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PREFACE.

Les immenses progres de la Pholographie, sa rapide
propagation dans toutes les classes de la société, ont con-
tribué 4 eréer une langue photographique dont malheu-
reusement plusicurs termes ne sont pas bien compris de
ceux qui les emploient. Cela n’a rien qui doive surpren-
dre ; cet art, qui touche a la science par ses cotés les plus
importants, réclame dans ses adeples quelques connais-
sances préliminaires que tous ne possedent pas. Bien plus,
cerlains mots sont mal définis ou ne caractérisent point la
chose qu’ils représentent. De i, indécision de la part des
arlistes, mécomples sur Defficacité de leurs procédés
débats enlre ceux qui construisent les appareils et les
personnes qui en font usage.

De tous les termes usités en photographie, un de cenx
qu'on emploie le plus souvent, qui domine dans 'opéra-
tion principale, et sur lequel cependant on est le moins
Laccord, est & coup sar celui de foyer de Uobjectif. Le
mémoire qu’on va lire a pour objet essentiel d’expliquer
ce qu'il faut entendre par la. On y définit d’une maniere
nouvelle, etinotre sens plus avantageuse,, la distance focale

d’une lentille ou d'un systeme de plusiears lentilles assem-
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blées sur un méme axe. Nous proposons en outre un in-
strument qui permettra de déterminer avec facilité cette
distance focale pour un appareil photographique quel-
conque.

Dans notre exposé, nous aurons arappeler quelques no-
tions trés-simples d’optique, et a indiquer diverses pro-
priétés relatives aux lentilles. Parmi elles il en est de peu
connues, quelques-unes méme n’ont pas é(é signalées;
celles-ci offrent quelque intérvét, et les autres sont le fon-
dement de ce que nous appelons distance focale absolue
d’un systéme optique. Nous faisons voir I'avantage qui ré-
sulte de Pemploi de cette distance focale absolue comme
caractéristique des effets d’un appareil.

Lorsque les vérités auxquelles nous en appelons sont
peu répandues ou méme n’ont pas été démontrées, nous
renvoyons celle démonstration & une seconde parlie du
mémoire, ot nous avons placé tout ce qui est géomélrie
ou analyse. Cetle seconde partie ne suppose au reste pour
étre entendue que des connaissances mathématiques fort
¢lémentaires.

I’usage des objectifs en photographie offre un champ
fout nouvean aux recherches d’oplique instrumentale.
Grace a I'invention de Daguerre, celte partie de la science
est presque enlierement a refaire,

En effet, dans le jeu d’un objectif de daguerréotype, il
n’est plus permis de supposer, comme Pont fait jusqu’ici
lous les géomelres qui ont (raité de loplique, que les
rayons de lumicre font a leur entrée dans Pappareil de
petits angles avec T'axe des lentilles. Celle supposition,
légitime pour les télescopes réflecteurs ou réfracteurs et

les microscopes, ne Iest pas pour les instruments en
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question. Ce n’est plus & une fort petile partie de la sur-
face focale que Pon s'intéresse, mais, au contrairve, a une
portion considérable de celle-ci. Enfin, un ¢lément im-
portant, négligé jusqu’a ce jour par lous les auleurs, a
notre connaissance du moins, est la déformation des ima-
ges que on pourrait appeler aberration de jorme. 1y
aura done lieu dorénavant, pour ceux qui voudront élre
complels en optique instrumentale, de faire connailre les
causes et d'indiquer les moyens de destruction, dans un
systeme ebjectif simple ou compose, non-seulement des
aberrations sphérigues et chromatiques, comme on I'a
fait jusqu’a présent, mais encore de Paberration de forme,
plus importante que les autres en photographie.

Si ce petit opuscule recoit du public un accueil bien-
veillant, nous serons encouragé & lui présenter par la
suite le résultat de nos recherches théoriques et prati-
ques sur ce point difficile, qui aura du moins intéret de
la nouveauté.

Dans le but d’étre utile & ceux qui s’occupent de pho-
tographic, en méme temps que nous décrivons Vinstru-
ment nouveau que nous appelons focabsolumctre, nous
donnons la solution de plusieurs problemes sur les rela-
tions qui lient entre elles ces qualre choses : grandeur
de Uimage, distance de Usbjet, distance du verre depoli @
Lobjectif, et distance focale absolue de celui-ci.

Paris, ce 20 octobre 1850

SECRETAN.
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PREMIERE PARTIE.

CHAPITRE PREMIER.

DEFINITIONS ET NOTIONS ELEMENTAIRES.

§ 1. Lorsqu'un objet lumineus se trouve dans un espace
parfaitement libre en tout sens, il est vau par I'observateur,
placé ou 'on voudra, qui dirige vers lui son regard.

L'agent qui produit celte manifestation de I'objet a recu le
nom de lumiére. Nous n’avons pas & examiner ici la nature de
cet agent; nous dirons seulement qu'il opére dans toutes les
directions & partir de I'objet luminenx; que sa marche est rec-
tiligne , et que, malgré son énorme vitesse, il y a succession et
durée dans cette marche. Si donc on appelle rayon de lumiére
ane des directions rectilignes quelconque que suit cet agent, on
pourra dire qu'un rayon part de I'objet, qu'il arrive dans I'ap-
pareil, le traverse, puis enfin pénétre dans I'wil. Ces ex-
pressions partir, arriver, {raverser, qui supposent toutes une
transmission successive, seront légitimes.

Si I'objet lumineux que l'on considére a des dimensions

Droits réservés au Cnam et a ses partenaires



— 10 —
réelles ou apparentes infiniment petites, on Fappelle point
luminew. '

L’ensemble d'un nombre quelconque de rayons partant en
méme temps du méme point s'appelle pincean de lumicre. s
forment un come plus ou moins large dont le sommet est le
point lumineux lui-méme. Dans le cas actuel oi le pointest &
la fois cause et origine de lumitre, attendu que les rayons qui
composent le pincean vont en s'écartant toujours plus les uns
des autres, on dit que le pincean est divergent.

Nous allons voir hientot que le passage d'un rayon dans un
nouveau milien {ransparent peut changer la direction de ce
rayon ; des lors, on concoit la possibilité que tous cenx d'un
meéme pinceau cessent de s’écarter les uns des autres aprés lear
enlrée dans ce second milicu, ou, en d'autres termes, qu'ils
deviennent paralléles entre cux. Dans cette nouvelle phase de
mouvement, 'ensemble de ces mémes rayons s’appellera fais-
cequ lumineux., Enfin, si fe changement de divection rectiligne
imprimé & ces mémes rvayons par le second milieu est alle
jusqu'a tendre a les réunir de ncuvean vers un point placé au
dela, ils formeront ce qu'on appelle un pincean convergent.
Quand les rayouns composanls auront afteint puis dépassé ce
point de concours, il est clair qu'ils formeront de nouveau un
pinceawn divergent.

Si I'on appelle pincean naturel celui qui, émanant du point
lumineus, n'a pas cessé de se mouvoir dans le milien primitif,
on verra qu'un pinceau nafurel est toujours divergent.

Lorsque le point lumineux est & une trés-grande distance de
Pappareil qui recoit le pinceauw que P'on considére, il est clair
que, si 'on mesure I'écart des rayons composants d’abord prés
de I'appareil, puis ensuite assez loin de lui, on {rouvera fort
peu de différence. Dans ce cas, I'ensemble des rayons peut done
étre appelé indifferemment pinceaun ou faisceau.

Enfin, 'on considére quelquefois, non pas un rayon isolé,
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mais bien un certain nombre de rayons infiniment rapprocheés
les uns des autres, formant un ensemble assez considérable
pour donner a I'eil la sensation du point lnmineux dont ils
émanent, mais assez étroit cependant pour que ce que I'on dit
de la marche d’un des rayons composants puisse sappliquer
sans erreur sensible 4 fous les autres: un pareil ensemble de
rayons s appelle filez luminenx. Le filet de lumidre n'est donc
autre chose qu'un pincean ou un faiscenu frés-deélie.

§ 2. Ces délinitions donndes, voyons quelle est la marche
d'un rayon isolé. Tant qu'il ne quitte pas le milieu primitif, sa
direclion reste la méme et sa vitesse ne varie point. Lorsqu'il
passe d'un premier milieu dans un second, transparent aussi,
mais de nature différente, il n'en est plus de méme. Si la sur-
face de séparation des deux milieux est plane et que le rayon
arrive perpendiculairement i cette surface, ce rayon, que Ton
nomme zncident, continue sa route sans dévialion dans le
second milieu; sa vitesse seulement est changée, mais elle reste
encore nniforme tant qu'il n'en sort pas.

Lorsque le rayon incident forme un angle avec la perpendi-
culaire élevée sur la surface de séparation au point ol il péne-
tre celle-ci, angle que nous nommerons angle d'incidence,
alors dés le passage dans le second milieu, non-seulement la
vilesse du rayon varie, mais sa direction n'est plus la méme;
si donc on appelle angle de réfraction celui que le rayon brise
ou refracté fait avec le prolongement de la perpendiculaire
déja mentionnée, Vangle de véfraction n'est pas égal a langle
dincidence. Une circonstance remarquable a cependant toujours
lieu : savoir, que le rayon incident , la perpendiculaire a la sar-
face de séparation et le rayon réfracté sont dans un méme
plan. Une figare facilitera Pintelligence de ce qui précéde et
servira a fixer ces notions dans esprit du lecteur.

Pig. 1. Supposons deux milieux transparents, séparés par

une surface plane horizontale, représentée par la ligne A B
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(fig. 1.). Que I'espace au-dessus de AB soit le milien primitif
ouantérieur , et 'espace au-dessous de cette ligne le milien pos-
térieur. Soit IM e rayon dncident , M le point ol ce rayon perce
la surface de séparation, NM la perpendicnlaire & la surface
AB, MP le prolongement de cette perpendiculaire dans le
milieu postérieur, INN sera 'angle d’incidence. Arrivé en M et
pénétrant dans le second milieu, le rayon IM change sa direc-
tion, et au lieu de continuer sa route suivant MT, prolongement
de IM , il snit la nouvelle direction MR, faisant avec MiP
I'angle de réfraction RMP, différent de IMN. Si, comme
dans la figure, I'angle de réfraction est plus petit que celui
d’incidence, le milien postérienr est dit plus réfringent que le
premier. Si c¢est le contraire qui arrive, le milien postérieur
est dit moins réfringent.

A celle occasion nous énonceronsun principe quel'on regarde
comme ¢vident, et qui joue un réle important dans plosieurs
démonstrations. Ce principe est celui-ci : Lorsqu'un rayon a
iraverse successivement plusicurs miliewr différents, avee
les wvitesses et les directions que ces miliews lui ont impri-
mées, st a un point quelconque de son trajet on suppose
quw'tl revienne en arriére avee sa vitesse actuelle, il repassera
par les mémes chemins et avec les mémes vitesses que celles
qu'tl a cues dans sa marche progressive. Cest ainsi que, lors-
qu'on lance une pomme en l'air verticalement, on voil sa vi-
tesse ascendante diminuer de plus en plus, devenir nulle, res-
ter telle pendant un instant infiniment court, devenir descen-
dante, s’accélérer toujours davantage, reprendre des vitesses
égales, mais de sens contraire, lorsqu'elle arrive aux mémes
hauteurs que dans la phase d’ascension, et retomber enfin dans
la main quil'alancée, avec une vitesse de retour égale a celle de
départ.

En appliquant le principe ci-dessus au cas représenté par la
figure 1, nous en conclurons que si dans cetle figure R M était
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le rayon incident , MI serait le rayon réfracté. Les angles d'in-
cidence et de rélraction auraient échangé leurs dénominations
entre eux , mais lears valeurs seraient restées les mémes.

§ 3. La loi qui lie'angle d'incidence & I'angle de réfrac-
tion est trés-simple. Si du point M comme cenfre et prenant
pour rayon une longueur quelconque MN = MP, on décrit les
denx arcs NI et PR, puis que des points et R on abaisse sur
les rayons respectifs MN et MIP les perpendiculaires TK et
RL, ces derniéres droites sont appelées les sinus des angles
d'incidence et de réfraction. Ta loi en question peut étre alors
énoncée ainsi : Lorsquun rayon de lumicre passe dun pre-
mier milicw dans un autre, les sinus des anyles dincidence
et de réfraction sont dans un rapport constant. Le vapport du
premier sinus au sccond est appelé I'indice de réfraction du
second milien par rapport au premier. Pour le rayon qui passe
de I'air dans leverre de Saint-Gobain, par exemple, cet indice
est & fort peu prés 1 5 ou L 1l résulte de a que si on suppose
IK divisé en {rois parties ¢gales, IR conliendra & fort peu pres
deux de ces mémes parties. Dés lors, il est aisé de déterminer
Ja divection du rayon réfracté, lorsqu'on connait celle du rayon
ineident et I'indice de réfraction du second milien parrapporl au

~ premier.

