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L’OPTIQUE PHOTOGRAPHIQUE.

INTRODUCTION.

L’Optique photographique est renfermée presque tout entière 
dans l’élude de l'objectif photographique.

L'objectif est, de tous les appareils qui composent le matériel 
opératoire de la Photographie, le plus important et le plus déli­
cat; c’est lui qui crée l’image, destinée à s’imprimer sur la couche 
sensible; il lui communique, sans rémission possible, ses qualités 
et ses défauts, qui se retrouveront ensuite dans toutes les reproduc­
tions dont cette première épreuve, ce phototype, sera l’origine.

Au point de vue théorique, les conditions spéciales et rigou­
reuses, imposées à l’objectif photographique, font de sa construc­
tion un des problèmes les plus ardus et les plus compliqués qu’aient 
à résoudre les opticiens.

Cet objectif doit, en effet, produire une image réelle, 1° bien 
plane, 20 embrassant un champ considérable, qui peut aller 
jusqu’à 90° d'ouverture, 3° d’une netteté aussi grande et aussi 
constante que possible, d’une extrémité à l’autre du champ focal, 
dans toutes les parties de ce champ et pour des objets situés à des 
distances très différentes de l’appareil, 4° d’une clarté telle, qu'une 
pose excessivement courte suffise pour produire l’impression dé­
sirée, 5° rigoureusement achromatique, et enfin 6° exempte de 
toute déformation.

Or, cet objectif reçoit les rayons lumineux, que lui envoient, 
en nombre infini, et dans toutes les directions, les objets éclairés, 

3.
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INTROD UCTION.

en face desquels il est placé; ces rayons le traversent en se bri­
sant plusieurs fois et en se décomposant, à chaque brisure, en une 
infinité de rayons élémentaires, correspondant aux diverses régions 
du spectre solaire. Ce sont ces rayons dont il s’agit, à leur sortie 
de l’appareil, d’étudier le groupement et de régler la condensation 
de façon à satisfaire le mieux possible aux multiples conditions qui 
viennent d’être énoncées.

La théorie des lentilles a été établie par d'illustres savants, tels 
que Clairaut, Euler, d’Alembert, Lagrange, Herschell, Gauss, qui 
a fait entrer en ligne de compte l'épaisseur de la lentille, Listing, 
Bravais, Littrow, Bohnenberger, etc.

En ce qui concerne les objectifs photographiques, les méthodes 
de calcul, employées pour les lunettes, ont été étendues, perfec­
tionnées et introduites enfin dans le domaine de la pratique, grâce 
aux travaux remarquables de MM. Martin, Steinheil, Dallmeyer, 
Rudolph, Wallon, etc.

Tous ces travaux ont servi de base à l’Etude qui va suivre.



NATURE DE LA LUMIÈRE.

CHAPITRE I.
NATURE DE LA LUMIÈRE.

Qu’est-ce qu'un rayon lumineux? Qu’est-ce que la lumière elle- 
même? On l’ignore. Pour expliquer de façon plausible les phéno­
mènes optiques dont nous sommes les témoins, on a dû édifier de 
toutes pièces des théories hypothétiques : l'une, celle de l'émis- 
sion, a été abandonnée lors de la découverte des interférences, 
auxquelles elle ne pouvait s’appliquer, l’autre, celle des ondula­
tions. imaginée par Fresnel, s’est pliée jusqu’ici à tous les pro­
grès de l’Optique et elle a conquis droit de cité en Photographie 
depuis la belle application qu’en a faite M. Lippmann, à la repro­
duction directe des couleurs.

Théorie des ondulations. Cette théorie suppose l’existence 
d’un fluide impondérable et parfaitement élastique nommé éther. 
qui serait réparti uniformément dans tout l’Univers et dont les 
vibrations engendreraient l’impression lumineuse.

Toute source de lumière S (fig. 1) est considérée comme un

centre d’ébranlement de l’éther et le point de départ d’une série 
indéfinie de vibrations ou ondes, qui se propagent en tous sens

CHAPITRE I. Nature de
la lumière
Théorie des
ondulations



CHA PITRE l.

avec une vitesse considérable (3oooook,n à la seconde environ). 

L’onde entière X se compose de deux moitiés égales $, l’une cor­

respondant à une vibration simple dans un sens, et l’autre à une 
vibration simple en sens contraire. Si, autour du point lumineux S. 
on décrit des sphères concentriques, de rayons croissant en pro­
gression arithmétique de raison 2, la fig. 1 représentera l’état des 

ondes à un moment donné, l’intervalle AB étant égal à 4 et l’inter-
2

valle AC à X; entre les sphères A et B, la vibration s’exerce en un 
sens; elle s’exerce en sens opposé entre les sphères B et C, de 
nouveau dans le sens primitif entre C et D, et ainsi de suite.

Cette longueur d'onde AC est du reste très petite, elle égale 
en moyenne omi,0005 ou or, 5, p. étant l’unité dite micron, qui 
vaut un millième de millimètre. Cette onde AG varie avec la cou­
leur, elle est plus grande, par exemple, pour le rouge, oF,7, que 
pour le violet, or, 39; elle varie aussi avec les milieux traversés par 
l’onde. Enfin, V étant la vitesse de propagation et t la durée d'une 
onde, on a

X — Vt, 
d'où.

_  X 00,5 5®
V 300000ku‘ 3.10151 

ce qui veut dire qu'en une seconde, il y a 5 1015 ou 600 trillions

de vibrations lumineuses moyennes. Les demi-ondes, telles que 
SA, BC, DE, à vibration identique, sont dites concordantes ; au 
contraire, SA et AB, SA et CD, AB et BC sont discordantes.

Interférences. — Quand un écran E (fig. 2) n’est éclairé que 
par deux sources lumineuses très voisines S et S', ayant la même 
origine, par conséquent identiques et produisant simultanément 
des ondes simples de même longueur, les deux séries de vibrations, 
qui arrivent en un point X, s’ajoutent ou se retranchent, selon 
qu’elles sont concordantes ou discordantes, et donnent lieu en ce 
point à un ébranlement lumineux qui est maximum ou nul suivant 
que la différence de marche SX — S est égale à un nombre pair ou

Interférences



NATURE DE LA LUMIÈRE. J

à un nombre impair de demi-longueurs d’onde. L’écran n’est donc 
pas éclairé uniformément, mais il présente des franges rectilignes,

0

parallèles, fff, alternativement obscures et brillantes, et telles que 
X et Y étant pris au milieu de deux franges voisines, la différence

(SX—S/X) -(SY-SY)=)

ou une demi-longueur d’onde.
C’est le phénomène des interférences.
Si les sources S et S' fournissent de la lumière blanche, les 

franges des diverses couleurs simples se superposent en s’étageant 
et donnent naissance à des bandes irisées.

Propagation rectiligne de la lumière. — Pour expliquer le 
mode de propagation de la lumière, on a recours au principe 
d'Huyghens.

Soit une surface d’onde AB (fig. 3), provenant d’une source 
lumineuse quelconque S. L’action vibratoire exercée par S sur un

Fig. 3.

* S

A B

point quelconque situé au delà de AB se transmet intégralement 
par l’intermédiaire de AB.

Cette action peut donc être considérée comme la résultante des 
actions exercées sur ce point par les vibrations propres des divers 
éléments de la surface AB.

Propagation rectiligne
de la lumière
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Quel sera donc l’effet produit sur un point P par les mouvements 
qui se produisent sur la courbe AB, méridienne de la surface d’onde 
considérée (fig. 0?

Je joins SP, et de P comme centre je décris des circonférences 
de rayons égaux successivement à

PC2, PC - - - , PC-—, 
2 3 3

7 . étant la longueur d’onde de la lumière considérée.
L’éclairement en P est la résultante des éclairements envoyés 

par les arcs de cercle DD, DE, D'E, EF, etc. Ne nous occupons 
d’abord que de la moitié CA de la courbe AB.

Le calcul montre que les longueurs CD, DE, etc., sont toujours 
très petites, puisque, pour une onde de très grand rayon, SC, on

Fig. 4.

s

en compte jusqu'à 4000 dans un arc CX de i'”' à partir de C; de 
plus, ces longueurs diminuent très rapidement quand on s’éloigne 
du point C, jusqu’à devenir bien vite négligeables en face du pre­
mier arc CD.

Soient m l’ébranlement transmis en P par le premier arc CD, 
m‘ celui transmis par DE, m" par EF, etc., la somme de ces 
ébranlements, qui sont sensiblement dans la même direction, sera 
égale à

m — m’-m"- m"-- ...;

m‘, m", m" décroissant très rapidement, on peut dire que cette 
résultante est comprise entre m et m — m°, et que la portion effi- 
cace de l’onde est renfermée entre C et E, c’est-à-dire sur un très 
petit espace.



NATURE DE 1 1 LUMIÈRE.

Pour passer de cette onde plane à l’onde sphérique, il suffit de 
supposer que la figure tourne autour de PS, comme axe de révolu- 
tion. L'effet produit sur le point P sera le même pour toutes les 
positions de la courbe méridienne, et l’effet total de l’onde sphé­
rique sera de même nature que l’effet de l'onde circulaire.

Il est donc permis de dire que la lumière se propage en ligne 
droite de S à P, non sous la forme d’une ligne mathématique sans 
épaisseur, mais, au contraire, sous l’apparence d’une sorte de bar­
reau très délié, mais de diamètre EE‘ mensurable; ce barreau 
même n’a pas de contours bien arrêtés, il est entouré d’une pé­
nombre rachetant la différence d’éclairement de son axe SP et de 
l’espace environnant.

Ainsi, dès le début, nous voyons se révéler le caractère approxi­
matif des théories optiques, caractère qui ne fera que s’accentuer 
par la suite.

Onde efficace. — En ce qui concerne les rayons solaires arri­
vant à la surface de la Terre, le diamètre EE‘ de la portion efficace 
de la surface d’onde et par conséquent le diamètre d’un rayon 
lumineux est égal à environ omn, o6. Il est donc très certain, dès à 
présent, que la concentration focale de rayons pareils ne pourra 
jamais produire un foyer de diamètre inférieur à omm,o6; c’est une 
limite absolue de netteté des images.

On démontre que, au foyer d’une lentille supposée parfaite, 
l’image d’un point lumineux se présente sous la forme d'une 
tache lumineuse, entourée d’une série de franges circulaires alter­
nativement brillantes et obscures, dont l’éclat moyen est très faible 
par rapport à celui de la tache. Les dimensions de la tache et des 
franges diminuent quand l’ouverture efficace de la lentille aug­
mente, et elles tendent alors vers la limite de omi, o6. Si cette 
ouverture efficace est au contraire par trop réduite, la tache acquiert 
un diamètre notable; c’est ainsi que si l'on diaphragme à l’excès, 
les images des étoiles fixes deviennent des disques lumineux de 
diamètre appréciable, entourés d’une couronne dont la forme et la 
grandeur dépendent du diaphragme.

Onde efficace
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CHAPITRE II.
LOIS DE LA RÉFRACTION.

En vertu de ce qui précède et sous le bénéfice des réserves 
exprimées ci-dessus, nous représenterons dorénavant les rayons 
lumineux par des droites, pour étudier les lois de leur propagation 
dans des milieux différents.

Réflexion et réfraction. Quand un rayon homogène AB 
(fig. 5) passe d’un milieu dans un autre de densité différente, il 
se divise en un rayon réfléchi BC, faisant avec la normale un angle

de réflexion égal à l’angle d'incidence, et en un rayon réfracté DB, 
1 i sini . . tel que le rapport sinn — ne soit constant pour deux mêmes mi­

lieux. Les trois rayons AB, BC, BD et la normale PP sont dans le 
même plan.

Ce rapport n est l'indice de réfraction du second milieu par 
rapport au premier; sa valeur moyenne pour le passage de l’air 
dans le verre est de 3. Le calcul et l’expérience montrent que cet

CHAPITRE II. Lois de
la réfraction
Réflexion et réfractionIndice de réfraction
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indice est égal au rapport des vitesses de propagation de la lumière 
dans le premier et dans le second milieu, et qu’il est plus grand 
que 1, quand le second milieu est le plus dense. La vitesse de pro­
pagation varie donc en sens inverse de la densité.

Dispersion. — Si le rayon incident AB n’est pas homogène 
( fig. 6), si c’est un rayon de lumière blanche, par exemple, le

03

rayon réfléchi n’est pas modifié, mais le rayon réfracté s’écarte en 
forme d’éventail plan, formé de rayons colorés se succédant dans 
l’ordre du spectre solaire, le violet étant le plus rapproché, le rouge 
le plus éloigné de la normale, quand le second milieu est le plus 
dense. Cela prouve que la vitesse de propagation des rayons varie 
relativement d’autant plus, d’un milieu à un autre, que la longueur 
d’onde est plus petite.

La dispersion est la différence des indices de réfraction des 
rayons extrêmes, n‘ — n°. Le pouvoir dispersif d’une substance 
transparente est le rapport de la dispersion à la différence entre 
l’indice de réfraction moyen et l’unité :

n‘ — n"
n - 1

Un rayon blanc qui traverse un prisme (fig. 7) se transforme 
en un faisceau coloré qui, reçu sur un écran blanc, forme le spectre 
solaire, dont les sept teintes principales se succèdent dans l’ordre 
suivant, par réfrangibilité décroissante :

Violet, indigo, bleu, vert, jaune, orange, rouge.

DispersionPouvoir dispersif
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Le spectre présente des raies transversales brillantes ou obscures, 
découvertes par Fraunhofer, et qui, étant invariables de position, 
servent à définir nettement les diverses régions du spectre.

Ainsi, pour permettre la comparaison directe des pouvoirs dis- 
persifs, on est convenu de prendre, pour les rayons extrêmes, les 

r co 
•
 - —

indices de réfraction des raies H et B, situées l’une dans le rouge, 
l’autre dans le violet, et pour le rayon moyen, l’indice de la raie E 
située dans le vert :

Pouvoir dispersif = "I---- "n.
NE — I

Le pouvoir dispersif augmente, en général, avec la densité d’un 
verre; pourtant on fabrique actuellement des verres, dits anor­
maux, dans lesquels cette progression se trouve renversée, le plus 
dense ayant un pouvoir dispersif moindre.
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CHAPITRE III.

THÉORIE DES LENTILLES.

L’ancienne théorie des lentilles supposées sans épaisseur est 
abandonnée aujourd’hui; nous ne nous occuperons que de la théo­
rie des lentilles épaisses due à Gauss et développée depuis par 
Bravais, Listing, Martin, etc.

Notation et conventions de signes. — Nous supposerons tou­
jours que les rayons lumineux marchent de gauche à droite. Les 
lettres sans accent s’appliqueront aux points, aux objets ou aux 
longueurs d'incidence (points nodaux, sommets, centres, foyers 
principaux ou secondaires, etc.). Les mêmes lettres accentuées 
désigneront les mêmes objets d'émergence.

Toutes les longueurs comptées de gauche à droite, à partir de 
leur point d’origine fixe, seront positives et affectées du signe — ; 
comptées en sens inverse, elles seront négatives et précédées du 
signe —. La convexité et la concavité des surfaces s’entendra tou­
jours par rapport à l’incidence. Les rayons de courbure des sur­
faces convexes sont positifs, ceux des surfaces concaves sont néga­
tifs; les indices i, 2, 3, etc., désignent les objets s’appliquant à la 
première, à la deuxième, à la troisième face ou à la première, 
deuxième ou troisième lentille, de la gauche à la droite.

LENTILLE SIMPLE.

Une lentille simple est une masse de verre terminée par deux 
coupoles sphériques montées sur le même axe.

En un point quelconque A (fig. 8) de la face d'incidence

CHAPITRE III. Théorie
des lentilles
Notation et
conventions de signes
LENTILLE SIMPLE
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tombent des rayons lumineux en nombre infini, les uns situés dans 
le plan du tableau, les autres, et c’est le plus grand nombre, en 
dehors de ce plan; ils fournissent une infinité de rayons réfractés 
situés dans tous les plans qu’on peut supposer menés par la nor­
male CA. Tous ces rayons réfractés rencontrent ensuite la seconde

face de la lentille en des points différents, et, après une nouvelle 
brisure, donnent autant de rayons émergents.

Pour fixer les lois de l’action d’une lentille, Gauss a pris un quel­
conque de ces rayons incidents, MP (fig. 9 S défini par les procédés 
de la Géométrie analytique à trois dimensions, et il a suivi la marche 
de ce rayon dans la lentille, pour en déduire la position dans l’es­
pace du rayon émergent correspondant, PM'. Cela fait, il a consi­
déré en particulier un point quelconque M du rayon incident, et il a 
constaté qu’à ce point correspondait toujours sur le rayon émergent 
un autre point M', dont les coordonnées étaient indépendantes de 
la direction et du trajet M PPM' du rayon incident; ce point M' 
est donc le même pour tous les rayons passant par M, c’est l'image, 
le foyer conjugué de M. Or, M, M' et les centres de courbure C 
et C' sont situés dans le même plan. Il en résulte qu’il est légitime, 
comme on le fait d’habitude, d’étudier les propriétés des lentilles, 
en se bornant à suivre la marche des rayons situés dans une sec­
tion méridienne passant par l’axe CC.

Prenons d’abord une seule surface sphérique sur laquelle tombe 
un faisceau cylindrique ou conique de rayons lumineux.

Réfraction par une surface sphérique.

Premier cas : Surface convexe convergente. — Soit un faisceau

Réfraction par une
surface sphérique
Premier cas : Surface
convexe convergente
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de rayons parallèles à DB (fig. 1o). Le rayon El passant par le

centre C, traversera la surface sans déviation; un rayon DB se ré­
fractera suivant BF, et F sera le foyer d’émergence.

Or
sin i = n sin r —II"R

CF sinr
CB sin (i- r) 7.

en supposant i assez petit pour que son carré soit négligeable ( y

(1) Les quantités négligées sont bien du deuxième ordre. En effet, la différence 
entre la valeur vraie de GF et sa valeur approchée est égale à

siny 
sin(i — P).
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Donc

VX - ------------  
n — 1

Deuxième Cas : Surface convexe divergente, — On trouverait

Fig. 11.

de même (fig. 11), en changeant n en —

CF =

SI 
-II

Donc

III
—

2
III

--

Troisième cas : Surface concave convergente. — En chan-

Ai oh

geant, conformément à nos conventions, le signe de R dans la 
formule précédente (fig. 12), on trouve :

Quatrième cas: Surface concave divergente. — En changeant

Deuxième cas :
Surface convexe
divergente

Troisième cas :
Surface concave
convergente

Quatrième cas :
Surface concave
divergente



THÉORIE DES LENTILLES.

n cn —, nous avons : fm. 13)

R
Pe

D
B

Donc, dans tous les cas, selon que le foyer est situé ou non du 
même côté que le centre de courbure, la valeur absolue —R— de

la distance focale se compte à partir de ce centre C ou à partir du 
sommet I.

Foyers principaux. — En combinant ces résultats deux à deux, 
on a, dans chaque cas, deux foyers principaux, l’un, F, d’incidence, 
l’autre, F, d’émergence.

R

Premier CAS : Surface convexe convergente. R>O ( fig. 14),

F

F‘

8 
il&0

Deuxième cas : Surface convexe divergente. R>o (fig. 15),

1IIIIL
 

(1 
—r 

eA

II 7 O

— /2 — I I

Foyers principaux
Premier cas : Surface
convexe convergente

Deuxième cas :
Surface convexe
divergente
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TROISIÈME cas : Surface concave convergente. R<o (fig. 16),

Ri* & -

QUATRIÈME cAs : Surface concave divergente. R<o (fig.17).

CF 9 
II—

i 8 
II[L.

On voit que, pour chaque surface, on a deux distances focales 
égales et de signe contraire : l’une, CF ou CF, comptée à partir 
du centre de courbure, l’autre, IF ou 1F', comptée à partir du 
sommet de la surface et du côté opposé au centre. En appelant F 
cette distance focale, on a, dans tous les cas :

Si l'on adopte dès à présent une notation plus commode, en 

remplaçant F par son inverse 2 et R par son inverse -, on a

f= = (n —1)r.

f est le pouvoir de la surface considéré; il mesure directement

Troisième cas :
Surface concave
convergente

Quatrième cas :
Surface concave
divergente
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son action sur les rayons incidents. 7 est la courbure de cette 
surface.

Le pouvoir est, par conséquent, proportionnel à la courbure.

Condition de réalité du foyer. — Le foyer est réel ou virtuel, 
selon qu’il est situé ou non, par rapport à la surface de réfraction, 
dans la zone qui lui correspond; ainsi le foyer d'émergence est réel 
s’il est du côté de l’émergence, et virtuel s’il est du côté de l’inci­
dence.

Cette loi est générale et s’applique à un système optique quel­
conque; un foyer est réel quand il est, par rapport à la der­
nière surface réfringente, dans la zone qui lui correspond.

Sphères focales. Plans focaux. — Dans tous ces cas, la posi­
tion de F ou de F' ne change pas quand on suppose que la droite FF' 
tourne dans le plan de la figure autour du centre C. Dans ce mou­
vement, F et F décrivent des circonférences ayant C pour centre. 
Les sphères qu’engendrent ces circonférences sont les lieux des 
foyers des rayons incidents parallèles; on peut les appeler les

P'

C

sphères focales principales fig. 18). Comme ces sphères ont de 
grands rayons, on les confond, au voisinage de l'axe FF, avec 
deux plans perpendiculaires à FF', qui sont les plans focaux prin­
cipaux d’incidence et d'émergence.

Foyersconjugués. — Cherchons le foyer conjugué d’un point M. 
Ce foyer se trouvera sur MC, qui n’est pas dévié, et sur le rayon 
réfracté d’un rayon incident quelconque MA. Par P pris dans la 
sphère focale, ou, par approximation, dans le plan focal d'incidence, 
menons le rayon PC: AN’, le réfracté de PA sera parallèle à PC.

NI. 2

Condition de réalité du
foyer
Foyers conjugués.
Formule de Newton
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M‘ ainsi déterminé est le foyer conjugué de M. CP’ est de même 
parallèle à MA, et l’on a, par les triangles semblables :

FM _FP FC 
F'C - F'P - F'M ’

FM. F’M = CF x CF,

ou, suivant nos conventions de signes,

(- D)D=F(F+R)=R_"_.
\/ — 1

Dans cette formule, établie par Newton, D et D‘ désignent les 
distances des deux foyers conjugués au lover principal de même 
espèce, et F la distance focale principale de la surface convergente.

En employant la notation dont il a été ci-dessus question, et 
remplaçant F par le pouvoir J, R par la courbure r. S et L par la 

proximité des foyers conjugués d et d‘, cette formule devient

n(-d) d‘ = r ( n — 1)2 
ou

— ndd‘=f.

Réfraction par une lentille.

Considérons maintenant une lentille quelconque. Les rayons, 
parallèles à l’axe, qui tombent sur sa première face, donnent nais­
sance à un foyer principal d’émergence •‘. Ce point H’, considéré 
comme source de lumière, aura, par rapport à la seconde face, un 
foyer conjugué F, qui sera dès lors le foyer principal d’émer­
gence de la lentille. Tous les points de la sphère focale principale 
d’émergence de la première face fourniront de même, par rapport 
à la seconde face, des foyers conjugués dont l’ensemble engendrera 
la surface focale principale de la lentille, surface courbe, mais 
assimilable, sur une petite étendue autour de l’axe, à son plan 
tangent perpendiculaire à l’axe.

Le même raisonnement montre que tous les rayons émanés d’un 
point convergeront, après avoir traversé la lentille, en un autre 
point, qui sera le foyer conjugué du premier.

Réfraction par une
lentille
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Centre optique et points nodaux (fig. 19). — Par les centres 
des deux faces Ci et C2, je mène deux parallèles C, A et C2 B, et 
je joins AB; puis, considérant AB comme un rayon lumineux qui 
traverse la lentille, je construis les rayons incident DA et émergent 
BE correspondants, qui seront évidemment parallèles, à cause de

O

l’égalité des angles de AB avec C,A et C2 B, ce qui entraîne celle 
des angles de AD et BE avec ces mêmes rayons C, A et C2 B.

Le point O, sur le prolongement de BA, est le centre optique. 
Les points N et N' sont les points nodaux.
Ou a

Ci0 _C A LR,
C,0 - C2B - Ra

Le centre optique est donc absolument fixe, quelle que soit la 
direction DA du ravon d’incidence.

D'autre part, 

ON OA -R. O ■ OB - R2‘

ON _ pdonc le rapport ON est absolument fixe aussi.

Cherchons la position de 0, N et N' par rapport aux autres élé­
ments de la lentille.

Remplaçons, dans la première équation, OC, et OC2 par leur 
valeur

OG,=G,I +10
et

OG-GI - 11'4-10.

Centre optique et
points nodaux
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d’où 

CI-IO - R* 
C,1+ il'+ 10 - R,’ 

d’où l’on tire
. R, .10 — ‘A,—A,

de même

en mettant le signe —. parce que, d’après les conventions de signes 
adoptées, 10 et I’O sont négatifs; e est l’épaisseur II‘ du verre.

