Conservatoire

http://cnum.cnam.fr numérique des
Arts & Métiers

Titre : Compte rendu du deuxiéeme congres international des mathématiciens. 1900
Auteur : Exposition universelle. 1900. Paris

Mots-clés : Exposition internationale (1900 ; Paris) ;
Mathématiciens*Europe*1870-1914*Congres
Description : 1 vol. ([4]-455 p.) ; 25 cm

Adresse : Paris : Gauthier-Villars, 1902

Cote de I'exemplaire : CNAM 8 Xae 472

URL permanente : http://cnum.cnam.friredir?8XAE472

La reproduction de tout ou partie des documents pour un usage personnel ou d’enseignement est autorisée, a condition que la mention
compléte de la source (Conservatoire national des arts et métiers, Conservatoire numérique http://cnum.cnam.fr) soit indiquée clairement.
Toutes les utilisations a d’autres fins, notamment commerciales, sont soumises a autorisation, et/ou au réglement d’un droit de reproduction.

You may make digital or hard copies of this document for personal or classroom use, as long as the copies indicate Conservatoire national des arts
— €t métiers, Conservatoire numérique http://cnum.cnam.fr. You may assemble and distribute links that point to other CNUM documents. Please do
s NOt republish these PDFs, or post them on other servers, or redistribute them to lists, without first getting explicit permission from CNUM.

PDF créé le 14/12/2011



COMPTE RENDU

DEUXIEME CONGRES INTERNATIONAL

DES MATHEMATICIENS

TENU A PARIS DU 6 Av 12 aour 1900,

Droits reservés au Cnam et a ses partenaires



Droits reservés au Cnam et a ses partenaires



7

COMPTE RENDU
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DU

DEUXIEME CONGRES INTERNATIONAL

DES MATHEMATICIENS

TENU A, PARIS DU 6 av 12 sour 1900.

PROCES-VERBAUX ET COMMUNICATIONS

E. DUPORCQ,

Ingémeur des Télégraphes, Secrétaire général du Congres.
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PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DU BUREAU DES LONGITUDES, DE L'ECOLE POLYTECHNIQUE,
Quai des Grands-Augustins, 55.

1902
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COMPTE RENDU

nu

DEUXIEME CONGRES INTERNATIONAL

DES MATHEMATICIENS

TENU A PARIS DU 6 Avu 42 aout 1900.

PREMIERE PARTIE.
DOCUMENTS ET PROCES-VERBAUX.

BUREAU DU CONGRES.

Président d’honneur : MM. Henmrire.
Président : Porncart.
Vice-Présidents : CzusEen.
GEISER.
Gorpan.
GREENHILL.
LinpeLSF.
LinpEMANN.
Mirrac-LEFFLER.
Mooze.
TIKHOMANDRITZKY.
VorrERRA.
ZEuTHEN.
Secrétaire général : Dueounce.
Secrétaires : Bexpixson.
CapELLI.
MinkowsKr.
Praszycki.
‘WhHITEREAD.

e
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2 PREMIERE "PARTIE. — DOCUMENTS. ET PROCES-VERBAUX.

2

BUREAUX DES SECTIONS.

Présidents. Secrétaires.
‘Premiére section : MM. HrrserT. MM. CarrTan.
Deuxiéme » : Parnvrevi. Hapamarp.
Troisiéme » : +  Darpoux. NieweNcLOWSKI,
Quatriéme  » : Larvor. Levi-Crvira,
Cinquiéme » : Prince R. BonaPARTE. D'Ocacene.
Sixiéme » : M. CaxTox. Latsamr.

Y

DELEGUES OFFICIELS.

Autriche : MM.. Czuber, Finger.

Espagne : M. de Galdeano.

Etats-Unis : Miss Angas Scott, M. Moore.

France : MM. Tannery, délégué da Ministre de I'Instruction publique;
Simonot, délégué du Ministre de la Marine.

Hongrie : M. Rados.

Japon : M. Fujisawa.

Mezique : M. Stampa.

Université de Californie : M. Stringham.

Faculié des Sciences de Buenos-Ayres : M. Gallardo. .
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PREMIERE PARTIE. -~ BOCUMENTS ET PROCES-VERBAUX. 3

LISTE GENERALE DES MEMBRES.

MM.

Ackermann-Teubner, éditeur, Poststrasse, 3, 4 Leipzig (Allemagne).

Alezais (Raymond), rue Sainte-Héléne, 10, & Lyon (Rhane)

Allardice (R.-E.), Stanford University, Californie (Etats-Unis).

Amici (Nicolas), professeur a I'Institut technique, & Macerata (Italie).

Amodeo (F.), via Scarlatti, 32, & Naples (Italie).

André (Désiré), docteur &s sciences mathématiques, rue Bonaparte, 70 bis,
& Paris. ‘

Appell (Paul), membre de I'Institut, rue de Noailles, 23, & Saint-Germain-
en-Laye (Seine-et-Oise).

Aron (H.), quai de Jemmapes, 2c0, & Paris. -

Astor, professeur & la Faculté des Sciences, place Vaucanson, 4,'a Grenoble
(Isére).

Aubert (P.), professeur au collége Stanislas, rue de 'Orangerie, 2 &is, 4 Meudon
(Seine—et-Oise). . '

Aubry (A.), & Ouzouet-sur-Loire (Loiret).

Autonne (Léon), ingénieur des ponts et chaussées, rue Mont-Bernard, g, a
Lyon (Rhone). .

Baire (R.), professeur au lyeée, 29, quai Victor-Hugo, a Bar-le-Duc (Meuse).

Barbette (E.), rue Hullos, 19, & Liége (Belgique). '

Beaupain (Jean), rue Fabry, 68, a Liége (Belgique).

Bendixson (Ivar), professeur i I'Ecole Polytechnique, Hollindaregatan, 21, A,
a Stockholm (Suéde).

Beudon, décédé. ‘

Bioche (Ch.), professeur au lycée Louis-le-Grand, rue Notre-Dame-des-
Champs, 56, 4 Paris.

Blutel, professeur au lycée Saint-Louis, maitre de conférences 4 la Sorbonne,
rue Denfert-Rochereau, 110, 4 Paris. -

Boccardi (Jean), assistant a 'Observatoire royal astronomique de Catania,
Sicile (Italie).

Bonaparte (prince Roland), avenue d'Iéna, 1o, & Paris. .

Borel (Emile), maitre de conférences a I'Ecole Normale supérieure, boulevard
Saint+Germain, 3o, a Paris. .

Boset, alemIo (Belgique). .

Bourlet (C.), professeur a PEcole des Beaux-Arts et au lycée Samt Louis,
avenue de I'Observatoire, 22, 2 Paris.

Boutin (Auguste), rue Antoinette, 3o, 4 Paris.

Brand (Eugéne), rue de 1a Ruche, 51, & Bruxelles (Belgique).

Brocard (G.), rue Marie-Thérése, 23, au Havre (Seine-Inférieure).

Brocard (H.), chef de bataillon du génie en retraite, rue des Dues, 75, 4 Bar-
le-Duc ( Meuse).

Brown (E.-W.), Christ’s Goilcgc 4 Cambridge (Angleterre).

Busche (E.), am Baum, 51, & Bergedorf bei Hamburg (Allemagne).
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4 PREMIERE PARTIE. — DOCUMENTS ET PROCES-VERBAUX.

MM.

Cabreira (Antonio), membre de 'Académie royale des Sciences, rua da Ale-
gria, 36, & Lisbonne (Portugal).

Cabreira (Thomas), professeur 4 I'Eeole Polytechnique, rua da Alegria, 36,
4 Lisbonne (Portugal).

Cahen (E.), professeur au collége Rollin, rue de la Pompe, 32, & Paris.

Cantor ( Moritz), Hofrath, professeur & 'Université, Gaisbergstrasse, 15, 4 Hei-
delberg (Allemagne).

Capelli (Alfredo), professeur a I’Université, 41, Juori Portamediana, & Naples
(Italie).

Cartan (Elie), maitre de conférences & la Faculté des Sciences, rue Suchet,
38, a Lyon (Rhone).

Carvallo, examinateur de sortie a I'Ecole Polytechnique, rue Clovis, 1,
a Paris.

Caspary (F.), décédé.

Cellérier (G.), quai des Eaux-Vives, 34, a Genéve (Suisse).

Charlier (C.-V.-L.), professeur a Lund (Suéde).

Climesco ( Constantin), professeur a 'Université, Strada Pacurari, ag, a Jassy
( Roumanie).

Contarino (Francesco), astronome a l'observatoire de Capodimonte, & Naples
(Italie). '

Cosserat (Eugéne), professeur a la Faculté des Sciences, rue de Metz, 1, a
Toulouse (Haute-Garonne).

Cotton (Emile), maitre de conférences & 'Université de Grenoble (Isére).

Couturier (Casimir), a Melle-lez-Gand (Belgique). .

Crawford (G.), Manilla Road Clifton, a4 Bristol (Angleterre). ‘

Curjel (H.-W.), Welbeck Road, 18, & Birkdale, Southport (Angleterre).

Cyon (E. de), rue de Thann, 4, & Paris.

Czuber (E.), professeur  'Ecole Polytechnique supérieure, Neulinggasse, 3, a
Vienne, IIT (Autriche). :

Darboux (G.), secrétaire perpétuel de 'I'Académie des Sciences, Doyen de la
Faculté des Sciences, rue Gay-Lussac, 36, 4 Paris.

David (E.), Carmen Sylva, 6, & Bucarest ( Roumanie).

Delahaye (Georges), 4 Roye (Somme).

Demoulin (Alph.), professeur & 1'Université, rue du Bas-Polder, 20, & Gand
(Belgique).

Dickson (L.-E.), Université de Chicago, 142, Faculty Exchange (Etats—Unis
d’Amérique). '

Dickstein (8.), rue Massalkowski, 117, & Varsovie (Rus“ile)

Dilhau (J.-J.), professeur au iycce rae Bourgneul, 29, & Bayonne (Basses-

Pyrénées ),
Dingeldey (Fr.), professeur a I'Ecole Polytechnique, Griiner Weg,13, & Darm-
stadt (Allemagne).

Drach (J.), maitre de conférences & la Faculté des Sciences, a Clermont—
Ferrand (Puy-de-Dome).

Droz (Auguste), professeur au Gymnase, clos du Matin, 3, a Lausanné ( Suisse).

Duporeq (Ernest), ingénieur des télégraphes, boulevard Pereire, 162, a4 Paris.

Ely Achsale (M"°), Vassar College, 3 Poughkeepsie, New-York (Etats-Unis).
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PREMIERE PARTIE. — DOCUMENTS ET PROCES-VERBAUX. 5

MM.

Emelen (Van), rue Juste-Lipse, 20, & Louvain (Belgique).

Emine (Mehmed), ingénieur des télégraphes, & Constantinople (Turquie).

Fano (Gino), professeur a I'Université de Messine (Italie).

Fauquembergue (Elie), professeur au lycée, & Mont-de-Marsan (Landes).

Fehr (Henri), professeur a 'Université, rue Gevray, 19, & Genéve (Sulsse).

Finger (J.), professeur a I’Ecole Polytechnique supérieure, 35, Alleegasse, a
Vienne, IV (Autriche).

Floquet (G.), professeur 4 la Faculté des Sciences, rue Saint-Lambert, 17, &
Nancy (Meurthe-et-Moselle).

Forsyth, Trinity College, 4 Cambridge (Angleterre).

Fouet; professeur-a I'Institut catholique; rue Lhomond, 18, & Paris.

Fouret (G.), répétiteur et examinateur d'admission & I'Ecole Polytechnique,
rue Washington, 16, a Paris. .

Fredholm (Ivar), 30, Brahegatan, & Stockholm (Suéde).

Fujisawa, professeur a 'Université impériale des Sciences, a Tokio (Japon).

Gaillot, sous-directear de I’Observatoire, a Paris,

Galdeano (Zo8l de), professeur & I'Université, coso gg, 3, & Saragosse (Espagne).

Gallardo (Angel), ingénieur civil, professeur suppléant & I'Université, gb6,
Santa-Fé, Buenos-Ayres ( République Argentine).

Gauthier-Villars (Albert), ancien éléve de I'Ecole Polytechnique, éditeur,
quai des Grands-Augustins, 55, & Paris. -

Gavrilovic (B.), ptofesqcur a I'Université, a Belgrade ( Selble)

Geiser (C.-F.), professeur a I'Ecole Polytechnique, Ku=snacht, a Zurich
(Suisse).

Gelin (Abbé), professeur au coliege Saint-Quirin, & Huy (Belgique).

Genaille (Henri), boulevard Rochechouart, 68, a Paris.

Gibson, Renfrew Street, 183, a Glascow (lf‘cosse)

Godefroy, bibliothécaire de 1a Faculté des Sciences, & Marseille (Bouches-
du-Rhéne).

Godos (Gareia), professeur a la Faculté des Sciences de Lima (Pérou).

Gordan (Paul), professeur & I'Université, Geethestrasse, 5,4 Erlangen (Baviére).

Greenhill (A..), Ordnance College Woolwich, & Londres ( Angleterre).

Guazzoni (P.-G.), 2 Busto-Arsizio, Lombardie (Italie).

Guceia (Jean), professeur & I'Université, via Ruggiero Settimo, 28, i Palerme
{Italie).

Guimaraes (Rodolphe), membre de’Académie des Sciences, rue NovadaPiedade,
55, & Lisbonne ( Portugal).

Gutzmer, professeur i 'Université, Wildstrasse, 2, & Iéna (Allemagne).

Guyou, membre de I'Institut, capitaine de frégate, rue de Vaugirard, 71, & Paris.

Haas (Charles), Matrosengasse, 8, 4 Vienne, VI (Autriche).

Hadamard (Jacques), professeur adjoint a la Faculté des Sciences, professeur
suppléant .au Collége de France, rue Humboldt, 25, 2 Paris.

Hag‘en (G.), director of the Georgetown Collegc Ohscrvatoly, West Wash-
ington (EtaLs ~Unis).

Halsted (G.-B.), professeur & PUniversité du Tcxas Guadclupe Street,
2407, & Austin, Texas (Ktats- -Unis).

