’interprétation 
commode des formules expérimentales, mais en introduisant des 
constantes que l’expérience directe peut seule donner.

C’est ce qu’a parfaitement senti, avec sa sûre intuition, le colonel 
Renard, à qui on doit la première théorie des hélices sustentatrices, 
théorie qui semble définitive et qui, depuis 1903, n’a pas été sensi­
blement perfectionnée (2). Cette théorie, qu’il s’est borné à esquisser 
dans ses grandes lignes, est contenue dans deux courtes notes à 
l’Académie des Sciences; l’une du 23 novembre 4903, intitulée : 
Sur la possibilité de soutenir en l’air un appareil volant du 

genre hélicoptère en employant les moteurs à explosion dans 
leur état actuel de légèreté, et l’autre, du 7 décembre 4903, inti­
tulée : Qualité des hélices sustentatrices.

Renard ne fait aucune hypothèse, n’applique aucune théorie; il 
établit des lois expérimentales et les étudie.

On considère une série d’hélices de grandeurs différentes, mais 
géométriquement semblables. Soit D le diamètre de l’une d’elles, 
n la vitesse de rotation en tours par seconde.

La poussée F obtenue et le travail T dépensé par seconde suivent 
les lois expérimentales suivantes :

F=xn D (1)
T=6n D5 (2)

a et p étant des constantes.

(i) S. Drzewiecki, Fausse route, L’Aérophile, 1er mars 1909.
(2) Dans ce qui suit, nous n’avons eu qu’à la développer et à la compléter.

Théorie de Renard
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Ces lois sont remarquablement exactes et ont été confirmées depuis 
par tous les expérimentateurs sérieux.

a et 3 sont deux paramètres qui, avec le diamètre, suffisent à 
caractériser, au point de vue mécanique, le type d’hélice employé. 
En prenant pour unités le kilogramme, le mètre et la seconde, les 
meilleures hélices de Renard donnaient comme résultat :

| F= 0,026 »2 D' (3) 
| T= 0,01521 »3 D5 (4)

Pour une série d’hélices semblables, a et 3 sont constants ; c’est-à- 
dire que, pour un même nombre de tours par seconde, F varie 
comme D', et T comme D5.

On remarque que, pour une hélice donnée, la quantité 2 

est constante quelle que soit,la vitesse de rotation; on l’appelle 
puissance du sustentateur et on la désigne par w :

== constante. (5)

Il est important de remarquer que le rapport —, ou poussée par 

unité de puissance, n’est pas constant; il dépend de n, et il est 
d’autant plus petit que n est plus grand. Par conséquent, dire, comme 
on le fait souvent, qu’une hélice donne une poussée de tant de kilos 
par cheval est un non-sens.

On appelle surface d’appui S la surface du cercle balayé par 
l’hélice. On a :

*D2

Enfin, le poids de l’hélice est proportionnel au cube du diamètre, 
c’est-à-dire à D '.

Considérons maintenant un plan de superficie S‘ s’abaissant 
verticalement et orthogonalement, à la vitesse v; on a, en appelant
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q le coefficient de résistance orthogonale de l’air, F' la poussée et 
T'le travail dépensé par seconde :

F = qS’o 
T=P=AS03.

On constate que l’on a :

F‘3
= oS' = constante.

La puissance de ce sustentateur est donc constante aussi. Elle sera 
égale à la puissance & de l’hélice si on a :

çS‘=0 (6)

On en conclut qu’une hélice équivaut, au point de vue de la 
poussée obtenue et du travail dépensé, à un certain plan orthogonal 
de superficie S‘ donnée par l’équation :

S' = — (7)
?

Ce plan donne la même poussée que l’hélice en dépensant le même 
travail. Nous l’appelons le plan équivalent.

S‘Le colonel Renard appelle qualité de l’hélice le rapport si 

désignons-la par q :
S'

Plus la qualité est grande, plus le plan équivalent est grand. Or, 
plus un plan est grand, plus est faible le travail nécessaire pour 
obtenir une poussée donnée ; donc, plus la qualité est grande, plus 
l’hélice est économique.

Si dans l’équation (7) on remplace to par sa valeur tirée de (5), 
on a:

Qualité
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Formons la valeur de q :

a’ 1 
— — D2

S 1/4 «D2 82 «P

q ne dépend pas de D. D’où ce théorème :

Théokème. — Dans une série d’hélices semblables, la qualité 
est constante.

Remarquons qu’on peut écrire, d’après les équations (5) et (8) :

F’ _  a3 DE *94D2
T25gz 5 4

D’où ce théorème :

Théorémb. — Le travail nécessaire pour obtenir une poussée 
donnée est en raison inverse du diamètre et en raison inverse de 
la racine carrée de la qualité.

Ainsi le travail tend vers zéro quand le diamètre augmente indéfi­
niment. Il y a avantage à employer la plus grande hélice possible.

Il est facile de déterminer la qualité d’une hélice au moyen d’une 
seule expérience dans laquelle on mesurera F et T, car on a :

4F
1 =9D2 T2

Appelons C le couple moteur sur l’arbre: le travail par seconde 
est :

T= 2C. (9)

Théorème . — La poussée est proportionnelle au couple moteur.
En effet, égalant les valeurs de T tirées des équations (2) et (9), on 

obtient :
2=C = Bn3D5 
CL BD5
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Formons le rapport—, F étant tiré de l’équation (4) :

F o. 2
C pD 

on voit que ce rapport est constant quel que soit n.

HÉLIGE OPTIMA AU POINT FIXE.

L’équation (8) :
P II ol

 8
16

: %
montre que la meilleure hélice est celle pour laquelle le rapport 
est maximum.

Il existe certainement une forme d’hélice qui est la meilleure de 
toutes. Expérimentalement, on la reconnaîtra à la propriété que nous 
venons d’indiquer. Mais la théorie ne nous donne aucune indication 
pour la réalisation de cette meilleure forme; il faut procéder par 
tâtonnements. Il faut notamment éviter de croire que l'hélicoïde droit 
est la meilleure forme, sous prétexte qu’il a un pas constant. C’est 
une supposition gratuite que l’expérience ne confirme pas.

D’après les expériences de Renard et de Riabouchinsky, que nous 
mentionnons ci-après, il semble que l’hélice optima ait un pas voisin 
de 0,75 D et une fraction de pas très grande, beaucoup plus grande 
que ce qu’on fait habituellement.

Qualité maxima. — Pour que la qualité soit égale à 1, il faut 
que l’hélice soit équivalente à un plan égal à toute la superficie du 
cercle balayé par l'hélice, ce qui semble impossible puisque les paies 
de l’hélice n’occupent qu’une faible fraction de ce cercle, souvent 
moins d’un dixième. Néanmoins, la supériorité de l’attaque oblique 
sur l’attaque orthogonale est telle, que la qualité arrive à être supé­
rieure à 1 et même à 2.

Hélice optima au point
fixe
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Dès 1903, le colonel Renard obtenait la qualité 1,1%. Plus 
récemment, M. Louis Breguet a obtenu 4,85 et M. Chauvière 2,22.

Il est d’usage, pour que les qualités soient comparables avec les 
chiffres donnés par le colonel Renard, de les évaluer en adoptant 
pour P la valeur 0,085 qu’il adoptait lui-même. Cette valeur n’est 
pas très exacte, mais tous les résultats sont modifiés proportionnel­
lement et restent comparables.

Nous étudierons plus loin l’influence des divers éléments de 
construction de l’hélice sur la qualité.

On peut se demander quel est le maximum de la qualité, s’il 
existe un maximum théorique.

D’après le colonel Renard, il existerait une limite supérieure à peu 
près égale à 6. En effet, dit-il, la qualité est proportionnelle au carré 
du rendement p de l’hélice considérée comme un ventilateur, et on a 
à peu près :

4=6

Or p étant un rendement est au plus égal à I ; donc q est au plus 
égal à 6.

Renard n’a pas donné de démonstration de ce qui précède. Pour 
notre part, nous ne voyons pas comment on peut le démontrer sans 
introduire plusieurs hypothèses très douteuses, et nous considérons 
le résultat comme non avenu.

On peut remarquer que, si l’air était un fluide parfait sans visco­
sité, la résistance éprouvée par le plan orthogonal serait nulle, et la 
poussée de l’hélice ne serait pas nulle puisqu’elle communique une 
force vive à une veine fluide sans cesse renouvelée ; la qualité serait 
infinie. Il ne peut donc pas y avoir un maximum théorique égal 
à 6.

Faisons remarquer que la théorie qui précède ne se sert pas de la 
notion du pas de l’hélice.
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INFLUENCE DES ÉLÉMENTS DE CONSTRUCTION 
DE L’HÉLICE SUR LA QUALITÉ.

Nous allons examiner l'influence des quatre éléments suivants : 
le pas, la fraction de pas, le nombre d’ailes et la forme des ailes.

Influence du pas. — Le pas est, nous l’avons dit, difficile à bien 
définir. Il arrive souvent qu’on constitue la face inférieure des ailes 
en forme de portion d’hélicoïde droit, et c’est le pas de cet hélicoïde 
qu’on appelle le pas de construction de l’hélice. La face dorsale est 
alors une surface plus compliquée. Cette définition est critiquable et 
manque de généralité. Quoi qu’il en soit, c’est celle qu’ont adoptée 
le colonel Renard et M. Riabouchinsky, dont nous allons résumer les 
expériences.

Voici les qualités mesurées par Renard sur des hélices dans 
lesquelles le pas relatif (rapport du pas au diamètre) variait de 
0,25 à 1,50.

Pas relatif.................. 0,25 0,50 0,75 1,00 1,25 1,50

Qualité....................... 0,48 1,01 1,14 0,76 0,52 0,38

Le maximum 1,14 a lieu pour un pas égal aux trois quarts du 
diamètre.

M. Riabouchinsky (4) a trouvé un résultat du même genre; 
néanmoins, les hélices de pas relatif 0,75 et 1 lui ont donné presque 
la même qualité, avec léger avantage pour cette dernière.

La question est du reste très difficile à traiter expérimentalement 
d’une manière précise à cause de la difficulté d’avoir une série 
d’hélices comparables entre elles.

(1) Bull. Inst, aérodyn. de Koutchino, fasc. II, 1909. p. 41.

Influence des éléments
de construction de
l'hélice sur la qualité
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Influence de la fraction de pas. — Les premières hélices 
marines étaient constituées par une révolution entière d’hélicoïde.

On a reconnu ensuite qu’il y avait avantage à réduire la surface à 
un tiers de révolution environ ; cette surface peut être répartie en 
deux ailes symétriques ; on en fait à 3 ailes, à 4 ailes, à 6 ailes, etc.

On appelle du terme assez impropre de fraction de pas le rapport 
entre la superficie de la projection des ailes sur un plan perpendicu­
laire à l’axe, et la superficie du cercle total balayé par l’hélice. 
Dans les hélices aériennes actuelles, la fraction de pas est voisine 
de 4/10, parfois moins.

M. Riabouchinsky a étudié l’influence de la fraction de pas sur la 
qualité ; il employait une série de

Fis. 135. — Influence de la fraction 
de pas sur la qualité.

On remarque que, jusqu’à l'

dix hélices à deux ailes ne différant 
que par la fraction de pas ; le pas 
était égal à 0,75 D ; les ailes 
étaient des secteurs d'hélicoide 
limités par des rayons ; les angles 
au centre de ces secteurs variaient 
de 12° à 144°, ce qui fait une 
fraction de pas variant de 1/15 à 
8/10. Il a constaté que la qualité 
augmente constamment avec la 
fraction de pas, comme le montre 
la courbe ci-contre (Fig. 135). 

igle de 60° (fraction de pas 3),

la qualité croît presque proportionnellement à la fraction de pas.
On peut en conclure qu’il y aurait grand avantage à augmenter la 

fraction de pas des hélices actuelles ; leur qualité serait améliorée, 
leur poids n'augmenterait pas beaucoup. Toutefois, il y aurait, pour 
les hélices en bois, une certaine difficulté de construction pour que le 
fil du bois restât toujours radial.

Influence du nombre d’ailes. — M. Riabouchinsky a expéri­
menté sur une série d’hélices ayant de 1 à 11 ailes. Ces ailes étaient

Fig. 135. Influence de
la fraction de pas sur
la qualité
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toutes semblables et avaient un angle au centre de 18°. La fraction 
i 111 de pas variait ainsi de 2o a —.

La qualité suit la courbe ci-contre (Fig. 136). On voit qu’elle est 
maximum entre * et 9 ailes, et qu’elle varie peu entre ces limites. 
Les hélices les plus avantageuses de cette série paraissent être 

celles de 4 et 5 ailes, correspon­
dant à une fraction de pas de

1 1
— et —5 4

Influence de la forme des ailes.
— On peut donner aux ailes, à

2 3 4 5 € 7 8 9 0 M pales leur forme, à leur épaisseur, à leur 
Fis. 136. — Influence du nombre courbure, a leur torsion, les aspects 

d'ailes sur la qualité. 
les plus varies.

Toutes les expériences faites s’accordent à montrer que les ailes 
doivent être à profil légèrement arqué, avec bord antérieur épais. 
Quant à la forme du contour de l’aile, les constructeurs different 
d’avis à tel point qu’il semble qu’aucune donnée précise n’existe sur 
la question. Il paraît toutefois certain que la partie centrale de l’aile 
agit dans de mauvaises conditions, et que la partie extérieure est seule 
efficace ; aussi y a-t-il avantage à élargir cette dernière, et l’aile en 
secteur est préférable à l’aile de largeur constante; cette dernière 
forme ne se justifie par aucune considération ni théorique ni 
pratique.