Quant à N et N‘, ce sont les foyers conjugués de O par rapport à 
chaque face de la lentille, ils sont donc ixes, mais seulement dans 
la limite admise ci-dessus, c’est-à-dire tant que l’angle d’incidence 
du rayon DA est assez petit, pour que son carré soit négligeable. 
Dans ces conditions, nous pouvons appliquer la formule de Newton, 
qui donnera en désignant par , et • les foyers principaux d’in­
cidence et d’émergence de la première face, et par ç, la distance 
focale principale de cette face; N étant le foyer d’incidence,

No,X O4, =P1(91=R.), 
ou

(9 — IN ) (9 + R,+ 10) = q(9 + R.), 
d’où

10 • 
- *‘ 9=+ R, - 10 ’

et, en remplaçant 1O et ça par leurs valeurs absolues,

. eR, R.(10)=*,R, et *=nd 
on a 

T= . en, ,n(R2 — R, - e) — e 

en mettant le signe en évidence.
De même,

INI_ __ eR2
A (R,— il t -.- ej — e
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On peut écrire plus simplement ces formules :

nc — €
et

IN=—ck,;
NC — C

en appelant c la distance des centres de courbure C.C2 :

c = R,— R, - e.

Le centre optique est donc le point absolument fixe, par où 
passe ou se prolonge le trajet intérieur de tout rayon lumineux qui 
émerge parallèlement à son incidence.

Les points nodaux sont les points sensiblement fixes (pour 
de faibles incidences) par où passent ou se prolongent les rayons 
incidents et émergents correspondants parallèles.

Autrement dit, tout rayon incident DA, passant par le point 
nodal d’incidence N, engendre un rayon émergent parallèle BE 
passant par le point nodal d’émergence.

Ces deux rayons DA et BE sont des axes secondaires conjugués 
ou des rayons axiaux.

Foyer principal. — Un rayon incident parallèle à l'axe, HK 
fio. 20), donne un premier rayon réfracté KL dirigé sur (, et,

H

o

Fig. 20.

en L, un second rayon émergent parallèle à CG. Ce rayon LE 
coupe l’axe au foyer principal d’émergence i .

On a
N/F = G.F - C,N‘ = C.F' - CI - IN.

Foyer principal
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Or
C.F LG - 1’6, 
G,4, - 4, G - 4, $‘

en supposant l’arc I'L confondu avec sa tangente en I'. 
Si l’on remplace ces quantités par leur valeur, on a

CFI R,n(91 — C) _ Rgn(91 — c) 
R2— R,-t c(n — 1) nc — e

Donc

. R,n(ei — c). eR,   nR,R,
nc—e nc—e (R-I)(nc — e) 

expression très simple de la distance focale principale d'émer- 
gence de la lentille.

Cette distance se compte à partir du point nodal d'émergence. 
Elle est positive ou négative et le foyer est réel ou virtuel, selon 
que /ic est > ou < e (voir p. 17).

On trouve de même, pour le foyer d'incidence.

NF nR.Rg 
(n— 1) (nc — e)

Les deux distances focales principales sont toujours de signe 
contraire. Elles sont égales quand les deux faces de la lentille sont 
plongées dans le même milieu.

On a, dans ce cas, en désignant par F cette distance :

69. “

En remplaçant c par sa valeur, en fonction de l'épaisseur e.

~ 30 L
 o

12 
C

 
5I 
ot 

9 +
 

iT&

II

Et, en faisant e= 0, on a la formule de la distance focale des 
lentilles minces :

1 9 5
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que l’on écrit le plus souvent en la renversant

F( (RR.)
Si l’on fait le changement de variables dont il a été question 

plus haut, qu’on remplace F par le pouvoir f, Net R. par les 

courbures ri et r2, la formule du pouvoir principal devient, pour 
les lentilles minces.

f=(n 1)(F1 F2),

et pour les lentilles épaisses.

/t

R % ~ 1 % 

.
 

—

Position variable du centre optique, des points nodaux et des 
points focaux. — Soit par le calcul, soit par la construction géo­
métrique indiquée ci-dessus, il est aisé de se rendre compte de 
la position qu’occupent le centre optique et les points nodaux d’une 
lentille de forme quelconque.

Il est intéressant aussi de rechercher dans quel cas ces trois 
points sont réels ou virtuels; réels, si les rayons lumineux qui 
les déterminent, par intersection avec l’axe principal, y passent 
effectivement, virtuels, s’ils n’y passent que par leur prolonge­
ment.

Puisqu’il ne peut y avoir qu’un seul croisement réel des rayons 
axiaux avec l’axe principal, un seul de ces trois points peut être 
réel, sauf le cas où l’un des deux autres se confond avec celui-là, 
ou bien où tous trois sont en coïncidence.

Le centre optique n’est réel que lorsqu’il est situé dans l'inté­
rieur de la lentille, c’est-à-dire quand 10 est positif et moindre 
que e (fig. 1o). Or (p. 20)■ 10..*,"-

Les conditions de réalité seront donc

Positions variables du
centre optique, des
points nodaux et des
points focaux
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ou
H.

1 n-A 30
Si R, est négatif, cela entraîne R. positif.
Si Rj est positif, cela entraîne R2 négatif.
Donc, pour que le centre optique soit réel, il faut que les deux 

rayons de courbure de la lentille soient de signes contraires.

Un point nodal est réel quand il se trouve, au contraire, en 
dehors de la lentille et dans la zone qui lui correspond, c’est-à-dire 
du côté de l'incidence, pour le point nodal d'incidence; du côté de 
l’émergence, pour l’autre; c’est la même condition que pour la 
réalité des foyers (p. 17).

Cette condition s’énonce pourle point nodald’incidence (fig.20 ) :

IN <0 
ou

ER, .

AC — e
. equi, pour Ri > o, entraîne TC > e ou c)

et, pour 1150, entraîne ncxe ou C
Prenons les diverses formes de lentille.

Lentille biconvexe, R, > o, R2 0. Le centre optique est tou­

jours réel; au milieu de l’épaisseur, si les courbures sont égales:

Lentille biconvexe
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plus près de la face la plus courbe, dans le cas contraire Lfig. 21):

Ol _R, 
OP ~ (- R,)°

Les deux points nodaux sont à l’intérieur de la lentille de part 
et d’autre du centre optique, et par conséquent virtuels.

De plus
ON — R, 
ON - (- kg)'

formule exacte et générale, et

IX _R, 1N " — Rg)'
pour les faibles incidences seulement.

Lentille plan-convexe, 1L — x, R,—o (ig.22). — Le centre 
optique est réel et situé au sommet de la face courbe, en coïnci-

co 

.

dence avec le point nodal d'émergence également réel. Le point 
nodal d’incidence, placé dans le verre, est virtuel.

Si la face courbe est d’incidence, c’est le point nodal d’incidence 
qui est réel.

Ménisque convergent à rayons positifs, R, et R.»>o, ne—epo, 
ou R.> R, —et fig. 23. Le centre optique est en dehors 

de la lentille, du côté de l'incidence, et virtuel.
Les points nodaux sont à droite du centre optique, le point

Lentille plan-convexe
Ménisque convergent
à rayons positifs
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nodal d’incidence est toujours en dehors de la lentille et réel,

l’autre est virtuel, tantôt en dehors, tantôt à l'intérieur de la len­
tille.

Ménisque convergent à rayons négatifs, R, et R,<o (lig.24).
L’inverse du précédent: c’est le point nodal d'émergence qui

Ci3
 

-
 =

 
-

devient réel. Les deux autres points sont virtuels.

Pour R, = R, (fig. 25), le centre optique est à l'infini, les

Fig. 25.

points nodaux s’éloignent de la lentille qui reste convergente.

Fig. 23.

Ménisque convergent
à rayons négatifs
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Elle ne devient divergente que lorsque, R. diminuant toujours :

nc — e == o, 
ou

n ( R,- R. + e) — e =0, 
d’où

R,=R, - e no .
A

Alors le centre optique, toujours virtuel, est à droite. N. N‘, F 
et F' sont à l’infini.

Ménisque divergent (fig.26). R2 et Rf>o et nc-eco 

ou R,<R, -e------ — Les trois points sont du côté de la face
oi ab -

la plus courbe, le centre optique toujours virtuel, les deux points 
nodaux plus près de la lentille; l’un des deux, le plus rapproché 
du centre optique, est réel : c’est le point nodal d’émergence si les 
rayons de courbure sont positifs, d’incidence s’ils sont négatifs.

On a toujours
ON R,
OV “ R,

Lentille plan-concave fig. 27). R, est infini. Le centre optique

1 T ch

devient réel et se confond avec le point nodal d'émergence, réel 
aussi, au sommet de la face courbe.

Ménisque divergentLentille plan-concave
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Lentille biconcave (ig.28). — Le centre optique est réel et les

Fig. 28.

deux points nodaux sont virtuels et de part et d’autre de ce centre.

Cas particulier : Lentilles à faces concentriques (fig. 29). 
— Si les deux centres de courbure coïncident, le centre optique 
et les points nodaux sont réels et coïncident aussi avec ce centre

unique. Les deux premières dispositions sont convergentes, la 
dernière est divergente car le foyer est alors

CF_ _ .nRR, _ _______ Ri R
(n-)e ne — I R.— H2 2

négatif et plus grand que R2 en valeur absolue. Donc F', foyer 
d'émergence, est dans la zone d’incidence et par conséquent vir- 
tuel (voir p. 17).

En dehors de ce cas, les points nodaux sont toujours distincts.

Si l’on concevait des lentilles convergentes plus épaisses encore 
que la lentille concentrique convergente, c’est-à-dire où la position 
des centres fût intervertie, Ci étant à gauche de C2, les point no­
daux seraient croisés aussi.

Mais, dans tous les autres cas, ils sont toujours disposés, le 
point nodal d’incidence à gauche de l’autre, c’est-à-dire du côté de 
l’incidence. Leur écartement NI est toujours moindre que e, 
l’épaisseur de la lentille.

Lentille biconcave
Cas particulier :
Lentille à faces
concentriques
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Enfin, les foyers principaux sont toujours de part et d’autre et 
à égale distance de leurs points nodaux; dans les systèmes con­
vergents, le foyer d'incidence est du côté du point nodal d’inci- 
dence; c’est le contraire dans les lentilles divergentes, où les deux, 
foyers sont toujours virtuels.

Nous verrons plus loin que cette conception des points nodaux 
et focaux sc peut généraliser et appliquer à tout système optique; 
leur position relative peut varier alors dans des limites beaucoup 
plus étendues que celles qui viennent d’être indiquées.

Ajoutons que de même que la surface focale correspondant à 
une seule réfraction sur une coupole sphérique est, en réalité, 
sphérique elle-même, la surface focale, lieu des points focaux 
d’une lentille simple, est courbe aussi, et que la substitution, dans 
ce qui va suivre, d’un plan focal tangent, à cette surface, n’a que 
la valeur d’une solution approchée. Nous reviendrons sur ce sujet 
à propos des aberrations.

Détermination d’un rayon émergent. — La connaissance des 
points nodaux et des surfaces focales ou, par approximation, des 
plans focaux principaux d’une lentille, permet de construire aisé­
ment le rayon émergent, qui correspond à un rayon incident quel­
conque.

Soit AB un rayon incident (fig. 3o). Il peut être supposé faire 
partie d’un faisceau de rayons incidents parallèles, et alors son

Fig. 3o.
B B’

rayon émergent passera par D‘ intersection avec le plan focal 
d’émergence de l’axe secondaire N’D, parallèle à AB, et qui est lui- 
même l’émergent ou le conjugué de l’axe DN. De plus, ce même 
rayon émergent de AB pouvant être considéré comme faisant partie 
du faisceau de rayons parallèles émergents, qui proviendrait du

Détermination d'un
rayon émergent
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faisceau conique incident issu du point focal A, sera parallèle à 
l’axe AN de ce faisceau. On le construira donc en menant D'B', 
parallèle à AN. On voit de suite que, par raison de symétrie, NB 
et N'B sont égaux et que BB' est parallèle à l’axe principal. Sup­
posons maintenant que la lentille soit divergente, la construction 
est analogue (fig. 31). L’émergent de PQ s’obtiendra en menant

> C
F

QQ' parallèle à NN‘, cherchant l’intersection S de PQ avec le plan 
focal d’incidence, joignant SN et menant Q'R' parallèle à NS. 
Comme vérification, Q' R‘ prolongé perce le plan focal d’émergence 
en T‘, tel, que T‘N‘ est parallèle à PQ.

Bien entendu, ce tracé PQQ’R n’est pas la trajectoire réelle 
du rayon; mais, quel que soit le chemin intermédiaire qu’il a par­
couru, le rayon incident PQ devient finalement le rayon émer­
gent Q’R’.

Formules des foyers conjugués et du grossissement (fig. 32). 
— Soit un objet AB placé en avant d’une lentille convergente. Le

B

G

point B formera son image en un point B,, obtenu en menant BD 
quelconque, D’D parallèle à l’axe et D’B/ parallèle à GN.

Formules des foyers
conjugués et du
grossissement
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Le point A formera son image en A’, intersection de N’A’, axe 
secondaire conjugué de AN’, avec CF’, rayon émergent de la pa­
rallèle AC à l’axe principal.

Or on a, d’une part, pour le point B‘, par les triangles semblables

BFBG _ BN DH _ V/F
FN - GD — VB, - H’B, - FB,’ 

d’où
BF x F’B, - FN x NF= F8, 

en désignant par F la distance focale principale; d’autre part, pour 
le point A’, en abaissant la perpendiculaire A’ B’ sur l’axe.

AB BN BG BF
(1 ) V‘B N’B - GD - FA
et aussi

(2)
AB _ C‘N‘ N’F’

A’B AB FB’
d’où

BF N/F
FN = FB‘

ou
BF x F‘B‘ = FN x FF

D’où résulte d’abord que B, et B‘ coïncident, et que l’image de 
AB, perpendiculaire à l’axe principal, est A‘B‘, située de meme, 
mais renversée.

En appelant D et D‘ les distances BF et F‘B‘ qui séparent des 
foyers principaux l’objet et son image, ou les deux foyers conjugués 
B et B’, et observant les conventions de signe, on a

(3) (-D)D = F (formule de Newton).

Ce qui montre que D et D’ sont toujours de signe contraire et, 
par conséquent, disposés en sens contraire par rapport aux foyers 
principaux correspondants.

La même relation subsiste entre les proximités d = D et 

d‘=D des foyers conjugués, et le pouvoir/ de la lentille.

(- d)d‘= f.
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En appelant O et I les dimensions linéaires respectives de l’objet 
et de son image, les formules (i) et (3) deviennent :

, 0 NB (D-P)_FD_T_ f
INB D'-F D7 F -fd'

formule du grossissement, qui donne de cinq manières différentes 
le rapport de grandeur d’un sujet à son image.

Si l’on désigne par P et P' les distances BN et B’N, comptées 
sur l’axe principal, de chaque point nodal à l’objet et à son image, 
on a

-PDF el P‘=D‘F, 

et en substituant dans la formule de New ton

— (F -i- P) (P- F) = F,
— FP — PP + PF =o

ou
i i _ I
F + (-P) - F (formule classique).

qu’on peut écrire, en remplaçant P et P‘ par les proximités P==P

. 13H R

p‘ - (—p) =f.

Discussion des formules des foyers conjugués et du grossis­
sement (fig. 33). — L’objet étant à l’infini, l’image est au foyer F 
et infiniment petite.

Quand l’objet se rapproche dans la direction indiquée par la

Fig. 33.

0_,: F [! Foi

flèche, l’image marche dans la même direction, moins rapidement 
d’abord, puisque D‘= L en même temps elle grandit.

Discussion des
formules des foyers
conjugués et du
grossissement
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Si ’on veut que l'image soit à l'échelle de „. , on pose

alors (—D= mF et D'i —. ‘ 17
Il suffira donc de placer l’objet en avant de F, à une distance 

égale à m fois la distance focale principale.
Quand (— D) == F, objet et image sont à la même distance F des 

foyers et de mêmes dimensions.
L’objet continuant son mouvement, l’image s’éloigne vers la 

droite de plus en plus rapidement, en amplifiant proportionnel­
lement à son éloignement du point F, et elle est rejetée à l’infini 
quand l’objet arrive en F.

Fig. 34.

Puis D change de signe (fig. 34), et D' devient négatif. L’image est 
. 1 . • 0 D OF. virtuelle et toujours plus grande que 1 objet, puisque i - F NE

Fig. 35.

____ U____ ♦
F 0 I F'

Elle arrive en N‘ quand l’objet est en N (fig. 35), car alors D etD 
sont égaux à — F; objet et image sont de même grandeur.

F

Fig. 36.

Si O dépasse N (fig. 36), c’est l’objet qui est imaginaire, tandis 
que l’image, passant au delà de N‘, redevient réelle.

M. 3
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L’objet allant de N à — co, l’image marche beaucoup plus lente­
ment de N‘ à F', en diminuant toujours.

Plans de Bravais. — Dans ce mouvement combiné de l’objet 
et de l’image, on voit que O et I se confondent une première fois 
entre F et N, une seconde fois entre N' et F’.

Ces points de confusion et les plans perpendiculaires à l’axe 
qu’ils déterminent et pour lesquels l’image et l’objet se super­
posent, l’une réelle et l’autre virtuel, ou inversement, se nomment 
points et plans de Bravais (fig. 37).

Soit B’P, un de ces plans; je construis le foyer conjugué de P .
0

B‘

P

pr

en menant l’axe PN’, NP parallèle, puis P’Q parallèle à l’axe, 
QP est l’émergent de FQ; FQ, prolongé, donne P qui, par hypo­
thèse, est sur B‘P‘. On a

N’B’ _ B/P/ _ NO _ NF 
NB - B’P ~ BP - B’F

Et, en appelant b la distance N’B, et e l’épaisseur NN’,

b _ F
b-be F+e+b’

b2 -eb — eF-o,

, /et -

Les deux solutions me donnent deux points B et B‘, tels que 
BN = B’N.

Dans ces plans, le rapport de l’objet à l’image est de

PB‘ _ bae
P/B = D

Plans de Bravais



THÉORIE DES LENTILLES. S

LENTILLE COMPOSÉE: THÉORIE DE LA LENTILLE ÉQUIVALENTE.

Soit maintenant un système formé de deux lentilles simples 
centrées, c’est-à-dire montées sur le même axe, et à une distance 
quelconque l’une de l’autre. On peut toujours imaginer une len­
tille unique, qui produirait sur les rayons lumineux les mêmes 
effets que ce système. Cette lentille imaginaire est dite lentille 
éq u iva len te.

Prenons, par exemple, deux lentilles convergentes représentées 
par leurs plans focaux et leurs plans principaux (1) (fig. 38); par

9

R

n', et par na je mène deux parallèles quelconques n, P, n2Q, je joins 
PQ et je prolonge jusqu’en B et A', je mène A'A et BB, et AN, 
B’N’ parallèles à n° P. NAABB’N’ représente le trajet d’un rayon 
qui, après avoir traversé les deux lentilles, sort parallèle à sa pre­
mière direction.

On a, par les triangles semblables :

cay 
ct

9- o- 
Sho.
II

2=II
cn on
ST511

2
II

z|eA 
~

— 
—

0 “

en appelant E l’épaisseur comptée entre les points nodaux inté­
rieurs n‘ et n°.

p) On appelle principaux les plans qui coupent perpendiculairement l’axe, 
aux points nodaux, ces plans sont tels qu’un rayon incident et le rayon émergent 
correspondant les percent à la même distance de l’axe.

LENTILLE COMPOSÉE
: THÉORIE DE LA
LENTILLE
ÉQUIVALENTE
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Donc le point N‘ est fixe, tant que ç1 et ç2 sont constants, c’est- 
à-dire pour des incidences faibles.

On trouverait de même, en observant toujours la même conven­
tion pour les signes,

IL — ©j - 92

Ces points N et N' sont les points nodaux de la lentille équiva­
lente.

De même 0n — OR2 = 91. Le point 0, fixe dans les mêmes 
On2 Pri 0. 1

conditions que N et N', est le centre optique.
Cherchons la distance focale principale de la lentille équiva­

lente (fig. 39). Je construis la marche d'un rayon incident paral-

2
* z

lèle à l’axe, IJJ DCCF. Le rayon émergent vient couper l’axe 
en F', la distance focale cherchée, ici négative,

$
 

sia ga 
“I

7. 
A

l 
1 

' 
1!

5 
02

 -
 

E
1N’ F‘= 

or 
n, F’ 
"2 9 

d’où

n, F’

et

N/F‘ ou

On trouvera de même
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Cette conception de la lentille équivalente présente le plus 
grand intérêt. Elle peut s’appliquer, de proche en proche, à trois, 
quatre lentilles, etc., à un système optique quelconque centré. 
Les formules fondamentales de la lentille simple : — D)D = F2 et 
O (-1D F . , .T- — F = D sont applicables à la lentille équivalente.

Le centre optique, les points nodaux et les foyers, qui la défi­
nissent, et que nous appellerons ses points caractéristiques. 
peuvent occuper, les uns par rapport aux autres, toutes les posi­
tions possibles, être réunis, intervertis, rapprochés ou éloignés, 
réels ou virtuels séparément. Dans tous les cas, des points nodaux 
et du centre optique, l’un au moins est réel, et les distances focales 
sont égales et de signe contraire.

La discussion approfondie de toutes les combinaisons que 
peuvent ainsi former ces quatre points et dont nous donnons 
ci-dessous le Tableau (fig. 40), pour intéressante et instructive

F N N

Fig-

E

4°

F : N X F
F N X F' F’ NX F

F N' N F’ P x X F

FN’ FN EN XF

N' F F' N N ! F N'

N’ FF’ N N FF N*

N' FF N N F F’ N'

NP’ NE NF NE

qu’elle soit, puisqu’elle embrasse toute la possibilité des appareils 
d’optique, ne saurait trouver place ici. Nous ne nous occuperons 
que de celles de ces combinaisons qui offrent un intérêt photogra­
phique, c’est-à-dire qui fournissent une image réelle. La condition 
de réalité de l’image résulte de la position du foyer F‘ par rapport 
à la dernière surface réfringente du système (voir p. 17).

Objectif composé. — Considérons d’abord l’assemblage de deux 
lentilles convergentes. Pour que l’image soit réelle, il faut et il 
suffit que le foyer F‘ soit à droite de la deuxième lentille, c’est-

Objectif composé
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à-dire (fig. 39) que n.F= 

qu'on ait à la fois :

(E=91)?2
E—91 —92 soit positif, ce qui exige

EX et EX- 92
ou

E<9 et E<-P

Les premières conditions sont satisfaites si Ex oi — 2; les 
secondes se réduisent de même à E —ç.

E) o-92 n’offre guère d’application photographique, il donne 
des appareils d’une longueur exagérée et dépourvus de champ. On 
l’a proposé pour des objectifs téléphotographiques à long foyer; 
c’est la disposition des fig. 38 et 3g; elle fournit des images réelles 
redressées, puisque le point nodal N' est au delà du foyer F'.

Nous ne retenons donc que la deuxième condition, E < 91, c’est- 
à-dire, l'écartement des lentilles moindre que la distance focale 
de la lentille d’incidence.

Alors, en mettant les signes en évidence, on a :

II
-6 4 9 95

 
-

i2 ~ E©, •
I

I 
et

| 
9-

IIt
h9- T1** 

R(

0- 
s. ±

 

— 
9-

IILL- 
91

X = 2 = II €: + 5 4 L
 

Le
 R

Discussion. — Tout d’abord, en ce qui concerne les points
nodaux, il faudrait, pour qu’ils fussent réels (voir p. 24). que 
n\N‘ fût positif et n,N négatif; or n°N‘ est toujours négatif. 
n,N toujours positif, donc les deux points nodaux sont toujours 
virtuels.

Au contraire, le centre optique est toujours réel et situé, entre 
les points nodaux intérieurs des lentilles composantes, à des dis­
tances proportionnelles aux foyers de ces lentilles.

E croissant de o à Pr, F croît de -172 à or.
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Donc, si l’on fait varier l’écartement des lentilles entre o et çi, 
F acquerra toutes les valeurs comprises entre ,141, et P1 sans 

pouvoir franchir ces deux limites;
n,N‘ est négatif et croît en valeur absolue de o à ç1, ses varia­

tions sont plus grandes que celles de F;

n. N est positif et croit de o à 41;

n°F, positif, décroît de -173 à zéro, et n. F, négatif, croit de 
917 92

0,0, , (~2 — 0)0 .— -*- a — -- "—; et, si (, 32, nl est égal a o pour 
P1-P2 92 * 

E —ç2, et devient ensuite positif.

Voyons quelles dispositions différentes affectent les quatre points 
caractéristiques de la lentille équivalente, quand E varie de o à Pi.

Nous supposons ©< 2ç.

6• — 
-

Pour E=o(fig. 41),
F-99, 

91 + ?2 
n_N=o, n,N=o.

E croissant (fig. 42). n, N' est négatif et croît en valeur absolue.

Fig. 42.

F est positif et croît aussi, mais moins vite.
Les points N' et F' marchent vers la gauche, la distance N‘F‘ 

augmente; N et F marchent vers la droite.
N et N' se confondent quand on a (fig. 43)

E=------ 2—- +V---- 4-------*(9iv2)(e,+ea).
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en appelant e, et e, l’écartement des points nodaux de chaque 
composante. A ce moment, les plans de Bravais des deux lentilles

Fig. 43.

coïncident. La lentille équivalente ainsi réalisée possède les pro- 
priétés d’une lentille sans épaisseur. Cette disposition, souvent pra­
tiquée, présente certains avantages sur lesquels nous reviendrons.

