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Stabilit¢ longitudinale des avions!’
par Louis BREGUET

Ingénieur-Constructeur

Introduction. — C'est vers le milieu du siécle dernier qu'a com-
mencé a s'édifier une théorie rationnelle de I'aéroplane. Les premiéres
bases en ont été apportées presque simultanément par Penaud et le
colonel Charles Renard qui les a, par la suite, développées et com-
plétées, d'une facon lumineuse, dans son cours professé a Chalais-
Meudon de 1886 a 1g01.

Depuis, de nombreux techniciens, tant en France qu'a I'é¢tranger,
ont, par I'ensemble de leurs travaux, amené¢ la théorie du vol et des sur-
faces portantes a un degré de perfection qui satisfait actuellement le
désir de comprendre de notre esprit et les exigences pratiques de
I'ingénieur.

Nous avons nous-mémes, par une série d'é¢tudes poursuivies ces
derniéres années, créé une théorie du vol en air agité qui vient prolon-
ger et compléter la théorie du vol en air calme qul seule avait été envi-
sagée jusqu'ici. Nous avons montré que les accélérations internes des
masses d'air toujours superposées a leurs mouvements d'ensemble
peuvent améliorer d'une fagon remarquable les caractéristiques aéro-
dynamiques apparentes des avions qui les subissent. Cependant,
malgré tous ces travaux, la question primordiale de la stabilité dont
l'intérét, aussi bien théorique que pratique, n'est en rien inférieur &
celui de 1'étude des différents régimes de vol, a tenté peu de techni-
ciens et n'a pu encore aboutir 4 I'énoncé de lois nettes et certaines.
Aucune théorie sur ce sujet ne satisfait entiérement I'esprit, suffisam-
ment précise et complete pour ne négliger aucun facteur essentiel, suf-
fisamment simple en méme temps pour que des lois et des principes
puissent s’en dégager.

En nous plagant au strict point de vue de l'ingénieur qui sait a
quel point les mathématiques appliquées sans discernement peuvent
compliquer jusqu'a l'inextricable, nous avons cherché si une théoriede
la stabilité des avions en vol peut s'édifier, suffisamment simple pour

{*) Cette communication sur la stabilité statique longitudinale est la premiére
partie d'un ensemble d'études qui comprendra la maniabilité d'un avion, la stabilité
dynamique en vol et la stabilité en air agité.
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que des lois et des conclusions puissent s'en dégager et suffisamment
rigoureuse pour les besoins de la pratique.

Nous avons constaté que, dans le cas des petits mouvements tou-
jours envisagé dans les recherches de stabilité, il était possible, sans
avoir recours a aucune approximation grossiére, d'obtenir des équa-
tions différentielles immédiatement intégrables et se prétant a une dis-
cussion compléte.

Nous n'avons étudié ici que la stabilité longitudinale, la méthode
employée s'adaptant d'ailleurs 4 I'étude des deux autres stabilités. Déja,
en 1923, nous avions montré, sans approfondir la question, dans un
article paru dans la Technigue Moderne et ne s'adressant pas aux spé-
cialistes, comment se définissait et se calculait le coefficient de stabi-
lité statique qui est 'un des facteurs essentiels de la stabilité¢ dyna-
mique en vol.

D'autres aprés nous ont repris ce premier probléme en analysant
notamment les différents facteurs correctifs a apporter a notre formule
dans une étude plus compléte. En particulier M. Toussaint a publié
récemment quelques résultats tirés de ses essais au laboratoire aérody-
namique de Saint-Cyr qui constituent 4 cet égard une contribution des
plus intéressantes.

Nous reprendrons donc tout d'abord le calcul du coefficient de sta-
bilité statique d'une fagon beaucoup plus approfondie que nous ne
'avions fait tout d’abord. Nous passerons ensuite a 'étude nouvelle
de la stabilité dynamique en vol en tenant compte des ondulations ver-

‘ticales du centre de gravité de I'avion qui, par suite des variations
d'incidence, accompagnent nécessairement les oscillations longitudi-
nales autour du centre de gravité. La superposilion de ces deux mou-
vements conduit 4 une équation de tangage du troisiéme ordre inté-
grable qui montre que la théorie classique enseignée couramment qui
consiste a écrire I'équation du mouvement oscillatoire de tangage en
négligeant I'ondulation verticale du centre de gravité conduit 4 des
approximations beaucoup trop grossiéres et dans certains cas 4 des
résultats erronés. -

Les ondulations verticales ont pour effet, non seulement d’amortir
considérablement les rotations, mais aussi de modifier profondément
le coefficient du couple stabilisateur statique.

Pourtant, un ingénieur italien éminent, Crocco, dont la lucidité
d’esprit s'apparente d'une fagon indiscutable a la lumineuse clair-
voyance que possédait a un si haut degré le colonel Charles Renard,
avait, il y a environ quinze ans, analysé cette influence d'une fagon

aussi simple que précise pour le dirigeable:
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En composant le mouvement ondulatoire et 'oscillation longitudi-
nale, il devient fort simple de rechercher le mouvement résultant en un
point quelconque de l'avion.

Une telle analyse de la stabilité dynamique consiste, 'avion subis-
sant une impulsion instanianée, 4 rechercher suivant quelle loi il
reviendra a sa position d'équilibre. Nous placant ensuite 4 un point de
vue différent, nous avons étudié comment se comportait un avion pas-
sif dans une houle aérienne permanente et périodique.

Cette étude constitue un complément des plus logiques 4 nos
recherches précédentes sur le vol en air agité de pulsations verticales
périodiques.

Elle permet de savoir comment dans un tel milieu s'opére la varia-
tion périodique de I'incidence si aucune action n'intervient de la part
du pilote ou inversement, le coefficient de stabilité statique a adopter
pour obtenir dans une certaine houle telle loi des incidences fixée
& priori.

En résumé, le but pratique de nos recherches sera de permettre
d’analyser et de discuter I'influence du coefficient de stabilité statique
sur le mouvement d'un point quelconque de l'avion, soit en air calme

aprés une perturbation passagére, soit en air agité d'une facon perma-
nente.

Considérations générales. — Nous rappellerons d'abord les deux
principes fondamentaux de mécanique rationnelle qui régissent le
mouvement le plus général d'un avion :

1° Le centre de gravité se meut comme un point auquel seraient
concentrées la masse de 'avion et les forces en présence;

2 Le mouvement angulaire autour du cenire de graviié sous
l'action des forces en présence s'opére comme si ce point était fixe.

Ce dernier principe est fondamental. On n'a pas le droit, en effet, de
supposer fixe un autre point que le centre de gravité, le centre de
poussée, parexemple, comme certains'ontfait, etde considérer le mou-
vement autour de ce point sous l'action des forces appliquées. On
démontre que, pour avoir le droit d’opérer ainsi, il faudrait adjoindre,
a chaque instant, aux forces en présence une force d'inertie appliquée
au centre de gravité, force qu'il est impossible de connaitre & priori. |

Quand il existe un mouvement oscillatoire, soit amorti, soit perma-
nent, autour du centre de gravité, le mouvement du centre de gravité
et les oscillations autour de ce point sont li¢s d'une fagon inséparable

et il est impossible de ne pas les étudier simultanément dans une ana-
lyse méme approchée.
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Laloi instantanée des incidences est, en effet, profondément modi-
fiée du fait des ondulations verticales de la trajectoire et c'est précise-
ment cette loi qui régit I'influence du couple stabilisateur statique tel
qu'il sera défini par la suite et qui est le facteur fondamental de la sta-
bilité longitudinale.

La combinaison des deux mouvements conduit naturellement 4 la
discussion simultanée de deux équations différentielles, ce qui consti-
tue toute la difficulté du probléme.

La méthode simple que nous employons conduit, par éliminations
entre ces deux équations, a une équation différentielle de tangage du
troisiéme ordre, mais dont I'équation caractéristique a une racine
nulle. En ne négligeant aucun facteur essentiel du probléme, nous
sommes donc parvenu a une équation se prétant a la méme discussion
que I'équation classique du second ordre du mouvement oscillatoire
amorti a laquelle elle est immédiatement réductible.

Ceci posé, il convient tout d'abord d'examiner 'acheminement
logique des idées et les problemes successifs qui se posent pour pou-
voir finalement analyser avec une rigueur suffisante la stabilité dyna-
mique en vol.

En tout premier lieu il convient de chiffrer par une formule suffi-
samment simple la valeur du coefficient de stabilité statique de I'avion,
ainsi que nous I'avions fait dés 1923 en négligeant alors divers coeffi-
cients correctifs a introduire dans une étude plus approfondie.

Pour définir la stabilité statique, il suffit de se borner a rechercher
la grandeur du couple de rappel aérodynamique d'un avion empenné
provoqué par une variation d'incidence acquise statiquement, c'est-a-
dire sans vitesse derotation. Cette étude constitue I'analyse dudegré de
stabilité dans les variations d'incidence sans s'occuper des couples
amortisseursdusalavitesseangulaire de larotation. Soit M le moment
résultant des forces aérodynamiques par rapport a 'axe transversal
passant par le centre de gravité. Pour chaque position d'équilibre, M
est nul. 5i, au voisinage de cette position, l'incidence varie de di, il se
produit, sur un avion convenablement empenné, un couple aérodyna-
mique de rappel qui doit, pour que l'équilibre statique soit assuré,
étre opposé 4 d7 et ramener ainsi l'avion a sa position initiale d'équi-
libre.

La stabilité statique sera d'autant plus énergique que la variation
dM de M correspondant au changement d/ d'incidence sera plus pro-
noncée, c'est-a-dire que ddhf sera plus grand en *t-'alcur absolue.

Il suffira donc, pour chaque braquage de I'équilibreur, de connaitre
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les variations de M en fonction de P'incidence et de calculer la
valear 4% de sa dérivée pour M=0. La condition de stabilité sta-
tique est que cette dérivée soit négative et sa valeur absolue donne la
mesure de la stabilité. En divisant celte dérivée par certaines quantités
convenablement choisies, on pourra obtenir un coefficient sans dimen-
sion qui sera le coefficient de stabilité statique permeltant la compa-
raison de divers avions.

La connaissance précise de ce coefficient a d’autant plus d'impor-
tance, qu'il est, comme nous le montrerons, directement li¢ a la
maniabilité longitudinale de l'appareil définie comme sensibilité ao
changement d'incidence par la manceuvre de I'équilibreur.

Pour passer maintenant a I'étude des oscillations de tangage, il con-
vient d’écrire s¢parément I'équation différentielle du mouvement ver-
tical du centre de gravité et celle qui régit les rotations autour de I'axe
de tangage.

Les ondulations verticales de la trajectoire qui accompagnent les
oscillations longitudinales viennent modifier la loi des incidences, de
sorte que I'effet du couple stabilisateur statique n’est pas proportionnel
a la rotation autour du centre de gravité ainsi que le supposent les
auteurs qui considérent ces ondulations comme négligeables. Elles
ont en réalité sur I'amplitude et I'amortissement des mouvements de
tangage un effet favorable qu'on ne pourrait, sans erreur grossiére,
dans aucun cas négliger.

Enfin, la rotation autour du centre de gravité superpose au couple
stabilisateur statique proportionnel a la variation d'incidence un couple
amortisseur proportionnel a chaque instant a la vitesse angulaire de la
rotation et qui amortit le mouvement comme le ferait un frottement
proportionnel 4 la vitesse.

Pour pouvoir traiter simplement le probléeme, nous nous sommes
bornés, comme on le fait dans toute question de stabilite, au cas des
petits mouvements, et nous avons, en conséquence, supposé que la
grandeur de la vitesse aérodynamique n'était pas affectée par le
tangage,

Il conviendrait, en effet, de traiter le probléme de tout autre facon
si I'on envisageait des mouvements de grande amplitude tels que les
variations de la vitesse a¢rodynamique ne scient plus négligeables;
nous n'avons pas voulu aborder ce cas sans intérét pratique.

Avec cette hypothese des petits mouvements, la combinaison des
deux ¢quations du mouvement du centre de gravité et du mouvement
autour de ce point permet. par éliminations iudicieuses. d’obtenir en
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fin de compte une équation unique du tangage qui se raméne immeédia-
tement 4 une équation linéaire compléte du second ordre.

La discussion de cette équation permet de séparer nettement I'effet
du coefficient de stabilité statique de celui de 'amortissement et de
déterminer dans chaque cas leurs influences respectives.

Il est, en effet, généralement insuffisant d'envisager le role d'un
empennage au seul point de vue de la stabilité statique qu'il procure.
La grandeur de son couple amortisseur a, sur le confort des passagers
d'un avion de transport, par exemple, une importance qu'on ne saurait
négliger et il y a intérét 4 savoir dans quels cas il est avantageux de se
contenter d'une faible stabilité statique en augmentant I'amortisse-
ment.

Le but de notre étude est d'apporter les éléments de cette dis-
cussion.

I. — La stabilité statique.

La détermination rigoureuse du coefficient de stabilité statique
n'est qu'un calcul de moments qui doit étre basé en partic sur nos con-
naissances générales d’aérodynamique, en partie sur des données de
laboratoire que nous ne possédons pas toutes actuellement.

11 est cependant possible d'indiquer nettement comment doit s'opé-
rer un calcul suffisamment rigoureux pour les besoins de l'ingénicur
et les phases successives de ce calcul montreront quels sont, dans 'état
actuel de nos connaissances, les éléments insuffisamment connus sur
lesquels devra se porter toute l'attention des laboratoires.

Tout élément d'un avion, au point de vue aérodynamique, est com-
plétement caractérisé par la connaissance de la grandeur des efforts
aérodynamiques qu'il subit et du moment de ces efforts par rapport a
un point quelconque. «

On connait, par exemple, le moment M,, par rapport au point A des
efforts aérodynamiques de résultante R, Pour obtenir le moment par
rapport a un autre point A’, il suffit de supposer R appliqué en A et
d’ajouter 4 M, le moment de cette force par rapporta A’.

Nous utiliserons constamment, par la suite, cette correspondance
des moments.

Nous é¢tudicrons séparément la réduction des forces aérodynamiques
des différents ¢léments d'un avion; aile seule, systéme d'ailes, fuselage,
résistances passives, empennages, pour passer ensuite a leur superpo-
sition qui doit permettre le calcul du couple central des forces aérody-
namiques, ainsi qu'a I'évaluation de sa dérivée par rapport a 'incidence
qui constitue, comme nous I'avonsdit, le critére de la stabilité statique.
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1° Aile monoplane isolée. — La droite}jde référence pour les inci-
dences et les moments estla corde du profil médian commune a ce pro-
fil et au plus grand cercle qui lui est bitangent. Cette corde coupe
l'avant du profil en un point A qui est, par définition, son bord
d’attaque et c’est par rapport & ce point que les laboratoires donnent
actuellement le moment des forces aérodynamiques agissant sur l'aile.

La grandeur de la résultante aérodynamique est déterminée par ses
projections Fy et F: dites « trainée » et « poussée » sur la direction
de la vitesse aérodynamique et la direction perpendiculaire dans le
plan de symétrie de l'aile. Ces deux composantes son {toujours définies
par les coefficients sans dimension bien connus cy et ¢: déterminés
en fonction de l'incidence et tels que, pour une aile de surface S, une
vitesse aérodynamique V, un air de poids spécifique a :
a'V?
2 g
:=3Vg,, (2)

2

F'x:

SC#H (])

2
La quantité q:ag—zr-, maintenant officiellement admise dans nos

notations, a les dimensions d'une pression, c'est pourquoi on l'appelle
généralement la pression vive de l'air. Il est possible, entre certaines
limites d'utilisation, d'obtenir pour ¢, et c; des lois analytiques
sumples et générales susceptibles d'étre utilisées avec une précision
suffisante dans des calculs tels que ceux qui sont effectués ici.

Un élément caractéristique essentiel de l'aile intervenant dans

]
I'expression de ces lois est son allongement ) —.:% définl comme le

rapport du carré de son envergure a sa surface.

D'apres la théorie de Prandtl, la trainée ¢, est la somme de deux
trainées distinctes, I'une cu, indépendante de I'incidence, est la trainée
de profil, l'autre cqs est la trainée induite qui croit comme le carré de
la portance et en raison inverse de I'allongement de laile, ce qui per-
met d'écrire :

Car == Cano = Cart == Carg + % (3)

Cette formule n'est applicable qu'a condition de ne pas trop s’ap-
procher de I'incidence de portance maximum pour laquelle la polaire
de l'aile cesse d'étre parallele a la parabole induite

sz

Copj ==~

A

C'est ce que nous supposerons essentiellement par la suite.
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Le coefficient czo, peu variable pour les bonnes ailes, dépend du
nombre de Reynols et peut étre estimé avec une approximation suffi-
sante sans qu'il soit nécessaire de chercher a4 I'expliciter, quoiqu'on
puisse le faire assez facilement.

Le coefficient de portance ¢z, dans le champ des variations d'inci-
dence que nous considérons ici, peut se représenter, avec une rigueur
toujours acceptable, par une fonction linéaire de I'incidence aé¢rodyna-
migue : :

¢:=A + Bi. (4)

Nous supposerons toujours, par la suite, que tous les angles et par-
ticulierement I'incidence sont exprimés en radians, la valeur d'un angle
en degrés étant égale 4 sa valeur en radians multipliés par 57,3.

Ainsi que nous l'avons déja indiqué dans nos. recherches anté-
rieures sur le vol a voile dynamique des oiseaux, le coefficient B est
indépendant du profil et ne dépend que de I'allongement en fonction
duquel il varie, conformément & la théorie de Prandtl, suivant un arc
d'hyberbole d'équation :

B= Bo_ .
Bo d
142 (3)

D’aprés les essais de Prandtl et ceux plus récents de M. Toussaint,
il convient d'adopter pour Bo la valeur 5,3 ce qui donne :

=] =2 2,5 3 3,5 4 445 5 5,5 6 6,5 7
B=|2,87 | 3,16 { 3,30 | 3,57 | 3,72 | 3,85 | 3,97 | 4,06 | 4,13 | 4,21 | 4,20
|

L'ordonnée a l'origine A de la droite des ¢z est fournie par les essais
de l'aile au laboratoire. Ces essais montrent que le coefficient A,
lorsque l'allongement varie, reste proportionnel a B, toutes les droites
du faisceaa des c; en fonction de l'incidence concourant en un méme
point i == i, de I'axe des incidences. La loi linéaire de variation de ¢
en fonction de I'incidence pourra donc s'écrire sous la forme qui sera
ufilisée parla suite: .
c:=B (i + i) (6)
Dans cette formule, i, est une constante caractéristique ne dépen-
dant que du profil et non de 'allongement. D'aprés les essais systéma-
tiques de M. Toussaint sur des séries d'ailes a profils de courbures

diftérentes, 4, serait proportionnel 4 la fleche relative maximum J; de la
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ligne moyenne du profil, f étant la fleche et I la corde de cette ligne
moyenne.
M. Toussaint a déduit de ses essais pour 4, la valeur :

io=1,52, | (7)

Cette formule, de par la facon méme dont elle a ¢té établie,n'est, en
principe, valable que pour les profils dérivés par incurvation d'un
profil initial biconvexe symétrique.

Il en résulte cependant que # est nul pour tout profil symétrique
et, pour tout autre profil, d'antant plus grand que le profil est
plus incurvé.

Ayantainsi défini les lois générales régissant, dansles limites qui
nous intéressent, les variations de ¢, et de ¢ pour une aile monoplane,
il convient de remarquer dés maintenant gue, dans tous les calculs de
stabilité, ces deux coefficients ne sont pas les plus commodes a consi-
dérer.

La position du centre de gravité de 'avion par rapport a l'aile se
définit, en effet, par ses deux coordonnées par rapport au bord
d’attaque, I'une paralléle a la corde du profil et I'autre perpendiculaire.
Il en résulte qu'il est particulierement avantageux de rapporter aux
mémes axes de référence les éléments de la résultante aérodynamique.