Hancock (Harris), professeur a 'Université de Cincinnati, Ohio (Etats-Unis).
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6 PREMIERE PARTIE. — DOCUMENTS ET PROCES-VERBAUX,
MM. _
Harkness (J.), Bryn Mawr College, & Bryn Mawr, Pensylvanie (Ltats-Unis),
Haton de la Goupilliére, membre de I'Institut, inspecteur général des mines,
rue de Vaugirard, 36, & Paris.
Heffter (Lothar), professeur & l'Université, Gethestrasse, 17,
(Allemagne). )
Henry, inspecteur général des ponts et chaussées, boulevard Saint-Germain, 22,
& Paris. ‘
Hermann, libraire-éditeur, rue de la Sorbonne, 8, a Paris.
Hertzer (Hugo), professeur i I'Ecole technique supérieure, Frobenstrasse, 14,
a Berlin, W (Allemagne).
Hess (Edm), professeur a4 I'Université, Barfiisserthor, 5, & Marburg (Prusse).
Hilblert (David), professeur 4 'Université, Wilh. Weberstrasse, 29, & Gottingen
(Allemagne). | ' : C
Hoffbauer (Henri), quai de Valmy, 17, & Paris.
Issaly (Abbé), rue Margaux, 16, & Bordeaux ( Gironde).
Jaccottet (Charles), professeur a I'cole industrielle de Lausanne (Suisse).
*Jacquet (E.), professeur au Prytanée militaire, rue Couchot, 8, & La Fléche
(Sarthe).
Jahnke (Eugen), assistant & 'Université de Berlin, Pariserstrasse, 55, 4 Berlin, -
W. 15 (Allemagne). . i
Jamet ('V.), professeur au lycée, cours Lieutaud, 130, & Marseille (Bouches-du-
Rhoéne).
Janisch (E.), Deutsche Staalsgewerbesschule, & Brimn ( Autriche).
Jensen, ingénieur en chef des téléphones, Colbjornsensgade, 15, 4 Copenhague
(Danemark). )
Jolles (M™® A.), Humboldtstrasse, 2, 4 Halensee bei Berlin (Allemagne ).
Jolles (Stanislas), professeur 3 I’Ecole Polytechnique, Humboldtstrasse, 2, &
Halensee bei Berlin (Allemagne).
Juel (C.-8.), professeur a I'Ecole Polytechnique, Romersgade, 9, & Copenhague
(Danemark). '
" Jiirgens (Enno), professeur A I'Ecole technique supérieure, Ludwigsallee, 79,
4 Aachen (Allemagne).
Kapteyn, Stationstrasse, 13, & Utrecht (Pays-Bas).
" Keppel, Northwestern University, 4 Evanston, [llinois { Etats-Unis).
Kiepert (Ludw.), Geheimer Regierungsrath, Herrenhiuser Kirchweg, 20, &
Hannover (Allemagne ).
Koch (H. von), maitre de conférences a 'Université; 4 Djursholm-Stockholm
(Suéde).
Korda (Désiréd), chef du service électrique de la Compagnie Fives-Lille,
rue Gaumartin, 64, 4 Paris.
Krause (Martin), Geheimer Hofrath, professeur a I'Ecole technique supérieure,
Kaitzerstrasse, 12, 4 Dresde (Allemagne).
" Laisant (C.-A.), répétiteur et examinateur d'admission a I'eole Polytechnique,
avenue Victor-Hugo, 162, & Paris. '
- Lampe (Emil), Geheimer Regierungsrath, professeur a I'Ecole Polytechnique,
Kurfiirstenstrasse, 139, a Berlin, W. 35 (Allemagne). :
- Lancelin (F.), astronome, boulevard Arago, g7, a Paris.

a- Bonn
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MM.

Larmor (Joseph), Saint Johns College, 3 Cambridge (Angleterre).

Laugel (Léonce), ancien attaché d’ambassade, chalet des Bruyéres, au Golfe
Juan (Alpes-Maritimes).

Leau (L.), professeur au collége Stanislas, rue Saint-Placide, 54, a Paris.

Léauté (H.), membre de I'Institut, professeur a I'Ecole Polytechnique, bou-
levard de Courcelles, 18, 4 Paris.

Lebeuf, maitre de confercnccs 4 la Faculté des Smences rue de I'Université, 43
a Montpellier (Hérault). :

Lebon (Ernest), rue des Kcoles, 4 bzs, a Paris.

Lecornu, ingénicur en chef des mines, répétiteur a I'Heole Polytechnique,
rue Gay-Lussac, 3, a Paris.

Legras (Gustave), Lexington avenue, 57, & New-York ( Etats-Unis). .

Lémeray (Maurice), ingénieur civil du génie maritime, rue Ville-és-Martin,
109 bis, & Saint-Nazaire (Loire-Inférieure).

Lemoine (Emile), ancien éléve de I'Ecole Polytechnique, avenue du Maine, 32,
a Paris.
. Le Roux (Jean), maitre de conférences &4 la Faculté des Sciences, faubourg de
Fougéres, 41, 2 Rennes (Ille-et—Vilaine).

Le Roy (Edouard), docteur és sciences, rue de I'Abbé-de-I'Epée, 8, a Paris.

Levi-Civita, professeur a4 I'Université, via San Gaetano, 3394, a Padoue
(Italie).

Lévy (Lucien), répétiteur et examinateur d’admission & I'Ecole Polytechmque,
rue du Regard, 12, & Paris.

Lez (Heuri), & Lorrez-le-Bocage (beme et-Marne).

Lindeltf (Ernst), professeur 4 I'Université, Boulevardsgatan, 12, 4 Helsingfors,
Finlande (Russie).

Lindelsf (L.-L.), Boulevardsgatan, 12, 4 Helsingfors, Finlande (Russie).

Lindemann (Ferd. ), professcul 4 I'Université, Franz-Josephstrasse, i3, 4
Munich (Baviére). )

Lovett (E.-0.), professeur a lUmversne a Princeton, New—Jersey (Etats-
Unis),

Lucas (Félix), ingénieur en chef des ponts et chaussées, rue Boissiére, 3o,
a Paris.

Lury (A.-E. de), Université de Toronto (Canada).

Lyon (Joseph), chemin de la Roseraie, 26, & Genéve (Suisse).

Macfarla,ne (A.), Lehigh University, a South Bethlehem, Pensylvanie (Ktats-
Unis).

Mackay (8.), Northumberland street, 69, a Edlmhourg (Ecosse).

Maggi (J.~A.), via Risorgimento, 1, & Pise (Ttalie).

Maillet (Ed.), ingénieur des ponts et chaussées, répétiteur 4 I'Ecole Poly-
technique, rue de Fontenay, 11, a Bourg-la-Reine (Seine).

Manescu (A.), Strada Corvin, 4, 4 Jassy ( Roumanie).

Mansion (Paul), professeur a lUmvcxsltc, quai des Dominicains, 6, a Gand
(Belgique).

Marchesini (Alex.), 3 Massa di Carrara (Italie).

Martin (Artemas), Columbia street, 1534, & Washington, D. C, (Etats-Unis).

Massau (Junius), rue Maruix, 22, 4 Gand (Belgique).

Droits reservés au Cnam et a ses partenaires
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MM. '

Maupin (G.), professeur au collége, a Issoire (Puy-de-Dome).

Mehmke (R.), professeur & I'Ecole technique supérieure, Weissenburgstrasse,
29, 4 Stuttgart (Wurtemberg).

Mestschersky (J.-W.), professeur a I'Université impériale, Wassili Ostrow,
5, ligne 4, log. 25, 2 Saint-Pétersbourg (Russie).

Meyer (Fr.), professeur a I'Université, Mitteltragheim, 51, 4 Kenigsberg
(Allemagne).

Minkowski (Hermann), professeur & I'Ecole Polytechnique, Mittelstrasse,
12, & Zurich (Suisse).

Mittag-Leffler (G.), professeur a I'Université, & Stockholm (Suéde).

Molk (Jules), professeur 4 la Faculté des Sciences, rue d’Alliance, 8, 4 Naney.
(Meurthe-et-Moselle).

Montessus (de), rue de Meaux, 12, & Senlis (Oise).

Montessus de Ballore (R.-B. de), a Toulon-sur-Arroux (Sadne-et-Loire).

Moore (E.-H.), professeur & 'Université, 4 Chicago, Illinois (Etats-Unis).

Naud (C.), éditeur, rue Racine, 3, & Paris.

- Niewenglowski (B. ), inspecteur de 'Académie de Paris, rue de I’Arbaléte, 35,
a Paris.

Ocagne (Maurice d’), mgemeur des ponts et chaussées, répétiteur a I’Ecole
Polytechnique, rue La Boétie, 30, & Paris.

Onofrio (Georges), professeur aux Facultés catholiques, avenue de Noailles,
6o, & Lyon (Rhone).

Padé (H.), professeur i la Faculté des Sciences, place Richebé, 11,4 Lille (Nord).

Padoa (Aless.), via Pellegrino, 14, 4 Rome (Ttalie).

Painlevé, membre de 1’Académie des Sciences, rue de Rennes, gg, 4 Paris.

Palmstrom, & Aas, prés Christiania (Norvége). )

Papelier (Georges), professeur de mathématiques specrales au lycée, rue de
Recouvrance, 20, 4 Orléans (Loiret). . )

Papperitz (Erwin), Weissbachstrasse, 5, 4 Freiberg, Saxe (Allémagne).

Peano (Giuseppe), professeur a4 I’Université, 4, via Barbaroux, a Turin ( Italie).

Pell, Université de Dakota Sud (Etats-Unis).

Perrin (Elie), professeur de mathématiques, rue Lamandé, 7, a Paris,

Perrin (R.), ingénieur en chef des mines, avenue d’Eylau, g, a Paris.

Petkovié (G.-M.), i Belgrade (Serbie).

Phragmén (E.), professeur a I'Université, & Stockholm (Suéde).

Picou (G.), rue de Paris, 123, 4 Saint-Denis (Seine).

Picquet (H.), chef de bataillon du génie, répétiteur et examinateur d’admission
4 I'Ecole Polytechnique, rue de Condé, 24, 4 Paris.

Pluchery (J.-B.), professeur au lycée, & Brest (Finistére).

Poincaré (Henri), membre de I'Institut et du Bureau des Longitudes, ingénieur
en chef des mines, professeur &'la Faculté des Sciences, rue Claude-Bernard, 63, a
Paris.

Poggi (Fr.), professeur, Salita del Carmine, 7, & Génes (Italie).

Ptaszycki (Jean), professeur & 1'Université, rue Nadierdinska, 11, log. 20, &
Saint-Pétershourg (Russie).

Rados (Gustav), professeur a Ecole royale Polytechnique, Csenger y—Gassc, I,
4 Budapest (Hongrie ). :
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MM.

Ré (A. del), professeur a I'Université, a Naples (Ttalie).

Rémy (Edgard), professeur principal 4 I'Ecole de Navigation, rue de Var%o—
vie, 47, & Ostende (Belgique).

Richard (J.), professeur au lycée, rue Lakanal, 5 bis, 8 Tours (Indre-et-Loire).

Ripert, commandant du génie en retraite, rue Saint-Antoine, 200, 4 Paris,

Rius y Casas (J.), corso de San Miguel, 50, a4 Saragosse (Espagne). '

Roche (Louis), rue Madame, 69, 4 Paris.

Rohn (Karl), professeur 4 I'Ecole technique supérieure, Liebigstrasse, 8, &
Dresde { Allemagne).

Rouché (E.), de I'Institut, professeur au Conservatoire des Arts et Métiers,
examinateur des éléves a I'Ecole Polytechnique, boulevard Saint-Germain, 213, &
Paris.

Runge (Carl), professeur 4 'Ecole technique supérieure, Kornerstrasse, 19, &
Kirchrode, bei Hannover (Allemagne).

Sabinine (M™ Olga ), 25, Arbatte Nicolwy, 4 Moscou (Russie),

Saintot (P.), professeur au collége, & Langres ( Haute-Marne).

Sarauw (M" Elna ), Frederihoberg Allé, 48, & Copenhague (Danemark).

Schiff (de), colonel, Fontanka, 112, & Saint-Pétersbourg (Russie).

Schiff (M™ Vera de), professeur au Cours Supérieur des Femmes, Fontanka, 112,
a Saint-Pétersbourg (Russie).

Schrider (Ernst), Holrath, professeur 4 I'Ecole technique supérieure, Got-
tesauerstrasse, g, 4 Carlsrube (Allemagne).

Scott (Mlss Charl. Angas), professeur au Bryn-Mawr College, 4 Blyn -Mawr,
Pensylvanié ( Etats-Unis).

Séguier (J.-A. de), docteur és sciences, rue de Sévres, 35, & Paris.

- Selivanoff (Dimitry ), chargé de cours & 'Université, Fontanka, 116, log. 16,
i Saint-Pétershourg ( Russie).

Selling (Edouard), pmf(,s%cur a 'Université, Maistrasse, 4, & Wiirzburg (Au-
triche).

Simonot, ingénieur du génie maritime, 37, rue Saint-Placide, 4 Paris.

Sintsof (Dimitry), professeur de maLhemaL]ques a PEcole des Mines, 3 Ekate-
rinoslaw (Russie).

Soisson (Guillaume), professeur a I’Athénée, rue Joseph II, 4 Luxembourg.

Somigliana ( Carlo), professeur a I'Université, Corso Gavour, 44, a Pavie (Italie).

Sousloff (G.), professeur & I'Université, rue Timofeivskaja, 6, a Kieffq Russie).

Sparre (Comte Magnus de), chiteau de Valliére, & Saint-Georges-de-Reneins
(Rhone). :

Stampa (Manuel-L.), 56, Lopez Cotilla, Guadalajara, Mexico (Mexique).

Stephanos (Cyparissos), professeur & l Université nationale, rue de Solon 20,
a Athénes (Gréce).

Stormer (Carl), chargé de cours & I'Université, Holtegaden, 14, 4 Christiania
(Norvége).

Stringham (Irving), professeur de mathématiqués & 'Université de Californie,
i Berkeley, Californie (Etats- Unis).

g‘aﬂnel‘y (Jules), sous-directeur & I'Ecole Normale supérieure, rue d'Ulm, 45,
a Paris

Tarry (G.), receveur particulier, 2 Kouba (Alger).
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MM,

Taylor (W.-W.), Baubury Road, 30, 4 Oxford (Angleterre).

Thompson (Edw.-P.), professeur & la Miami University, & Oxford, Butler Coun-
try, Ohio (Etats-Unis).

Tikhomandritzky (M.), professeur &4 I'Université, 4 Kharkoff (Russie).

Torrés (L.), ingénieur des ponts et chaussées, Valgame Dios, 3, & Madrid
{ Espagne). '

Touche, lieutenant-colonel d’artillerie territoriale, rue Truffault, 23, & Paris.

Tripier (H.), rue Cavalloiti, 17, & Paris.

Tudisca (Gaspare), professeur 4 Alghero, Sardaigne ([talie).

Tzitzeica (G.), professeur suppléant 4 la Faculté des Sciences, a Bucarest (Rou-
manie).
Vacca (Giov.), assistant & I'Université, via Bogino, 4, & Turin (Italie).
Vads, Mathenesserlaan, 219, a Rotterdam (Pays-Bas).
Vailati (Jean), professeur au lycée royal, a Syracuse, Sicile (Italie).
Vasconcellos (Urbano de), rue Galvao-Bueno, 59, & San-Paulo (Brésil).
Vassilief (Alex.), professeur émérite & I'Université, a Kasan (Russie).
Veronese (Baronne B. B.). 4 Padoue (Italie).
Veronese (G.), professeur a I'Université, député au Parlement, 4 Padoue (Italie).
Villareal (F.), ingénieur, professeur i la Faculté des Sciences, 4 Lima (Pérou).
Vogt (Henri), professeur & la Faculté des Sciences, rue du Grand-Verger, 29,
Nancy (Meurthe-et-Moselle).
Volterra (Vito), professeur & I'Université, & Rome (Italie).
Volterra (M™ V.), & Rome (Italie).
Weber (E. von), Privatdocent a I’Université, Alexanderstrasse, 1, @ Munich
(Allemagne). ‘

Webster, professeur A la Clark University, & Worcester, Massachusetts (Etats-
Unis). :

Weinmeister (Ph.), professeur & FAcadémie royale de Saxe, 4 Tharandt, prés
Dresde (Allemagne). : '

Wernicke (Paul), Limestone street, 411, & Lexington, Kentucky (Etats-Unis).

‘Woestern (A.), Lancaster Gate, 36, & Londres (Angleterre).

‘Whitehead (A.), Fellow of Trinity College, & Cambridge ( Angleterre).

Whittaker (E.-T.), Trinity College, & Cambridge (Angleterre).

Zaboudski (Col. N.), professeur 4 I'Académie d’artillerie, rue Znamenskaia, 22,
a Saint-Pétershourg ( Russie).

Zaremba,; professeur au lycée, rue des Cadourgues, 18, & Cahors (Lot).