E continuant à croître, N et N° sont intervertis (fig. 44)et, pour

Fig. 44.

E= 92, on a
E =

Rali - — — RN - (.. 
?!

Le foyer d’émergence F' reste réel, alors que le foyer d’inci­
dence F devient virtuel, ce qu’indiquait du reste la valeur nulle 
de n, F. Cet effet subsiste tant que E est compris entre 92 et 1; 
l’objectif ne donne d’images réelles que d'un côté.

Puis N atteint et dépasse successivement n2) n° et F' et, enfin,

Fig. 45.

Les deux foyers sont alors virtuels.
Il est évident que pour étudier la marche de la combinaison dite



THÉORIE DES LENTILLES. il
symétrique, formée de deux lentilles identiques, il suffirait de faire 
çi — 92, dans les formules et dans les calculs qui précèdent.

Téléobjectif. — Étudions de la même façon la combinaison d’une 
lentille convergente et d’une lentille divergente. Il nous suffira, en 
supposant que c’est la lentille de droite qui devient divergente, de 
changer dans nos formules le signe de 92.

Alors la condition pour que le foyer principal d’émergence soit 
réel a pour expression :

Pour y satisfaire, il faut qu’on ait, à la fois, ou bien
E>P et E<—92

ou bien
E-9 et Ex-

Les deux premières inégalités sont incompatibles. Il reste donc 
seulement

9i — Q2 < ES
Les caractéristiques de cette combinaison deviennent alors, en 

mettant les signes en évidence,

F= —9—,
- ?- 92

N Eçi

.5
 % 7 II 7E
 -

—
 - -G

79
 T 

s -G bo —

(<
É

Discussion. — Si les lentilles se touchent, E = o, on a

— 9i + P2 
n2 N' = o, n,N=o.

C'est la lentille achromatique qui, pour être convergente, c’est- 
à-dire pour que F soit positif, exige que 04 soit < 92, c’est-à-dire 
que le pouvoir de la lentille convergente soit supérieur au pouvoir 
de la divergente.

Cette valeur de F sera dans ce cas un maximum.

Téléobjectif
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Mais supposons, au contraire, Pi >92.
Pour E compris entre o et q1 — 92, les quatre points sont dis­

posés comme au neuvième cas de la fig. 40, la lentille divergente 
se trouvant entre F’ et N’. Le point nodal d'émergence N‘ seul est 
réel, les trois autres points et le centre optique lui-même sont 
virtuels. L’image, dans les deux sens, est virtuelle et redressée, 
puisque le point nodal est entre le foyer et l’œil; elle paraît plus 
grande dans le sens direct, que dans le sens inverse, à cause de 
l’éloignement plus grand du point F à l’œil. Cette combinaison 
n'est autre que la lunette de Galilée.

Pour E =9 — 92, F, N et N‘ s’éloignent à l’infini positif et F‘ à 
l’infini négatif. Puis ces quatre points se disposent comme au pre­
mier cas de la fig. 40, la lentille divergente encore entre N‘ et F; 
les deux foyers sont réels, les images renversées.

Lorsque E croit de Q1 — 92 à or, la distance focale F décroit 
de 0 à ©<.

Cette combinaison permet donc de donner au système toutes les 
valeurs focales supérieures à ç1, ce qu’on ne peut réaliser avec 
la combinaison précédente.

Dans ces conditions, le point nodal d’émergence N‘ est toujours 
virtuel, tandis que le point nodal d’incidence N est toujours réel. 
Le centre optique est virtuel.

n.N‘, négatif, croît de — x à — ©,.

n.N, négatif, croît de —x à — —•

n.F, positif, décroît de x à o.
n,F, négatif, croît de —x à — (91=92)91.

Pour E dépassant très peu ç< - 92, F‘ est vers -— x, N‘ N et F 
vers — x (fig. 46).

Fig. 46.

_*---------- H-------- H re

E augmentant, les quatre points se rapprochent de la lentille.
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Soit E= 92, on a F = —172 d’autant plus grand que 292 est 
‘ 2°2 — 91

plus près de ç1 (fig. 47).

4 Il

-G
 । 
1 9 -C
 —

* G 19 ~ P r II

* -G
 .

* G i 6 2

Le foyer de droite devient virtuel, celui de gauche reste réel.
Pour mieux étudier les conditions de l’image de gauche restée 

réelle, renversons la combinaison et supposons maintenant que la 
lentille d’incidence, celle de gauche, soit divergente, et celle de 
droite, convergente.

Les formules deviennent, en intervertissant les signes de çi et 
de Q2,

F _ ____ 9192 _ 
- E-+ 9—92'

, EQ2 . Eo,
E+oi—92 E—P



w
i CHAPITRE III.

Maintenant c’est le point nodal d'émergence N' qui devient réel, 
comme étant dans la zone d'émergence, tandis que N est virtuel. 

La condition de réalité du foyer d'émergence est

E+-2>0. OU E>P-P

En supposant çi > ç2, cette condition sera satisfaite pour toute 
valeur positive de E, puisque ç2—çi est négatif.

Fig. 49.

HIT 1 I F
Si E: =0 (fig. 49),

F peut être rendu aussi grand que l'on veut, en prenant Q1 presque 
égal à Q2.

E croissant, F diminue, jusqu’à devenir nul, quand E est inlini. 
n°N‘ augmente de 0 à 02, n,N, aussi toujours positif, croît de o à ç,.

Résumé. — Il v a donc trois facons de combiner les lentilles v 3 
deux à deux, pour produire un objectif photographique.

La première combinaison (deux lentilles convergentes) donne 
des foyers courts; elle permet de faire varier la distance focale 

entre des limites restreintes, -*2 et Qi. Pour allonger le foyer, 
T?

il faut écarter les lentilles. A un moment donné, l’un des foyers 
devient virtuel, l’autre restant réel.

La deuxième combinaison (lentille d’incidence convergente, 
l’autre divergente et de pouvoir plus considérable) convient pour 
les grandes distances focales: elle permet de faire varier le foyer 
entre 91 et l’infini. Pour allonger le foyer, il faut rapprocher les 
lentilles, ce qui est avantageux; d’autant plus que, le point nodal

Résumé
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étant rejeté vers la gauche, la distance entre le foyer principal et 
l’objectif est moindre que la distance focale, ce qui permet l’em­
ploi de chambres de dimensions restreintes.

Enfin la troisième combinaison (lentille d’incidence divergente, 
l’autre convergente et de plus fort pouvoir) donne toujours, quel 
que soit l’écartement des lentilles, un foyer réel dont la longueur, 
augmentant aussi quand les lentilles se rapprochent, ne varie 
qu’entre o et -,71239, valeur limite qu’on peut rendre, du reste, 

aussi grande qu'on le désire en choisissant ç2 et Q1 presque égaux. 
Cette combinaison offre donc une grande latitude dans les deux 
sens, mais elle présente cet inconvénient que, le point nodal d'émer- 
rgence étant à droite, le plan focal est toujours à une distance de 
la lentille d’émergence plus grande que la distance focale, ce qui 
allonge le tirage et la longueur de la chambre noire. De plus, le 
caractère divergent de la lentille d’incidence a pour effet de dimi­
nuer notablement le champ.
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CHAPITRE IV.
ÉTUDE DES ABERRATIONS.

Les formules qui précèdent ne constitueraient la représentation 
vraie et complète des phénomènes optiques dont les lentilles sont 
le théâtre, que si les faits restaient enfermés dans les hypothèses 
auxquelles nous avons dû successivement faire appel pour simpli­
fier la théorie et en fixer les grandes lignes.

Rentrant dans la réalité, nous allons abandonner successive­
ment chacune de ces hypothèses, ce qui va faire surgir des éléments 
de corrections à introduire dans les calculs et dans les théories. 
Ces corrections portent le nom d’aberrations; nous allons en 
étudier les causes et les conséquences, et nous verrons ensuite 
comment on peut, dans la construction des objectifs, en annuler 
l’influence, ou tout au moins rendre cette influence négligeable 
dans la pratique.

Les hypothèses dont nous nous sommes servi dans ce qui pré­
cède sont au nombre de quatre.

Première hypothèse. — Nous avons supposé que le rayon lumi­
neux était une ligne mathématique, alors qu’en réalité c’est un 
cylindre de diamètre très petit, mais mensurable. Il en résulte 
une aberration de netteté, l’image d'un point à l’infini (étoile fixe) 
ne pouvant pas être traduite par un cercle de rayon moindre que 
ocm,o6. Cette limite est très inférieure à la limite des grandeurs 
perceptibles à simple vue; elle ne gêne donc pas dans les travaux 
photographiques ordinaires. Mais elle peut avoir quelque influence, 
quand on recherche une extrême précision. Il faut retenir aussi

CHAPITRE IV. Étude
des aberrations
Première hypothèse
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qu’une diminution exagérée du diaphragme a pour résultat d’aug­
menter le rayon de ce cercle de netteté limite.

A cette aberration, il ne saurait y avoir de remède, puisqu’elle 
prend sa source dans la constitution même du rayon lumineux.

On ne la cite ici que pour mémoire.

Deuxième hypothèse. — Le plan focal principal ne peut être 
considéré comme le lieu géométrique des foyers des faisceaux in­
cidents composés de rayons parallèles, que si l’on suppose les fais­
ceaux incidents extrêmes peu inclinés sur l'axe principal de la 
lentille. Si cette inclinaison et, par suite, le champ de la lentille 
augmentent, il se produit deux aberrations de nature différente : 
l’une, que j’appellerai aberration de champ, qui a pour résultat 
de remplacer ce plan focal par une surface focale principale, 
jouissant des mêmes propriétés optiques, mais beaucoup plus 
difficile à définir géométriquement, l’autre, l'aberration nodale, 
provenant de ce que la position des points nodaux varie avec l’in­
clinaison des rayons, d’où résultent certaines déformations de per­
spective dans l’image.

Ces deux aberrations, de champ et nodale, ne figurent pas dans 
les Ouvrages classiques sur l'Optique, elles sont négligeables dans 
les lunettes, mais elles prennent une certaine importance en Pho­
tographie, où l’on recherche des champs très étendus.

Troisième hypothèse. — Chaque faisceau incident a été consi­
déré comme suffisamment étroit et suffisamment rapproché de l'axe, 
pour que l’angle d’incidence maximum des rayons dont il est 
formé soit petit et négligeable à la deuxième puissance; dans ces 
conditions, ce faisceau converge en un point derrière la lentille.

Si nous renonçons à cette hypothèse, nous avons à compter avec 
l’aberration de sphéricité, dont les conséquences varient suivant 
le cas.

Si le faisceau incident est large et couvre une notable étendue 
de la face incidente de la lentille, le point focal est remplacé par 
une caustique, l'objectif cesse d’être aplanétique. L’image fournie 
n’est plus nette.

Si le faisceau incident reste étroit, mais s’il est trop distant de

Deuxième hypothèseTroisième hypothèse
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l’axe ou trop oblique, et que par conséquent il rencontre la lentille 
sous des incidences trop grandes, il y a astigmatisme: le point 
focal est remplacé par deux lignes focales séparées. Cette fois en­
core, l'image n’est pas nette.

A l’astigmatisme se rattache une autre aberration, dénommée 
courbure du champ focal et différente de l’aberration de champ 
citée ci-dessus.

Quatrième hypothèse. — Nous n’avons traité que des rayons 
homogènes qui ne subissaient, à chaque passage d’un milieu dans 
un autre, que des changements de direction et pas de dispersion.

L'introduction de la dispersion donne lieu aux aberrations de 
réfrangibilité ou aberrations chromatiques, qui proviennent de 
ce que les rayons de colorations diverses ont des indices de réfrac­
tion différents pour une même substance transparente.

En somme, abstraction faite de l’aberration de netteté, il y a 
six sortes d’aberrations :

i° Aberration de champ;
2° A berration nodale;
3° Aberration d’aplanétisme;
4° Astigmatisme;
5° Courbure du champ focal;

et 6° Aberration chromatique.

1- ABERRATION DE CHAMP:

Surface focale principale absolue.

Nous appelons surface focale absolue le lieu géométrique des 
foyers que donnent des faisceaux incidents très étroits, formés de 
rayons parallèles à peu près normaux à la face d’incidence de la 
lentille.Cette surface focale ne dépend que de la lentille; tandis que 
nous trouverons ci-après d’autres catégories de surfaces focales 
principales, dans la constitution desquelles interviennent des élé­
ments autres que les verres eux-mêmes, tels que les diaphragmes.

Quelle est la forme de la surface focale principale absolue d’une

Quatrième hypothèse
1° Aberration de
champ
Surface focale
principale absolue
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lentille quelconque? Nous avons vu qu’à ne considérer qu’une des 
faces de la lentille, les surfaces focales sont deux sphères centrées 

en C (fig. 5o) et de rayons égaux à /= L pour la surface

située du côté du centre de courbure C. et à f — R — „--- ; pour

l’autre.
Dès le début, nous remarquerons que ces deux surfaces ne sont 

pas égales; le même fait se retrouve dans une lentille ou dans une 
combinaison de lentilles; il n'est donc pas indifférent, au point de 
vue de la Photographie, qui recherche des surfaces focales aussi 
planes que possible, d’employer indistinctement un objectif dans 
un sens ou dans l’autre.

Passons à la lentille. Le problème se pose très simplement:
Considérons la surface focale d’émergence de la première face, 

comme le point de départ des rayons qui traversent la seconde 
face; le lieu des foyers obtenus sera la surface focale principale 
absolue de la lentille.

Prenons, par exemple, un ménisque convergent (fig. 5I : 
S. S, est la surface focale d’émergence de la face d’incidence. S2 
et S, sont les surfaces focales d’incidence et d'émergence de la 
seconde face.

Un point A‘ de la surface S, aura son foyer en X, tel que

VB x D’X = C, B x C,D’.

d'après la formule de Newton, applicable dans ce cas, parce que les
NI. i

Ménisque convergent
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rayons voisins de D’A’ rencontrent les deux faces sous des inci­
dences presque normales.

Appelons 92 et o les valeurs absolues des distances focales prin­
cipales C.S2 et Co S', de la seconde face, désignons par P le rayon

$

vecteur CAX et par s la distance C2 A’. La formule précédente 
devient

(9g) (92 P)= 9292,
d’où

(r) = -

ve
Du reste, le triangle C, C2 A’ donne

(Q) c=C A’= EA’— EC,=V — c2 sin-o - c cose.

en désignant par c la longueur C, C2.
Ces deux équations (i) et (2) définissent la courbe focale: en 

éliminant G et transformant en coordonnées rectilignes, on trouve 
une courbe du quatrième degré.

Cherchons seulement la forme générale de cette courbe.
Pour 0 == o, on a

$ = + - c
et

Soit F’ le point correspondant, foyer principal de la lentille. Si 0 
augmente. 7 augmente ainsi que p. La courbe sera donc plus aplatie 
qu’un cercle tracé du point Ce comme centre avec C2F‘ pour rayon.
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Si le ménisque est disposé en sens inverse fig. 32), les for-

Fig. 32.

F 9 C/N F

mules (1) et (2) deviennent

G 0

et
s = Vor — c2 sin2c — c coso:

pour o = o, on a le foyer principal

GPE , _+.
c-e 92

Le point F’ est situé au delà du foyer principal de la deuxième 
face.

w augmentant, s diminue et p croit. Comme dans le cas précé­
dent, la courbe du quatrième degré est plus aplatie qu’un cercle 
de centre Ca.

Des deux surfaces focales, toutes deux plus aplaties qu’un cercle 
ayant pour centre C2 ou C, et pour rayon C2 F ou C, F, il est pro­
bable que la plus proche d'un plan sera celle qui correspond à 
C2F, puisque C2F‘ est plus grand que C, F, en raison de la posi­
tion des points nodaux et puisque NF=NF.

C’est une raison pour employer de préférence le ménisque con­
vergent avec sa concavité tournée vers l’objet.

La détermination analytique de la courbe focale est encore 
facile dans les cas particuliers suivants:

i° Lentille plan-convexe fig. 53 à face d’incidence plane.
Tous les faisceaux de rayons parallèles incidents changent de 

direction en traversant la première face, mais ils restent parallèles 
entre eux; ils iront donc converger sur la surface focale d’émer-

Lentille plan-convexe à
face d'incidence plane
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gence de la seconde face, c’est-à-dire sur la sphère de centre C 
R n et de ravon  * 70-

Seulement, les rayons incidents parallèles à CA formeront leur

foyer en B, sur la parallèle NB, menée par le point nodal. La cour­
bure relative de cette surface aura donc diminué en fait, puisque 
NB est plus grand que NF.

20 Lentille sphérique, ou à deux faces concentriques. — Dans 
cette sorte de lentille (fig. 54), la surface focale est une sphère,

Fig. 54.

par raison de sy métrie par rapport au centre commun C. 
La formule de Newton s’applique encore dans ce cas et l on a

BV x D'F = 9244,

(92-90)(2 0)=992: 

d'où le rayon de la sphère . 
0: 

0- 
1 

.-1
 

9- 
-9-

1!

: est moindre que 3 et que o.

Pour une lentille quelconque, dans laquelle les deux centres de

Fig. 53.

Lentille sphérique ou à
deux faces
concentriques
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courbure sont éloignés l’un de l’autre, l’angle d'incidence, sur la 
seconde face, des rayons ayant traversé normalement la première, 
n’est plus assez petit pour que son carré devienne négligeable; la 
formule de New ton ne peut donc servir, et l'étude analytique de 
la surface focale résultante devient très compliquée.

Construction graphique de la surface focale absolue. — Le 
mieux est, pour se rendre compte de la forme de cette surface, 
d’employer les procédés graphiques et de construire par points 
le lieu des foyers des rayons qui rencontrent normalement la pre­
mière face.

Cette construction se peut faire ainsi :
De C, comme centre (fig. 33). avec un rayon égal à A , on

trace un cercle S. S..
D'un point quelconque A' de cette surface on mène A'C,, dont 

le prolongement DB représente le rayon incident; on joint A‘C2;

c’est sur cette ligne que se trouvera le point cherché, G', à sa ren­
contre avec la droite BG‘, représentant le rayon réfracté de DB.

Pour construire BG’, on abaisse du centre C2 la perpendicu­
laire CAD sur le rayon incident, puis du point C2 comme centre, 
avec un rayon égal à CD X n, on décrit une circonférence à 
laquelle on mène de B une tangente, qui est le rayon réfracté; en 
effet, 

sin G„BH C H 
sin C. BD = CD - "-

Construction
graphique de la
surface focale absolue
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Si, au lieu de ne considérer que les rayons à incidence normale, 

on prenait des rayons obliques à la première face, on trouverait un 
point différent du point G’; cela tient aux aberrations de sphéri­
cité dont nous aborderons plus loin l’étude.

2 ABERRATION NODALE.

Rappelons la construction qui nous a servi à déterminer les 
points nodaux. On mène, par C, et par Ca fig. 56). deux paral-

3

lèles quelconques, on joint leurs points de rencontre avec les 
faces i et a, cette droite prolongée donne le centre optique O. Le 
rayon-incident et le rayon émergent parallèle, correspondant à cette 
même droite, déterminent les points nodaux N et N’.

Le centre optique O est fixe et l’on a exactement

==
 

a
 

- .II
— *

 
O 0

Les points N et N' sont les foyers conjugués de 0 par rapport 
aux deux faces.

Fig. 57.

IC

Pour étudier les variations de position d’un de ces points, N par

2° Aberration nodale
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exemple, il nous suffit de considérer la face réfringente, le centre 
optique O et le centre de courbure C (fig. 37).

Soient R le rayon de courbure CMI, a la distance CO, z l’angle 
d’un rayon quelconque CM avec l’axe principal. La position de N 
résulte de la construction des deux lignes OM et MN, telles que

sin

sinr

Soit CN = 
On a

= x.

ON 
sin o.

CO a NIN CN 3
- - ---- - - --- et —.---- - - --- . = - --- . 

sinr Sin/ sin o.------ sin€------sin€

d’où
OM a sini an 

MN w sinr w
Or

OM = VRA a2 — qak cosz, 

MN = V R2 —2— 2 Ræ cosz.
Donc

RA- as-— 2 aR cosa _ aê n2
R- 22— 2 Ra cosz x2

d’où

& 1 %
 A 3 I9 Ï to
 A 5 o 0 /; 2 + 1 ta

—
 1 1ë 8 0 9 : 1 N
u 

20 ©

et

8 11 bo
 8 C
 o < A
 

s 3 1 es 8
i- 1 AT

 * ol
f 

1 11 ! ai
 *

ou, après avoir multiplié haut et bas par

an cosa 5 Va2 n‘2 cos2 a - 2Ra cosa — R2 — a‘ ( n2 — i ),

an R
X ------ - ------ -=-=====-============================ ====== 

an Cos% = V’at n2 cos2 % -2 a R cos % - «2 ( n° — I) — R2 

que l’on peut écrire aussi
. aR(3) J —----------------- -==========================*

an cosz Va Cost — R — «2 ( /*- 1 1 sinkg
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La seconde solution correspond au point parasite V.
Il y a deux cas à considérer, selon que O est à droite ou à gauche 

de la surface réfringente, c’est-à-dire selon que a est plus grand ou 
moindre que le rayon de courbure R.

Premier cAs. a >R. O est à droite de la face réfringente. La 
lentille est un ménisque convergent (fig. 58) ou une lentille bi-

concave (fig. 3g). La discussion est exactement la même pour ces 
deux formes, seulement, dans le ménisque, 0 est virtuel et N réel.

et la surface réfringente considérée est la face d’émergence; c’est 
tout le contraire dans la lentille biconcave.

La plus grande valeur de x, CNN (fig. 57). nous intéresse seule, 
nous prendrons donc le signe au radical :

—
 

8

ou R
an cosz — vas n2 cos2z. -2 a R cosa - a(n2 — I) — R2

La condition de réalité du radical est

Premier cas :
Ménisque convergent.
Lentille biconcave
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La limite inférieure de cos% est réelle si @2 R2 — R2 ou a, 

ce qui est toujours vrai, puisque, par hypothèse, on a a > R et 
n).

Cette valeur minima de cosz(fig. 60) correspond au point P, tel 

que PNm soit tangent au cercle ; dans ce cas, l’angle r a poursinus „ 

et le point P est l'intersection avec le cercle du segment capable

Fig. jo.

de supplément de l’angle arcsin — construit sur CO. Le signe — du 

radical de cos% correspondrait à l’autre point d’intersection P. :
Nous aurons donc, pour ce point P,

RV( az n= — Re)(n2 — 1 ) cos a —----------------- - —
aI-

et
os _ ü _ ___ an’R ____UN, c - - ===========—-======——•

Cosz RV(a‘n*—R2)(n:—1)

D’autre part, pour a = 0, nous tirons de la formule (3) :

CN anR _ anR
° an — (a — R) a (n — 1) + R

d’où l’aberration nodale

— X II Q
 2 2 I 2
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Pour avoir une idée de la valeur de cette aberration, faisons une 
application numérique.

Supposons R=T, n — - et donnons à a des valeurs successives 

croissant de dixième en dixième.
Les résultats sont les suivants :

X
 

ii

3a

a-2 il 2

a . co.
Du centre de courbure 

au centre optique.
axe. GNm.

ABEKKATJON 
Nm No-

DEMI-ANGLE 
de 

champ 3, 
sin B = cos a.

1,1....................................... 3 3
3 1 1,06 99

98 ■ : 1,010 0,05 81*55’

1,2...................................... 9
8 — 1,12 -1,018 0,102 70*17

1,3....................................... 43 
ii 1,18 39

38 = 1,026 0,154 77 1
1,4...................................... 2 4

17 = 1.23 6 36 1 = 1,032 0,198 75*41
1,5...................................... 3 = 1,28 27

2 6 = 1,038 0,312 7526'

1,6....................................... %
3 1,33 # -1,05 0,28 72° 15

- 51
37 — 1,37 H =1,062 0,308 70’19

1,8.................................. 0 7
19 1,42 8 1

7 6 — 1,065 0,355 6g*48'
1,9.................................... 1913 — 1,46 83 =1,075 0,385 68- 28’

2........................................... 1 = 1,5 90
8 3 = 1,084 0,416 67017'

Pour faciliter et rendre plus pratique la comparaison, on peut

ch

chercher quelle est la valeur de CN pour un champ constant de 
90° d’ouverture.

On a alors ifig. 61

O
 

A or
 II 1 Q 3 w

 - Q
 

oh
 2 .L I o
n
 Es

 

%
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On pourrait éliminer a entre celle équation et l’équation (3). on 
trouverait une équation du sixième degré en x.

Il est plus simple de conserver ces deux équations,

an R
- an cos 1 — V(a cosa — R)=— af(n2 — 1) sin’s

et
x R(cos% -sinx),

et de chercher, par tâtonnements, les valeurs de % qui rendent les 
deux valeurs égales. Cela nous permettra de dresser le Tableau 
.3suivant, dans lequel R — i et n = -

« = co.
Du centre de courbure 

au centre optique.
CX9. GN,v.

DENT- 

ci A ar.
coso.. ABELEATION 

NaNo.