Soit, en effet {fig. 1), la ligne AB représentant, comme ci-
dessus, la surface plane de séparation des deux milieux, et
IM le rayon incident; on fracera la perpendiculaire NP & AB;
puis, d’un rayon arbitraire MN = MP, on décrira les deux
ares de cercle IN et PR; du point I on abaissera IK perpendi-
culaire sur PN. Puis, prenant sur MB une longueur MH ftelle
que T'on ait la proportion IK est a MH comme lindice de reé-
fraction du second milieu est a I'unité, par le point H on con-
duira HR paralléle & NP; et par le point R, o elle coupera
'are PR, on ménera MR, qui sera le rayon véfracté. En effet,

en abaissant RL pm‘ps“n(liful&ir'n sur NP, on aura LR sinus de
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Pangle de réfraction ¢gal i MH, d’oir la proportion qui Tie les
sinus d'incidence et de véiraction sera satisfaite.

§ 4. Lorsque les deux milienx seront séparés par une sur-
face courbe, on supposera celle-ci remplacée par le plan qui
la touche au point d'incidence du rayon lumineux; ce plan
jouera le role de la surface plane AB (fig. 1) dans la construc-
tion indiquée, qui des lors restera la meme que pour le cas
précédent. Dans les caleuls ordinaires de Voptique, on ne con-
sidere que les surfaces planes ou sphériques: ce sont d'aillenrs,
avec les surfaces cylindriques, les senles que 'on sache actuel-
lement exéculer d'une maniére précise.

§ 5. Quoique cela ne soit pas nécessaire pour le but que
nous nous proposons dans ce mémoire, nous devons cependant
exposer en peu de mots les phénoménes que présente un fads-
ceaw lumineus, si étroit qu'ou le voudra, qui traverse oblique-~
ment la surface de séparation de deux milienx différents.

Le faisceau incident arrivé a la surface de séparation se di-
vise en deux faisceaux partiels qui ne se comportent pas de
méme. Le premier de ces faisceaux composants ne pénétre pas
dans le second milieu, mais rebondit pour ainsi dire sur la
surface de séparation, retraverse le milicu primitif en restant
toujours dans le plan du rayon incident et de la perpendicu-
Iaire et [aisant avec cette derniére un angle de réflexion égal
4 I'angle d'incidence. Ce phénomeéne constitue ce qu'on appelle
la réflexion de la lumiere, et le faisceau infiniment mince ou
rayon ainsi renvoyé par la surface s'appelle rayon réfléchi.

Le second faisceau partiel pénetre dans le milieu postérieur,
mais les rayons qui le composent ne suivent plus, comme avant
lear passage, des directions paralleles; des lors ils s'écartent
les uns des autres comme si pour chacun d’eux l'indice de ré-
fraction du milieu postérieur avait une valeur différente; en
outre, et cela est bien digne de remarque, quoique le fais-
ceaun incident fiit sans aucune colovation, chacun des ¢léments
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mainlenant séparés présente une couleur différente des autres.
Les choses se passent, en un mol, comme si chaque faisceau
incident , trés-étroit de lumiere blanche, était en réalité com-
posé d'une infinité d’éléments de couleurs diverses, et que Tac-
tion du second milieu et pour cffet de sépaver et d’épavpiller
ceux-ci. Ce phénomene se nowmme dispersion de la lumicre.

Quoique la réflexion et la dispersion de la lomiére cousti-
tuent avee Ja réfraction les points fondamentanx de Voplique,
nous n'aurons pas & nous occuper des deux premiers dans ce
qui va suivre. ’

Nous ne nous attacherons done qu'aux rayons qui traversent
effectivement les différents milieux placés sur leur frajet, et
nous regarderons les faisceaux ou filets lomineux incidents
comme éfant homogénes et indécomposables par I'action des
milieux successifs qu'ils traversent. Cela reviendra & les regar-
der comme des lignes mathématiques indivisibles et sans di-

mensions autres que leur longueur.

o (R
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CHAPITRE 1L

DES LENTILLES ET DE LEURS PRINCIPALES PROPRIETES.

§ 6. On appelle lentille tout milieu transparent terminé dans
deux directions opposées par des surfaces courbes ou par une
surface plane et une surface courbe. Ainsi que mous I'avons
annoncé, nous ne considérerons que le cas oi ces surfaces,
qu'on nomme faces de la lentille, sont des portions de sphere.
On appelle axe de la lentille Ja droite idéale qui joint les cen-
tres des deux sphéres dont les faces font partie.

L épaisseur de la lentille est la partie de T'axe de la lentille
qui est interceptée entre ses deux faces.

Les surfaces d'une lentille peuvent étre toutes deux convexes
au dehors (fig. 2), ou toutes deux concaves (fig. 3), ou I'une
convexe el 'autre concave (fig. % et 5). Le cas d'une face plane
est le méme que celui d’une face sphérique de rayon infiniment
grand.

Lorsque les deux sphéres dont les faces d'une lentille font
parlie se coupent entre elles, cette intersection, qui n’est autre
chose qu'un cercle, forme ce qu'on appelle le bord de la len-
tille (fig. 2 et 4). Dans ce cas, le bord de la lentille est tran-

chant sur tout son contour. 1l est évident qu'alors I'axe de la
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lentille traverse ses deux faces par leur centre, et I'on dit que
la lentille est cenérde. Siles sphéres en question ne se coupent
pas, quoique considérces dans toute lear élendue, ce qui ar-
rive lorsqu'elles sont exlérieures ou intérieures T'une par rap-
port a 'autre, alors, comme dans les figures 3 et 3, clles n'en-
ferment plus un espace déferminé.

Pour circonscrive dans ce cas Détendue de la lentille, on la
suppose conlenue dans un cylindre & hase circulaire dont I'axe
coinciderait avee celui de la lentille méme. Son bord KRLL
(fig. 3 et 5) est alors la partie de sa surface commune au cy-
lindre. Si les deux axes en question n'en font réellement qu'un,
ce bord aura parfout la méme largeur, et la lentille sera dite
centrée exactement. Ce caractére pourra donc servir & recon-
naitre s'il en est ainsi.

Dans tout ce qui va suivre, on admeltra que cette condition
est remplie pour chaque lentille, et si on en considére plusieurs
formant un assemblage oplique, on regardera tous leurs axes
comme confondus en un seul.

Tout plan passant par I'axe d’une lentille ou par I'axe com-
mun de plusieurs lentilles, coupera celles-ci suivant leurs pro-
fils. Nous nommerons plan principel 'un quelconque de ces
plans.

Un rayon de lumiére contenu d'abord dans un plan principal
y reste pendant tout son trajet au travers du systeme de lentilles
que l'on considére, car il n'y a pas de raison pour qu’il s’en
écarte d'un coté plutot que de Pautre.

§ 7. Dans toute lentille il y a un point de T'axe qui jouit
d’une propriété remarquable. Pour la faire connaitre, imagi-
nons (fig. 2, 3, 4, 3) que O soit ce point, et que dans ces
guatre figures KL ou KKLL represente une lentille. Si, par le
point O, que nous apprendrons a déterminer plus tard, ou
méme une droite quelconque s¢, qui traverse la lentille, nous

appellerons transversale la partie MN de cette droite inter-
2
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ceplée par elle. La propriéié en question pourra dés lors élre
enoncée ainsi : Tout rayon de lumiire qui traverse une len-
telle suivant une (ranscersale w ses directions dentrée et de
sortiec paralléles entre elles.

Ainsi, dans les figures ci-dessus, NR, rayon émergent, est
parallele a NI, rayon incident.

Le point O, origine de toutes les transversales telles que MN,
s'appelle centre optique de la lentille.

Si la lentille est hiconvexe, comme dans la figure 2, le point
O est un des poinls de I'épaisseur AB; si les courbures KAL et
KBL sont supposées en outre égales, le point O sera le milieu
de AB; généralement le point O sera d'autant plus rapproché
de Pextrémité A par exemple que le rayon ‘de arc opposé KBL
sera plas grand. Quand cel arc aura un rayon infiniment grand,
c'est-d-dire lorsqu'il sera devenu une ligne droite, le point O
se confondra avec le point A. Si I'are KBL devient concave,
comme figure 4, le point O passe & la gaache de A; enfin, dans
ce deruier cas, la courbure concave de KBL devenant égale 4
la courbure convexe KAL, le point O, toujours & gauche de A,
s'en trouvera alors é¢loigné & l'infini.

Lorsque les deux faces KAL et KBL sont concaves (fig. 3), le
point O est I'un des points de ADB; si les courbures sont égales,
il en est le milieu. Si le rayon de KAL, par exemple, va en
augmentant, le point O se rapproche de B; quand la face KAL
est plane, il se confond avec B; enfin si la face KAL devient con-
vexe {fig. 5), le point O passe a la droite de B, et s’en éloigne
a Vinfini & mesure que la courbure de cette méme face KAL ap-
proche d'étre égale a celle de KBL.

Nous verrons dans la seconde partie par quel calcal on déter-
minera la position exacte du centre optique,

§ 8. Soit fig. 6, KALB, une lentille biconvexe, et O son cen-
tre optique. Par ce point menons autant de transversales MN,

M'N, M'N, ele., qu'on voudra; conslruisons pour chacune
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d’elles les rayons incidents et émergents qui lui correspondent;
on anra alors IM, FA", 1"M"| ete., respeclivement paralléles a
NR, N'R’, N“R”, etc. Prolongeons tous ces rayons incidents et
¢mergents jusqu'aleur rencontre avec l'axe de la lentille, et'on
verra, ainsi que nous le démontrerons dans la seconde partie,
que les premiers se couperont tous sur I'axe au point P et les
seconds au poinl P’. Ces deux points remarquables P et P"s’ap-
pelient centres conjugués de la lentille. On peut done énoncer
leur propriété ainsi qu'il suit : Tout rayon de lumicre dirigé
vers Uun d'cux sort de la lentidle comme s'il partait de Uau-
tre, et sa direction de sortie est paralléle a celle d’entrée.

Pour distinguer ces deux points 'un de 'autre, nous appel-
lerons le premier P, vers lequel convergent les rayons incidents,
le centre & arrevée, et le point P, & partir duquel divergent les
rayons émergents, le centre de départ.

Il est essentiel de remarquer que la propriélé ci-dessus des
centres conjugués n'est vraie en loute rigueur que pour les
rayons incidents qui font de trés-petits angles avee I'axe de la
lentille.

(est ainsi que isochronisme des oscillations da pendule n'a
lieu que pour de tres-petifes amplitudes de ces oscillations.

Dans la figure G par exemple, le rayon IM fait un angle IPA
avec l'axe beaucoup i{rop grand pour passer précisément au
point P; mais nous avons di lui donner celle inclinaison exa-
gerée, alin de laisser distinctes toutes les lignes de la figure.

On démontre encore que non-seulement une lentille, mais
encore un sysiéme quelconque de lentilles assemblées sur le
méme axe, a toujours nécessairement deux cenires conjugués
jouissant de la propri¢té indiquée ci-dessus. Cette démonstration
a également lieu sous la condition que les rayons de lumiere
font de trés-petits angles avec 'axe.

§ 9. 8i par un point lumineux H (fig. 7) on méne au centre
P d’arrivée d'une lentille un rayon P, et qu'on construise le

2.
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rayon émergent 'R, la ligne brisée HMNR, trajet da rayon,
s'appellera I'axe du pinceau lumineux SGHAT, émané de H.

Nous verrons aussi plus fard que, si 'on suppose la lentille
infiniment mince, ou, ce qui revient au méme, que si on regarde
comme nulle son épaisseur AB, les points P et P’ sont confon-
dus en un seal; la ligne brisée HMNR, c'est-a-dire I'axe du
pinceau, devient alors upe ligne droite. Cest le seul rayon
du pinceaun qui conserve sa direcltion primitive aprés le (rajet
dans la lentille.

Considérons maintenant la marche des autres rayons com-
posants. Pour cela, examinons d’abord ce qui se passe lors-
qu'un pinceau de lumiére tombe sur une surface sphérique
séparant deux milieux transparents d’'inégale rélringence. Joi-
gnons par une droite le sommet du pinceau avec le cenire de
la surface. Le rayon suivant cette droite traversera les deux mi-
lieux sans déviation aucune et sera I'axe du pinceau. Supposons
de plus que tous les autres rayons composants fassent de trés-
petits angles avec cet axe, ou, en d'autres termes, que le pin-
cean soit fort étroit et dirigé dans son ensemble & peu prés
perpendiculairement & la surface. On démontre que dans ce cas
les rayons du pinceau forment, aprés lenr passage, un nouveau
pinceau de lumiére, qui sera divergent on convergent, suivant
les circonstances. Donc tous les rayons lumineuz formant un
pinceaw divergent ow convergenl , et qui passent d’un miilieu
dans un autre, prennent de nouvelles directions qui se cou-
pent toutes au méme point.

Il suit de la que la méme chose aura lieu encore aprés le
passage du pinceau au travers d'une lentille, seulement il y
aura eu deux réfractions, I'une a I'entrée en passant de l'air
dans le verre, I'autre & la sortie en repassant du verre dans
Iair. Le pinceau incident aura été modifié par conséquent deux

fois.

Remarquons que cela suppose que ce pinceau incident élait
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i lorigine fort étroit et tres-peu incling sur 'axe de la lentille;
celte condition est en effet de rigueur pour que dans les deux
transformations qu’il subit, Ies rayons qui le composent conti-
nuent a faire de petits angles avec son propre axe.

Le point oit concoarent les rayons du pinceau qui sort de la
lentille se nomme le foyer du point lumineus. Sile pincean
émergent converge vers le foyer, les rayons passent a ce foyer,
s’y concentrent, et le foyer est dit 7éel. Si, au contraire, le pin-
cean émergent diverge a partir du foyer, comme s'il en venait,
le foyer est dit alors virfuel.