INFLUENCE D’UN COURANT D’AIR 
PERPENDICULAIRE A L’AXE.

Ce cas est celui d un hélicoptère qui serait animé d’un mouvement 
de translation ; il est donc extrêmement intéressant.

Beaucoup de théoriciens avaient a priori proclamé que dans ces 
conditions une hélice sustentatrice travaillerait très mal et aurait un 
rendement détestable.

Influence d'un courant
d'air perpendiculaire à
l'axe

Fig. 136. Influence du
nombre d'ailes sur la
qualité
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On va voir, au contraire, que l’hélice travaille dans des conditions 
beaucoup meilleures, et que la poussée augmente considérablement.

Hiram Maxim avait déjà remarqué cette propriété (4).
M. Riabouchinsky (2) a fait des mesures précises sur une hélice 

à deux ailes ayant 40° d’angle au centre. Le diamètre était de 
30 centimètres.

Voici les valeurs obtenues pour la poussée et le travail par seconde, 
et les valeurs qui en résultent pour la qualité.

La courbe de la qualité affecte la forme ci-contre. Non seulement

VITESSE 
du courant d’air 

par seconde.

TOURS 
par seconde. POUSSÉE. TRAVAIL. QUALITÉ.

0m,0 35,2 0,036 0,32 0,08
0,152,0 35,1 0,046 0,33

2,5 34,6 0,050 0,33 0,19
3,2 33,3 0,057 0,32 0,30
4,2 31,4 0,065 0,30 0,50
5,0 30,0 0,074 0,29 0,80
6,2., 28,1 0,082 0,28 1,16

—— —

FIG. 137. — Courbe de la qualité 
d'une hélice dans un courant per- 
pendiculaire à l’axe.

la qualité augmente très rapidement, 
mais il semble qu’elle augmente de 
plus en plus vite et sans limite.

Dans l’expérience faite, elle a 
atteint une valeur plus de 15 fois 
supérieure à celle de l’hélice dans 
l’air calme; et comme le travail 
nécessaire pour produire une poussée 
donnée est en raison inverse de la 
racine carrée de la qualité, on voit 
que ce travail est réduit au quart.

Inutile de souligner l’importance d'un pareil résultat.

(1) Screw-propellers working in air. The aeronautical annual, 1897, p. 144.
(2) Bull. Inst, aérodyn. de Koutchino, fasc. I, 1906, p. 13.

Fig. 137. Courbe de la
qualité d'une hélice
dans un courant
perpendiculaire à l'axe
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RENDEMENT FICTIF
OU RENDEMENT DE CONSTRUCTION.

Peut-on définir le rendement d’une hélice au point fixe? Il est 
clair que non. Le rendement est le rapport entre le travail utilisé et 
le travail dépensé. Or, l’axe de l’hélice étant fixe, la poussée est une 
force statique, et le travail utilisé est nul ; tout le travail se perd en 
frottements. Le rendement est nul.

Cependant on appelle quelquefois rendement de construction le 
rendement de l’hélice considérée comme ventilateur, c’est-à-dire 
celui qui résulte de la considération du travail exercé sur l’air, bien 
que ce ne soit pas là du travail utile.

Sa détermination est très aléatoire, car les hypothèses que nous 
allons être obligé de faire ne sont que grossièrement approchées.

Supposons que nous connaissions le pas H de l’hélice, ou le pas 
relatif h (rapport du pas au diamètre).

On appelle vitesse fictive de l’hélice le produit nH. Pour le cas 
d’un hélicoïde géométrique, c’est la vitesse avec laquelle cet hélicoïde 
avancerait suivant son axe en se vissant dans un écrou solide.

On peut assimiler l’hélice à une surface qui s’appuie sur l’air à 
la façon d’un plan orthogonal, en frappant cet air avec une vitesse 
égale à la vitesse fictive.

Le travail exercé sur l’air, produit de la poussée par la vitesse de 
déplacement du point d’appui, est FnH.

Le travail réellement dépensé est T.
Le rendement de construction n sera le rapport :

F«H

Il est nécessairement inférieur à l’unité.
Comme ce n’est pas un vrai rendement, nous trouvons préférable 

de l’appeler rendement fictif.

Rendement fictif ou
rendement de
construction
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Remplaçant F et T par leurs valeurs, on a :

an’D’H CH a
15 9n3D5 5 PD 5s "

On pourrait introduire 1 dans les formules fondamentales et éli­
miner B; on obtiendrait :

H
 •

II II ss
s

1 w 6
La difficulté de définir exactement le pas dans une hélice matérielle 

dont l’une au moins des deux faces n’est pas un hélicoïde géométrique 
a parfois amené les expérimentateurs à constater un rendement 
supérieur à l’unité, ce qui est absurde. C’est ainsi que certains 
auteurs ont récemment trouvé des rendements allant jusqu'à 4,357.
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CHAPITRE X

L’H ÉLICOPTÈRE.

L'hélicoptère. — Poussée d’un système de deux hélices. — Maximum 
de poids utile élevé. — Influence de la translation.

L’hélicoptère est un appareil qui s’élève et se maintient dans l’air 
au moyen d’hélices sustentatrices.

Il a été inventé en 1784 (bien avant que Cayley n’ait conçu 
l’aéroplane), par Launay et Bienvenu, et réalisé par eux sous forme 
de jouet.

Mais la difficulté de construction croît avec les dimensions, en 
vertu de la loi des cubes, qui s’applique aux hélicoptères comme aux 
aéroplanes; de sorte que l’hélicoptère n’a été réalisé en grand 
qu’après l’aéroplane. En août 4 907, sur un hélicoptère à 4 hélices 
doubles de 81,10 de diamètre, muni d’un moteur de 45 chevaux, 
Louis Breguel a réussi à plusieurs reprises à s’enlever à lm,50 de 
hauteur. Les essais n’ont pas été poussés plus loin; il semble que 
la difficulté de gouverner un tel appareil soit très grande, car les 
gouvernails n’ont d’action que si l’appareil est en translation rapide ; 
ou alors il faudrait des gouvernails exigeant pour agir une dépense 
de travail, ce qui complique beaucoup la question. En outre, en cas 
de panne, l’hélicoptère n’a pas comme l’aéroplane l’avantage de se 
transformer en planeur à descente lente, et les pannes seraient très 
dangereuses. Ce sont ces difficultés, et non la difficulté de la 
sustentation pure et simple, qui paraissent être la pierre d’achop­
pement de l’hélicoptère.

Nous ne décrirons pas les diverses formes qu’on peut donner à un
19

Chapitre X.
L'hélicoptère
L'hélicoptère
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hélicoptère. On ne peut se contenter d’une seule hélice, car la 
réaction du couple moteur ferait tourner le bâti en sens inverse. Il 
faut au moins deux hélices. On peut fort bien concevoir qu’elles ne 
soient pas à axes exactement parallèles.

Pour la propulsion, on peut, soit avoir un système propulseur 
distinct, soit incliner simplement les hélices, de manière que leur 
traction soit oblique et possède une composante propulsive. Ce 
dernier système paraît plus simple.

Nous allons étudier quelques problèmes relatifs à l’hélicoptère. 
Nous supposerons que l’appareil comporte deux hélices. Nous appel­
lerons x leur diamètre, y la puissance du moteur en chevaux, r le 
rendement mécanique des transmissions (de sorte que le travail en 
kilogrammètres par seconde sur l’arbre des hélices sera 75 ry), q la 
qualité, c le coefficient de résistance orthogonale de l’air.

POUSSÉE D’UN SYSTÈME DE DEUX HÉLICES.

Appelons H cette poussée. Nous allons l’évaluer en fonction 
de x et y.

Rappelons les formules fondamentales de l’hélice :

| F=an*a (1)
T= AnAas (2)

d’où nous déduisons :
| H =2F = 2an2a* 
| T = 75ry = 2628g*

Eliminant n, on obtient de suite :

H3 = 2.75s. — „242y2

Si on introduit la qualité q, donnée par l’équation (8), on trouve 
finalement :

H3 = T. 75%. 4912. azy? (10)

Telle est la poussée en fonction de x et y.

Poussée d'un système
de deux hélices
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Si on pose, à l’exemple du colonel Renard :

8 C II 1 
> o 19

K
6 € io (11)

On obtient finalement :

&
 

%
II
a

(12)

MAXIMUM DE POIDS UTILE
ENLEVÉ PAR DES HÉLICES DE SUSTENTATION

Formule de Renard. — On sait que le colonel Renard, dans 
une communication célèbre à l’Académie des Sciences, le 23 
novembre 1903, a calculé le poids utile maximum que peuvent 
enlever deux hélices de sustentation. Il a trouvé les résultats ci- 
dessous, 2m étant le poids utile cherché, et st le poids du moteur par 
cheval (on admet que 5, est une constante) :

8, 
Poids par cheval.

%
Poids utile.

10k 
9* 
8% 
7* 
6* 
5*
4“ 
3k
2k 
1»

0,160 
0,302
04,612 
11,36 
34,44

10k,3
394,2

220%
2.506

160.000*

Rappelons que les hypothèses sur lesquelles se basait son calcul.
Soit 82 le poids d’une hélice de I mètre de diamètre capable de 

supporter une poussée de 40 kilos.

Maximum de poids
utile enlevé par des
hélices de sustentation
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Les hélices de diamètre x quelconque, construites d’une façon 
semblable, pèseront un poids p proportionnel au cube du diamètre :

p= 53 (13)

et pourront porter une charge 4 0 x2. Ces formules se justifient par la 
théorie de la résistance des matériaux et se vérifient par l’expérience. 
Fixer a priori à 40x2 la charge maximum portée par une hélice 
paraissait à Renard être une condition satisfaisante pour la pratique.

Si y est la puissance du moteur, la poussée H d’un système de 
deux hélices de diamètre x est exprimée par la formule (12) établie 
précédemment :

n =azyn (12)

a étant une constante.

Le poids utile z s’obtiendra en écrivant: 

poids utile = poussée — poids des hélices — poids du moteur.

z = aa8"y83 — 25,43 — s,y (14)

(Remarquonsque Renard comprend le bâti dans le poids utile).

En faisant le calcul, on trouve que le maximum % de % s’exprime 
par la formule :

_ 26 a
5 312 63603,2 (15)

C’est cette formule qui est traduite par le tableau ci-dessus. 
D’après les expériences de Renard, on avait 5, = 0,5 ; c’est-à-dire 
qu’une hélice de 1 mètre de diamètre capable de porter 1 0 kil. pèse 
500 gr. Le coefficient a est une donnée expérimentale, dépendantde 
la qualité des hélices et du rendement mécanique de l’appareil.

Pour le calcul de à (voir formule 11 ci-dessus), Renard admettait 
les valeurs suivantes :

q= 1,14 ç = 0,085 ?■ = 0,9

d’où on tire :

8 II co
 

co
 

O
U
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C’est au moyen de ces valeurs, que nous discuterons plus loin, que 
Renard a établi le tableau reproduit ci-dessus.

La formule (15) donne lieu aux remarques suivantes :

1° Il n’y a pas de maximum absolu pour le poids utile ; lorsque le 
poids du moteur par cheval décroît indéfiniment, le poids utile croît 
indéfiniment.

2° Quel que soit le poids du moteur par cheval, on peut toujours 
enlever un certain poids utile. Ainsi, avec un moteur pesant 50 kilos 
par cheval, on pourrait construire un hélicoptère capable d’enlever 
un certain poids, qui ne serait, il est vrai, que de I centigramme. 
Ceci montre, en passant, pourquoi le vol est si facile aux insectes.

2° Avec un moteur de 3 kilos et demi par cheval, on peut 
enlever un homme.

3° Avec un moteur de 2 kilos par cheval, on pourrait enlever des 
poids lourds, faire des transports en commun, etc.

Formule de Taffoureau. — Le 4er août 1904, Edgar Taffou- 
reau (1) a fait une remarque qui modifie le tableau de Renard. 
Renard a omis de tenir compte de la condition qui limite à 10x2 la 
charge que peut porter une hélice. On devra avoir pour les deux 
hélices :

H 4 20a (17)

et cette condition n’est pas remplie pour les trois derniers chiffres du 
tableau; le moteur serait bien capable de fournir la puissance néces­
saire, mais les hélices se rompraient sous la charge. En effectuant les 
calculs, on trouve que la formule (1 5) de Renard n’est valable que 
pour des moteurs pesant plus de 3 k. 9 par cheval. Pour des moteurs

(!) Comptes rendus de l'Académie des Sciences, voir aussi l’Aéronhile de 
juillet 1907.
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plus légers, on devra employer la formule de Taffoureau qui est 
obtenue en tenant compte de la condition (17). Cette formule est :

r /20 3/2)3
2“ 27022

ce qui modifie ainsi le tableau de Renard :

Poids par cheval.
Zm

Poids utile.

3 139k au lieu de 220k
2k 340* au lieu de 2.506%
1* 677% au lieu de 160.000k

Nos remarques de tout à l’heure se trouvent modifiées. Il y a main­
tenant un maximum absolu de poids utile enlevé. En effet, si on 
suppose que le poids du moteur devient nulle, la formule donne :

% = 1.185%

Ainsi, quelle que soit la légèreté du moteur et sa puissance, on ne 
pourrait jamais enlever de poids supérieur à 1.185 kil. Encore ce 
chiffre ne pourrait-il même pas être approché en pratique. Le problème 
des poids lourds serait théoriquement impossible. On voit l’impor­
tance qu’aurait ce résultat.

Ces formules ne donnent pas le poids utile maximum. — 
Or, les résultats ci-dessus ne peuvent pas être considérés comme des 
maxima maximorum, car ils contiennent une hypothèse arbitraire, 
celle qui fixe à 10x2 la charge portée par une hélice. Pourquoi ce 
coefficient fixe de 10 kil. plutôt que 5 ou 15 ou tout autre chiffre?