1,1............................... 1,06 1,04 45- 0.000 0,02
1,2............................... 1,12 1,07 45° 0,993 0,05
1,3............................... 1,18 1,11 45° 0,9873 0,07
1,4....................... 1,23 1,15 45° 0,9825 0,08
1,5............................... 1,28 1,18 45- 0,975 0,1
1,6........................ 4 .1,33 1,20 459 0,9675 0,13

1,37 1,22 45° 0,9625 0,15
1,8............................. 1,42 1,24 45° 0,955 0,18

1,9........................ 1,46 1,25 45° 0,9175 0,21
2................................... 1,5 1,26 45 0,94 0,24
3................................... 1,8 1,34 45 0,885 0,46
4................................... 0 1,36 45° 0,855 0,64
5................................... 2,14 1,38 45° 0,834 0,76
etc............................... » » » » »
00............................... 3 1,40 $8- 0,746 1,6

On voit que l’aberration nodale, qui croit avec a, est d'autant 
moindre que le centre optique est plus près de la lentille, c’est- 
à-dire que le rapport E diminue, ou que R, augmente par rap­

port à R2; quand R est égal à l’infini, la lentille devient plan- 
convexe, alors le centre optique est au sommet de la lentille, ainsi 
que le point nodal; l’aberration nodale est nulle.

Quand R, diminue, l'épaisseur restant à peu près constante.
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l’aberration nodale va en croissant, en même temps que le centre 
optique s’éloigne de la lentille et, à la limite, quand R^ R2

% %

( fig. 62), le centre optique est à l’infini et l’aberration NoN.s 
devient égale au rayon de courbure R, multiplié par 1,6.

Ces chiffres démontrent l’inconvénient que présente l’emploi de 
ménisques trop creusés.

Deuxième cas. — Soit maintenant : a < R ou le centre O à 
gauche de la face réfringente considérée ; c’est le cas du ménisque 
divergent ou de la lentille biconvexe; dans le premier, le centre 
optique est virtuel, le point nodal réel, et la face considérée est 
la face d’incidence; au contraire, on a le centre optique réel, le 
point nodal virtuel et la face d’émergence dans la lentille bicon­
vexe. Du reste, les conclusions sont identiques (fig. 63).

45

Les équations (3) et ( 1) sont les mêmes; seulement, la solution 
parasite V étant cette fois la plus grande, il faut prendre dans .

3 3 3 y % 3 S %

Deuxième cas :
Ménisque divergent.
Lentille biconvexe
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le radical avec le signe — :

an RX— -------------- -===============================================
an cos va n- cos2 a — 2 R a cos a — at(n2—1) F R2

ou
an R

X = --------------------- ===== =========== ^==========77 •
an cosa -+ V(a cosa — K )2 — a2 (n‘— I ) sinkz

Comme dans le premier cas,

an R 
a(n — 1) - R

En ce qui concerne la position extrême de N, la notion du rayon 
tangent, qui nous a servi dans le premier cas, conserve sa valeur 
analytique, mais, en pratique, elle n’est plus admissible, puisqu’elle 
comporterait l’existence de rayons incidents tels que AB (fig. 64), 
qui dépasseraient la perpendiculaire à l'axe.

F 8

Calculons, comme dans le cas précédent, la valeur de % quand 
l'angle MNP = 45° (fig. 65), ce qui correspond au champ total 
de 90°.

Ici

s i
iono0 P10- 1

6 li5

7

En calculant encore par tâtonnements les valeurs de CN,>°, nous 
aurons les éléments du Tableau suis ant qui, complété par la repro­
duction des chiffres ci-dessus, donne l'aberration nodale d'émer-
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gence pour toutes les lentilles convergentes et pour un champ total 
de 90° (1).

a == CO.
Du centre de cour­

bure 
au centre optique.

CXo.

-

CO8*.
BEERATION

No %.
OBSET VATIONS.

0,1. ............. 0,142 0,146 0,78 0,004 : Le rayon de courbure
0,2. ..................... 0,272 0,282 0.85 0,010 I dela face d'émergence
0,3. 0,391 0,405 0,88 0,014 est pris pour unité.

' Le point C est le centre
0,4- .................. 0,5 0,519 0,92 0,019 de courbure de cette
0,5. 0,6 0,622 0,95 0,022 face d’émergence.
0,6. ..................... 0,69 0,717 0,97 0,02;
0,7 ..................... 0,77 0,80 0,985 0,03 | Lentille biconvexe.0,8. 0,856 0,880 0,996 0,024
0,9. 0,93 0,945 0,999 0,015

Lentille plan-convexe1,0. 1 1 1 0 à face

1,06
d’incidence plane.

1,1. 1,04 0,999 0,02
1,2. ..................... 1,12 1,07 0,995 — 0,05
1,3. ................... 1,18 1,11 0,9875 — 0,07
1,4. ..................... 1,23 1,15 0,9825 — 0,08
1,5. 1,28 1,18 0,975
1,6. 1,33 1,20 0,9072 — 0,13
1,7. 1,37 1,22 0,9625 —0,15
1,8. 1,42 1,24 0,955 — 0,18
1,9. ..................... 1,46 1,23 0,9475 — 0,21 ! Ménisque convergent

1,5 1,26 0,94 —0,24 à face
3.. . 1,8 1,34 0,885 — 0,46 i d’incidence concave.
4... ..................... 2 1,36 0,855 — 0,64
5... 2,14 1,38 0,834 0,76

1 » » » »
» » » » »
» » » » »

» » Dans ce dernier cas
œ.. 3 1,s° 0,-16 — 1,6 seulement,le demi-an-

gle de champ est de 48°.

On rappelle que a, CN, CN, et l’aberration, sont évalués en 
fonction du rayon de courbure. On voit de suite que l'aberration

(1) Pour embrasser la généralité des cas, au point de vue analytique, ce Ta- 
bleau devrait aussi donner le chiffre de l’aberration pour les valeurs négatives 
de a. On n a pris ici que la partie d’application pratique.
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nodale d’émergence, nulle pour les lentilles à face d’incidence 
plane, est moindre pour les lentilles biconvexes que pour les mé­
nisques convergents; elle est du reste, dans ces deux cas, de signe 
contraire.

Le même Tableau donne l'aberration nodale d'incidence des 
lentilles divergentes. Il suffit d’en appliquer respectivement les 
chiffres au ménisque divergent à face d’incidence concave, à la 
lentille plan-concave à face d’émergence plane et à la lentille bi­
concave. Le rayon pris pour unité et le centre C sont alors ceux de 
la face d’incidence.

Quant au point nodal d'incidence des lentilles convergentes ou 
au point nodal d'émergence des lentilles divergentes, leur aber­
ration se représente par les mêmes nombres, mais rapportés au 
rayon et au centre de courbure d’incidence.

De plus:
1° Dans la lentille biconvexe ou biconcave, le déplacement des 

deux points nodaux se fait en sens contraire l’un de l’autre;
2° Dans les ménisques, les deux points nodaux marchent dans 

le même sens;
3° Dans la lentille à la face d'émergence plane (fig. 66), en

Fig. 66.

appelant e l’épaisseur OP; soient O le centre optique et N le 
point nodal de la face plane. on a

O.\—OP XP = e - MIN cos/ 
et
INZO sin/ = ON = _ = _ 

sinlé / "cos/ /% I — sinër
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donc
oN=e(i--cosi)

\ Vn2— sin’i/
Pour i== o, on a

xo==e( I------), 
\ "/

et pour i= 45°

x=e( - -==).
Ven-— 1/

En supposant n = 3-, nous trouvons
2

& II oc II oo O
 

Cs et S26il$100 
%

-11<+
—

L’aberration est donc de o,13e et a pour effet d’augmenter 
l’écart ON des points nodaux. Que la lentille soit divergente ou 
convergente, l’aberration est la même.

Dans tous les cas, les deux points nodaux d’une lentille simple, 
qui correspondent à une même direction incidente, se maintiennent 
toujours à une distance respective moindre que l'épaisseur de la 
lentille.

Quant au sens de l’aberration nodale, on peut dire, d'une façon 
générale, qu’à mesure que l’angle des rayons lumineux avec l'axe 
augmente, les points nodaux s'éloignent du centre optique.

Conséquences de l’aberration nodale : Distorsion nodale. 
Soient deux points A et B (fig. 67) dont les perspectives exactes, 
fournies par deux points nodaux fixes, No et N', seraient a et bo. 
Cherchons quel sera l’effet de l’aberration nodale sur la position 
relative des images de A et de B.

Lentille plan-concexe. — Supposons la face plane tournée vers 
l’objet, le point nodal d’incidence seul sera variable, le rayon 
vecteur de B deviendra BN, et son parallèle N'b, donnera l'image 
de B en b,. Or zi 

25 
93 
4

II

-B 

- 
X

il51-S

Conséquences de
l'aberration nodale :
Distorsion nodale
Lentille plan-convexe
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€%

que l’on peut écrire

bah — NoNr- AN 4 X

c
 

b
0 
C 
S

en désignant par D la distance qui sépare A du foyer principal

F -

0
d'incidence, par F la distance focale et par u l’aberration nodale, et 
en appliquant la formule de Newton.

On voit que ce déplacement b, bo est proportionnel à l’aber- 
ration, à la distance focale et à la tangente de l’angle 3 et qu’il 
varie en raison inverse de l’éloignement de l’objet. Comme u 
augmente déjà avec cet angle 3, il y a deux raisons pour que le 
déplacement bob,, qui éloigne un point du centre de l’image a. 
croisse avec la distance abo qui le sépare de ce centre. Il en ré­
sulte une déformation de même ordre que la distorsion en crois- 
sant, dont nous aurons occasion de parler plus loin, à propos du 
diaphragme.

Si nous retournons la lentille (fig. 68), l’effet est différent, le

rayon axial N0 b, se transporte parallèlement en N, b,, le déplace- 
N. 5
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ment bobi se fait en sens inverse; on a l’effet de la distorsion en 
barillet,

bo bx = u tangs.

C’est le seul cas où l’effet de l’aberration nodale soit indépen­
dant de l’éloignement D de l’objet.

Ménisque convergent. — Dans ce cas, les deux points nodaux 
se déplacent dans le même sens et les effets s’ajoutent; si la con-

4 $

Fe

cavité est tournée vers l’objet (Jig. 69), le déplacement total b,bi 
amène une déformation en croissant.

Dans l'autre sens (fig. 70), on trouvera de même une distorsion 
en barillet.

Le ménisque divergent produit les mêmes effets en sens con­
traire, il déforme en barillet quand sa concavité est tournée vers 
l’objet.

Lentille biconvexe (fig. 71). — Dans ce cas, les effets de dé­
formation provenant des points nodaux se contrarient. On pourra 
donc avoir la distorsion en barillet, en croissant ou sensiblement

Ménisque convergentLentille biconvexe
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négligeable, selon les rapports qui existent entre les rayons de 
courbure, d’incidence et d’émergence, la distance de l’objet et la

Pig -T.-»*

longueur de foyer. C'est, en somme, la forme biconvexe ou bicon­
cave qui convient le mieux pour combattre l’aberration nodale.

3 ABERRATION D’APLANÉTISME.

Un système réfringent est dit aplanétique, suivant un axe. 
quand les rayons incidents parallèles à cet axe vont tous converger, 
à l’émergence, en un seul et même point focal.

Prenons une surface sphérique réfringente, sur laquelle tombe 
un faisceau de rayons parallèles. Soit AM (fig. 72) un de ces

B —
i 

A

rayons d’angle d’incidence égal à i; il se réfracte suivant MP, tel que 

sini= n sinr.

3° Aberration
d'aplanétisme
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On a
OP - OM _ 5_  

sin r sin(i— r) sin (i — r)

donc
OP =n „-----=----------------------- R------- .

sinicosr — COS4 sin r n cosr — COs l

La distance OP du foyer au centre dépend donc des angles r 
et i, et il y a autant de foyers P que de rayons d’incidence diffé- 
rente. Il n’y a pas aplanétisme.

Quand i augmente, le dénominateur n cosr — cosi augmente 
aussi, et OP diminue; le foyer des rayons centraux est donc plus 
éloigné que le foyer des rayons marginaux.

Si l’on fait le calcul, en donnant à i des valeurs différentes, en 
3prenant n = - et le rayon R pour unité, on trouve :

Angle Distance
d’incidence i. focale OP.

r‘.............................................................................. 2 ( valeur limite).
1°............................................................................. 1,9983

io°............................................................................. 1,9794
20°............................................................................. 1,9343
30°............................................................................. 1,8238
40°......................... ................................................... 1,6968
45°............................................................................. 1,62.39
50°............................................................................. «,5437
60°............................................................................ 1,3796
70............................................................................ 1,2089
80’............................................................................. 1,0440
900............................................................................. 0,8944

Deux rayons infiniment voisins AM et BR (fig. 72), après ré­
fraction, se coupent en un point Q. L’ensemble des points tels 
que Q ou la courbe enveloppe des divers rayons réfractés présente 
donc une certaine accumulation de rayons lumineux; cette courbe 
porte le nom de caustique.

Surface caustique. — En construisant, à l’aide des chiffres portés 
au Tableau ci-dessus, les rayons réfractés correspondant à des in-

Surface caustique
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cidences croissant de 10° en 1o°, on a (fig. 73) une représentation 
complète de la caustique.

Elle se compose de deux arcs symétriques formant un point de 

Fig. 73.

rebroussement en F, foyer des rayons centraux. En F, ou près de F, 
passent le plus grand nombre des rayons réfractés, aussi c’est ce 
point F que l’on prend pour foyer principal de la lentille.

Si l’on fait tourner la figure autour de l’axe de révolution PO, la 
caustique engendre la surface caustique. On peut remarquer de 
plus que chaque rayon réfracté tel que RS engendre un cône 
de révolution, dont le sommet est sur l'axe. Donc, il y aura aussi 
accumulation de lumière sur cet axe, et la surface caustique 
complète, lieu des points de concours des rayons réfractés corres­
pondant à un faisceau incident parallèle à l’axe, se compose : d’une 
part, de la partie de cet axe comprise entre les foyers F et U des 
rayons centraux et des rayons marginaux et, d’autre part, de la 
surface de révolution engendrée par la caustique entre ce même 
point F et le point Q situé sur le rayon marginal.

Quand une surface réfringente est aplanétique, sa caustique se 
réduit à un seul point, qui est le point de rebroussement. Certaines 
surfaces, ayant pour méridiennes une parabole ou des ovales de 
Descartes, selon que le point lumineux est situé à l’infini ou à dis­
tance finie, jouissent de cette propriété, mais chacune seulement 
pour un faisceau incident déterminé.

La surface sphérique, la seule qu’on puisse employer pratique­
ment pour les lentilles, n’est jamais aplanétique.
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Tout point lumineux engendrera de même une surface caustique 
de révolution, dont la forme varie avec la position du point.

Passons à la lentille. Cherchons le foyer des rayons parallèles à 
l'axe, tombant sous l’angle d’incidence i (fig. 74). Après la pre-

D«

mière réfraction, ils prennent la direction BE et, après la seconde, 
la direction DF. L’angle DFC2 est la somme des déviations subies 
par le rayon lumineux, il est donc égal à (i — r- i‘— 1) et l’on a

H

eu 
o h

en appelant 1U le rayon de la seconde face.
Quand i‘ augmente, i — r et i— y augmentent aussi, mais

r .cp 
—

plus rapidement que il; il en résulte que CAF diminue: donc le foyer
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des rayons centraux est toujours plus éloigné de la lentille que le 
foyer des rayons marginaux. La caustique principale, provenant 
de rayons incidents parallèles à l’axe, affecte la même forme que 
ci-dessus, et la surface caustique principale est de révolution 
autour de l'axe principal (Jig. 75).

Pour un faisceau oblique, la caustique (fig. 76) est plus irré­
gulière, mais bien nette encore. La fig. 76 montre qu’un certain

nombre de rayons, tels que AB, CD, rencontrant la face d’émer­

gence sous un angle supérieur à arcsin-, ne peuvent émerger et 

subissent en B et D la réflexion totale.

Aberration longitudinale. — On appelle aberration longi­
tudinale la distance qui sépare sur l’axe principal le point de 
co ncours des rayons marginaux de celui des rayons centraux. Dans 
une lentille supposée sans épaisseur, cette aberration a pour va­
leur, en désignant par R. et par R2 les rayons de courbure, par F

Aberration
longitudinale



CHAPITRE IV.

le foyer et par o le diamètre d’ouverture utile de la lentille,

02Fn2 1— zn(n —1) 2 — n(2 — n)1 
- K,K, 4 R; °

Aberration latérale. — Le rayon du cercle lumineux formé 
autour du foyer F des rayons centraux s’appelle aberration laté­
rale; sa valeur est de

~ 16 Lit 1,1H, J
L'aberration longitudinale est donc proportionnelle au carré du 

diamètre de l’ouverture ou à la surface même de cette ouverture. 
L’aberration latérale varie comme le cube de ce même diamètre. Dans 
ces formules apparaît, pour la première fois, le rôle du diaphragme.

Les rayons obliques engendrent des caustiques, présentant une 
certaine analogie de forme avec celles que nous venons d’étudier. 
Mais ce ne sont plus des surfaces de révolution et elles s’allongent 
d’autant plus que l’obliquité est plus grande.

Une lentille simple à faces sphériques n’est jamais aplanétique.
Le calcul montre qu’il faudrait, pour cela, employer des ma- 

tières dont l’indice de réfraction fût inférieur à 1. Il est facile de 
s'assurer, dans la pratique, de ce défaut d’aplanétisme en obser­
vant les images variées que forment les rayons solaires, transmis 
par la lentille, et reçus sur un écran blanc qu’on éloigne progressi­
vement du verre. A une certaine distance, le rond lumineux formé, 
d'abord d’aspect uniforme, présente un maximum d’éclat sur les 
bords; à mesure qu’on s’éloigne, ce rond diminue de diamètre, et sa 
circonférence devient de plus en plus brillante; cette circonférence 
représente une section de la nappe de la caustique. Puis le maxi­
mum d’éclat se partage entre le centre et la circonférence; les rôles 
changent ensuite et l’on observe au centre un cercle très brillant 
entouré d’une auréole moins éclairée ; c’est qu'alors on approche 
de la pointe de la caustique; l’auréole extérieure est produite parles 
rayons qui rencontrent l’écran au delà de leur point de tangence. 
L'écran continuant à s’éloigner, le point central brillant diminue

Aberration latérale
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de diamètre pendant que l’auréole qui représente l’aberration laté­
rale s’élargit; enfin, ce point, foyer des rayons centraux, disparaît 
dans un cercle uniformément éclairé, dont les dimensions aug­
mentent rapidement.

Avec une combinaison parfaitement aplanétique, l’effet est diffé­
rent. Le cercle lumineux, en diminuant de diamètre et augmentant 
d’éclat, reste toujours uniformément éclairé, il diminue jusqu'à 
se réduire à un point très brillant et non auréolé, qui ensuite aug­
mente de diamètre en diminuant d’éclat, par une marche inverse 
à la première partie de l’expérience.

4° ASTIGMATISME.

L’astigmatisme est aussi une conséquence de l’aberration de 
sphéricité.

Lignes focales d’astigmatisme. — Supposons une seule surface 
réfringente et considérons un étroit faisceau de rayons parallèles

(fig. 77) tombant loin de l’axe de même direction. Si le faisceau 
couvrait toute la surface, il donnerait naissance à une caustique 
entière. Le faisceau délié que nous considérons n’emprunte que 
deux éléments de cette caustique; l’un en A, composé d’une petite 
étendue de la surface courbe, et l’autre en B, fait d’une portion de 
l’axe. Le foyer du faisceau est donc représenté par deux éléments 
rectilignes dont on peut concevoir la formation et la position de 
la façon suivante (fig. 78). Soient ABCD la section du faisceau 
étroit considéré, OF l’axe parallèle à ce faisceau. Sur la surface 
ABCD, nous pouvons imaginer deux séries de lignes différentes : 
les unes, AB, CD, sont des arcs de cercle tracés de O comme

4° Astigmatisme
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centre; les faisceaux coniques, réfractés le long de chacun de ces 
arcs, vont converger sur l'axe en F et en E, et leur ensemble 
engendre une petite longueur EF de cet axe. Une autre série de 
lignes, AC, BD, est formée par l’intersection avec la surface réfrin­
gente de plans méridiens passant par l’axe. Les rayons réfractés 
situés dans chacun de ces plans se rencontrent en un point G, H

de la courbe caustique située dans le même plan méridien; chaque 
méridien donne de même un point, et l’ensemble de ces points 
engendre un élément de ligne GH, de direction perpendiculaire 
à EF. Sturm a démontré qu’en effet, dans ces conditions, le foyer 
du faisceau ABCD se composait de deux éléments rectilignes per­
pendiculaires et situés dans deux plans différents. Ces éléments 
sont les lignes focales, qui ne peuvent tenir lieu de foyer que si 
elles sont assez rapprochées pour paraître confondues en une sorte 
de croix très petite, assimilable à un point.

Le théorème de Sturm est général : un faisceau étroit, conique 
ou cylindrique, de rayons lumineux, tombant dans une direction 
quelconque en une place quelconque d’une lentille, donnera tou­
jours naissance à deux lignes focales d’astigmatisme ; et ces deux
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lignes sont des éléments des deux parties de la surface caustique, 
que donnerait le faisceau entier, tombant sur la surface totale de la 
lentille.

Surfaces focales d’astigmatisme. — Si nous considérons la 
lo talité des faisceaux parallèles incidents suivant toutes les direc­
tions possibles (fig. 79), chacun d'eux donnera naissance à une 
caustique d’émergence.

L’ensemble enchevêtré de ces caustiques constituera une zône, 
limitée à la surface qu’engendrent les pointes de ces caustiques, 

I
- c
h —

surface qui n’est autre que la surface focale principale absolue. 
L’image ne sera nette sur cette surface, que si l’aberration laté­
rale est en chaque point assez faible, pour que les rayons voisins 
n’empiètent les uns sur les autres, que dans des limites telles, que 
la netteté apparente n’en souffre pas.

Si maintenant nous diminuons par un diaphragme le cylindre 
d’admission des rayons incidents, chaque faisceau étroit, corres­
pondant à un angle d’incidence donné, fournira deux éléments 
focaux rectilignes, perpendiculaires et d’autant plus écartés l’un 
de l’autre, que l'astigmatisme sera plus prononcé.

Supposons une seule surface réfringente et un diaphragme DD 
(fig. 80). Le faisceau DA, à incidence presque normale, ira for­
mer un foyer en A‘, à la pointe de la caustique.

Un faisceau oblique DB fournira deux lignes d’astigmatisme F 
et /, faisant partie de la caustique d’axe CB’ et de pointe B’, telle 
que CB= CA’.

Surfaces focales
d'astigmatisme
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Les deux lignes focales r et Z seront toujours plus près de C que 
le point B; elles engendreront chacune une surface focale d’as- 
tigmatisme, plus courbe que la sphère A’B’ et que nous désignerons 
par les deux lettres r et t.

La surface r fournira des images à netteté rayonnante, c’est- 
à-dire que, dans ces images, les lignes dirigées vers le point A' 
seront plus nettes que les autres; et la surface t fournira des images

Fig. 80.

A

3.
 3 F

à netteté tournante, dans lesquelles le maximum de netteté sera 
pour les éléments de lignes perpendiculaires aux premières, c’est- 
à-dire dirigées suivant des circonférences ayant le point A' pour 
centre.

Plaçons un écran dépoli en E, un peu en avant du foyer A’, et 
soit P l’intersection, avec cet écran, de l’axe principal (fig. 81).

La surface t coupera l’écran suivant une zone circulaire t, assez 
voisine de P et dans laquelle on observera une prédominance ro­
tative des éléments de lignes tangentielles, c’est-à-dire des hori- 
zontales au-dessus et au-dessous de P, des verticales à droite et à 
gauche de ce point, et des perpendiculaires aux rayons intermé­
diaires.

L’écran coupera l’autre surface r, suivant une zone concentrique 
de plus grand rayon, sur laquelle on observera une prédominance 
radiante des verticales au-dessus et au-dessous de C, des horizon­
tales à droite et à gauche, et des obliques ailleurs. De t à r, la 
netteté tangentielle ira en diminuant, alors que la netteté rayon­
nante augmentera; sur une zône circulaire intermédiaire ni, les 
nettetés seront égales et un point sera figuré par deux éléments rec-
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tilignes en croix; si ces éléments sont assez courts et assez étroits, 
ils forment un petit carré, de netteté moyenne et suffisante dans 
tous les sens.

On se rendrait compte, de la même façon, des variations de

Fig. 8r.

netteté observées, en un point donné de l’écran, quand on déplace 
lentement cet écran parallèlement à lui-même, dans le sens de 
l'axe. L’image d’un même objet éloigné de l’axe se transforme à

Fig. 82.

vue d'œil, et s’étire dans un sens ou dans l’autre en passant d’une 
surface d’astigmatisme à l’autre.
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La surface t engendrée par des tangentes aux cercles de révolu- 
tion n’a pas d’épaisseur, la surface r engendrée par des obliques à 
ces cercles en a une. Cette épaisseur augmente avec le diamètre du 
diaphragme et avec l’obliquité des rayons.

Si l’on rapproche le diaphragme du centre de courbure C, les 
éléments t et r se rapprochent tous deux de B' (fig. 80), avec lequel 
ils se confondent quand le diaphragme est au centre C (fig. 82). 
Il n'y a plus alors d’astigmatisme; les trois surfaces focales t, me 
et r, et la surface focale absolue n’en font plus qu’une seule.