Nous substituerons donc aux composantes unitairesc. etc. suivant
la vitesse a¢rodynamique et sa normale les composantes unitaires ¢ et |
¢n» suivantla corde du profil et suivant sa normale. ¢; sera considéré
comme positif dansle sens de la trainée c. ¢t ¢, dans le méme sens que
la portance c..

Les formules de transformation permettant de passer des premiers
coefficients aux seconds sont d'ailleurs immédiates.

Le degré d'approximation de cette étude, suffisant d'ailleurs & tout
calcul d'aérodynamique appliquée, permet de supposer que le sinus
de l'incidence 7 est asgimilable 4 'angle et son cosinus 4 l'unité.

Avecla méme précision, nous négligerons aussi #c, devant c,.

Ces approximations sont en tous points légitimes et ne fausseront
pas la validité des équations différentielles écrites en les admettant, car
nous supposerons que notre analyse de la stabilité n'est appliquée ni
au voisinage de la portance maximum pour lequel l'incidence est
grande, ni au voisinage immédiat de la portance nulle pour lequel
¢ pourrait étre du méme ordre de grandeur que la quantité ic..

L'étude spéciale de la stabilité autour de ces deux régimes est
d'ailleurs facile, mais exige un mode de calcul différent de celui que
nous appliquons au cas général qui seul nous intéresse ici.
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La simple application de théoréme des projections montre que les
valeurs rigoureuses des composantes unitaires ¢: et ¢, suivant la corde
et sa normale sont respectivement :

Cr COS1 — ¢; sini et ¢; cosi -+ ¢, sini.

Avec les approximations que nous venons d’indiquer, nous adopte-
rons donc les expressions simples, suffisantes pour les? besoins de la
pratique :

Cf == Cx — 1Cz, (8)
On = Ca. )

Remplagons alors ¢, par sa valeur (3) en fonction de la trainée
induite et i par sa valeur en fonction de c. qui sont respectivement :

% [
Cmﬂczo‘!'a*; L= ‘Ef‘—iﬂ '

il vient :
. /
C1== Cip ~+ Ip Cx— Kié—:—l)c% . (10)

Mais le coefficient angulaire B de la droite des portances varie,
comme nous l'avons dit, en fonction de I'allongement % suivant un arc
d’hyperbole dont I'équation (5) peut se mettre sous la forme :

1 I I

BT = By
Finalement, en serappelant que nous avons assimilé ¢, a ¢,, 'équa-

tion de la polaire caractéristique rapportée a la corde et 4 sa normale
peut se mettre sous la forme remarquable :

Z

c,-=cm+z},a;--"l§i'- (11)

Il est bien entendu que cette représentation n'est valable que tant
que la trainée varie comme la résistance induite, c'est-a-dire tant qu'on
n'est pas au voisinage de la portance maximum. Nous supposerons
admise une fois pour toutes cette condition restrictive.

Il apparait tout d'abord, et cette particularité est digne deremarque,
que I'équation de la polaire ainsi rapportée 4 la corde et & sa normale
ne contient plus que trois coefficients By, cxp €t # qui sont essentielle-
ment des coefficients de profil indépendants, par conséquent, de 1'allon-
gement de 'aile.

Plus généralement encore, cette conclusion s'applique aussi 4 une
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cellule biplane qui est équivalente a une aile monoplane de méme
surface, mais d'allongement réduit donné par le calcul.

Dans I'un ou 'autre cas, seule la correspondance entre l'incidence
et la portance variera en fonction de I'allongement réel d'une aile
monoplane ou de l'allongement réduit corresponidant a une cellule
biplane. La polaire rapportée 4 la corde et 4 sa normale, dans les
limites qui ont été précisées et qui seules nous intéressent ici, sera la
méme dans les deux cas.

L'équation (11) de cette polaire peut se discuter facilement en fonc-
tion des caractéristiques du profil et particulierement de 4.

Ainsi que nous'avons admis, le coefficient By peut étre considéré
comme une constante égale a 5,3 pour tout profil. Le second coefficient
Cxy constitué surtout par du frottement, dépend cependant un peu de
la forme du profil et ne peut, avec la méme rigueur que pour By, étre
considéré comme une constante pour tout profil.

La partie de ¢ qui correspond uniquement au frottement a été
évaluée par plusieurs auteurs en fonction du nombre de Reynolds. La
plupart de ces formules admettent la proportionnalité du coefficient de
frottement dans 'air a (VI)~%%, V étant la vitesse et ! la profondeur
de l'aile. En prenant le coefficient donné par M. Toussaint, on peut
admettre que la partie de ¢y qui n'est que du frottement est 0,01224
(VI)~ %, ce qui donne o,00612 pour VI = 100 m" sec.

A ce terme, il convient d'ajouter,pour obtenir le c. total, une résis-

tance de profil fonction de I'épaisseur relative %et de la fleche rela-
tiveZ de la ligne moyenne du profi.

L'influence de I'épaisseur etde la fleche sont tout 4 fait du méme
ordre e, pour fixer les idées, on peut approximativement admettre que
toute augmentation de 1 °/, de I'épaisseur ou de la fleche relatives
accroit ¢y de la quantité o,0005. Cette appréciation rapidede l'ordre de
grandeur de cx n'est cependant valable que si la fleche de la ligne
moyenne n'excéde pas6a 7°/,, des courbures plus prononcées provo-
quant généralement de brusques augmentations de cx.

. . . . e
Pour une aile moyennement épaisse et incurvée telle que 7== 8/

f

Et—I:B */s. 0N trouve qu'au total ¢y = 0,0116, ce qui correspond sensi-

blement a l'aile du Bréguet XI1X,
Pour une bonne aile épaisse, télle que la somme de I'épaisseur ef

de la fleche relatives soit zo °/,,on peut escompter un ce de l'ordre
de 0,016.
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Ces considérations montrent en définitive que, pour toutes les
ailes qui ne sont pas trop dissemblables, ¢« varie assez peu.

Il ne diminue nettement que pour le profil symétrique trés mince;
il ne subsiste plus alors que I'influence du frottement.

Enfin, le troisieme et dernier coefficient de profil 4, est celui dont
I'importance est la plus grande en ce qui concerne la forme de la
polaire représentée par I'équation (11). Comme- mous 'awons dit, i
semble dépendrede la courbure de la ligne moyenne du profil et prend
la valeur zéro pour tout profil biconvexe symétrigue.

Nous allons montrer par quelques formules simples, tirées de
I'équation (11),comment la forme de la polaire dépend essentiellement
de ce coefficient caractéristique #,. Pour les faibles valeurs de c:, c; est
d’abord positif, c'est-d-dire dirigé dans le sens des résistances.
Dans le cas particulier du profil symétrique pour lequel #, est nul,
c¢ décroit des que ¢; augmente A partir de zéro. Dans le cas général ot
iy n'est pas nul, ¢; commence d'abord par croitre avec ¢: pour passer
par un maximum :

i’ B

(Ce)m = Cxo + n4n, (12)

atteint pour

iy By

Cz=—=Cy — 2 . (13}

La portance continuant a croitre, ¢ décroit et s'annule lorsque :
4By C . 4Cx
Cz=Cp=— 2 (] —|-‘ \/[ + ?-.ui Bu)‘ {14}

Nous effecluerons les calculs en adoptant pour ¢, une valeur
moyenne o,012. En remplacant B, par 5,3, on obtient aisément les
chiffres du tableau ci-aprés :

i, = [} Q,02 0,04 0,06 o,08 0,10 0,12
Cay = 0 0,053 | 0,100 | 0,139 | o,212 | 0,265 | 0,318
(e M = 0,012 | 0,0125 | 0,0141 | 0,0068 | 00,0205 | 0,0253 | 0,0311
Lo = 0,252 | 0,310 | 0,380 | 0,457 | 0,543 | 0,630 | 0,724

¢t étant positif, c'est-a-dire dirigé vers les résistances quand ¢; varie
de 0 & ¢z, 1l apparait que, pour les profils peu incurvés, crs'annule
rapidement pour devenir négatif. Au contraire, pour les profils tres
incurves, ¢ reste positif pour toutes les valeurs d'utilisation courante
de ¢: et son maximum atteint des valeurs importantes qui ne sont pas
négligeables dansl'équation des moments (fig. 1).
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En ce qui concerne les valeurs négatives de ¢y, il est bien évident
que ce sont les profils peu incurvés qui fournissent, pour une méme
valeur de ¢z, les valeurs de ¢ les plus élevées en valeur absolue. Si,
pour les profils symétriques ou trés légerement incurvés, nous limi-

SETR aaes resigtances
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(oK

Q J §
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Fig. 1.

tons & ¢; = 0,8 le champ d'utilisation de la rormule (11), ¢; atteindra
alors lavaleur —o,11. Pour la méme portance, un profil tel que #,==0,10
donnerait seulement ¢; ==— 0,03 et ¢; ==-— 0,077 a la portance ¢; =1
qui est encore dans leslimites de la formule pour de tels profils.

Avyant ainsi analysé le mode de représentation de la résultante
aérodynamique que nous avons jugé le plus pratique dans cette
étude, nous passerons maintenant a la détermination du moment par
rapport a un point des forces a¢rodynamiques subies par une aile. On
a longtemps évalué ce moment en définissant la position de la résul-
tante aérodynamique par sa trace sur la corde de T'aile appelée centre
de poussie.
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Le laboratoire fournissait alors une courbe expérimentale donnnat,
en fonction de l'incidence, les déplacements du centre de poussée.
Cette courbe est, pour le calcul, d'un maniement peu commode et son
usage est complétement abandonné actuellement. 11 est maintenant
universellement admis de situer, comme ['a fait le premier le labora-
toire de Gottingen, la résultante aérodynamique agissant sur une aile
par son moment M, par rapport au bord d’attaque.

La théorie et 'expérience montrent que, pourun profil d'aile donné,
le moment M, est proportionnel a4 la surface S de l'aile et & sa
profondeur ! sans dépendre de son allongement.

On définit donc M, par un toefficient ¢.. sans dimension tel que,
par définition :

a

—— -] 2
Maz= 52 cm S VI (15)

Les laboratoires donnent les variations de ¢m en fonction du
coefficient de portance c..

I1 est remarquable de constater que, pour toutes les bonnes ailes ne
présentant pas de décollement des filets d'air aux incidences d'utilisa-
tion, ¢ est une fonction linéaire du coefficient ¢;.

Cette loi, conforme 4 la théorie et constamment vérifiée par I'expé-
rience, s'é¢tend jusqu'au maximum de ¢;. Cependant, pour certaines
ailes et notamment celles dont la courbure de la ligne moyenne est
trop prononcée, des décollements aux faibles incidences provoquent
une augmentation brusque de ¢, et une diminution de ¢m qui possede
alors une valeur a l'origine cm plus petite que celle des bonnes ailes,
De telles ailes étant généralement a rejeter, nous ne nous occuperons
pas ici de cette particularité et nous admettrons la loi linéaire :

| Cm ==Camp + M Cs. (16)

Dans sa théorie si remarquable des surfaces sustentatrices,
Joukowski déterminait le moment des efforts aérodynamiques par
rapport au bord de fuite et il obtenait une formule, d'ailleurs assez
complexe, qui peut, par changement d'origine et quelques transforma-
tions, se ramener a la forme (16).

La théorie de Joukowski montre, ainsi que 'expérience le justifie,
que, pour toutes les ailes ne présentant pas de fleche vers l'arriére, cmg
et o sont des coefficients de profil ne dépendant par conséquentni de
I'allongement, ni de la forme en plan, ni du gauchissement de l'aile.

Nous étudierons spécialement, par la suite, I'influence de la fleche
et nous nous bornerons, pourl'instant, au cas des ailesa bord d'attaque
droit pour lesquelles m est une constante et cmoun coefficient de profi 1
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On constate, en effet, en ce qui concerne m, que les droifes repré-
sentant cw en fonction de c; sont toufes paralléles, leur coefficient angu-
laire m étant 0,25, le méme, par conséquent, pour tous les profils.

Par contre, le coefficient cmy qui est la valeur que prend c¢,» pour la
portance nulle, dépend de la courbure de la ligne moyenne du profil et
1l est toujours nul vour lout profil biconvexe symétrigue.

Dans certaines limites, et uniquement pour des profils de méme
famille dont la ligne moyenne ne soit pas a double courbure, on peut

admettre la proportionnalité de cwg & la fleche relative maximum “% de
la ligne moyenne de corde /, de sorte que :

cmo = £, (17)

On peut déduire des formules données par Joukowski que pour les
profils tracés suivant sa méthode, tels, par exemple, que le profil 430 de
Gottingen, & serait théoriquement égal a 3,14. Pour passer aux valeurs
expérimentales, il convient de réduire d'environ 15 ¢/, ce chiffre théo-
rique, de sorte que, pour les ailes du genre de la 430, k est pratique-
ment égal a 2,7.

C'estainsi que, pour l'aile 430, ‘% ==0,05 et Cmp==2,7 X 0,05 ==0,135.

D'un autre coté, M. Toussaint, a la suite d'expériences sur des
ailes dérivées d'un profil biconvexe symétrique par incurvation régu-
liere de la partie arriére, donne, pour de telles ailes, au coefficient k&
la valeur 1,88.

A défautde détermination plus précise, on pourra adopter 1'un de
ces deux coefficients k ou un coefficient intermédiaire, suivant le genre
du profil choisi.

Lorsque la fleche relative%devient importante et dépasse environ
7 °/e, On constate généralement, comme nous l'avons dit précédem-
ment, que, pour les faibles valeurs de ¢z, ¢m diminue brusquement, de
sorte que la loi linéaire n'est plus respectée et la valeurde cmo mesurée
au laboratoire est beaucoup plus faible que celle que donnerait le
calcul. Ce résultat se manifeste, par exemple, avec netteté sur I'aile 431
de Goéttingen de fleche relative 7,5 °/,. Pour cette aile, la loi linéaire est
parfaitement respectée jusqu'a ¢; = 0,2. Lorsque c; descend en dessous
deo,2,cm diminue brusquementjusqu’a cmg = 0,14, tandis quela valeur
théorique serait ¢my==0,2 avec k==2, 7, valeur que I'on obtient d'ailleurs
en prolongeant jusqu'al'axe des cw la partie linéaire de la droite des
moments.
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Ces considérations sur 'influence de la fleche relative maximum
ne s'appliquent plus aux profils dont la ligne moyenne est & double
courbure, le changement de courbure étant produit par le relevement
du bord de fuite de l'aile.

Avec de tels profils a double courbure, il est possible de diminuer
et d’annuler cmo, le profil se comportant dans ce dernier cas, au point
de vue des moments, comme un profil symétrique, dont le centre de
poussée est immobile, ainsi que nous le verrons.

Des profils de cette nature ont été théoriquement étudies par le
professeur von Misses & l'aide de tracés analogues & ceux de Jou-
kowski. Ils n'ont pas encore ét¢ étudiés systématiquement au labora-
toire et on peut craindre que la diminution de cwe n'entraine un
abaissement de la portance maximum. En effet, pour la plupart des
profils essayés, les ailes ayant la portance maximum la plus élevée
sont ceux qui donnent a cw les plus grandes valeurs.

Nous n'insisterons pas davantage sur la discussion des variations
de cmo suivant les profils, les catalogues d'ailes dressés par les labora-
toires en fournissant la valeur d'une fagon trés précise.

Nous montrerons maintenant comment la notion de centre de
poussée se rattache fort simplement a la connaissance de cp.

Soit, en effet, s la distance au bord d'attaque de la trace sur la
corde de laile de l'effort aérodynamique qu’'elle subit, s étant, par
définition, tel que le moment de cet effort par rapport au bord
d’'attaque A soit égal au moment M, défini par la connaissance de Cm.

La résultante aérodynamique unitaire étant, au centre de poussée,
décomposée en ses deux ¢léments ¢ et ¢n suivant la corde, de lon-
gueur /, et sa normale, il vient, en assimilant, comme nous l'avons
fait précédemment, cu @ cz :

M= e SVis= 7 S V'L,
d'ou : “
S _Cn_tmtme o Cm
I Cx - Cy _m-l_ Cs (18)

Cette équation représente la courbe des variations dcu';: en fonc-
tion de c.. C'est une hyperbole équilatére dont les axes sont la corde
de V'aile et la normale a cette corde passant par le point —? —=m. Comme

m==0,25 pour tous les profils, le centre de I'hyperbole est toujours
situé au quart de la profondeur de l'aile a partir du bord d'attaque. II
apparait immédiatement gu'une variation déterminée de ¢ entraine
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un déplacement du centre de poussée d’autant plus réduit que cmg est
plus petit, ce qui fait que c'est uniquement la grandeur du coefficient
cme qui régit 'amplitude des déplacements du centre de poussée.

En particulier, pour tout profil symétrique ou a double courbure
pour lequel ¢mp €st nul, le centre de poussée reste immobile au quart
de la profondeur & partir du bord d’aliaque.

Cette particularité remarquable des profils symétriques d'avoir un
centre de poussée immobile au quart de la profondeur a partir du
bord d'attaque a été, dés 1910, signalée par le professeur Kutta, puis
établie théoriquement par Joukowski.

Lorsque cme n'est pas nul, le centre de poussée s'¢loigne progressi-
vement jusqu'a l'infini vers le bord de fuite quand ¢, étant positif,
décroit jusqu'a la valeur zéro.

Pour les trés faibles valeurs de c:, ce mode de représentation ne
permet donc pas d'obtenir avec quelque précision la valeur du couple
de torsion de l'aile dont I'importance a échappé trés longtemps. Sup-
posons en effet une aileau régime de portance nulle, le couple unitaire
de torsion de l'aile par rapport 4 son bord d'attaque étant, par suite,
cmo. La composante ¢; se réduit alors a la résistance de profil cy ettout
se passe comme si cette résistance était a une distance 7 en dessous de
la corde telle que:

7 Cao ==L Cono, ; e %’E- (19)

51 €mp==0,10, Cxn==0,01 0n voit que r estégal a dix fois la profondeur

de l'aile. En piqué vertical & sustentation nulle, la trainée totale de

I'aile d'un avion peut étre environ la moitié du poids total P de I'appa-

reil, ce qui fait que le couple de torsion M, de l'aile serait, dans ces
conditions :

M,‘:;‘é_cms Vir—=05Pr=5P L (20)

Le couple de torsion autour du bord d’attaque sera ainsi équiva-
lent & celui que provoquerait une poussée égale a cing fois le poids
total de 'avion et appliquée au bord de fuite de l'aile normalement &
la corde. Ce simple exemple montre a quel point il est erroné de
supposer, comme on l'a fait trop souvent en ne considérant que la
courbe des centres de poussée, qu'au voisinage des portances nulles,
une aile ne subit plus aucun couple aérodynamique.

Nous terminerons cette discussion relative aux coefficients cmg et m
en recherchant la modification a apporter a la formule donnant ¢. en
fonction de ¢; lorsque l'aile, dans sa forme en plan, présente une cer-

21
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taine fleche. Comme nous le montrerons, I'influence de cette fleche ne
peut, dans aucun cas, étre négligée, méme lorsqu'elle est peu pro-
nonceée,

Nous introduirons dans notre calcul, en méme [temps que la fleche,
une variation de l'incidence des profils 'du milien aux extrémités de
T'aile, ce qui nous permettra de démontrer facilement que le gauchisse-
ment de l'aile n'a d'influence sur la stabilité et les déplacements du
centre de poussée que s'il est accompagnée d'une forme en fléche.

Ce point mérite d'étre fixé avec précision, car il est courant
d’'admettre qu'une simple diminution de I'incidence du milieu aux
extrémités de 'aile a sur la stabilité longitudinale une influence favo-
rable.

Influence de la fléche et du gauchissement combinés. — Une aile
présente de la flieche lorsque, dans la forme en plan, le bord d'attaque
n'est pas droit et normal au plan de symétrie de l'aile, mais dessine la
forme d'un angle dont le sommet est généralement dirigé vers I'avant.
L'aile est alors en fleche vers l'arriére,

Une légere fleche vers l'arriére est quelquefois utilisée pour per-
mettre, en reculant le centre de gravité, de faciliter le centrage.