Zenger (C.-V.), membre de ’Académie Impériale des Sciences, Conseiller de la
Cour, Ecole polytechnique slave, & Prague (Autriche).

Zeuthen, professeur & 'Université, Sidealle, 3, a Copenhague (Danemark).

Zindler (Konrad), professeur & 'Université, Heiliggeiststrasse, 12, 4 Innsbriick
(Autriche). .

Zsigmondy (Karl), Schmerlingplatz, 2, 4 Vienne, I (Autriche).

o
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EMPLOI DU TEMPS.

Dimanche 5 aotit.

8130™ du soir : Réunion préparatoire au café Voltaire.

Lundi 6 aoitt.

" du matin : Séance générale d'ouverture au Palais des Congrés.

Mardi 7 aotit.

g" : Séances des sections I et II.
oh : Séances des sections I et IV.
4" : Lunch a I'Ecole Normale supérieure.

Mercredi 8 aodlt.

: Séances des sections V et VI.
2" : Séances des sections V et VI.

Jeudt g aoit.

9" : Séances des sections I et II.
2" : Séances des sections III et IV.

Vendredi 10 aoilt.

g" : Séances des sections V et VI.
4" : Réception 2 l’Elysée.

Samedi 11 aotit,

9" : Séance de cloture.

g"30™ : Réception chez M. le prince Roland Bonaparte.

Dimanche 12 aotit.

11"30™ : Banquet, salle de I'Athénée Saint-Germain.
8"30™ : Soirée de gala & ’Opéra.
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COMPTE RENDU RESUME DU CONGRES.

Le second Congrés international des Mathématiciens s’est tenu & Paris,
du 6 au 12 aoit 1900; on sait que le Congrés de Zurich en avait confié
I'organisation 4 la Société mathématique de France.

L’Exposition universelle, qui avait lien & Paris, présentait elle-méme
un attrait si considérable qu’il eiit é1¢ difficile d’organiser avec succés,
pour les membres du Congrés, des excursions spéciales ainsi que cela
avait été fait & Zurich. Le Comité d’organisation a cru préférable de laisser
toute liberté aux congressistes, et a di se borner & quelques réunions, en
dehors des séances proprement dites.

La premiére dé ces réunions a eu lieu au café Voltaire, le dimanche
5 aoiit, & 8"30™ du soir; avant 'ouverture officielle du Congrés, clle a
permis & beaucoup de ses membres de prendre"contact, de lier ou de relier
connaissance,.

Les congressistes se sont retrouvés le mardi 7 aolt 2 unlunch, servi a
I'Ecole Normale supérieure dont le Directeur, M. Perrot, avait eu I’extréme
amabilité de mettre & notre disposition la salle des Actes; M™¢ Jules Tan-
nery a bien voulu trés gracieusement en faire les honneurs. MM. Perrot,
Maurice Cantor et Darboux y ont successivement pris la parole en des
toasts trés applaudis. !

Les congressistes ont été regus le vendredi 10 aotit par M. le Président
de la République, et le samedi 11 aoit, en méme temps que leurs col-
légues du Congrés de Physique, par M. le prince Roland Bonaparte, dont
on sait le généreux dévouement pour toutes les entreprises scienti-
figues. .

Enfin, aprés la cléture du Congrés, ses membres se sont réunis, en
grand nombre, le dimanche 12 aodt, i midi, enun banquet d’adieu, que
beaucoup de dames et de jeunes filles ont bien voulu honorer et charmer
de leur présence. Le Président du Congrés s’est malheureusement trouvé
trop fatigué pour pouvoir y prendre.part. De nombreux toasts ont été
portés, d’abord par M. Darboux, qui a excusé M. Poincaré, puis par
M. Geiser, au nom des congressistes étrangers, par M. J. Tannery qui a
porté la santé des absents, par MM. Stephanos et Vassilief; M. Darboux,
enfin, a repris la parole en son -propre nom, et improvisé une charmante
allocution, dans laquelle il a fait ressortir combien il est.nécessaire aux
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mathématiciens de se sentir les coudes, puisqu'il n’est pas de savants dont
les travaux soient plus désintéressés, ni moins susceptibles de conquérir la
masse des profanes. :

Quelques congressistes se sont encore retrouvés le soir & ’Opéra, i une
soir¢e de gala pour laquelle M. le Ministre de I'Instruction publique et
des Beaux-Arts avait bien voulu réserver quelques places & notre
Congrés. :

On trouvera ci-aprés le compte rendu des séances générales et de celles
des sections; a 'exception de la séance d’ouverture qui s’est tenue au
Palais des Congrés, situé dans I'enceinte de P’Exposition, elles ont euTieu
4 la Sorbonne, dont le Recteur del’Académie de Paris avait gracieusement
mis & notre disposition les amphithéatres Cauchy, Le Verrier et Chasles,
de la Faculté des Sciences, ainsi que 'amphithéatre Richelieu, pour la
séance générale de cl6ture.

— R
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PROCES-VERBAUX.

SEANCE D’OUVERTURE.

C’est au Palais des Congrés, édifié dans 'enceinte de I'Exposition uni-
verselle, que s’est tenue la séance d’ouverture le lundi 6 aott, de neuf
heures du matin & onze heures et demie. Dans l'assistance, beaucoup de
dames et de jeunes filles aux claires toilettes.

M. Jules Tannery, au nom du Ministre de I'Instruction publique et des
Beaux-Arts, dont il est le représentant officiel, déclare le Congrés ouvert
et souhaite la bienvenue aux membres étrangers. Il propose de confier la
présidence du Congrés & M. Henri Poincaré, qui est nommé par accla-
mation.

M. Poincaré remercie 'assemblée et propose de nommer président ho-
noraire M. Hermite, que son grand ige a empéché de venir en personne
assister aux travaux du Congrés, mais qui, néanmoins, dit M. Poincaré,
« est de cceur avec nous ». Cette proposition est accueillie pardes applau-
dissements prolongés.

Continuant sa bréve allocution, le Président rappelle que, parmi les
résolutions que devra prendre le Congres, figure celle qui fixera la date et
le siége du prochain Congrés, ainsi que les organes ou les associations
chargées de le préparer et de 'organiser. 1l mentionne que, lors du pre-
mier Congrés, beaucoup de mathémaliciens avaient émis le veen que le
troisiéme Congrés se tint 2 Baden-Baden.

Enfin, sur la proposition du Président, sont nommés par acclamation :

Vice-Présidents : MM. Czuber, Gordan, Greenhill, Lindelsf, Linde=
mann, Mittag-Leffler, Moore, Tikhomandritzky, Volterra, Zeuthen.

Secrétaire général : M. Duporcq. 4

Secrétaires : MM. Bendixson, Capelli, Minkowski, Ptaszycki, Whi-
tehead.

Présidents des siz sections : MM. Hilbert, Painlevé, Darboux, Lar-
mor, prince Roland Bonaparte, Cantor. i

Secrétaires des sections : MM. Cartan, Hadamard, Niewenglowski,
Levi-Civita, d'Ocagne, Laisant.
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Conformément au programme, le Président donne la parole & M. Moritz
Cantor, qui lit en francais sa conférence Swur I’Historiographie des Ma-
thématigues; puis & M. Vito Volterra, qui lit, en francais également, sa
conférence intitulée : Betti, Brioschi, Casorati.

M. Rados prononce ensuite quelques paroles au nom du Ministre de
I'Instruction publique de Hongrie, dont il est le délégué officiel.

Enfin, le Secrétaire général fournit quelques indications orales aux
congressistes.

La séance est levée a 112 30™,
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SEANCES DE SECTIONS.

SECTION 1. — AlﬂTHMETIQUE ET ALGEBRE.

Mardi 7 aoit.

Présidence de M. HILBERT.

La séance est ouverte & g" & "amphithéitre Cauchy, de la Faculté des
Sciences, sous la présidence de M. Hilbert. M. Cartan remplit les fone-

tions de Secrétaire.

M. Hilbert ouvre la séance par une petite allocution dans laquelle it
souligne I'importance de I’ Arithmétique et de I’Algébre, qui constituent
la grammaire des Mathématiques.

Communications :
1. L. Avroxne, Sur les groupes d’ordre fini contenus dans le

groupe linéaire quaternaire.

M. Hilbert présente quelques remarques sur ce sujet.

2. H. Hancock, Remarks on Kronecker's modular systems.

M. Hilbert présente & ce sujet quelques remarques.

3. C. Srermanos, Sur la séparation des racines des équations algé-
brigues.

Cette Communication est suivie de quelques observations du Président
et d'un échange d’idées entre M. Stephanos et M. André¢, spécialement
sur certains théorémes que M. Stephanos croyait nouveaux et que

M. André avait déjad énoncés.

4. Von Kocn, Sur la distribution des nombres premiers.

M. Hilbert expose quelques idées personnelles & ce sujet et fait res-
sortir Pimportance des résultats obtenus par M. von Koch.
La séance est levée vers 11hb.,
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Jeudi 9 aout.

Présidence de M. HILBERT.

Y

La séance est ouverte 4 9® a ’amphithéatre Cauchy.
Communications :

5. R. Perrin, Sur les propriétés d’un certain covariant de la forme
binaire du cinquiéme ordre et leur application & la résolution de
Uéquation.

Sur la demande de M. Gordan, 'auteur reprend quelques points de sa
Communication.

6. L.-E. Dickson, The known systems of simple groups and their
inter-isomorphims.

MM. Rados, Artemas Martin et Padoa, dont les Communications se
trouvaient & 'ordre du jour, étant-absents, la séance est levée a 10" 30™.

Vendredi 10 aont.

La Communication suivante de M. Padoa, se rattachant a la premiére
Section, a pu éire faite 2 une séance des Sections V et VI :

7. A. Pavos, Un nouveau systéme irréductible de postulats pour
U’'Algebre.
On trouvera plus loin le développement des Communications précé-

dentes, sauf celles de M. Stephanos et de M, Rados, qui ne nous ont pas
été envoyées. ‘

SECTION II. — ANALYSE.

Mardi 7 aont.
Présidence de M. PAINLEVE.

La séance est ouverte a g" & ’amphithéatre Le Verrier. M. Hadamard
remplit les fonctions de Secrétaire.
Communications :

1. Tigkunomanorirzry, Sur {’évanouissement des fonctions théta de
plusieurs variables. '
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2. Mirrac-LerrLen, Sur une extension de la série de Taylor.

MM. Borel, Hadamard et Painlevé présentent quelques remarques sur

la Communicalion précédente.

Jeudi 9 aont.
Présidence de M. PAINLEVE,

3. L. Bewnixson, Sur les courbes définies par les équations différen-
tielles.

M. I'abbé Issaly profite de 'oceasion offerte par la Communication de
M. Bendixson pour parler des pseudo-surfaces. M. Hadamard présente
une observation sur I'indication que fournit le résultat acquis par M. Ben-
dixson, pour le cas ol le second membre de I'équation différentielle est
du troisi¢éme degré. Il croit qu’en I'absence d’une démonstration rigou-
reuse ce résultat ne permet que dans une certaine mesure de se faire une
opinion sur ce qui se passe loi‘sq ue le degré de ce second membre est quel-
conque. Les questionsrelatives aux équations différentielles semblent éire,
en effet, de celles ot Pon peut le moins se fler & ces sortes d’inductions.
C’est ainsi que, pour les géodésiques des surfaces a courbures opposées,
tant que l'ordre de connexion est égal & 1 ou & 2, les conclusions sont
trés simples et ne se distinguent pas de celles que donne la discussion
relative 4 'hyperboloide 4 une nappe. Au contraire, dés que 'ordre de
connexion est au moins égal & 3, les résultats changent enti¢rement de
nature et deviennent relativement compliqués.

4. E.Janwxe, NVouveaux systémes orthogonaux pour les dérivées des
Jonctions théta de deux arguments.

5. J. Draca, Sur l'intégration des éguations aux dérivées partielies

du second ordre.

6. Pani, Apercu sur les développements récents de la théorie des
fractions continues.

7. E. Canran, Sur Uintégration des systémes d’équations aux diffé-
rentielles totales.

On trouvera plus loin le développement de ces Communications, sauf
celle de M. Bendixson, quine nous est pas parvenue, et celle-de M. Cartan,
qui a,récemment paru dans les Annales de ’Ecole Normale supé-

rieure (Juillet 1gor).
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SECTION III. — GEOMETRIE:

Mardi 7 aout.

Présidence de M. G. DARBOUX.

La séance est oaverte 4 2™ & Pamphithéatre Cauchy. M. Niewenglowski
remplit les fonctions de Secrétaire.

Communications :

1. E.-O. Loverr, Sur les transformations de contact entre les lignes
droites et les sphéres.

2. C. Sreeaanos, Relations entre la Géométrie projective et la Mé-
canigue.

M. Massau rappelle un Mémoire qu'il a publié il y a quelques années
sur des questions analogues.

3. A. Macranrane, Application of space analysis to curvilinear
coordinales.

La séance est levée a 4°.

Jeudi 9 aott.

Présidence de M. G. DARBOUX.

4. F. Awopeo, Coup d’eeil sur les courbes algébriques au point de
vue de la gonalité.

5. I. Steineuam, Orthogonal transformations in elliptic, or in hy-
perbolic space.

6. V. Jauer, Sur lethéoréme de M. Salmon concernant les cubiques
planes.

1. A. Pavok, Un nouveau systéme de définitions pour la Géométrie
euclidienne.

M. Vassilief présente quelques observations sur cette Communication.

8. AbbéIssavy, Sur les pseudo-surfaces en général et sur un exemple
particulier de pseudo-surfaces minima.

Apréssquelques observations du Président, la séance est levée & 58 15™.
On trouvera plus loin le développement de ces Communications, sauf
celle de M. Stephanos, qui ne nous a pas été envoyée, etcelle de M. 'Abhé
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Issaly, qui a été publide dans les Nouvelles Annales de Mathéma-

tiques, p. 53-86; 1go1.On trouvera, en outre, une Note de M. F.-J. Vais

Sur les corps réguliers et semi-réguliers, dont I'auteur n’a pu assister
- au Congrés.

SECTION 1V. — MECANIQUE

Mardi 7 aoit.
Présidence de M. CZUBER.

La séance est ouverte & 2" & 'amphithéitre Le Verrier. M. Levi-Civita
remplit les fonctions de Secrétaire.
Communications :

1. I. Freonorm, L’inversion des intégrales définies et son applica-
tion aux problemes de la Physique mathématique.

Jeudi 9 aout.
Présidence de M. LARMOR.

7

2. J. Boccarot, Sur le caleul des perturbations spéciales des petites
planétes.

3. G. Sousvorr, Sur le mouvement d’un corps solide autour d’un
point fixe.
MM. Zenger et Somighana, dont les Communications éiaient 4 I’ordre

du jour, se trouvant absents, le Président déclare épuisésjcs travaux de
la Section.

Vendredi 10 aoit.

MM. Hadamard et Volterra ont néanmoins fait, le vendredi matin, & la
séance des Sections V et VI, les Communications suivantes & rattacher a
la Section de Mécanique :

L. J. Hapamaro, Sur les éguations aux dérivées partielles & carac-
téristiques réelles.
V. Vorterra, Sur les équations aux dérivées partielles.

On trouvera plus loin le développement de ces deux Commumcatmns,
ainsi que de celle de M. Boccardi.
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SECTIONS V ET VI. — BIBLIOGRAPHIE ET HISTOIRE.
ENSEIGNEMENT ET METHODES.

Mercredi 8 aoft.
Présidence de M. M. GANTOR,

Premiére séance.