Si le diaphragme est à droite du centre C (fig. 83), les deux

Fig. 83.

surfaces d'astigmatisme reparaissent; seulement maintenant chaque 
élément t est à l’intérieur de l’angle que fait l’axe secondaire Cr 
avec l’axe principal.

Avec une lentille, l’étude théorique des phénomènes précédents 
est beaucoup plus difficile et ne peut être traitée d’une façon 
générale. Mais l’expérience et le calcul de cas particuliers montrent 
que le phénomène présente une grande analogie avec ce qui pré- 
cède.

5- COURBURE DU CHAMP FOCAL.

Surface focale d’astigmatisme moyenne. — Dans la pratique, on 
prend, comme surface focale principale usuelle, la surface moyenne 
entre les surfaces t et r, celle qui passe par tous les points m de 
netteté générale maxima ( fig. 81). C’est la forme de cette surface

5° Courbure du champ
focal

Surface focale
d'astigmatisme
moyenne
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que l’on détermine pour mesurer la courbure du champ de l’ob­
jectif considéré.

Les surfaces d’astigmatisme m, t et r diffèrent toujours de la 
surface focale absolue et sont situées du côté de celle-ci, où s’éten­
dent les caustiques de réfraction, c’est-à-dire, pour les lentilles 
simples, dans la concavité de la surface focale absolue.

Ces quatre surfaces ont une partie commune plus ou moins 
étendue, aux environs du foyer principal A'. La surface focale abso­
lue est, en fait, la limite vers laquelle tendent les surfaces t, r et m, 
quand l'astigmatisme est complètement corrigé.

On voit qu’il y a une étroite relation entre l'astigmatisme et la 
courbure du champ, qu’il ne faut pas confondre avec l'aberration 
de champ, définie ci-dessus et qui ne s’applique qu’à la surface 
focale absolue.

C’est en raison de cette relation que, dans les essais d’objectifs, 
on déduit de l’astigmatisme la courbure du champ.

il ne s’ensuit pas cependant que la correction de l’une de ces 
aberrations amène la disparition de la seconde. Détruire l’astigma­
tisme, en effet, c’est amener, sur un champ suffisamment étendu, 
la confusion des surfaces t et r', par conséquent m. Mais celte su r- 
face focale unique, dénuée d’astigmatisme, reste plus ou moins 
bombée; et il faut corriger à part la courbure du champ.

On voit aussi, par ce qui précède, quelle est l’influence de la 
grandeur et de la position du diaphragme sur l’astigmatisme et sur 
la courbure du champ.

6 ABERRATION CHROMATIQUE OU DE RÉFRANGIBILITÉ.

Abandonnons l'hypothèse des rayons lumineux simples et con­
sidérons ce qui se passe quand un faisceau de lumière blanche 
tombe sur une lentille. Chaque rayon A B (fig. 84 ) est décomposé 
en une infinité de rayons colorés, étagés suivant leur réfrangibi­
lité croissante, entre CR et DV. Un rayon GH, symétrique du 
premier, est décomposé de même, et l’ensemble des rayons situés 
à même distance de l’axe fournit une série de foyers principaux dif­
férents, disposés sur l’axe entre R et V.

Tous les rayons qui traversent la lentille sont ainsi décomposés

6° Aberration
chromatique ou de
réfrangibilité
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en rayons simples qui obéissent, dans leur trajectoire, aux lois 
énoncées ci-dessus. Il y aura donc, pour chaque direction incidente, 
autant de caustiques, et, pour un faisceau étroit, autant de doubles 
lignes focales d’astigmatisme que de rayons simples.

Dans une lunette, l’œil, placé sur le prolongement de l’axe VR. 
reçoit, en même temps, des rayons de toutes les couleurs, l’aspect 
de l’image n’est donc que peu modifié par cette aberration, qui ne

Fig. 84.

produit qu’une légère bordure irisée sur les contours fortement 
accusés des objets. Pour achromatiser l'appareil, on peut se conten­
ter alors de réduire le plus possible la longueur VR, en réunissant, 
par exemple, le foyer violet et le foyer rouge.

En Photographie, l’aberration chromatique a le grave inconvé­
nient de créer un foyer chimique, il importe donc de la corriger 
plus complètement et, comme nous l'allons voir, d’autre façon que 
dans les lunettes.

Foyer chimique. — Le foyer chimique provient de ce que la 
mise au point optique d’une lentille est différente de la mise au 
point photographique ou chimique. Cela résulte de ce que le 
maximum d’éclat dans le spectre ne coïncide pas avec le maximum 
d’effet chimique, le premier se trouvant vers le jaune en J, le 
second vers le violet en V (fig. 84). En observant l’image, on 
mettra naturellement au point en J; et le foyer chimique étant 
plus près de la lentille, en V, l'image développée sur la plaque 
sera floue.

L ne lentille simple ne peut jamais être achromatique, car, de 
quelque façon qu’un rayon la traverse, les éléments de surface E

Foyer chimique
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et S, à l’entrée et à la sortie, forment toujours un angle ( fig. 85)

Fig. 85.

E

et agissent sur le rayon à la façon d’un prisme simple, dont la dis­
persion n’est jamais nulle.

Seuls, les rayons passant par les points nodaux, c’est-à-dire les 
axes secondaires, traversent des éléments de surfaces parallèles et

€ C
Cab

sortent sans dispersion, ou du moins forment à la sortie un fais­
ceau dispersif très petit de rayons parallèles ( fig. 86 ).

Cercle d’aberration chromatique. — Soient les rayons de ré­
frangibilité extrême AV et AR (fig. 87). Les cônes correspondants

Fig. 87.

se coupent suivant un cercle DE, que l'on appelle le cercle 
d'aberration chromatique. Soient ce le diamètre DE de ce cercle
et o le diamètre AB de la lentille. On a

a_ GV
VL

6

Cercle d'aberration
chromatique
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Cl, d’autre part.
CHAPITRE IV.

8
1

0

d’où
a_GV+GR VR -F-Fe.
o ~ VL + RL - RL + VL - F,+F,’

donc

aso —.—, 
2 1 m

en appelant Fm le foyer moyen : UrEe.

Or, les valeurs des foyers sont, en fonction des rayons de cour­
bure de la lentille, supposée sans épaisseur (voir p. 23),

et

d’où

et, enfin,

On voit apparaître dans cette formule le pouvoir dispersif

-- --- —: a est indépendant de la distance focale et de la forme 
"m-

même des surfaces réfringentes; il est proportionnel au diamètre 
de l’ouverture utile et au pouvoir dispersif.

Tout cc qui vient d'être dit relativement aux aberrations et que, 
le plus souvent, pour la commodité des figures et la clarté des dé­
monstrations, nous avons appliqué à une seule surface conver­
gente, s’applique de même aux lentilles; avec celle seule difle-
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rence que, dans le cas d’une lentille, ce sont les points nodaux qui 
jouent, à eux deux, le rôle du centre de courbure d’une surface 
isolée, que c’est par ces points que passent les rayons sans déviation, 
axes des caustiques, que c’est autour de ces points que se groupent 
les rayons centraux.

Les lentilles divergentes ont des propriétés identiques à celles 
des lentilles convergentes, seulement leurs foyers sont virtuels 
et leurs aberrations sont, à égalité de courbures, égales et de 
signe contraire à celle d’une lentille convergente faite de la même 
matière.



2 CHAPITRE V.

CHAPITRE V.
CORRECTION DES ABERRATIONS.

Quand nous aborderons la construction des objectifs, nous ver- 
rons comment on doit diriger le calcul pour annuler, ou du moins 
pour atténuer l’effet des aberrations. Pour le moment, nous nous 
bornerons à démontrer la possibilité et à saisir le mécanisme de 
ces corrections.

Les aberrations à corriger sont au nombre de six, savoir :

i° L’aberration de champ ou courbure de la surface focale 
absolue ;

20 L'aberration nodale, causée par le déplacement des points 
nodaux;

3° L'aberration sphérique des rayons parallèles à l'axe, ou 
aberration d'aplanétisme, que mesure l’aberration longitudinale;

4° L'aberration sphérique des rayons obliques, ou astigma­
tisme, qui produit les surfaces focales d’astigmatisme;

5° La courbure du champ focal, ou courbure de la surface 
moyenne d'astigmatisme;

6° L'aberration chromatique, qui se mesure par le cercle 
d’aberration chromatique.

La lentille simple présente toujours ces six aberrations. Pour 
les combattre, il faut combiner ensemble un certain nombre de 
lentilles simples, constituant l'objectif.

On distingue l'objectif simple, formé de deux ou plusieurs len- 
tilles collées ensemble et étroitement unies, et l'objectif composé,

CHAPITRE V.
Correction des
aberrations
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oC
dont les éléments, en nombre variable, forment deux ou plusieurs 
groupes, séparés par intervalles vides.

1- OBJECTIF SIMPLE. *

Lentille double : Combinaison normale. — Considérons d’abord 
les aberrations d'aplanétisme n° 3 et d’achromatisme n° 6. Elles 
sont égales et de sens contraire dans deux lentilles de même pouvoir 
focal (‘) et de même verre, l’une convergente, l’autre divergente: 
donc ces deux lentilles associées n’auraient plus d’aberrations, mais 
leurs pouvoirs focaux se détruiraient presque complètement, car la 
lentille résultante aurait ses courbures égales et de même signe.

En revanche, si nous combinons deux lentilles de substances 
différentes, il sera possible de conserver à l’ensemble un effet 
convergent, tout en faisant disparaître les aberrations n° 3 et 
n° G. En effet, le pouvoir focalcroît avec les courbures (2); l'aber - 
ration longitudinale croît avec l’indice de réfraction et l'aberra- 
lion chromatique est proportionnelle au pouvoir dispersif. Pour 
que notre lentille double soit convergente, il faut que le pouvoir 
convergent soit plus grand que le pouvoir divergent. Nous don­
nerons donc de plus faibles courbures à la lentille divergente; mais, 
pour que ses aberrations soient égales à celles de l’élément conver­
gent, nous la ferons d’un verre à indice et à pouvoir dispersif plus 
considérable. C’est, en effet, ce qui caractérise la combinaison dite 
normale dans laquelle l’élément convergent, en crown-glass ou 
verre léger, a de plus fortes courbures que l’élément divergent en 
flint-glass ou verre lourd, plus réfringent et plus dispersif.

L’aplanétisme et l’achromatisme seraient parfaits, si, dans les 
verres employés, le pouvoir dispersif était proportionnel à l’indice 
de réfraction moyen, car il suffirait alors de réunir les foyers de 
deux couleurs quelconques, pour que tous les autres vinssent aussi

() On rappelle que le pouvoir focal d’une lentille est l’inverse de la distance 
focale, ; le pouvoir mesure et définit de façon commode, dans les calculs et dans 
les explications, l’action exercée par la lentille sur les rayons lumineux.

(2) La courbure est de même l’inverse du rayon de courbure *.

1° OBJECTIF SIMPLE
Lentille double :
Combinaison normale
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coïncider. C’est ce qui a lieu, paraît-il, dans certains systèmes dits 
apochromatiques, malheureusement composés de verres trop dél i- 
cals pour l’emploi photographique.

Mais, dans les verres ordinaires, où celle proportionnalité n'existe 
pas, on ne peut, avec deux lentilles, réunir que deux couleurs: 
l’achromatisme n’est pas parfait.

De plus, pour assurer la prépondérance de pouvoir de l’élé­
ment convergent, dont l’indice de réfraction est le plus faible, il 
faut lui donner des courbures assez fortes, ce qui a le double 
inconvénient, d’une part, de rétrécir l’ouverture de la lentille ou 
d’augmenter son épaisseur, et, d’autre part, d’accroître considé­
rablement les aberrations 4 et S, l'astiomatisme et la courbure 
du champ.

Lentille triple. — En formant l’objectif de deux verres conver­
gents en crown séparés par un verre divergent en flint, on peut 
réunir trois couleurs, ce qui donne un achromatisme presque par­
fait; et, comme les courbures des verres convergents n’ont plus 
besoin d’être si fortes, puisque leurs effets s’ajoutent, on a plus 
d’ouverture ou moins d’épaisseur, moins d’astigmatisme et un 
champ plus plat.

Combinaison anormale. — Mais toute combinaison normale est 
impuissante à corriger complètement l’astigmatisme et la courbure 
du champ. Petzval a démontré, en effet, que, pour détruire ces 
deux aberrations, il faut, au contraire, que l’élément convergent ait 
un indice plus grand que le divergent. Ce dernier devant d’ailleurs 
toujours avoir un plus fort pouvoir dispersif pour assurer l’achro­
matisme, on arrive ainsi à la combinaison dite anormale, dans 
laquelle le divergent a un plus grand pouvoir dispersif et un in­
dice moindre que le convergent. On conçoit alors qu’on puisse 
prendre un accouplement normal, construit de façon à corriger un 
peu trop l’aberration n° 3 et exactement l’aberration n° 6 pour 
deux couleurs, en laissant subsister les aberrations 4 et 5, et y 
adjoindre un second élément convergent, formant avec le divergent 
une combinaison anormale, c’est-à-dire de plus grand indice et de 
moindre dispersion que lui et calculé de façon à corriger l'aberra-

Lentille tripleCombinaison anormale
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lion n° 6 pour une troisième couleur, à faire disparaître l’excès de 
la correction de l’aberration n° 3 et à détruire les aberrations 4 et 5. 

Ces verres à caractère anormal, dans lesquels l’indice et la dis­
persion varient en sens inverse, se fabriquent couramment aujour­
d'hui à léna et à Paris.

Quant aux aberrations de champ n° 1 et nodale n° 2, qui pré­
sentent moins de gravité, on conçoit aisément qu’en assemblant 
deux lentilles d’espèce différente et d’aberrations à peu près égales 
et de signe contraire, on arrive à les corriger, ou tout au moins à 
en rendre les effets négligeables.

PROPRIÉTÉS DU DIAPHRAGME.

Dans toutes les corrections, le diaphragme joue un grand rôle, 
sur lequel il est nécessaire d’insister.

Nous avons vu que, pour une surface réfringente, l’aberration 
longitudinale était proportionnelle à la section droite des faisceaux 
lumineux, et que l’astigmatisme disparaissait par l’emploi d’un 
diaphragme étroit, placé au centre de courbure. Il est donc inté­
ressant, dans tout système composé, de grouper, autant que pos­
sible, les centres de courbure des diverses faces, et de mettre un 
diaphragme à l’endroit de ce groupement. C'est pour cela qu’on 
préfère donner à l’objectif simple la forme d’un ménisque conver-

Fig. 88.

gent (fig. 88), composé souvent aussi de ménisques normaux et 
anormaux, et muni d’un diaphragme placé du côté de la face creuse. 
En diminuant assez l’ouverture de ce diaphragme, on atténuera 
considérablement les aberrations de sphéricité n°s 3 et 4.

Ce même diaphragme agira aussi sur l’aberration n° 5 en per-

Propriétés du
diaphragme
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mettant d’accroître, autant qu’on le voudra, la profondeur du 
foyer et le volume focal, ou zone de netteté pratique de l’objectif.

Netteté. — L’expression netteté n’a rien d’absolu au point de 
vue photographique, où l’on ne se préoccupe que de la netteté 
apparente ou pratique. On dit que la netteté est de 4 de milli­
mètre, quand l’image d’un point mathématique a réellement 1 de 
millimètre de diamètre, ou encore, ce qui est d’un contrôle plus 
facile, quand les images de deux traits noirs parallèles de même 
épaisseur et séparés par un espace blanc égal à celle épaisseur, 
sont encore distinctes, alors que la formule des lentilles indique 
que leur épaisseur et leur écartement théoriques sont justement 
égaux à 1 de millimètre.

En pratique, on s’arrête à la netteté de 1 de millimètre, mais 
cette valeur est arbitraire; il est certain qu’il faut la restreindre 
pour des images destinées à recevoir plus tard un fort agrandis­
sement, et qu’on peut l’augmenter, au contraire, et aller jusqu’à 
7 ou même jusqu’à 1 de millimètre pour les images ordinaires.

Profondeur de foyer. — Cette définition de la netteté nous 
amène à la conception de la profondeur de foyer.

Soient une lentille diaphragmée (fig. 89) et M' le foyer conjugué

d'un points, situé à une distance (— d)(1) du foyer d’incidence.
J’appelle : la limite de netteté, o le diamètre du faisceau lumi­

neux à hauteur du point nodal d’émergence N’, f la distance focale 
principale, et d‘ la distance de M‘ au foyer d’émergence.

On a
(- d)d‘=/.

(1) d étant négatif, —d représente la valeur absolue de la distance considérée.

NettetéProfondeur de foyer
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Si en A et en B le diamètre du faisceau réfracté est égal à s, 
l’image de tous les objets situés à même distance que N sera 
pratiquement nette entre A et B, et l’on pourra déplacer l'écran 
de A à B, sans que l’image, formée sur cet écran, cesse d’être 
acceptable. AB est la profondeur de foyer p.

Or
AN = N N‘.s - (Or, BNZ AN, 

0 o
d’où

. (d‘4-f)e (d—fs
p=AB=2   :— OU 2/   :
- ü GO

quantité totalement indépendante de la forme et de la nature de la 
lentille, mais proportionnelle à la longueur focale f- d’.

Pour les objets à l’infini,
P=2/s.

Profondeur de champ. — Si, au contraire, on fixe l’écran à 
une distance d‘ du foyer, la profondeur de champ est la largeur 
de la zône embrassant tous les objets dont l’image sera pratique­
ment nette sur cet écran.

Sur l’écran EE (fig. 90), à une distance d'du foyer d’émer-

60. eh

F

gence F’, je prends AB — s, et je joins A et B aux deux bords de 
l’ouverture utile CD. Tous les objets compris entre les foyers con­
jugués de Pl et de M‘, c’est-à-dire entre P et M, seront sensiblement 
au point sur l’écran.

La profondeur de champ,
£2 £2

PM = MF — PF — ----------- :----

Profondeur de champ



ou, en négligeant, au dénominateur, le terme en s2 très petit,

m=i/0-) =044 : g. 
d‘20O d‘2

Pour f=15em, s =omm,1, o = 2em et d‘=iem,

on a
PF = 20,25 et PM = 36"n.

Distance hyperfocale. — La distance hyperfocale est l’éloi- 
gnement minimum à partir duquel, jusqu’à l'infini, les objets sont 
sensiblement au point sur un même écran.

Je joins (fig. 91) le foyer F' aux deux bords de l’ouverture utile

H T :

de la lentille C, D, et je place 1 écran EE en un point tel que l’on 
ait A'B' == s. Si je joins alors A’C et B’D, cela me détermine le 
point H’, dont le foyer conjugué est H; tous les objets situés entre 
Il et l’infini seront au point; HN est la distance hyperfocale.

HN = HF - FN = . -+ f.
H’F J

Il F' = H’G+GT;

Distance hyperfocale
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or 
H’G (HG+GF)-f G/F’ /     et  — -> = 0 . SO 

d’où l’on tire
GP=/E, HG^^—-

0 0(0 — S) 
ct

H‘ F‘ = H'G -G‘F‘== —,

Cl enfin
AN L(0-) =0+40+4, 

2 5 7 2 E 2 % 2 

ou, en négligeant 2 très petit, en général, par rapport à l'autre 
terme,

UN =2. 2 S

Sis= omm, 1 et o = 2cm, on voit que

HIN = ioo/.

Volume focal. — Soit S une surface focale principale d'astigma- 
tisme moyenne, lieu du maximum de netteté des images de points 
éloignés (fig. 92). Sur l’axe principal et sur chaque axe secondaire

i
60
) 
a
b

-
 -—

tel que NB, il y a une profondeur de foyer DH, s’étendant égale­
ment de part et d'autre de B. Le lieu des points D et celui des 
points 11 sont deux nouvelles surfaces focalcs limites, entre les­
quelles la netteté des images est suffisante. Ces deux surfaces dé­
terminent et enferment le volume focal principal.

Volume focal
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A chaque distance des objets, correspond un volume focal dé­
terminé, qui jouit de la propriété que, sur un écran de forme quel­
conque contenu dans ce volume, tous les objets situés à la distance 
choisie sont sensiblement au point.

Si l'on détermine les volumes focaux correspondant à deux dis­
tances K et L, et que ces volumes se coupent, la partie commune 
contiendra les images de netteté suffisante de tous les objets dont 
l’éloignement est compris entre K et L. La profondeur de champ 
s’entend alors de la distance de deux points tels, que leurs vo­
lumes focaux aient une surface de séparation commune. De même, 
la distance hyperfocale s’entend du point dont le volume focal a 
sa surface intérieure commune avec la surface extérieure du vo­
lume focal principal.

L’épaisseur du volume focal augmente, comme la profondeur de 
foyer, quand le diamètre o du faisceau émergent ou du diaphragme 
diminue. Si je mène un plan PQ perpendiculaire à l’axe (fig. 93)

et tangent à la face creuse du volume focal, la portion PQ, pour 
laquelle la mise au point est suffisante, sera d’autant plus étendue 
q[ue le volume focal sera plus épais, ou que le diaphragme sera 
plus petit.

On voit donc que le diaphragme combat l’aberration n° S, la 
courbure du champ, de deux façons : d’abord par sa position, en 
atténuant l’astigmatisme et rejetant les lignes focales plus près de 
la pointe de la caustique, ce qui diminue la courbure de la surface 
focale moyenne; et en second lieu, par son étroitesse, en augmen­
tant la profondeur de foyer et par suite le diamètre PQ de l’image 
nette reçue sur un plan; cette quantité PQ s’appelle le champ plan 
de netteté de la lentille.
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Champ. — Le diaphragme a encore pour résultat d’étendre le 
champ de visibilité d’un objectif.

Soient AB= o le diamètre utile de l’objectif (fig. 94), CD= d

ie diaphragme, / la distance du diaphragme à l'objectif. Joignons 
AC et BD; l’angle AEB représente le champ de visibilité ( de 
l’objectif; tous les faisceaux lumineux, limités par le diaphragme, 
et dont les directions sont comprises entre AE et BE, tomberont en 
entier sur la lentille.

Or
0

AEB o 2 o(o — d) —Atang-- — tang - S - - ---- ,— = --—
32 22 EO 20.l 2l

Donc le champ augmente quand d et l diminuent.
C’est une raison pour ne pas trop éloigner le diaphragme de la 

lentille.

A côté de tous ces avantages, au point de vue de la netteté, de 
la profondeur et de l’étendue de l’image, le diaphragme présente 
aussi des inconvénients : tels la distorsion et la diminution 
d'éclat.

Distorsion. — Si l’on prend pour modèle une figure comme 
ABCD (fig. 95) faite de carrés rectilignes, et qu’on en étudie 
l’image formée par une lentille diaphragmée, on remarque que les 
lignes cessent d’être droites et que leur courbure s’accentue avec 
leur éloignement du centre. C'est ce phénomène que l'on désigne 
sous le nom de distorsion.

ChampDistorsion
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Si le diaphragme est placé en avant de la lentille, les lignes de

03

l’image sont concaves pour le centre de l’écran; on a la distorsion 
en barillet ( fig. 96).

$ 0 9

Avec la disposition inverse, c'est-à-dire si le diaphragme est 
entre la lentille et l’image, la courbure change de sens, on a la dis­
torsion en croissant (fig. 97).

3 s

Les effets de distorsion sont d’autant plus sensibles que le dia­
phragme est plus éloigné de la lentille, et que l’objet en est plus 
rapproché.

La distorsion est la conséquence de l'aberration de sphéricité; 
elle nous fournit la preuve que, dans les lentilles, comme dans le 
cas d'une seule surface réfringente, les rayons marvinaux d'un 
faisceau coupent l’axe secondaire correspondant plus près de la 
lentille que les rayons centraux.
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Soit, en effet, l’écran en EE (fig. 98), supposé langent à la 
courbe interne du volume focal. Un faisceau incident parallèle à BN 
devrait former son image en A, sur la parallèle N'A; mais le dia­
phragme placé en avant ne laisse passer que des rayons marginaux

co
 

.sb
 

M
es

supérieurs qui vont rencontrer l’écran en Al, plus près du mi­
lieu O de l’écran. Les points de cette image sont donc d'autant plus 
déplacés vers le centre O, que le rayon OA est plus grand ; ce qui 
explique la courbure en barillet.

Au contraire, le diaphragme placé en arrière de l’objectif 
(jig. 99) ne laisse passer que les rayons marginaux inférieurs qui

6
 

0
 

tC
 

• ow 
w

at

tombent sur l'écran en A2. L'écart AA2 augmente avec l’inclinaison 
de faisceau. D’où la distorsion en croissant.

Le déplacement AA:, A 12, croit avec l'obliquité du faisceau in­
cident BN et avec la distance KG qui le sépare du centre de la len-
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tille. C’est ce qui explique pourquoi la distorsion s’accentue avec 
la proximité de l’objet et avec l'éloignement du diaphragme.

Nous avons vu plus haut que la distorsion nodale produisait 
aussi des effets de barillet ou de croissant, suivant le cas. Les dé­
formations qui en résultent sont toujours moins graves que celles 
qu'entraîne la distorsion par le diaphragme. Encore est-il bon. 
cependant, de s’en préoccuper, et, pour utiliser au mieux un ob­
jectif, de disposer les choses de façon que les deux causes agissent 
en sens contraire, afin de diminuer l’erreur de perspective résul­
tante.