Le point lumineux et son foyer portent le nom de foyers ré-
ciproques, chacun de ces poinls ponvant, en verlu du principe
énoncd au paragraphe 2, étre pris & son tour, I'un pour le point
Iumineux et I'autre pour son foyer.

Tonte lentille qui aceroit la convergence d'un pincean de
Jumiére, ou qui diminue la divergence d'un pinceau divergent,
est dite elle-méme convergente; les lentilles de verre a hords
tranchants sont dans ce cas (fig. 2 et 4).

Une lentille qui produit Peffet inverse s’appelle divergente.
Telles sont les lentilles de verre dont les bords ne sont pas tran-
chants (fig. 3 ct 5).

§ 10. Soit une lentille convergente K. (fig. 8), C et C les
centres de ses faces KAL et KBL. La droite M qui passe par
les points € et (7 sera 'axe de la lentille; soit N un point lumi-
neux hors de cet axe; de ce point menons une droite au centre
¢ de la face KAL; nous appellerons cette droite le rayon central
du pinceau émané de N relatifl & Ia face KAL. Ce rayon péné-
trera dans la lentille suivant DG sans étre dévié, el puisque tous
ceux du pinceau incident doivent concourir encore aprés le pas-
sage, ce point de concours ou le sommet du nouveau pinceau se
trouvera quelque part sur NC, au point # par exemple. En con-
sidérant un aufre rayon NA du pinceau incident, ce nouveau

rayon arrivera également au méme point n et aura ainsi tra-
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versé la lentille suivant AH. Si par le sommet n du pinceau
transformé et le centre €' de la face postérieure KBL de la len-
tille nons menons une droite (', celte droite sera, relativement
a KBL, le rayon central du pinceau transformé DaA ; 'effet de
la seconde surface sur ce pinceau ne pourra étre, comme touf a
I'heure, que de transporter son sommet n sur un antre point de
n(’, en n' par exemple; alors le rayon Dn prendra an sortir de
la lentille la divection Gn’ et le rayon An la direction Ha'. Le
nouveau pincean transformé sera Gn'H, dont le sommet 2’ sera
le foyer de N.

Nous donnerons daus la seconde partie la régle par laquelle
on détermine la position de n par rapport a N et & la face KAL,
régle qui donne aussi, avec les modifications convenables, la
posilion de »’ par rapport & 2 et & la face KBL.

Considérons maintenant un second point luminenx M, placé
cetle fois sur I'axe M de la lentille AK. Faisons pour ce point
les constructions qui viennent d'étre indiquées pour N, et nous
trouverons ainsi pour foyer de M un point ' placé sur axe de
fa lentille. Tout aura lieu comme précédemment, a part que
M aura servi de rayon central commun au pinceau incident
DAIA et 4 ses deax fransformés DmA et Fan/B.

Sile point M pris sur Faxe de la lentille est supposé ¢loigné
du centre C de la face antérienrve de la méme quantite que le
point N l'est lni-méme, cest-a-dire si I'on a MC égal 4 NC, on
aura aussi CGm égal & Cn; car les points m et n seront déter-
minés par la méme régle appliquée dans des circonstances iden-
tiques. Si, de plus, les deux rayons centraux NCn et MCm des
pinceaux incidents font un trés-petit angle NCM entre eux, les
deux angles CC'z et C'nC seront plus petits encore, puisque la
somme des deux derniers est égale au premier ; on pourra done
supposer sans erreur sensible que la ligne C'n est égale a C'e,
plus Cn, c'est-d-dire & C'in; dés lors les points m et n élant A
fort peu prés a la méme distance de C, il en sera de méme des
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deux foyers " et #'; de la enfin il résulte que, si Ton a XD égal
a MA, on aura aussi a trés-peu prés B’ égal & Tn': autrement
si les deux points lnmineux sont & égale distance de la face an-
térieure de la lentille, leurs foyers seront aussi sensiblement &
égale distance de sa face postérieure.

Dans ce méme cas des rayons centraux trés-pen inclinés entre
eux et des points M et N également éloignés de KAL, on pourra
regarder I'are MN comme une pelite ligne droite perpendicu-
Taire sur I'axe Min de la lentille, et la méme chose aura lieu éga-
lement pour le petit arc m'n’.

§ 11. On voit par ce qui précede que si la pefite droite NM
est un objet lumineux, chacun de ses points aura son foyer sur
1a petite ligne #/m’, qui sera ainsi I'image de NM. Les foyers qui
composent »'m’ étant réels, il y aura concentration de lumiére
dans chacun d'eux; leur ensemble produira donc I'effet d'un
nouvel objet qu'un il placé an dela, a une dislance conve-
nable, pourrait examiner avec tous ces détails, soit sous le rap-
port des couleurs, soit pour les proportions. Quant a la grandear
absolue de celte image, nous verrons bientot de quelles condi-
tions elle dépend. Lorsqu'au lieu de la regarder ala vae simple
on la voil au moyen d'une loupe, elle parait alors considéra-
blement agrandie; si MX est un objet éloigné et que Pamplifi-
cation aille senlement jusqu'a le faire paraitre aussi grand que
si on le voyait de prés, on le jugera seulement rapproché, et
I'on obtiendra Ueffet produit par une longue-vae; si an con-
fraire MN est un petit objet placé prés de la lentille, et que
Tamplification le fasse paraitre beaucoup plus grand qu'on ne
peut le voir directement en le tenant le plus pres possible de
I'wil, alors il semblera énormément grossé, et lon aura I'effet
du microscope.

Enfin, lorsqu’on placera en m” une glace dépolie perpendi-
colairement A Vaxe de la lentille, I'image m'a" se peindra sur

ce verre an moyen des rayons de tontes couleurs qui, arrivant
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en méme temps & lears foyers et sur la glace, divergeront dés
lors vers I'eil d'une maniére diffuse, comme lorsqu’ils partent
d'un objet réel qui rayonne dans tous les sens. Ce sera le cas
réalisé par la chambre obscure des photographistes. 11 est im-
portant de remarquer que I'image m's’ est renversée par rap-
port & I'objet MN; le point N au-dessus de 'axe a son image »’
an-dessons, et si I'objet avait des points au-dessus du plan de
la figure, leur foyer ou image serait an-dessous.

§ 12. Aprés avoir expliqué la formation de l'image réelle que
donne une lentille convergente, voyens ce que devient cette image
pour difféerentes distances et dimensions de I'objel lni-méme.

Pour cela supposons comme préocédemment que MN (ﬁg_{. 9)
soit une petite ligne droite perpendiculaire a I'axe de la len-
tille, et jouant le réle de Pobjet lumineux ; d’aprés ce que nous
venons de voir, 'image de cet objet sera la petit eligne m/n" aussi
perpendiculaire a 'axe ef placée a une certaine distance But/
derriere Ia lentille. Joignons le point N au centre P d'arrivée et
le point " au centre P’ de départ. D'apres le § 8, ces denx ligues
NP et #'P" seront paralléles, et leur ensemble formera avec RR’
I'axe du pinceau ¢émané de N.

Les deux triangles NMP et 2'n2'P" seront semblables, en sorte
que si I'on connaissait le rapport de NM a MP, on aurait celui
de 2'm” & m'P’, égal au premier; il ve manquerait donc plus
que d'aveir la grandeur absolue de /P’ pour connaitre enfin
celle de I'image n'm’. Or on est toujours censé donner la gran-
deur MN de l'objet ainsi que sa distance MA a la lentille; ajon-
fant & cette derniére la petite ligne AP, que nous déterminerons
dans la seconde parlie, on aura MP. Cherchons maintenant 2P,

Pour cela supposons que les points M et N, tout en restant sur
une méme perpendiculaire MN a I'axe de Ialentille, s'éloignent
toujours davantage de celle-ci, en demeurant tontefois sur les
axes respectifs NP et MP des pinceaux émanés de N et M, alors
en considérant que la divergence de ces pinceaux devient tou-
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jours moindre, et que Vellet de la lentille, qui est de changer
celle divergence en convergence, resle toujours le méme, on
comprendra qu'aprés le passage dans le verre ces pinceaunx
convergeront de plus en plus, de telle sorle que les points o' et
w’, toujours places sur p'P" et 2P’ et sur une perpendicuiaire
a'm’ i Vaxe de la lentille, se rapprocheront aussi sans cesse de
celle-ci.

Lorsque les points N et M seront arrivés a une distance infinie
de la lentille, les pinceanx incidents deviendront des faisceaux,
et 'image n'm’ aura pris une cerlaine position et une certaine
grandenr 2", La distance 2P’ sera changée en m'P et m'B en
m’B. Cette distance B’ de la lentille 4 'image d'un objet in-
finiment ¢loigné a été appelée par tous les auleurs distance fo-
cale de la lentille, et c'est celle que I'on considére ordinaire-
ment. On pressent déja, dapres ce quon vient de dire, que
c'est bien plutot Pue” qu'il serait important de connailre et
d’employer comme caracléristique des effets de la lentille,
puisque c'est celle-ci, et nor la premiére, qui entre dans la for-
mation du triangle m"P'a” en méme temps que limage m"n".
Pour distinguer cetle ligne P'm", qui, nous le croyons, n'a pas
¢té remarquée jusqu'ici, nous Pappellerons distance focale ab-
sofue de la lentille. Si la lentilie en question éfait infiniment
mince , alors les points P et P’ seraient confondus en un seul,
comme nous U'avons déja dit. Ces deux points coincideraient en
oulre avee celui ot cette lentille idéale serait rencontrée par son
axe, et dans ce cas les denx lignes m"D et m'P’ seraient égales.
Dés lors notre distance focale absolue m"P n'est autre chose

qud la distance focale ordinaire ' une lentille infiniment mince
- gui serail placée en P, On voit maintenant pourquoi nous lui
avons donné Ja qualification d'absolue.
Dans la seconde partie, nous donnerons la formule qui per-
met de la caleuler, et tout a Theare nous ferons connaitre les

moyens de la déterminer expérimentalement.
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Ou congoit quelle dépend des rayons de courbure des laces
de la lentille, de son épaisseur et de P'indice de réfraction dun
verre dont elle est faite.

§ 13. Avant de quitter le sujet de la formation des images
par une lentille convergente, exposons ce qui se passe quand ,
regardani un objel au travers d'une lentille, on fait avancer ou
reculer celle-ci sans déplacer ni I'eeil ni I'objet. Supposons
quon prenne une lentille biconvexe de 9 a 10 centimétres de
distance focale, ou, comme on dit, de foyer; que, la tenant &
la main et le bras aussi allongé que possible, on la place pres-
que en confact avec la flamme d’'une bhougie; dans celte posi-
tion, la flamme vue au travers de la lentille paraitra droite,
fort peu agrandie, et ne le serait pas du tout si le contact avee
la flamme était rigoureux et la lentille infiniment mince. Que
maintenant, sans bouger la téte ni I'eeil, on raméne a soi len-
tement la lentille en regardant toujours la flamme au travers,
voici ce qu'on observera : la flamme ira en s’agrandissant tris-
rapidement; et déja, & une petite distance de la bougic, un
seul point de la flamme ou de la méche couvrira toute la sur-
face de la lentille. A ce moment-la, celle-ci sera tout enlicre et
uniformément éclairée; continuant le mouvement de la lentille,
on verra reparaitre I'image de la flamme, mais, cette fois, ren-
versée, d'abord trés-grosse, mais diminuant de plus en plus.
Arrivée 4 un certain dcgré de pelitesse, cette image toujours
renversée recommencera i croitre de nouveau jusqu'a ce qu'elle
devienne assez grande pour qu'un seul de ses points couvre
tonte la lentille; 4 ce moment, et comme tout & I'heure, la
surface sera entiérement et uniformément éclairée. On verra
ensuite la flaimme subitement redressée, fort grande et dimi-
nuant de nouveau jusqu'au moment oir, la lentille arrivant au
contact avec I'eeil, elle paraitra presque de grandeur naturelle.
En résumé, I'image aura été droite deux fois, au commencement
et ala fin du mouvement, et renversée dans le miliea de la
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course. Le grossissement aura été deux fois égal & I'umité;
deux fois il aura été infini, et au milieu il aura eu un minimum.

Dans toutes les phases qui viennent d'étre décrites, on ne
verra pas nettement la flamme de la bougie : ce n'est que pour
certaines positions de la lentille qu’il en sera ainsi. Ceux qui
savent I'optique se rendront aisément raison de ce fait; toute-~
{ois, on verra assez bien la flamme en question pour s’assurer
qu'elle parait grossir, diminuer, se renverser et se redresser,
ainsi que nous venons de le dire. Ces singulicres apparences
s'expliquent aisément, comme on le verra dans la seconde par-
tie, par la discussion d'une formule trés-simple.

§ 14. Revenons maintenant a notre distance focale ahsolue.

Tout ce que nous avons dit a cet égard an § 12 et en consi-
dérant la figure 9 est vrai non-seulement pour une lentille
simple biconvexe, mais aussi pour un systéme optique quel-
conque formé d'autant de lentilles qu'on voudra. En effet, nous
avons vu a la fin du § 8 que les centres conjugués exisient
également dans un pareil systéme; dés lors on peut se repre-
senter que P et P’ (fig. 9) représentent ces points remarquables
du systéme en question, que KAL et KBL figurent sa premicre
et sa derniére surface, et qu'enire elles il y en a un nombre
quelconque non representées. IL n'y aura rien de changé a nos
triangles fondamentaux NMP, m"2"P’, el aux conséquences que
nous en avons lirées.