Nous étudierons l'influence sur la courbe des moments d'un tel
dispositif en supposantque l'aile présente en méme temps de la fleche
vers l'arriére et un certain gauchissement caractérisé par une diminu-
tionde l'incidence du milieu aux extrémités de l'aile. Nous admettrons
que ce gauchissement est obtenu par rotation des profils autour de leur
bord d'attague, sans d’ailleurs que cette hypothése soit indispensable
4 la validité de nos conclusions, '

Pour effectuer un calcul simple, nous supposerons que, sans gau-
chissement, la poussée est uniformément répartie le long de l'enver-
gure. 11 serait certes plus rigoureux d'admetire la répartition ellip-
tique, mais le calcul se complique alors sans que la précision des
resultats y gagne sensiblement. L’aile sera définie par son envergure
projetée 2 L, sa profondeur ! suivant la marche et son angle de
fleche B (fig. 2).

En supposant ! constant, 'allongement & considérer sera %, la

surface alaire étani, comme on le voit facilement, S =211/, quel que
soit 8.

La décroissance de l'incidence du milieu a I'extrémité des ailes
sera supposée linéaire en fonction de la distance xL au plan de
symétrie, comptée suivant I'envergure projetée.
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La poussée étant, sans gauchissement, supposée uniformément
répartie et égale A c, variera le long de l'aile gauchie suivant une loi
linéaire :

(Co) == Cap =€ X. . (21)

Le coefficient e de cette formule est d’ailleurs égal a BA4, B étant
le coefficient angulaire des droites de portance ¢; et Aila diminution

ledfe

totale de l'incidence en radians. Le moment résultant des efforts
ac¢rodynamiques agissant sur l'aile sera pris par rapport au bord
d'attaque XY qu'aurait l'aile sans fléche. Pour calculer ce moment M,,
nous considérerons en M N suivant la profondeur un élément d’aile
de surface dS =1!L dx. La réduction des efforts aérodynamiques de
cet élément par rapport 4 son bord d’attaque M donnera un couple de
coefficient unitaire cm==cmo+ m (c:)r et une résultante appliquée en M
de composantes unitaires (cf)- et (c:) suivant la corde et sa no-malz
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La composante {¢;)» a un moment négligeable par rapport 4 l'axe XY
des moments, tandis que le bras de levier de la composante (c:) est

trés sensiblement égal a MD =xL tgp.
En se rappelant que cuw et m sont les constantes de profil dont

nous avons discuté la valeur pour l'aile a bord d'attaque droit, le
moment élémentaire sera :

2
dM,;:% {dS I:cm—l—m (Ce)x +%xtg§ (c,},,:l, (22)
ou, en remplagant dS par /L dx et (c;). par sa valeur (21) en fonc-
tion de x :

2
d M, =%FL[(cm+mcm) dx-{-(%cm tgp— em)x dx—lfetgﬁxzdx}

11 suffit d'intégrer entre x==0 et x =1 pour obtenir le moment
d'une moitié d'aile et de multiplier le résultat par 2 pour avoir le
moment total M. Pour passer au moment réduit ¢’y défini comme ¢,
il suffit de diviser M, par

2 2
LA S!:ﬂ- 2L B,
2g 2g.
ce qui donne finalement :

p L L
¢'m == Cmo -+ mc.,winé(-fc,, tgﬂme:n)—ﬂetgp. (23)

Mais ¢'m ne doit pas s'exprimer en fonction de ¢, mais bien du
coefficient de portance ¢; de l'aile entiére. Ce coefficient de portance
peut s'évaluer facilement par la formule générale

aS= [ (c):dS,

Ct=-/ {cmmex}d:c::c,u~§. (24)

En remplagant alors dans la formule (23) cs par Cx+§;+ Ejlj par

qui donne ici :

I'allongement géométrique 1, et en grc'}upant les termes, nous obte-
nons en fin de compte la relation simple cherchée donnant le coeffi-
cient de moment d'une aile en fleche et gauchie :

C'm=Cmu—£§th5-[-(m+%tgﬁ)Ch (25)

Ainsi qu'il a été dit, cmo est un coefficient de profil et m=0,25 un
coefficient constant. Nous avons supposé, dans notre démonstration,

Droits réservés au Cnam et a ses partenaires



https://www.cnam.fr/

SECTION TECHNIQUE 325

la profondeur / de I'aile constante. Un calcul tout semblable pourrait
s'effectuer si la profondeur / était variable le long de 'envergure et
fonction de x. Il suffirait d'introduire cette fonction dans les inté-
grales qui ont été calculées.

Cette formule est en bon accord avec les essais d'ailes en fléche et
gauchies effectués au laboratoire de Gottingen avec un angle § de
23 degrés et une variation d'incidence allant jusqu'a 10 degrés
(tome 11, page 53).

Il apparait que la courbe de ¢'m en fonction de ¢, reste linéaire
et que :

a) Son coefficient angulaire ne dépend que de la fléche et pas du
tout du gauchissement; :

b) Le moment de portance nulle dépend simulianément de la
fleche et du gauchissement, un gauchissemenl sans fléche n'ayant aucun
effef,

Si I'aile n'est pas gauchie, e est nul et le moment de portance nulle
n'est pas affecté, seule la pente de la droite des moments étant aug-
mentée quand p est positif, c'est-a-dire quand la fleche a lieu vers
I'arriére, et diminué au contraire si la fleche a lieu vers l'avant.

Cette variation de coefficient angulaire sous l'influence de la
fleche, avec ou sans gauchissement n'a aucun effet sur la stabilité, car
pour retrouver le coefficient angulaire normal, il suffit d'un simple
déplacement sur la corde du profil central du point par rapport auguel
est pris le moment M,.

Pour le vérifier, il suffit d'évaluer le moment My, par rapport & un
certain point A, de la corde et a la distance p du bord d'attaque dans
le sens de la fleche,

En tenant compte de ce que le sens positif du moment ¢’a est tel
qu'il tende a faire piquer I'aile, on voit que, par rapport a A,, le nou-
veau coefficient de moment sera :

C”m :crm""‘ ']- cx,
c’est-a-dire :
he ) P
L — —— — o T
¢ m=m— et B+ (oS lgp—)
Il en résulte que la droite des moments aura conservé son coeffi-

cient angulaire m si le déplacement relatif du centre des moments sur
la corde est :

A
T= b (26)
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Il suffit done bien d'un simple décalage de l'origine des moments
dans le sens de la fleche pour obtenir toujours des droites de moment
paralléles.

Il est impossible, dans un calcul précis de la stabilité et du
centrage, de négliger l'influence de la fléche, méme lorsqu’elle est
faible. Pour un allongement de 6, par exemple, et une fleche de

3 degrés, E— est égal a 7,86 pour 100, le coefficient angulaire de la

droite ¢’y étant 0,328 au lieu de 0,25.

En ce qui concerne maintenant le moment de portance nulle, il y
a évidemment intérét a ce que sa valeur soit aussi faible que possible,
puisque c'est uniquement lui qui produit les déplacements du centre
de poussée.

Il en résulte immédiatement que, quand il y a du gauchissement,
e tg B doit toujours étre positif, ce qui signifie, comme nous l'avons
admis, qu'une incidence décroissante vers les extrémités ne peut se
superposer qu'a une fleche vers 'arri¢re et une incidence croissante a
une fleche vers l'avant. Il est bien entendu, comme nous 'avons dit,
que, sans fleche, la variation d'incidence n'a aucun effet.

Pour réaliser une aile 4 centre de poussée immobile, il suffit que
le moment de portance nulle soit nul, ce qui donne :

24 Camg

etgp=—"7—. (27)

S1 k=0 et ¢ppy=0,05, il faut etg p =o0,2, d'on, avec B ==4,13

i tg B ==0,0485.

Il semble que, sans nuire aux qualités aérodynamiques de I'aile, on
ne peut dépasser pour ¢ 10 degrés, soit 0,174 en radians. Il faudrait
alors une fleche de 16 degrés.

Si la variation d'incidence est de 6 degrés, il faut une fleche de
25 degrés.

Comme la valeur de cuw admise ici n'est pas élevée, nous voyons
que pour rendre immobile le centre de poussée, on serait conduit a
des variations d'incidences trés prononcées pouvant abimer la polaire
si la fleche n'est pas excessive, ou, inversement, & une fleche treés
marquée si les variations d'incidence sont modérées. Nous retien-
drons finalement de cette analyse que, lorsque l'aile présente de la
fleche et du gauchissement, on peut, par un simple décalage de
I'origine des moments sur la corde de l'aile, ramener la courbe des
moments a sa forme canonique :

Cmi':mn—l“ W Czy
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le coefficient ¢ Se trouvant simplement modifié du fait du gauchis-
sement.

Influence du V avec ou sans gauchissement. — Une aile présente
du V lorsqu'en projection verticale le bord d’attaque n'est pas droit,
mais dessine la forme d'un angle dont les cotés sont inclinés de
I'angle y sur I'horizontale. Nous supposerons que, normalement,
le V a lieu vers le haut, l'angle y étant alors considéré comme positif,
et que l'aile présente en méme temps un gauchissement caractérisé
par une diminution progressive de l'incidence du milieu aux extré-
mités. Comme pour l'aile en fleche, nous admettrons que, sans gau-
chissement, la poussée est uniformément répartie le long de I'enver-

A
b : \f‘

gure et nous prendrons les moments par rapport au bord d'attaque XY
que posséderait l'aile si elle n'avait pas de V. L’aile sera définie par
son envergure projetée 2L, sa profondeur ! supposée constante,
I'angle y et une loi linéaire de décroissance de I'incidence (fig. 3).

2

Lallongement X a considérer sera 7 et la surface a introduire dans

les calculs sera la surface § projetée 2L 1

La décroissance de l'incidence étant linéaire en fonction de la
distance x L. au plan de symétrie comptée suivant I'envergure projetée,
81 A est la variation totale d’incidence et B le coefficient anguiaire de
la droite de portance de l'aile, on peut écrire :

(Colr =Ca—eX =cu—Bix. (28)
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Pour calculer le moment résultant M, par rapport & 'axe XY des
moments, nous considérerons en M N, suivant la profondeur, un élé-
ment d'aile de surface projetée dS =IL dx. La corde MN est inclinée
de l'angle « sur le plan normal a celui qui contient les bords d'attaque
et I'axe XY des moments, = décroissant par suite du gauchissement
du milieu aux extrémités de l'aile suivant la formule a ==ay— xAi.

La réduction des efforts aérodynamiques de 1'élément par rapport
a son bord d’attaque M donnera un couple de coefficient unitaire

Cm = Cmp —I“ m (Cx}.f

et une résultante appliquée en M de composantes unitaires {ces et (c2)e
suivant la corde et sa normale, (¢f)« étant donné par la formule (11).

Le moment de cette résultante par rapport a XY est égal 4 celui
de sa composante (c¢’s)- normale au plan des bords d'attaque, le bras
de levier du couple étant MD=xL tgy.

En assimilant cos« a I'unité, sin« a = et en remplagant (c/)« par sa
valeur, on trouve immédiatement :

(C;:l!'.t'

{C’fﬂl‘:m (Cz)x ']L' (C!)x-'—'- Cxo + (30 + 0-) (Ca}r — Bn '

Dans cette formule, cx ne représente pas la valeur de ¢y au milieu
de l'aile, mais la trainée de profil.
‘Dans ces conditions, le moment élémentaire autour de XY sera :

VE
dM.,_—_%IdS [cm—l—m(cz),—%xtgy(c;);} (29)

Il suffit, dans cette équation, de remplacer d S par ILdx, (co. par
sa valeur, puis « par son expression a,— xA¢ et d'intégrer entre x=o0
et x==1 pour obtenir le moment d'une demi-aile.

En multipliant le résultat par deux, on a lexpression du
moment M, et il est facile, comme pour l'aile en fleche, de passer au

o ) . e
moment unitaire ¢, aprés avoir remplacé csy par sa valeur c;+~5 en

fonction de la portance c: de l'aile entiére,

On constate que le terme constant de c. n'est pas sensiblement
modifié, que le coefficient de c: l'est légérement et qu'un terme
additif peu important en ¢ se trouve introduit.

2L - '
.En remplacant :T' par l'allongement 1, on peut finalement repré-

senter le nouveau moment unitaire par la formule approchée, mais
suffisamment précise :
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g o+ gy ,
(.,,.—wc....,-|-(m———4 1tg7> Cz+ < B, . (30)

Il apparait donc que, sur une une aile en V, le gauchissement n'a
aucune influence sensible sur la courbe des momenis, les seules modifi-
cations a considérer pratiquement étant dues a l'influence du V.
Cherchons enfin de quelles quantités il faut décaler fictivement le
profil central pour que la formule des moments par rapport 4 son
bord d'attaque ait la forme canonique d'une droite de coefficient

angulaire m =0,23. Soit (fig. 3) x_; la transiation vers P'avant rapportée

a la corde ns:t"?z-i la translation vers le hau! a faire subir a la corde du
profil,

Le nouveau moment deviendra, en tenant compte du sens des
couples additifs provoqués par ¢rete: :

. 2
== A 2 s L o= e a2 e +3.053_&)' (31)
! s I { B

Il suffit de remplacer ¢’ par sa valeur et d'écrire que d'une part|le
terme en c*; est nul et d'autre part le coefficient de ¢: est égal 4 m, ce
qui donne immédiatement :

o Mgy

"Il"* = (32)
x it g

Z=q f‘f: %J—;. (33)

le moment de portance nulle étant devenu :

gy
4

Crnng=£‘n,g+1TtCm=Cma+ Cag e (34)
Pour toutes les valeurs usuelles de 'angle y, ¢/mp peut étre, sans
erreur sensible, confondu avec le coefficient de profil cm, de sorte
qu'en décalant la corde centrale de la quantité calculée, on pourra
considérer l'aile comme une aile droite ordinaire, les coefficients de
la droite des moments étant uniquement des coefficients de profil.
Si par exemple A=6, tgy=o0,10, a;=0,10,
on trouve :

Fui__ ol S
i _0,['5, i —=0,013,
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Moment aérodynamique d’une aile par rapport & un point quel-
conque. Courbe métacentrique d'une aile. — Le moment ¢ donné
par les laboratoires étant positif lorsqu'il tend 4 faire piguer laile,
nous conserverons pour les moments ce méme sens positif, bien qu'il
soit inverse du sens positif des incidences. 11 suffira de se rappeler
cette convention de signe dans I'évaluation du coefficient de stabilité.

Nous définirons la position du point G par rapport auquel nous
voulons calculer le moment par sa distance x au bord d'attaque
comptée parallelement 4 la corde et par sa distance y 4 la corde (fig. 4),
x sera positif en arriére du bord d'attaque et ¥ en dessous de la corde.

corde de Uside
a2.03 02.01 O 0of 0208 08 05

[E L I
L ' PR S A
Lordgine Oestle 1 § -
borct ctistiague }
. . Q-l
3 |
g |
5 |

g J -
M
7 ,4
o5
e Durée ﬂ?éhcem‘nque

T = e e o ]

9

Fig. 4.

Les ¢léments de réduction des eflorts aérodynamiques” par rapport
au bord d'attaque A sont, comme nous 'avons montré :
a) Les deux coefficients unitaires ¢; et ¢, de la résultante aérody-
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namique suivant la corde et sa normale, ¢, étant assimilable
4 ¢ et ¢ etant connu par la formule (11) :

C:ICM—I-‘!-U :.""'Ea (35)

dans laquelle ¢z, 4, et By sont trois coefficients de profil;
b) Le coetficient de moment, précédemment discuté :

Cm == Cmp + MCz. R . (36:’
Si [ est la longueur de la corde du profil, en se rappelant que ¢, est

défini en divisant le moment effectif M, par%\”S I, on trouve imme-

diatement que le nouveau coefficient de moment par rapport a G est
donné par la formule :

x
Conts == Com — :_:" C:"""}I‘Cﬁ (3?)

c’est-a-dire en remplacant ¢, et ¢; par leurs valeurs (36) et (35).

2
x

x LY C
cmo= tmo— ey + (m—F— i} ) e b S . (38)

]

Cette relation montre gue :

a) Pour tous les points de la corde, pour lesquels y =0, le coef-
ficient de moment est une fonction linéaire de c; et ce sont les seuls
points jourssant de cetie propriété. En particulier, pour le point de la
corde situé au quart de la profondeur a partir du bord d'attaque pour

lequel i; ==m==0,23, ce coefficient est constant et égal a cuy;

b) Pour tous les points situés en dehors de la corde, le coefficient
de moment varie suivant une fonction parabolique du coefficient de
portance ¢

Pour chaque valeur de c; le lieu des points pour lesquels cue est
nul est une droite R qui n'est évidemment autre que la ligne d'action
de la résultante aérodynamique appliquée a l'aile et qui a pour
équation :

" X .Y " Ce: &
Cmu"_cm%_f_(m__j_“io%) Cz ‘i‘:‘}f g =0 (39)

@

Cette droite, dont la position dépend du paramétre c: enveloppe
lorsque ¢s varie, la courbe métacentrique de l'aile et lui est tangente
au meétacentre qui délimite sur R, comme nous allons le montrer, les
zones théoriques de stabilité.
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En effet, pour que, pour une certaine valeur de ¢;, l'aile puisse
étre en équilibre autour de G, il faut que G soit situé sur la droite
particuliére R qui correspond a cette valeur de c;, le coefficient cmo
étant alors nul. Pour que la position d'équilibre ainsi réalisée soit
stable, il faudrait, d'aprés le sens positif des moments inverse de
celui des incidences, qu'au voisinage de sa valeur zéro, cme augmente

. , . dcm .
en méme temps que I'incidence, ¢'est-a-dire que ECE"E soit positif.
4

Pour discuter cette condition, nous chercherons d'abord quel est
le point de la droite R pour lequel l'¢quilibre est indifférent, con-
dition qui s'exprime par :

d Cma X .y . 2¥ Ce
de: =M TTNMIT T RS (40)

Cette seconde équation représente, pour chaque valeur de ¢, une

droite qui passe par le point fixe y = ,%zm:(},zs et qui coupe la

droite R d’équation (3g) au point cherché d’équilibre indifférent. Ce
point caractéristique n'est autre que le métacentre qui décritla courbe
métacentrique lorsque c¢: varie. En effet, pour l'enveloppe de la
droite (3g), 11 suffit, comme on le sait, d’éliminer ¢: entre cette équation
et 'équation dérivée par rapport 4 ¢; qui n'est autre que I'équation (40)
qui exprime la condition d'équilibre indifférent.

" Pour tous les points de R situés d'un codté du métacentre ddc;.c.

sera positif et I'équilibre stable, pour le métacentre, I'équilibre sera

indifférent, et pour tous les autres points de R, -——LidC:G ¢tant négatif,
z

I'équilibre sera instable.

Il nous parait commode, pour la discussion, d’expliciter 1'équation
de la courbe métacentrique sous forme paramétrique, x et y étant
exprimés en fonction de c.. La combinaison des deux équations (3g)
et (40) donne immeédiatement :

o 21
x
I =M= Cmp f_':g;» {:4 I )
Cwﬂ—l—'ﬁ-
1" Cill
= (42)
Cao + 5~

La courbe ainsi définie est du second degré et n'a pas de branches
infinies, le dénominateur de x et ¥ ne pouvant s'annuler. Elle repré-
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senle donc un arc d'ellipse, loujours situé en dessous de la corde, car y ne
peut étre négalif.

Les coefficients des équations précédentes étant des coefficients
de profil, toutes les ailes de méme profil ont méme courbe métacen-
trique, sauf quand elles ont de la fléche et du gauchissement modi-
fiant cug.

Celte remarque s'é¢tend, comme nous le montrerons, aux cellules
biplanes.

[l apparait immédiatement, ce qui est évident géométriquement
en raisonnant directement sur la courbe métacentrique, que le coef-
deme
dec:
coordonnées sont définies par les équations (41) et (42), la position
d'équilibre étant alors stable.

Lorsque ¢: varie, ce métacentre décrit un arc d'ellipse partant du

ficient est positif lorsque G est en dessous du métacentre dont les

point de la corde ?:m:o,z& situé au quart avant de la profondeur.