On trouvera, par exemple, que le ménisque convergent, à face 
d’incidence concave, distordant en croissant, il est avantageux de 
l'armer d’un diaphragme à l’avant, qui déforme en barillet. Ce dis­
positif, auquel nous avons déjà reconnu plusieurs avantages, con­
vient donc très bien aussi contre la distorsion. Aussi est-il employé 
généralement pour les objectifs simples.

La distorsion présente de graves inconvénients quand on veut 
copier exactement, à une échelle déterminée, un modèle, une 
carte, etc., elle fausse la perspective, détruit l’exactitude et déplace 
les lignes architecturales.

Place du diaphragme. — En se reportant à ce qui a été dit à 
la page 95, on voit que, pour supprimer la distorsion, il faudrait 
que le diaphragme fut placé de façon à ne laisser passer que les

Fig. 100.

7A

i
rayons voisins des points nodaux; si l’un de ces points est réel, 
c’est là que devra être mis le diaphragme, exerçant ainsi son actiou 
sur les rayons incidents ou sur les rayons émergents, selon que ce

Place du diaphragme
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point nodal réel est d’incidence ou d'émergence. La meilleure po­
sition, à ce point de vue, serait donc, dans un ménisque, du côté 
convexe (fig. 100), dans une lentille plan-convexe, sur la face 
convexe même (fig. 101). Ces deux solutions sont rarement em-

Fig. rox.

ployées à cause des aberrations d’autre espèce qu’elles amènent.
Dans une lentille biconvexe, les deux points sont virtuels, mais 

le centre optique est réel; c’est là qu’il faudrait mettre le dia­
phragme (fig. 102), entre les deux points nodaux, au milieu, si

Fig. 102.

les courbures sont égales, plus près du point nodal situé du côté 
de la plus forte courbure dans le cas contraire. Cette disposition, 
peu pratique dans une lentille simple, trouvera son application 
dans les objectifs composés.

Clarté. — Le Congrès de Photographie a défini la clarté d’un 
objectif par le rapport entre l’éclat de l’image qu’il donne d’un 
objet à l'infini sur l’axe principal, et celui que donnerait, du même 
objet, un objectif pris pour type; on ne tient pas compte des pertes 
de lumière produites à l'entrée ou dans la traversée de l’objectif.

Or, E étant l’éclat intrinsèque d’un plan lumineux de surface S, 
vertical et perpendiculaire à l’axe principal de la lentille, un écran 
parallèle à ce plan et à l'unité de distance recevra, sur l'unité

M. 7

Clarté
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de surface, une clarté égale à ES. Un autre écran quelconque, 
parallèle au premier, sera éclairé proportionnellement à sa surface, 
et en raison inverse du carré de sa distance au plan lumineux.

Supposons le diaphragme placé à l'objectif (fig. 103); soit o

son diamètre, il recevra une clarté représentée par

4 Ik­

on appelant K la distance du plan lumineux au diaphragme.
Cette clarté, traversant le diaphragme, se répartit sur l’image 

de surface s formée sur un écran parallèle au plan lumineux, et 
à une distance k de l’objectif; elle y produira un éclat

S K2 et comme - - - 5
_ r =02 e=54*

Et pour un objet situé à l’infini,

v =02 
°=F4F

Cette expression n’est plus tout à fait exacte si le diaphragme 
est au delà de la lentille (fig. lo4)j la clarté se répartissant alors 
sur un cercle de l’objectif de diamètre O, tel que

°— F—   =--- 15O F /
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l’éclat intrinsèque de l'image sera, en remplaçant o par cette 
valeur de O,

- *02 F2 - 402
- 4F3(F-6): - 4(F-zr

Ceci montre qu’il y a un avantage, au point de vue de l’éclat, à 
mettre le diaphragme au delà de la lentille; mais il faut remarquer

que, dans ce cas, il faudra diminuer son ouverture pour obtenir 
une correction équivalente des aberrations, de sorte qu’en somme 
les deux solutions se valent.

Considérons maintenant un plan oblique S., de même surface 
que S (fig. 105), d’éclat intrinsèque Ei, situé à une distance K, de

Fig. 105.

l'objectif, et venant former son image si sur le même plan focal 
que S. K, étant beaucoup plus grand que ne l’indique la figure, 
les rayons lumineux envoyés par S, et traversant le diaphragme
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forment sensiblement un cylindre dont la section droite est de 

Teo52; la clarté transmise sera donc égale à

— - *0 cOS% I
ES. 4 k/’

et e,, l’éclat intrinsèque de l’image Sa, aura pour valeur :

„ Si #0'COS% I
01515 4 KT

Or, en appelant Si la section cylindrique perpendiculaire à l’axe 
principal Ss, et K' sa distance au plan principal de la lentille, on a

S.S, = coso

et
S2 _ K? _ K[cos*a
s, k2 ka

En multipliant membre à membre, il vient

S, _  K; cos'z. 
ka ‘

d'où, en substituant, on a, en somme :

*02 cosh a4k* ‘
d’où

9 II 5

Ceci nous montre que l’éclat e, de l’image si est indépendant 
de la distance K», et qu’à égalité d’éclat de l’objet, c’est-à-dire si 
E, = E, il varie comme cos* a.

e, est à peu près égal à e quand % est petit, mais il diminue 
ensuite rapidement quand a augmente, ainsi que le montre le Ta­
bleau suivant :
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ANGLE DE CHAMP.

a

Demi-angle 
de champ.

y

Rayon 
correspondant.

cos* a.
.
Eclat de l’image 

sur la 
circonférence r.

0°...................................... o° o o e
10°......................... ........ 5° 0,09 f 0,98 0,98e
20°...................................... 10° 0,18 f 0,9$ 0,94 e

30°...................................... 15° 0,27 f 0,8- 0,87 e

40°...................................... 20° 0,36 f 0,77 0,77 e
5o...................................... 25 0,47 / 0,67 0,67 e

60®...................................... 300 0,08 f 0,56 0,56e

65%..,................................ 32° 3o' 0,64 f 0,50 o, 5o e

70°................ ..................... 35 0,70 / 0,45 0,45 e

80°...................................... 40 0,84 f 0,34 0,34e

90°...................................... 45* / 0,25 0,25 e

e représentant l’éclat de l'image au centre de la plaque, et e, son 
éclat sur une circonférence tracée de ce centre avec le rayon r; 
r dépend du champ et de la distance focale principale f:

r =f tanga.

C'est la valeur de tanga qui figure en chiffres dans la troisième co­
lonne.

Donc, pour un champ total de 40°, à une distance du centre de 
la plaque égale aux o, 27, un peu plus du quart, du foyer, la diminu­
tion d’éclat sur les bords est déjà de plus de |; pour un champ de 
65°, sur un rayon de 0,64 ou des 3 environ du foyer, cette diminu-

Fig. 1o6.

lion est de moitié; elle est des 3 pour un champ de 900, sur un 
rayon égal au foyer.
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En revanche, nous pouvons faire remarquer que les rayons 
obliques (fig. 106), tombant plus près des bords des lentilles, 
traversent une épaisseur de verre moins grande que les rayons 
centraux.

Il n’en reste pas moins une diminution considérable d’éclat qu’il 
faudra compenser dans la pratique en plaçant sur les bords de 
l’image les objets les plus lumineux. Ainsi, soient deux objets 
A et A1 (fig. 107); pour que leurs images aient même clarté,

il faudra que les éclats intrinsèques de ces images soient égaux, 
c’est-à-dire que

• E,dise ou ezecostE

d’où

E costa'

ou que l’éclat intrinsèque propre de A, et celui de A soient dans 

le rapport de —.
- cos‘%

La diminution rapide de la clarté de l'image quand on s’éloigne 
du centre nous amène à cette conclusion, qu’il n’y a pas intérêt à 
trop accroître le champ des objectifs.

Clarté au centre. — La clarté au centre pour des objets infi­
niment éloignés, la seule dont on s’occupe d’ordinaire,

E+ o-
654 F‘

est proportionnelle au carré du diamètre du diaphragme et en

Clarté au centre
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raison inverse du carré du foyer; autrement dit, la clarté d’un 
objectif est proportionnelle au carré du rapport du diamètre du 
diaphragme à la distance focale principale.

C'est, en général, par le rapport inverse que l'on désigne le
F diaphragme; un objectif diaphragmé à 3) cela veut dire que le dia­

mètre du diaphragme est égal au 3 de la distance focale. Le même 
objectif, diaphragmé à 5, formera une image dont la clarté sera

quatre fois moindre que celle donnée par le diaphra gme -

Clarté normale. — Le Congrès international de Photogra phie 
a fixé comme unité de clarté ou comme clarté normale d’un 
objectif donné, l’éclat intrinsèque de l’image obtenue avec le 
diaphragme, dit normal, d’ouverture utile égale à T, abstraction 

faite de la composition de cet objectif et des au 1res causes qui 
peuvent influer sur l'éclat de l’image en son centre.

Or cette clarté normale a pour expression :

1 E5 lU
51

 ci
m

 
• " 11 $=

 
-3

 
ci C

I

Avec un autre diaphragme E, l’éclat intrinsèque de l’image sera

E=F2 _ E= - ~ 4n2b- — 4n-
Et la clarté, pour ce diaphragme, sera le rapport :

E-

n|
 o 55 •1

 ; wys 100
—— > /=

4 x 100

ce qui permet de déterminer C, si l’on connaît C.

Temps de pose. — Le temps de pose, T avec le diaphragme 
F .F.normal —> T‘ avec un autre diaphragme „ est l’inverse de la

Clarté normaleTemps de pose
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clarté ; on a donc
CHAPITRE V.

T_n2
T I00

Or, par décision du Congrès, tout diaphragme doit être marqué 
d’un numéro d’ordre p, représentant l’inverse du rapport de sa 
surface à celle du diaphragme normal :

=F2
100 „2 T’

P==F = ioT

On voit que p indique justement le coefficient par lequel il 

faut, pour avoir le temps de pose avec le diaphragme -, multiplier 

la durée correspondant à l’emploi du diaphragme normal.
Pour pouvoir comparer exactement, à ce point de vue, deux 

objectifs différents, il faudrait tenir compte des éléments d'ab­
sorption ou de perte de lumière tenant à la constitution même de 
l’appareil, c’est-à-dire de la limpidité et de l’épaisseur des verres, 
et des réflexions intérieures dont nous parlerons plus tard.

Il faut encore faire remarquer que, aux termes de la décision du 

Congrès, dire qu’un objectif est diaphragmé à -, cela ne signifie
1'pas que le diaphragme a - pour diamètre, mais, plus exactement.

« que le cône des rayons réfractés, provenant d’un faisceau inci­
dent parallèle à l’axe, a pour angle, au sommet, celui d’un triangle 
isocèle, dont la base serait 1 de la hauteur, ou encore que la 

section droite de ce même cône d’émergence par le plan principal 

d’émergence est un cercle de diamètre égal à - • »

Déformations produites par un trop grand diaphragme. — 
Soit une flèche AB placée sur l’axe principal d’une lentille (fig. 108). 
Régulièrement, elle devrait avoir pour perspective un simple 
point a, foyer conjugué de A, et ne montrer sur l’image que sa

Déformations
produites par un trop
grand diaphragme
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pointe, a,. Mais, soient CD l’ouverture de la lentille et B' le foyer 
conjugué de B; un rayon marginal, tel que BC, émergera suivant 
CB‘ et viendra former en bi, sur l’écran, une image de B. Tous les 
points de la partie supérieure du bois de la flèche, compris entre A 
et B, formeront de même, entre a et b,, leur image d’autant plus 
nette que B sera plus près de A. De l’autre côté, le rayon BD for-

Fig. 108.

SA
 

9#
 

%
 <

mera une seconde image, b27 de B, et une seconde portion de ligne 
b* a, composée des images de plus en plus nettes des points de la 
moitié inférieure de la flèche compris entre B et A. On verra doncà 
la fois, sur la plaque, la pointe et les deux côtés de la flèche b,ab2-

Si nous supposons que AB soit un objet à deux faces planes, 
tel qu’un livre, par exemple, au lieu de ne paraître sur l’image 
que par son dos ou par sa tranche, il figurera ou bien sous l’appa­
rence fausse d’un livre ouvert, ou sous l’aspect absurde d’un livre 
à dos volumineux. Et si le volume, posé sur une table, a sa tranche 
supérieure au niveau du centre de l’objectif, cette tranche paraîtra 
aussi sur l’image. L’angle de déformation apparente B. AB2 est 
d’autant plus ouvert que A est plus rapproché de l’objectif et que 
CD est plus grand.

Ce genre de déformation, dite souvent stéréoscopique, parce 
qu’elle résulte d’une sorte de vision binoculaire, s’observe fréquem­
ment dans les portraits, pour lesquels on fait usage d’objectifs 
à grand diaphragme et à court foyer; si l’on rapproche trop le mo­
dèle, sa tête semble s’élargir, ses oreilles se détachent et s’avan­
cent, la ressemblance est faussée.

C’est une cause de déformation dont il importe de tenir compte 
dans l’emploi du diaphragme.
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Résumé. — Si nous résumons les conditions imposées au dia­
phragme, nous les trouverons quelque peu contradictoires.

il faut qu’il soit petit pour assurer l'aplanétisme suivant Taxe, 
faciliter la mise au point sur une surface plane en augmentant la 
profondeur de foyer, et augmenter le champ; il doit être grand 
pour accroître la clarté de l'image. Mais il ne le faut pas trop 
grand, pour ne pas créer l’effet stéréoscopique.

D’autre part, il faut, avec un ménisque convergent, placer le 
diaphragme du côté creux, et assez loin de la lentille, pour dimi­
nuer l’astigmatisme; il faut le rapprocher, au contraire, pour aug­
menter le champ; enfin, il faut le transporter du côté convexe pour 
combattre la distorsion.

Dans la pratique, on se tire d'affaire avec un compromis, qui 
atténue à la fois toutes les aberrations sans en supprimer complè­
tement aucune.

2- OBJECTIF COMPOSÉ.

L’objectif simple n’est jamais exempt d'une distorsion dont le 
sens varie avec la position du diaphragme. Pour rétablir l'exacti­
tude perspective de l’image, on a eu l'idée d’associer deux objectifs 
simples, en plaçant le diaphragme dans l'intervalle qui les sépare; 
de cette façon, en effet, l’influence du diaphragme se partage en 
deux résultats contraires qui se détruisent.

Distance focale principale. — Ce dispositif a encore l’avantage, 
comme nous l’avons vu en traitant des systèmes de lentilles, de 
permettre de diminuer le foyer de la combinaison résultante, avec 
des lentilles composantes de courbure assez peu accentuée, ce qui 
atténue les aberrations. En effet, en nous reportant à la formule 
de deux lentilles convergentes, nous voyons que la distance focale 
de la lentille équivalente est :

F — _A?_
'fl - ?2 — E

F est toujours plus petit que ç, et que 92, quand E lui-même est

Résumé
2° OBJECTIF
COMPOSÉ
Distance focale
principale
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moindre que ç, et que ç2. F diminue avec E et il atteint son mini­

mum -3 quand E est nul.
Yi + *2

Si, par exemple, çi = 92,
F-, 

2: — L.

ce qui pour E =0 se réduit à La distance focale minimum de 

l’objectif composé de deux éléments égaux est donc la moitié de 
la distance focale de ces éléments. Le maximum est d'ailleurs 
F = Q, quand E lui-même est égal à ?.

Clarté. Ouverture efficace. — La clarté a toujours pour expres­
sion, au centre de l’image,

E-02 
AF '

Ici o‘ n’est plus le diamètre du diaphragme, mais le diamètre 
de l’ouverture efficace de l’objectif. Soient AB = 0 le diamètre 
du diaphragme (fig. 109), ED la lentille équivalente de la combi-

Fig. 109.

naison d’incidence, P le foyer conjugué, par rapport à cette len­
tille, d’un point de l’objet situé sur l’axe principal ; joignant PA, 
PB, et prolongeant jusqu’à la lentille, nous aurons en DE, sur le 
plan principal d’émergence, l’ouverture efficace cherchée de dia­
mètre o’.

Or
, AB.PI op o = DE — —— — --, ‘ PJ P—

en appelant p la distance focale conjuguée PI, et Z la distance IJ 
du diaphragme au plan principal.

Clarté. Ouverture
efficace



CHAPITRE V.108
Donc

_E-02p2 I_ 4F( U4F (p—4)=’ es Ero= N’ p)

Si l’on suppose le sujet à une distance infinie, c'est-à-dire p=fi, 
l'expression devient :

2— 4F2_/ _ L)2 es EmoV A):

- représente la durée de pose, qui augmente avec F, p ct fi, et 

diminue quand o et 1 augmentent.
Donc il faut d’autant plus de pose que :

i°, l’objectif, et,
20, la partie de l’objectif située en avant du diaphragme, sont 

de plus long foyer,
3°, l’objet est plus rapproché,
4°, le diaphragme est plus étroit et,
5°, plus rapproché de la lentille d’incidence.

Tout ce qui a été dit ci-dessus, relativement à la clarté normale, 
au numérotage des diaphragmes et au calcul du temps de pose, 
s’applique aussi à l’objectif composé.

Emplacement du diaphragme. — Le diaphragme doit laisser 
passer tous les rayons axiaux qui se croisent réellement ou vir­
tuellement au centre optique, il faut donc le placer au point de 
croisement réel de ces rayons. Or, nous avons vu que des trois 
points de croisement (points nodaux et centre optique) il y en 
avait un de réel; si l’objectif est formé de deux systèmes conver­
gents, ce point réel est le centre optique, situé entre les deux 
lentilles proportionnellement à leurs distances focales. Le dia­
phragme sera donc au centre optique de la lentille équivalente de 
l’objectif complet.

L’objectif composé est dit double, triple, etc., selon le nombre 
de groupes distincts de lentilles qu’il comporte.

Emplacement du
diaphragme
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Objectif double symétrique. — La combinaison double la plus 
simple et la plus anciennement employée, est celle de deux len­
tilles composées, achromatiques et aplanétiques égales, formant

Fig. I10.

deux ménisques convergents disposés face à face, avec le diaphragme 
au milieu (fig. I10).

Dans l’objectif symétrique, il n’y a pas de distorsion; chaque 
moitié étant séparément achromatique et aplanétique, l’ensemble 
jouit des mêmes propriétés. Les éléments de la lentille équivalente 
sont fournis par les formules (p. 38)

v E<? ,W R?
R1I == -------- *) RI =-------------- -----

2©— E - 2— L

et

dans lesquelles ni, n‘, n2, n', et ? représentent les points nodaux 
et la distance focale des deux composantes, N et N', et F ceux de 
l'objectif entier, E l’écart n‘ n2 entre les points nodaux composants 
intérieurs. Par hypothèse, E est inférieur à o; les signes sont donc 
en évidence.

N et N' coïncident si n,N — (— n,N°) — 2e=E, en appelant 
e l’épaisseur de chaque lentille composante. Ce qui donne:

ou
E- — 2€E — 4eo == o,

d’où ______  
E=— e+ve*+4eç.

Alors l’objectif jouit des propriétés de la lentille sans épais-
SeUr.

Objectif double
symétrique
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Dans l’objectif symétrique, l’astigmatisme subsiste et aussi la 
courbure du champ. Mais cet astigmatisme est peu important, si 
l’écart des lentilles est réglé de façon que les rayons rencontrent 
les diverses surfaces sous des incidences presque normales.

Les points nodaux sont tous deux virtuels, mais le centre 
optique est réel et exactement situé au milieu des deux lentilles; 
c’est là que sera le diaphragme.

Par raison de symétrie, les deux lentilles ont même ouverture.

Si les points nodaux coïncident avec le centre optique en 0 
j lentille sans épaisseur (fig. in)], le champ total de visibilité

B

est limité par les droites AD et BC qui rasent les bords de la 
monture. Mais c’est seulement dans l’angle AEB que l’ouverture 
efficace du diaphragme sera toute utilisée. De EA à OA, l’éclat 
diminuera deplus en plus vite, puisqu'à l'influence du facteur cos'o 
vient s’ajouter l’arrêt par la monture d’une partie de plus en plus 
considérable des rayons que laisserait passer le diaphragme. Cet 
angle AEB diminue quand le diaphragme augmente. Donc, plus le

diaphragme est étroit, plus le champ d’éclat à peu près constant 
s’étend; il y a donc avantage à diminuer le diaphragme quand on 
veut avoir un champ étendu.
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Si les lentilles composantes sont plus près l'une de l’autre que 
dans le cas précédent, les points nodaux se rapprochent chacun de 
la lentille de même espèce et le champ augmente (fig. 112); mais, 
pour conserver aux rayons lumineux leur incidence proche de la 
no rmale, il faut augmenter les courbures, et par conséquent les 
aberrations, ce qui force à diminuer le diaphragme. On aura donc 
à la fois plus de champ, moins de foyer et moins de clarté. C’est 
la disposition dite grand angulaire.

Si les lentilles sont plus écartées que dans le cas de la fig. 11 i 
( fig. 113), les points nodaux se rapprochent chacun de la len-

Fig. 113.

E

tille d’autre espèce, et le champ AEB diminue rapidement. Mais 
les courbures sont plus faibles, le diaphragme plus large. On a moins 
de champ, plus de foyer et plus de clarté. C’est l’objectif dit 
rapide.

Dans l'objectif symétrique, chacune des lentilles, étant corrigée 
pour son compte, peut être employée seule et forme alors, avec le 
diaphragme du système, un objectif simple, de foy er double à peu 
près de celui de l’objectif composé.

Remarque. — En réalité, le champ vrai de l’objectif n’est pas 
mesuré par l’angle AEB, comme nous l’avons supposé, pour sim­
plifier, dans ce qui précède (fig. 1 i 1), mais bien par l'angle ARB, 
que font les rayons incidents qui, après avoir traversé la lentille 
d’avant, deviennent AE et BE.

E et R sont foyers conjugués, l'un réel, l’autre virtuel; le champ 
vrai sera égal au champ théorique quand E et R coïncideront.

Remarque
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c’est-à-dire quand E sera placé au plan de Bravais de la lentille 
d’incidence; le champ vrai sera plus grand ou moindre que l’autre,

Fig. 114.

H
E

G

selon que le point E tombera en deçà ou au delà de ce plan de 
Bravais.

Objectif double dissymétrique (fig. i 15). — Cet objectif est 
formé de deux lentilles composées différentes ct se corrigeant l’une

l'autre. Ces lentilles ne sauraient être employées séparément. Mais 
ensemble, grâce à la quantité d’éléments variables dont on dispose, 
elles donnent une correction beaucoup plus complète des aberra­
tions que le système précédent.

Emplacement du diaphragme. — Ici encore, c’est le centre 
optique qui est réel et se trouve placé entre les deux lentilles à 
des distances de leurs points nodaux internes proportionnelles à 
leurs distances focales. C’est cette même position qu’occupera le 
diaphragme.

Prenons comme exemple d’objectifs dissymétriques les ana- 
stigmats de Zeiss. Le professeur Rudolph a démontré, par le calcul

Objectif double
dissymétrique
Emplacement du
diaphragme
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ct par l’expérience, que la combinaison symétrique à caractère 
normal était impropre à faire disparaître à la fois l’astigmatisme et 
la courbure du champ; si, avec un certain écartement des lentilles, 
la surface focale est sensiblement plane, l’astigmatisme est très pro­
noncé ; si l’on écarte davantage les lentilles, l’astigmatisme dimi­
nue, mais la courbure de la surface augmente; si l’on rapproche les 
lentilles, l’astigmatisme augmente et la surface focale se courbe en 
sens contraire.

D'autre part, si l’on associe deux combinaisons anormales, on 
arrive à aplanir la surface focale et à détruire en même temps 
l’astigmatisme, mais l’aplanétisme ne peut être réalisé.

Le Dr Rudolph a eu l’idée d’associer une combinaison nor­
male, avec une combinaison anormale, toutes deux séparément 
achromatiques, dans chacune l’élément divergent ayant le plus 
grand pouvoir dispersif. Mais la lentille normale est construite de 
façon à corriger un peu trop l’aplanétisme, en conservant l’astig­
matisme et la courbure du champ, et la lentille anormale, grâce à 
la supériorité de l’indice de réfraction de l’élément convergent, sert 
à détruire l’astigmatisme et la courbure du champ, en même temps 
que son défaut d’aplanétisme annule l’excès de correction de la 
même aberration, apporté par la première lentille. La création de 
ces objectifs a été un événement dans l’histoire de la Photographie.

Les objectifs à portraits, formule Petzval, sont aussi de la 
forme dissymétrique; ils sont construits de façon à donner le plus 
de clarté possible, avec un parfait aplanétisme suivant l’axe et une 
surface focale assez plane; mais les autres aberrations et la distor­
sion ne sont pas corrigées.

Citons encore comme objectifs dissymétriques :
Les objectifs téléphotographiques, formés de deux éléments 

convergents très écartés et donnant des images droites et à très 
grande distance focale;

Les téléobjectifs, formés d’un élément convergent et d’un élé­
ment divergent. Ils sont construits pour donner de grandes dis­
tances focales, sans exiger une monture trop longue ni un tirage 
exagéré ; nous en avons discuté les principes à propos de la lentille

M. 8
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équivalente. Les corrections se font aisément d’un élément par 
l’autre.