Avec les moteurs pesant plus de 3 k. 9 par cheval, les hélices 
n’ont pas à porter toute leur charge ; ne pourrait-on les construire 
plus légères ?

Au contraire, avec les moteurs pesant moins de 3 k. 9 par cheval,
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les hélices devraient pouvoir porter plus ; n’y aurait-il pas avantage 
à les construire plus fortes?

Autrement dit, ne faut-il pas construire les hélices en vue de la 
charge qu’elles auront à porter, ni plus ni moins ?

Effectivement, nous allons montrer qu’on peut ainsi améliorer 
beaucoup les résultats.

Laissons indéterminée la charge (que nous désignerons par B) 
portée par une hélice, et, au lieu de la fixer à 40 ÆS, remplaçons le 
chiffre 10 par un coefficient variable B :

B = 6a (19)

3 sera le coefficient de charge, ou charge d’une hélice de 1 mètre de 
diamètre. Nous calculerons B de manière à obtenir le meilleur résultat 
possible.

Il faut convenir d’une loi liant le poids 82 qui caractérise la famille 
d’hélices avec le coefficient de charge p. Naturellement les résultats 
dépendront de cette loi.

La première idée qui vient est celle de la proportionnalité, c’est-à- 
dire que le poids de l’hélice variera en proportion de la charge qu'elle 
doit porter. Cette hypothèse est la plus simple.

Est-elle légitime? Nous le croyons, à cause de la vérification sui­
vante. Supposons une hélice à 1 branches dont les branches ne se 
gênent pas mutuellement. Supprimons deux branches ; l'hélice portera 
deux fois moins, et pèsera aussi deux fois moins.

Sans doute, il ne serait pas bon de pousser les choses à l'extrême 
du côté de l’allégement des hélices, et de croire qu’on pourra cons­
truire des hélices de 4 0 m. de diamètre pesant 2 kilos sous prétexte 
qu’elles ont peu de charge à porter. A cause des chocs, des vents 
variables, des à-coups, il y a un minimum de solidité à exiger d’une 
hélice, et, dans les tableaux numériques qui vont suivre, les résultats 
qui correspondront à des coefficients de charge de moins de 2 à 3 
kilos n’ont guère d’intérêt. Mais il est clair qu 'il ne faut pas construire 
de la même façon une hélice qui doit porter 3 kilos de charge unitaire 
et une qui doit en porter 20 ou 50.
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Nous poserons donc pour exprimer cette proportionnalité :

Pa =A2 (20)

A étant un paramètre fixe qui ne dépend que de l’habileté du cons­
tructeur; sa signification s’obtient en faisant =1; c’est le poids 
de l’hélice de I mètre de diamètre capable de supporter une poussée 
de I kilo.

Calcul général. — Nous allons déterminer p par la condition que 
les hélices puissent supporter la poussée H que le moteur est capable 
de leur faire donner.

D’après (1 2), la poussée H qu’on peut obtenir est :

H = ^V^
La poussée que peuvent supporter les hélices est, d’après (I9) :

2B = 202

Égalant ces valeurs :

28.2 = aud”Fy8P
d'où on tire :

s =94-4 (21)

Le poids d’une hélice est alors :

p = 85,43 = A803 = 2 4 45/398/3 (22)

L’équation (1 4) qui donne le poids utile, devient : 

==aa8Py”—X”y-5 (23)

Cherchons le maximum 2m du poids utile % ; x et g étant variables, 
ce maximum s’obtient en annulant les dérivées partielles de 2 par 
rapport à x et à y.
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Annulons d’abord 2'2 :

% = 2 ao—inysp - 4 W^ - 0

24n_5)80 =0
2 - 5=0

2
85 5 (24)

Ce résultat très simple est extrêmement remarquable. Il peut 
s’exprimer ainsi :

THÉORÈME I. — l’hélice qui enlève le maximum de poids utile 
a un diamètre fixe, qui ne dépend que de à, c’est-à-dire du 
mode de construction employé; il est indépendant du poids à 
enlever, du poids du moteur par cheval, du rendement du 
moteur, de la qualité des hélices et de la résistance de l’air.

Sans doute, le résultat obtenu comme poids utile enlevé dépendra 
de ces diverses données, mais il est certain d’avance que le meilleur 
résultat possible sera obtenu avec des hélices ayant pour diamètre 
2
52

Dans l’application numérique faite par Renard, le poids d’une 
hélice de 4 mètre portant 40 kilos est de 0 k. 5, d'où en substituant 
dans l’équation (20) :

© 

1 10

telle est la valeur de ) pour les hélices de Renard. Il en résulte :

Les hélices devront avoir 8 mètres de diamètre. Il est intéressant
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de remarquer que les hélicoptères qui se sont enlevés (Breguet, 
Cornu) étaient voisins de cette donnée.

Annulons maintenant

z'y = Za(8n --- XPFhy" --- 6, =0

y-n---------- ' (25) 
. — aa2F (1 — Aa)

Substituant à x sa valeur tirée de (24), on obtient :

25 @3 
. 55 55,2*

Cette équation donne la puissance du moleur.
Portant les valeurs de x el y dans la valeur de 2 (formule 23) il 

vient enfin :

Telle est valeur du poids utile maximum cherché. On remarque de 
suite les deux théorèmes suivants :

Théorème II. — Le poids utile maximum enlevé par deux 
hélices est en raison inverse du carré du poids du moteur par 
cheval.

Rappelons que dans la formule de Renard (formule la) c’était la 
sixième puissance de % qui intervenait. Ensuite, comme d’après la 
formule (11 ) a3 est proportionnel à q qualité des hélices, on a :

Théorème III. — Le poids utile maximum enlevé par deux 
hélices est proportionnel à la qualité des hélices.

Dans la formule de Renard, le poids utile était proportionnel à a?, 
c’est-à-dire à q3. Il n’y a donc pas autant à gagner que le pensait 
Renard à améliorer la qualité des hélices.
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Si 01 tend vers zéro, % augmente indéfiniment. Il n’y a donc pas 
de maximum absolu pour le poids utile, contrairement au résultat 
trouvé par Taffoureau, et il est théoriquement possible, en allégeant 
les moteurs, d’augmenter indéfiniment le poids utile enlevé.

La poussée totale, c’est-à-dire le poids total de l’appareil, s’obtient 
en remplaçant x et y par leurs valeurs dans la formule (4 2) :

25 03
1=5=5 (29)

Le poids II du moteur est donné par :

25 a3
1 =5= 50,4= =2*m (29)

Enfin, pour le poids des hélices, on trouve :

2‘ 43
1=51=,* =* (30>

d’où ce théorème :

Théorème IV. — Dans un système de deux fxlices enlevant le 
maximum de poids utile, le moteur entre pour les 2/5 du poids 
total, chaque hélice pour 1/5, et le poids utile pour 1/5.

Ces rapports fixes entre le poids des diverses parties de l'appareil 
sont extrêmement curieux.

Enfin, le coefficient de charge B s’obtient au moyen de l’équation 
(21):

2 @3 
=5 2 (31)

On voit que le coefficient de charge fi ne doit pas rester constant ; 
il doit varier en raison inverse du carré de 5:

Par contre, il ne dépend pas de X.
Comme le diamètre des hélices reste constant, le coefficient de
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charge B varie évidemment en raison directe du poids total, et par 
suite, en raison directe du poids utile à enlever.

Application numérique.
Renard, on obtient :

Avec les données numériques de
& II co
 

=
1419

Zm — - 0512

2838
y = 0,8

T • 185il

Dans le tableau suivant, nous avons inscrit les valeurs de 2m pour 
les diverses valeurs de a envisagées par Renard ; de plus, nous y avons 
inscrit les puissances nécessaires, et les coefficients de charge, qui 
sont, comme on le verra, bien différents de 10 kilos.

a
Poids par cheval.

E
Poids utile.

y
Puissance.

s
Coefficient de charge.

10k 14,2 2,3 chx 0%, 47
9* 17*, 5 3,9 » 08,68
8* 228,2 5,5 » 04,86
7* 29* 8,2 » 18,13
6* 33^,4 13.1 » 11,56
5* 564,8 22,7 » 2,23
4k 88k,7 44 » 34,5
3* 158% 105 » 64,2
2k 355% 355 .» 34,9
1* 1.4 9k 2.838 » 556,4

Les valeurs de 2m qui figurent dans ce tableau sont notablement 
plus grandes que celles obtenues par Renard et Taffoureau.

Le graphique ci-après en rend compte (fig. 4 38).
Notre courbe est tangente à celle de Taffoureau au point qui 

correspond à 5, ==2 k. 35.
C’est précisément la valeur pour laquelle s est égala 4 0 k.
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On voit qu’on peut enlever un homme avec un moteur de 4 k. 
par cheval.

100 .

so“ 
40 
301 
20
10 
$.

1*

Fig. 138. — Courbe des poids utiles, en fonction du poids 
du moteur par cheval.
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-------- ----- - Formule de Renard, valable de A en B 
--------------- Formule de Taffoureau, valable de B en C. 
---------------  Formule de A. Sée.

Examen des coefficients numériques. — Tous les chiffres qui 
précèdent sont établis en partant des données numériques admises 
par Renard en 1903. Les choses ont avancé depuis, et il y a lieu de 
voir si ces données ne doivent pas être modifiées.

Renard admettait 5==0 k. 500. Or, moins d’un an plus tard (I),

(1) Renard, sur un nouveau mode de construction des hélices aériennes, 
Comptes rendus de l'Académie des Sciences, 7 novembre 1904.

Fig. 138. Courbe des
poids utiles, en
fonction du poids du
moteur par cheval
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Renard lui-même annonce qu’il a construit des hélices de 2 m. 50 
de diamètre, tout aussi solides et ne pesant que 3 kilos, et qu’il est 
certain d'arriver à mieux. Avec de telles hélices, 5, est réduit à 
0 k. 192, et le coefficient 8 devient égal à - au lieu de 1.

Les poids utiles, qui dépendent du carré de X, se trouvent multi 
(52)2pliés par 20 ou exactement par 6,78.

Le diamètre — des hélices devient égal à 20 m. 83. Nous ne 

disons pas que ce serait très commode à réaliser, mais il est 
entendu que nous faisons de la théorie. Nous y reviendrons tout à 
l’heure.

Reste à examiner le coefficient a, qui, comme nous l’avons dit, est 
donné par la formule (11) :

$ 50 II 
w

l a o 1 g io

1.752 est un nombre fixe.

q est la qualité des hélices. Renard avait obtenu q= 1 ,1 4.

On a fait mieux depuis; M. Chauvière est arrivé à construire des 
hélices dont la qualité est 2,22.

Pour le rendement des transmissions, on peut conserver le chiffre 
de 0,9.

Dans ces conditions, a, qui varie comme 413, devient égal à 44 au 
lieu de 8,85.

En définitive, on obtient :

® = 20 m. 83

18600 37200 108
50,2 = 65 = 65,2
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d’où le tableau suivant :

6, 
Kilos.

%
Kilos.

y 
Chevaux.

s

Kilos.

14 95 13 0,4
13 110 • 17 0,5
12 129 20 0,6
11 153 28 0,8
10 186 37 1,1
9 230 52 1,3
8 292 72 1,7
7 380 108 2,2
6 520 173 3

750 300 4,3
4 1.160 580 6,8
3 2.100 1.380 12
2 4.650 4.650 27
1 18.600 37.200 108

Si nos hypothèses sont justes, ces résultats montrent qu’on pour­
rait théoriquement enlever un homme avec un moteur pesant 14 kil. 
par cheval.

Mais l’invraisemblance des hélices de 20 mètres nous arrête. Nous 
préférons nous en tenir aux hélices de 8 mètres qui sont pratiquement 
réalisables, et nous allons traiter le nouveau problème suivant, qui 
aura un intérêt plus immédiat :

Quel est le poids utile maximum qu'on peut enlever avec 
deux hélices de 8 mètres de diamètre ?

Pour le résoudre nous n’avons qu’à remplacer a par 8m., Xpar = 

et a par 44 dans la formule (25); il vient:

%

s
II

El

2. 11. 4. 0,85 
6

d’où :
15500

= 85,8 (32)
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Pour la poussée totale, on aura :

H = aa2y2P3 = 4ay23 = 44,23

et en substituant la valeur des y tirée de (32) :

Pour le poids des hélices, on a par l’équation (22) : 

. 500 42502p = )axy =----- — (34)

Enfin, on a pour le poids utile x:

TT27400 4250 15500 7800
=1-2—01 = -2-------—2-------— = -01* 01* 01- 01-

D’où le tableau suivant :

6, 
Kilos.

%
Kilos.

y 
Chevaux.

10 78 16
9 97 21
8 120 31
7 160 45
6 215 72
5 310 124
4 485 243
3 860 580
2 1.950 .950
1 7.750 15.500

Nous en tirerons la conclusion pratique suivante :

Avec deux hélices de 8 mètres de diamètre, on peut enlever un 
homme avec un moteur de -16 HP, pesant 10 k, par cheval.
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Deux remarques s’imposent:

La première est que les résultats trouvés pour les hélicoptères sont 
exactement de même forme que ceux que nous avons trouvés précé­
demment pour les aéroplanes.

La seconde est que les hélicoptères ne sont pas moins économiques 
que les aéroplanes comme puissance motrice nécessaire, contrai­
rement à une opinion courante qui veut que les hélicoptères gaspillent 
la force motrice.