Lorsque e systéme consistera dans une lentille simple trés-
mince, il n'y aura que fort peu de différence entre sa distance
focale absolue et sa distance focale ordinaire, et c’est parce que
dans les calcals de 'optique on néglige ordinairement I'épais-
seur des verres employés, qu'on a été conduil & considérer seu-
lement la seconde de ces distances.

Au contraire, dés que les lentilles en question auront une
épaisseur sensible, on pourra arriver a ce résultat anormal ,

que des lentilles d’une distance focale ordinaire égale peuvent
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donner, d'un méme objet fort éloigné, des images de gran-
deurs tres-différentes. La figure 10 fait comprendre aisément
la chose. Soit ACLK une premiére lenlille dont les centres
conjugués sont P et P, et la distance focale ordinaire est Bm";
soit une seconde lentille plus grande et plus épaisse K'AL'L'BK,
dont les centres conjugués sont Q et (', et la distance focale
ordinaire est Bm”, égale a la premitre; on a placé la grande
lentille relativement & I'antre, de maniére que lears axes coin-
cident, ainsi que les deax points B, o les surfaces postérienres
sont rencontrées par cet axe commun. Soit NP et N'Q) les axes
paralléles de deux laisceaux obliques arvivant sur les denx len-
tilles, d'un méme point N ou N* de P'objet, infiniment ¢loigné ;
soit MQ I'axe du faisceau commun aux deux lentilles venant
d'un antre point M de Tobjet, placé sor Mm". L’'image sera
m"n" pour la premiére lentille, tandis qu'elle sera m"p" pour la
deuxieme; Ia premiére sera moindre que la seconde, et cela
d’antant plus que les cenires de départ P et ¢ seront plus dis-
tants ['un de Pautre.

La seconde lentille K'AL'L'BK’ peut méme, dans la figure
10, représenler un systeme optique convergent quelconque,
dont I'épaissenr ou plutot Ja longueur serait AB; ainsi, K’AL’
pourra figurer la surface antérieure du premier verre d'un ob-
jectif double de daguerréotype, et K'BL’ la surface postéricure
du second objectil ou celle qui regarde la glace dépolie; dans
ce cas, la longuenr AB est assez grande pour que la distance
Q" aille & plusieurs centimeétres, en sorte que les images m“n”

"p" seraient de grandeur trés-différente. En fait, un objec-

el m
tif double francais de 25 centimetres de foyer (acception ordi-
naire) et un objectif achromatique simple de 35 centiméires
de foyer (méme acception) donnent des images a peu prés de
méme grandeur. Voila la confusion a laquelle on arrive en con-
sidérant la distance focale ordinaire d'un systtme oplique au
lieu de sa distance focale absolue.
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On peot méme rendre Ja chose plus frappante encore de la
maniére suivante : supposons qu'on a une lentille d’un mélre
de distance focale; 4 99 centimétres de celle-ci, placons-en
une aufre d'un foyer trés-long, et par conséquent ne modifiant
que {rés-peu P'effet de Ia premiére, un verre plan méme, si
T'on veut. Un pareil systeme renfermé dans un tube sera un
objectif tout & fait analogue al'objectif double de photographie.
Il donnera comme cedernier une image renversée plus ou moins
nette del'objet éloigné quelconque placé au-devant de la premiére
lentille, seulement lalongueur del'appareil sera énorme; 'image
formée sur la glace dépolie et celle-ci elle-méme seront &
moins d'un centimétre de la seconde lentille. Suivant la défini-
tion ordinaire de la distance focale, il faudra dire que cet appa-
reil aun centimétre environ de foyer, et pourtant il donnera des
images & peu prés aussi grandes que la lentille simple d'un
métre de distance focale; or, une lentille d'un centimétre de
foyer aurait donné des images cent fois plus petites. On auarait
donc deux systemes, I'un simple, l'autre composé, définis par
une méme distance focale et dont 'un donnerait des images
cent fois plus petites que I'autre.

Concluons done que si I'on veut s’entendre’la~dessus et pré-
voir quelle sera la grandeur des images formées par des sys-
itmes optiques de constructions et de natures djverses, ¢ faut
absolument les définir par leur distance jocale absolue et non
plus, comme on Ua fuit Jusqu’ici, par la distance de leur der-
niere surface a Uimage.

Enfin les personnes qui connaissent la théorie des microme-
tres ou des réticules placés au foyer des objectifs de lunettes
que l'on adapte a une foule d'instruments de géodésie ou d’as-
fronomie, comprendront aisément que foutes les fois que dans
ces théories on a a considérer la distance focale des objectifs,
c'est de leur distance focale absolue qu'il est question, et non
pas de leur distance focale ordinaire.
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Il est cependant une condition essentielle pour qu'il y ait
réellement avantage a Padoption de la distance focale absolue,
comme caracléristique des appareils photographiques; il faut
que lorsque cette distance est ]arménua pour deux systémes,
différents d'ailleurs par leur construction, ils donnent toujours
du méme objet placé & la méme distance des images d'égale
grandeur. Or, c’est justement ce qui a lieu, quoique la chose
ne soit pas évidenle @ priori,; mais nous ferons voir dans la
seconde parlie que lorsqu'on considére un objectif double de
daguerréotype, un objet & reproduire et son image sur la glace
dépolie, on obtiendra une image de méme grandeur, en em-
ployant, aulieu de I'objectif double, une lentille infiniment mince
de méme distance focale absolue que lui, etla mettant au lien
qu’occupait auparavant le centre darrivée du systéme; il fau-
dra, de plus, reculer la glace dépolie d'une quantité égale a
la distance des centres conjugués. Dés lors, puisqu’un systtme
double quelconque produit les mémes effets que la lentille sans
¢paisseur de méme foyer que lui, deux syslémes qui ont la
méme lentille ¢quivalente produiront des effets identiques, du
moins sous le rapport de la grandeur des images. On se rap-
pellera queles distances & 'objet devront étre complées a partir
du centre d’arvivée pour chaque appareil. 1l sera done utile de
marquer sur le tube qui sert de monture les points qui corres-
pondent aux centres conjugués.

§ 15. Voyons maintenant comment on déterminera celte dis-
tance focale absolue. Pour cela, supposons (fig. 11) que KAL,
KBL soient la premieére et la derniére surface d'un systéme op-
tique; P et P’ les centres d'arrivee el de départ; NP I'axe du
faisceau oblique arrivant de U'extrémité supérieure d'un objet
infiniment éloigné; P'n la direction de ce méme axe a son
emergence ; que Mm représente a la fois I'axe du systéme el
aussi celui d'un faisceau émané du point de T'objet placé sur

cet axe; enfin, que mn soit I'image, I'angle MPN est égal &
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Pangle mP'n. Si donc on connaissait le premier, on aurait le
second ; mesurant en outre la grandeur de l'image mn, letrian-
gle rectangle mPn, ot I'on connait les frois angles et le coté
mn, permetira de calculer P'm ou la distance focale absolue ; si
on en retranche Bm, distance focale ordinaire facile & mesurer,
on aura B, ce qui permeltra de marquer la place de P’ sur le
tube de la monture. En retournant le systeme bout pour bout,
et faisant la méme operation, on trouvera de méme la position
du point P. Quant a I'angle NPM, on pourra le mesurer avec un
theodolite,

Cela suppose qu'on a la facilité d’observer un objet infini-
ment ¢loigné et sous-tendant malgré cela un angle NPM, assez
grand pour que l'image mn ne soil pas trop pelite et puisse par
conséquent ¢tre mesurée avec exactilude. Or, nous ne connais-
sons que les distances d’¢toiles qui remplissent cetle double con-
dition, et il n'est malheurcusement pas possible d’observer leur
image de nuit sur la glace dépolie et encore moins de la mesu-
rer avee un appareil simple et peu cotteux.

Il serait bon, en ontre, que 'angle sous-tendu par I'objet [it
de 5 degrés 43 minutes et demie ; car alors I'image mn serait
toujours le dixieme de P'm, et dés que 'on aurait la premiére
en millimétres, le méme nombre donnerait la seconde cn centi-
metres.

Or, on peut créer un objet artificiel réunissant tous ces avan-
tages d'une maniére trés-simple.

Soit MLHN (fig. 12) un tube d'une longueur KO égale a
10 centiméires ; dans le fond MN de ce tube pratiquons une
ouverture ronde centrale ab de 1 centimétre, et placons a P'autre
bout une lentille LH, dont le centre d’arrivée soit O etle cenlre
de départ O; supposons, de plus, que la distance focale absolue
de cette lentille soit égale a KO ; d’aprés ce qu'on a vu précé-
demment, § 12, les pinceaux LaH et LOH, émanés des points
a et b de Vouverture, se changeront aprés leur passage au tra-
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vers de la lentille en faisceaux TLHV et RLHS, dont les axes
seront les lignes bristes «BO'G et HOO'F. Si maintenant nous
placons le tube en question au-devant de la premiére surlace
RTSV d'un systeme aplique quelconque, dont les centres conju~
gués sont P et P, la derniére surface KX, mn sera I'image de
Pouverture ; nous serons dans les conditions que supposait la
figure 11, et les raisonnements du commencement de ce para-
graphe deviendront applicables. Dés lors, si on recoit I'image
sur une glace dépolie placée en mn, qu'on la mesure exacte-
ment au moyen d'une petile échelle en millimétres tracée sur la
glace en question, le nombre ainsi obtenu donnera en centi-
metres la loengueur P77, soit la distance focale absolue du sys-
ttme. Nous nommons focabsolumeire Tensemble du tube et
de la pelite échelle tracée sar le verre dépoli. Tel est Uinstru-
ment que nons propesons pour la détermination des distances
focales dans les appareils photographiques.

§ 16. Avant de passer a la seconde partie de ce mémoire,
nous ferons connaitre une propriété fort curieuse du centre de
départ d'un systéme dptique, propriéié qui a été utilisée dans les
appareils de photographie appelés panoramiques.

Soit, fig. 13, un systéme oplique quelconque convergent re-
présenté seulement, pour plus de simplicité, par ses deux centres
conjugnés P et P’ et la droite PP" qui les joint. Sur I'axe PP
supposons un objet A infiniment ¢loigné ayant son image en «
sur une glace dépolie verticale cylindrique bb'ae’, dont le rayon
de courbure soit Ka. Soit un aulre objet B aussi {rés-éloigné,
envoyant un faisceau oblique dont’I'axe est BPP'6 et formant
I'image de B en b sur la méme glace dépolie.

Cela posé, supposons que le systeme optique représenté par
PP’ tourne autour du point K, que dans la figure 13 on a sup-
posé placé sur PP, mais au dela de P’ par rapport & la glace
bb'ad’; le systéme prenant par exemple la nouvelle position
PP/, les axes BPP'G et APP'¢ deviendront respectivement
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BP.P/b el AP, P/a’; BP, étant parallele a BP et AP, AP; les
points @ et b prendront les positions respectives ' et b, en
sorte que le systéme ayant tourné autour d'un axe vertical
projeté en K, el cela de droite & gauche, I'image ab aura
marché de gauche & droite sur la glace cylindrique et sera ar-
rivee en a'b’.

Si maintenant on suppose (lig. 14) que la projection de l'axe
vertical de rotation du systeme soit placée en K, toujours sur
I'axe, mais entre P et la glace b'ba’a, et qu'on fasse les mémes
suppositions et constructions que ci-dessus, on verra que le sys-
leme oplique ayant tourne comme toul a 'heure, de droite &
qauche, l'image ab se sera déplacée cette fois sur fa glace dé-
polie en marchant aussi de droite & gauche. On conclut de la,
et la figure 15 le confirme, que si le point K eut coincidé avec
P, il 'y aurait pas eu déplacement de l'image pendant la ro-
tation. En [aisant donc tourner lentement le systéme optique
autour d'un axe projeté en P’ (fig. 13), on verra les images des
objets placés au-devant de I'appareil se peindre successivement
sur la glace cylindrique, y rester immobiles pendant leur ap-
parition, s'éleindre & mesure qu'elles sortent du champ de T'in-
strument et faire place a d'autres qui s éteindront a leur toar,
Il est d'aillenrs évident que, si, comme nous I'avons supposé, le
rayon de courbure de la glace est égal & ka, les images pen-
dant la rotation auront eu la méme netieté que s'il n'y avait pas
eu mouvement.

Dans les systemes d'objectifs doubles employés pour la photo-
graphie, il résulte des distances focales de chagque objectif
isolé et de lintervalle qui sépare ces derniers, que les points
d’arrivée et de depart sont placés a linverse de ce qu'on a sup
posé jusqu'ici, c¢'est-a-dire que le centre conjugué le plus
voisin de la premiére surface est le point de départ et non le
point d’arrivée, et que le centre conjugué le plus voisin de la

dernitre est le point d'arrivée el non celui de départ. D'ailleurs
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les raisonnements seraient les mémes que ci-dessus, et condui-
raient aux mémes conséquences.