En raison de 'absence du Président de la cinquieme Section, M. le
prince Roland Bonaparte, les Sections Vet VI se réunissent sous la pré-
sidence de M. Cantor, Président de la sixiéme Section. MM, d’ Ocagne et
Laisant remplissent les fonctions de Secrétaires.

La séance est ouverte a 9“.
Communications :

1. D. Hiserr, Sur les problémes futurs des Mathématiques.

M. Peano déclare que la Communication ullérieure de M. Padoa répondra
au probléme n® 2 de M. Hilbert. M. Mehmke rappelle qu'il a proposé
certaines représentations monographiques dans l'espace d'ou pourralL
résulter une solution de I'équation générale du sepliéme degré.

2. R. Fusisawa, Note on the Mathematics of the old japanese school.

M. A. Vassilief demande si l'on ne peul pas trouver les traces de
linfluence grecque, par l'intermédiaire du royaume gréco-bactrien, sur
les premiers géometres japonais.

3. Leav, Proposition d’'un veeu pour ' adoption d’une langue scien-
tifique universelle.

Le véeu que M. Leau propose au Congrés d’émetire est le suivant :

° Iy a licu dac{opier une langue scientifique et commerciale

universelle. :

2° Les Académies officielles sont respectueusement invitées & sen-
tendre pour la réalisation de ce projet.

M. Leau propose, en oulre, la résolution suivante :

Le Congrés décide de nommer cing Membres & la Délégation qui
se forme:

1° Pour demander aux Académiesofficielles devouloir bien adopter
une langue auxiliaire universelle;
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2° Pour faire ce choix elle-méme ou par un Comité créé par elle, en
cas de refus des Académies.

Le Président, en raison de l'importance de ces décisions, propose de

renvoyer la discussion 4 la séance du vendredi, afin de laisseraux congres-
sistes le temps d'échanger leurs vues. '

Avant de se séparer, on décide de continuer les travaux de la Section
a 2h, La séance est levée & 112 15™,

Seconde séance.

La séance est ouverte a 2b,
Communications :

4. M. p’'Ocacne, Sur les divers modes d’application de la méthode
graphigue & Uart du calcul.

5. Z. px Gavroeano, Note sur la critique mathématique.

M. Vassilief présente une remarque A ce sujet.

6. A. Carerri, Sur les opérations fondamentales de I Arithmé-
tique.

Une discussion s’engage sur la question entre MM. Capelli et Padoa.

7. M. Lamsant dépose sur le bureau quelques exemplaires d’un article

de la Bibliotheca mathematica sur I'état d’avancement des travaux du
Répertoire bibliographique des Sciences mathématiques.

8. M. Laisant présente le premier fascicule d'un Vocabulaire mathé-
matigue francais-allemand et allemand-francais, de M. Félix Muller.

La séance est levée a 4.

Vendredi 10 aoit,
Présidence de M. F. GEISER.

La'séance est ouverte & gb.

Elle débute par la Comimunication de M. Padoa, rattachée & la pre-
miére Section, et celles de MM. Hadamard et Volterra, qui se rapportent
i la quatrié¢me.

Elle est continuée par les Communications suivantes :

~ 9. M. Larsant lit une Note de M. Cu. Méray, Professear a 1'Université
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de Dijon, Sur la langue internationale auxiliaire de M. le D" Za-

menhof, connue sous le nom de « Lsperanto ».

10. La séance se poursuit par la discussion relative aux propositions
de M. Leau, présentées dans la premiére séance de la Section et relatives
a 'adoption d'une langue universelle, discussion qui,‘ comme on l'a va
précédemment, avail é1é renvoyée & la séance actuelle. A cette discussion
prennent part MM. Couturat, Laisant, Leau, Schreeder et Vassilief.

M. VassiLier estime que le mouvement qui a pour but d’introduire une
langue universelle est trés sympathique et a de grandes raisons d’étre, par.
suite de la variété rapidement croissante des langues qui sont employées
maintenant par les savants pour la publication de leurs OQuvrages. Tandis
que, dansle commencement du xix® siécle, il suffisait pour un savant de
connaitre le latin, le francais et I'anglais ( Gauss écrivait en latin), le nombre
des langues employées dans la littérature scientifique a crii par suile des
mouvements nalionaux et continue & croitre. Par exemple, dans ces der-
niéres années, on a publié d'intéressants Mémoires mathématiques en
langues serbe, croate el en langue petite-russienne. La grande ardeur avec
laquelle les Japonais poursuivent les études scientifiques nous metlra en
face d’une littérature japonaise si les savants japonais ne veulent plus
faire ceuvre d’abnégation en faveur des grands intéréls de la Science
comme ils I'ont fait jusqu’ici. Ce sera pour la Science un grand péril que
dix, vingt ou trente langues scientifiques ; néanmoins, M. Vassilief pense
que ce n'est pas une langue artificielle, telle que la langue Esperanto, ou
une langue morte comme le latin, qui puissent remplacer les langues
vivantes, organismes dus au travail de plusieurs généralions de penseurs
et d’écrivains. Aussiest-ce, selon lui, dans une autre voie qu'il faut cher-
cher la solution du probléme posé par les propositions de M. Leau. Il
faut exprimer le désir que les publications faites dans les langues peu
répandues soient suivies par des résumés rédigés dans une langue plus
connue dans le monde scientifique, comme le font maintenant les Acadé-
mies de Copenhague, de Cracovie, la Société minéralogique de Saint-
Pétersbourg; il faut que les cenvres complétes des savants de premier
ordre soient publides en deux langues, comme l'a fait I'Académie de
Saint-Pétersbourg pour les OFuvres de Tchebycheff, que les Académies
favorisent les Ouvrages tels que le Dictionnaire mathématique frangais-
allemand, de Félix Muller, ou la publication de I’ Encyclopédie mathé-
matique de Meyer et Burkhardt en langue francaise. En conséquence,
M. Vassilief propose d’exprimer le veeu suivant, plus général que celui de
M. Leau, et qui peut avoir plus de conséquences pratiques : que les.
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Académies et Sociétés savantes de tous les pays étudient les moyens
propres & remédier aux maux qui proviennent de la variété crois-
sante des langues employées dans la liitérature scientifique.

Ce vaeu est adopté par la majorité des congressistes présents.

11. M. R. Gurnanaks dépose sur le bureau quelques exemplaires d’un
Mémoire Sur les Mathématiques en Portugal au xix® siécle, Mémoire
historique et bibliographique que M. Guimaraés avait é1é chargé de
rédiger en vue de I'Exposition universelle.

Dans cette monographie, il fait un rapide examen des travaux de ses
compatriotes, parus au cours du x1x® siécle, en suivant dans cette étude
le classement, la notation et les abréviations adoptées par la Commission
da Répertoire bibliographique des Sciences mathématigues. Onytrouve
le compte rendu de 76g travaux, dont 226 apparliennent 4 ’Analyse,
192 4 la Géomélirie et 351 aux Mathématiques appliquées.

12. E. Marcrer, Sur Putilité de la publication de certains rensei-
gnements bibliographiques en Mathématiques.

MM. Dickstein et Laisant présentent (ILIE](E.HCS remarques a ce sujet.

13. M. Vissiier communique 4 la Section que le Professeur D.-M. Sin-
tsof a publié¢ dans le Bulletin de la Société physico-mathématique de
Kasan (Vol. VII, VIII, IX), sous le titre : Bibliographica mathemaltica
rossica, la liste détaillée et systématique des Ouvrages et des articles
mathématiques publiés en Russie dans les années 1896, 1897 et 1898.

On trouvera plus loin le développement de la Communication de
M. Hilbert qui, en raison de sa grande importance, a é1é placée parmi
les conférences. On trouvera, en bul.l‘e, sous le titre de la cinquiéme Sec-
tion, la Communication de M. Fujisawa et une Communication de
M. A. Garranvo Sur les Mathématiques et la Biologie, qui était a
Pordre du jour, mais dont Pauteur s’est trouvé absent. Sous le titre
de la sixiéme Section, on trouvera les développements des Notes de
MM. d'Ocagne, de Galdeano, Capelli, Méray et Maillet, ainsi quun
Mémoire de M. Venonese, Sur les postulats de la Géométrie dans
Uenseignement, dont P'auteur n’a pu assister au Congrés.
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SEANCE DE CLOTURE.

La séance de clOture s’est ouverte le samedi 11 aodt 4 g, 4 'amphi-
1 de cldt 9%,
théatre Richelieu, sous la présidence de M. Poincaré.

Il s’agit tout d’abord de s’entendre sur la préparation et la date du pro-
chain Congrés. On décide qu’il auralieu en 1go4 et I'on charge la Sociéié
mathématique allemande du soin de 'organiser et de choisir elle-méme
la ville ou 1l se tiendra. ’

Au nom de plusieurs Membres du Congrés, M. Laisant propose d’en-
voyer le télégramme suivant & M. Hermite, en villégiature 4 Saint-Jean-
de-Luz :

« Le Congrés international des Mathématiciens envoie l’expres-
sion de son admiration et de sa sympathie respectueuse aw géoméltre
tllustre qui honore son pays et le monde scientifique entier par
son talent ausst bien que par son caractére. C’est unanimement que
les Mathématiciens de toutes les nations forment pour M. Hermite
les veeuw les plus sincéres de bonheur et de santé (). »

La proposition de M. Laisant est votée par acclamation.

Le Congrés vole ensuite des remerciments & M. Gréard, recteur de
I'Université de Paris, pour 'hospitalité qu’il a bien voulu lui accorder a
la Sorbonne.

La séance est terminée par la conférence de M. Henri Poincaré, Sur
le réle de Uintuition et de la logique en Mathématiques, et celle de
M. G. Miutag-Leffler, intitulée : Une page de la vie de Weierstrass.

A 11%30™ le Président déclare clos les travaux du Congrés.

(') Au regu de cette dépéche, M. Hermite a répondu par le télégramme suivant,
adressé 4 M. Poincaré, mais qui est parvenu malbeureusement trop tard pour qu’on
pit en donner connaissance aux Membres du Congrés :

« Veuillez étre auprés des Membres du Congrés l'interpréte de mes sentiments
de reconnaisssnce et leur exprimer combien je suis profondément touché du
témoignage de leur sympathie; il me parvient au terme de ma carriére, il m’est la
plus haute et la meillenre récompense, il me comble de joie et d’honneur en ratta-
chant les liens de 'affection a ceux de la Science; j'y réponds de tout cceur en
remerciant les amis que je dois a I'étude, en leur adressant mes veux pour le succés
du Congres, pour qu’il seconde leurs travaux et contribue au magnifique avenir
de I'Analyse dans les voies nouvelles qu'elle s’est ouvertes, CHARLES HERMITE. »

e E—— ——
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CONFERENCES ET COMMUNICATIONS.

e D G e mn

CONFERENCES.

sUR

L'HISTORIOGRAPHIE DES MATHEMATIQUES,

Par M. Mauvrice CANTOR (Heidelberg).

Lorsqu’en juin 18gg le Comité organisateur me fit 'honneur de
me demander une Conférence dans une des deux séances générales
du Congres international des Mathématiciens a Paris, la premiére
question devant laquelle j’hésitais fut celle de la langue dans
laquelle je m’exprimerais. L’internationalité du Congrés et le régle-
ment adopté a Zurich en aotit 1897 me permettaient d’employer ma
propre langue, d’autre part, et sans préjudice pour mon estime de
la profonde érudition de mon auditoire & laquelle nulle langue ne
saurait étre étrangére en théorie, je me disais qu'en pratique je serais
mieux compris par un certain nombre de personnes en parlant
francais. :

Dans cette pensée je me rencontrai sans nous concerter avec les
autres orateurs choisis pour parler dans les séances générales. Nous
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employerons tous les quatre la langue du pays dans la capitale duquel
nous nous trouvons réunis aujourd’hui, et qui est celle de la grande
majorité des membres présents.

La seconde question sur laquelle je devais me fixer fut celle du
sujet dont je ticherais de vous entretenir. Les Mathématiques dans
le siécle sur la limite duquel nous nous trouvons ont pris un élan
presque inoui.

Elles ont perdu pour ainsi dire leur unité antérieure pour se
multiplier. Le mathématicien s’est dérobé par une trappe naguére
invisible dans le podium du thédtre des Sciences, et par une autre
irappe on a vu surgir des géometres, des analystes, des algébristes,
des arithmologues, des astronomes, des physiciens théoriques, et
méme des historiographes. Ces derniers, si vous voulez me per-
mettre de parler en leur nom, n’ont jamais eu la prétention de faire
avancer les Sciences mathématiques dans une quelconque de ces
branches a pas redoublés. Nous ne nous sommes avancés ni vers le
pole arctique du calcul des fonctlions, ni vers le pdle antarctique de
I’Algeébre plus loin que nos prédécesseurs, nous n'avons pas décou-
vert les propriétés des surfaces plus ou moins escarpées -de la Géo-
métrie, nous ne sommes pas descendus jusqu’au fond dans le gouffre
des équations différentielles. Clest vous, et je pourrais facilement
citer des noms el montrer du doigt les porteurs de ces noms immor-
talisés, & qui ce mérile est dévolu. Mais nous, les historiographes
des Mathématicues, qu’avons-nous fait?

Nous avons composé des Guides de voyageurs. Nous avons décrit
qu'a telle époque tel fleuve a été rendu navigable, tel canal, telle
grande route, tel chemin de fer a é1é construit, délaissé aujourd’hui
dans de certains cas, employé plus que jamais dans d’autres, miéri-
tant d’étre repris dans de troisitmes. Nous avons montré que ces
moyens de communication tout en conduisant d’un endroit & 'autre
ne manquaient pas de passer & cOté de certains points remarquables,
dignes de s’y arréter et pas encore aussi connus qu'ils en valent peut-
étre la peine. Nous avons réclamé chaque chemin autant que pos-
sible pour celui qui I'a défrayé, acte de reconnaissance dont la
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justice devrait étre avouée le plus libéralement par ceux qui eux-
mémes ont droit & une reconnaissance semblable.

‘Charité bien comprise commence par soi. Pourquoila reconnais-
sance ne l'imiterait-elle pas? Permettez-moi d’en agir de la sorte et
de faire dans une courte esquisse I’histoire de I'Historiographie des
Mathématiques.

Pour commencer par le commencement il faudrait prendre par
bien haut. Les successeurs d’Aristote, les péripatéticiens, aimaient a
chercher ct & trouver une source personnelle des connaissances hu-
maines, et ils se réjouissaient d’autant plus §’il leur était possible de
découvrir cette source dans un des pays lointains subjugués par
Alexandre, le disciple de leur maitre. C’est de ce penchant que'sont
nés les premiers essais d’Hisfoire des Sciences. Eudéme de Rhodes
a composé une Histoire des Mathématiques a une époque trés voi-
sine de I'an 300 avant le commencement de I'ére chrétienne. Cette
Histoire des Mathématiques, nous ne la possédons pas. Certains
fragments seulement s’en sont conservés d'une maniére ou de l'autre
etnous font regretter vivement ce que nous avons perdu. Eudéme,
a en juger par ces fragments, aimait & dessiner avec un crayon
hardi le profil scientifique des mathématiciens dont il nous a gardé
les noms. Il semble avoir donné plutét une histoire de leurs idées
que de leurs personnes, qui peut-éilre & son époque étatent encore
trop connues pour qu’il fallit s’y arréter.