Influence de la translation.. — Tout ce qui précède concerne 
des hélicoptères immobiles dans l’air, sans translation. Dans le cas 
d'une translation plus ou moins rapide, qu’arrivera-il ? Beaucoup 
d’auteurs ont supposé, a priori, que les hélices travailleraient mal. 
Or, c’est une erreur; la théorie et l’expérience sont d’accord pour 
constater que la translation améliore beaucoup la qualité portante des 
hélices sustentatrices. Les expériences de l’institut de Koutchino ont 
montré que, dans un courant d’air latéral d’une vitesse de 6 m., 
l’hélice essayée avait sa qualité portante quadruplée.

Le même phénomène existe nécessairement pour les grandes hélices 
des hélicoptères, dans une proportion que des expériences futures 
nous apprendront sans doute.

Ce qu’il faut retenir pour le moment, c’est que les maxima 
maximorum calculés ci-dessus seront encore notablement augmentés 
dans le cas de la translation, ou dans le cas d’un courant d’air 
latéral.

Tel appareil qui, en air calme, ne pourra pas s’enlever, s’enlèvera 
facilement lorsqu’il y aura un vent de quelques mètres à la seconde, 
ou lorsqu’il aura par un moyen quelconque acquis une certaine 
vitesse de translation.

Par contre, un hélicoptère qui se sera enlevé péniblement sur place 
sera fortement allégé dès qu’il aura acquis un peu de vitesse, et se 
trouvera en possession d’un excédent de puissance qui lui permettra 

20

Influence de la
translation
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une translation rapide. Cette translation pourra être obtenue par 
inclinaison des hélices.

Comme la puissance nécessaire au vol diminue lorsque l'appareil 
acquiert de la vitesse, il y a nécessairement une vitesse de moindre 
puissance, ni plus ni moins que pour les aéroplanes.

Mais nous n’avons, jusqu’à présent, aucune base pour la calculer.

Passé cette vitesse, le travail augmente sans limites.



I § I

CHAPITRE XI

L’HELICE PROPULSIVE.

Limite de rendement. — Tentatives de théorie (Fronde, Arnoux, Ferber, 
Legrand, Drzewiecki). — Expériences de Riabouchinsky. — Théorie 
générale des hélices propulsives. — Rendement. — Hélice optima. — 
Travail dépensé par un aéroplane, en tenant compte du rendement de 
l’hélice.

On considère une hélice qui se déplace parallèlement à son axe à 
la vitesse de translation V.

Les expériences de M. Flamm montrent que la forme de la veine 
fluide au voisinage de l’hélice est analogue à celle qui a lieu pour 
l’hélice au point fixe.

L’hélice au point fixe est. en somme, un cas particulier de l’hélice 
propulsive, cas où la vitesse de translation est nulle.

On considère, comme pour l’hélice au point fixe, le pas II et la 
vitesse fictive nH, vitesse à laquelle l’hélice avancerait si elle pouvait 
se visser dans un écrou solide.

V
On nomme avance par tour le rapport —, et rendement pro-

pulsif le rapport NH entre la vitesse réelle et la vitesse fictive.

La différence nH — V entre la vitesse fictive et la vitesse réelle 
s’appelle recul absolu.

On appelle recul relatif, ou simplement recul, le rapport
MH—V , V , .
---- — — ou 1------ —; on le désigne par r.nH nH S

Toutes ces définitions ne sont précises qu’autant qu’on a pu 
définir exactement le pas.

Chapitre XI. L'hélice
propulsive
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LIMITE DE RENDEMENT.

Le rendement est le rapport du travail utile au travail moteur.
Le travail utile est le produit de la poussée par la vitesse de 

translation ; il n’est pas nul comme dans le cas de l’hélice susten- 
tatrice.

M. Drzewiecki (1) et ensuite M. Louis Breguet (2) ont montré 
qu’il existe un maximum de rendement.

Considérons un élément m de l’hélice (Fig. 439). Il est animé 
d’une vitesse U résultant de la

Rendement d’un élément d’hélice.
Fig. 139.

*

V.

R .

vitesse de translation V et de la 
vitesse de rotation W de l’élément 
autour de l’axe.

8 est l’angle de la vitesse mU 
avec mW.

L’élément reçoit de l’air une 
réaction R qui fait un angle € avec 
la perpendiculaire à mU, et qui a 
pour composantes F suivant l’axe 
et H suivant la direction de W.
F est la poussée ; H est la résistance 

que le couple moteur doit vaincre.
Remarquons, pour être complet, que R a peut-être une troisième 

composante dirigée suivant le rayon du point m, mais elle est faible 
et on peut la négliger, car, perpendiculaire à la vitesse V comme a la 
vitesse W, elle ne prend part ni au travail utile ni au travail moteur.

Le travail utile est FV. Le travail moteur est HW.

(1) Drzewiecki, Des hélices propulsives, Paris 1892, et Assoc. technique mari- 
time, 1892, 1900, 1901, 1903.

(2) Breguet, Sur le rendement des hélices de propulsion dans l’air, Comptes 
rendus de l'Acad. des Sciences, 20 janvier 1908.

Limite de rendement
Fig. 139. Rendement
d'un élément d'hélice
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On a :

F = R cos (s + s) 
H = R sin (B + s)

V= Wtgs

Le rendement P est donné par :

FV R cos (p +s) Wtg 8 - cos (8 +e) tg 8
PS HW5 R sin (p + s) W 5 sin ( + s)

Telle est la valeur du rendement. On voit que, pour une valeur 
donnée de ,3, 9 est d’autant plus voisin de la limite 4 que € est 
plus petit.

Il y a donc intérêt à rendre s aussi petit que possible.
€ est l’angle que fait la réaction avec la normale à la vitesse de 

l’élément considéré. Cet anglea un minimum. Si l’élément était une 
surface d’aéroplane, ce minimum serait précisément celui qui 
correspond à la moindre traction ; le problème présente des analogies.

On ne peut pas déterminer théoriquement ce minimum. M. Louis 
Breguet l’a mesuré expérimentalement, au moyen d’ailes à inclinaison 
variable, et il a trouvé des angles s compris entre 6 et 10°. L’angle 
de 6° peut être considéré comme pratiquement très bon et difficile à 
améliorer.

L’angle € étant fixé, cherchons, au moyen de l'équation (4), la 
valeur de 3 qui rend P maximum.

Il suffit d’annuler la dérivée de p par rapport à 3; on trouve 
facilement :

sin 2 , = sin2 (p + a)

D’où deux solutions :

p = p -|- e (solution à supprimer)
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et :

on 
+

 9- 
Q#II&

E. S
B =---------------  == 450 ------ —

Comme € est voisin de 6°, B doit être voisin de 42°. Ainsi B doi 
être très voisin de 45°; et comme l’angle d’attaque de l'élément est 
certainement très petit, il en résulte que l’élément d’hélice est à peu 
près incliné à 450 sur l'axe.

On peut en déduire une approximation pour le pas optimum. Si 
on admet que la partie de l’aile située aux 3/4 du rayon est la plus 
active et si cette partie est inclinée à 45° sur l'axe, le pas sera 
2- X 3 R ou environ 2,35 D.

Ainsi les hélices propulsives à rendement optimum devront avoir 
un très grand pas, voisin du double du diamètre. Par suite, elles 
devront tourner lentement. Il est intéressant de remarquer que les 
aéroplanes Wright, qui ont le meilleur rendement, ont aussi les 
hélices les plus lentes.

Les hélices à grande vitesse et à petit pas sont très employées à 
cause des facilités de la prise directe, mais c’est au détriment du 
rendement.

Pour e - 6° et pour 3 =: 42°, conditions du maximum de rende­
ment, le rendement P de l’élément, d’après la formule (4), est 0,81.

Si l’hélice était limitée à cet élément (ce qui théoriquement n’est 
pas impossible, car on pourrait réduire les pales à une très petite 
portion de surface ; on aurait un bon rendement, mais on devrait se 
contenter d’une poussée très faible, et ce ne serait pas intéressant) 
le rendement de l’hélice serait exactement 0.81.

Mais, pour les parties de l’aile plus rapprochées ou plus éloignées 
de l'axe, l’inclinaison 3 augmente ou diminue, et le rendement n’est 
plus maximum. Heureusement, si on construit la courbe de p en 
fonction de 3 définie par l’équation (1), on constate que P varie très
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lentement aux environs du maximum. Cette courbe est donnée, 
fig. 140, pour le cas de s = 6°. On voit que le rendement varie très 
peu entre B = 25° et= 60°, et que pour les limites de cet inter­
valle, il est encore voisin de 0,8.

Sans vouloir chercher sa valeur moyenne pour la surface totale 
de l’aile au moyen d’une intégration, ce qui serait une méthode qu’on

n’a pas le droit d’appliquer, on peu 
voir que le rendement global de 
l’aile sera très voisin de 0,8. Comme 
3 peut varier de 25° à 60°, la partie 
utile de l’aile aura pour longueur 
les 35/60 du rayon, soit environ 
les trois cinquièmes. Il n’est pas 
intéressant de faire travailller la 
partie comprise entre l’axe et les 2/5

90

2 2
° ' 0 2 & % 5 % 8

Fis. 140. — Courbe du rendement 
en fonction de l'inclinaison de l'élé- 
ment. i idu rayon. Dans les conditions ci- 
dessus, l'hélice aura un pas à peu près égal à 1.5 D.

La valeur 6° pour l'angle e doit être un minimum difficile h 
obtenir ; pour les diverses valeurs de e pratiquement réalisables on 
obtiendra de même, comme rendement global approximatif:00
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Tels sont les rendements qu’on peut espérer obtenir avec de 
bonnes hélices bien employées.

TENTATIVES DE THÉORIE 
DE L’HÉLICE PROPULSIVE.

Le problème fondamental de la théorie de l’hélice propulsive 
consiste à exprimer la poussée F et la puissance motrice T en fonction 
du diamètre D, de la vitesse de rotation n et de la vitesse de trans­
lation V.

Tentatives de théorie
de l'hélice propulsive

Fig. 140. Courbe du
rendement en fonction
de l'inclinaison de
l'élément
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Jusqu'ici ce problème n’a pas été résolu, et les essais faits ont été 
infructueux. Nous donnerons ci-après une théorie nouvelle que 
nous croyons bonne.

Quelles sont les raisons de ces insuccès ? Nous en voyons quatre :

10 L’extrême difficulté de l’expérimentation. Mesurer méthodi­
quement la poussée et le travail d’une hélice dans un courant d’air 
uniforme de vitesse connue exige un rare talent d’expérimentateur. 
M. Riabouchinsky est le seul qui y soit parvenu.

2° La grande incertitude qui résulte de l'absence d’une définition 
précise du pas. Cette incertitude empêche de voir apparaître les lois 
simples du phénomène.

3° L’existence d’un phénomène accessoire qui masque en partie 
l’allure de la loi.

4° L’idée préconçue d'introduire le recul dans les formules. En 
réalité, ce paramètre n’y entre pas sous une forme simple.

Disons quelques mots des principales théories proposées jusqu’ici.

FORMULE DE M. FROUDE (1)

M. Froude admet la formule :

F = an2 — in

a et b étant des expressions qui dépendent de la vitesse V, et qui 
sont constants si V ne varie pas. Montrons que cette formule se 
ramène à celle de M. Arnoux dont nous parlons plus loin. P s’annule 
pour une certaine vitesse de rotation % telle que :

an,2 — bng = 5

d’où :
b = an.

(1) Froude, Naval Architects, 1886 et 1908.

Formule de M. Froude
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Quand la poussée est nulle, c’est que l’avance par tour est égale 
au pas ; on a donc :

V
H= —

%0

d’où :

par suite, on a :
FI

A
= II S

et2GII

C’est la formule de M. Arnoux.

FORMULE DE M. ARNOUX (1).

M. René Arnoux a trouvé expérimentalement que la poussée est 
fonction sensiblement linéaire de V, et qu’on peut écrire :

/ V)F = an2 (1-----—)
K AH/

, vOu encore, en introduisant le recul ? qui est égal à 1------ — :T. nH

F = an2r

Les expériences certainement plus précises et plus complètes de 
M. Riabouchinsky ne corroborent pas cette formule. Du reste, il est 
facile de voir qu’elle ne peut pas être exacte; si, en effet, on fait 
n == 0 on trouve F ~ 0. C’est-à-dire que si l’hélice ne tourne pas, 
elle peut se déplacer dans l'air à une vitesse quelconque sans subir

(1) René Arnoux, Force et puissance de propulsion des hélices aériennes, 
Comptes rendus de l'Ac. des Sciences, 22 février 1909.

Formule de M. Arnoux
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aucune poussée, ce qui est inadmissible. Dans la formule que nous 
donnerons plus loin, nous trouvons, dans le cas en question, une 
poussée proportionnelle au carré de la vitesse, ce qui est logique.

FORMULE DE FERBER (1).

Le capitaine Ferber a proposé les formules suivantes :

F = h (ar — «') n2 D-
T = (h2 Br + 6) #3 D5

formules dans lesquelles le diamètre est en évidence et qui, pour 
7 — I (cas de l’hélice au point fixe) comprennent comme cas parti­
culier celles du colonel Renard. Ferber a obtenu ces formules par la 
méthode analytique et par une intégration, ce qui, comme nous 
l’avons expliqué, est illégitime. De plus, il suppose que la pale 
d’hélice est à pas constant, ce qui enlève au problème sa généralité.

Du reste, ces formules prêtent à la même objection que nous avons 
faite à celle de M. Arnoux.

FORMULE DE M. LEGRAND (2).