Dans les appareils panoramiques conslruils jusqn':‘l ce jour,
¢'est par ldtonnement quon trouvait la position du point K.
On ne connaissait ni la maniére de le déterminer analylique-
ment, ni les autres propriétés opligues gne nous Iui avons re-

connpues.

e 0 L
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CHAPITRE 1L

-

SOLUTION DE QUELQUES PROBLEMES UTILES AUX PHOTOGRAPHISTES,

§ 17. Les personnes qui se servent de la chambre noire pour
faire des portraits ou des vues onl & chaque instaut inléréf a
connaitre, oufre Ia distance focale de leur objectif, la grandeur
de l'image qu'elles obtiendront, U'é¢loignement du sujet i re-
produire, et enfin le tirage que devra avoir Ia glace dépolie. De
ces qualre quantités deux ¢lanl connucs, on peul aisé¢moent
conclure les deux autres par le caleul. Le plus ordinairement
on connait la distance focale de 'objectif et le rapport de gran-
deur de l'image a T'objet. Ce dernier nombre est une [fraclion
dont le numeérateur 1 indique qu'on a pris objet pour unite,
et le dénominateur exprime combien la grandeur de Tohjet
conlient de fois celle de I'image. Ainsi le rapport de 'image a
'objet ¢lant =, cela signifie que I'image est quinze fois plus
petite que V'objet. Si ce rapport élait + ou Punité, I'image et
I'objet seraient de méme grandeur. Pour faciliter dans la prati-
que I'évalnation de ce rapport, nous ferons choix de deux
unités; 'une qui sera la grandeur ordinaire de la téte d’une
personne, soit 21 centimeétres; elle servira pour les poriraits;
Vauftre, que I'on emploiera pour reproduire les monuments ou

B
g
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les vaes, sera ta taille moyenne de 'homme; savoir, 175 centi-
|l A L3
métres. Daprés ces données, nous avons calenlé le petit tablean
ci-dessous, qui donne le rapport de I'image & I'objet pour la
grandeur donnée que devra avoir sur I'épreave, soil la lete du
portrait que I'on veut faire, soit le personnage entier qui ligu-

rera dans j{l vae ou le baysage en (]ll.i’Sl.iUI!.

e e—tc T e ——— e Exace e
RAPPORT i GRANDEUR GRANDEUR !H
de I'image de I'image de l'image [
A LOBIET D UN HOMME, D UNE TETE.
11 1,750 mill 210 mill.
12 87H 105
13 383 70
14 37 32
15 350 42
16 292 35
17 250 30
18 219 26
1.9 194 23
1’10 175 21
1/15 117 14
120 88 11
123 70 8
1/30 58 7
i 1/35 30 6
] 140 44 5 14
1/43 39 4 34
1,50 35 4 14
160 29° 312
170 25 3
1/80 22 2 12
190 19 213
1100 18 2 1/10
1/120 15 1 34
F 1/140 13 112
1/160 11 113
1/180 10 115
1/200 9 1

Veuat-on par exemple faire un porirait ot la téte ait 26 mil-

limetres de grandeur, le tableau fait voir que le rapport de
I'image & l'objet sera {. Est-il question d’une vue ol doivent
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fiqurer des personnages ayant 11 millimétres de hauteur, le
meéme lableau donne pour le rapport en question —=. Ce
choix de la hauteur de 1'homme pour mesure, lorsqu'il s’agira
de vues ou de monuments, sera souvent ulile pour savoir a
'avance, el sans transporter sa chambre noire sur les lieux, si
'on peuf reproduire tel monument en entier ou telle étendue de
terrain sur une plaque ou glace de grandeur donnée. Supposons
qu'on ait un appareil normal pour plaque de 22 centimétres
sur 16, et qu'il soit question de reproduire sur cetle étendue un
monument quelconque. Profitant de ce que quelqu’nn passe
tout aupres, ou, a défant, y envoyant un aide, nous évaluerons
pir estime combien la hauteur du monument en question con-
tient de fois celle du personnage. Supposons que nous jugions
que c'est 15 fois & peu preés, nous en conclurons qu'en sup-
iiosant notre plaque remplie en hauteur par le monument, le
personnage y occuperaif un espace éqal a ;5 de 16 centimé-
fres, soit 10 millimétres & & peu prés. Notre tablean nous
apprend que le rapport de Timage & U'objet est alors environ
—; or, lout & I'heure, un second tablean nous apprendm que,
pour I'obtenir, il faut se metire & une distance de 86 métres de
I'objet pour un daguerréotype de 50 centimeétres de foyer. Si donc
la disposition des lieux ne nous permet pas de nouns ¢loigner au-
tant et que notre objectit ail un foyer égal a 50 centimetres, ou
soit plus long encore, nous devrons renoncer 4 avoir le monu-
meut entier sur la plaque normale.

Nous pourrons par un procéde analogue évaluer Pespace
qu'occuperait sur notre plaque la hauteur d’un monument pris
depuis U'endroit ol I'on se trouve. Pour cela, se mettant en
face de lui, on fera marcher devant soi un aide qui s'¢loignera
jusqu’a ce qu'il paraisse de la méme grandeur que la hauteur
du monument. On mesurera alors approximativement la dis-
{ance ot I'on est de cet aide, et s'il est, je suppose, & 14 métres

de distance, comme 1% métres contiennent huit fois la hauteur
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de I'liomme, 1 métre 75, on saura, § 12, que la distance focale
de I'objectif contient aussi huit fois la grandeur quaurait sur la
glace I'image du personnage, et par conséquent aussi celle du
monument. Si donc la distance focale de Pappareil est de
40 centimefres, 'image du monument sera de 5 centimitres en
hauteur.

Cest en faisant usage des tableaux en question et par les
moyens qui viennent d'étre indiqués, que F'on pourra souvent
éviter le transport d'appareils embarrassants et l'emploi d'instru-
ments propres a mesurer les angles.

§ 18. Dés que l'on a la distance focale de T'objectif el le rap-
port de grandeur de 'image a 1'objet, rien n'est plus facile que
de trouver la distance de 'objet au point d’arrivée de I'objectif.
En effet, o/ suffit de multiplier lo distance focale donnée, par
le dénominatenr du rapport en question aprés y avoir ajouté

?

Punité; quant au tirage de la glace dépolic, c'est-d-dire la
distance de I'image aa point de départ du systéme objectif, pour
I'obtenir, on ajoutera a la distance focale donnde le quotient
de sa division par le dénominateur du rapport.

Ainsi soit la distance focale absolue, égale & 45 centimétres,
et le rapport de I'image a I'objet, -, on multipliera 0,45 par
15 plus 1, ou 16, et 'on obtiendra 7 métres 20 pour la distance
de 'objet au point d’arrivée.

De méme, si 4 la distance focale, 45 centimétres, on ajoule
3 centimétres résultat de la division de 45 par 15, on aura
48 centimétres pour Ia distance de la glace dépolie au point de
depart de Tobjectif.

Si I'on n'a pas hesoin d'une extréme exactitude dans les reé-
sultats, on pourra supposer confondus en un seul les poinls
d’arrivée et de départ du systeme optique employé. Dans le cas
d'un objectif achromatique simple, on pourra prendre le milieu
de son épaisseur pour le point commun d’oi I'on complera

les distances soit de I'objet, soit de I'image. Dans le cas de
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I'objectif double, on prendra le milien de l'intervalle des deux
objectifs pour ce point commun.

§ 19. Cest par les régles qui viennent d'étre indiquées (ue
nous avons calenlé le tableau suivant, qui donne les distances
de P'objet et de son image aux points respectifs d'arrivee et de
départ, connaissant la distance focale et le rapport de gran-

deur de I'image.
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La premicre colonne verticale contient les distances focales
de 5 en 5 centimétres, depuis 10 jusqu'a 100 centimolres;
pour des distances focales infermédiaires, on pourra interpo-
ler ou plutot caleuler les résultats par les régles ci-dessus. La
seconde colonne verticale, qui porte en téte le nombre frac-
tionnaire + ou 1, donne, pour ce rapport de grandeur de
I'image, et vis-i-vis de chaque distance focale de la premiére
colonne, denx nombres : le premier est la distance de 'objet au
point d'arrivée; le second, celle de Ja glace dépolie au point de
départ. La somme de ces denx nombres est doune la distance de
Vobjet & I'image, plus le petit intervalle qui sépare les centres
conjugués. La troisitme colonne verticale donne les mémes
choses, mais pour le rapport d'image I; la qualritme co-
lonne les donne pour le rapport &, el ainsi des suivanles.

Suppesons quavee un objectif de 30 centimétres de foyer on

= de grandenr.

veuille faire nn portrait an

Partant du nombre 30 de la premicre colonne verticale, on
suivra la ligne horizontale jusqu'a ce qu'on soit arrivé dans la
verticale en tote de laguelle se trouve [; on tombera aivsi
sur la case on se trouvent les deux nombres 2,10 et 0,35 ; le
premier indique que la personne devra étre a 2 méires 10 cen-
limélres du point d'arrivée de Uobjectil, el le second nous ap-
prend que la glace dépolie mise au foyer sera & environ 35 cen-
timétres du point de départ,

Les résullats du tableau sont exacls & moins d’un centimétre
prés; plus dexactitude eit été inutile, surtout pour le mombre
qui détermine la distance de la glace dépolie, atlendu que ¢’est
toujours par la mise effective au point, qu'on regle celle-ci.
Celte dernitre quantité est tontefois bonne a connaitre d'avance,
quand ce ne serait que pour savoir si le local oit I'on opére est
assez grand pour opérer telle réduction d'image avee fel foyer
dobjectil.

Ainsi, veul-on savoir quelle est 1a plus petite réduction qu'on
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pent faire avec un {oyer de 40 centiméfres, dans une chambre
dont la plus grande dimension est de 4 métres, otons d’ahord
1 métre pour la place de celui qui posera et pour celle de 'o-
pérateur mettant au point sur la glace dépolie, nos 4 métres
se réduiront & 3 métres,

Dans la ligne horizontale qui correspond au foyer 40, fai-
sons 4 vue la somme des deux nombres de chaque case jusqn’a
ce que nous trouvions le résultat qui approche le plus de
3 métres, mais en moins, et nous arriverons ainsi au nombre
2,88, fourni par la colonne verticale en téte de laquelle se
trouve .

Telle sera la plus petite grandeur d'image que nous pourrons
obtenir dans ce local avee cet objectil.

Le premier tableau nous apprend que la fcte de notre por-
frait aurait sur épreuve 42 millimetres, et qu'un personnage
de taille ordinaire occuperait 35 centimétres; or, comme I'es-
pace de nelteté suffisante que I'on obtient avec un objectil n’est
guére que Ja moitic de sa distance focale, nous n'aurions ici
que 20 centimétres, fandis qu'il en faudrait 35. Dans ce local
exigu, nous ne pourrions done pas faire de portraits en pied.

Un probléme analogue serail celui oit, ayant la distance de
I'objet a 'image, on demanderait quel foyer devrait avoir I'ob-
jectif pour obtenir une réduction donnée dans le portrait.

Ainsi, on peut disposer d'un espace de 4 maoltres, et on veut
faire une réduction an © en employant un objectil du plus
long foyer possible; quel sera ce foyer? Pour le connnilre,‘_in
consulte la colonne verticale en téte de laquelle se trouve ¢,
ct, faisant la somme des deux nombres de chaque case jusqu'a
ce que je trouve le résultat le plus voisin de 4, jarrive ainsi
jusqu'a la septitme case, qui me donne 4,05 et correspond
horizontalement au foyer 40, qui sera celui qu'on cherchait.

La solution des divers problemes que les tableaux ci-dessus

permeltent de résoudre avec flacilité fournira souvent apres

Droits réservés au Cnam et a ses partenaires



43

coup des données qui pourront étre utiles. Ainst, dans une voe
faile avec un objeclil connu, on pourra relrouver la grandeur
réelle d'une place qui séparait I'opératear du monument re-
produit, la hauteur eflective de celui-ci, ou lelle antre dimen-

sion qu‘on peut avoir intérét i connailre.

Ly
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CHAPITRE PREMIER.

DETERMINATION DU CENTRE OPTIQURE D’UNE LENTILLE.

§ 20. Soit KALB (fig. 16) une lentille biconvexe dont les
centres de courbure sont et (7, et I'axe CC". Par ces centres
menons deux rayons quelconques CM, C'N paralléles entre eux
et déterminant une transversale MN qui rencontre 'axe en 0.
Si MN est le trajet dans la lentille du rvayon incident IM et que
le rayon émergent soit NR, on aura par la loi de la rélraction

o . Ly L,
Sin f==nsin g et sin ' =n sing.

Mais puisque CM et C'N sont paralléles, ona o=’ et par suite

i =14 cause des équations ci-dessus; d’oi IM et NR paralléles
entre elles. La méme chose se prouve aussi en considérant que
les rayons CM, C'N étant paralléles, les tangentes en M et N anx
arcs de cercle KAL et KBL seront aussi paralléles. Or ces tan-
gentes représentant les traces des plans tangents aux surfaces

sphériques, dans les mémes points M et N, ceux-ci seront éga-
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lement paralleles entre eux : dés lors le rayon incident IM se
{rouve & son enlvée dans le verre en M dans les mémes circon-
stances que il avait a traverser un milien ferminé par deux
plans paralléles, cas oit, comme l'on sait, la direction d'émer-
gence est paralléle 4 celle d'incidence.