Vous ne m’en voudrez pas si d’un seul bond je saute plus de deux
mille ans afin d’arriver au milieu du xvin® siécle. Non qu'il 0’y ait
eu dans tout cet intervalle des essais d'Histoires des Mathématiques.
Loin de la! Je pourrais vous citer des écrivains jadis célehres en
France, en lialie, en Hollande, en Allemagne, qui ont fait de leur
mieux, mais malheureusement leur mieux ne valait guére comparé
& ce qu'on a fait depuis et 4 ce qu'on demande aujourd’hui. Les
De la Ramée, les Baldi, les Vossius, les Heilbronner se contentaient
en geénéral de dire que tel auteur avait écrit sur tel chapitre tel ou-
vrage, mais si I'on voulait savoir ce qu'il y avail de nouveau dansces
ouvrages ou quel était 'ccuvre scientifique d’un auteur, on restait
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sans réponse. Je me borne donc a cette courte remarque pour mo-
tiver mon saut périlleux d’Eudéme 4 Montucla. '

Qui ne connait Jean-Etienne Montucla, de Lyon, dont la vie a duré
de 1725 a 17997 Ayant acquis dans le collége des Jésuites de sa ville
natale des connaissances pen communes de langues étrangéres et de
Mathématiques il était muni des deux outils principaux qu'il lui fal-
lait pour accomplir sa tache scientifique avant méme de 'avoir com-
prise. En effet, il commenca par des études de droit & Toulouse et
ce ne fut qu'en second lieu qu'il vint & Paris faire des études géné-
rales. Il devint un habitué de la maison hospitaliére de I'éditeur-
libraire Jombert, et ¢’est 1a qu'il fit la connaissance des autres in-
times de la maison, parmi lesquels je ne citerai que Da Gua de
Malves, d'Alembert, de Lalande. C’est peut-étre Da Gua de Malves,
dont les Mémoires algébriques de 1741, commencant par des intro-
ductions historiques trés étendues, donnérent & Montucla I'idée de
s'en prendre lui-méme & un probléme de Mathématique et d'en
suivre le développement historique. L’ Histoire des recherches sur la
quadrature ducercle paruten 1754, Ouvrage consciencieux si jamais
il en fut, fourmillant de détails oubliés depuis longtemps qu’il fallut
déterrer dans des auteurs eux-mémes moins connus qu'ils ne méri-
taient. Le petit Volume eut un succés complet, et ce ne fut pas plus
tard que 1758 que Montucla le fit suivrede son Histoire des Mathéma-
tigues. Les lecteurs d’aujourd’hui ne connaissent généralement que
les deuxiémes éditions des Ouvrages que nous venons de citer, 'édi-
tion des Recherches sur la guadrature de 1831 de Lacroix, I'édition
de I’Histoire des Mathématiques de 179q de de Lalande. Dans cette
derniére les deux Volumes sortant de la plume de I'auteur méme
sont complétés par deux autres Volumes composés par de Lalande.
Jugés & eux seuls ces derniers ne seraient pas mauvais, n’était-ce
que la proximité des deux premiers Volumes leur fit du tort. Invo-
lontairement on se met a comparer, on trouve une dislance énorme
en valeur des deux premiers Volumes aux deux derniers, et au lieu
de louer Montucla on se-contente de blidmer de Lalande.

Pendant un certain temps, il était méme de bon ton de dénigrer
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aussi Montucla. Il a ignoré I'existence de tel monument, il n’a pas
reconnu la portée de tel manuscrit, il a mal traduit telle phrase.
Tout cela est parfaitement vrai, mais peut-on raisonnablement de-
mander d’un seul auteur ce que douze autres ou davantage ont fait
plus tard & forces réunies ? Peut-on, s'il m’est permis de reproduire
une phrase que j’ai employée autrefois, reprocher & un cartographe
de I'année 1850 d’avoir laissé en blanc la partie centrale de 'Afrique
avant qu’elle fat explorée ? Non, et mille fois non! Certainement,
Montucla n’est plus aujourd’hui Pauteur presque infaillible qu'il faut
consulter sur n'importe quelle question d'Histoire des Mathéma-
tiques, il est tombé maintes fois dans des erreurs inévitables pour
lui, mais il est encore et restera peut-étre toujours un modéle que
tout historiographe des sciences doit suivre, modéle aussi en tant
qu'il a éprouvé ses forces dans une monographie avant d'entamer
son Ouvrage universel. '

Le siécle touchait & sa fin, lorsque deux Quvrages parurent, qui
nous demandent de passer les frontiéres de la France et de nous
rendre en Allemagne. d’abord, puis en ltalie.

Abraham Gotthelf Kaestner, né a Leipzig en 1719, mort a Goet-
tingen en 1800, publia, dans les quatre derniéres années de sa vie,
autant de volumes d'Histoire des Mathématiques. On a encensé
Kaestner pendant sa vie, on a écrit sur son buste : « Kaestner
'unique », et, plus tard, on s’est moqué de lui; on I'a nommeé « le
meilleur poéte parmi les mathématiciens, le meilleur mathématicien
parmi les poétes de son temps », et ¢’est Gauss qui est 'auteur de cette
¢pigramme sanglante. Il ne serait pas difficile de démontrer qu’il y
a eu de I'exagération de part et-d’autre dans ces évaluations aussi
opposées que possible du méme auteur, mais je m’en tiens et je dois
m’en tenir & son Histoire des Mathématiques. Je ne péserai pas sur
lage de Kaestner lors de cette publication. Eire octogénaire, c’est
une excuse pour ne plus rien faire, mais non pas pour lancer dansle
public des mauvais livres. Ne croyez pourtant pas que ce soit 1a la
qualité que j"attribue & son Histoire. Clest un Ouvrage qui est loin
de nous présenter ce que son titre promet, mais dont, malgré cela,
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a 'opinion unanime des connaisseurs, on ne saurait se passer dans
des travaux historiques. Kaestner a dt posséder une bibliothéque
des plus riches, et, dans son Histoire des Mathématiques, il en a
donné la description consciencieuse et détaillée en réunissant par
ordre chronologique les Ouvrages d’'un contenu semblable. Clest
ainsi que, par Kaestner, nous connaissons et connaissons méme
assez bien une quantité d’auteurs, dont le nom méme nous serait
inconnu sans lui, et nombre de volumes introuvables,aujourd’hui.
L’Ouvrage italien que j'annoncais tout 4 I’heure est d'une qualité
bien différente. C’est I'Histoire critique de l'origine de I'Algébre, de
son arrivée en Italie et des progrés qu’elle y fit, par Pietro Cossali,
imprimée en deux volumes, de 1797 & 1599, 4 Parme ol '’Auteur
était professeur d’Astronomie et des Sciences attenantes. En 1806,
Cossali passa a Padoue ot 1l est mort en 1815, 4gé de soixdnte-
sept ans et demi. On a dit, avec un grand fond de raison, que 'Ou-
vrage de Cossali. rendait superflu tout autre Ouvrage sur P Algébre
en Italie dans I'époque limitée par les années 1200 et 1600, et,
comme les Italiens, dans cette époque, marchaient a la téte de I'Al-
gebre, il ne faut comme complément que des recherches sur quelques
algébristes des autres pays qui, comme Jordanus Nemorarius,
comme Nicolas Chuquet, comme Michael Stifel, comme Francois
Viéte, ont inscrit leur nom sur des pages manquant et devant man-
quer chez Cossali, mais absolument nécessaires dans une Histoire
geénérale de ' Algébre. Le mérite de Cossali est d’autant plus grand
que, pour ses recherches sur Léonard de Pise, auteur qu'il a pour
ainsi dire découvert, il ne pouvait avoir recours qu’a des manuscrits
parfois difficiles a trouver, plus difficiles & déchiffrer. C'est Cossali
qui a mis le prince Boncompagni sur les traces de ce négociant du
xin® siécle, ami d’un prince, prince lui-méme parmi les amis des
Sciences mathématiques. Et c¢’est Cossali aussi qui a su entrer dans
Pesprit de Girolamo Cardano, qui a fait ressortir les vérités décou-
vertes par cet homme de génie en les traduisant d’une langue a
peine compréhensible dans une langue & la portée de tout mathé-
maticien. On a blimé cette traduction. On a dit que c’était fausser
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un auteur que de changer sa maniére de s’exprimer. Je ne suis point
de cet avis. Nul plus que moi ne se met en garde contre le penchant
de préter & un auteur des idees postéricures a son siécle, mais s'1l
ne s’agit que d’'un changement de locutions, je crois que nous
devons en savoir gré a qui nous préserve de devoir nous servir a
chaque instant d'un dictionnaire, et Cossali, 4 mon opinion, n’a rien
fait de plus.

Je vous reconduis en France ot Charles Bossut, né en 1730 &
Tartaras, mort en 1814 a Paris, comme examinateur auprés de
'Ecole Polytechnique, publia en 1810, lui aussi octogénaire tout
comme Kaestner, deux petits volumes in-octavo portant le titre
d’Histoire générale des Mathématiques depuis leur origine jus-
gqu’a lannée 1808. Dans ces deux volumes, vous ne trouverez pas
de figure géométrique, pas d’équation. Clest assez vous dire que
Bossut n’a pas voulu entrer dans le détail des sciences, dont il signale
seulement le développement trés général. Ce sont des apercus, des
coups d’ceil rapides pris de certains points de vue, des raisonnements
pleins d’attraits pour ceux qui savent, peu utiles pour ceux qui ont
besoin d’apprendre. Quant aux erreurs qui se trouvent dans Bossut,
dans Cossali, c’est la méme chose qu'avec les erreurs de Montucla.
Il ne faut pas les leur imputer; ce sont les défectuosités de leur
¢poque et non de leur personne.

Passons de nouveau sur une trentaine d’années pour arriver 4 des
auteurs que les plus dgés d’entre nous ont pu connaitre personnelle-
ment étant jeunes. Oui, il doit y avoir parmi vous des personnes
qui, aussi bien que moi, se souviennent de la petite figure affable et
spirituelle de Michel Chasles, qui croient entendre encore les paroles
aimables par lesquelles il se plaisait & rendre le courage 4 ceux de
ses jeunes émules qu'un premier échec avait terrifiés, & aiguillonner
ceux qu’un premier succés aurait pu rendre vains et fainéants. Je le
vois toujours devant moi me parlant pour la premiére fois dans le
corridor qui méne 4 la salle des séances de 1’Académie des Sciences,
me faisant I'accueil le plus aimable, me traitant en collégue, moi
tout Jeune homme qui n'avais publié¢ qu'un pauvre petit Mémoire

3
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que j'avais eu 'audace de lui envoyer. Je le vois me recevant dans
une maison de campagne a Saint-Germain, en compagnie de
M. Bienaimé et de M. Joseph Bertrand dont, de cette maniére, il me
fit faire la connaissance. Je le vois me rendant visite dans une petite
chambre au cinquieme de la rue Saint-Lazare et assis & c6té du lit ou
j'étais retenu malade.

Pardonnez-moi, si je vous parle de ces souvenirs personnels avant
que de parler de ' Apercu historigue sur Uorigine et le développe-
ment des méthodes en Géoméirie de 1837. C’est comme une pho-
tographie de l'auteur mise a la téte de son Ouvrage et rehaussant
I'intérét qu’on lui porte. Bien entendu que I'Apercu historique n’a
pas besoin d'une telle réclame, Ouvrage qui a eu ’honneur d'une
traduction en allemand dés 1839 et d’'une réimpression en 1875.

Dans 'dpercu historique, il faut bien distinguer entre le texte et
les notes. Le texte donne une histoire de la Géométrie, et surtout
de la Géométrie synthétique, assez bréve et condensée, faisant appel
4 la foi du lecteur pour les theses qui y sont formulées. Ce sont les
notes explicatives au bas des pages, et surtout les notes ayant la
dimension de véritables Mémoires et qui servent d’appendice au
Volume, ot I'on trouve discutés en détail les documents que le
savoir profond de l'auteur a su déterrer. C'est 14 la partie modéle de
I’Ouvrage, sur laquelle plus d'un historiographe des Mathématiques
s'est formé. Dans ces notes, Chasles a dépassé le but annoncé par le
titre. Ce ne sont pas seulement les méthodes de la Géomeétrie dont
il s’agit, la numération et le calcul, I'’Algeébre, la Mécanique, y sont
traités tour a tour avec une érudition magistrale. Chasles a fait
encore en 1871 un Bapport sur les progres de la Géométrie plein
d’intérét, mais traitant peut-étre de choses et de personnes trop
prochaines pour pouvoir porter sur elles un jugement historique.
Ajoutons que dans-le Rapport l'ignorance de la langue allemande,
moins nuisible dans ' Apercu historique, qui ne traite en général
que des Ouvrages écrits ou traduits en francais, en latin, en italien,
rarement en anglais, se fait sentir désagréablement, malgré les soins
que Chasles a mis a se faire traduire po-u_r son usage et méme par
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écrit des Ouvrages allemands qu'il ne comprenait pas et qu'il dési-
rait connaitre.

Tout prés de Michel Chasles vivait 4 Paris Guillaume Libri. Le
comte Libri Carucci della Sommaja est né a Florence, en 1803.
Professeur de Mathématiques a Pise, il se rendit coupable d’opi-
nions sinon d’actions taxées, dans ce temps, de subversives, et dut
se réfugier en France en 1830. 1l y fut naturalisé en 1833, devint
professeur d’Analyse a la Sorbonne, membre de "Académie des
Sciences, inspecteur général des bibliothéques. On connait I'abus
qu’il fit de cette derniére position. En 1848, il quitta le sol de la
France, devenu trop brilant pour lui. II passa en Angleterre, plus
tard en Italie, ol il mourut a Villa Fiesole, en 186q. Dans les années
1837 4 1841, Libri publia son Histoire des Mathématiques cn
Italie, conduisant, en quatre volumes, jusqu'a la mort de Ga-
lilée, c’est-d-dire jusqu’au milieu du xvi® siécle. Peut-on écrire
convenablement I'Histoire des Mathématiques dans un pays quel-
conque? J'en doute fort, et voici pourquoi. S'il existe une Science
internationale par excellence, ce sont les Mathématiques. Le Droit,
la Théologie, la Philosophie, la Littérature facile, 'Histoire, peuvent
porter et portent, en effet, généralement un timbre national que je
ne tiens ni a louer ni 4 blamer, mais a signaler seulement. Dans les
Mathématiques, il en est tout & fait autrement. Depuis les temps les
plus reculés, I'influence d'un peuple sur un autre ou il s’agit de con-
naissances mathématiques ne s’est pas dérobée un seul instani. On
ne saurait comprendre le développement des Mathématiques en
Gréce sans connaitre 'état de cette science en Egypte et en Baby-
lonie. Les Mathématiques romaines sont isssues des Mathématiques
grecques, qu’elles présupposent. Pour les Mathématiques des
Arabes, la situation est semblable, impossible de s’y orienter sans
avoir étudié les Mathématiques des Egyptiens, des Grees, des Hin-
dous. Arrivons-en aux temps aprés l'invention de I'imprimerie;
c’est bien autre chose encore. Tant que la langue latine était la
langue des savants de tout pays, il n'y avait pas de frontiére pour
les livres, et plus tard, quand on s’habitua a écrire chacun dans
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son idiome, les frontiéres a peine établies s’effacérent de nouveau
pour ceux qui, outre la Science, possédaient aussi plusieurs langues
modernes. Comment donc discerner, dans le courant du fleuve
commun, les sources de chaque petit ruisseau qui y a contribué;
comment réciproquement décrire une source en s’y arrétant ou
passer auprés d’eile en la négligeant, avant de savoir si elle était
destinée a prbduire, dans un autre pays, un fleuve, ou a tarir dans
le sable? On me dira que, pourtant, tout peuple a eu son temps ou
il marchait a la téte d'une Science ou de I'autre. C’est parfaitement
vrai; mais, parce que c’est vrai pour tous les peuples, cela prouve
d’autant plus la difficulté d’écrire I'Histoire de cette Science chez un
seul peuple, sinon pour 1'époque pendant laquelle ce peuple faisait
avancer cetle Science. Vous vous rappellerez qu'en d’autres mots,
j’ai déja dit a peu prés la méme chose en parlant de 'Ouvrage de
Cossali. '

Les intervalles pendant lesquels d’autres peuples avaient 4 accom-
plir la méme mission scientifique resteront des lacunes, des cre-
vasses, pour ainsi dire, qu'on ne peut ni sauter ni tourner .sans
mettre les pieds dans un terrain étranger. Comment Libri s’est-il
tiré de ce dilemme dans son Histoire des Mathématiques en Italie?
il I'a simplement escamoté. Pour lui et pour le lecteur qui se laisse
entrainer par un style admirable, par les accents d'un patriotisme
chaleureux, mais mal placé, il n’y a que les Italiens. et quelques
Francais qui ont fait faire des progrés aux Mathématiques. Il s’ar-
réte auprés des uns, il nomme en passant les autres et voila tout,
Des auteurs comme Michael Stifel n’existent pas pour lui, et s'il
trouve chez un Italien, disons chez Tartaglia, des inventions de ce
prédécesseur incommode, c’est Tartaglia a qui on doit en étre rede-
vable et qui en est 'auteur. Vous voyez par ce petit exemple que
I'on ne peut suivre Libri qu'avec beaucoup de précautions. Ces
précautions prises, il est indiscutable que Libri a rendu des services
énormes a I’'Historiographie des Mathématiques. Il a étudié nombre
de manuscrits dont il donne des extraits pour la plus grande partie
trés exacts, et, comme je le disais déja, il manie la langue avec un
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art tout a fait hors ligne. Son Histoire des Mathématiques en Italie
se lit comme un roman, méme dans les parties ol elle n’en est pas un.