M. Legrand arrive par des considérations théoriques à la formule 
suivante :

H
 

II 2 iv
 1 w
o 8

, Vqu on peut, en remplaçant le recul " par sa valeur 1 — WHi 

écrire sous la forme :

F-an D(1----- ") 
\ AH/ 

(!) Ferber, L’Aviation, Paris 1909.
(2) J. Legrand, Nouvelles formules pour le calcul des hélices nautiques, 

Assoc. technique.maritime, mai 1910.

Formule de FerberFormule de M. Legrand



I oo
 

C
> I

M. Legrand a lui-mème vérifié que sa formule ne concorde pas 
avec l’expérience. Il a essayé empiriquement de l’améliorer en 
adoptant des exposants fractionnaires, dont la présence semble assez 
difficile à admettre.

THÉORIE DE M. DRZEWIECKI (1).

M. Drzewiecki a indiqué des règles pour la construction des 
hélices, et une formule de la puissance motrice F qui est la 
suivante :

F = an2,1 Vo,° D4,1

Ces règles et cette formule, basées sur des considérations purement 
théoriques, ne sont pas exactes, et M. Riabouchinsky a montré (2) 
qu’elles conduisent à des courbes représentatives qui n’ont aucune 
ressemblance avec les courbes expérimentales. Aussi n’y insis­
terions-nous pas, si M. Drzewiecki, par une singulière illusion, ne 
prétendait que sa méthode est absolument rigoureuse et ne fait appel 
à aucune hypothèse.

Rappelons brièvement que :
On n’a pas le droit d’admettre que l’air est préalablement au 

repos, c’est contraire aux faits.
On n’a pas le droit d’appliquer la formule des plans minces, parce 

que l’air arrive avec une vitesse qui n’est pas contenu dans le plan 
de symétrie de l’élément, et aussi parce que le mouvement de la pale 
n’est pas une translation rectiligne et de vitesse uniforme.

Il n’y a pas de raison pour supposer la face inférieure à section 
rectiligne.

L’angle d’attaque défini par cette face inférieure n'est pas Celui 
qui doit figurer dans les formules de la réaction.

(1) Drzewiecki, Des hélices propulsives, Paris 1892, et Assoc. technique mari- 
time, 1892, 1900, 1901, 1910.

(2) Bull. Inst, aérodyn. de Koutchino, fasc. 11. 1909, p. 76 à 78.

Formule de M.
Drzewiecki
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On n’a pas le droit d’intégrer, parce que la réaction sur un élément 
n’est pas indépendante des éléments voisins.

La formule de Duchemin n’est pas applicable aux petits angles, 
ainsi que Duchemin l’a montré lui-même.

En outre, il est absurde de donner aux pales une largeur constante, 
sans autre prétexte que celui-ci : « comme pratiquement toutes les 
formes se valent, il est préférable de choisir la plus simple d’entre 
elles et qui se prête le plus facilement au calcul (sic). »

La théorie des hélices propulsives reste donc à faire.
M. Riabouchinsky a établi empiriquement des formules qui 

résument ses expériences très complètes et très méthodiques, et qui 
les traduisent d’une façon remarquablement exacte. Nous avons pu, 
par un raisonnement théorique, justifier la forme de ces formules ; 
dès lors, il est légitime de les considérer comme générales, et d’en 
faire la base de la théorie générale des hélices propulsives.

EXPÉRIENCES DE M. RIABOUCHINSKY.

Ces expériences (1) sont les plus complètes et les plus exactes qu’on 
ait faites sur les hélices propulsives. Tous ceux qui voudront 
approfondir la question devront étudier en détail les chiffres obtenus 
et les courbes qui les résument.

Elles ont été faites sur des hélices de 0m,30 de diamètre et ayant 
des pas relatifs égaux à :

0 (secteur plat) ; 0,25; 0,5; 1; 2 et 3

Les hélices étaient à deux pales avec un angle au centre de 48° 
(fraction de pas 4/1 0).

Ces hélices étaient placées dans le tube de l’Institut de Koutchino, 
et recevaient un courant d’air axial dont la vitesse V variait de 
0 à 6 mètres.

(1) Bull. Inst, aérodyn. de Koutchino, fasc. II, 1909, p. 75 à 95.

Expériences de
Riabouchinsky



I 0
I

On faisait tourner les hélices dans les deux sens, à des vitesses 
variant de — 42à + 49 tours par seconde, en passant par zéro.

On mesurait la poussée et le travail dépensé. Les résultats sont 
transcrits dans des tableaux et traduits par des courbes représentant 
la poussée pour une vitesse axiale donnée V et pour diverses valeurs 
de la vitesse de rotation N.

Ces courbes sont intéressantes à étudier.
Tout d’abord pour le secteur plat (hélice de pas nul), nous retrou­

vons la courbe dont nous avons déjà parlé dans un chapitre précédent, 
courbe qui tend asymptotiquement vers la droite qui représente la 
poussée sur un disque plein (Fig. 141). Cette droite est représentée 
en pointillé. La figure 141 donne la courbe de la poussée pour 

diverses vitesses axiales, 

FIG. 141.
Poussée sur un secteur plat en rotation.

F

5
0

que, aux grandes vitesses de rotation

le secteur tournant dans 
les deux sens. Les pous­
sées sont considérées 
comme négatives, pour 
indiquer qu’elles s’exer­
cent en sens contraire du 
mouvement relatif de 
translation du secteur; 
elles sont retardatrices.

Considérons, parexem- 
ple, la courbe pour V == 
3m. On peut remarquer 
seules intéressantes en

aviation, la courbe est pratiquement confondue avec son asymptote 
qui correspond à la poussée sur un disque plein. Ce n’est qu’aux 
faibles vitesses, et spécialement pour n = 0, que la courbe présente 
une pointe, uneanomalie. Pour n=0 il y a un minimum ; la poussée 
est réduite précisément dans le rapport de la fraction de pas, c’est-à- 
dire qu’ici elle est réduite au 4/10. Mais si la fraction de pas était 
égale à 1 (disque complet) la courbe ne serait autre que la droite 
asymptote ; elle ne présenterait pas de minimum. Ce minimum, cette

Fig. 141. Poussée sur
un secteur plat en
rotation
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FIG. 142. — Poussée d’une hélice 
dans un courant d’air axial.

pointe n’est donc pas une partie essentielle et intéressante de la 
courbe ; il ne résulte ni du diamètre, ni du pas, ni de la vitesse axiale, 
ni de la qualité des surfaces, mais seulement de la fraction de pas; 
et il ne faut pas y attacher une importance trop grande ni s’efforcer 
de le faire figurer dans les formules générales, car il n'existerait pas 
pour des secteurs (ou des hélices, comme nous allons le voir) ayant 
une fraction de pas suffisamment grande.

Les formules générales devront plutôt représenter ce qui est 
immuable dans la courbe, à savoir les parties qui se confondent avec 

l’asymptote.
Remarquons que, si on les assimile à leur asymptote, les 

courbes correspondant à V= 0, V= 3m, V ~ 4m,50, V = 6m, 
se déduisent l’une de l’autre 
par simple déplacement pa- 
ral lèlement à OF, c’est-à-dire 
par addition aux ordonnées 
d’unequantité indépendante 
den. Nous verrons ci-après 
que cette propriété se géné­
ralise pour les hélices.

Voyons maintenant les 
courbes obtenues expéri­
mentalement pourune hélice 
véritable, par exemple pour 
celle dont le pas relatif est 
égal à 4.

Pour V=0 (hélice au 
point fixe) nous devons, en 
faisant varier n, obtenir la 

courbe représentative de la formule du colonel Renard :

F= an2D

c’est-à-dire une parabole à deux branches égales de part et d’autre 

du point 0. Nous l’obtenons, en effet (Fig. 142). Seulement, pour

Fig. 142. Poussée
d'une hélice dans un
courant d'air axial
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tenir compte de ce que, quand n change de sens, la poussée change 
de sens, il est nécessaire de tracer les deux branches en sens opposé, 
l’une vers le haut l’autre vers le bas, ce qui déroute un peu au 
premier abord et change l’aspect bien connu de la parabole du second 
degré. Il y a là une particularité graphique intéressante.

Pour la vitesse axiale V == 3m, nous obtenons une courbe qui, 
dans son ensemble, paraît obtenue en abaissant la précédente paral­
lèlement à 0 F'. Et en effet, sauf dans la partie voisine de 0, l’étude 
des tableaux numériques montre que la différence d’ordonnée entre 
les courbes est remarquablement constante. Mais au voisinage du 
point 0, c’est-à-dire pour les faibles vitesses de rotation, la différence 
d’ordonnée se réduit environ au 1/10, et la courbe présente une 
anomalie, une pointe tout à fait analogue à celle dont nous avons 
parlé à propos du secteur plat. Il estclair que cette anomalie est causée 
également par la fraction de pas, et qu’il ne faut pas s’attacher à la 
retrouver dans les formules générales.

En résumé, la courbe pour V = 3m peut être considérée comme 
obtenue en abaissant la parabole F = an2D4 d’unequantité fixe. C’est 
donc aussi une parabole, avec une anomalie, laquelle du reste 
n’existerait pas pour une hélice à fraction de pas égale à 1.

Les mêmes remarques peuvent se faire sur toutes les courbes 
obtenues par M. Riabouchinsky.

Nous avons représenté sur la fig. 142, les courbes expérimentales 
en trait plein, et en pointillé les paraboles-asymptotes qui seraient les 
courbes elles-mêmes si la pointe centrale n’existait pas.

Les courbes tracées par M. Riabouchinsky lui ont, dit-il, « permis 
d’établir les formules empiriques suivantes :

T

A
HII 8 2 a 16

st$
•-----------*

6
-

II

et 
si 

Pm

où a et 3 sont les coefficients obtenus en faisant tourner l’hélice 
autour d’un point fixe, et mA la masse d’un mètre cube du milieu. » 

Sans rien changer à ces formules, nous introduisons le diamètre
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au lieu du rayon, conformément à nos notations précédentes, et nous 
faisons entrer *mA dans les coefficients a et B; les formules 
deviennent :

F*D(-*=) 0)

T= BD (1-M) (2)

Ces formules, que nous appellerons formules générales, repré­
sentent d’une façon très satisfaisante les courbes expérimentales, sauf 
dans la partie voisine de n ==0, ce à quoi nous devons nous attendre 
puisque la fraction de pas n’y est pas mise en évidence (4).

Nous remarquons que la poussée F est nulle lorsque V = RH, 
c’est-à-dire lorsque V est égale à la vitesse fictive, ou encore lorsque 
l'avance par tour est égale au pas.

Cela se vérifie très sensiblement dans les résultats expérimentaux 
de Riabouchinsky ; pas tout à fait cependant, et cela semble tenir à 
une erreur systématique due à ce fait que le pas a été déterminé a 
priori comme pas de construction.

Nous avons dit que cette détermination manque absolument de 
précision. Mais justement les formules ci-dessus nous donnent l’occa­
sion de définir le pas d’une façon précise. Le pas sera, par définition, 
la longueur dont l'hélice doit avancer par tour pour que la 
poussée soit nulle (2). Alors on a bien V = RH lorsque F == 0, et 
les formules (A) et (2) gagnent encore en rigueur.

(1) Il serait assez facile de mettre en facteur une fonction de n et de la fraction 
de pas qui rendrait les formules rigoureuses. Nous préférons nous en tenir, 
pour le moment, à la théorie simple ci-dessus; nous la compléterons dans une 
prochaine étude.

(2) On voit que le pas ne peut pas être considéré comme un élément de cons­
truction connu a priori, et qu’il ne peut être déterminé qu'expérimentalement, 
ce qui n’est pas sans présenter des difficultés. Mais c'est seulement à ce prix 
qu’on pourra sortir la théorie de son imprécision actuelle.

D’autre part, on pourrait aussi définir le pas au moyen de l’équation (2), comme 
étant la longueur dont l’hélice doit avancer par tour pour que le travail soit nul. 
On trouverait une valeur de H légèrement différente, à cause des frottements. C’est 
pour cela que la loi du rendement n’est pas exactement linéaire (voir page 328).
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On vérifie expérimentalement que le pas ainsi défini est indé­
pendant de n.

Comme les formules (4) et (2) sont basées sur des expériences très 
précises, comme d’autre part elles admettent comme cas particulier, 
pour V=0, les formules établies par le colonel Renard pour les 
hélices au point fixe, rien ne s’oppose à ce qu’on les prenne pour 
base de la théorie des hélices propulsives.

Mais elles ne sont données par M. Riabouchinsky que comme 
simples formules empiriques, et à ce titre leur généralisation et leur 
extrapolation seraient quelque peu hasardées. Nous allons montrer 
qu’on peut les établir a priori par des considérations théoriques.

THÉORIE GÉNÉRALE DES HÉLICES 
PROPULSIVES.

Si on cherche à se représenter sous une forme simple le mode 
d’action d'une hélice dans l’air, on est tenté d’assimiler l’hélice à un 
plan orthogonal de surface sinon égale, du moins proportionnelle au 
cercle balayé par l’hélice, chassant à travers lui un cylindre d’air avec 
la vitesse relative uniforme nH, et prenant point d’appui surl’inertie 
de l’air chassé.

Nous allons voir que cette assimilation permet de retrouver les 
formules de Riabouchinsky.

Considérons l’hélice comme immobile dans un courant d’air axial 
de vitesse V. Le travail effectué sur l’air, point d’appui fuyant, est 
FnH. Ce travail est employé à faire passer la masse d’air à la vitesse 
NH, mais en partant de la vitesse V qu’elle possède déjà.

Calculons la masse de l’air chassé. La section de la veine fluide 
est bD2, b étant un paramètre inconnu. Son volume par seconde 
est bD’nH.