Lorsque ¢mp est nul, la courbe métacentrique se réduit 4 ce point qui
est le centre de poussée immobile. A titre d'exemple, nous admetirons
pour le profil utilisé, les caractéristiques :

m=0,20, By==5,3, cm=0,012, #{=0,07, Cmy==0,10,
dont la connaissance permet, pour chaque valeur de c:, de calculer
la position du métacentre :

!

a 0,1 0,2 0,3 0,4 Q,5 0,6 0,7 0,8 ©,9 1

—0,334| 0,018 | 0,979 | 0,400 | 0,432 | 0,450 | 0,440 | 0,432 | 0,429 | 0,414 | 0,403

-~ ""'l}{ -

833 | 7,09 | 5,2 | 3,45 | 2,25 | 1,68 1,25 | 0,956 | 0,752 | 0,606 | 0,408

L'arc d'ellipse correspondant a été tracé sur la figure 4, I'échelle

des ordonnees“g ¢tant dix fois plus faible que celle des abscisses i:

Pour d'autres valeurs de cm, on obtiendrait des arcs d'ellipses
homothétiques par rapport au point I de la corde situé a la distance
du bord d'attaque égale au quart de la profondeur /.

Remarquons d'ailleurs que le pdle d’homothétie 1 est toujours
situé sur l'ellipse dont un arc représente la courbe métacentrique,
I'ellipse étant tangente en ce point a la corde.

Si G est le centre de gravité de l'avion, il apparait que, pour
¢: = 0,5 par exemple,il faudrait, pour que l'aile soit en équilibre
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stable autour du G avec cmg = 0,10, que ce point soit en dessous de la
corde & une distance supérieure a 1,68 [.

Cette distance minimum diminue proportionnellement a cmy pour
n’étre plus que 0,84 ! si ¢mp =0,05.

11 résulte de ceci qu'en régle générale, il serait impossible de
mettre G assez bas pour que l'aile seule soit en équilibre stable
autour de ce point pour des portances de l'ordre de 0,5 et &4 fortiori
pour ‘des portances plus faibles. Cependant, pour les ailes & profil
biconvexe symétrique ou les ailes simultanément gauchies et en
fiecche pour lesquelles cw est.nul, la courbe métacentrique se réduit
au point I situé au quart avant de la profondeur et I'équilibre de l'aile
autour de G sera stable si ce ppint est en dessous de la corde sur la
résultante aérodynamique passant par[.

D'une facon plus générale, nous ¢tudierons maintenant la stabilité
ou l'instabilité apportée par le couple aérodynamique de I'aile lorsque
le centre de gravité G n'est pas sur la ligne d’action de la résultante
aérodynamique, soit par U'effet de l'effort de traction de I'hélice, soit
par celui d'un couple additionnel provoqué par I'empennage. -

I1 est bien entendu que nous n’analyserons ici que la seule influence
du couple aérodynamique de I'aile pour une position quelconque de G
non astreinte, d'aprés notre hypothése, a la condition que cme soit
nul.

- Le critere décisif de la stabilité sera toujoursla valeur et le signe de

la dérivée d;f'“ fournie par l'expression (40), l'aile apportant de la

stabilité ou de l'instabilité suivant que cette dérivée est positive ou
négative.

Il suffit,comme nous 'avons dit,de considérerla dmite-‘-i;;-'f’-:: 0 par-
z
tageant le plan en deux régions, 'une de stabilité et I'autre d'instabi-

d mG .y -
jcf est positif et égal 4 m, 1l en

résulte que Vaile apportera de la stabilité si G est, par rapport a la
droile (40), du méme cété que le bord d'attaque.

Cette droite caractéristique passe par le point fixe I de la corde

lité. Comme, pour le bord d'attaque,

situé au quart avant de la profondeur (y = o, % =m == 0,25) et son

inclinaison ¢ sur I'axe des y normal & la corde est, d’aprés I'équa-
tion (40) :

2Cy

tgb= B, To. (43.]
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L'angle ¢ étant calculé par cette formule, I'équation (40) de la
droite D d’équilibre indifférent peut s'écrire :

deo

de. =m—§-+3§tg¢=fe- (44)

Cette forme d’équation est, comme nous allons le montrer, parti-
culierement commode pour évaluer, d'une facon absolument générale,
la valeur de la stabilité en fonction de la situation du point G.

" En effet, si G n'est pas sur ladroite précédente, mais en point quel-

de i
conque du plan decoordonnées x et y, dcm prend une valeur positive
F

ou négative dontnous allons chercher I'expression générale.

Soit # la distance de G a la droite D considérée comme positive
quand G est du méme coté que le bord d'attaque par rapport a D, le
bord d’attaque étant,comme nous 'avons supposé, I'origine des coor-
données.

Une formule bien connue de géométrie analytique donne :

x ¥
BTTITTEY d
SRVARTNTIENE S

Mais la paralléle & D mené¢e par G rencontre en H’ la corde de l'aile.
La longueur k' = IH’ est évidemment liée & k par la relation
h = k'cos ¥ (fig. 5), d’ol finalement

cos §. (49)

deme h W
de; ~ lcosdy™ I (46)

La longueur A’ est positive, donc l'aile est un facteur de stabilite,
quand le point H’ se trouve entre le bord d’attaque et le point I situé
au quart avant de la profondeur.

On peut ainsi énoncer le principe que leffet stabilisateur de Uaile
est uniguement déterminé par la position de la projection obligue H'
a langle ¥ du cenire de gravilé sur la corde de laile, cet effel élant
mesuré par la distance IH' compiée positivement vers le bord d’alltaque.

Cette regle générale et I'expression donnée du coefficient de stabi-
lité s’applique naturellement au cas déja étudié ou G est sur la ligne
d'action de la résultante aérodynamique.

Il apparait ainsi que, contrairement a I'opinion courante, I'aile d'un
avion peut apporter sa part de stabilité dans l'équilibre autour du
centre de gravité, l'importance de cette participation dépendant des
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caractéristiques du profil et surtoutde la position du centre de gravité.
Il résulte immeédiatement de la formule (46) que:
a) Pour une portance donnée, toutes les positions du centre de gra-

vité donnant méme coefficient de stabilité d—;cf?“l's{mt sur méme droite

inclinée de ¢ sur la normale a la corde.

b) B’ croit, doncla stabilité est améliorée quand on déplace le centre
de gravité vers le bord d'attaque, parallélement a la corde.

¢) Pour toutes les portances pour lesquelles ¢ est positif, #' croit,
donc la stabilité est améliorée, quand le centre de gravité est abaissé
perpendiculairement a la corde, le résultat étant inverse pour les por-

tances pour lesquelles { est négatif.

. . . .. d¢me
Comme cas particulier, sile centre de graviié esten I, "Elcl est nul

a toutes les incidences et 'aile, étant indifférente, n'intervient en rien
dans l'obtention de la stabilité.

Il est particulierement intéressant d’utiliser les formules précé-
dentes pour voir commment varie en fonction de la portance la stabi-
lité apportée par l'aile pour une position déterminée du centre de
gravité,

Il est commode, pour cette étude, de définir la position du centre
de gravité, par ses coordonnées polaires par rapport au point caracté-
ristique I de la corde, c'est-a-dire, par sa distance e au pointI et par
I'angle & de IG avec la normale 4 la corde dirigée vers le bas, § étant
positif dans le cas de la figure (fig. 5). -

Le sens positif étant fixé pour 8, le sens positif se trouve de ce fait
également déterminé pour e.

En remarquant que

h=e sin ({ — 8),
la formule (46) donne immédiatement

e sin (y—=8)
T cosy ' (47)

dﬁmc
de:

{ étant, d'autre part, connu par la formule (43} :

2Cs .
gy ="5-—"b (48)

. d . .
Le coefficient :;:'G pour un centrage déterminé varie toujours
E]

linéairement en fonction du coefficient de portance c;, car son expres-
sion développée ne contient effectivement que tg 4. Si e est positif, et
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les conclusions sont inverses si e est négatif, il apparait que l'aile
apporte de la stabilité a toutes les incidences pour lesquelles ¢ est
supérieur 4 § et, au contraire, de l'instabilité quand ¢ est inférieur a 3,

r—----—-’---—--\-——---c ———————— ]

A i

la limite de la stabilité correspondant a § = 8, c'est-a-dire a la por-
tance :

B, ..
[ ?0 {f'ﬂ + tg 5} (49)

En développant I'expression (47) et en introduisant la valeur de cup
calculée par I'expression précédente, on trouve finalement la formule
simple et d'une application commode:

demo 22 C08 8
de; = 1 By (6 — ) (50)

La discussion par ces formules ne convient pas au cas ou le centre
de gravité est sur la corde de I'aile ou trés pres de cette corde, mais on
sait que, dans ce cas, le coefficient de stabilité précédent est constant
et égal au rapport 4 la corde de la distance du centre de gravité au
point I, positive vers le bord d'attaque.

Dans le cas général, cherchons s'il est possible que T'aile apporte

- d . -
de la stabilité; donc que —z'gf soit positif & toutes les portances
positives.

I"f cas. — e cos & > o le cenlre de gravilé est en dessous de la corde
de aile.
Il faut que ¢ — cx soit toujours positif, ce qui exige que ¢z soit

22
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négatif ou nul, c'est-a-dire que #, -} tg § soit également négatif ou
sensiblement, 8 << — #. L'angle & doit donc étre négatif et éire au
moins égal a i, en valeur absolue, la droite 1G étant, par rapport a
la normale a la corde, inclinée vers le bord d’attaque. Comme ¢, ne
dépasse pas en général 6 a 8°, cette condition conduit a des valeurs
minima de § assez modérées.

2° cas. — e cos 8 << 0, le centre de gravité est.au-dessus de la corde de
Vazile.

Il faut que ¢s — ¢z soit toujours négatif, donc cs supérieur a la
plus grande portance que l'on envisage. § doit étre positif et supérieur
a une certaine valeur, la droite IG étant encore inclinée vers le bord
d'attaque par rapport 4 la normale a la corde.

Si, par exemple, la portance maximum envisagée est égale a 1, si
le coefficient de profil 4, a la valeur moyenne 0,07, on voit en rem-
placant B, par 5,3, que tg 8§ doit étre supérieur 4 0,307, donc 3§ plus
grand que 17 degrés,

Etudions maintenant, d'une fagon générale, que le centre de gra-
vité soit en dessous ou au-dessus de la corde de l'aile, les variations de
cm en fonction de 3, en admettant toujours pour le coefficient de
profil 4, 1a valeur moyenne 0,07 et son remplagant B, par 5,3.

Il est bien évident que cz est un simple coefficient et que sa valeur
n'est pas limitée et peut dépasser notablement les portances a envi-
sager.

Avec les chitfres admis, la formule (49) donne immédiatement:

Csp = 0,185 4 2,65 tg a.

Nous obtenons ainsi:

= | —a0° — 100 o° 0% 20° i 3o 407
Copy= |—0,780| —0,283 ] 0,185 0,653 1,15 ‘ 1,72 2,40

La formule (50) permet alors de tracer pour différentes valeurs
de § les droites représentant en fonction de la portance les variations

du coefficient de stabilité —dggﬁ.

&
ecosd | . .Y
Dans cette formule, 70 est autre que la distance relative 7 du

centre de gravité a la corde, positive quand le centre de gravité est en
dessous de la corde.
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Nous avons effectué I'application numérique dans les deux cas ou le
centre de gravité est 4 la méme distance relative 0,2 de la corde de
l'aile, soit en dessous, soit en dessus, ce qui donne:

= = o =2 (£ — o) =4 0,0755(Cz — €.),

le signe + s'appliquant quand le centre de gravité est au-dessous de
la corde, le signe — quand il est en dessus.

Il est bien évident que pour d'autres valeurs de A ; cos 8, il suffit

l
dcﬂfii . .
do. a ces valeurs. Avec le chifire
-+ 0,2 et différentes valeurs de §, nous avons obtenu le réseau de droites
de la figure 66.

d'effectuer la proportionnalité de
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Le simple examen de cette figure, comme d’ailleurs I'analyse de la
formule (50), conduit a la conclusion suivante :

1° Lorsque le centre de gravilé est en dessous de la corde de l'aile, la
stabilité apportée par Uaile croit toujours lorsque la portance augmente.

2° Lorsque le centre de gravité est au-dessus de la corde de I'aile, la
stabilité apportée par I'aile décroit toujours lorsque la portance augmente.

Dans le cas infermédiaire ou lecentre de gravité est sur la corde de
I'aile, le coefficient de stabilité de l'aile seule est constant, donc indé-
pendant de la portance, ainsi que le montre la formule (44).

11 est évidemment avantageux que le coefficient de stabilit¢ d'un
avion ne diminue pas quand la portance augmente. Le couple de sta-
bilité est, en effet, proportionnel au produit du coefficient de stabilité
par le carré de la vilesse aérodynamique et, comme cette vitesse
diminue quand la portance augmente, I'avion peut se trouver insuffi-
samment stable aux portances élevées.

Le coefficient de stabilité total étant la somme du coefficient de sta-
bilité de l'aile et de celui de 'empennage, un accroissement de la sta-
bilit¢ de l'aile avec la portance est un élément favorable. Les ailes
monoplanes trés surbaissées sont, a cet égard, nettement défavorisées
et la détermination des empennages dans ce cas doit retenir toute l'at-
tention de I'ingénieur qui désire réaliser un avion suffisamment stable
a toutes les portances.

- Pour terminer ces considérations sur la stabilité d’une aile, nous
analyserons la condition d'équilibre d'une aile seule autour du centre
de gravité sous l'action des efforts aérodynamiques qu’elle subitet de
I'effort de traction de I'hélice.

C'est le probléme qui se pose pratiquement quand on veut déter-
miner le centrage pour une certaine portance arbitrairement fixée sans
action de I'empennage. La présence des résistances nuisibles modifie
les coefficients de la courbe métacentrique, comme nous le verrons
plus loin, mais ne change rien a la discussion.

Le vol étant supposé horizontal, soit ¢ I'incidence de la corde placée
en position de vol (fig. 7). La direction de I'effort de traction F de
I'hélice coupe en G, la résultante aérodynamique R appliquée a laile.
11 est 1acile de situer exactement la ligne d'action de cette résultante.
Le poids P, vertical, de I'avion devant équilibrer F et R doit passer
par G,.

Le licu des positions possibles de G permettant Uéquilibre des forces et
des moments est laverticale G,Z passant par G,. Si G est en Gy, l'effort de
traction de I'hélice n'intervient en rien dans I'équilibre des moments.
Si G est sur G,Z en un point différent de G,, le moment des forces

Droits réservés au Cnam et a ses partenaires



https://www.cnam.fr/

SECTION TECHNIQUE 341

aérodynamiques est R X GS, piqueur ou cabreur suivant que G est
au-dessus ou en dessous de G,. Si le moteur est brusquement arrété, il
est favorable que 'avion ait tendance a piquer. Il faut donc, en prin-
cipe, que G soit au-dessus de l'effort de traction. Si ¢ est la distance de
G & F, il est évident que le couple qui tend a faire piquer ou cabrer

P

Fig. 7.

I'avion quand le moteur s'arréte, a pour grandeur I ¢; lorsque ¢ est
faible, I'eftet de ce couple est d'ailleurs trés peu sensible.

Nous arréterons a ces considérations I'é¢tude de la stabilité d'une
aile isolée pour passer, comme nous l'avons annoncé, a I'analyse de
I'effet des organes annexes et tout d’abord du fuselage.

2° Influence d’un fuselage. — Le premier, dans une communication
mémorable faite & I'Académie des sciences, le 6 juin 1904, le colonel
Charles Renard a mentionné et chiffré I'instabilité propre d'un corps
fusiforme de révolution autour du centre de gravité de son volume.
Plus tard, par des essais effectués dans un bassin, Crocco a fait de
nouvelles mesures sur la caréne du dwigeable italien n°® 1 et a, de plus,
mesure la réaction subie parla caréne normalement a son axe lorsque
ce dernier est dévié d'un petit angle sur la vitesse d'avancement.

Les laboratoires d'a¢rodynamique n'ont pas, a nolre connais-
sance, effectué de mesures sur la stabilité propre des fuselages, de
sorte gu'en l'absence de données plus précises que celles résultant
d'essais de carénes de dirigeable, nous nous bornerons a indiquer la
nature et 'ordre de grandeur des phénoménes mis en jeu.

Considérons (fig. 8) un corps fusiforme de révolution dont le
maitre couple ait un diamétre d et recevant le vent relatif sous une
certaine incidence « comptée par rapport 4 son axe.
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Dans le cas qui nous occupe ici, cet axe est supposé dévié dans un
plan vertical, mais le raisonnement et les conclusions s'appliqueraient
intégralement au cas ou la déviation se produirait dans un plan hori-
zontal.

La résultante aérodynamique R’ appliquée a la caréne est, comme
on sait, dirigée suivant 'axe A’B’ lorsque a est nul. Mais lorsque a
varie, elle est modifiée en grandeur et direction et enveloppe la cou: be
mélacentrique I' de la caréne, sa tracel sur A’B’ étant le centre de dérive.

Fig. 8.

La courbe métacentrique est symétrique par rapport a I'axe A’B’ et
présente sur cet axe, pour a=o0, un point l, de rebroussement qui se
confond alors avec le centre de dérive.

Lorsque l'angle « reste petit, et c'est le cas dans le probléme qui
nous occupe ici, la partie utile de la courbe métacentrique est trés
voisine de son point de rebroussement et 'on peut la confondre avec
ce point, le centre de dérive étant alors considéré comme immobile en 1.

Cette approximation légitime correspond aux formules données
par Renard et par Crocco.

La résultante aérodynamique R’ peut, au centre de dérive | se
décomposer en F’y suivant 'axe et I/, suivant la normale a I'axe et I'on
peut poser:

M d V=2 o, 2V, (51)

28 &
' et ¢y étant deux coefficients sans dimension dont la connaissance
en fonction de « definit la polaire de la caréne rapportée a 'axe et sa
normale. Pour achever de déterminer les caractéristiques aérodyna-
migues de la caréne, il suffit de déterminer au laboratoire le moment
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de la résultante par rapport au point avant A’ ol l'axe coupe la sur-
face de la caréne ou plus simplement la position du centre de
dérive I,. '

On peut admettre, avec une approximation suffisante, que ¢’; est
pratiquement constant et égal au coefficient de résistance de la caréne
tandis que ¢’x est proportionnel 4 «.

Si1 le centre de gravité de 'avion est a une distance 3’ en dessous
de I'axe A’B’, sa projection sur cetaxe étanta vne distance »’ du centre
dedérive, lemoment des forces aérodynamiques appliquées a la caréne
sera:

M:_Ein BV u ¥ ), (52)

le signe — correspondant au sens positif admis pour les moments, les
couples piqueurs étant considérés comme positifs,
¢’y étant constant ainsi que la dérivée de ¢’y par rapport a «, il en

résulte, en supposant I immobile en I;, que %—T est constant et a le

signe de — x’.
i e s . . dM i
La stabilité de I'équilibre exigerait que P fat positif, il en résulte

qu'une caréne est instable autour de tout point dont la projection sur l'axe
est en arriére du cenire de dérive.

Comme le centre de dérive est trés pres du point A’ tandis que le
centre de gravité G est en général beaucoup plus en arriére, on peut
énoncer qu'en principe un fuselage d’avion apporte de I'instabilité dans
I'équilibre des moments. Cette instabilité est cependant faible et
absorbe, comme nous le verrons, pour sa compensation, une partie
minime de la surface totale de 'empennage.

Pour des carénes d'allongement 5 4 6, les essais de laboratoire
montrent que ¢ est en moyenne égal a 0,03, Ce coefficient doit étre
légérement majoré pour un fuselage d'avion pour tenir compte des
résistances extérieures et des discontinuités de la surface (trous
d’homme).