Un an aprés le quatriéme volume de Libri, les amis <e I’Histoire
des Mathématiques purent saluer en Allemagne l'apparition d’un
chef-d’ceuvre digne d’étre mis a coté de 'dpercu historique de
Chasles. Je parle de 'Histoire de I’ Algébre de Nesselmann, & la-
quelle je ne connais qu'un seul défaut, celui d’en étre restée au pre-
mier volume.

Non que le temps ait manqué & Nesselmann de continuer 'Ou-
vrage dont il publia le premier volume a I'dge de 3r ans, en 1842.
Nesselmann vécut jusqu'en 1881, mais, pour'des motifs que je n’ai
pas pu parvenir & éclaircir, il a délaissé le sentier qu'il avait entamé
avec tant de succes, et, a dater de 1845, il n’a publié que des Ou-
vrages de Philologie. Nous ne possédons donc de lui, comme His-
toire de ’Algébre, que I'Histoire de I’Algébre grecque.

La suite chronologique des publications me conduit a C.-J.
Gerhardt, mort en mai 189g, & I'dge de 83 ans. Sa premiére occu-
pation avec un sujet historique remonte méme jusqu’en 1837, ou il
ecrivit un Mémoire : Sur les principes du calcul différentiel,
couronné par 1'Université de Berlin qui avait posé cette question
comme sujet d’un prix universitaire, et, depuis ce temps, (Gerhardt
n’a pas cessé de se vouer &4 I'étude de Leibniz, de ses rivaux et de
ses émules. 11 a fouillé & plusieurs reprises, dans la bibliothéque de
Hanovre, le commerce littéraire et les manuscrits laissés par Leibniz,
il y a trouvé des documents d'une date tantdt certaine, tantdt pro-
bable, qu'il a publiés, et qui lui ont permis de faire I'Histoire véri-
table de I'invention du Calcul infinitésimal. Cest 14 et dans la ré-
daction des OEuvres complétes de Mathématique et de Philosophie
de Leibniz, confiée & Gerhardt par '’ Académie de Berlin, que repose
son grand mérite qu'on ne doit pas lui disputer en s'appuyant sur
de petites erreurs qui se sont glissées par-ci par-la dans ses Ou-
vrages comme dans ceux de tout autre. ;

Un reproche qu’on peut lui adresser avec raison, c'est celui d'un
certain mépris de travaux contemporains, que peut-étre il n’a pas
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méme lus, dont certainement il ne s’est pas servi comme il avait le
devoir de le faire. C'est qu’il était pénétré de la conviction d’étre a
lui seul le régénérateur des études de I’Histoire des Mathématiques.
Or l'orgueil ne manque jamais d’étre nuisible. On confia & Gerhardt
une autre tache aussi, celle d’écrire une Histoire des Mathématiques
en Allemagne, et le petit volume par lequel il s’en déchargea, porte
la date de 1877. En parlant de Libri, j’ai dit ce que je pensais de
I'Histoire des Mathématiques dans un seul pays. Le volume de
306 pages publié par Gerhardt n’en est pas meilleur pour conduire
depuis I'année 700 environ jusqu'en 1850. Voyageant pour ainsi
dire en ballon, il ne s’arréte que sur les cimes des montagnes et
encore en oublie-t-1l pas mal.

Adolphe Quételet, le directeur de I'observatoire de Bruxelles, qui
dans sa longue vie, depuis 1796 jusqu’en 1874, a bien mérité des
Sciences les plus variées, a publié deux Volumes, I'un en 1864,
I'autre en 1866, sur I'Histoire des Sciences mathématiques et phy-
siques en Belgique. Je les cite pour avouer qu’ils me semblent bien
préférablesa’Ouvrage dont je viens seulement de dire quelques mots.

Je remonte quelques années pour nommer U Histoire des Mathé-
matiques pures d'Arthur Arneth de 1852. L’auteur a été pendant
plusieurs années mon collégue & Heidelberg, ot il est né en 1802 et
mort en 1858. Arneth a voulu raconter I'Histoire des Mathématiques
comme faisant partie de l'histoire du développement de l'esprit
humain, et, en marquant ce but, il s’est posé un probléme digne
d’étre résolu, mais qui ne saurait étre traité dans 291 pages.

L’Introduction et une premiére Partie trés générale fourmillant
de remarques aussi spirituelles que profondes remplissent 67 pages;
73 pages sont vouées aux Mathématiques grecques, 45 a celles des
Hindous, 494 celles des Arabes, des Romains, du moyen dge, en con-
duisant jusqu'a la moitié du xvi® siécle. Faites le compte et vous
trouverez qu’il reste tout juste 58 pages pour I'époque commencant
en 1550 & peu prés pour finir en 1800. Clest tout dire. Arneth aurait
pu faire un livre excellent, quoique laconique au superlatif, s'il
avait pris garde a bien disposer de I'espace convenu avec l’éditeur.
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Il a négligé cette premiere régle d'un auteur (et laissez-moi ajouter,
entre parentheses, d’un orateur aussi) et son livre en a souffert.

Le dernier Ouvrage, dont je veux parler, a eu un sort trés diffé-
rent de ceux que j’'ai nommés jusqu’ici. Tous ont été publiés par
leurs auteurs surveillant la publication et s’en rendant, par consé-
quent, responsables. Si Montucla n’a pu compléter sa deuxieme edi-
tion, il en a du moins vu imprimer les deux premiers Volumes. Her-
mann Hankel est mort en 1873 a I'age de 34 ans seulement, avant
gqu'une page de son Ouvrage sur 'Histoire des Mathématiques ne
fat imprimée. Il n’a laissé qu’un torse, mais un torse d'une telle
beauté qu'il efit été piti¢ de ne pas le mettre au grand jour. Il y a des
inégalités, de légers défauts quele burin del'artiste aurait sans doute
fait disparaitre s'il en avait eu le temps, mais la beauté générale n’en
est amoindrie que minimement.

Hankel était, vous le savez tous, un mathématicien de grand ta-
lent, il possédait de méme toutes les connaissances et toutes les apti-
tudes & désirer pour 'historiographe des Mathématiques. Le frag-
ment publié en 1874 aprés sa mort nous montre et nous fait regretter’
ce dont on aurait pu s’attendre, s'il avait vécu.

Je vous ai fait passer en revue trés sommairement un-assez grand
nombre d’Ouvrages sur I’histoire des Mathématiques, et j’en aurais
pu facilement doubler sinon tripler le nombre. J'ai omis tous les Ou-
vrages dont les auteurs sont encore en vie et dont je ne veux blesser
n1 la modestie ni I'opinion, peut-&tre trop favorable, qu’ils se sont
faite de leurs travaux. J'en ai omis qui ont été écrits par des auteurs
tout aussi morts que leurs Livres; gardons-nous de les ressusciter.
J'ai omis les auteurs qui, comme les Maclaurin, les Lagrange, les
Gauss, auraient mérité d’étre mentionnés pour les admirables Intro-
ductions historiques dont ils ont enrichi leurs productions célébres.
Jai omis aussi de vous parler d'un grand nombre d’écrivains qui
n'ont composé que des Mémoires historiques soit dispersés, soit
réunis dans un Volume, mais ne constituant pas un Ouvrage suivi.
Je pense aux Reimer, aux de Morgan, aux Biot, aux Giesel, aux
Ofterdinger, aux Bierens de Haen, dont certainement je ne me
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serais pas tu, si je n’avais craint de dépasser de beaucoup le temps
permis.

Mais devrais-je m’attirer ce reproche, je ne saurais passer en
silence le prince Baldassare Boncompagni, ce Mécéne Romain qui
avait voué son temps, son travail, sa fortune au culte de I'Histoire des
Mathématiques. Ses recherches sur Gérard de Crémone, sur Platon
de Tivoli, sur Léonard de Pise sont reconnues comme de grande
valeur, mais c’est surtout par I'édition faite & ses frais des Ouvrages
de Léonard de Pise et de différents autres auteurs et par la publica-
tion des vingt volumes de son Bulletino distribués d'une main
généreuse qu’il a donné un impulsion vive et subsistante & la Science
qu’il chérissait. Boncompagni avait réuni une bibliothéque mathé-
matique sans pareille contenant plus de six cents manuscrits a coté
de milliers de Livres imprimés. 1l est bien & regretter qu’aucun
Etat, aucune Académie n’ait eu le désir ou les moyens d’acquérir en
bloc toutes ces richesses qui, soumises a une vente publique, se sont
vues dispersées sans retour possible.

1l y a peut-étre dans mon auditoire des personnes assez étonnées
de voir combien grande est la cohorte des auteurs qui ont droit au
titre d’historiographe des Mathématiques. En effet cette branche n’a
jamais été aussi délaissée que I'on croyait. Elle n’a jamais eu pour-
tant autant de succés que depuis une vingtaine d’années a peu prés.
La Science est féminine, et le genre féminin aime se mettre a la
mode qui change toujours pour revenir aprés un certain temps.
Dans les sciences ce sont telles ou telles matiéres quiont été en vogue
naguere, dont on ne parle presque plus aujourd’hui, qui reviendront
sous une forme nouvelle. Auj ourd’hui que 'Historiographie scienti-
fique a su entrer en faveur, permettez-moi de finir par quelques
mots sur la maniére future d’écrire 1'Histoire des Mathématiques.

Ai-je besoin de m’expliquer plus amplement sur ce que j'ai en
vue? Je ne pense nullement 4 ces parties de I'Histoire des Mathéma-
tiques, dont d’autres ont, dont j’al moi-méme tché de faire le récit
détaillé. Je pense a1'Histoire des Mathématiques depuis 1759, époque
moins fortuite qu’elle n’en a l'air, puisque c’est I’année dans laquelle
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Lagrange a publié son premier Mémoire, ce mathématicien illustre
que I'Italie a possédé depuis sa naissance en'1934 jusqu'en 1766,
puis IAllemagne jusqu’en 1786, enfin la France jusqu’a sa mort
en 1813, le créateur pour ainsi dire des Mathématiques modernes.
Mon excellent ami, M. Paul Tannery, a soutenu et beaucoup d’autres
se sont rangés du méme avis, qu'a dater de cette époque il devenait
impossible de traiter le sujet en question de la méme maniére que
dans les temps antérieurs. Les sections qu’on est obligé d'introduire
dans tout Livre d’histoire afin de pouvoir s’y orienter se seraient
multipliées dés I'année 1600 environ en traitant des intervalles de
plus en plus raccourcis, par contre les Chapitres se fondant sur les
matiéres traitées se seraient accrus démesurément, ol en vien-
drait-on & la fin? On demande une nouvelle répartition conforme
a la distribution du travail mathématique dont il a été question au
commencement de mon discours. On veut dorénavant, et certaine-
ment on n'a pas tout 4 fait tort, que I'Histoire générale des Mathé-
matiques cede la place a des Histoires de la Géométrie, de I’Analyse,
de'Algebre, etc., voire méme de parties beaucoup plus spéciales. Je
dis qu’on n'a pas tout & fait tort ou, ce qui revient au méme, qu’on
n'a pas tout & fait raison, parce que je crois que ce qu'on demande
ne suffit pas 4 lui seul.

Permettez-moi d’employer une image. Je parlais tout 4 'heure de
modes. J'ai vu tantét une coiffure de dames fin de siécle ou nouveau
siécle, comme vous voudrez, car je n’aime pas les discussions sur les
goiits, les couleurs et le commencement du siécle, j'ai vu, dis-je, une
coiffure consistant dans une multitude de méches entrelacées qui
formaient des nattes dont chacune touchait les autres d’une maniére
artistiquement combinée. Je tichais de suivre les contours d’une
seule méche. Rien de plus facile. Iln'y a qu’a la retirer de la coiffure.
Oui, mais la coiffure elle-méme sera détruite.

Vous me direz qu'en fondant une démonstration sur des images
on peul alsément prouver tout ce qu’on veut. J’en conviens pourvu
que vous conveniez que dans mon image il y a du vrai et voici la
conséquence que j'en tire. J'admets que I'Histoire des Mathéma-
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tiques modernes aura besoin d'étre étudiée dans divers Volumes
destinés chacun & 'Histoire détaillée d'une branche spéciale.

Mais ces. histoires partielles une fois écrites comme préparatifs
indispensables, il faudra un dernier Volume résumant le tout, faisant
ressortir les grandes idées du siécle, n’importe al'occasion de quel pro-
bléme ellesauront I'air d’étre nées, car au bout du comptele motqu’on
préte & Jacobi, qui aurait commencé par lui un cours universitaire,
est bien vrai. Les Mathématiques sont une Science dont on ne sau-
rait comprendre une partie sans connaitre toutes les autres. Ce der-
nier Volume, I'Histoire des Idées comme je me suis permis de le
nommer, sera bien difficile & composer, beaucoup plus difficile que
les Volumes qui précéderont, mais il sera indispensable. C'est ainsi
que jecrois comprendre la thche de nos successeurs.
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TROIS ANALYSTES ITALIENS
ET
TROIS MANIERES D’ENVISAGER LES QUESTIONS I’ANALYSE,

Par M. Viro VOLTERRA (Rome).

Dans 'automne de 1'année 1858, trois jeunes géométres italiens
partaient ensemble pour un voyage scientifique.

Leur but était de visiter les Universités de France et d’Alle-
magne, d’entrer en rapport avec les savants les plus remarquables,
d’en connaitre les idées et les aspirations scientifiques et, en méme
temps, de répandre leurs travaux. _

Ce voyage entrepris par Beiti, Brioschi et Casorati marque une
date qu'il est bon de rappeler. L’Italie allait devenir une nation.
Elle entre a partir de cette époque dans le courant des grands tra-
vaux scientifiques et, par un nombre de travailleurs toujours crois-
sant, apporte sa contribution & I'ceuvre commune.