Sa masse est —- —- BDZMH.
2 9 1A

Sa variation de force vive est —----- bD’nH (n‘H— V2).
2g

21

Théorie générale des
hélices propulsives
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Egalant cette valeur au travail FnH effectué, on obtient :

1 A BDZYH („*: — V2) = FH 

29 
d’où :

/ V* \F-- D'n-H? ( 1------— 
2g-------- \------n2H2)

et comme on a, d'après la définition du pas relatif, H — RD, on 
obtient :

IA / V» \F = - - MV-D* ( 1------- — .
2g ( »2H2/

En posant 2bh= %, on retrouve exactement la formule 

empirique (I).
Calculons maintenant le travail T dépensé.
Soit 7) le rendement, on a :

É

1 
'

6 EnhD 1 1 A , ( 
 =   bh3n3D5 ( 1 - 

% 71 2 9 V L 19 L

En posant , 2 $ bld = B, on retrouve exactement la formule 

empirique (2).
Remarquons que l’on a :

Ce rendement n’est donc pas autre chose que ce que nous avons 
appelé rendement de construction ou rendement fictifs propos 
des hélices au point fixe.

La reconstitution théorique des formules (4) et (2) est importante 
en ce qu’elle leur confère la généralité et qu’elle en légitime l’extra- 
polation. La théorie et l’expérience se complètent et se fortifient l’une 
l’autre ; l’expérience seule serait inapte à être généralisée ; la théorie
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seule, si elle n’était pas vérifiée par l’expérience, n’aurait aucune 
espèce de valeur.

Entendons-nous bien. Nous ne voulons pas dire que ce qui précède 
démontre l’exactitude de nos hypothèses, et que les choses se passent 
réellement comme nous avons tenté de nous les représenter. Il est au 
contraire certain que cette représentation est très inexacte. Mais nos 
hypothèses sont utiles par la raison que « tout se passe comme si elles 
étaient justes. «

N’oublions pas que la théorie ne prétend jamais à connaître la 
vraie nature des faits ; elle a pour but essentiel de constituer des 
hypothèses simples telles que, si elles étaient exactes, les choses se 
passeraient de la même façon. Cela suffit pour pouvoir appliquer aux 
faits les procédés du raisonnement et du calcul.

Nous considérons donc les formules générales (1) et (2), que nous 
rappelons :

■ - r=w(1-.%) 0 

1=p(1-.*:) (2)'

comme base de la théorie des hélices propulsives. Il ne reste plus 
qu’à déduire leurs conséquences.

Elles montrent d’abord qu’au point de vue des calculs de méca­
nique une hélice propulsive est complètement déterminée par quatre 
paramètresD, H, a et B.

Rappelons que l’hélice sustentatrice est définie par trois para­
mètres seulement. Les 4 paramètres de l’hélice propulsive sont: 
d’abord les trois paramètres de l’hélice sustentatrice, qu’on peut 
déterminer au point fixe ; et ensuite le pas, qu’on ne peut déterminer 
que sur une hélice dans un courant d’air axial.

Les formules (1) et (2) permettent de résoudre tous les problèmes 
relatifs à l’hélice propulsive. Connaissant l’action d’une hélice dans 
des circonstances déterminées, elles permettront de calculer son 
action dans toute autre circonstance.
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On pourra notamment résoudre les problèmes suivants : quelle est 
la poussée d’une hélice en translation à une vitesse donnée? Quelle 
sera la vitesse de translation d’une hélice dont on se donne d’avance 
la poussée et la vitesse de rotation? Quelle doit être la vitesse de 
rotation d’une hélice pour produire une poussée donnée à une vitesse 
donnée ? Etc.

Théorème. — La poussée est proportionnelle au couple 
moteur, quelles que soient les -vitesses de rotation et de pro­
pulsion.

T En effet le couple moteur C est égal à----- . 
2-w

Le rapport de la poussée au couple est donc :

F
C

3EC
i 

/—
—

 
_ 

1.1 
•

 
*1 ir

 
gaPT—

 

A%
 

11 
C

a 2m
6D

Ce rapport est bien constant.
Il reste le même si l’hélice est au point fixe; on pourra donc au 

point fixe mesurer expérimentalement le couple nécessaire poui 
obtenir une poussée donnée en marche.

On peut dans les formules générales mettre en évidence le recul r, 

qui est égal à 1-----— . On obtient:

F = an*D' (2r — 12)
T = B»3D= (2, — ,2).

Il nous paraît préférable de laisser en évidence la vitesse V, qui est 
une donnée primordiale du problème. 

La formule (!) peut se mettre sous la forme suivante:

V2F = an2D — «D‘ —

On voit que F se compose de deux termes, dont l’un est indé-
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FIG. 143. — Poussée d'une hélice 
dans un courant d’air axial.

&4

pendant de V et ne contient que n3, et l’autre est indépendant de n 
et ne contient que V2.

(1) Abstraction faite, bien entendu, de la petite déformation du centre de la 
courbe, due à la fraction de pas. Il est probable que cette déformation, qui n'est
qu'accessoire, a contribué à masquer aux yeux des expérimentateurs la simplicité 
de la loi.

Si V est constant, les courbes de F en fonction de n sont des 
paraboles toujours égales entre elles, et ayant une différence 
d’ordonnée constante. Cette différence d’ordonnées est égale à la

V2 
variation du terme «D1 -

Nous retrouvons bien la propriété constatée sur les courbes expé­
rimentales de Riabouchinsky (1).

Ces paraboles doivent être représentées avec leurs branches en 
sens opposé, comme nous 
l’avons dit. La formule ne le 
fait pas voir; cela résulte de 
ce que le terme an°D1, bien 
que ne contenant que des puis 
sances paires de n, change de 
sens en passant par ^ — 0 ; 
ce qui fait que la formule exacte 
serait en réalité :

F = ± an*D + JD Y

Si n est constant, les cour­
bes de F en fonction de V sont 
aussi des paraboles, représen­

tées sur la fig. 143; elles sont disposées d’une façon analogue aux 
courbes précédemment étudiées, et cela pour les mêmes raisons.

Soit C une de’ces courbes, correspondant par exemple à n = 10 
tours par seconde.

Fig. 143. Poussée
d'une hélice dans un
courant d'air axial
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La seule partie de la courbe qui soit intéressante pour l’aviation 
est celle pour laquelle V et F sont tous deux positifs.

La partie BD, où V est positif et F négatif, concerne le problème 
du moulin à vent.

TRAVAIL UTILE.

Le travail utile T„ produit par l’hélice est égal à FV.
Considérons une hélice qui tourne à une vitesse donnée n, et 

donnons-lui diverses vitesses de propulsion à partir de zéro.
Pour V = 0, le travail utile est nul.
Pour V == RH la poussée s’annule, le travail utile s’annule donc 

également.
Entre ces deux valeurs, le travail utile, partant de zéro pour 

revenir à zéro, doit passer par un maximum. Déterminons-le. On a :

T. =FV= ^D* (v- VS.) 
\ n2H2)

C’est une fonction du troisième degré.
Le maximum s’obtient en annulant la dérivée de T par rapport

à V. On obtient :

d’où

• ~
2

—
 

is
 J - 1S II

V = - AH = 0,577 AH
V3

BV d’où ce théorème:

Théorème. — Le maximum de 
travail utile a lieu lorsque la 

- i vitesse est égale à la vitesse fictive 
Fie. 144. — F Poussée, U Travail • '

utile, : Rendement propulsif. ... 1multipliee par-^.

La fig. 444 montre la courbe U représentative du travail utile, et 
son maximum.

Travail utile
Fig. 144. F Poussée, U
Travail utile, R
Rendement propulsif
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RENDEMENT PROPULSIF.

V
Le rendement propulsif est „HT que nous désignerons par G.

Lorsque V varie de 0 à RH, % varie linéairement de 0 à I, valeur 
qui est son maximum dans l’intervalle considéré. Sa variation est 
représentée par la droite O6 (fig. 4 44).

RENDEMENT.

Le rendement P est le rapport du travail utile au travail total 
dépensé.

Le travail utile est FV. Le travail dépensé est T Le rendement p 
est :

a»*D‘ (1----- —) V
FV \

P m 7 A ,1

Or on a: h=5i d’où:

Remplaçant D par cette valeur, on a :

0
s est le rendement de construction que nous avons appelé 7.

WF est le rendement propulsif que nous avons appelé Ç.

On a donc:

=* (4)
d’où ce théorème :

Théorème, — Le rendement est égal au produit du rendement 
de construction par le rendement propulsif.

Rendement propulsifRendement
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Le rendement de construction est une constante ; le rendement 
varie donc de la même manière que le rendement propulsif, suivant 
une loi linéaire en V, et il est maximum lorsque V=RH; sa valeur 
est alors égale à n. Mais à ce moment la poussée est nulle, et le 
travail utile également. Ce résultat est-il bien exact? Il est en contra­
diction avec la théorie de la limite de rendement que nous avons 
exposée ci-dessus; dans cette théorie, qui semble à l’abri de la 
critique, il existe un maximum de rendement pour une poussée qui 
n’est pas nulle. C’est celte théorie qui a raison. L’erreur vient de ce 
que la formule (2) du travail

T=p*(1-**)
néglige certainement un petit terme constant. Elle donne T=0 
pour V == RH, quel que soit N ; autrement dit quand l’hélice 
tourne sans donner de poussée, le travail dépensé serait nul, ce 
qui est impossible, car il y a toujours des frottements. La formule (2) 
est pourtant pratiquement exacte, puisqu’elle a été établie empiri­
quement par Riabouchinsky d’après ses expériences. Ce qui montre 
qu’une formule peut être suffisamment exacte pour donner la 
valeur d’une fonction sans être suffisamment exacte pour donner la 

position de ses maxima. En réalité, l’expérience montre que le 
rendement, un peu avant la vitesse V = n H, cesse de croître 
linéairement, passe par un maximum et retombe à zéro pour 
V=nH().

HELICE OPTIMA.

Nous allons étudier le problème suivant : on se donne la poussée 
et la vitesse de translation, déterminer l’hélice optima, c’est- 
à-dire celle qui dépensera le minimum de travail, ou encore qui 
aura le meilleur rendement. Pour cela, nous allons évaluer le

(1) Voir page 320, note (2).

Hélice optima
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travail T nécessaire, en fonction de F et V, en éliminant n2 entre les 
équations générales (î) et (2).

L’élîmination de n est facile, et on trouve comme résultat :

a3 D2 T a2 H*

(1) La même formule donnerait la solution du problème du moulin à vent,
mais dans ce cas (vitesse relative axiale supérieure à la vitesse fictive) la
poussée change de sens et doit être comptée comme négative ; les deux termes
sont de signes contraires. Mais c’est le problème de l’hélice réceptrice et non de
l’hélice propulsive.

ou, en introduisant, au lieu du pas H, le pas relatif h, qui est plus 
intéressant pour la discussion du problème puisqu’il reste constant 
pour une famille d’hélices semblables :

s= R38 TV: 5 
aa D * a2 ha

Telle est la formule du travail. Connaissant une hélice par ses 4 para­
mètres D a p h, et connaissant la poussée et la vitesse à obtenir, 
la formule (5) donne immédiatement le travail par seconde nécessaire.

D, %, B et h sont des paramètres donnés directement par l’expé­
rience; mais on peut simplifier la formule en employant un autre 
système de trois paramètres seulement, à savoir le diamètre D, la 
qualité q et le rendement de construction n. On a en effet:

a34 a
A= ----------- 71= ---- h

62, R9 B 
ce qui donne :

4 F3 F2V2
T=--------------------------- (6799 D- *

Le travail se compose de deux termes qui, dans les cas qui inté­
ressent l’aviation (vitesse comprise entre zéro et la vitesse fictive), 
sont positifs et s’ajoutent (4).

Le premier terme n’est autre que le carré du travail T, nécessaire
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dans le cas de l’hélice au point fixe pour obtenir la poussée F. D’où 
ce théorème qui peut être utile pour la pratique :

Théorème. — Le travail en propulsion est touiours supérieur 
au travail de la même hélice pour la même poussée au point 
fixe.

Dans le second terme, remarquons que FV est le travail utile T, 
qui est donné d’avance et indépendant de l’hélice. Le second terme

Test donc le carré de — , quantité qu’on pourrait appeler travail 

propulsif.
On peut donc énoncer le théorème suivant:

Théorème, — Le carré du travail en propulsion est égala la 
somme des carrés du travail au point fixe et du travail pro­
pulsif, ce que traduit l’équation suivante :

T 2T= T+—

Formule qui pourra également être utilisée en pratique ; si on 
connaît au moins approximativement 1, il suffira de déterminer le 
travail To au point fixe pour pouvoir calculer T.

L’hélice optima est celle pour laquelle le travail T sera minimum. 
Examinons l’équation (6). Comme D ne figure qu’au dénominateur, 
on voit de suite le théorème suivant :

Théorème, — Le travail est d’autant plus petit que le diamè­
tre est plus grand.

Il y a donc avantage à donner à l’hélice le plus grand diamètre 
possible. Lorsque D augmente indéfiniment, le travail T tend vers le

Ttravail propulsif— (4).

(1) Si on tient compte des frottements, on trouve qu’il y a un diamètre 
optimum qu'il n'y a pas intérêt à dépasser. Nous reviendrons sur ce point dans 
une prochaine étude.
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On adoptera le plus grand diamètre possible compatible avec les 
nécessités de la construction et de l’encombrement.