En ce qui concerne ¢, des mesures faites au bassin par Crocco ont
donné pour la caréne du dirigeable italien n®* 1 ¢'5 = 1,2 o, I'angle «
étant exprimé en radians. Il apparait ainsi qu'aux grandes incidences
de T'aile, la portance d'un fuselage d'avion n’'est pas négligeable. Si,
par exemple, d = 1 met 50, « = 0,10, V = 45 m. 5., aux conditions
atmosphériques du sol, F/y == 34 kilos pour une résistance F’; de
14 kilos.
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Quant au couple aérodynamique, Renard et Crocco le mesurent
par rapport au centre de gravité du volume de la caréne, et ils ont
constaté que pour les petites valeurs de «, ce couple d'instabilité est
proportionnel a «, ce qui revient 4 supposer ¢, proportionnel 4 « et le
centre de dérive immobile en I,. ’

Nous avons cherché a déduire de ces mesures la distance au
point A’ du centre de dérive I, en remarquant que, pour tout point de
l'axe, le couple mesuré n’est autre que le moment de l'effort nor-
mal F’y supposé appliqué en I,.

Nous avons ainsi trouvé que, pour les essais du colonel Renard,
s = A’l, == 0,05 d, le centre de dérive étant par conséquent trés voisin
du point A’,

Comme application de ce résultat, il est trés instructif de chercher
quelle est la surface s d'empennage susceptible d'annuler le couple
d'instabilité, I'équilibre de la caréne étant ainsi rendu indifférent.

Le centre de gravité de I'avion autour duquel s'é¢tudie I'équilibre se
projette sur 'axe de la caréne A’B’ en un point situé & une certaine
distance x," du point A’; nous supposerons que la longueur de la
caréne est six fois son diameétre maximum d, le centre d'action de
I'empennage étant en B’. Pour des emipennages tels que ceux actuel-
lement utilisés, les essais de laboratoire montrent que le coefficient
angulaire de la droite de portance en fonction de l'incidence est, en
moyenne, égal a 3,5, de sorte que toute variation d'incidence « de
'empennage provoque la variation 3,5 « du coefficient de poussée. En
négligeant les intéractions sur I'empennage, il suffit d’écrire qu'ily a
équilibre entre le moment perturbateur de Veffort F/, appliqué en Iy et
le moment correcteur de I'empennage, ces deux moments étant pro-
portionnels & I'angle «. On trouve immédiatement la condition :

21, 20 VE(x) — 0,05 d) = = 3,5a s V¥(6d — x4),
28 28

I
L — 0,05 A 0,05
§ 1,24 ’ 03 d e 53
dg—g‘s 6 xﬁf —_— 4 r - x,\’ ( )
T T A
a T d
& . JJJa.Jr . .
En évaluant alors - en fonction de a il vient :
.‘%‘_': 0,6 0,8 1 1.2 1.4 | 1,6 1,8 i 2,2 | 2,4 | 2,6
s
i 02,0346 [ 0,049 | 0,0645 | 0,0814 | 0,10 | 0.12 | 0,142 | 0,166 | 0,192 | 0,222 | 0,255
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f
Pour un fuselage d'avion, % est en général compris entre 1 et 1,6.

Il apparait donc que % ne dépasserait pés 0,10 avec les chiffres que

nous avons admis. Si, par exemple, d = 1 met 40, on voit que la
fraction de la surface de I'empennage compensant strictement I'insta-
bilité du fuselage, n’excéderait pas 0,2 m. q., fraction trés faible de la
surface totale de l'empennage.

En résumeé, si 'on déterminait au laboratoire les caractéristiques
aérodynamiques propres du fuselage, il serait possible de calculer la
fraction d'empennage strict annulant son instabilité. Le fuselage
n'agirait plus alors que comme une résistance parasite indépendante
de l'incidence.

Il sera généralement plus pratique et plus expéditif d’essayer au
laboratoire l'ensemble de I'aile et du fuselage dont la présence modi-
fiera légérement la courbe des moments par rapport au bord d'attaque
de laile. Pour fixer les idées, nous apprécierons 'ordre de grandeur
de cette modification, soit (fig. ¢), # = AA, la distance du bord
d’attaque A de l'aile a I'axe du fuselage, & étant positif quand A, est
en dessous de la corde de l'aile et e = A, I, la distance au centre de
dérive de la projection A, de A sur l'axe du fuselage, e étant positif
quand A, est en avant de I,. :

Pour se rendre compte de la fagon dont est modifié le moment
unitaire ¢m par rapport au bord d’attaque, il suffit de faire la réduction
par rapport a ce point des efforts aérodynamiques appliqués a la
car¢ne. On voit immédiatement que l'effort axial F/; de coefficient
unitaire ¢’; constant se comporte comme une résistance indépendante
de l'incidence et a pour double effet :

1* d'augmenter le coefficient unitaire ¢; de l'aile suivant sa corde
de C”.-g quantité égale, par exemple, 4 0,002 si ¢’y = 0,05, d= 1 met 40,
S=jom.q.

2* d'augmenter également le coefficient unitaire ¢,y de moment de

portance nulle de l'aile de la quantité c’f--nsn- I égale a 0,002 avec les

. / . . .
chiffres précédents et ?; = 1. Aulieu d'une augmentation du coefficient

Cmo, ON ODbtiendrait, au contraire, une diminution si k était négatif, le
point A’ étant alors au-dessus de la corde de I'aile.
Pour évaluer de la méme fagon l'influence de 'effort F’, normal a
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I'axe, il convient tout d’abord d’évaluer son coefficient unitaire ¢/, en
fonction de la portance ¢; de l'aile.

¢’x étant, comme nous l'avons montré, proportionnel a la déviation
« de l'axe du fuselage sur le vent relatif est, par suite, une fonction

linéaire de l'incidence de l'aile, donc aussi de sa portance c;, en s'an-
nulant pour c; = ¢z, I'axe du fuselage étant alors paralléle au vent.
On peut donc poser:

¢n =B’ (¢z — cm). (54)

Le calcul de B’ est immeédiat, car si B est le coefficient angulaire de
la droite des c: en fonction de I'incidence, k le coefficient de propor-
tionnalité de ¢’s 4 «, ona BB’ = £, ce qui donne B/==0,3 pour B= 4 et
k= 1,2, cette derniére valeur étant celle que nous avons précédemment
admise,

Dans la réduction des forces par rapport au point A, il en résulte
que F'ya pour effet:

1° d'augmenter le coefficient de poftz{nce ¢y assimilable au coeffi-
cient unitaire de l'aile suivant la normale a sa corde, de la quantité

vl e g .
Cfﬂ {S = B g (C; - C.*.QJ. Si Czg=— 1, Cx :0,5, d = 1,40, S = 50 m. q.,

B’ = 0,3, cette augmentation de c; est assez minime et n'atteint
que 0,006,
2* d'augmenter également le coefficient unitaire ¢, du moment de
dte d&*e

I'aile de la quantité ¢/, TT7= B’ 57 (€ — C30). On obtiendrait, au con-

traire, une diminution du moment si e était négatif, le centre de derive
l, étant en avant de la projection A; du bord d'attaque de l'aile sur
I'axe du fuselage, ce cas étant d'ailleurs le cas le plus généralement

rencontré.
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En considérant donc e comme positif ou négatif, le coefficient com,

de moment de portance nulle se trouve majoré de — B’ = % Czp, tandis

S
que le coefficient m de c: dans I'expréssion de ¢, se trouvera majoré
Pyt . :
(i
de B 3T
. e .
Supposons, par exemple, 7= _,; et, pour les autres coefficients,

les mémes valeurs que précédemment. cu Sera majoré de 0,003 et m
diminué de o,006.

Il est ainsi possible de corriger facilement la courbe des moments
d'une aile pour tenir compte de l'influence d'un fuselage dont on
connait tout au moins approximativement les caractéristiques aérody-
namiques, les deux coefficients cay et m de la droite des moments
étant simultanément modifiés,

Le plus souvent, on déterminera au laboratoire la courbe des
moments de I'ensemble, aile et fuselage. Les considérations que nous
venons de développer permettront dans tous les cas de prévoir 'ordre
de grandeur des résultats et en faciliteront la discussion,

3° Influence des résistances nuisibles. — Nous envisagerons ici
les résistances accessoires de toute nature offertes a 'action de l'air,
mais supposées telles que les forces aérodynamiques qu'elles engen-
drent puissent étre considérées comme uniquement proportionnelles
au carré de la vitesse et indépendantes de l'incidence aérodynamique
de l'aile.

Cette hypothése s'applique en principe a toutes les résistances
nuisibles d’'un avion autres que le fuselage dont nous avons traité
I'effet séparément. Si, cependant, certains organes résistants sont
carénés de fagon a pouvoir donner une légere sustentation fonction de
I'incidence, leur effet pourra s’analyser par une méthode absolument
identique a celle que nous venons d'indiquer pour le fuselage.

Ce cas particulier étant excepté, nous définirons toute résistance
parasite élémentaire par la surface ¢ du plan mince qui, exposé nor-
malement au vent, fournirait la méme résistance. Ce plan mince est
caractérisé par un coefficient de résistance, uniforme dans tous les cas,
tel qu'a V metres par seconde, il offre au vent, aux conditions atmos-
phériques normales du sol, la résistance:

f=0,08c V", (55)
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ou, avec la notation précédemment adoptée :

f:z“g. 1,284 V2, (56)

Considérons alors (fig. 10) une résistance nuisible de grandeur f
appliquée en D a la distance h=DH de la corde de l'aile, le plan
mince orthogonal de résistance équivalente ayant une surface s. La

Fig. 10.

distance h sera considérée comme positive lorsque la résistance est en
dessous de la corde de l'aile. Si¢ est I'incidence, la composante f sini
de f suivant DH sera négligée et f pourra étre considérée comme nor-
male a DH, cos1 étant assimilable a 'unité.

Il en résulte, en représentant f par la formule (56), que, dans la
réduction du systéeme des forces aérodynamiques par rapport au bord
d'attaque A de I'aile, cette résistance élémentaire aura pour effet :

1° D'augmenter le coefficient unitaire ¢; de la résultante aérodyna-

mique suivant la corde de l'aile de la quantité 1,28 %;
2° D'augmenter également le coefficient ¢w, du moment de por-
tance nulle de l'aile de la quantité 1,28 5 ‘:—; Si & est négatif, c'est-a-
-3
dire, sila résistance est au-dessus de 'aile, ¢, se trouvera, au contraire,
diminué.

Les résistances nuisibles provoquent ainsi un simple décalage
parall¢lement 4 la corde de la polaire de l'aile rapportée a la corde et a
sa normale et un simple décalage parallelement a I'axe des ¢ de la
courbe des moments unitaires ¢. en fonction de la pmtance ¢s. Ces
deux décalages peuvent étre immédiatement évalués.

Si maintenant on considere I'équilibre des couples autour du
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centre de gravité, sont seules favorables a la stabilité longitudinale
les résistances qui sont au-dessus du centre de gravilé.

En effet, ces résistances, provoquant un couple cabreur, permettent,
pour les équilibrer, d’avancer le centre de gravité vers le bord d'at-
taque de l'aile parallelement & la corde, résultat qui, comme nous
I'avons montré, accroit tonjours la stabilité apportée par l'aile. Au
contraire, dans le cas ot des résistances importantes, telles que celles
que peuvent provoquer des flotteurs sont trés en-dessous du centre de
gravité, il faut, pour les équilibrer en reculant le centre de gravite,
se rappeler qu'un tel procédé diminue toujours la stabilité.

Nous terminerons ce sujet en notant qu'en général, on sera obligeé
de déterminer par le calcul, comme nous venons de I'indiguer, les mo-
difications apportées par les résistances aux caractéristiques aéro-
dynamiques de laile.

Le laboratoire ne peut, en effet, essayer avec une précision suffi-
sante une maquette d'avion munie de tous ses accessoires. Pour ces
derniers, 4 une échelle des dimensions trop réduite, les résistances
mesurées différeraient trop notablement desrésistances réelles réduites
par similitude et un calcul, méme trés approché, est toujours préfé-
rable.

4° Cas d’une cellule biplane. — Nous allons établir que toute
cellule biplane, au point de vue de ses efforts aérodynamiques et de
leur moment, est équivalente 4 une aile monoplane de méme profil et
d’allongement donné par le calcul. Nous montrerons ol il faut situer
l'origine des moments pour retrouver la méme formule hinéaire du
coefficient de moment que pour une aile monoplane. Les calculs rela-
tifs a la stabilité statique seront ainsi ramenés a ceuxd'une aile mono-
plane et s’effectueront exactement comme il a ét¢é indiqueé.

Dans une cellule biplane de surface totale S, I'aile supérieure porte
la fraction x, de la sustentation totale du biplan et l'aile inférieure la
fraction x,, ces deux coefficients étant liés par la relation x, + x, = 1.
En toute rigueur, x, et x, dépendent de l'incidence, mais pratiquement,
on peut admettre qu'ils gardent la méme valeur a toutes les incidences,
ou tout au moins pour les entreplans usuels. C'est ainsi que, pour des
biplans a ailes égales, I'expérience a montré que l'aile supérieure a la
méme portance que si elle étaitisolée, tandis que 'aile inférieure porte
environ 2o °/, de moins.

Si p est le rapport de 'envergure L, de l'aile inférieure a 'enver-
gure L, de l'aile supérieure, ¢; le coefficient de portance de la cellule,
la théorie de Prandtl, basée sur la répartition elliptique des poussées
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en envergure, indique que la trainée induite dun biplan a pour
expression :

ZS i -vE
b‘cl—ﬂhg ( + + t x} {57)

Dans cette formule, ¢ est un coefficient d'mtéractian donné par

Prandtl en fonction de ¢ et de I'entreplan relatif rapporté a

L+L

I'envergure moyenne :

Valeurs de

=| 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

H=1 0,780 | ©,655 | 0,561 | 0,485 | 0,420 | 0,370 | 0,327 | 0,200
=08 | 0,600 | 0,600 | 0,523 | 0,459 | 0,401 | 0,355 | 0,215 | 0,282
=06 | 0,540 | 0,485 | 0,437 | 0,304 | 0,351 | 0,315 | 0,285 | 0,255

Il résulte de ce qui précede qu'en posant

1 Xy x, X
3 "--;2-2!' ;’l +2 = : (58)
/ L%, (59)
V=g
on aura
(6o)

Ces formules sont également applicables aux biplans droits et aux
biplans a ailes décalées.

On peut en conclure que la courbe polaire caractéristique de la cel-
lule biplane sera la méme que celle d'une aile isolée de méme profil et
d'allongement ¥'. Le coefficient angulaire B de la droite des portances
¢; =B (I + &) se calculera, comme nous l'avons indiqué pour une
aile isolée, par la formule:

= “_—B; ’ (61)

dans laquelle Bo==5,3.

L]
Remarquons qu'ici %-l représente l'allongement apparent de la cel-
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lule, en supposant que c'est 'envergure de I'aile supérieure qui est la
plus grande, sinon il faudrait intervertir L, et L,.

Il est bien certain que, powr un allongement apparent donné, le
biplan est toujours moins résistant que le monoplan, puisque, comme
nous le verrons, &, égal a I'unité pour le monoplan, est toujours supé-
rieur a I'unité pour le biplan.

Supposons que le biplan ait ses deux ailes égales et identiques,

: T
I'allongement géométrique individuel de chaque aile sera lﬂza_ﬁ_:s_
Tout se passe donc comme si chaque aile avait la trainée induite
donnée par la formule (60) qui peut s'écrire :

‘sz. == ,__Ois 2 f— 2 Cs:

—T oy Cs .
T wkE

Cyj == —

S
L

(62)

On peut donc dire aussi qu'au point de vue global, pour un biplan
a ailes égales, tout se passe comme si l'intéraction était nulle, a condi-
tion de remplacer dans les calculs aérodynamiques l'envergure géo-

2
meétrique , de chacune des ailes par 'envergure corrigée iy ‘%, plus

petite que %, et égale 4 V. Il ne faudrait pas en conclure qu'en réalité
chaque aile considérée isolément est soumise aux mémes actions que
cette aile monoplane équivalente, car cette équivalence n'est valable
qu'en considérant I'ensemble du biplan. Les polaires respectives des
deux ailes ne sont pas en effet identiques, les intéractions n'étant pas
. les mémes pour l'aile supérieure et l'aile inférieure, et ces polaires
individuelles ne peuvent étre considérées comme correspondant a
celles d'une aile monoplane.

[ est intéressant d'appliquer, comme l'a fait Prandtl, les formules
générales que nous venons de rappeler aux biplans de résistance
induite minimum.

Pour un biplan dont les envergures L, et L, des deux ailes et la sur-
face totale S sont données, il est bien évident qu'a toutes les portances
la résistance induite sera minimum si la répartition de la sustentation
entre les deux ailes est telle que ¥, donc % soit maximum. En rem-
plagant, dans la formule (38), x, par 1 — %, et en annulant la dérivée
de I'expression obtenue par rapport a x,, on trouve que le meilleur
biplan aura une aile inférieure portant la fraction x, du poids total
telle que :

ryme (B0 (63)
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En remplagant ensuite x, par cette valeur et x, par 1 — &, dans
I'équation (58), on obtient la valeur correspondante de % qui peut se
mettre sous la forme simple :

B=1+ &:—::;- (64)

Cette formule montre bien, ainsi que nous I'avons annoncé, que le
coefficient % est toujours plus grand que 'unité.

Notons que ce coefficient &, dont I'expression résulte des travaux
de Prandtl, a'également ét¢ introduit par Munk qui I'a déterminé
expérimentalement et les valeurs qu'il a mesurées different peu de
celles que donne la formule précedente.

Pour calculer les caractéristiques x, et &£ des biplans de résistance
minimum, il suffit de remplacer s par sa valeur précédemment donnée
en fonction de I'entreplan et du rapport ¢ des envergures. En rappor-
tant ici l'entreplan % a l'envergure L., on obtient les chiffres des
tableaux ci-aprés qui pourront étre utilisés, méme pour les biplans
s'écartant sensiblement de la répartition la plus favorable des susten-

tations :

I. — Valeurs de x,.

- 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

M=
|

-

=1 0,50 | 0,500 | 0,50 | 0,50 | 0,500 | 0,500 | 0,500 | 0,500
=08 1| o,172 | 0,246 | 0,285 | 0,310 | 0,327 | 0,338 | 0,347 | 0,355
p=061| 0,06 | 0,104 | 0,134 | 0,157 | 0,176 | o,191 | 0,202 | 0,211

1. — Valeurs de k.

h .
= 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40
1
p=1 1,060 | 1,100 | 1,132 | 1,160 | 1,186 | 1,210 | 1,230 | 1,246
w=0,8 | 1,015 | 1,036 | 1,059 | 1,0% | 1,100 | 1,119 | 1,136 | 1,150
p=0,6 | 1,005 | 1,015 [ 1,024 1,037 | 1,049 | 1,059 | 1,070 | 1,079

On voit que k augmente quand I'entreplan augmente ou que p se
rapproche de l'unité, ainsi que le montre d’ailleurs la formule (64).
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Le biplan le plus avantageux est donc d envergures égales (). Pour les
irés grands entreplans, o tend vers zéro et la valeur optimum de x, tend

2
vers 1__“%?1 & ayantlui-méme pour valeur limite 1 4 p*, En particulier,

si les envergures sont égales, les valeurs limites de x; et de % sont

respectivement 0,5 et \/;, résultat évident a priori.
Le graphique de la figure 11 donne en fonction de I'entreplan

reIatif{'— les valeurs de k et de x, pour différentes valeurs de . En
4

particulier, pour les biplans a envergures égales, on trouve x; = 0,5,
quel que soit I'entreplan, et : '

T2
/e

Ce coefficient, appliqué a des biplans constitués par deux ailes
identiques, donne desrésultats enbonaccord avecl'expérience, ainsique
I'a constaté M. Toussaint. Considérons, par exemple, un tel biplan
dont chacune des ailes ait un allongement géométrique de 6 :

(65)

L$
ho== 2t =
. o S 61
I'allongement apparent % de la cellule étant, par suite, égal a 3.

Supposons un entreplan relatif %: 0,10 pour lequel k=1,1.

L’envergure corrigée )’ 4 introduire dans les calculs sera

1'=£2-§1=3,62.