Dans ce jour ot tant de mathématiciens se réunissent en inau-
gurant un échange fécond d'idées, j'aime & rappeler ce souvenir.

1l serait impossible de comprendre et de suivre les progrés del’Ana-
lyse en Ttalie, dans la seconde moitié du x1x® siécle, sans connaitre
a fond I'ceuvre poursuivie avec patience et avec énergie pendant un
grand nombre d’années par les trois géométres dont je viens de rap-
peler les noms, secondés par les efforts de leurs meilleurs éléves.

C’est 4 leur enseignement, & leurs travaux, au dévouement infati-
gable avec lequel ils poussaient les éleves et les jeunes savants vers
les recherches scientifiques, 4 l'influence qu'ils ont exercée dans I'or-
ganisation des hautes études, aux rapports qu'ils ont établis entre
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notre patrie et I’étranger que nous devons d’avoir vu naitre en Italie
une jeune école d’analystes.

Et cependant il suffit de lire un seul Mémoire de chacun de- ces
mathématiciens pour se convaincre tout de suite que leurs facultés
naturelles étaient bien différentes. Leurs vies se sont écoulées en des
milieux divers, de facons aussi trés diverses, et leurs esprits ont
acquis des orientations presque opposées. Ils ont été dés lors amenés,
par une foule de circonstances, 4 regarder I’Analyse sous des points
de vue trés dissemblables. Mais de cette maniére leur ceuvre, dans son
ensemble, a été bien plus utile et bien plus compléte, car ils ont fait
converger des courants et des tendances différentes sur les jeunes
savants italiens, en pénétrant de plusieurs cotés dans leurs esprits et
en faisant ressortir en eux toutes les espéces de talent géométrique.

Betti, Brioschi, Casorati ont disparu maintenant a peu de dis-
tance l'un de l'autre, mais leur souvenir reste toujours et les
germes qu’ils ont semés ont produit leurs fruits.

Nous gardons en Italie des sentiments de douce affection et une
gratitude sans bornes pour ces maitres bien-aimés et, puisque I'un
de nous avait eu I’honneur d’étre appelé 4 parler dans celte réunion,
J’al’cru interpréter les sentiments de tous en évoquant leurs images.

Cette thche n’est pas aisée, mais je comple pour la faciliter sur les
sentiments de vénération dont je suis animé, et aussi, Messieurs et
chers Confréres, sur votre bienveillance.

Aucun de ceux qui ont pris part au Congrés de Zurich ne pourra
jamais oublier la figure de Brioschi. Ses cheveux blancs et son grand
Age ne s'accordaient pas avec I'éclat de ses yeux qui gardaient des
éclairs de jeunesse, et avec son infatigable activité. Mais ce contraste
représente d'une maniére frappante son individualité, car il a été
toujours jeune par son caractére et toujours mir par son esprit. -

Né dans 'ancienne capitalé de la Lombardie qui allait devenir le
centre industriel le plus important et le plus riche de I'Italie, il fut
d’abord ingénieur; mais, attiré vers les Mathématiques pures, il acquit
dés son jeune Age une connaissance presque compléte des ceuvres
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classiques et, 4gé de vingt-cinq ans, fut appelé & 'Université de Pavie
comme titulaire de la chaire de Mécanique.

Dés cette époque commencérent sa production scientifique et son
influence dans l’enseignement. Elles ne cesserent que le jour de
sa mort.

Aprés la constitution du royaume d’Ttalie on a une nouvelle phase
de la vie de Brioschi, car son activité se tourna vers les affaires poli-
tiques ot il joua depuis lors un role important. Il abandonna I’Uni-
versité et, devinant 'avenir industriel de sa patrie, il fonda I'Ecole
Polytechnique dont il fut I'organisateur et dont il resta le directeur
pendant toute sa vie. '

Mais il continua toujours par ses Quvrages scientifiques, par son
role de Directeur des Annali di Matematica, par celui de Président
de I'dccademia dei Lincet, a diriger le mouvement mathématique
en Italie, tandis qu’il remplissait ses fonctions de sénateur, faisait
partie d’un grand nombre de commissions parlementaires, et s’occu-
pait aussi de travaux publics et de I'art de 'ingénieur. Activité rare
et phénomeénale qu’on a peine & concevoir et qui nous frappe d’ad-
miration !

La vie de Betti fut calme, autant que celle de Brioschi fut agitée.

Betti naquit en Toscane dans un petit village sur la montagne, ot
les habitants simples et adroits ont un esprit trés fin et un gofit na-
turel pour I'Art et la Poésie. :

Il perdit son pére pendant qu'il était enfant, et ce fut sa mére qui
soigna son éducation. Eléve de Mossotti & 1'Université de Pise, il
commenca par devenir professeur dans un petit Iycée de Toscane,
et c'est seulement a I’dge de trente-quatre ans qu'il obtint une
chaire & 'Université, et, sept ans aprés, la direction de cette Ecole
Normale supérieure de Pise dont 'organisation est & peu prés celle
de 'Ecole Normale supérieure de Paris.

Betti n’aimait pas, comme Brioschi, les charges de la vie pu-
blique. 11 fut élu député et nommé sénateur; mais il ne prit jamais,
comme son collégue, une part active aux mouvements politiques.
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Lorsqu’il était & Rome sous-secrétaire d’Etat pour I'Instruction
publique, il regrettait toujours la vie de professeur, le calme de la
petite ville de Pise, les mois passés a la campagne dans une douce
meéditation ou dans des enlreliens, toujours remplis de mots spiri-
tuels, avec ses amis et avec ses éléves.

Betti, en dehers des affections familiales, n’aima qu’une chose:
les recherches scientifiques entreprises dans un but philosophique.

Il les aima en effet pour clles-mémes, sans songer aux satisfac-
tions d’amour-propre qu’elles pouvaient lui donner, sans songer non
plus aux effets qu’elles pouvaient produire dans le monde savant ni
4 P'importance qu’elles pouvaient avoir dans I’enseignement.

Lorsqu’il avait satisfait le besoin d’arriver aux vérités les plus
cachées, lorsqu’il les avait reli¢es entre elles et avait créé dans son
esprit un systéme ot elles ressortaient des principes les plus simples,
tout était fait pour Betti. Il n'aimait méme pas, dans bien des cas,
exposer ses résultats au public, ou, s’il en commencait la rédaction,
il s’arrétait souvent parce que de nouvelles idées le tentaient, et il
lui était pénible de ne pas suivre 'inspiration du moment.

On voit 4 ’Académie des Beaux-Arts de Florence une statue
¢bauchée par Michel-Ange. La figure de saint Mathieu sort & peine
du marbre ; mais les lignes principales sont arrétées. Cette ébauche
avait satisfait Ie grand artiste, qui, voyant que son idée pouvait étre
réalisée, ne voulut plus continuer son travail.

On peut comparer bien des travaux de Betti, et peut-&tre les plus
beaux, 4 ’ébauche de Michel-Ange.

L’esprit de Casorati était d’une nature différente : il vécut et tra-
vailla presque exclusivement pour ses éléves et pour son école.

Ses travaux en effet ont presque tous ce cachet spécial qui révele
que le but de I'auteur était d’éclaircir quelque point obscur, ou de
corriger quelque resultat, ou d’exposer d’une maniére critique un
corps de doctrines.

Mais quelle originalité dans la critique, quel talent dans I'expo-
sition d'une théorie, qui devenait une nouvelle théorie en vertu du
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point de vue d’oti Casorati I'envisageait, combien de résultats nou-
veaux et complétement inattenduns ressortaient d’une simple erreur
qu'il corrigeait!

Sa vie s'écoula presque exclusivement a Pavie, sa ville natale. 1
était fils d'un médecin, qui était aussi professeur a I'Université de
Pavie, et étudia, dans cette Université, sous la direction de Bordoni
et de Brioschi dont il devint 'assistant.

Casorati parcourut ensuite tous les grades universitaires en
échangeant la chaire de Géodésie contre celle d’Algébre et enfin
celle-ci contre la chaire d’Analyse infinitésimale qu'il garda jusqu’a
sa mort. _

Les travaux qu’il publiait et ses cours, qui étaient trés suivis et
trés écoutés, avalent toujours des r'apports entre eux; quelquefois
méme, s'il abandonnait un travail pour en entreprendre un autre, il
changeait soudainement le sujet de son cours.

C’est pourquoi, dans son esprit, il n’y avait pas de distinction
entre I'ceuvre du‘!professeur et 'ccuvre du savant, qui s’accordaient
ensemble d’une maniére admirable et féconde.

Il suffit d’avoir exposé en peu de mots la vie des trois géométres
et leurs tendances pour comprendre quelle différence il y avait entre
eux, et combien étaient dissemblables les mécanismes de leurs in-
telligences. ,

Aussi ont-ils été conduits & envisager I’Analyse en général et
chaque question particuliére de fagons bien diverses.

On pourrait suivre la trace de leurs esprits dans toutes les
branches des Mathématiques et montrer que cette diversité se ré-
vele a chaqué pas de leurs recherches. Mais il serait trop difficile
d’envisager du méme coup toute leur ceuvre, tandis qu’il est bien
plus ais¢ d’avoir égard & une branche spéciale ou ces trois géométres
ont laissé des traces profondes.

La théorie quia eu le plus grand développement dans les derniers
temps est sans aucun doute la théorie des fonctions.

‘On pourrait méme appeler notre siécle, au point de vue des Ma-
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thématiques, le siécle de la Théorie des fonctions, comme le
xvn® siécle pourrait étre désigné par le nom de siécle du Calcul
infinitésimal.

En effet, nous avons assisté a ce fait : toutes les branches de
I’ Analyse ont conduit au progrés de cette théorie, et en méme temps
c’est de la théorie des fonctions que les Mathématiques ont tiré leurs
plus puissantes ressources. Nous avons méme pu voir s'accomplir un
phénomeéne trés singulier : certaines théories et certaines méthodes
de la Géométrie synthétique, qui devaient leur origine 4 une sorte
de réaction contre 'esprit analytique, se sont peu & peu rapprochées
de la théorie des fonctions et enfin se sont liées intimement & elle
dans les idées fondamentales et dans les applications.

11 existe bien des travaux historiques et critiques sur la théorie
des fonctions. Les plus savants géométres ont donné sur elle des
essais précieux, riches des plus intéressantes notices.

Mais jetons un coup d’ceil d’en haut sur le chemin parcouru, envi-
sageant dans son ensemble le développement de la théorie.

Nous distinguons tout de suite trois phases différentes qui mar-
quent presque trois périodes distinctes.

D’abord s’¢laborent des théories particulieres. C est leur déve-
loppement qui montre la nécessité de créer une théorie générale des
fonctions transcendantes €t des fonctions algébriques, qui embrasse
tous les cas connus et en prévoit de nouveaux. Dans cette phase
on ne connait pas encore de méthodes uniformes. Chaque ques-
tion qui se présente, on doit tacher de la résoudre : voila ce qui
s'impose. Les méthodes, il faut les créer chaque fois et & chaque
pas. De longs calculs sont nécessaires et les pensées qui sont renfer-
meées dans les formules ne se dégagent que peu a peu.

Les grands noms d’Euler, de Jacobi, d’Abel peuvent é&tre pris
pour personnifier cette période héroique ou la théorie des fonctions
elliptiques a été créée dans ses parties essentielles, et ot ont été mar-
quées les lignes principales oti devaient se développer un jour les
fonctions abéliennes.

Mais a cette période de decouvcrtes merveilleuses, ot ce qui
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domine estla curiosité d’arriver en possession de vérités inattendues
qui se dévoilent soudainement & travers de longs calculs et des in-
ductions audacieuses, succéde bientdt une phase ot 'esprit philoso-
phique a le dessus et ot s'impose la nécessité de la recherche d'une
méthode générale et puissante qui embrasse et renferme tout dans
un cadre unique en constituant un corps de doctrine.

Cette phase est marquée par les ceuvres immortelles de Cauchy,
de Weierstrass et de Riemann qui sont remontés aux sources mémes
des conceptions fondamentales pour accomplir leur tiche. Clest
dans cette période grandiose que les idées remplacent peu & peu les
calculs. :

Il'y a enfin une derniére phase ou les théories trouvent leurs plus
importantes et leurs plus fécondes applications, les formes les plus
appropriées a leur diffusion, et restent fixées dans un cadre didac-
tique, aprés avoir été passées en revue et discutées par le plus fin
esprit critique qui ait jamais dominé la Science.

Ces trois phases, dont nous avons tiché de donner les principaux
caractéres, correspondent & peu prés A trois périodes successives dans
l'histoire de la théorie des fonctions, mais. elles correspondent aussi
4 trois maniéres d’envisager les questions d’Analyse; et certains
géometres restent attachés a 'une ou a 'autre en vertn méme des
qualités les plus intimes de leurs esprits. '

Brioschi, ingénieur et homme pratique, habitué a voir le but que
Pon poursuit et & ne pas trop s'inquiéter des méthodes, est resté tou-
jours fidele a la direction classique et aux procédés d’Euler et de
Jacobi.

Pour son activité infatigable les longs calculs ne sont pas une géne.
Son esprit habitué 4 démeéler les choses les plus inextricables de la
vie réelle voit & travers une forét de calculs ¢omme A travers un
cristal limpide.

Beltrami a dit de lui dans son langage fleuri que je m’efforce de
traduire : "

(@] . r * . ]
« 3es formules aglles et penetrantes I‘BlﬂpllSSEﬂt comme un tresor
4
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inépuisable tous ses travaux, et c'est par la qu'il acquit la réputation
d'une virtuosité sans égale dans I’Analyse la plus raffinée. ...

» Comme un habile musicien fait ressortir la mélodie qui marche
tranquille et sereine au milieu des notes et des modulations qui se
poursuivent et s’entrelacent, de la méme maniere Brioschi faisait
jaillir le résultat analytique qu'il cherchait d’un appareil de symboles
formidable et artificiel, mais plein d’élégance et de symétrie artis-
tique. » ‘

Cest a cause de cela qu'il est resté complétement étranger a tout
le mouvement qui s’est développé peu & peu et qui caractérise
le passage de la premiére & la seconde phase. Je diral méme qu'il le
dédaignait un peu. Combien de fois I’ai-je entendu se plaindre des

. mathématiciens modernes, quin’ont plus 'habitude de faire de longs
calculs, et combien de fois suis-je resté surpris en entendant des
louanges pour un travail, ou pour certaine partie d’un travail, parce
qu’il contenait des calculs bien faits.

Nous voyons ainsi Brioschi traduire et populariser en Italie le
Traité des fonctions elliptiques de Cayley et, méme dans un Ouvrage
sur les fonctions - hyperelliptiques qu’il composait et imprimait
lorsque la mort I'a fauché, il ne s'¢loignait pas des méthodes qu'il
avait préférées depuis le commencement de sa carriére.

Nous avons déja signalé que Betti ¢tait d’une nature différente,
je dirai méme opposée & celle de Brioschi. Ce qui manque a I'un,
I'autre le posséde. Sion les avait réunis, on aurait eu un esprit
complet.

Le désir d'un but & atteindre n’empéchait pas Betti de voir ce
qui 'entourait et de s'attarder i mi-chemin pour trouver des rap-
ports et des comparaisons avec bien d’'autres choses.