Dans les téléobjectifs, c’est le point nodal d’incidence qui est 
réel; c’est là que devra être placé le diaphragme, à une distance de 
la lentille antérieure, déterminée par la formule de la lentille équi­
valente (voir p. 41):

N Ep.n,N-- —-------------E — 9 Y2

Objectif triple. — Étant donné un objectif double, formé de 
deux lentilles convergentes achromatiques, à corrections incom­
plètes ou nulles, on intercale un élément achromatique divergent, 
chargé seulement d'une ou de plusieurs de ces corrections. Ce dis­
positif, connu sous le nom de triplet, est abandonné aujourd’hui.

Objectifs multiples. — En principe, plus on augmente le nombre 
de lentilles entrant dans une combinaison, et plus on a de moyens 
à sa disposition pour faire disparaître les aberrations; mais aussi 
plus on complique la construction, plus on éteint les rayons lumi­
neux, tant à cause des épaisseurs de verre croissantes, qu’à cause 
des réflexions intérieures multipliées, et plus aussi on accumule les 
résidus de corrections, qui en s’additionnant, arrivent à créer des 
aberrations nouvelles, à mesure que les anciennes disparaissent.

Tache centrale. — C’est à des réflexions intérieures qu’est due 
l'existence de la tache centrale, que produisent souvent les objec­
tifs d’ancienne construction et qui n’est autre qu’une image réelle 
du diaphragme, produite par double réflexion sur les faces internes 
des lentilles, et par réfraction à travers la lentille d’émergence. 
Pour faire disparaître cette tache centrale, il a suffi, quand la cause 
en eut été découverte par Dallmeyer, de modifier les courbures de 
façon que cette image devînt virtuelle.

Objectif tripleObjectifs multiplesTache centrale
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CHAPITRE VI.
CALCUL D’UN OBJECTIF.

Pour calculer un objectif, on commence, en s'inspirant des 
considérations qui précèdent, par fixer la composition de l'appareil, 
le nombre et la nature des lentilles composées et des lentilles 
simples à employer.

Les formules de la lentille équivalente servent ensuite à éta­
blir une série de relations approchées entre les distances focales, 
les indices de réfraction, les rayons de courbure et les écarte­
ments des lentilles composantes, d'après la distance focale et les 
propriétés générales que doit avoir la combinaison cherchée.

Ce premier travail montre dans quelles conditions générales le 
problème est possible et permet d'en arrêter les grandes lignes.

Pour le calcul définitif, on emploie successivement deux mé­
thodes différentes :

La première dite méthode directe ou mieux méthode algé­
brique ou approchée, due à Clairaut, et perfectionnée par Euler, 
d’Alembert, Lagrange, Herschell, Martin, etc., fournit des formules 
algébriques établissant, pour des lentilles supposées sans épais- 
seur, les valeurs des rayons de courbure, en fonction des indices 
de réfraction, des longueurs focales et de certaines conditions dé­
terminées d’aplanétisme, d’achromatisme ou autres.

Cette méthode algébrique ne peut suffire, en raison du caractère 
approximatif des formules et parce qu’elle laisse dans le vague 
l’épaisseur et l’écartement des lentilles. Mais on peut se servir des 
données qu’elle fournit, pour construire graphiquement le profil 
des lentilles et, sachant l’ouverture qu’on veut donner à l’objectif.

CHAPITRE. VI. Calcul
d'un objectif
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déduire de ce tracé des épaisseurs et des écartements approchés.
Ce premier travail est assez précis, pour qu’il soit ensuite loi­

sible de procéder empiriquement sur la matière même, en con­
struisant sur ces données un grand nombre de lentilles à peu près 
identiques et en les essayant successivement, deux à deux, quatre 
à quatre, etc., jusqu'à ce que, au prix de légères retouches, le résul­
tat de la combinaison soit jugé acceptable.

Mais il est préférable et plus exact de faire ces tâtonnements 
par le calcul, et pour cela d’employer la méthode indirecte ou tri- 
gonométrique ou exacte, indiquée par Gauss, inventée par Klu- 
gel (1778) et perfectionnée par Bohnenberger, Littrow, etc. On 
part des éléments des lentilles, tels qu’ils viennent d’être déterminés 
par le calcul approché, et l’on calcule trigonométriquement le 
trajet des rayons qui traversent le système. Si la réunion des rayons 
marginaux et centraux de diverses couleurs ne se fait pas bien sur 
l’axe et hors de l’axe, on fait des approximations successives, 
jusqu’à ce que les résultats numériques soient satisfaisants, et il n’y 
a plus ensuite qu’à construire un appareil reproduisant exactement 
les résultats vérifiés par le calcul.

Le travail est long et minutieux, mais il ne présente pas de dif- 
ficultés particulières et peut s’appliquer à tous les cas possibles.

Nous allons, sans entrer dans des détails par trop abstraits et 
d’un caractère peu pratique, montrer comment les calculs peuvent 
être conduits dans l’une et l’autre méthode.

MÉTHODE DIRECTE, ALGÉBRIQUE OU APPROCHÉE.

Prenons pour exemple le calcul d’une lentille double conver­
gente, de distance focale donnée, aplanétique et achromatique 
suivant l’axe.

Nous pouvons établir trois équations de condition :

i° L’équation de convergence, fixant la valeur de la distance 
focale ;

2° L'équation d’aplanétisme, exprimant la coïncidence des 
foyers des rayons marginaux et des rayons centraux, issus d’un 
même point pris sur l’axe;

Méthode directe,
algébrique ou
approchée
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3° L’équation d'achromatisme, satisfaite quand les foyers des 
rayons centraux de deux couleurs différentes se confondent sur 
l'axe.

Conditions de Clairaut, de d’A lembert, de Prazmowski. — 
Il y a quatre inconnues, les quatre rayons de courbure, le pro­
blème est donc indéterminé et l’on peut ajouter une condition à 
celles qui précèdent; la condition supplémentaire généralement 
admise dans le cas présent est celle de Clairaut: les deux rayons 
de courbure des deux faces internes des lentilles sont égaux, le 
flint et le crown s’appliquent exactement l’un sur l’autre, le contact 
parfait est assuré par l’interposition d’une couche mince de baume 
de Canada, ce qui diminue d’une unité le nombre des surfaces de 
séparation et par conséquent les pertes de lumière et les chances 
de halo qu’amènent les réflexions intérieures.

Pour les lentilles d’un grand diamètre, la condition de Clairaut 
est pratiquement inapplicable; on peut la remplacer par d’autres 
conditions formulées par d’Alembert et qui présentent, suivant 
le cas, un certain intérêt, telle que celle d’assurer l’aplanétisme 
des rayons obliques; la condition de Prazmowski, à laquelle on 
a souvent recours, quand le nombre des lentilles simples augmente, 
consiste à donner aux rayons lumineux, qui traversent le système, 
le minimum de déviation, ce qui assure une grande stabilité aux 
corrections.

1° Équation de convergence. — Cas d'une surface réfringente. 
— Considérons la première surface (fig. i 16). Soient D la dis­

tance DO, F la distance DI du sommet D à l’objet et à son image, 
R le rayon de courbure et n l’indice. D’après la notation d’Herschell,

Conditions de Clairaut,
de l'Alembert, de
Prazmowski

1° Équation de
convergence
Cas d'une surface
réfringente
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nous prenons pour variables les inverses de ces quantités, et nous 
appelons d=D la proximité du point considéré, m=1 l’inverse 

de l'indice, f= ple pouvoir, r= — la courbure. Nous conser­

vons les conventions de signes déjà établies, d’où il résulte que les 
courbures sont positives pour les surfaces convexes vers l'incidence, 
et négatives pour les autres. Les accents s’appliquent encore aux 
points et surfaces d’émergence de chaque lentille, et les indices i 
et 2 différencient les parties de la première et de la deuxième 
lentille (1)

Soient OA un rayon incident, AI le rayon réfracté. Abaissons 
les perpendiculaires CN et CM sur ces rayons.

Appelons y la demi-corde AB et x la flèche BD.
Les triangles semblables OCN, OAB et ICM, IAB donnent :

d’où

(1)
or ■

CO_ CN CI _ CM
OAFAB et IA AB'

CO _ CN OA 
CI — CM IA ‘

CN _ sin CAN 
CM " sinCAM Q

 
O

 
il I • r w

 
II I

81
 - + - II sl
i

I -
et

On sait du reste que

y2— (2R—x)a=2 Ra — a?,

ou. en négligeant x2, puisque x est du second ordre par rapport ày.

is 1! to & il +2

(‘) Toutes ces notations et conventions, et l’exposé des méthodes directe et in­
directe sont empruntés aux travaux de M. Martin, revus et publiés par M. Wallon 
dans le Bulletin de la Société française de Photographie, :893, page 473, et 
1892, page 349.
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du reste,
----2 ---- 2 ---- 2
OA = AB + BO = y- (-D+ x)=y2 — 2 Dx+ (— D)*

=y(-R)+-by=y4=+(-2), 

d’où
0=[(-*)-x474]1=-*-5u-0.

en développant par la formule de Taylor et négligeant y4, comme 
nous avons négligé x2.

De même
1 2 IA = [2 +(F- a)3]- =7+20- D.

Remplaçons toutes ces quantités par leur valeur dans l'équa-
tion ( i ) :

A-
 

! I 51
“

V
I-

 1 1 A
 cl À 3 li 51

-
R

is
- I %
 I 

S f
d’où l’on tire, en développant et supprimant les puissances supé­
rieures à y2 :

(2) r-f=m(r-d;m+U-n)+d(r-d)]2y
1.2

(3) f=r(I— m) + dm — (r—d)mif(f—r) d(r -d)]:—•

Le terme en y3 de cette équation représente l'aberration lon- 
gitudinale de sphéricité : pour éliminer l’inconnue f dans ce 
terme, procédons par voie d’approximation successive, en rem- 
plaçant f (f—r) par sa valeur tirée de (2) et de (3), et en négli- 
geant les termes en y2, puisque ce produit doit être multiplié 

lui-même

ko
 1

.

f(f — r) = m (d — r) r (1 — m) + dm2 (d — r) 
= mr (d — r) + mê (d — r)2.
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En reportant dans le second membre de la formule (3). il vient :

f= r(r — m) + dm

— (r — d)s m [mr (d— r)+m2 (d—r)24d(r — d)] X, 
2

(1 — m) + dm — (r— d)2m [— mr +d+ m2 (r — d)] 3,= T

(4) Î= r(1 —m) - dm - (r — dym (I — m) [mr-d( -m)]

Cas d’une lentille. — Prenons une seconde surface de cour­
bure r’, formant avec la première surface une lentille sans épais- 

seur, et soit n‘== , l’indice de réfraction par rapport au troisième 

milieu.
En négligeant l'aberration de sphéricité pour la première sur­

face, c’est-à-dire en ne prenant que les rayons centraux et suppri­
mant les termes en y2, on a

f= r(I — m) + dm.

La seconde surface donnera de même, pour la proximité du 
foyer F,

/‘= r' (1 - m') + d'm',

et comme d‘=f,

(5) /=M(-m)+/m,
f‘ = r‘ ( i — m°) - m‘[r(I — m) — dm )]

(6) f‘=(I — m') r‘+m‘(I—m)r+dmm'.

Si le rayon incident primitif est parallèle à l’axe, d=0, et le 
pouvoir principal l de la lentille a pour expression :

l=(x — m') r' + m' (y — m) r.

Dans le cas présent, la lentille est plongée dans un milieu homo­
gène, et, par conséquent,

m‘= — n et mm‘=I,m

Cas d'une lentille
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on retombe alors sur les formules connues :

(7) /=(-(-/)+

et
(8) /=(-)(-/).

Cas de plusieurs lentilles. — Pour une succession de lentilles 
centrées, on aura donc :

A =(n,-1) (n-0+4=4+4.
« A =0- 1) (n — /)+ d,= la-da-

(0) / f. =(,- 0 (n— G) + d= 4+ de

f,= (np 1) ("p ry) + d,= 4+ dp-

On admet que ces lentilles se touchent et ont toutes une épaisseur 
nulle, ce qui entraîne:

/: = 4,,
En ajoutant membre à membre les équations (9), on a, pour 

p lentilles,
J,= 4+ 4+ 44 ... -,+di 

et pour le pouvoir principal de ce système, en faisant di == o, 

(10) =0-17-.

C’est l'équation de convergence. En l'appliquant à deux len­
tilles seulement, elle s'écrit :

(A) =(-)(-+(=)(—/).

2° Équation d’aplanétisme. — L’aberration longitudinale pour 
une surface réfringente est, d’après la formule (4), en négligeant 
les puissances de y supérieures à y2,

*2(1I) af=(r-d)2m(r—m)[mr-d(m)]-o

Après réfraction par une deuxième surface, le foyer des rayons

Cas de plusieurs
lentilles
2° Équation
d'aplanétisme
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marginaux différera du foyer des rayons centraux, pour deux rai­
sons; d’abord parce que le premier foyer marginal diffère du pre­
mier foyer central de Sf: l’équation (5) nous montre en effet qu’en 
remplaçant f par f— Sf, nous aurons une première différence de 
foyer égale à m'of; en second lieu, les rayons partant du point 
f of donnent lieu à une nouvelle aberration qui s’ajoutera à la 
première et qui sera, en faisant dans (i i) d=f+ of,

af=(f-af)‘m(i-m) [m'r- (/ + af) (1 + ^)]

la variation totale sera

Af‘ = m'ôf + ôf.

Dans le calcul de of' on peut négliger of en présence de f et 
écrire :

af‘=(r-f)m‘(i — m‘)[m‘r—f(i + m')] 22,
2

ct comme f= r(1 — m) + dm, on aura, en effectuant les calculs 
et faisant mm‘=I et m=n.

/2 12

X

72

Pà

12

22

2

12
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Or
1— (n -1) (r-P),

d’où, après avoir développé le deuxième membre, ordonné par rap­
port à r et r‘ et simplifié,

"1/
3 3

en faisant d=o dans cette formule, nous trouvons l’expression 
que nous avons donnée page 72, pour l'aberration longitudinale 
d’une lentille.

Écrivons cette valeur sous la forme:

y2Af‘ = n2l , (S — Td + V d2).

Pour un nombre quelconque de lentilles infiniment voisines 
l’aberration totale serait :

+oi 
*1ot 

+
 

H2
1 

er ?— 

€+L0
 

ci-X

% laHo.
4

avec
de = 4 +di
4,= /. + 4,=4+I + d,,

d,= 4 dp-i=+ (p-1- ... 4-di.

Pour deux lentilles, ces équations se réduisent à

1= V[n3U,(S, -T,d - V,d?) + ne 4(S- T2d,+ V,43)], 
2

avec
d2 — 4 - di

et, pour les rayons parallèles à l’axe, d. =0, da= 41, 

as = " [n3 4 S, + n3 I(S. — T.4 + V243)].
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Remplaçant S., S2, Te,V2 par leurs valeurs, développant et or­
donnant,

—
 

1

(B) / ?/,-— I
— i ——

\ 12 — 1
3 n, + 2H-------- :------

122

Pour que l’aberration longitudinale soit nulle, c’est-à-dire pour 
que la lentille double soit aplanétique sur l’axe principal, on égale 
à zéro la quantité entre crochets du deuxième membre. C’est 
l'équation d'aplanétisme.

3° Équation d’achromatisme. — On achromatise d’ordinaire, en 
Photographie, par la réunion des foyers principaux de la raie D 
du sodium (jaune) et de la raie G de l’indium (violet).

Soient n,, n2, 4, l2 et co les indices et les pouvoirs relatifs à la 
raie D; pour la raie G, ces quantités seront n, -i- ôn,, na-ôn2, ..., 
q+ôç.

Or l’équation de convergence (A) donne :

=(n,—1)(-{)+ (na— 1) (r—/2) 
et 

de = ôn, (ni — 71 ) — ôn2(F2 - 12 ).

En égalant le deuxième membre à zéro, on a l’équation de­
mandée.

Introduisons l, et l2, à l’aide de la formule (8), il vient :

12) 0 = 0721--------------- 7- 072, ----------- : 
11—1 12- I

le pouvoir dispersif de chaque verre a pour valeur, par définition :

3° Équation
d'achromatisme



CALCUL D’UN OBJECTIF.
4
o 
A
 
*
4

ou, en négligeant — et — au dénominateur, 00 2 2
ên, on *, ==  et 1=   N1 — I Ra— 1

En substituant dans l’équation précédente (12):

O = I1 li — R2 2 

et, soit w = — le rapport des pouvoirs dispersifs, on a en somme :

0 o=40— /2.
2SSS 
R
e 

.
6OX 
—
 

iD 
-

Valeur des courbures. — Les trois équations (A), (B) et (C), 
jointes à celle-ci,

(D) n=r
qui exprime la condition de Clairaut (p. 1 17), permettent de déter­
miner les courbures des lentilles, il suffit de les résoudre par rap­
port à T1, 11, r2 et 1'2.

Pour faciliter le calcul, il est plus simple de prendre pour unité 4,, 
le pouvoir de la première lentille. Alors l’équation (C) se réduit à 

(C') 0=0+4

et l’équation (B) devient, en supposant qu’on veuille l'aplanétisme 
parfait, c’est-à-dire l’aberration longitudinale nulle,

Rp-2 , 2/1-I A—2  Fi FL 60 rô | 11 11 "2 
) /2R1.4R2+4 

(B): —   (- (0 : F2 
) \n2 — 1 /2 / 

n3 3n,2 n? , 3n.4: 
- ; 1—.    t —     03   cor = O (N. — 1)5 12 (722 — 1)5 N2 — I

Éliminons de cette équation les inconnues autres que F2. 
Les formules (8), (D) et (C) nous donnent :

4=(n-)(n-n)=t, 4=(n,—0)(r-)=0,
ri = 72,

Valeur des courbures
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d’où
CHAPITRE VI.

H

ct

Substituons cette valeur deri dans l’équation (B'), et posons:

et

1 i clII-+

oo

+ 5U*
<

1 0 + to

0.2) A2, B2, etc., représentant les mêmes coefficients pour la seconde 
lentille.

Et posons encore :

C=A20, D= G20 — B,02, F= Lac — J262 E203, 

on a, en définitive:

(A,-C) r + (D + 2A,=- B,) n+ A,3-B*+E- F=o, 

d'où l’on tire

, - (D-2A,2-B)

2(A-C)
et, en posant

a=A-C,
b=D+2A,% — B,

A,7? — B, 21 +E — Fet C=----------- .------r------- »2(A,-C)
. —b=V62—4acon a enfin: r.=----------------------2 a

Résumé. — En tenant compte de toutes les notations adoptées,

Résumé
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voici donc les valeurs des quatre courbures d’un système double, 
convergent, aplanétique et achromatique pour les rayons parallèles 
à l'axe.

— b=Vb?—4ac
7‘o - ------------------------------------- 9

24
ri = 12 + 31

r' = 12,

12 = F‘2 H 00C.2-

De l’hypothèse admise : l, = 1, il résulte implicitement que
la lentille convergente, en crown ou verre léger, est placée en 
avant, vers l'incidence.

L’objectif ainsi calculé a pour pouvoir principal [formules (ro) 
et (C)]:

o = li + l2 = I — •.

Les rayons de courbure et la longueur focale sont les inverses 
de ri, T2 et r2 et de ç.

M. Martin a calculé et réuni, sous forme de Tables, les valeurs 
numériques de tous les coefficients, A, B, C, etc. et de leurs loga- 
rithmes, en fonction des indices (‘).

Marche du calcul. — Étant donnés les deux verres à employer, 
on mesure leurs indices ni et R2, et nioni et na+ on2. On en 
déduit les pouvoirs dispersifs R1 et $2, le rapport w de ces pou­
voirs dispersifs et ©=I — c le pouvoir focal de la combinaison, 
en fonction du pouvoir de la lentille convergente, pris pour unité.

On calcule successivement, soit avec les Tables de logarithmes 
ordinaires, soit avec les Tables de logarithmes de sommes et de

(1) Ces Tables sont insérées dans le Bulletin de la Société française de Pho­
tographie, année 1S93, p. 5a5. Elles font partie d'un important et très complet 
Mémoire de M. Martin, publié par les soins et avec la colloboration de M. Wallon, 
et qui a pour titre : Jethode directe pour la détermination des courbures des 
objectifs de Photographie. C’est à ce Mémoire que nous avons emprunté tous 
les calculs relatifs aux objectifs, en conservant scrupuleusement les notations 
adoptées par les auteurs. Les personnes désireuses de suivre en détail l’établisse­
ment et la discussion des formules, ou celles qui voudraient en faire l’application 
à la recherche d’un système optique inédit, trouveront dans ce travail, sous une 
forme pratique, tous les renseignements nécessaires.

Marche du calcul
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différences de Gauss, soit encore et mieux à l’aide des Tables spé­
ciales de M. Martin, la valeur des coefficients A,, B., Ci, ai, A2, 
B2, etc., et enfin a, b et c, d’où l’on tire la valeur de la courbure r2, 
etensuite celle des deux autres courbures et du pouvoir de la lentille.

Il y a deux solutions, selon le signe que l’on donne au radical 
de T2. On étudie ces deux solutions et l’on prend celle qui convient 
le mieux au but proposé.

Lentille retournée. — Si nous voulons mettre le flint en avant, 
nous trouverons d’autres courbures, car les aberrations sont diffé­
rentes, quoique le pouvoir ne change pas. C’est l2 que l’on prend 
alors pour unité, et les formules deviennent:

i B.— Go-(B,—2A,2)02

n= 3 /[B,—G,o-(B-2A, )0]-—4(A,—A,) 
L V(B-A— E. ) 072 + L262 — Jao + E,)] 

2 (A,—A,0)
ni == r2 — 0021,

= 12
72 — T2 • 02 

et - 9=1— œ.

Lentille divergente. — Pour passer à la lentille divergente de 
même foyer, il suffit de changer tous les signes des courbures.

Lentille triple. — Le calcul se fait de même. Seulement, nous 
réunirons trois couleurs, d’indices ni, n,—ôni n,—8n1, etc., 
ce qui nous donnera deux équations d’achromatisme,

l,== — l1o
et

4== 4,0';

les signes indiquent que la première et la troisième lentille sont 
convergentes et l’intermédiaire divergente.

L’équation d’aplanétisme a la forme

— Y - v Y*=X7}‘, — ------------------- .

Lentille retournéeLentille divergenteLentille triple
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n= n+ %), 
r’i = r‘2, (condition de Clairaut) 
r‘2 = 12 — o %2, 
n=/2, (id.) 

r‘3 = r2 “ o‘ %3) 

détermine les six courbures.
Ici,

X = A1 — A2cA30’,
Y =2A,% 2 A,%200‘— B. — B202— B,0"+ G2w — G,0‘(1 — œ), 
Z = Aj 03 4- A,%3 œ-u/ — B.71 — B3 32030032 4- Ei — E2‘03 — E,00‘3

— G3 20000’ (1 — o) + J,02 - J,002 (I — œ) — Lo L,of ( I — 0)2,

c — Tisamis

et

ii
3 A 

:
&
> -“ 2 A 

A
té
 19 

12
III

 
0a

 
2

a l
a.

 
a

71, $21 R3 sont les pouvoirs dispersifs de la première à la 
deuxième couleur.

si =2, R3 sont les pouvoirs dispersifs de la première à la troi­
sième couleur.

Les autres notations ont la même signification qu’aux cas pré- 
cédents.

Le pouvoir principal

et le système est convergent si w — 6‘< 1.
Les trois raies sur lesquelles on achromatise sont alors D, F et 7 

de l’hydrogène.

Condition de Prazmowski. — On peut aussi, au lieu d’achro- 
matiser une troisième couleur, prendre une autre condition, celle de 
Prazmow ski, je suppose.

Cette condition est que les rayons traversent la combinaison tout 
entière sous le minimum de déviation; elle est satisfaite quand le 
produit des cosinus des angles d’incidence est égal au produit des

NI. 9

Condition de
Prazmowski
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cosinus des angles de réfraction (‘):
cosi cosi, cosi, cosis ... = cosri cosri COS 7’2 COS ro ....

Sans entrer dans le détail du calcul, que l'on peut trouver dans 
le Mémoire de M. Martin, nous nous bornerons à donner les for­
mules auxquelles on arrive pour une lentille double et pour une 
lentille triple, quand on remplace l'équation ou l'une des équations 
données par la condition de Clairaut, par l'équation que fournit la 
condition de Prazmowski appliquée aux rayons centraux incidents 
parallèles à l’axe.

Lentille double, aplanélique, achromatisée pour deux cou- 
leurs et satisfaisant à lu condition de Prasmowski.

Le reste de la notation comme ci-dessus.

iss
 

TI +
03. 

%
, 

%

-1 ----  CD.

Dans ces formules

Lentille triple, aplanélique, achromatisée pour trois cou­
leurs et satisfaisant à lu condition de Prazmocski (rayons pa­
rallèles). -IXZ,

2X
ni = 12 + %],
/== 1′2, (condition de Clairaut),
r = 12 — (32, 
n = 9 n + Y, 
/‘3 = 1′3 — co’za,

(1) Voir Traite de la Lumière, par HERSCHELL; éq- (i), % 216.