La cellule biplane se comportera, au point de vue aérodynamique,
comme une aile monoplane d'allongement 3,62. On peut dire aussi
qu'on peut négliger I'intéraction en considérant que chaque aile consti-
tutive n'a pas I'allongement 6, mais I'allongement 3,62.

Considérons maintenant la cellule du Bréguet XI1X pour laquelle :

Plan supérieur : 5=33mq., L=14m. go LSL =6,72,

Plan inférieur : S;=15mq. Ly==10m. 8o,
Surface totale : S=8 4 S;= 48 mq.

£
Allongement apparent : L =4,064, p= L“ = 0,725,

S Le

(*) Cette conclusion n'est évidemment exacie que pour une valeur donnée de

L
lFallongement apparent I-'S-' .

a3
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Entreplan : A==1 m. 70, —Lh— =0,114.

Pour ces valeurs de l'entreplan et de p, la participation optimum

K-1o_ -

K= fﬂt‘ﬁ'ﬁcfent e redueton

4,75 ]

i
]
{ , : —.
0,05 010 ors 0,20 025 0,30 &
I L,
0,05 . E
¥
0,10 ' R ;"ractr:or-_.cn: a
i Susferiglion reservee
s b e A0, & Ugle tnfericure

Fig. 11,

de l'aile inférieure a la sustentation totale serait d’environ 20 %/, unpeu
plus petite que la sustentation réalisée puisque %:c},Br].Néanmoins,

cet appareil est voisin de 'optimum et % variant peu au voisinage de
son maximum, nous prendrons la meilleure valeur k=1,03. Il en
résulte que I'ensemble des deux ailes est sensiblement équivalent 4 une
aile monoplane de méme profil et d'allongement (1,03)* X 4,04 = 4,9.
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En résumé, il résulte de ces considérations que, pour tenir compte
de l'intéraction des ailes d'un biplan, il suffit simplementde considérer
un allongement fictif ¥/, facile a calculer, et qui remplacera au point de
vue aérodynamique l'allongement géométrique d'une aile monoplane,

Ainsi que nous I'avonsdit, la polaire d'une aile rapportée a la corde et
4 sa normale et définie par les variationsdec; en fonction de ¢; estindé-
pendante de V'allongement et ne contient que des coefficients de profil.
La polaire ainsi définie estdonc la méme pour une aile isolée ou une
cellule biplane. Seule varie la correspondance entre l'incidence et ¢,
puisqu’elle dépend de I'allongement.

Apres avoir ainsi déterminé la grandeur de la résultante des efforts
aérodynamiques appliqués a une cellule biplane et la correspondance
entre 'incidence et la poussée, nous passerons maintenant a l'étude du
couple aérodynamique provoqué par ces efforts. L'expérience montre
que, pour chacune des ailes considérée individuellement, le coefficient
unitaire ¢, du moment par rapport au bord d’attaque en fonction do
coelficient de portance de ceite aile a la méme expression linéaire

Cm==Cmp | M Cs (66)

que pour une aile monoplane isolée.

Pour voir immédiatement comment se pose le probléme et 4 titre de
premiére approximation, nous négligerons d'abord l'intéraction entre
les deux ailes en supposant que, pour chaque incidence, les coefficients
unitaires ¢; et ¢z suivant la corde etla normale sont les mémes pour les
deux ailes de surfaces respectives S, et S;. A défaut de données permet-

Fig. 12,

tant une plus grande précision, cette approximation sera généralement
suffisante pour les entreplans usuels et les cellules sans interincli-
naison.
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Pour chacune des ailes, la réduction des forces aérodynamiques par
rapport aux bords d’attaque A, et A; donnera le couple unitaire ¢ et
les efforts unitaires ¢; et c..

Pour obtenir le moment résultant par rapportaun point quelconque
du plan, il faut composer les couples de coefficient cm et les moments
des efforts ¢: et ¢ appliqués en A, et A, (fig. 12).

Les efforts globaux appliqués en A, et A, sont proportionnels aux
surfaces respectives S, et S,, de sorte quesi sur A, A,nous choisissons
un point A tel que:

AA,_S:
AR, S, (67)

le moment des forces appliquées en A, et Apsera identiquementnul par
rapport a ce point, quelle que soit I'incidence.

Si nous composons maintenant les couples, il apparait que le mo-
ment résultant par rapport & A sera, en désignant par [, et j les pro-
fondeurs des deux ailes et par S=8, 45, la surface totale:

t 2
M,\:%Cw {Sih-'l'—Sgig):%Cmsz ] (68)
avec ©
_S;!*"{"Sg&g__slll"-l_slg‘
b= 5 5 +S: (%)

Donc, en négligeant 'intéraction des ailes, le coefficient de moment
aérodynamique sera le méme que pour une aile isolée pour le point A
situé sur la droite joignant les bords d'attaque A, et A, tel
que %—%:zgf a condition de rapporter ce coefficient & la surface
totale S et a la profondeur fictive ! donnée par la formule (6g).

Tout se passe donc, dans ce cas, comme pour une aile monoplane
dontle profil aurait son bord d'attaque en A, sa corde paralléle aux
cordes des deux ailes et une profondeur égale a la profondeur fictive L

Les coefficients unitaires ¢; et c: de la résultante suivant la corde et
sa normale seront les coefficients globaux du biplan calculés, comme
il a ét¢ dit, en introduisant la notion d'envergure corrigée.

Le probléme est ainsi ramené a un probléme déja traité.

On détermine généralement au laboratoire le moment unitaire par
rapport au bord d'attaque A, de I'aile supérieure et jil est évident que
ce coefficient varie en fonction de la portance du biplan suivant une loi
qui n'est plus linéaire, mais bien parabolique.
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Pour le montrer, nous négligerons encore I'intéractioniet nous sup-
poserons, comme on doit le faire, le coefficient de moment évalué par
rapport au produit S/ de la surface totale par la profondeur fictive cal-
culée comme nous 'avons dit. .

Le bord d'attaque A,de l'aile inférieure a par rapport a4 A, suivant
la corde et sa normale, les coordonnées e et A, e étant le décalage et h
I'entreplan; e sera, par hypotheése, positif quand l'aile inférieure est
décalée vers I'arriére (fig. 12).

En prenant les moments parrapport au bord d'attaque A,,on trouve
immédiatement :

szggﬂamA+6A¢H&wu+hm} (70)

En rapportant le coefficient de moment au produit S/ de la surface

totale par la profondeur fictive :

j—Sili+ S
S )

on trouve que le coefficient de moment par rapport au bord d'attaque
A, delaile supérieure aura pour valeur :

Coy =— Cm“l‘"% %CZ-*"%{H) (?I}

Dans cette formule, ¢m = cmo -+ 0,25 ¢» qui est le coefficient de mo-
ment de chaque aile isolée et ¢; qui, pour toute aile monoplane de
méme profil ou toute cellule biplane, a la méme expression en fonction
de cs, est donné pour la formule (11) déja démontreée :

2
Cr=Cat ol — 1. (72)

1]
Nous appliquerons ces formules 4 un biplan a ailes égales non
‘décalées (e==0, | =L=1,5=28,=285,) pour lequel %: 1. Le 'profil

supposé est le 285 de Prandtl pour lequel ont été mesurés les deux
moments unitaires cm et cmy. On a, pour ce profil,

Crp=0,0128, 1==0,087, Cmy==0,065.
En remplagant B, par 5, 3, on obtient :

Cmy ==0,065 40,25 ¢z 40,5 (0,0128 + 0,087 ¢z — gc%)

c'est-a-dire :
Cay == 0,071 + 0,203 ¢z — 0,004 .
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Nous avons représenté sur la figure 13 les courbes des coefficients
cm calculés par cette formule et déterminés an laboratoire. L'accord
parait pratiquement suffisant, tout au moins en premiére approxima-
tion.

Il est plus rigoureux, quand on posséde la courbe expérimentale des
moments par rapport au bord d’attaque de l'aile supérieure, d'effectuer

¢ 285
* ! TH <
_ " y
Ly .
02 | &
/o
! k=
02 | '“Q'
ny i '
06
05 |
o0& | .
1 wounde r_aﬂ:ulmm':._.E*.
B3 | N counbe pofondie
02 |
0
U Ll T T T T ]

0 00501 015 02 025 03 035 Cm

C omy

polsires d'un biplan . kR .00
L,

Fig. 13.

I'opération inverse qui consiste a chercher la position du point du plan
pour lequel la courbe des moments se réduit & une droite ¢mo+ 0,25 ¢s,
de sorte qu'on se trouve encore ramenés au probléme déja traité. Nous
admettons que la courbe expérimentale est une courbe parabolique :

Cmizﬂo"f“al C:'I’aﬂc?lr (73)

Soit alors x et y les coordonnées par rapport au bord d’attaque A, du
point cherché A, ces coordonnées étant comptées respectivement sui-
vant la corde et la normale a la corde.
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Nous avons montré que, sans approximation, le coefficient ¢; du
biplan est donné en fonction de sa portance ¢; par la formule {72). Le
systeme des forces aérodynamiques se réduit donc, en coefficients uni-
taires, a cmy et & ¢ et c; appliqués en Ay,

Le coefficient de moment par rapport au point A aura par suite sa
valeur :

%
' m=ay+ ay €z 4 a CF — 7 Y e

[}

Cette expression est du second degré par rapport a ¢z, comme on le
voit, en remplagant ¢; par sa valeur. En annulant le coefficient de ¢*; et
en écrivant que le coefficient de ¢; est §galao,25, nous obtiendrons deux
équations a deux inconnues x et y. 1l sera donc toujours possible de
déterminer exactement le point du plan pour lequel la courbe des mo-
ments est une droite de coefficient angulaire 0,25. Aprés avoir ainsi
indiqué comment se pose le probléme en premiére approximation,
quand on ne posséde aucune donnée expérimentale et comment,
d’autre part, on peututiliser la courbe parabolique des moments quand
on la posséde, nous analyserons maintenant I'effet de I'intéraction en
supposant, pour ne pas compliquer, que les cordes des deux ailes sont
paralleles, c'est-a-dire qu'il n'y a pas d'intérinclinaison.

On sait que si une aile a un allongement X et se trouve isolée dans
le vent, sa polaire, dans la zone utile, a pour équation :

¢zt
Co == Cap -+ y (74)
avec cz=B (i 4 1), (79)

le coefficient B s'exprimant, en fonction ded, par la formule déja
indiquée:

By
By {76)

®A

L'expérience révéle que, méme pour les grands entreplans, les
polaires individuelles des deux ailes, et particuli¢rement celle de l'aile
inférieure, sont profondément modifiées. Pour chacune des ailes, en
effet :

1° La trainée varie toujours linéairement en fonction du carré de la
portance, mais la trainée de portance nulle n'est plus égale au coeffi-
cient de profil ¢z; elle est augmentée d'une quantité positive & pour
I'aile supérieure et négative ¢ pour l'aile inférieure.
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2¢ La résistance induite E{
beaucoup plus marquée pour le plan inférieur que pour le ‘plan supé-
rieur.

3° En ce qui concerne les portances, les portances individuelles des
deux ailes ne sont pas nulles lorsque la portance du biplan passe par
la valeur zéro.

L'aile supérieure, d'envergure L, et de surface S, a un allongement
2

réel }, = _Si, I'aile inférieure, d'envergure L; et de surface Sy, aun allon-
i

est augmentée, cette augmentation étant

2 . .
gement réelh:%, tandis que I'allongement du biplan de surface
S=85, + 5; est défini, comme nous l'avons vu, par I'allongement appa-

Ly

== o,
rent S

Pour une incidence donnée, le biplan a une portance ¢, alors que

les portances individuelles des ailes supérieure et jinférieure sont

respectivement ¢z et ¢z;. On peut écrire les relations générales.

e
Ca=Co+atpwy,  (77) Ca=actbics (78)
ca=cnt+ut gy, (79) ca==dy+bicc . (80)

 Dans ces formules, ¢, &, &, ks, ai, @5, by, besonthuit coefficientsd’in-
téraction qui ne sont pas indépendants, ainsi que nous le montrerons,
et les relations (77) et (79) sont les équations des polaires respectives
des deux ailes.
D'autre part, si I'on considére le biplan, on sait qu'il est assimilable
a une aile monoplane d'allongement £, le coefficient d'intéraction &
étant déterminé, comme il a été dit, par la méthode de Prandtl, le coef-
ficient B s'en déduisant par la formule (76) dans laquelle I'allonge-
ment X est remplacé par I'allongement corrigé #*.. On a donc, pour le
biplan :

c s
r=Cot Eyr (81) ce=B (i + k). (82)
A ces formules, il convient évidemment d’adjoindre les identités
qui définissent l'addition des trainées et des poussées totales a toute

incidence :

Cay Sy +Ca:2 Sp=ce85 , (83} Cat Sy € Se=¢:S. (84}
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Ayant écrit ces relations générales, il estfacile de voir que les para-
metres d'intéraction introduits ne sont pas indépendants, mais sont
liés par certaines relations fondamentales que nous allons établir et
qui limitent le nombre des coefficients a demander a l'expérience.

Il suffit, pour les obtenir, de remplacer dansles formules (83) et (84),
Cxus Camy Cay Oy Cop PAr leurs expressions en fonction de la portance ¢:du
biplan. On obtient ainsi deux identités qui doivent étre vérifiées quel
que soit ¢;. Done, dans ces identités, les termes constants et les coef-
ficients de ¢; et ¢, doivent étre séparément nuls, ce qui donne immé-
diatement :

ats,;

tist+sssz+1rk!1l+ )‘! =0 , {85)
a8, a. beS
o+ A= (36)
b8,  b*S, 5
L TR TR &)
@S+ 3:5,=o0 , (88)
bisl_i_bzsﬂgsi-!'sl . (89:'

En remplagant &, % et ) par leurs valeurs et en désignant par p le

rapport%des envergures, on tire de ces formules, par quelques

transformations simples :

k4 p R = (90)

e G
@Si=—aS , . (92)
'i""-‘j—'l'bi }‘i—g; A (93)
=,si+asg+§3§?§%=o - (94)

Remarquons maintenant que le coefficient A introduit dans la for-
mule (93) n'est autre que la valeur particuliére de la portance ¢; pour
laquelle les deux ailes et le biplan ont méme coefficient de portance.
Ecrivons, en effet, que ¢x,==én=4¢:; les formules (78) et (80) nous
donnent :

Cz“_ﬁl—'blml——bg_ * (95}
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Le coefficient global % étant donné par la théorie de Prandtl, il
suffit de connaitre A, a, ou @, et 5 ou &, c'est-a-dire en tout trois coef-
ficients d'intéraction. -

Dans le cas particulier du biplan a ailes égales, p=1, } ==ly==2)
et S;=8;=0,585.

Dans le cas ol il n'y a ni décalage, ni intérinclinaison des ailes,
d'apres les essais du laboratoire de Saint-Cyron peut admettre pour A,
ag et ¢, les chiffres du tableau ci-aprésdonnés en fonction de I'entreplan

&

relatif o La valeur admise pour k est celle de la théone de Prandlt et

les autres coefficients ontétécalculés parles formules que nous venons
d’établir en supposant, pour le calcul de &, un allongement %= =6.

&: 0,08 | 0,10 | 0,12 | 0,14 0,16 | 0,18 | 0,20 | 0,25
A= 0,70 | 0,52 | 0,37 | 0,25 | 0,19 | 0,14 | @11 | 0,07
y=-—a,= | 0,30 | 0,20 | 0,13 | 0,08 | 0,054 | 0,036 | 0,025 | 0,014
b, = 1,430 | 1,385 | 1,35 | 1,315 | 1,285 -1,560 1,230 :,-200
b= 0,570 | 0,615 | 0,65 | 0,685 | 0,715 | 0,740 | 0,770 | 0,800

k 1,085 | 1,100 | 1,113 | 1,126 | 1,139 | 1,150 | 1,160 | 1,185
k= 0,920 | 0,916 | 0,913 | 0,010 | u,009 | 0,909 | 0,010 | 0,018

Ry = 0,578 | 0,610 | 0,635 | 0,657 | 0,680 | 0,700 0,720_ 0,750
£g= 0,024 | 0,007 | 0,013 | 0,010 | 0,007 | 0,005 | 0,0035] 0,001

— == 0,044 | 0,025 | 0,010 | 0,011 | 0,0073| 0,0053} 0,0037| 0,001

Nous avons ainsi tracé sur la figure 14 les polaires individuelles et
globale d'un biplan a ailes égales sans décalage ni intérinchinaison

pour —E =0,10, €xp==0,016, k= hg =21 =06.

Nous avons aussi tracé les droites des portances respectives ¢, et
Cs en fonction de ¢:.
A mesure que I'entreplan augmente, le point H pour lequel les trois

portances sont égales se rapproche de l'origine, —f—-‘—‘ tendant a devenir
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constant pour toutes les portances usuelles, ainsi que nous l'avons
indiqué précédemment.
En ce qui concerne les chiffres indiqués au tableau précédent, nous
ferons quelques observations au sujet des variations des coefficients
'b:}('z-

a

¢
100 | I aile supereure 1

I ade :'nl'-‘ei-deu'r‘e
¥
B bipen S -
Fi E (—r_
poriances respectives !
. ks Siles
o O o
c‘.z
S0
I
} 1 C,
| porignee du bipEn
% i
L
r T T 1
(0] ) o . 15 400 Cw

Fig. 14.

qui y sont mentionnés, ces observations s'appliquant aux biplans a
ailes égales ou inégales.

Lorsque 'entreplan croit de zéro a l'infini :

1° Le coefficient global k& de Prandtl croitde 1 a /1 4 p¥, c'est-a-dire
de 1 ay/2 dans le cas des envergures égales.

2° Le coefficient &, du plan supérieur est toujoursinférieur a l'unité,
il est égal & 1 pour un entreplan nul etjun entreplan infini, l'aile se
comportant dans ce dernier cas comme une aile isolée. 1l passe donc
par un minimum pour une certaine valeur de entreplan. Dans le cas
des surfaces alaires égales, ce minimum est 0,08, atteint pour un
entreplan relatif de o,17.

3 Le coefficient &, du plan inférieur croit toujours avec l'entreplan,
il est nul pour un entreplan nul, et tend vers 'unité pour un entreplan
infini, I'aile se comportant alors comme une aile isolée.

. e S , .
4° Le coefficient b décroit de 5, a SUF & lorsque I'entreplan croit
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de zéro a l'infini. Dans le cas du biplan a ailes égales, il décroit donc
de2ar.

2
5° Le coefficient by croit dezéro i ET?%;}- lorsque I'entreplan croit

de zéro a l'infini. Dans le cas du biplan a ailes égales, il croitdeo a 1.

Nous ne démontrerons pas ces propriétés qui s'établissent sans
difficulté en utilisantles formules (go) a (g4).

Nous ferons une derniére remarque concernant les coefficients
angulaires By, B, et B des droites représentant les portances c;,caetecs
en fonction de l'incidence du biplan qui sera, par exemple, celle de
l'aile supérieure. On a évideinment :

B : B
bizgi ? bl=§$ '

de sorte que la suite d'égalités (g1) s'écrit :

B, B B
TR TR - 9

11 en résulte que les coefficienls angulaires des droites de portance des
deux atles d'un biplan en fonclion de Pincidence du biplan sont propor-
tionnels aux paramétres k*)\ el k), des paraboles induites,

Cette remarque est digne d’étre faite, car on serait tenté 4 priori de
calculer B, et B, en fonction de A*\ et k') par la méme formule hyper-
bolique qui lie B a A% pour le biplan.

Aprés ces considérations indispensables, nous arriverons mainte-
nant au but de cette analyse qui est la détermination des polaires res-
pectives des deux ailes rapportées, comme nous I'avons fait précédem-
ment, a la corde de 'aile et 4 sa normale.