Le diamètre étant choisi, il reste à agir sur les autres paramètres.
Ici la théorie se trouve arrêtée, car ces paramètres ne sont pas 

indépendants, et on n’est pas maître de faire varier l’un sans modifier 
les autres. Tout ce qu’on peut dire, c’est que T2 est une fonction de 
ces paramètres définie par (5) ou (6) et qu’il faut, par tâtonnements, 
chercher à rendre cette fonction aussi petite que possible. Si on a à 
choisir entre plusieurs hélices dont on connaisse les paramètres a, B 
et h, ou 4 et A, on pourra immédiatement en appliquant les 
formules (5) et (6), savoir quelle sera l’hélice la plus économique. .

Rappelons que deux de ces paramètres, a et B, peuvent se 
mesurer sur l’hélice au point fixe.

Si on divise les deux membres de l’équation (6) par F2Y2, on 
obtient :

‘*1
 g- F 1V*D: 1+a

Le premier membre est l’inverse du carré du rendement P ; d’où :

W
H

II

*

€ 7 + 4- (7)

Cette formule (7) donne le rendement.
L’hélice optima est celle pour laquelle le second membre est le 

plus petit possible. Mais ce second membre est une fonction des
F

paramètres dans laquelle entre une expression V2D2 qui dépend des 

données du problème.
L’hélice n’aura donc pas un type optimum invariable.
Il n’y a donc pas une hélice propulsive optima, mais une infinité,

F 
correspondant à toutes les valeurs possibles de V2D2 • Chaque cas de 

la pratique demandera un type d’hélice différent.
F,

Si V2D2 est très grand, ce qui a lieu soit lorsque la poussée est très
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grande, soit lorsque la vitesse est très petite, soit lorsque le diamètre 
esttrès petit, le premier terme de a devient prépondérant, et le 

meilleur rendement a lieu lorsque q est le plus grand possible. Nous 
retrouvons la définition de l'hélice optima au point fixe, caractérisée 
par le maximum de la qualité. L’hélice optima au point fixe est donc 
un des types-limites de la série des hélices optima.

K
Si au contraire V2D2 est très petit, ce qui a lieu soit lorsque la 

poussée est faible, soit lorsque la vitesse est très grande, soit lorsque 
le diamètre est très grand, l’équation (7) se réduit à :

1 _ 1
P2 n2 

d’où :
e=T

L’hélice qui a le meilleur rendement de construction est donc 
l’autre type-limite de la série des hélices optima.

La série des hélices optima va de l’un à l’autre de ces deux 
types.

F
Quand V2D2 varie de zéro à l’infini, le rendement augmente 

depuis zéro jusqu’à n qui est sa limite supérieure.
FDans la pratique de l’aviation, on remarquera que le terme D2V2 

est toujours très petit (il reste compris entre 0,005 et 0,4) et que par 
suite le premier terme de ~ est très petit devant # . L’hélice optima 

se rapprochera donc beaucoup du type-limite qui correspond au 
meilleur rendement de construction n ; aussi ce dernier type pour­
rait-il être considéré plus particulièrement comme le type optimum 
de l’hélice propulsive.

Nous avons vu précédemment, à propos de la théorie de la limite 
de rendement, que ce type doit correspondre à un pas voisin de 2D. 
Il est probable aussi qu’il y a avantage à adopter une très grande 
fraction de pas, beaucoup plus grande qu’on ne le fait d’habitude.
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TRAVAIL DÉPENSÉ 
PAR UN AEROPLANE, EN TENANT COMPTE 

DU RENDEMENT DE L’HÉLIGE.

Nous avons vu, dans la théorie de l’aéroplane, que la traction 
nécessaire au vol, en fonction de la vitesse, est exprimée par :

P2
F = ksy: + KSV

Nous avons ensuite étudié le travail utile FV et cherché son 
minimum ; mais il est intéressant de connaître le travail réellement 
dépensé en tenantcompte du rendement de l’hélice. Nous n’avons qu'à 
appliquer la formule (6), en y remplaçant la poussée par la valeur 
ci-dessus. Nous obtenons:

r P2 12 r 4 / P2 x vs 1 KSV: + KSV [^ ( ksv: + KST2) + w (8)
Telle est la formule complète du travail.

Elle est de la forme :

a b 
T=+V+ aV6

La recherche du minimum de T dépend d’une équation du 
3e degré en V4 et qui n’a qu’une racine positive en V. Cette racine 
est la vitesse de moindre puissance dépensée.

Travail dépensé par un
aéroplane, en tenant
compte du rendement
de l'hélice
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CHAPITRE XII.

LA STABILITÉ.

Nature complexe du problème. — Principe de la stabilité. — Courbes 
m étacentriques. — Stabili té longi tudinale. — Stabilité latérale.—S tabilité 
de route. — Stabilité dynamique.

NATURE COMPLEXE DU PROBLÈME.

Nous serons très bref sur le chapitre de la stabilité. Pourtant il 
n’est guère de sujet plus complexe, plus inextricable. Il y a la stabilité 
longitudinale, la stabilité latérale et la stabilité de roule ; la stabilité 
en air calme et en air agité ; moteur en marche et moteur éteint ; la 
stabilité statique et la stabilité dynamique ; la stabilité automatique et 
la stabilité commandée ; la stabilité en ligne droite et en virage.

Quand on étudie la question successivement sous ses diverses 
faces, on arrive à des conclusions qui se contredisent, à des conditions 
qui s’excluent, et entre lesquelles il faut faire une cote mal taillée. 
Aussi ne peut-on pas, à proprement parler, traiter la question ; nous 
essayerons seulement de la situer, de montrer en quoi elle consiste 
et de quoi elle dépend.

Qu’est-ce que la stabilité ?
Considérons un aéroplane en équilibre, c’est-à-dire que, sous 

l’action des forces qui lui sont appliquées, son mouvement est une 
translation rectiligne et uniforme. Si on le dérange légèrement de sa 
position d’équilibre, trois cas peuvent se présenter :

S’il tend à revenir à sa position d’équilibre, on dit que l’équilibre 
est stable.

Chapitre XII. La
stabilité
Nature complexe du
problème
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S’il tend à s’en écarter de plus en plus, l’équilibre est instable.
S’il reste tel qu’on l’a placé, l’équilibre est indifférent.

Toute inclinaison de l’appareil peut se décomposer en trois rotations 
autour de trois axes rectangulaires, transversal, longitudinal et 
vertical. Ces trois rotations correspondent aux mouvements appelés 
langage, roulis et lacet. On est ainsi amené à envisager trois stabilités 
différentes, dites stabilité longitudinale, stabilité latérale et stabilité 
de route. Mais en réalité on sait que les décompositions de mouve­
ments ne sont pas légitimes en dynamique des fluides, ces trois 
stabilités ne sont pas indépendantes, et le problème général ne saurait 
être résolu ainsi par parties.

Si on se borne à envisager le cas de l’air calme, les trois stabilités 
sont faciles à réaliser, et on en connaît les moyens pratiques depuis 
nombre d’années (c’est ce qu’on appelle les trois V). On sait parfai­
tement faire un appareil inchavirable, possédant la stabilité statique. 
L’expression stabilité statique est du reste impropre, car dans la 
stabilité il n’intervient aucune force statique, mais seulement des 
forces dépendant du mouvement de l’appareil. Le terme de stabilité 
propre est meilleur, pour désigner la stabilité obtenue par la forme 
même de l’appareil.

Mais il faut, d’une part, que le pilote puisse facilement modifier à 
son gré la position d’équilibre pour changer d’allure ou pour virer ; 
il faut donc que cet équilibre ne soit pas trop stable.

D’autre part, en air agité, les réactions de l’air varient à chaque 
instant ; si l’équilibre est stable, à chaque saule de vent correspondra 
une nouvelle position d’équilibre que l’appareil tendra à prendre, et 
celui-ci sera ballotté et secoué d’autant plus énergiquement qu'il sera 
plus stable. Pour que l’appareil ne soit pas secoué, il faut que les 
sautes de vent ne tendent pas à modifier la position de l’appareil, 
donc il faut qu’il soit en équilibre indifférent, le pilote intervenant 
au besoin pour rétablir, à l’aide des organes des manœuvres, le 
stabilité compromise [stabilité commandée).

Voilà les contradictions qui apparaissent, et on est amené à se
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poser la question suivante : la stabilité propre est-elle une bonne 
chose, et faut-il la rechercher?

Les frères Wright, qui l’avaient d’abord adoptée, en ont ensuite 
reconnu les inconvénients et ont recherché l’équilibre indifférent, 
préférable dès que l’air est agité.

Un tricycle est en équilibre stable; mais une bicyclette est abso­
lument instable. Est-ce qu’on lui en fait un reproche? N’est-ce pas 
là, au contraire, le secret de sa docilité, de sa maniabilité, de son 
aisance dans les virages et sur les mauvaises routes?

En aviation, il semble qu’il faille rechercher un équilibre presque 
indifférent, à peine stable. Dans ces conditions l’appareil sera maniable 
et ne répondra qu’avec lenteur aux remous de vent.

Mais il faudra s’assurer si, dans toutes les positions possibles des 
organes de manœuvre, la stabilité subsiste, car une seule seconde 
d'instabilité peut provoquer la chute à pic.

PRINCIPE DE LA STABILITE.

Une erreur classique consiste à croire que la stabilité existe lorsque 
le centre de gravité est au-dessous du centre de poussée. Il n’en est 
rien; le centre de poussée se déplace suivant les inclinaisons de 
l’appareil, et n’est pas assimilable à une sorte de point d’attache fixe 
par lequel l’appareil serait suspendu. Le centre de poussée n’a rien 
à voir dans la question de stabilité (1); c’est le mélacentre qu’il faut 
considérer.

Réagissant contre celle tendance, beaucoup de théoriciens sont 
tombés dans l’excès contraire, et ont prétendu que la position du 
centre de gravité n’est également pour rien dans la stabilité. C’est 
encore une erreur, résultant d’une analyse trop superficielle des faits.

Pour quelle raison le centre de gravité intervient-il dans la stabilité ?

(1) Cette confusion figure plusieurs fois dans l’Aviation, de MM. Painlevé et 
Borel, pages 82 et 122.

Principe de la stabilité
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Une force peut toujours être remplacée par une force égale 
appliquée en un autre point, et un couple. Toute force agissant sur 
l’appareil peut être remplacée :

1° Par une forcé égale appliquée ’au centre de gravité et qui ne 
produira qu’un mouvement de translation sans rotation, parce que 
le centre de gravité est centre d’inertie;

2° Par un couple égal au moment de la forcé par rapport au 
centre de gravité. C’est ce moment seul qui tend à faire tourner le 
corps ; c’est lui seul qui est à considérer dans l’étude des rotations 
de l’appareil. Les forces qui, comme la pesanteur, passent par le 
centre de gravité, ne provoquent aucune rotation.

Ainsi le centre de gravité intervient non pas parce qu’il est le 
point d’application de la pesanteur, mais parce qu’il est centre 
d’inertie.

Supposons que l’appareil s’incline. Considérons, à ce moment, 
les forces qui agissent sur lui. La somme de leurs moments par 
rapport au centre de gravité tend à faire tourner l’appareil dans un 
certain sens. Si c’est en sens contraire de l’inclinaison prise, l’appareil 
est stable ; on dit que le moment résultant est redresseur. Si c’est 
dans le sens de l’accentuation de l’inclinaison, l’appareil est instable. 
Enfin, dans le cas le plus général, le moment résultant ne sera pas 
dans le plan du mouvement, de sorte qu’il introduira des perturba­
tions dans les autres équilibres. Par exemple, si l’appareil se met en 
travers par suite d'une perturbation de la stabilité de route, l’équi­
libre latéral sera également dérangé.

Quelles sont les forces en jeu ? Il faut distinguer : le poids, la force 
tractive et les réactions de l’air sur l’appareil (1).

Le poids passe toujours par le centre de gravité, son moment est 
toujours nul. On n’a donc pas à le faire intervenir. Ce n’est pas lui 
qui peut contribuer à redresser l’appareil.

(1) Nous supposons que l’inclinaison de l’appareil est lente, et qu’on peut 
négliger les forces d’inertie mises en jeu. Leur introduction compliquerait encore 
le problème.

22
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La force tractive, généralement due à l’hélice, peut, dans certains 
cas, avoir un moment nul, soit que son axe passe par le centre de 
gravité, soit que la traction soit nulle (descente avec moteur éteint). 
Mais lorsque l’appareil s’incline, l’axe de l’hélice n’est plus parallèle 
à la direction du mouvement, l’hélice est en propulsion oblique. Dans 
ces conditions, on ne peut pas admettre que la direction de la 
traction coïncide avec l’axe de l’hélice. Bien qu’on ne possède aucun 
résultat d’expérience faite sur une hélice en propulsion oblique, les 
expériences faites par M. Riabouchinsky sur une hélice dans un 
courant normal à l’axe (1) permettent d’affirmer que la poussée n’est 
plus ni parallèle à l’axe ni même concourante avec lui ; c’est une 
droite quelconque. Par suite, son moment par rapport au centre de 
gravité de l’appareil est absolument inconnu. Faute de données 
expérimentales, force nous est de n’en pas tenir compte.

Remarquons que, pour être complet, il faudrait tenir compte du 
couple dû à la rotation de l’hélice, et, éventuelle- 

RLAR ment, des effets gyroscopiques ; on peut du reste, 
\ par l’emploi de deux hélices, supprimer l’influence

MI de ces couples. •
\ En définitive, il ne nous reste donc qu'à envi- 
;i ) sager les réactions de l’air sur l’appareil, et le 

Cl 1 moment de ces réactions par rapport au centre
: degravité.