Les triangles semblables MOC et NOC’ donnent CM ; ON
22 €O 2 €0 ou, ce qui estlameme chose, AC: €'B 22 CO 1 €0

oun encore AQ - CO : BO4C0O :: CO 2 €0, don AQ 1 BO

22 CO €0 CM 2 OX; en désignant les rayons CM et ON
par et ', Ja proportion devient enfin A0 : BO 1: 14

]

P'on désigne par e I'épaisseur de la lentille, on a AQ 4 BO

s
== ¢, de la proportion ci-dessus et de cette équation on tire :

A0=—"_ 30— .1
7 r-Fr

ces résultals ne contenant rien qui caractérise la position
des rayons paralicles CM et G'N, sont les mémes pour tous les
couples de rayons pareils qu'on voudrait mener. Donc le point
O est le méme pour toutes les transversales telles que MN. En
donnant a 7 et 7’ des valenrs convenables dans les formules (1),
on en conclura la position du point O pour chaque cas parlicu-
lier. Il est évident que les valeurs négalives de 7 et #* répondront
& des sur(aces concaves au licu d'¢tre convexes; que des valeurs
infinies répondront au plan, enfin que des valeurs négatives
obtenues pour AO ou BO indiqueront que le point O est placé
inversement par rapport aux points A et B.

§ 21. Examinons quelques cas particuliers : 1° soit #" ==,
nos formules donnent AQ == BO == ¢, ce qui est ¢vident @
priori par la raison de symétrie, et cela quel que soit le signe
de r ou +, c'est-a-dire que la lentille soit équibiconvexe ou
équibiconcave. Le centre oplique se confond ici avec le centre
de figure.

20 Supposons que 77, d'abord égal & 7 et de méme signe que
=" dupposons (| ERL 8t e 514 jue
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lui, aille en augmentant jusqu'a devenir infini, AO ira depuis
L e jusqu’a o, tandis que BO ira depuis ;e jusqu’a e. Ces deux
résultats s’accordent pour indiquer que le point O se trans-
porte depuis le milieu de I'épaisseur jusqu’au point A sommet
de la courbe KAL; cela encove est évident, car (lig. 17) loutes
les droites passant par A telles que AM sont des transversales &
cause des vayons paralleles AC et MC', le dernier étant infini;
ou bien encore le plan tangent en A élant parallele & la face
plane KBL, tout rayon incident au méme point A ressortira
parallelement & sa direction primitive, comme ayant traverse
une lame a faces paralléles.

3° Soit maintenant 7 négatil, c'est-a-dire la surface posté-
rieure de la lentille concave, comme dans les figures 4 et 5.
Supposons d’abord que la valeur absolue de 2’ soit plus petite
que celle de 7, dans ce cas AO sera posilif et BO négatif; il ré-
sulte de 1 que le point O sera hors de la lentille, et placé & la
droite de B, ainsi que le représente la figure 5.

Lorsque ' toujours négatif aura obtenu la méme valeur ab-
solue que 7, AQ et BO seront toutes deux infinies en méme
temps, mais de signe contraire, ce qui nous apprend que le
point O toujours & la droite de B s’en sera éloigné & I'infini.

Or cela est aussi évident a prior, car (fig. 18) les courbes
KAL, KBL étant égales, toute parallele AON & T'axe est une
transversale i cause des rayons paralléles CM, €N, ou des plans
tangents paralléles représentés par les tangentes qui le sont
aussi. Les transversales, étant paralleles & V'axe, rencontreront
ce dernier a 'infini.

Enfin quand 7/ aura atteint une valeur absolue plus grande
que 7, on aura AQ négatif et BO positif; le point O placé a I'in-

- fini de la lentille quand 7' == est & droile ou & gauche, suivant
qu'on est arrivé a cetle égalité en partant de 2" plus petit ou de
7/ plus grand, sera pour ce dernier cas & la gauche de A, ainsi
que le représente la figure 4.
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En faisant passer » par les mémes phases que nous avons fail
subir a 2/, on obtiendra les mémes résultats que ci-dessus, seu-
lement toul ce qui avait lien & droite aura lieu a gauche, et vice
versd. .

Enfin si le dénominateur » 4 7 n’est pas infiniment petit et
que e soit nul, alors AQ et BO deviennent nuls ¢galement. Ceci
nous apprend que dans la lentille sans épaisseur ou infiniment
mince le centre oplique se confond avec les points A et B,
fig. 16, qui, dans ce cas, n'en forment plus enx-mémes qu'un
senl.

Mais, e ¢lant toujours supposé trés-pelit, si» et # sont pres-
que égaux et de signes contraives, r < 7’ sera aussi fort petit,
c'est-d-dire comparable & ¢; dans ce cas, AQ et BO conservent
des valeurs finies qui n'établissent plus la coincidence du point
0 avec A ou B, quoique ces dernicrs soient presque confondus
en un seul.
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CHAPITRE 11,

DES CENTRES CONJUGUES D'UNE LENTILLE.

§ 22. Prolongeons (fig. 16) les rayons incidents et ¢émergenis
paralleles entre cux, IM et NR, jusqu’a leur rencontre en P et
P’ avee I'axe CC' et cherchons les dislances AP et BP. Dési-
gnons par o I'angle MOA que la transversale MN fait avec I'axe.

] o er er’
Nous avons déja trouvé, § 20, A0 == ———; B0 = ——;
r 4 re 4T
en refranchant ces vésultafs respectivement de 7 et ', nous trou-
verons
rrr—e g —
€= —————, 00 = — T
o r

de plus les deux triangles MOC, NOC" donneront séparément

» \ i : r / . A\

7osin (g —g) 7 sin (o —¢) ' sin(y — )

RIU = -, ' - X() = - == . -—
sin ¢ sin ¢ _ sin ¢

Le triangle MOC donne encore
0C r4- —e

sin g === sin ¢ == ——————
T r + P

sin o ;
f MC 75

» . T . ] e
nous avons ¢galement par la loi de la réfraction, » étant I'in-

dice, sin 7 == n sin g,
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Les triangles POXM, P'OXN donnent aussi

:rnf = ;.

PO = MO — " T,
sin |‘:£ ‘-C.J
po N0, S — ¢ —X0.. ”“”**:L_.

sin (g ¢ — ')
mettant les valeurs ci-dessus de MO el NO, on anra

PO 7 sin (o _r; sin {t o) PO
T osing ; lg)’l'—u sin g sin (o 4= —p)

Si maintenant nous supposons que la transversale MN soit

7 sin{e — ¢} sin (i — o)

peu inclinée sur I'axe CC, ¢’est-a-dire que ¢ soit un petit angle,
il en vésultera que les ares AM et BN seront peu élendus et que
les rayons incidents el émergenls 1M et RN seront également
peu inclinés sur CC'; par suite ¢, ¢ seront du méme ordre de

etitesse que «; celte derniére conséquence résulte aussi des
77

N o : . P4 —e
eéquations sin ¢ == n sin p et sin ;= H-T"-}':T_ sin g; en

mettant donc au lieu des sinus leur valeur en fonction de l'are,
et négligeant dans les séries les termes du troisieme ordre de

pelitesse, on aura simplement

Pt — r 0 —
T4 T or 4T

i =n

=C
-
1

Dot I'on tire

e (n—1) 1 — o)
9**?:,.—_,':*77':;‘—9'—“ P ¢
L L(rr)—(n—r1)e
u-{-t-——-p—— 3
. o .

Mettant ces valeurs au lieu de sin (y — o), sin ({ — ¢), et
sin (9 = ¢ — ¢) dans celles de PO et P'O, celles-ci deviennent

Po— T (n—l\mﬂ —é) y e (n—1) (r _-_j-'_g_\,
Ty ’,{” rei) \R'—*l,f’}’ (r+r ;fu(rﬂ') (n——-[)er
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valeurs entiérement indépendantes de ¢, ce qui démontre la

er
propriété des centres conjugués. Si de AO == ——— on refran-
U PR

che Tavaleur précedente de PO, il viendra

refn(r +0)—(n—1)e } —re{n—1)(r4+9"—¢)

AP - o _ 0

r 4 r'}{ ﬂ- 4 r’):; (n—1)e !

er

nir+1)—m—1)e

’
er
on trouvera de méme BP' —

nir+=71)—n—ie

Les valeurs de AP et BP' font voir que dés que ¢ est nul, ces
lignes le sont elles-mémes. I n'y a qu'un cas exceptionnel ,
celui oit le dénominateur serait nul en meéme temps que ¢;

i

on
anraitalors e =0, 7 4= ==o0, Qoit ¢ = — 7.

Les valeurs de AP et BP' se présentant ici sous la forme o
sont indélerminées, ct tous les points de P'axe sont centres con-
jugués. Or, cela est évident @ priori, parce que, en verta des
équations ¢ == 0, " == — 7, Ia lentille ne forme plus dans ce
cas quune couche sphérique de verre sans Cpaisseur, qui, ainsi
quon le voil aisément, n'exercera aucune déviation sur les
rayons pen inclinés sur son axe qui la traverseront quelle que
soit d’ailleurs leur direction. Pour chacun d'eux le point de
concours avec 'axe sera en méme temps cenfre d'arrivée et
centre de départ.

Un second cas qui mérite de nous arréter est celui oit 'on
a7 - 1 = e sans qne ¢ soit nul; AP et BP’ se rédaisent
respectivement a »r et #'. Or, ce résultat est aussi évident ¢
priori; en effet, supposons d'abord r et #/ positifs tous deux;
altendu I'équation » +7"==¢, les cenfres conjugués ne forment
pius alors qu'un point qui estle cenfre de courbure commun
des deux faces de la lentille. Des lors tout rayon incident dirigé
vers lui entre et sort de la lentille sans dévialion aucune. Si

+
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¢ est négalif, a cause de r 42" == ¢, les cenfres conjugués
se réduisent également 4 un seul point 1}1:1(,‘('? a droife de la len-
ille, et qui est encore le centre commun de courbure de ses
deux faces. Tout rayon dirigé vers lui traverse la lentille sans
dévialion.

Supposons enfin le dénominateur des valenrs de AP et BP
¢gal & o sans que ¢ le soit, nous aurons

e

r+=ce ;
n

AP et BP seront infinies, d'oit les centres conjugués, a Uinfini
eux-mémes. Dans ce cas, tous les rayons arrivant sur la len-
tille parallelement & 'axe en ressortiront aussi paralleles, ainsi
que le représente la figure 19
Or, ce cas se vérifie aisement comme suit. Le triangle MOC
(fig. 19) donne, les dénominations employées jusquiici étant
7 sin o

toules conservées, CO = —_vw(, —, el Ton a toujours, par la
sin ({ — ¢)

loi de la réfraction, sin ¢ == n sin ¢; mais les angles ¢ et

étant, comme précédemment, supposés trés-petils, T'on pren-

dra les arcs au lieu des sinus; les deux équations précédentes

. - r . , . e 1.
deviendront CO = _—f) - el i == ng, n ¢lant toujours 1 indice de
i—
réfraction; on en tire CO = -—?—L; on {rouvera de méme
n—1
CO = — " doi AB = ¢ = AC 4+ €O + €0 4 CB,
n —1

/

. r r ,
oubien AB—=7» 4+ —— 4+ ——— 4= 7"; ce qui donne,
n—1 n—1

comme ci-dessus, 1'équation
e
P = — —.

n

§ 23. Les valears de AP et BP (fig. 16), que nous avons

trouvées directement, auraient pu étre déduiles des formules
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générales données par M. Biot a la page 474 du tome [ de son
Astronomie , derniere édition.

Ce savant auteur prouve que les lignes que nous avons re-
présentées par AP et BP (fig. 16) ont les valeurs suivantes dans
un systéme optique formé par un nombre quelconque de len-
tilles assemblées sur un méme axe:

(R —1) u

(N —1)u pp— (R ,

AP= ;
P P

N, R, P étant des fonctions censées connues, soit des rayons de
courbure des faces des lentilles, soit de leurs épaisseurs et des
intervalles qui les séparent, soit enfin des indices de rélraction
des milienx successils que le rayon lumineux traverse.

La quantité u représente la vilesse de la lnmiére dans le mi-
licu ot le systéme optique est place.

A la page 482 du méme volume de 'ouvrage qui vient d'éfre
menlionné, on trouve que pour une seule lentille les quantités
N, R, P onl les valeurs suivanles:

(n—1le (n—r1)e

! 1
. 11 {n—rge
N=t——"—; R=1——"; P=(1—0)ui-——+-—"—--},
nr nr ror nr

r, ¥, n, e ayant le.sens que nous leur avons attribu¢ jusqu’ici.

)
Mettant ces valeurs de N, R, P dans les expressions ci-dessus
de AP el BIY, on trouve, comme précédemment,

er er’

AP — —; BP' = - .
nirr)—(n—r1e nlr41) —@m—1)e

Ces formules sont donc exacles; mais la mauniére dont nous

les avons trouvées d'abord a 'avantage d'étre directe, et en-
suite de permetire de s'assurer aisément que la propricté des
centres conjugués cesse d’avoir lieu dés quon ne regarde plus
comme négligeables les troisiemes puissances de 'angle ¢, dans

les développements en série.

_ 3L
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CHAPITRE IHIL

DES DISTANCES FOCGALES ORDINAIRES ET ABSOLUES DUNE LEXNTILLE
ET DE L'IMAGE PRODUITE PAR CELLE-CI.