Pour simplifier, nous supposerons qu'il n'y a pas d'intérinclinaison
des ailes; I'introduction d'un angle d'interinclinaison conduirait d'ail-
leurs 4 une discussion toute semblable mais sans grand intérét. Con-
sidérons d’abord l'aile supérieure. Avec le degré d'approximation suf-
fisant admis jusqu'ici, le coefficient unitaire normal a la corde est ¢y
et le coefficient suivantla corde :

2
C;l

nC=m—iCa==Caotut gy —iCa - (97)

L'incidence 7 est celle du biplan liée & sa portance par la formule :

e:=B(i+4) , (¢8) avec é"gif.&!;r (%9)
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En remplagant ¢; par sa valeur en fonction de ¢; on trouve immé-
diatement :

. Cna— 4

=B R (100)

Pour le biplan, ¢ s'annule lorsque I'incidence i est égale & —,
tandis que pour l'aile supérieure, la' portance ¢z s'annule pour I'inci-
dence :

i=—iy— p g =—(+7) - (101)

Il est commode d'introduire ici dans les calculs cet angle j, facile &
calculer par la formule qui le définit :

. a
=y (102)
de sorte que :
. Cz .
t:‘!h—lB-""in""fi . (103)

- En remplacant ¢ par sa valeur dans la formule (g7), il vient

Cih 1 b,

CnECn'n—FﬁJr(iu“}"_fl} C:r-“'g" (ﬁ—m .

i
Mais, d’apres les relations (g1} et (g9) :

S B
Reh =R —B B,
d'ol finalement :

Cz’i

cn==Camo+ & + (fo+ 11) Crs — 5 B,

En posant, de méme, jo= 5,% on a, pour l'aile inférieure,

les®

Ch= Caxo + & + (ts+ J2) Cﬂ—ﬁ . (105)

Pour I'ensemble du biplan, ainsi que nous I'avons dit, la polaire
rapportée & ce systéme d'axes est la méme que pour une aile isolée et
a pour équation :

Cs?

cf=6m+£‘)c;-—'-g"" {105}
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Nous avons tracé sur la figure 15 les trois polaires précédentes
pour un biplan a aileségales d'allongement individuel 6 en supposant:

h .
=010 , k=010 , Can== 0,016
1

le coefficient B, étant remplacé par sa valeur 5,3.
Les ailes étant identiques, les trois points simultanément utilisés

Cey1CeqCr. Biptan 4 adtes edates - py =00 -0

1 I
L S = G
047 04 _009-008, 005000005 003_003.002.061 O c0f 002 afs 0p1 aas Ct,
s e
o fig- 45

Fig. 15,

sur les trois polaires sont en ligne droite, ils ont €té tracés pour un cer-
tain nombre de valeurs de ..

Application. — Les considérations qui précédent permettent d’ana-
lyser I'influence de l'intéraction des deux ailes sur le moment aérody-
namique résultant par rapport 4 un pointquelconque. Pour la chiffrer,
nous déterminerons la correction a apporter au résultat obtenu et déja
analysé et discuté en faisant 'hypothese simple de I'égalité des coethi-
cients unitaires des deux ailes.

Nous supposerons que, pour chaque aile, le coefficient de moment
par rapport au bord d’attaque a la méme expression en fonction de sa
portance que si elle était isolée, c'est-a-dire Cmy==Cmp - mcx, pour
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l'aile supérieure, et Cme==Cms -+ Mcsz, pour laile inférieure. Ainsi que
nous l'avons dit, si I et L sont les profondeurs respectives des deux
ailes, le coefficient de moment global doit étre rapporté au produit S/
de la surface tolale S==8 + §; par la profondeur moyenne :

Jamn AL TSR0 .

Ceci posé, la correction d’'intéraction, dont nous recherchons la
valeur, se traduit, comme nous allons le montrer, et quel que soit le
centre des moments, par Uintroduclion d'un cerlain nombre de couples
dont nous allons donner l'expression.

Nous rappellerons que le i moment aérodynamique résultant par
rapport 4 un point s'obtient en ajoutant les couples ¢ et en prenant
par rapport 4 ce point les moments des efforts aérodynamiques indivi-
duels respectivement appliqués aux deux bords d'attaque.

1* En ce qui concerne les momentis ¢ 4 et Cug, 0N peut écrire, pour
'aile supérieure :

Cony == Comp - MCxy = Cng + MCz 4 M (C2y—Cz).
De méme, pour l'aile inférieure :
Crug == Cmnp = MCap== Cmp ~+ M Cz + M (Cxs — C2).

Mais les moments individuels cmy €t cme sont rapportés aux produits
S, et Sg &, tandis que le moment résultant est rapporté a la somme
Sili+4Ss k.

Il en résulte que l'addition ainsi faite de cwy et cms, au licu de
fournir le coefficient résultant ¢, = cmo + cz qui correspond a 'égale
répartition des portances, donnera un coefficient corrigé cm +Acm,
avec :

. Sili(cay— )+ Ss b e — Cz‘!.

Acm=m S A (107)

Mais :
Sica—S8ite=m— (S50 — S C;],
d'ou finalement :

S, (b —h)

Acp=m {C;l — C;} é.f,—i—Sz ‘{! . (108}

Le couple d’intéraction Acy est proportionnel a la différence des
profondeurs des deux ailes, il est positif, c'est-a-dire pigueur, quand
Vaile supérieure est plus profonde et porte plus que laile inférieure.
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2° En ce qui concerne maintenant les efforts aérodynamiques consi-
dérés comme appliqués aux bords d'attaque, la correction d’intéraction
consiste évidemment a ajouter suivant chacune des cordes des ailes et
leur normale les efforts de coefficients unitaires ¢y — ¢1, €z — ¢ pour

V'aile supérieure, et cp — ¢y, Cep— ¢z pour 'aile inférieure.
2

En faisant abstraction du coefficient commun ‘%, il faut prendre

les moments des efforts :

81Cf1 e Siﬂf 5 Sngg P S:Ci f 1

Sica — Sic: R SsCzs — Sece , 11

Mais les identités connues :

Sicu +Sscmﬂ_{51+ Sg:lC; ¥ Slcki+sﬂcttz(sl+ Sz} Ce

donnent immédiatement :

81 Ciy — Sici = — {Sg Crp— SgC!}, Sj_C!l o Si Cg== “""(Sg Czp — Sg Cg}.

I1 en résulte, comme nous l'avions annoncé, que les efforts I et Il
forment deux couples, donc gue leur moment est le méme par rapport a

tous les poinis du plan. .
Considérons d'abord les efforts I suivant les cordes. Si & est I'entre-

plan, ilsconstituentun couple dont le bras de levier est 4 etle moment
k Ss(cue — ci).
Ce moment correspond 4 une majoration du coefficient unitaire
ayant pour valeur :

kS .
A’ Cm—(Cu—Ct)m""%‘;}; (100)

Les effortsI1, de leur coté, forment un couple dont le bras de levier
est le décalage e des deux ailes; ce couple est nul pour les ailes sans
décalage. Le décalage e étant positif quand I'aile supérieure est en
avant de l'aile inférieure, on voit finalement que, du fait de ce dernier
couple, le coefficient unitaire de moment sera majoré de:

S
A ey = (Czg —Cz) ﬁ%-jg?, (.: 10)

Dans le cas particulier du biplan a ailes égales non décalées
Atw=A"¢m=0 et

D h
A e == 051 (cte — ¢

Supposons des ailes d'allongement 6 et rapportons 'entreplan-a
I'envergure L,, comme il a été fait jusqu’ici, il vient:
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3h
ﬂ-’c.»:t(ch-—q}. o (1)

11 est facile de calculer les variations de ces divers couples en fone-
tion de ¢; et d'en tenir compte a titre de termes correctifs faibles.

Il est cependant une valeur particuliére de Acm commode a calculer
et a discuter, c'est celle qui est atteinte 4 I'incidence d'égale portance
des deux ailes.

Pour cette incidence, en effet, ca=cey=0c:= A, et d'aprés les for-
mules (105) et (106)

. Al
Cm—ﬂa=ie+}:A+E<I —;}2) .
Mais
=g« @=A(—b)
d'ot

o 1 — by 1
Ca— Cp==ta 4 A by (B Bo) .
c'est-a-dire
A {1—b)) . -
C”_C’:E*‘F""k'é?vﬁl_} 4 (112)
Pour un biplan a ailes égales d'allongement 6, avec les chifires
indiqués précédemment, cette valeur particuliere de ¢ —¢ est immeé-
diatement calculable ainsi que 4’cy. On trouve :

=
h
r: o,08 0,10 0,12 0,14 0,16 o,18 0,20 0,85
1
Ciy=—Cy= | -— 0, 01056 40,0103 — 0, 0097 |— 0,0087 | — 00,0063 | — 0,0047 | — 0,0034 | — 0,001
A gy= | = 0,0025|— ©,0031 |— 0,0035 | —0,0037|— 0,003 |—0,0025{—0,002 |— 0,0007

Aux portances usuelles, A'cw, toujours négatif, donc constituant un
couple cabreur, varie peu et garde longtemps la valeur indiquée dans
le tableau précédent,

" Il apparait bien, ainsi que nous l'avions indiqué, que cette correc-
tion d'intéraction est faible et peunt étre généralement négligée.

Nous bornerons a cette analyse les considérations sur les cellules
biplanes pour terminer I'étude de la stabilité statique en abordant la
question du couple provoqué par les plans de queue.

24
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5° Action des empennages horizontaux. — Nous supposerons, ce
qui est le cas général, que 'empennage horizontal pesséde un profil
bi-convexe symétrique et que sa forme en plan est celle d'un rectangle,
d'un trapéze, d'une ellipse ou d'un losange tronqué, c'est-a-dire ne
s'¢loigne pas beaucoup de la forme rectangulaire. L'empennage hori-
rontal comprend, en principe, une partie fixe et une partie mobile au

gré du pilote. La partie fixe sert 4 la stabilité et a 'amortissement des
rotations de tangage ; elle est placée de facon a travailler normalement
a une incidence faible, généralement négative. La manceuvre de la
partie mobile permet, par un braquage approprié, de voler a différents
angles d'attaque de la cellule, de fagon a obtenir toujours en régime
permanent I'équilibre des moments par rapport au centre de gravité.

Assez exceptionnellement, 'empennage horizontal est enti¢rement
mobile ; ce cas ne mérite pas un examen spécial, car il rentre dans le
cadre de l'é¢tude générale du plan possédant une partie fixe et une
partie mobile.
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La position du volet mobile sera définie par son braquage § par
rapport a la corde de la partie mobile, § étant positif pour un braquage
vers le bas.

L'incidence aérodynamique # de I'empennage sera, par définition,
celle de sa partie fixe, comptée par rapport a la corde de 'empennage
sans braquage.

Le probléme qui se pose ici est de connaitre les variations du
coefficient de portance ¢’s de I'empennage complet en fonction de I'in-
cidence aérodynamique ¢ de la partie fixe et du braquage § du volet
mobile,

1l semble bien évident a priori que, dans la zone ou les portances
d'une aile sont une fonction linéaire de l'incidence, ¢’; sera également
une fonction du premier degré des deux variables indépendantes
i et B.

On serait, de plus, tenté de croire que, pour une valeur donnée
de 8 et de la surface totale de I'empennage, la participation du volet
mobile dans la portance totale est proportionnelle 4 sa surface. Cette
hypothese simple, souvent admise, est grossiérement erronée et n'est
en rien conforme aux résultats mesurés au laboratoire. On peut, d’une
facon simple et suffisamment précise, mettre en formule la poussée
totale d'un empennage en fonction de ¢ et de B en considérant cet
empennage comme une aile unique @ courbure variable. Pour la commo-
dit¢ du raisonnement, considérons d'abord un empennage rectan-
gulaire (fig. 16); il sera facile de généraliser ensuite la formule
obtenue.

Considérons donc I'empennage possédant un braquage B, la partie
fixe ayant une incidence i mesurée par rapport a sa corde et soit/la
profondeur de I'empennage, r celle du volet mobile.

Cet empennage peut étre considéré comme une aile & courbure
variable de fleche OP et de corde A’B'.

Pour appliquer les formules courantes, I'incidence de cette aile doit
étre comptée, non pas par rapport ala corde A’O de la partie fixe, mais
par rapport a la corde A’B’ de I'ensemble de l'aile.

Le braquage fait ainsi passer l'incidence a considérer dans ce
mode de calecul de ¢ 4 ¢ = ¢ + v, v étant 'angle de A'B’ avec A’O.

On peut alors appliquer la formule bien connue donnant la por-
tance d'une aile :

e = B (7 4 i) =B (7 + 1 + i), (113)

le coefficient de profil 4, étant proportionnel & la fleche relative du
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profil et B’ se calculant en fonction de I'allongement ), comme il a été
démontreé, parla relation: -

By

B'= .
By (r14)
I—!—ﬂ—)‘

Il reste donc a évaluer y et 4, en fonction de B.

La longueur de la corde A’B’ peut étre assimilée a la profondeur
totale ¢ et les angles y et P confondus avec leurs sinus, de sorte que
le triangle A'B’0 donne la relation :

A'B’ OB

. OB’
=" d'ou T:K;ﬂ;ﬁ:i—;ﬁ (113)

La connaissance de y permet 1'évaluation de la fleche OP :
OP=f=0A Xy=(—1)78. (116)

Si 'on admet la proportionnalité de #, a la fleche relative, on en
déduit :

r},:e{:e%(1—%)ﬁ ' (117)

e étant un terme constant.
En remplagant # et y par leurs valeurs, la formule initiale (113)
devient finalement:

=B +np) , (118)
=’ +of—e(f) - (19

Cette formule représente d'une fagon satisfaisante les résultats

observés au laboratoire pour les valeurs usuelles de ;qui sont de

I'ordre de 0,3 a 0,5 pour lesquelles on peut prendre e == 1.
En réalité, et comme il fallait s'y attendre, le coefficient de propor-
tionnalité e de ¢ a la fleche dépend de la position de cette fleche suivant

. r
la profondeur ¢, donc varie avec T On constate, en effet, que e décroit

r . . r
gquand 3 augmente, d’environ 1,5 a 0,8, lﬂrsquc? croit de 0,2 4 0,6.

On pourra admettre, dans les calculs, les coefficients du tableau
ci-apres:
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§= 0,2 0,3 0,4 0,5 0,6 0,7
&= 1,5 1,2 I 0,9 0,8 0,75
n= 0,44 0,55 0,64 0,72 0,79 0,80

Lorsque I'empennage a une forme quelconque voisine de la forme
rectangulaire, ces formules sont encore applicables, mais r et ¢ repré-
senteront les profondeurs moyennes dont le rapport est égal au

s
rapport 6 = -;' des surfaces.

Il convient aussi, dans le calcul de l'allongement, d'effectuer la

correction de la forme en plan en introduisant, non pas I'allongement
. L® . :
géometrique —, mais I'allongement corrigé

BL
=7 : (120)

Les formes en plan les plus favorables sont les formes rectan-
gulaires ou elliptiques pour lesquelles # == 1. On se rapprochera de la
forme elliptique et on pourra conserver & = 1 en adoptant comme
contour celui d'un losange tronqué. Dans le cas d'une forme trapé-
zoidale ou d'une forme approchée, la largeur du bord de sortie doit
étre plus grande que celle du bord d'entrée, ainsi qu'il est logique au
point de vue des pertes marginales. La disposition inverse serait com-
pléetement défavorable.

Supposons alors que la forme en plan soit sensiblement trapézoi-
dale, L étant la grande base qui est I'envergure et L, la plus petite
base, située a I'avant. La théorie de Prandtl assigne alors a k la
valeur:

R T - {121)

En particulier, si la forme en plan est triangulaire, £ = %—, la cor-

rection de forme en plan devient alors trés imporfante.

Si l'empennage est une cellule biplane a ailes rectangulaires
égales, la valeur de & sera celle du biplan a ailes égales, s représentant
alors la surface totale des deux ailes.

Droits réservés au Cnam et a ses partenaires


https://www.cnam.fr/

374 I1T° CONGRES DE LA NAVIGATION AERIENNE

En général, 'allongement % est compris entre 3 et 4, plus fre-
quemment voisin de 3.

Ces formules sont valables pour des braquages du gouvernail
allant de — 15° 4 4 15°; au dela de 20°, le gouvernail devient ineffi-
cace.

Notons maintenant que si I'on admet, ainsi que le vérifie 'expé-
rience, que la portance maximum d'une aile est une fonction linéaire

J

de la fleche relative 7 de son profil, il est facile de calculer la portance

maximum que pourra fournir 'empennage.
Nous admettrons que la plus grande portance d'un profil symétrique
est 0,8 et que 'augmentation de la portance maximum due a la fleche

{-. En remplacant %par le rapport s :‘;—’des surfaces on a, d'aprés
la formule (116) :

est6

‘:_.:"(I """u:]?' 3
d'ou
(¢’2)u = 0,8 + 6a(1—a)p. (120)

Si on donne a ¢ la valeur normale 0,4, 1l vient:

(€'s)uy== 0,8 + 1,44 P.

En donnant a P sa plus grande valeur admissible 15° soit en
radians 0,16, on voit que la plus grande portance que l'on puisse
espérer obtenir sera 1,175.

Remarquons que, pour une valeur donnée de §, la fleche, donc
aussi (¢’z)u, seront maximum en méme temps que s — ¢f qui prend sa
plus grande valeur 0,25 pour ¢=0,5. Il en résulte que le maximum
possible de (¢/;)u sera 0,8 4 1,5 B, soit sensiblement 1,2 pour § = 0,26.

Revenons maintenant a I'examen des formules (118) et (11g) pour
en tirer quelques conclusions relatives & I'efficacité du gouvernail.

Pour évaluer cette efficacité, supposons que le braquage p aug-
mente d'un radian; la portance de 'empennage augmentera alors de
#nB’. Mais cette variation de portance est évaluée par unité de surface
de l'empennage total de surface s; en la rapportant au contraire a
I'unité de surface du gouvernail mobile de surface s,, elle deviendra A
teile que:

Asg=DB'ns; , A=p2,

o
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En remplacant, dans la formule (11g), ?—;par o, on trouve finalement:

A=B(14e—eq) . {122)

On peut dire que A mesure l'efficacité du gouvernail; il en est
doncla caractéristique’essentielle et il convient que sa valeur soit aussi
élevée que possible.

Ainsi qu'il a été dit, B’ ne dépend que de la forme en plan de I'em-
pennage. Pour que B’ soit grand, I'empennage doit avoir une grande
envergure et une forme en plan se rapprochant de la forme rectan-
gulaire ou elliptique.

Quant au second coefficient, il est facile de I'évaluer en assignant a
e la valeur déja indiquée. On trouve :

L .
s:;:f: 0,2 0,3 0,4 0,5 0,6 0,7
= 1,5 1,2 1 0,9 0,8 0,75
14e—es 2,2 1,84 1,6 1,45 1,32 1,22

L’efficacité du gouvernail, c'est-a-dire pour un braquage donné, la
variation de poussée de 'empennage par unité de surface du gou-
vernail mobile, décroit quand la profondeur de Véquilibreur augmente.

Il est done trés avantageux d’avoir un empennage de grand allon-
gement, muni d'une partie mobile dont la profondeur relative soit
faible.

Remarquons que s1 l'empennage est entiérement mobile, s=1,
I'efficacité n'est plus que B, deux fois plus faible environ que celle que
peut fournir un empennage avec partie mobile peu profonde.

Achevons maintenant de déterminer les caractéristiques aérodye
namiques de l'empennage.