FIG. 145.— Stabilité. Considérons (fig. 145) un appareil S en équi­
libre. La résultante R des réactions de l’air passe 

par le .centre de gravité G. Supposons que l’appareil s’incline dans 
le sens de la flèche. Les conditions d’attaque de l’air varient. La 
réaction R change de position et change aussi légèrement de direc­
tion, elle devient R. (2). La réaction semble avoir tourné autour du 
point M qui, à la limite, est le métacentre. Dans la figure 445,

(1) Bull. Institut de Koutchino, fasc. II, 1909, pages 66 et suiv.
(2) Pour être tout à fait précis, il faudrait remarquer qu'en général les forces 

n’admettent pas une résultante unique. Mais il y a toujours un moment 
résultant. Nous envisagerons ce cas page 343.

Fig. 145. Stabilité
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nous avons supposé que R a tourné en sens inverse de l’appareil ; 
c’est le cas le plus habituel. On voit immédiatement sur la figure 
que le moment de R, par rapport à G sera redresseur si G est à 

C 
—

 
e

O
R
 7

FIG. 146.— Stabilité.

gauche de Ri, c’est-à-dire (puisque G est sur la 
droite R), si G est plus bas que le métacentre M. 
Donc, la condition de stabilité est que le centre 
de gravité soit plus bas que le métacentre.

Mais si Ri a tourné dans le même sens que 
l’appareil (fig. 146), on voit immédiatement sur 
la figure que le moment de R sera redresseur 
si G est plus haut que le métacentre M, et la 
condition de stabilité est que le centre de gravité 
soit plus haut que le métacentre. Ce cas n’est 

nullement paradoxal ; c’est le cas d’une surface plane attaquant 
l’air orthogonalement, par exemple tombant à plat comme un para­
chute. La surface tombe en oscillant de côté et d’autre, quel que 
soit l’abaissement du centre de gravité.

COURBES MÉTACENTRIQUES.

On voit que le problème de la stabilité exigerait la connaissance 
des courbes métacentriques.

Il est à souhaiter que l’expérimentation nous documente bientôt 
sur ces courbes. On peut cependant s’en faire une idée, dans la partie 
relative aux faibles incidences qui intéressent l’aviation, pour la 
stabilité longitudinale des surfaces planes, concaves et convexes. Les 
expériences faites sur la position et la direction de la réaction per­
mettent de tracer la branche utile de ces courbes (voir les figures 1 47, 
148 et 4 49).

Dans les trois cas la réaction tourne en sens inverse de l’appareil 
(ou bien, si c’est l’appareil qui reste immobile et l’air qui change de 
direction, la réaction tourne dans le même sens que l’air). Aussi la 
condition de stabilité est-elle que le centre de gravité soit plus bas 
que le métacentre.

83

Courbes
métacentriques
Fig. 146. Stabilité
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Sur la fig. 147, relative à un plan S attaquant l’air à faible

FIG. 147. 
Stabilité d'un plan.

8 So
ur
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incidence, la courbe part d’un point 0 
où elle est tangente au plan (4), s’élève, 
et se rapproche d’une asymptote figurée 
en trait fin (2).

On voit que dans la région A, située 
entre la courbe, l’asymptote et la partie 
00' du plan, tout point G admet deux 
tangentes à la courbe, une vers le haut, 
l’autre vers le bas. Donc, si le centre de 
gravité est dans la région A, il y a deux 
positions d’équilibre possibles, une stable 
et une instable.

On voit de même que, si le centre de 
gravité est dans la région C, il y aune 
seule position d’équilibre, qui est stable; 
dans la région B, une seule position, 
instable ; dans les régions D, aucune 
position d’équilibre possible. C’est ce que 
résume le tableau suivant:

I mücions POSITION D’ÉQUILIBRE I

stable instable

A 1 1
B 0 1
C 1 0
D 0 0

Ainsi les régions A et C sont seules admissibles.

(I) C’est un point de rebroussement.
(2) Cette asymptote est la position de la réaction lorsqu’elle est inclinée le 

plus en avant possible de la normale au plan. La courbe complète est représentée 
en pointillé léger.

Fig. 147. Stabilité d'un
plan
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Si le centre de gravité est sur le plan lui-même, il faut qu’il soit 
sur le segment 00'.

Sur la fig. 148 relative à une surface arquée concave, nous 
retrouvons les mêmes régions, mais disposées un peu autrement. Le 
tableau ci-dessus s’applique encore. La courbe traverse la surface, 
de sorte que, si le centre de gravité est sur la surface, il faut qu’il

Fig. 149FIG. 148.
Stabilité d'une surface concave. Stabilité d'une surface convexe. 

soit sur le segment 00‘ qui est très petit. En outre, chaque point de 
ce segment admet une position d’équilibre stable et une instable, et 
cette dernière, qui correspond à l’incidence la plus faible, est juste­
ment celle qui aurait chance de s'établir en aviation par suite des 
mouvements qu’on enseigne aux pilotes, ce qui constitue un danger. 
Màis si G était dans la région C, il n’y aurait aucun danger.

Enfin, sur la fig. 149 relative à une surface convexe, la courbe 
reste au-dessus de la surface. La région favorable C s’étend non 
seulement au-dessous de la surface, mais aussi en partie au-dessus. 
Tout l’avant de la surface à partir de O est dans la région C.

Ce dernier cas paraît s’appliquer aussi aux surfaces à courbure en 
S, qui à tous égards, ainsi que nous l'avons dit, semblent préférables 
aux surfaces arquées simples.

STABILITÉ LONGITUDINALE.

En pratique le centre de gravité est très rapproché de la surface (ou 
du centre de poussée, s’ily a plusieurs plans superposés) l’expérience

Stabilité longitudinale
Fig. 148. Stabilité d'une
surface
Fig. 149. Stabilité d'une
surface convexe



I

3
I

ayant montré que le centre de gravité trop bas provoque des oscilla­

tions pendulaires.

Ce qui précède montre que la stabilité longitudinale n’est satisfai­
sante que dans le cas d’une surface convexe, formant plus ou moins 
un V ouvert en haut. Mais l’usage actuel est d’employer des surfaces 
concaves, instables. On rétablit la stabilité en plaçant à l’arrière une 
surface auxiliaire dite queue stabilisatrice, arquée ou non, de telle 
manière que l’ensemble de ces deux surfaces forme un V.

Mais cette queue à faible angle d’incidence est une surface mal 
employée, et cela d’autant plus que la vitesse est plus grande. 
Supposons en effet que pour la stabilisation la queue soit de 3 degrés 
moins inclinée que la surface principale. Si on atteint la vitesse pour 
laquelle l’incidence est de 3°, la queue ne porte plus rien. Aussi 
croyons-nous qu’il serait intéressant de supprimer la queue en adop­
tant les surfaces à courbure en S, stables par elles-mêmes et aussi 
efficaces que les arquées concaves.

Le gouvernail de profondeur, dont la position est variable, 
complique la question en modifiant la courbe métacentrique. Il forme 
lui aussi avec la surface un V ouvert tantôt vers le haut, tantôt vers 
le bas. Dans ce dernier cas, il diminue la stabilité, et, au-delà d’une 
certaine position, il peut provoquer l’instabilité de l’ensemble et 
amener la chute à pic. De nombreux accidents mortels inexpliqués 
pourraient bien être dus à cette cause. Il est indispensable que ce 
cas ne puisse pas se produire, et que l’amplitude des mouvements 
du gouvernail de profondeur soit limitée au point où commencerait 
l’instabilité.

Rectifions, à ce propos, une erreur publiée récemment par M. Pain- 
levé : le gouvernail de profondeur peut être à l’avant ou à l’arrière, 
mais ce n’est pas cela qui le rend progressif ou régressif; il est 
régressif, c’est-à-dire que les mouvements qu’il provoque s’enrayent 
d’eux-mêmes, si l’appareil est stable longitudinalement; et cette 
stabilité ne dépend pas de la place du gouvernail de profondeur.
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STABILITÉ LATERALE.

La stabilité latérale est la tendance à réagir contre les mouvements 
de roulis.

Supposons que l’appareil s’incline sur le côté, en tournant autour 
de son axe longitudinal (cet axe est l’horizontale située dans le plan 
de symétrie et passant par le centre de gravité).

Dans ce mouvement, la direction de la vitesse relative de l’air ne 
change pas. Les réactions restent les mêmes. Leur résultante ne 
change pas de place par rapport à l’appareil, elle continue donc à 
passer par le centre de gravité. Il ne s'introduit aucun moment, 
redresseur ou non. Ainsi, l’inclinaison pure et simple de l’appareil 
ne peut provoquer aucun moment redresseur.

Mais, lorsque l’appareil penche, il se met à glisser latéralement. 
C’est seulement alors que les réactions changent ; la vitesse relative 
de l’air sort du plan de symétrie. Par rapport à l’appareil supposé 
fixe, la vitesse relative se déplace dans un plan horizontal.

Comme il n’y a plus symétrie, on ne peut pas ramener les réactions 
de l’air à une résultante unique. Il n’y a plus de poussée résultante. 
Il n’y a plus de centre de poussée. Il y a un ensemble de forces, qui 
ont un moment résultant par rapport à l’axe longitudinal autour 
duquel s’effectue la rotation. C’est du sens de ce moment que dépend 
la stabilité.

Comment définir une courbe métacentrique dans ce cas?

Nous y arriverons en remarquant que, pour l’étude des moments 
par rapport à l’axe longitudinal, on peut remplacer les forces par 
leurs projections sur un plan perpendiculaire à l’axe. Projetons donc 
toutes les réactions sur un plan transversal passant par le centre de 
gravité ; nous obtenons des forces situées dans un même plan, et 
qui, elles, ont une résultante. Le moment de cette résultante par 
rapport à l’axe longitudinal est égal au moment des réactions de l’air,

Stabilité latérale
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et pourra servir à l’élude de la slabilité. Cette résultante enveloppe 
une courbe ; son point de contact sera par définition le métacentre 
de roulis (ce n’est pas le même point que le métacentre de tangage).

La condition de stabilité propre est que le métacentre de roulis 
soit plus haut que le centre de gravité. Mais on ne connaît rien 
actuellement sur la courbe métacentrique dans ce cas. L’expérience 
montre que le V latéral, c’est-à-dire les ailes relevées aux extrémités, 
favorise la stabilité ; mais il la favorise peut-être trop, car il provoque 
le roulis en cas de vent latéral. Dans ce cas, en effet, bien que 
l’appareil ne se soit pas incliné, la vitesse relative de l’air dévie 
latéralement, et, si l’appareil possède la stabilité propre, il se produit 
un moment renverseur. On préfère généralement, à l’exemple des 
frères Wright, supprimer ce V ; le pilote commande la stabilité 
et la rétablit en cas de besoin par la manœuvre des ailerons ou du 
gauchissement.

STABILITÉ DE ROUTE.

La stabilité de route est la tendance à réagir contre les mouvements 
de lacet.

Supposons que l’appareil se mette en travers, par une rotation 
autour de son axe vertical. La vitesse relative de l’air dévie latéra­
lement (exactement comme dans le cas du vent latéral ou du 
glissement latéral consécutif au roulis).

Les réactions de l’air n’ont pas de résultante, mais elles ont 
un moment résultant par rapport à l’axe vertical. Nous pouvons, 
pour l’étude de ce moment, remplacer les forces par leurs projections 
sur un plan horizontal passant par le centre de gravité. Nous 
obtenons des forces situées dans un même plan, et qui ont une 
résultante. Cette résultante enveloppe une courbe ; son point 
de contact sera par définition le métacentre de lacet.

La condition de stabilité est que le métacentre de lacet soit en 
arrière du centre de gravité.

Stabilité de route
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On ne connaît rien non plus sur la courbe métacentrique corres­
pondante ; mais on tourne la difficulté par l’emploi d’un empennage 
vertical placé à l’arrière, qui a pour effet de reculer le métacentre 
très en arrière, et par suite d’assurer la stabilité de route. On pourrait 
l’assurer aussi par une disposition des surfaces en forme de V ouvert 
vers l’arrière.

SURFACES MÉTACENTRIQUES.

Nous venons d’envisager la stabilité autour de trois axes rectan­
gulaires. On pourrait étudier de la même façon la stabilité autour 
d’un axe quelconque, même non situé dans un plan de symétrie.

Il ne paraît pas possible de définir une surface métacentrique 
générale; on ne le pourrait que si les réactions de l’air avaient 
toujours une résultante unique.

Mais un aéroplane peut adopter divers angles d’attaque ; si nous 
considérons la stabilité latérale, à chaque angle d’attaque correspond 
un axe de rotation différent (4) et, par suite, une courbe métacen- 
trique différente, située dans un plan perpendiculaire à cet axe. 
L’ensemble de ces courbes définit une surface métacentrique de 
roulis.

De même pour la stabilité de route; en considérant les divers 
angles d’attaque on peut définir une surface mélacentrique de 
lacet.

STABILITÉ DYNAMIQUE.

Nous avons vu que la stabilité propre n'est pas efficace en air 
agité, elle est plutôt une gêne. D’autre part l’équilibre indifférent 
est trop près de l’équilibre instable, il exige l’attention constante du

(1) Il existe bien un axe d’inertie fixe, mais il n’a rien à voir dans la question ; 
il n’y a pas de raison pour que les rotations se fassent autour de lui.

Surfaces
métacentriques
Stabilité dynamique
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pilote, et la moindre fausse manœuvre peut être fatale. On a songé 
à obtenir un équilibre automatique dynamique, en mettant les organes 
de rétablissement de l’équilibre sous la dépendance d’un gyroscope. 
Lorsque l’appareil tend à s’incliner, le gyroscope reste, comme on 
on sait, dans un plan fixe, ce qui permet, par des contacts électriques 
ou par tout autre moyen, de mettre en jeu les organes de manœuvre.

Ce mode de stabilisation ne paraît pas pratiquement utilisable ; 
nous ne le citons que pour mémoire.
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