Lentille double,
aplanétique,
achromatisée pour
deux couleurs et
satisfaisant à la
condition de
Prazmowski

Lentille triple,
aplanétique,
achromatisée pour
trois couleurs, et
satisfaisant à la
condition de
Prazmowski
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avec 
o - I — to—- o’

Dans ces formules :

X’ = Ai — A20 1 A30 ,
Y=21,2-B+2A,0 #7- B,02-B,0/29

+ G,0 ---  G,0‘ (W ---  1) %,

Z=E,— B,4+A,z3 —L0+ A,Y3+ 3,002— BaY‘002
— G,0‘(~ —1)Y —E»3 — E,w‘3 + Lao‘(w — 1)2 — Jyo"(o — 1), 

L G0-G,
G,co‘

et
,_ P] — P,to2 - P,c‘2 — G,0 — Gac (0 — 1)

G367

Dans un objectif double, où l’on dispose d’un plus grand nombre 
de variables, on peut conserver la condition de Clairaut, pour 
toutes les lentilles accolées, tout en admettant la condition de Praz- 
mowski pour l’ensemble. Dans l’objectif symétrique à points no- 
daux coïncidants, cette dernière condition se trouve réalisée par 
la construction même de l'appareil.

MÉTHODE INDIRECTE, TRIGONOMÉTRIQUE OU EXACTE.

Les calculs qui précèdent ne peuvent donner qu’une valeur 
approchée des courbures, puisque nous avons négligé certains élé- 
ments importants, tels que l’épaisseur des verres, et limité l’ouver- 
ture des lentilles, en négligeant les puissances supérieures à y2.

Il est donc indispensable de vérifier et de préciser les résultats 
fournis par cette première méthode; cette vérification consiste à 
suivre, dans leur trajet à travers l’objectif, deux rayons centraux 
jaune et violet, et deux rayons marginaux colorés de même et à 
s’assurer qu’à l’émergence, tous quatre se coupent au même 
point (‘).

(1) Les développements qui suivent sont empruntés à un Mémoire de M. Mac-

Méthode indirecte,
trigonométrique ou
exacte
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Soit la première surface réfringente (fig. 117).
CHAPITRE VI.

Q

6

Nous aurons, comme précédemment :

DE = D=
1a’ en valeur absolue,

EF=F= 1
(4.)

EC=R = J
- 2 r (id.)

1R == — • m

(— d) et f sont les proximités conjuguées, r la courbure et n 
l’indice de réfraction.

Les triangles DAF et CAF nous donnent, pour les rayons cen­
traux, en confondant les angles avec leurs sinus,

(i) f=r(i — m)—dm.

Pour les rayons marginaux, nous aurons

tin, publié par les soins de M. Wallon dans le Bulletin de la Société française 
de Photographie, année 1892, p. 349, sous le titre : Détermination des cour­
bures de l’objectif grand angulaire pour vues, présenté au Concours de la 
Société française de Photographie.
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Cl
CD _ sin:
CAsinà 

ou
/ r .

(2) sin-r+a) sinà,

(3) m siny = sin,
(4) =*-6-0,

et, enfin,
EF =R+ CF = R + sinG)

\ sin:/ 
ou

La formule (1) donne la proximité focale d'un rayon central 

d’indice de réfraction L.

Les formules (2), (3), (4), (5) qui renferment une inconnue f 
et trois variables à éliminer, a, 3 et ç, donnent de même la proxi­
mité focale d'un rayon incident, faisant avec l'axe l'angle 0.

Ces form ules suffiraient, avec les conventions de signes ordinaires, 
pour permettre de calculer, de proche en proche, les foyers succes­
sifs fournis par chaque surface de séparation.

Mais, comme le calcul se fait par logarithmes, on ne peut avoir 
affaire à des quantités négatives et il faut disposer ces formules de 
façon à opérer toujours sur les valeurs absolues des quantités qui y 
figurent. Il est donc inutile d'introduire les conventions de signes 
qui nous ont déjà servi. Mais il faut faire varier les signes des 
termes de la formule, selon la disposition des points en présence.

Or, la question se peut présenter de seize manières différentes, 
selon que la surface réfringente est convexe ou concave, conver­
gente ou divergente, que D est réel ou virtuel, et à droite ou à 
gauche du foyer principal et du centre de courbure.

Voici le Tableau de ces seize cas, auquel il faudra toujours se 
reporter à chaque réfraction nouvelle.
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I° Surface convexe convergente.

PosiTTON 
alu point lumineux. navoss CENTRAUX. RAYONS MARGINAUX.

S II I ~ |

A gauche 
du 

foyer 
principal.

Fig. 118

F
-—2
C

sin = (1+2) sinà, 

m sin % = sin 3.=*-33
/= —s-

I - -—
sin 9

D réel. <

A droite 
du 

foyer 
principal.

f= — (I— m )r- dm.

Fig. 119.

U
 A/

Cr) PN
6 3

sin 2=I — ) sin 0,
\ G7

m sin % = sin 3,
= — a+3+à,

/= "iny-
---1- -- ----  sin ©

Dvirtuel.<

- +
 

%
 

—
 

-II %

A gauche 
du 

centre.

sina = ( i — 2) sin à,

72 sin y — sin I,4
BK
VDF C

Fig. 120.

+ -G il II 6 
+

 
o.■s 

6

1

0 tu
ne

B -G

S +

1

II,

A droite 
du 

centre.

Fig. 121.

C F D

/r \sin “=: —— j sino.
Wd / 

m sin: = sin 3, 
=*-9+0,

J= sin 3 *
T -—.—- sin 2

1° Surface convexe
convergente
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2° Surface concave divergente.
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3" Surface convexe divergente.

POSITION
du point lumineux. RAYONS CENTRAUX. RAYONS MARGINAUX.
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4° Surface concave convergente.
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Marche du calcul. — Après avoir obtenu, par la méthode 
directe, les valeurs approchées des rayons de courbure, on construit 
graphiquement un profil de ces lentilles, en leur donnant l’ouver- 
ture voulue; on en déduit une valeur approchée des épaisseurs et 
des écartements. On se reportera aussi par la suite à cette épure, 
pour savoir quel est celui, des seize cas du Tableau précédent, 
auquel on a successivement affaire.

On suppose d’abord deux rayons centraux, jaune et violet; on 
en suit la marche, et l'on modifie les courbures jusqu’à ce que les 
rayons émergents viennent couper l’axe au même point.

On prend ensuite deux rayons marginaux, l’un jaune et l’autre 
violet, parallèles à l’axe; on devra trouver sensiblement pour eux 
le moine foyer que pour les rayons centraux. S'il en est autrement, 
on fait varier le rapport des deux courbures du verre lourd, sans 
changer leur différence, de façon à diminuer les aberrations sans 
modifier le foyer, et l'on calcule à nouveau, par tâtonnements, la 
courbure du verre léger, à l'aide de la formule des rayons cen­
traux. On recommence alors pour les rayons marginaux, et ainsi 
de suite, jusqu’à ce que la coïncidence des foyers soit suffisante. 
On fait ensuite les mêmes calculs pour une couleur intermé­
diaire, bleue ou indigo, pour se faire une idée des aberrations 
restantes.

Enfin, on calcule le produit des cosinus d'incidence, cosz: cos a' 
cos@2, ..., et celui des cosinus de réfraction, cos3, cos%, cos92, ... 
et l’on fait varier l'écartement jusqu'à ce que ces produits soient 
égaux (condition de Prazmowski).

Pour procéder à ces calculs, on commence par déterminer 
les logarithmes des données et des coefficients divers des for­
mules. On suit ensuite concurremment les rayons jaunes et violets, 
d'une surface à l’autre sur l'épure et sur le Tableau qui précède, 
en employant les formules relatives à chaque cas particulier, 
ajoutant ou retranchant, chaque fois qu’il est nécessaire, l’épais- 
seur des lentilles ou l’écartement des sommets des surfaces suc­
cessives.

Tous ces calculs se font aisément à l'aide des Tables de loga­
rithmes d'addition et de soustraction de Gauss.

Marche du calcul



CALCUL D’UN OBJECTIF. 0
. 

:
A

Points nodaux. Distance focale principale. — ÏI ne reste 
plus qu’à s’assurer que les points nodaux sont les mêmes pour le 
jaune et pour le violet, et à calculer la distance focale principale 
de la lentille équivalente du système considéré; puisque la quan­
tité f, qui entre dans les formules précédentes, ne représente pas le 
pouvoir, mais la proximité ou l'inverse de la distance de chaque 
foyer successif à la dernière surface réfringente. Soient AB le

$

C
o

rayon incident et BC le rayon émergent définitif prolongés tous 
deux jusqu’à leur rencontre en B (fig. 134). On a

BC— —,
sin ?

facile à calculer.
Si l’objectif est aplanétique, c’est-à-dire si tous les rayons 

émergents correspondant aux valeurs diverses de y viennent pas­
ser en C, on démontre que le lieu de B est une sphère de centre C. 
Le point nodal d’émergence sera sur cette sphère ; donc la distance 
focale principale sera, pour le rayon considéré, égale à BC. On 
vérifiera si cette distance est la même pour les autres couleurs. En 
étudiant la marche des rayons en sens inverse, on trouvera de 
même le point nodal d’incidence.

On peut comparer ensuite ce résultat avec la position des points 
nodaux, telle qu’elle résulte de la théorie des lentilles équivalentes 
exposée plus haut.

Enfin, on prend un faisceau oblique et l’on étudie de même la 
marche de l’axe secondaire, celle de deux rayons extrêmes situés 
dans le plan déterminé par l’axe principal et l’axe secondaire et 
celle d’un troisième rayon extrême situé à 900 des premiers. On fait 
le calcul pour une seule couleur. En général, si les corrections sont 
bonnes sur l’axe principal, les aberrations seront négligeables sur

Points nodaux.
Distance focale
principale
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le faisceau oblique; s’il y a lieu, cependant, on modifiera un peu 
les courbures, et l'on recommencera ensuite les calculs pour les 
rayons parallèles à l'axe, jusqu’à ce que tout soit en concordance 
satisfaisante.

Une fois l'objectif construit sur ces données numériques, il y 
aura encore quelques retouches locales à faire, mais de peu d’im­
portance, et qui constituent le tour de main du fabricant.
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CHAPITRE VII.

NOMENCLATURE DES OBJECTIFS.

PETITE OUVERTURE SANS OBJECTIF.

La manière la plus simple de créer une image pouvant être pho­
tographiée, consiste à percer un petit trou, qu’on désigne parfois 
sous le nom de sténopé, dans la face antérieure de la chambre

B

noire. L’image de tous les objets situés en avant vient se peindre 
sur la paroi plane ou courbe AB (fig. 135), quelle qu’elle soit.

Dans ce cas, la profondeur de foyer et la profondeur de champ 
sont infinies; l’image est toujours au point; le rapport de réduc­

tion des objets représentés est égal au rapport des distances de S à 
O PSl'image et à l’objet: T = pa Le champ est considérable; si le

CHAPITRE VII.
Nomenclature des
objectifs

Petite ouverture sans
objectif
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trou est percé en mince paroi (fig. 136), ce champ peut aller jus­
qu’à 150° ou 16o°. Mais il n’y a pas intérêt à dépasser 900, car 
le faisceau perd, dans ces conditions (voir p. 101), les 3 de son 
éclat; de plus, à angle trop ouvert, la perspective plane donne des 
images déformées et choquantes. Tel l’aspect offert par une colon-

-I
A

nade (fig. 137) prise d’un point de vue O. placé très près du 
tableau.

L'emploi du petit trou, à côté de quelques avantages, présente
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deux gros inconvénients. Le premier, c'est de donner très peu de 
clarté. L’éclat intrinsèque de l'image au centre est, en effet, de

5 2 v

n

D désignant le diamètre de l'ouverture et K sa distance au plan 
de l’image.

D ne peut être que très petit, car c’est de D que dépend la 
netteté relative de l'image. Cette image est formée, en effet, de 
faisceaux cylindriques qui s’appuient sur les bords du trou, et la 
netteté en un point quelconque sera toujours inférieure à D. Il 
faut donc, pour avoir une impression nette, diminuer D, mais alors 
on diminue la clarté; de plus, au-dessous d’une certaine limite, il 
v a diffraction des rayons lumineux et l’image disparait.

Enfin, il y a une certaine relation à observer entre D et K; à 
une certaine distance de la paroi antérieure, en effet, l’image dis- 
paraît, les rayons qui devraient la produire se fondent, pour ainsi 
dire, s’évanouissent dans l’espace, et l’on n’a plus d’image.

M. le capitaine Colson a trouvé (Bulletin de la Société fran­
çaise de Photographie, année 1888) que, à chaque valeur de K, 
correspond une valeur de D pour laquelle la netteté de l’image 
passe par un maximum.

La relation empirique qui existe entre ces deux quantités et qui 
détermine par conséquent le foyer correspondant à une ouverture 
donnée est la suivante :

D2 = 0,00081 K,

ou, plus généralement, en faisant intervenir la distance P de 
l’objet à photographier.

0 o 0 0 0 I - : ~

qui permet de résoudre tous les problèmes relatifs à l’emploi d’une 
petite ouverture.
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OBJECTIFS SIMPLES (1).

L’objectif simple a l’avantage de donner des images brillantes, 
parce qu’il y a peu d'absorption de lumière, en raison de la faible 
épaisseur de verre à traverser par les rayons, et peu de réflexions 
internes, à cause du petit nombre de surfaces de séparation. Les 
inconvénients de son emploi proviennent du rôle considérable 
dévolu au diaphragme, et de l’obligation qui s’impose d’en réduire 
le diamètre pour augmenter la profondeur de foyer et le champ, et 
combattre l’astigmatisme et les aberrations suivant l’axe. La clarté 
est donc faible, le champ restreint et la distorsion inévitable.

L’objectif simple se compose toujours de deux, trois ou quatre 
lentilles collées ensemble, ou très rapprochées, et d’un diaphragme 
placé en dehors, du côté de l'incidence.

Lentille double. — Cet objectif comporte une lentille achro­
matique, formée d’une combinaison normale; les verres composants

4

ont tantôt la forme biconvexe et biconcave (fig. 138), tantôt la

Fig. 13g.

forme de ménisque (fig. 139); l’ensemble forme toujours un mé-

(1) La plupart des renseignements relatifs aux objectifs sont empruntés à 
l’excellent Ouvrage de M. Wallon : Traité élémentaire de l'objectif photogra- 
phique. Grand in-8; 1891 (Paris, Gauthier-Villars et fils).

Objectifs simplesLentille double
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nisque convergent, tournant sa concavité vers l’objet. Le diamètre 
de la lentille est égal à environ le 1 de la distance focale.

Le diaphragme est placé en avant, à une distance égale au dia­
mètre de la lentille.

Avec un diaphragme de diamètre 5, le champ de netteté nc

dépasse pas 36°.
La distorsion est sensible, parce que le diaphragme est loin du 

point nodal d’émergence de la lentille.

L’introduction du caractère anormal a donné naissance à de 
nouveaux objectifs simples.

Tel est le Plan anastigmalt de M.Zenger(fig. i 40), formé d'une

Fig. 1′0.

lentille plan-convexe en crown lourd à faible pouvoir dispersif, et 
d’une lentille plan-concave de même rayon, en crown léger d’un 
pouvoir dispersif supérieur, quoique faible encore. L’astigmatisme 
est corrigé, et l'aberration sphérique suivant l’axe n'a que peu

d'importance, à cause de la petitesse du diaphragme F
20

Lentille triple. — Il existe trois combinaisons différentes, dues à 
Dallmey er; toutes trois composées de trois ménisques, l'un divergent 
en flint et les deux autres convergents en crown formant avec le 
premier deux combinaisons normales.

Dans l’objectif simple grand angulaire (fig. 141), les quatre 
courbures sont fortes; le diamètre de la lentille est d’environ le 
1 de la distance focale; le diaphragme est situé en avant, à une 
longueur égale seulement au rayon de la lentille, d'où résulte que 
la distorsion est moindre que dans le cas précédent, et que le 
champ, plus considérable, peut aller jusqu'à 920.

L’objectif grand angulaire pour vues, ou simplement Landscape, 
N. 10

Lentille triple
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ne diffère du précédent qu’en ce que les courbures sont moindres, 
le champ moins étendu, la distance focale et la clarté plus grandes.

Fig. 14r.

Enfin, dans le troisième type, dit rectilinéaire pour vues 
(fig. 142), deux des lentilles, dont la divergente, sont assemblées

$ w

et collées en un ménisque de convexité tournée vers l’objet; la 
seconde lentille convergente, également sous forme de ménisque, 
est séparée des deux autres par une lame d’air et tournée en sens 
contraire. On supprime ainsi presque complètement la distorsion.

M. Wallon a calculé (voir Italie lin de la Société française de 
Photographie, année 1894) un objectif formé d’une lentille triple- 
normale-anormale, corrigée à la fois au point de vue de l’aplané­
tisme et de l’astigmatisme. Cette lentille n’a pas été construite, 
faute de verres convenables.

Chacune des lentilles triples du Doppel Anastigmat de Goerz, 
dont il est question plus loin, est aussi une combinaison normale- 
anormale, corrigée et pouvant servir seule.

Lentille quadruple. — Zeiss a construit les lentilles anastig­
matiques, formées de quatre lentilles collées (fig. 143), une paire 
normale et une paire anormale, et donnant avec le diaphragme

R
----- un champ de 50° environ.
12,0

Lentille quadruple
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A. l’objectif simple se rattachent encore deux expressions parfois 
employées en Optique photographique : la lentille croisée est une 
lentille biconvexe dont les courbures sont calculées de façon que

Fig. 143.

l'aberration longitudinale de sphéricité soit minimum. Pour un 
indice de réfraction égal à 3, ses deux rayons sont dans le rapport 
de L, la face d'incidence étant la plus courbe; l’objectif pourvu est 
formé d’un crown biconvexe et d’un flint biconcave, calculés de 
façon à rendre l’astigmatisme minimum.

OBJECTIFS DOUBLES.

Les objectifs doubles comprennent les objectifs symétriques et 
les objectifs dissymétriques.

OBJECTIFS SYMÉTRIQUES.

Ces objectifs sont formés généralement de deux lentilles doubles, 
rendues séparément aplanétiques suivant l’axe et achromatiques. Si 
ces lentilles sont à fortes courbures et rapprochées, on a les objec­
tifs grand angle ou grands angulaires, à court foyer et à champ 
étendu, mais peu lumineux; si les lentilles sontà faibles courbures 
et assez écartées, on a les objectifs rapides, très lumineux, à long 
foyer et à champ restreint. Dans quelques combinaisons de ce 
dernier genre, les deux surfaces extérieures (Globe Lens), ou les 
deux surfaces intérieures, ou les deux surfaces de séparation (objec­
tif hémisphérique) font partie d’une même sphère, afin d’égaliser 
les incidences et émergences des rayons normaux; ces trois dis­
positions sont presque complètement abandonnées aujourd’hui.

Objectifs doublesObjectifs symétriques
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Grands angulaires (fig. 144). — Les principaux objectifs symé-

, A
 -

triques grand angle, sont :
- l'Aplanae grand angulaire de Steinheil, diaphragmé à et 

dont le champ atteint 8o°;
fle Symétrique à grand angle de Ross, diaphragmé à rs et 

de champ 65°;
l'Euryscope de Voiglander;
les Grands angulaires de M. Martin, dont le calcul complet 

est inséré au Bulletin de la Société française de Photographie, 
année 1892;
> les Panoramiques de Prazmowski;

' le Pantoscope de Busch, qui, diaphragmé à — atteint 100° de 
champ ;

y le Périgraphique de Berthiot, beaucoup plus lumineux avec 
le même champ.

Rapides (fig. 143). — Parmi les objectifs symétriques rapides, 
nous citerons :

03 O
s

le Rectilinéaire rapide de Dallmeyer, diaphragmé à et d’un 

champ de 40°;
l'Aplanat de Steinheil;
les Aplanétiques rapides et extra-rapides de Berthiot, de 

Français, d'Hermagis, de Darlot, de Prazmowski, etc.;

Grands angulairesRapides
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les Rectilinéaires rapides à portraits de Dallmeyer, d’Her- 

magis, qui sont diaphragmes à F
3,55

le Doppel Anastigmat (fig. 146) de Goerz, combinaison symé­

Fig. 146.

trique, formée de deux lentilles triples, à caractère normal-anormal, 
corrigées séparément au point de vue de l’aplanétisme et de l'astig- 

matisme; diaphragmé à , il a un champ de 720;

l'Anastigmat symétrique de Fleury Hermagis.
Dans les Trousses anastigmatiques de Zeiss, on peut combiner 

deux lentilles anastigmatiques à quatre verres pour en faire un ob­
jectif symétrique, de distance focale moitié moindre environ.

L'Objectif antispectroscopique de Roussel, et le Double ana- 
sligmat de Turillon, sont à six verres, formant deux combinaisons, 
chacune normale-anormale.

Le nouvel Eurygraphe extra-rapide de Lacour comporte aussi 
six verres, mais dans chaque groupe de trois, les pouvoirs disper- 
sifs et les indices varient dans le même sens, les indices assez rapi­
dement, les pouvoirs dispersils très lentement. L’astigmatisme est 
cependant fort bien corrigé.

OBJECTIFS DISSYMÉTRIQUES.

Les objectifs doubles dissymétriques, formés de deux lentilles 
doubles, qui se corrigent mutuellement, se divisent aussi en grands 
angulaires et en rapides.

Grands angulaires. — Parmi les grands angulaires, on remarque :
l'Antiplanat (fig. 147) de Steinheil, qui comprend un mé­

nisque, formé d’une lentille biconvexe et d’une biconcave, et un

Objectifs
dissymétriques
Grands angulaires
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second ménisque convergent double, de même genre, mais de grande 
épaisseur et de longue distance focale, placé très près du premier.

nr
 0 %

Cet objectif est rapide, bien corrigé, mais son champ, qui embrasse 
un angle de 65°, est très courbe;

le Rectilinéaire grand angle de Dallmeyer, formé de deux 
ménisques convergents dissemblables.

Rapides. — Dans la catégorie des objectifs doubles dissymé­
triques rapides se rangent :

l’Anastigmat de Zeiss (fig. 148), formé d'une combinaison

antérieure normale faite de deux ménisques, et d'une combinaison 
anormale de trois verres : un ménisque convergent en crown, un 
ilint biconcave et un crown biconvexe; les deux crowns, différents, 
ont un plus fort indice de réfraction et un moindre pouvoir dis- 
persif que le flint médian. Les anastigmats se divisent en plusieurs 
séries, les séries I (E), II (F.), II’ (E), III (F), celle-ci aban- 

\4,5/ \6,3/ “\8/ 6.3/
donnée aujourd’hui, et IIP (S) d’objectifs rapides à cinq verres;

les grands angulaires formant les séries IV

Rapides
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qui n’ont que quatre verres. Par ordre de qualité décroissante, on 
peut les classer ainsi : séries V, IIle, IIe, IV et I;

les Trousses d’objectifs anastigmatiques de Zeiss, faites de len­
tilles anastigmatiques combinées de diverses manières;

l'Eurygraphe extra-rapide de Berthiot à quatre verres, formé 
d'une combinaison anormale et d’une combinaison fortement nor­

male, et qui, diaphragmé à -—, donne un champ de 3o°;

les Objectifs à portraits (fig. i 49)Petzval, encore très employés.
# - ?

Ils se composent, à l’avant, d’un ménisque, formé d’une lentille 
biconcave en flint et d’une biconvexe en crown collées ensemble, 
et, à l’arrière, d’un ménisque divergent en flint et d’une lentille 
biconvexe en crown, séparés par une couche d’air. On peut dia­
phragmer à + (série B) et même à E (sérieC de Dallmeyer). Le 

3,0 2,0 
premier ménisque est achromatique et sensiblement aplanétique 
sur l’axe, le second groupe de verres assure l’aplanétisme, diminue 
l’astigmatisme et aplanit la surface focale en allongeant la distance 
focale des faisceaux obliques, c’est le rôle du flint divergent.

OBJECTIFS TRIPLES.

Ces objectifs sont presque complètement abandonnés aujour­
d'hui. Le plus connu est le Triplet de Dallmeyer, formé de deux 
combinaisons convergentes séparées par une divergente.

TÉLÉOBJECTIFS.

Pour la Photographie à grande distance, on emploie trois sortes 
d’appareils :

Objectifs triplesTéléobjectifs
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i° des objectifs à très long foyer, c’est le procédé des astro­
nomes; tel l'objectif du grand Équatorial de Paris, à l’aide duquel 
on obtient directement des photographies de la Lune, d’un diamètre 
de 18cm environ ; il a 18m de longueur focale environ;

2° deux combinaisons convergentes très espacées, disposées 
comme nous l’avons dit en parlant de la lentille équivalente, ce 
qui donne un appareil très long et fort peu de champ, tels les 
objectifs de Lacombe, du colonel Fribourg, etc.;

3° enfin, ce qui est préférable, la combinaison, calquée sur la 
lunette de Galilée, d’un verre convergent et d'un verre divergent. 
Nous en avons étudié les propriétés à propos de la lentille équi­
valente.

A ce dernier type se rattachent les téléobjectifs de Miethe, de 
Dallmeyer, de Clément et Gilmer, formés d’un objectif convergent 
et d'un verre divergent, les deux systèmes étant corrigés chacun 
pour son compte.

Ce dernier appareil a été construit sur les calculs de M. le capi­
taine Houdaille. Il permet de grossir dix fois l’image que donnerait 
l’objectif convergent employé seul.

2
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