Tout d'abord, son coefficient de trainée ¢’ se calcule immeéedia-
tement en admetiant que le coefficient de profil c. est une fonction

J
{
coefficient de profil de I'empennage pour un braquage nul, ce coeffi-
cient ¢tant connu comme un élément caractéristique du profil symé-

linéaire de la fleche relative s de¢ja calculée. Désignons alors par ca le

o 8

trique adopté. La résistance induite sera Lﬁ-, Xétantl’allongementcor-

rigé de I'empennage calculé comme il a été dit.
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L'expression de la fleche relative étant o (1 — o) B, nous avons déter-
miné le coefficient dont il faut l'affecter d’aprés de nombreux essais
d'empennages effectués 4 Gottingen, de sorte que nous adopterons
la formule :

‘2
¢w== cw -} %4—0:?’1(1"—"5} B. (123)

Il est bien évident que, dans le terme ou intervient la fleche,
I'angle B, exprimé en radians, ne devra intervenir que par sa valeur
absolue, car la résistance correspondante est toujours de méme sens.
La valeur de s égale a 0,5 rendant maximum et égal & 0,25 le produit
o(1 —oa) sera celle du maximum de résistance. Il apparait ainsi qu'au
point de la résistance a I'avancement d'un empennage, les valeurs les
plus faibles de ¢ seront les plus avantageuses, ainsi, naturellement,
quun allongement aussi élevé que possible. Considérons a titre
d’'exemple un empennage d'allongement 3 pour lequel s=0,25
et Cap=0,015. On aura B'=3,4 et n=0,49 d'ol :

36!::314(5’4—0,493}- (124)
cte=0,015 40,106 ¢’;* + 0,13 §, (125)

B; désignant, pour eviter toute confusion, la valeur absolue de f.

Si =25 soit 0,0875 et f==10" soit 0,175, on trouve ¢';==0,59
et ¢/»=0,075.

La connaissance de ¢’y n'a d'intérét que lorsqu'on veut évaluer
'augmentation de la résistance de l'avion due au braquage du gou-
vernail, car ¢» est négligeable quand on prend par rapport au centre
de gravité le moment des efforts appliqués a 'empennage.

Un autre élément dont le calcul est nécessaire est le moment aéro-
dynamique du gouvernail mobile par rapport 4 son articulation, en
supposant quiil n'a pas de compensation. s, étant toujours la surface
de ce gouvernail, v sa profondeur moyenne, nous définirons ‘ce
moment M, a l'aide d'un coefficient de moment sans dimension ¢, tel
que :

aVe
M, =—crssr. (126)
28
¢y pourra se calculer par la formule simple ci-aprés dont nous ne
donnerons pas la démonstration, un peu longue :

¢r=0,25n¢'s 40,25 (B'— 1) (1—1) B, (127)
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Dans cettefformule, ¢’s est le coefficient de portance de I'empen-
nage total, n le coefficient de £ dans l'expression de cette portance (for-
mule 119), B’ le coefficient angulaire des droites de portance connu,

par la formule (114), s le rapport ?:;et B le.braquage du gouvernail

en radians,

La convention de signe relative 4 ¢, est la méme que pour l'aile, le
coefficient de moment ¢ et le moment M, étant positifs lorsqu'ils
tendent a relever le gouvernail mobile.

C’est ainsi que si :

: s=0,23, B'=3,4 n=049,
on trouve :
Cr=0,122¢": 0,45 .

I1 existe certains régimes pour lesquels le moment unitaire ¢, s’an-
nule, le pilote n’ayvant alors aucun effort & exercer sur les commandes,
On doit déterminer le calage du plan fixe de facon & ce que cette
condition soit obtenue a un coefficient de portance d'utilisation nor-
male de l'avion. 1l apparait que lorsque ¢, est nul, ¢’z et § ne peuvent
étre que nuls ou de signes contraires; en régle générale ¢’; est alors
négatif et p positif, 'incidence # étant alors négative. '

Il est également indispensable de vérifier, a l'aide de la for-
mule (127) que lorsque l'avion est en piqué a portance sensiblement
nulle, la grandeur du moment de charniére M, n'excéde pas les possi-
bilités du pilote. Nous yverrons plus loin comment I'équation géné-
rale des moments par rapport au centre de gravité permet cette
détermination.

Les considérations que nous venons de développer permettent en
délinitive d'évaluer complétement les caractéristiques aérodyna-
miques de 'empennage.

Leur utilisation dans I'évaluation du moment des forces aérody-
namiques exercées sur 'empennage par rapport au centre de gravité
nécessite 'introduction de certains facteurs correctifs que nous envi-
sagerons successivement pour évaluer leur ordre de grandeur et ne
retenir que ceux que I'on ne peut négliger.

1 Angle de déflexion di aux ailes. — Soit ¢: le coefficient de
portance des ailes, qu'il s’agisse d'un monoplan ou d'un biplan,
L l'envergure qui est celle de 'aile supérieure dans le cas du biplan,

" IJz - .
S la surface alaire totale, A= — l'allongement, & le coefficient de
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correction de l'allongement dans le cas du biplan, et dont la valeur
a ¢été précédemment déterminée. L'application du théoréme des quan-
titts de mouvement montre qu'immédiatement a I'arriere de [l'aile,
I'air est dévié vers le bas d'un certain angle théorique ¢ dont la
valeur en radians est donnée par la formule :

Cs
=T {128)

L'expérience montre qu'a l'arriére d’une aile, 'angle de déflection
est bien proportionnel 4 ¢ et en raison inverse de k%), mais il est
supérieur & 'angle théorique qui est une notion de calcul.

On peut poser, pour calculer cet angle en un point déterminé :

Cz
c=hgp (129)

h étant un coefficient demandé a 'expérience. Soit { la longueur de
la corde de T'aile, qui sera celle de l'aile supérieure dans le cas du
biplan, x la distance horizontale du bord d’attaque de I'empennage en
arriére du bord de sortie de l'aile, y sa distance verticale en dessous de
ce bord. Dans le cas du biplan, I'aile de référence sera l'aile supérieure.
De nombreux essais effectués aux laboratoires de Gottingen et de
Saint-Cyr permettent de déterminer i en fonction de J—: et de J£ On
pourra adopter les chiffres du tableau ci-aprés qui sont en bon accord
avec l'expérience :

Valeurs de % .

o 0,721 0,692 0,662 0,634 0,604 0,573 0,546

0,2 0,609 0,070 0,642 0,612 0,582 0,553 0,524

0,4 0,696 0,647 0,671 0,58y 0,550 0,530 0,501

0,6 0,654 0,625 0,595 0,567 0,537 0,508 0,479

Vateurs de %

0,8 0,631 a, oz 0,572 0,544 0,514 0, 485 0,456

1 0,600 0,580 0,550 0,522 0,402 0,463 0,434
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Les valeurs usuelles de = étant de 2 a 2.5, et celles de £ de 0,3 a 0,5,

[ i
on voit que le coefficient h sera généralement voisin de 0,57. Par
exemple, pour un biplan d’allongement corrigé % == 4,4, on aura :

£ = 0,13 C:.

C'est ainsi que pour c; == 0,8, I'angle de déflexion a I'empennage
atteindra 0,104, soit prés de 6 degrés.

La correction de déviation des filets d’air arrivant sur I'empennage
ne saurait donc en aucun cas étre négligée. 11 sera facile d'évaluer le
coefficient de proportionnalité de ¢ 4 ¢. et d'introduire = dans les cal-
culs, ainsi que nous le verrons plus loin.

2° Angle de déflexion dii aux hélices. — Supposons I'axe [de I'hélice
de diametre D parallele a la corde de l'aile. Le débit d'air a travers
I'hélice est

Mais si », est 1a vitesse moyenne de recul de I'air a arriére de I'hé-
lice, le théoréme des quantités de mouvement indique que l'effort de
traction a pour valeur My,. En vol horizontal, comme nous le suppo-

sons, ceteffort de traction équilibre la trainée totale % cx SVtde l'avion,
ce qui donne :

v 25

V=rDt% - (130)

Lorsque I'incidence aérodynamique de l'aile est ¢, la composante
descendante de », est v, 1, de sorte que 'angle de déviation ¢ provoqué
par I'hélice sur les filets d’air sera connu par la formule :

wi 28 . “
E":% :E—]-:)—e(,‘ml. (IJI)

Si I'axe de I'hélice faisait avec la corde de I'aile un angle ¢ positif
au-dessus de cette corde, il suffirait, pour en tenir compte, de rem-
placer dans la formule précédente i par i + ¢.
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Cette correction est faible et, pour en tenir compte dans une dis-
cussion analytique, on pourra remplacer ¢z par une valeur moyenne,

0,04 par exemple, de sorte que si i—g—, = 3, il vient
¢ ==0,I12 1. o (132)

3° Influence du souffle des hélices. — La correction due au souffle
des hélices lorsque I'empennage s’y trouve complétement soumis con-
duit & multiplier, en vol horizontal, les coefficients aérodynamiques
unitaires ¢’x et ¢’z de 'empennage par le facteur :

?12<I+I1}—\})2=(I frﬂ—f:,%cmy, (133)

c'est-a-dire en négligeant les quantités en ¢*;:

]
pi=1+fﬁgcx. (134)

Cette valeur théorique de p peut étre considérée comme un maxi-
mum, car I'expérience a révélé que, suivant la disposition des hélices,

le terme 45 cx peut se trouver multiplier par un coefficient variant de

=D*
0,5 4 1. A défaut de donnée expérimentale précise, on peut utiliser la
45
=D?
rection n'est donc pas en général négligeable.

formule (134). Si cx = 0,04, == 6, on voit que p = 1,24. Cette cor-

4° Influence du sillage des ailes. — Une certaine masse d'air est
entrainée dans le sillage des ailes et possede encore une vitesse d'en-
trainement #, au droit de 1 empennage. Le coefficient de correction
plus petit que I'unité da a cet effet a pour valeur, par définition,

o :(I__};';,)’, (135)

D’apres les essais de M. Toussaint, pour une aile monoplane,
pe serait minimum, donc l'effet de sillage maximum pour tous les points
d'une droite du plan médian de I'aile partant de son bord de sortie est
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inclinée vers le bas de 5,69/, sur 'horizontale. Si le bord d'attaque de
I'empennage est a la distance horizontale relative f‘! du bord de fuite

de l'aile, les valeurs du minimum de p, seraient les suivantes :

%: 0,5 I 1,5 2 2,5 3 3,5

{(pe)min== 0,71 0,74 | 0,76 | 0,79 | 0,81 0,82 | 0,83

Si le bord d’attaque de I'empennage est en dehors de cette zone de
trouble maximum, p; sera compris entre I'unité et les chiffres de ce
tableau, '

Enfin, entre les deux ailes d'une cellule biplane, d’aprés les mémes
essais, pg au niveau de I'empennage serait sensiblement égal 4 0,9.

A défaut d'autres indications, c'est ce chiffre de o,9!qu'on pourra
prendre dans tous les cas.

Application. — Soit alors § I'angle de calage de la partie fixe de
I'empennage par rapport a la corde de l'aile, & étant positif lorsqu'il
augmente l'incidence du plan fixe. L'incidence aérodynamique ¢ de
'empennage, tenu compte des corrections de déflexion, est lie a I'in-
cidence i de I'aile par la formule :

i —=f—e=—¢ 8, {136)

Mais ¢ et ¢ sont proportionnels 'un a la portance ¢z, et l'autre &
I'incidence 7 de I'aile, Supposons calculés comme il a été dit les deux
coefficients de proportionnalité et remplagons-les par des chiffres pour
ne pas introduire de nouveaux coefficientis dans les calculs.

En prenant e = 0,13 ¢z et ¢/ = 0,12 ¢, il vient :

i =0,887— 0,13 c; + 8. (137)

Pour tenir compte du souffle de I'hélice et du sillage des ailes, il
suffira, dans 'expression (118) du coefficient de portance de 'empen-
nage en fonction de ¢’ etdu braquage B, de corriger le coefficient B’ en
le remplagant par le nouveau coefficient

B"=opp B, (138)
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de sorte que le coefficient de portance corrigé de I'empennage sera :
C”; = B (z'}' +n ?')' {139}

tandis que le coefficient de portance des ailes sustentatrices a 'expres-
sion déja démontrée :

ce=DB(f+1). (140)

Finalement, en tirant ¢ et i des deux formules précédentes et en
portant leurs valeurs dans 1a relation (137), nous obtenons la corres-
pondance entre ¢z et ¢z :

¢z =Ecz+ B (n 4 8 — 0,884), (141)

avec

i

E=10,88 %— — 0,13 B, (142)

Pour un biplan d’allongement corrigé 4,4, le coefficient B de la
cellule est 3,83. Si 'empennage posséde un allongement 3, son coeffi-
cient B’ est 3,4. En prenant p; = 1,24, p» = 0,9, la valeur corrigée de
B est B = 3,8, ce qui donne E = 0,38. Ce coefficient E, qui doit étre
prédéterminé avec autant de soin que possible, est fondamental au
point de vue de I'efficacité de 'empennage. Il serait sensiblement égal
a I'unité, en négligeant la déviation del'air a I'arriére de l'aile; en réa-
lité, il est généralement voisin de 0,34 o,4. Cette difference considé-
rable montre l'influence essentielle de la déviation de I'air sur I'effica-
cité des empennages.

Supposons, par exemple, pour fixer les idées, que la déflexion due
a l'aile soit un peu supérieure a celle envisagée, soit e = 0,15 ¢: et que
le ¢, de 'avion étant plus élevé, ¢ —o0,18 7. Avec les mémes valeurs de
B” et de B, on trouve dans ce cas E =o0,24. Pour de faibles augmen-
tations des angles de déflexion, le coefficient caractéristique E s'est
abaissé a une valeur presque moitié de sa valeur primitive.

L'emplacement de 'empennage par rapport au souffle de I'hélice
et au sillage descendant de I'aile présente doncune trés grande impor-
tance, un déplacement minime de cet empennage pouvant parfois
modifier profondément ses qualités. C'est 1a un fait qui doit toujours
étre présent a 'esprit de l'ingénieur.

Si le coefficient ¢; est influencé d'une fagon considérable par les
déflexions = et ¢/, par contre, le terme dépendant du braquage § n'est
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que peu modifié par le souffle de I'hélice et le sillage de l'aile, B” ne
difféerant guere de plus de 10 */, du coefficient non corrigé B’.

Moment aérodynamique central dii & I'empennage. — Comme pour
l'aile, le coefficient de portance ¢/; de 'empennage peut étre confondu
avec le coefficient unitaire suivantjla normale ala corde. En négligeant

F—-—._? tr

..--_--____._LI_Q'_______._-_:l A
&

1

Fig. 17.

les variations du centre de poussée dues au braquage B, l'effort corres-
pondant a ¢"¢ peut étre considéré 'comme appliqué’an quart avant de
la profondeur de I'empennage. Soit alors L/ la distance a cette force du
centre de gravité G de 'avion (fig. 17), la distance L’ étant, par consé-
quent, comptée parallélement a la corde de I'empennage.

Le couple aérodynamique central dd a 'empennage aura pour
expression

a A F a f - T o
M’:%;c s L V*mi’rsL V#[Ec:+ B" (np+ 8 —0,884)]. (143)

Le couple provoqué par la trainée ¢’z de 'empennage peut, sans
erreur sensible, étre négligé dans ce calcul.

Le moment M’ doit étre rapporté a la surface S de l'aile et & sa pro-

fondeur /, de'méme fagon que le moment aérodynamique M de cette
aile. En posant, comme nous I'avons fait pour l'aile :

P\-‘Ir:;zwmr‘.s Vi, (144)

&

L

il apparait que le coefficient de moment ¢'ms de 'empennage sera
connu par la formule :

sLSf

C’.m:g [Ec:4-B" (np 48 —0,884,]. (145)

Le coefficient fort important E se calculera avec précision comme il
a été dit, ainsi que B”. Le coefficient 0,88 de i, pourra, suivant le cas,
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étre déterminé exactement, mais sa détermination précise a beaucoup
moins d'importance.

6° Moment aérodynamique central de Pavion complet. — Le coef-
ficient de moment de la cellule est donné par la formule (38), Nous
avons vu, d'une part, 'influence sur les différentes constantes de ce
moment des résistances nuisibles de 'avion et, d'autre part, dans le cas
du biplan, I'emplacement de la corde de référence a partir de laquelle
on doit compter les coordonnées x et y du centre de gravité. On peut
toujours, comme nous l'avons vu, placer cette corde de facon que le
coefficient m de la courbe des moments soit égale a 0,25, ce que nous
supposerons. '

¢mo €tant le coefficient de la cellule, donné par la formule (38), ¢'me
celui de I'empennage que nous venons de calculer, S la surface alaire,
!lla profondeur de l'aile, le moment central résultant sera :

Mo= gS V21 (cme + C'mo)s (140)

avec
mo=tma — a4 (m—F —o D)o+ I F, (147)
c’._.m=%l—f [(Ecs+B” (3p+ 8 —o881)). (148)

L'équilibre des moments en régime permanent, en supposant que
Iaxe de I'hélice passe par le centre de gravité, seftraduit par la condi-
tion

(:MG"*"&’mG:O

qui permet de calculer le braquage § du gouvernail en fonction du
coefficient de portance ¢- des ailes.

Ce calcul ne présente aucune difficulté et nous ne ferons pas, pour
ne pas allonger le texte, d’application numérique a son sujet.

La critére de la stabilité propre de I'avion au voisinage de cette
position d'équilibre est, ainsi que nous l'avons dit précédemment, le
coefficient de stabilité :

d cw de’
!"'i—d:;h"i"‘ d::! (149)

qui doit étre positif, 'avion étant d’autant plus stable que la valeur de
ce coefficient est plus élevée.

Droits réservés au Cnam et a ses partenaires



https://www.cnam.fr/

SECTION TECHNIQUE 385

[1 est bien évident que lorsqu’on calcule cette dérivée, le braquage p
doit étre considéré comme une constante.

Le coefficient de stabilité {ofal est donc la somme du coefficient de
stabilité de l'aile et du méme coefficient relatif a I'empennage. Le pre-
mier ayant été longuement discuté, nous ne reprendrons pas cette dis-
cussion.

En ce qui concerne le coefficient de stabilité¢ de I'empennage, son
expression est connue immédiatement par la formule :

d I:Jml’i 8 L’

“de. —EBT (130)

L'apport de I'empennage dans le coefficient de stabilité global est
ainsi proportionnel au coefficient E déja calculé et au moment sL' de
la surface de I'empennage par rapport au centre de gravité.

Notons que, pour un empennage particulierement mal placé par
rapport au souffle de I'hélice et au sillage de l'aile, le coefficient E
pourrait étre trés voisin de zéro.

L’apport de 'empennage dans la stabilité totale serait nul, mais il
ne faudrait pas en conclure 4 I'instabilité de I'avion.

Si le centre de gravité est, en effet, bien placé par rapport au bord

d’attaque de l'aile, celle-ci peut apporter une stabilité suffisante.
!
En général, %:f a comme valeur 0,30 4 0,35. Le coefficient E peut

varier d’environ 0,3 a 0,5, la valeur 0,4 étant une bonne valeur moyenne,
ce qui fait que le coefficient de stabilité de I'empennage peut étre de
l'ordre de grandeur de 0,09 4 0,17, le chiffre 0,12 4 0,13 étant une bonne
valeur moyenne.

Sans reprendre la discussion déja faite a propos de la stabilite de
l'aile, supposons que le centre de gravité soit suffisamment pres de la

corde pour quel} soit négligeable. En remplacant m par 0,25 il vient:

x X
——— === — T :0,25 — T .

Si le coefficient de stabilité de 'empennage est 0,13, I'avion n’aurait
plus de stabilité statique propre si le centre de gravité était distant du
bord d’attaque de (0,134 0,25) I=0,38 L. Si on le place a la dis-
tance 0,28/, par exemple, ce qui constitue un centrage courant, le coef-

25
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ficient global de stabilit¢ statique sera o,10 a toute incidence, chiffre
constituant une valeur normale.

Nous utiliserons constamment, par la suite, le coefficient de stabi-
lit¢ défini par rapport a I'incidence :

defme des dcms‘ dc'me
o= = ()

p== B J (151)

B étant le coefficient angulaire des droites de portance.
On peut dire que si l'incidence aérodynamique varie de di, I'avion
est rappelé 4 sa position d'équilibre par le couple :

c’est-a-dire

__a 2 :
dML-._ngSVIpdz. {(161)

Nous utiliserons 'expression du coefficient de stabilité pris par rap-
port a l'incidence dans I'é¢tude de la maniabilité et de la stabilité dyna-
mique en vol. Ces deux études fourniront les éléments nécessaires a
I'appréciation du coefficient de stabilité statique que doit posséder un
avion suivant sa destination.
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