§ 24. Soit une surface sphérique de séparation représentée
par Vare AM (fig. 20), € son centre, I un point lamineux ;
EC sera I'axe du pinceau qui en émane. Nous supposerons que
tous les rayons composants, fels que EAI, fassent avee I'axe un
fort pelit angle, que nous désignerons par 5. On regardera
aussi 'arc AM comme Irés-petit par rapport au rayon MG
== AC == r. Soit MO le rayon réfracté dans le milien posté-
riear; désignons par n lindice de réfraction du second niilien
par rapport au premier, par @ la distance EA du point E a la
lentille, enfin par # la distance A0; les triangles ECM et COM
donneront :

EC ¢ CM 2z sin 4 2 sin g, CM : OM :: sin AOM : sin ACM,;
ou, ce qui revient au méme (le point M élant peu ¢loigné du
point A, ce qui rend OM sensiblement égal & AO ou y):

@ rirising tsing; 71y i sin (i—o—g) 1 sin (i—g).
La premiére proportion fait voir que ¢ est du méme ordre
de petitesse que 3; 'équation de la rélraclion, sin ¢ = n sin

hl
v
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montee fa meme chose par rapport 4 g Les angles ¢ — o,
{ — o — p sont dés lors aussi du méme ordre.
Prenant done les ares an lien des sinus, la premitre propor-

a -7

tion donnera f==——— o, et, & cause de l'équation ¢ == ny,
-
.o N :
onaura aussi g = —— g; dolt s —y=-gelt—g — p
nr "

(n—1ya—r . .
- —~ »; mellant ces derniéres valeurs au lieu de

nr
sin (1 — o) et sin {{ — o — ¢) dans la seconde proportion, elle

deviendra 7 2y 33 (n—1) a—r tne; d'ou on lire aisement

I'équation

Cette équation, étant indépendante de 5, montre que lous
les rayons du pinceau émané de F, peun inclinés sur son axe
et convrant une petite partie de la surface sphérique de sépa-
ralion des milieux, concourent en un seul point O aprés leur
passage, ou, en d'aufres termes, forment un nouveau pinceau
dont le sommet est en €.

La formule précédente élablit une relation entre n, 7, @ et
y. Elle suppose la convexité de la surface, tournée vers le point
lumineux. Si, au contraire, la surface est concave vers lui, il
faudra supposer » négatif dans la formule. Le point lumineux
¢tant place a gauche de A dans la figure, si dans un autre cas
il se trouve & droile du méme point, on fera @ négalil.

Enfin, si la formule donne pour y une valeur négative, cela
indiquera que O est placé & gauche du méme point A, au lieu
d'vtre a droite, ainsi qu'on I'avait admis d’abord.

§ 25. Supposons maintenant que le rayon MO (fig. 21), qui a
déjir traverse la premiére surface AM pour pénétrer dans le se-
cond milieu, passe dans un troisitme, et snive la direction

XF, aprés avoir franchi la seconde snrface sphérique \B, dont
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le centre est supposé en €' sur 'axe primitif EC. Si le troisieme
milieu est le méme que le premier, I'air par exemple, nous
aurons le cas d'une lentille MABN recevant un pinceau émand
d'un point E placé sur son axe C'C. Pour obfenir la distance
BE du point de réunion I a la lentille, on fera usage de la
formule que nous venons de (rouver. Il suffira évidemment d’y

changer respectivement les quantilés

n, r, a, v,
I , .
en -, — 1, —— {y—ej, =,
n "
en désignant le rayon N == C'B par 7/, I'épaisseur AB de la

lentille par ¢, et la distance BF par «; la formule devient alors

I I .
|

n ! n L e I noo
— == e = -, ou bien —— = - ———— (2],

—7r —y—e) -4 7 o y—ce

Eliminant y entre cette équation et I'équation (1), on trouvera

alnrr'—(n—1) er’} 4= err’

o = (3)

a{ n{n-—1) (r+1)—@n-—-1 "r:jl +(n— 1) er—nrr’

Telle est la formale générale qui donne la distance du point
de réunion derriére la lentille, quand on connait I'épaisseur e,
la distance @ du point lumineux , les rayons de courbure 7 et
7', et I'indice n.

On tire de cette formule plusieurs vésulfats utiles.

Si I'on suppose ' =7 et ¢ = 2r, la lenlille deviendra une

sphére; ces suppositions donnent

al2r —nr} 42
o= : ;
2 (n—1) + (n—2)7r"

faisant a == e , et changeant « en p, p désignant la distance

focale ordinaire de la sphére, il viendra -

(2—njr

r=

1ol o

. 1 r
s ef si l I SUppose 71 == naura p—— -,
s etsi T'on supj onaura p =

RAEE
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Comme dans la sphére les centres conjugués sont confondus
en un seul point, qui en est le centre, en ajoutant le rayon 7 &

#, on aura pour la distance focale absolue d'une sphere :

> ) nr { 3 3
= e p == et ponr p=—;P=__T.
S vyl 2 2
Si nous faisons @ = = dans notre équation générale (3), la

distance « du point de réunion deviendra la distance focale or-
dinaire p d'une lentille quelconque, ot I'on tient compte de

I'épaisseur. On frouvera ainsi

v’ — ot
nrr' — (n-—1)er ‘0

rn—1) (r+ 1) — (n—1)%

En ajontant membre & membre a celte équation celle qui
er’

donne BP, page 49, et qui esl BY —

i N L]
nir+r)—@m—1ue
on trouvera pour la distance focale absolue p -+ Bp == (lig. 11)

nri”’

Pm oou p = — - ~ _ — (3).
nwin—1) (r +1)—@m—r1)"

L'expression de p est donc plus simple que celle de p, ce qui
serail déja une raison de Uemployer plutot que cette derniére.

Dans 1'équation (4) faisons e nul, elle donnera :

1 I I
c=(n—1) ( += j) (6).
P ‘ A P

Faisons la méme supposition dans (3}, il viendra :
1 _ 1 1 1 N [ [
Lein—n |-+ o} —-, ouenvertude (6) - =~ + - (7).
o roor a p a =

On reconnait dans les équations (6) et (7) les équations fon-
damentales d'une lentille dont on néglige I'épaissenr.

£ 26. Si a la distance Bm’ (fig. 9) du point de réanion der-

riere la lentille nous ajoutons BI, nous aurons celle distance

comptée du centre P* du départ; en vertn de I'équation (3) et de
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la valear de BY donnée page 49, el faisant pour abréger K ==

n{r -+ 1) — @—1)e, il viendra

BP - B =BP - p= 4 2 b’ — (n—r) o'} + e

K (n—1) (aK + er) —nrr’

Et en réduisant les deux termes du second membre au méme
dénominateur :

nr — ur — K1

§
K Ha — 1) tak 4= er) — m'r'}

Remarquant que le facteor entre accoelade au numdérateur est

.o (@K = er) 4+ er' {n —1)e
Pa = : ' ‘ :

nul de lui-méme, on aura enfin
o (K - er)
P
K {{f.! — 1) (oK - er) — nri }

Une ql!f‘,StiOH imprn"tamle pour r()])jé?t (que nous nous pi'O]_}()-

sons est de savoir si une lentille infiniment mince dont la dis-
tance focale serait éqale a la distance focale absolue de ia
lentille épaisse KALB (fig. ) et placée au centre d’arrivée P de
cctte derniére, aurait les mémes dislances de point de réu-
nion qu'elle, ou, en d'autres fermes, si pour un éloignement
queh:mlque AM de Tobjet MN, on aurait toujours Pm” égal
a P'm’. Nous supposons que ' est le point de réunion de M
pour la lentille infiniment mince.

Pour savoir ce qui en est, désignons par ¢ la distance [ocale
ordinaire on absolue, ce qui est ici la méme chose, de la len-
tille infiniment mince; par & sa distance a I'objet MN (fig. 9), et
par &' sa distance P de réunion pour le point M de I'objet.

L’ équation (7) appliquée a cette lentille donne :

I 1 I , a’p
= 4 ol 2 e e
p a 74 ¢« —P
Mais la lentille infiniment mince étant placée en P, sa distance
i l'objet ou ¢ est égale a MA -+ AP,
Or, & cause de MA==g etde AP = - —— A — ”;
n(r-rf—(n—svje K
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ip. 49), en attribuant & K la valeur ci-dessus,ona @' == a -+ }—,
k
d'un autre coté, p étant égal par supposition & la distance focale

nrr’
(n—1) K’
metlant ces valeurs de & et de v dans T'équalion ci-dessus qui

. a" O g
] , ) P o nrr’ (aK 4= er)
donne &', on trouve « = Pm" = - —

K{(n—r1){ak + er)—nrr'}’

absolue de la lentille épaisse, on a aussi (p. 55) p=

mais ce second membre est précisément la valeur de P'm’ trou-
vée tout 4 Uheure. Done P == P'm’.

§ 27. Les formules générales de M. Biot permettent d'élendre
ce théoreme concernant une lentille épaisse & un systeme op-
lique quelconque.

Conservons aux leftres p, p, «, o, ¢ o le sens qu'elles avaient
jusqu'ici, avec cetle différence que les guatre premiéres qui
étaient aflectées a la lentille épaisse le sont maintenant & wn
systéme oplique quelcongue. XNoublions pas que r est comme
ci-dessus la distance focale absolue commune au systéme et a
la lentille sans épaisseur. La figure 9 pourra encore servir ici,
pourvi que nous admettions que KAL et KBL sont : T'une la
premiére, Pautre la dernitre surface du systeme, et que P et
I en sont les centres d'arrivée et de départ.

On a déja rapporté (page 51) les équalions

ap N gy (R e
p ’ p
On troave encore, page 450 du volume déja cité, el en y [ai-

sant les modifications convenables de signes et de notations,

,, . O n . )
Péquation g == — > 4 — ——————; en ajoutant membre a
N N (, Nu
l) -+=
a

membre a celle équation la seconde des deux précedentes, on
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aura pour la distance de réunion P’m’ du systeme, relalive a un

objet MN distant de « de sa premiére surface.

R — 1} ) .
o + BP =P'm'= ( nw (u E— L
P N N Nu\’
P+ —
@

On a de plus entre les quatre fonctions N, P, Q, R la relation
NR — PQ = 1. (Voyez page 420 du méme volume.) Eliminant
Q par cette équation de la valeur de P'm” il vient simplement
aprés les reductions

, aP + (N—1)u
P = — S '
P | aP +Nu |

Faisons @ infini dans cette équation, elle donnera pour la

distance focale absolue p du systéme ou de la lentille sans épais-

seur de méme loyer absolu que lui

u
P —
1)

D'un autre coté, cette lentille étant supposée placée au point
P, sa distance MP & l'objet ou «', sera égale a4 AM 4 AP

(N —1
ou aa-+AP;on a doncd = a 4+ AP = a + —l] Ju

al + (\ — 1) u
= p metlant ces valeurs dans I'équation
, a’p . . - , "
o« == ———, qui donne la distance de réunion «’ ou Pm” de la
a'—p

lentille sans épaisseur, on aura

?L’(LP—}-(N—I)M‘
, P P | _ujaP+ (N—1)u|
o =Pm"= - == Ty
a? +N—1yuw u  P| aP+Nu |

P p

done enfin, on a ainsi que pour la lentille épaisse

Pm™ = P'm.
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§ 28. De ce que les distances de réunion Pm” et Pm’ de la
lentille sans épaisseur et du systéme optique sont toujours
s

il résulte que les images m"'n™ et m'n’ sont

¢qales entre elles,
aussi de méme grandeur. Pa’” n'élant que le prolongement de
NP et P'a’ ¢tant parallele a NP, Pr” est parallele a P'n’; done
les friangles rectangles Pm”n” et Pm'n’ sont égaux, d'ol
' n" ==

On powrra donc & juste titre appeler la lentille infiniment
mince placée au centre P d'arrivée du systeme et de méme
distance focale absolue que lui la lentille équivalente du sys-
téme. Llle donnera toujours des images de méme grandeur que
lui, seulement elles seront placées en m™ %" au lieu de I'étre
en w'n’, ¢ est-a-dire en avant des secondes d'une méme quantité
"l = PP,

Dans les objectils doubles employés en photographie, les re-
lations de position des centres conjugués sont inverses de ce
que la figure 9 les suppose, ¢'cst-a-dire que P est & la place de I,
el réciproquement. Dis lors, quand on voudrait remplacer I'ob-
iectif double par sa lentille équivalente, il faudrail, au lieu
d'avancer la glace dépolie de m'n” en m™ %", la reculer au con-
traire de la méme quantile, on de PP,

Enfin, on peut conclure de ce qui précede que deux syslémes
optiques, quelconques d'ailleurs, mais ayant la méme distance
focale absolue, produisent les mémes effets, tant sous le rapport
de la grandeur des images d'un méme objet que relativement
aux distances de celte image et de cet objet; seulement il faudra
se souvenir que les distances de la premiére sont comptées pour
chaque appareil du centre de départ et que celles du second le
sont du centre d’arrivée.

On voit maintenant toute I'importance qu'il y avait & consi-
dérer la distance focale absolue d’un systéme au lien de sa dis-
1ance [ocale ordinaire.

§29. I est fort aisé de tiver de ce qui précéde la grandeur
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de 'image réelle ou virtuelle produite par un systeme optigue
quelconque.

La figure 9 nous donne la proposition

MN : MP::w'n’ : Py
ou bien, désignant Fimage par 4 et objet par z,
z 2 MP:id: P,

Mettant dans Ia proportion, an lien de MP ou a’ et de P'ut/,

leurs valeurs générales qu'on vient de trouver, il viendra

i

== — —.

[
a

(est le méme résultat que celui de la page 450 du volume

=k

cité, mais M. Biot y est parvenu d'une manicre différente.

Si dans la proportion ci-dessus on met, au lien de MP et
Piw’, Teurs valeurs relatives a une lentille épaisse, et données
pages 56 et 57, lesquelles sont :

MP / .o - arr’ (aK -1- er)
e =a K& "= 1{{(]1-—-——]){gk..i_cr)_]lrj_f}’

il viendra
. nrr's
= —_ .
(n—1} (aK 4 er) — nry’

On peut donner une forme plus symétrique a celte valeur de
Z, eny introduisant « au lien de e. Pour cela, remarquons que

I'équation (3) peut se mettre sous la forme

@ anr —a(n—1)e - er

4\ - \ »
7 (n—1) (aK 5~ er) — nrr’

¢liminant le dénominateur entre celle équation et la précédente,

on trouve
nroz

e —{(n—1) a— r}c;
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D'un autre coté, les équations (1) et (2) peavenl se metire
sous la forme
nar ner’
'V:@TITE; y —e= :ﬁ)_a

Tirant de ces derniéres la valenr de ¢ par I'élimination de y, on
frouve
nar nar’

F fi— — — - .
(n—1) a—r —n—1)

Substitnant cette valeur de ¢ dans Péquation qui donne ¢, cefte
derniére devient
ro(n~—1) a—?"l
PP N z

" {(n _I)a—?‘j

Si on voulait introduire % dans la valeur de 7, comme les
équations qui donnent y el y — e peuvent se mellre sons la

forme

r

nar’ _ nar
et (n—1t} g —pr=——

Cy—c y’

n—1) v —yp =

en subslituant ces valears dans I'équation qui donne 7, elle de-

1 o
vienl § — —2— . —z; les rayons 7etz’ct 'indice nont disparu;;
y—e¢ a .
. . o h+ v o
en faisant ¢ == 2v et y = + v, on a encore { = ;—— . ~ 5.
h—v a

C'est sous cette derniére forme que les auteurs mettent ordi-
nairement I'équation qui donne la grandeur de Timage produite
par une lentille épaisse; v est la demi-épaisseur de la lentille,
h la distance du point milieu de celle~ci au point de réunion
des rayons, aprés lear passage au travers de la premiére sur-
face, c’est-a-dire XO (fig. 21).

Si Ton néglige la demi-épaisseur v, la dernitre équation se

. o . . . . L 1
change en ¢ == —z (8); on aurait pu lirer immédiatement celte
a

\

¢quation des triangles semblables NMP et im”'Pn’” de 1a figure 9,
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ou la lentille infiniment minee est supposée placée en P, et dont

le point de réunion de M est m™.

§ 30. Cest sur les formules (7) el (8) que sont fondées les

(7
régles qui nous ont servi a calculer les nombres de notre second

tableau.
Ces formules, relatives 2 une lentille infiniment mince,

sont ¢
I

.
Ay

=

o
a

I ) . it
soit — le rapport de grandeur de U'image & T'objet ou —, on

a donc

d'0it @ = mx. Celle équation et celle qui domne la valear de —
P

serviront & déterminer denx quelconques des quatre quantilés

p, m, @, «; Jes denx autres resteront arbitraires.
Donne-t-on, par exemple, m et p, nous trouverons aisément
, p ., .
= (m -+ 1) poete=—p 4 — cequin est que fa traduction
! m

algébrique des régles susmentionnées.

e N i A P
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CHAPITRE IV.

DES CHANGEMENTS QUI ONT LIEU DANS LE GROSSISSEMEXNT D'UNE
LENTILLE L(]RSQ["()X LA FAIT MOUVOIR ENTRE L'OEIL ET

L' OBIET.

§ 31. Chacun a pu remarquer que lorsqu'on regarde au tra-
vers d'une lentille les caractéres imprimés d'un livre, ils pa-
raissent plus gros 2 mesure qu'on la rapproche de Twil, du
moins jusqu’a une cerfaine limite; passé ce point, I'image est
renversée; encore plus prés de U'eeil, elle est de nouveau droite;
enfin, on a toutes les apparences que nous avens décrites en dé-
tail, page 26 de ce mémoire.

Or, clles résullent toutes nécessairement des positions di-
verses que prennent relativement & I'axe de Ia lentille les filets
Jlumineux émanes de chaque point de Pobjet, et qui entrent
dans I'ouverture de la pupille supposée fixe sur cet axe.

La figure 22 fera comprendre la chose aisément.

Soit KL une lentille infiniment mince (comme nous ne
voulons que l'explication d'un phénoméne et non sa mesure,
cette supposition est permise); soit MN un objet, et O le point
de I'axe oit se trouve I'eil.

Considérons le point extréme N de T'objet, ce point envoie
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des rayons sur toufe la surface de la lentille; ces rayons, apres
Pavoir traversée , forment un pinceau convergent, un faiscean
ou un pinceau divergent, suivant que objet est & une distance
de [a lentille plus grande, égale ou plus pelite que son foyer.
lls prennent done des inclinaisons trés-diverses relativement i
l'axe de la lentille, a mesure que celle-ci s’éloigne ou se rap-
proche del'objet. Or, T'wil supposé fixe en O, et dont la pupille
a une fort petite ouverture, ne percoit le point N que par le
filet fort étroit que celte ouverture comporie. Suivant donc que
les rayons formant ce filet feront avec I'axe un angle plus ou
moins grand, le grossissement sera plus ou moins fort; suivant
qu’ils pénétreront dans P'eil en arrivant du dessus ou du des-
sous de I'axe, les images pavaitront droites ou renversées; enfin
si ces rayons composant le filet divergent peu ou sont paral-
leles, I'image du point N sera nelte; si Jeur divergence cst trop
forte ou s'ils convergenl, ellesera confuse.

Pour se rendre compte de la grandeur et du sens du grossis-
sement produit, il suffit done d'examiner la position du filet
lumineux NHO qui, partant du point supérienr N de I'objet,
arrive au point O. Pour plus de simplicité, nous ne considére-
rons que le centre O de la pupille et que le rayon NHO, qui sera
par conséquent le rayon central du filet; ¢'est suivant la direc-
tion de celle droite que I'eeii verra le point N.

Prolongeons le rayon HN jusqu'a sa renconire en E avee
Iaxe; désignons par z la grandeur MN de I'objet, par d sa dis-
tance constante MO al'wil, par « la distance variable AO de Ia
lentille a I'wil; enfin, soit p la distance focale de celle-ci, AOH
ou o sera l'angle sous lequel on verra I'objet au travers du
verre, et en le divisant par celui que sous-tend MN vu du point
0, on aura le grossissement angulaire produit. Comme le second
de ces angles est constant pendant le mouvement, il saffiva
d'analyser les phiases da premier.

La figure donne immédiatement :
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z tAH i EM @ EA; mais EM = EA — (d — @), on a donc
z AH G FA —(d — ) EA, don
z FA
Al = hm) = A0 fang. o == a tang. ¢. (9)
D’un autre coté, I'équation (7) appliquée ici donne

I pT

I 1
PR d'ot EA = pa——

Substituant au lieu de EA sa valeur dans (9), elle donnera
pr
& =P
a tang. ¢ = )
pr
—(d— x)

x—p
ou plus simplement,
PZ

g€ = Tl pd

(10)

§ 32. Discutons maintenant les valeurs que peut prendre
tang. ¢ suivant celles que I'on atiribuera & .

Remarquons d'abord que, par supposition, p est positif et que
d et z le sont aussi, d'aprés la nature du probleme. Les valeurs
de x sont d'ailleurs comprises entre o et d. Pour ces deux

limites, on trouve tang. ¢ = —3; or cefte valeur de tang. o est
celle que donne I'objet va 4 I'eil nu du point O. Donc, lorsque
la lentille touche soitl'eil, soit 'objet, le grossissement est égal
a I'unité, ce qui est conforme a I'expérience.

Mettons maintenant le trinome 2 — dx + pd sous la forme
@ (x—d) + pd. Le premier terme de celte expression est es-
senticllement négatif, car le facteur z est toujours positif, et
'autre, & — d, toujours négalif; le premier allant de 0 & d,
le second va de d 4 o, abstraction faile de son signe. La valeur
absolue & (d —z) de ce produit, qui va loi-mémedeo ao,

5
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est donc susceptible de maximum. Or, en le diilérentiant par
rapport & 2 et égalant & o le coelficient différentiel, on a

13

d— 22 =0, doi 2 =

Telle est la valeur de 2, qui vend 2 (d— 2) maximum. On
sait d'ailleurs que pour des valeurs de la variables, également
¢loigndes en plus ou en moins de celle qui correspond & un
maximum ou & un minimum, la fonction ci-dessus prendra des

. C e d d
alears égales; done, si lon fait 2 = 5 heouz=_

[

2

¢ étant une quantité quelconque, le produit @ (z — d) et par
suile le trinome 2* — dz -4~ pd prendront les mémes valeurs;

en effet , en faisant cette substitution, on frouve &* — dx +

d 2 1 |, d i roste s 1ome ‘on
Zj =g 4 @ P— expression qu reste la méme qu on

y prenne = avee le signe 4 ou avec le signe —.

Sous cette forme, on voit aisément quelles valeurs prendra le
trinome. D’abord, ainsi qu'on vient de le dire, elles seront
égales deux & deux pour des valeurs de x également distantes

d .1 - a1
de _, c'est-b-dire pour des positions de la lentille ¢galement

i

¢loignées du milieu de sa course. Les valeurs limites de @, qui

. d 3 ,
correspondent & s = == 5 donnent tang. = 7 comme on 'a
i «
Lo ) -+ d \ . .
déja v, Pour e === {/ d| = — p), le trinome devient nul et
4

tang. ¢ = =, c'esl-a~dire I'angle AOII droit, ou le grossisse-
ment infini. Enfin, pour ¢ == 0, ou quand la lentille est a égale
distance de I'objet et de T'eeil, le trinome a sa valeur minima.

Il reste & examiner quel sera le signe de celle-ci suivant les

valeurs relatives de p et de d. Algéhriquement , cetle valeur est
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dy d -
d (1) — {); si done p < ;o & cause de d positif, elle sera né-

gative et la plus grande possible; dés lors fang. ¢ négatif aura

€
3" 4
. e . .
sa plus petite valeur absolue; Vimage sera done renversée et a
.. , N dy ..
son minimum. Tant que ¥ sera au-dessous de dfp — b li-
4

mage présentera cetle inversion.
Ly d .
Quand <* augmentant sera devenu égal a d(p— —), puis
4
y s , : .
plus grand,, et qu'il avra atteint —, le trinome, d’abord néga-
' 4
tilf, puis nul, deviendra positif, et arrivera a la valenr pd;
fang. ¢, négatif an commencement, ira de infini & é, cf, par
suite, le grossissement diminuera de I'infini & Punité.

y d . :
Sig == la valenr minimam du trinome est 0; tang. o est
7 7

infini, le grossissement aussi, circonstance qui ne se présente
alors qu'une fois pendant le mouvement de la lentille et quand
elle est arrivée au milicu de sa course.

Dans toul autre point que ce milieu, < ou le {rinome sera
posilif, tang. ¢ positif, et I'image droite.

Enfin, sip > d, le trinome n'est jamais ni négatif ni nul,

A

fang. o n'est plus ni négatif ni infini; dés Jors 'image n'est
jamais renversée, ni le grossissement infini pour aucune posi-
tion de la lentille. En meltant successivement I'eeil & différentes
distances de T'objet, et faisant chaque fois mouvoir la lentille
depuis I'un jusqu’a P'autre, on s'assurera qu'en effet tontes ces

circonstances ont réellement lieu.

§ 33. On doit faire une remarque essentielle a 'égard de ce
qui précede. Quand le trinome est nul, on a tang. ¢ infini, et

g == 90° par conséquent. Or, cela suppose la demi-ouverture
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AH de la lentille infinic elle-méme; en effet, nous avens trouvé

plus haut I'équation

AH = z KA .

EA — ((z’ — )

d'un auotre coteé,
2 —dz - pd =0
donne
pr — (d—z) (r —p)=o0,
ol encore

mais nous avons va que
FA =
z—p
done aussi EA — (d — z) ==0; ce qui rend AH infini, EA
n'étant point nul, ni z non plns.

Or, comme la lentille, bien loin d’avoir une ouverture infi-
nie, en a, en réalité, une fort restreinte, le grossissement ne
peat aller que jusqu'a une certaine limite; dés que I'image
d'une partic de I'ohjet couvre toute la surface de la lentille
par Ueffet du grossissement, si celui-ci augmente encore, celle
image sort du champ pour faire place a celle d'une partie tou-
jours plus pefite du méme objet; cette derniére occupe a son
tour toute Ja lentille, et ainsi de suite.

La valeur de AH ci-dessus nous apprend Ja méme chose,
car elle donne pour cette demi-ouverture une valeur finie
quand z et Je dénominateur EA — (d — ) ou EM sont du
méme ordre de petitesse.

FIN.
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