Cette sorte de paresse toscane, qui n’est pas de la paresse intellec-
tuelle, faisait qu’il aimait plutot penser que travailler d’'une maniére
meécanique. :

Vest pourquoi ces longs calculs, que le rude Lombard aimait, lui
étaient insupportables. Bien souvent ils I'auraient conduit a des
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fautes sans le flair mathématique tres fin qu'il possédait. Son
esprit large et cultivé aimait plutét les systémes philosophiques.

Par 'ensemble de ces circonstances, il est aisé de comprendre qu'il
se rattache a la seconde phase dont nous avons parlé. Mais ce qu’il
y ade vraiment singulier, je dirai plutot de merveilleux dans1’OEuvre
de Betti, c’est qu’il peut rattacher son nom aux deux grandes mé-
thodes qui ont divisé le champ de la théorie des fonctions, qu'on a
méme montrées parfois en opposition I'une avec 'autre.

- (Pest par sa propre initialive, sans connaitre le grand travail que
Weierstrass poursuivait en silence, qu’il parvint d’emblée, par un
vrai coup de génie, a I'un des points fondamentdux de cette théorie :
la décomposition des fonctions enti¢res en facteurs primaires.

Il publia, en 1862, le Mémoire qui contient ce résultat et ses
applications aux fonctions eulériennes, trigonométriques et ellip-
tiques, et c’est seulement quinze ans aprés qu'il sut que Weierstrass
possédait une théorie compléte des facteurs primaires.

Mais Betti, depuis I'époque ot il avait commencé I'impression de
son Mémoire, n’avait plus pensé a son théorémé. Le Mémoire était
resté inachevé et oublié par l'auteur méme, et un nouvel ordre
d'idées lui avait fait changer complétement la direction de ses
études.

Riemann était venu en Italie, et s’était lié pendant.son séjour &
Pise d'une amitié trés intime et trés affectueuse avec Betti. Celui-ci
embrassa ses idées et depuis cette époque ses travaux se ressentent
tous de I'influence directe de Riemann.

Betti n’a publié qu'une petite partie de ce qu'il a produit dans
cette direction. Bien des choses sont restées toujours inédites. Entre
autres, il essaya une théorie nouvelle des fonctions elliptiques en
I'établissant sur leur construction par des propriétés qui les caracté-
risent au contour du parallélogramme des périodes.

(Pest peut-étre le dernier pas qu'on puisse faire dans cette direction
et, quoique la méthode soit tres artificielle, ce qui fait qu’elle ne se
préte pas 4 une exposition didactique, il serait intéressant qu’elle
fiit connue.
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Il est trés singulier de voir un seul esprit concevoir I'une aprés
Pautre deux théories st différentes et ne pas s’attacher 4 'une plutdt
qu’a l'autre. Il abandonne la premiére pour la seconde qu’il ne
publie méme pas. Toujours est-il que 'empreinte du vrai génie se
montre dans cette richesse d'idées. Malheureusement pour sa
renommeée, son insouciance pour tout ce qui n’était pas la satisfac-
tion intime d'une découverte nouvelle fit tomber dans I'oubli des
résultats du plus haut intérét et en rapport avec des conceptions
nouvelles qui n’étaient pas encore prétes & devenir courantes.

Cependant ce fait singulier a une explication. Il touche aux
sources mémes des deux célebres méthodes, et on pourrait dire
qu’on a par la une confirmation de leur origine différente.

En effet, si nous pénétrons le sens intime des méthodes de Rie-
mann, nous voyons que ce qui les caractérise est leur liaison avec
les conceptions fondamentales de la Physique.

Les méthodes de Riemann représentent le transport des procédés
de la théorie de I'électricité dans celle des fonctions d'une variable
complexe. '

Or, Betti était autant mathématicien que physicien théorique et
sa pensée a été toujours dirigee vers les phénomeénes naturels.

Nous savons que, pour bien des mathématiciens, les théories de-
viennent plus fécondes lorsqu’on attache aux formules des significa-
tions qui dépassent le sens purement analytique. Pour certains
esprits, les formules représentent des faits géométriques qui leur
donnent une représentation concréte. D’autres savants sont amenés
a rattacher, autant qu’il est possible, aux résultats analytiques des
phénoménes physiques qui les caractérisent en leur donnant une
netteté qu'ils n'auraient pas par eux-mémes.

Ceux qui ont connu Betti, non seulement par ses travaux, mais
aussi par sa conversation, savent que s’il parlait Mathématiques, bien
souvent il pensait Physique. Comme un de ces éclairs qui dans la
nuit révelent le chemin qu’on parcourt, quelquefois un mot qui lui
échappait révélait soudainement cette disposition naturelle de son

esprit.
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Betti était donc tout préparé pour suivre et pour embrasser les
méthodes de Riemann avec I'enthousiasme qu’il mettait en toute
chose.

Une sorte de réaction lui fit abandonner les procédés qu'il avait
d’abord suivis et qui 'avaient conduit aux remarquablcs'résultats
dont nous avons parlé.

Nous sommes strs maintenant que ces procédeés étaient plus
feconds et plus appropriés a l'application qu’il avait en vue aux
fonctions elliptiques, mais Betti ne s’en apercul pas.

Il avait été conduit tout d’abord 4 les suivre par le tour qu’avait pris
son esprit en conséquence de ses premiéres études. C'est '’ Algebre
en effet qui avait formé, pendant presque une dizaine d’années,
le sujet de ses recherches et, s'il est possible de caractériser par
un mot sa premiére théorie des fonctions transcendantes, c’est en
l'appelant une théorie de type algébrique. Mais lorsque son tem~
pérament de physicien prit le dessus sous l'influence de Riemann,
I'initiation algébrique n’eut plus de prise sur lui et sa vraie nature
et ses facultés s’épanchérent librement dans un champ sans limites.

L’esprit critique de Casorati, son amour pour I'enseignement, sa
tendance aux applications, rattachent son nom 4 la troisiéme phase
dont nous avons parlé.

Il commenca, en 1868, son grand Ouvrage sur les fonctions de
variables complexes dont le premier volume seulement a paru. Ce
volume renferme une Introduction historique et critique d'un grand
intérét dont la lecture aura toujours un charme spécial.

On y découvre toute la puissance d’assimilation de son esprit,
tout l'enthousiasme que les grands travaux d’Abel, de Jacobi,
de Cauchy, de Riemann et de Weierstrass avaient fait naitre
en lui. Et la conception nette de leurs découvertes et 'enthousiasme
pour leur génie se transmettent irrésistiblement au lecteur. Clest
peut-étre de la que vient le caractére suggestif du Livre.

Il a servi plus que tout autre travail & divulguer et & populariser
en Italie les conceptions fondamentales de la théorie des fonctions,
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parce que presque toutes les difficultés s’évanouissent en le lisant.

On ne saurait donc assez insister pour montrer le role qu’il a joué
en Italie. )

Combien de jeunes mathématiciens, chez nous, ont été enflammés
par la lecture de ce Livre, et ont été poussés par Casorati vers 1'idéal
le plus élevé de la Science!

Et & ce propos je vais noter une chose qu’il serait impossible de
passer sous silence.

Il' y a en Italie une école de géomeétres dont Poriginalité, la
profondeur, 'ampleur des vues, la variété des résultats acquis a la
Science, ont mérité tous les éloges.

Cette école a toujours préféré les méthodes synthétiques aux
méthodes analytiques, ¢’est pourquoi un esprit superficiel pourrait
croire qu’elle s’est développée & part sans ressentir l'influence
d’autres écoles ni des pensées qui se rattachent aux questions d’Ana-
lyse. Cela n’estpas exact, et celui qui s’occupera un jour de I’histoire
des Mathématiques en Italie dans notre siécle, ne devra pas négliger
I'influence que les analystes et les géometres purs ont exercée les
uns sur les autres.

Influence profonde qui se révéle de jour en jour plus grande ! Pour
la montrer par un seul des traits qui la caractérisent, il me suffira de
rappeler que les idées de Riemann ont joué un réle fondamental
dans les travaux des géométres italiens. Or, si Bettia introduit chez
nous ces idées, on doit au Livre de Casorati d’avoir pénétré partout
et en particulier d’avoir attiré I'attention de nos géomeétres purs.

C’est donc dans un cercle bien plus large et qu’on n’aurait pas
méme pu soupgonner au premier abord que cet Ouvrage a étendu
son influence.

Si ce Livre révele dans son Auteur des qualités d’écrivain de pre-
mier ordre, un ensemble de publications quise rattachent & une idée
que Casorati n’a jamais abandonnée, et sur laquelle il n’a pas cessé
de revenir jusqu’a ses derniers jours, montre sa profondeur et son
originalité.

Frappé par la proposition de Jacobi sur I'impossibilité des fonc-
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tions & trois périodes distinctes, il tiche d’en construire avec un
nombre quelconque de périodes en envisageant des fonctions a un
nombre infini de valeurs.

(est par la qu’il cherche & obtenir I'inversion directe des inlé-
grales abéliennes.

Malheureusement cette tache n’a pas étéaccomplie etil s’estlimite
aux études préliminaires sur les surfaces de Riemann avec un nombre
infini de feuillets et sur leur connexion.

Nous espérons que ces études préparatoires ne seront pas perdues.

Il serait impossible de suivre Casorati dans les nombreuses ques-
tions qu’il a traitées en des Notes qui se succédérent pendant toute sa
vie. Il nous suffit de remarquer que presque toutes les questions
vitales de la théorie des fonctions ont été abordées ou perfectionnées
par lui et que nul point de son ceuvre scientifique ne doit étre négligé.

Si ce qui précéde permet de concevoir les rapports mutuels
des trois géometres dont nous avons parlé, nous n’avons pu donner
une idée exacte de la place absolue que chacun d’eux a dans le
monde savant et dans lhistoire. de la Science. Les travaux de
Brioschi en Algébre et en Mécanique; ceux de Betti en Algébre et
en Physique mathématique; ceux de Casorati sur les équations
différentielles, sortent, en effet, du cadre dans lequel nous sommes
resté jusqu’a présent; mais ce sont toujours les caractéres que nous
avons reconnus qui dominent ces Quvrages.

Nous voyons, en effet, Betti éire un des premiers qui aient
compris, développé et systématisé les idées nouvelles de Galois, ces
idées qui ont transformé 1’Algebre et sont en train de transformer
I'Analyse.

Nous le voyons aussi donner pour la premiére fois une méthode
genérale pour I'intégration des équations de 1'élasticité, et bien des
questions particuliéres de Mécanique fécondées par son esprit puis-
sant conduisent & des théories générales et & des vues nouvelles sur
la conception philosophique des phénoménes de la nature.

Brioschi commence sa longue carriére par 1'étude d’une question
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de la théorie de la chaleur; il publie ensuite son célébre Traité sur
les déterminants. On lui est redevable d’avoir développé les théories
des invariants et des covariants des formes algébriques en faisant
des applications trés variées de ces théories générales.

1l comprend I'importance du Mémoire de Gauss sur la théorie
des surfaces, & une époque ol ce Travail était encore négligé, et il
s'occupe des théories modernes de la Géométrie.

Dans la Mécanique, il étudie les questions de statique, il s’occupe
de l'intégration des équations différentielles par la méthode de
Jacobi, et consacre & 1'équilibre et au mouvement des fluides des
travaux devenus classiques.

Mais son penchant naturel vers les calculs et sa disposition & per-
fectionner des théories connues se montrent toujours soit par les me-
thodes qu'il préfere, soit par les questions particuliéres et par les
applications auxquelles il donne le plus grand prix et dont il fait le
plus grand cas.

Nous voyons enfin Casorati, par une simple interprétation du
calcul des différences finies, donner une théorie nouvelle des équa-
tions différentielles linéaires, théorie qui relie ensemble et met-dans
leur vrai jour bien des faits qui ne paraissaient pas avolr de rap-
ports entre eux. .

11 approfondit 'étude des équations différentielles algébriques et
consacre aux formes différentielles, 4 la Géométrie analytique et &
la Géométrie infinitésimale des articles qui ont fait beaucoup de
bruit et excité beaucoup d'intérét et ou il aborde des. questions
vitales dans l'enseignement de I'Analyse.

Mais 'on ne pourrait pas terminer ce rapide apergu sur tant de
travaux, sans parler d’'un probleme célébre ol Betti et Brioschi
ont acquis une renommée dés leur jeune dge, en montrant au monde
mathématique tout leur talent.

J’entends parler de la résolutionde I'équation du cinqui¢me degré.

A ce souvenir, notre pensée se tourne naturellement vers le glo-
rieux vieillard, honneur de la France et de notre siécle, auquel du
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profond de notre dme, avec des sentiments de respect, d’admiration
et de gratitude, nous envoyons un salut, qui réunit, j’en suis siir,
dans un élan unique, le cceur de tous les mathématiciens qui se
trouvent ici.

Ii a acquis une gloire immortelle par la résolution de ce probléme,
et son nom gardera sa célébrité dans les siécles qui viendront.

Autour de la figure de M. Hermite qui se dresse au premier plan, on
peut grouper trois mathématiciens : Betti, Brioschi et Kronecker.
~Le premier a été un précurseur qui a poussé bien loin ses re-
cherches, mais qui, faute d'un pas a faire, n’a pas atteint le but.

Brioschi, peu aprés la découverte de M. Hermite et en méme
temps que Kronecker, a apporté une telle lumiére dans la question
qu'elle en a été presque renouvelée.

On voit poindre & cet instant de leur carriére ces différences des
caractéres de Betti et de Brioschi qui devaient jouer un si grand réle
dans toute leur vie scientifique. On voit dans tout leur jour la len-
dance de Betti a aborder des questions nouvelles, et la faculté
de Brioschi de les perfectionner.

Et c’est par la que je terminerai.

Je terminerai en associant les noms de Betti et de Brioschi si chers
4 I'Italie au nom de M. Hermite si cher & la France.

Ma pensée revient a I'épisode par lequel j'ai commencé : au
i’oyage de 1858, cette mémorable année ol les grandes décou-
vertes donl nous venons de parler ont été enfantées et Qui
marque le commencement de la tendre amitié entre les savants
qui venaient d'Italie et celui qu'ils allaient chercher en France,
amitié qui a duré quarante ans et qui a été toujours raffermie par
le méme dévouement & la Science, par la méme confiance dans les
hautes destinées de 'Humanité.

Que cette noble amitié soit le symbole des liaisons de fraternité
qui réunissent les deux pays!
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PROBLEMES FUTURS DES MATHEMATIQUES,

Pir M. Davio HILBERT (Géttingen),

TRADUITE PAR M. L. LAUGEL (1).

Qui ne souléverait volontiers le voile qui nous cache 'avenir afin
de jeter un coup d’ceil sur les progrés de notre Science et les secrets
de son développement ultérienr durant les siécles futurs? Dans ce
champ si fécond et sivaste de la Science mathématique, quels seront
les buts particuliers que tenteront d’atteindre les guides de la
pensée mathématique des générations futures? Quelles seront, dans
ce champ, les nouvelles vérités et les nouvelles méthodes découvertes
par le siécle qui commence?

L’histoire enseigne la continuité du développement de la Science.
Nous savons que chaque époque a ses probléemes que I'époque sui-
vante résout, ou laisse de coté comme stériles, en les remplacant
par d’autres. Si nous désirons nous figurer le développement pré-
sumable de la Science mathématique dans un avenir prochain,
nous devons repasser dans notre esprit les questions pendantes et
porter notre attention sur les problémes posés actuellement et
dont nous attendons de I'avenir la résolution. Le moment pré-
sent, au seuil du vingtiéme siécle, me semble bien choisi pour
passer en revue ces problémes; en effet, les grandes divisions du

(1) L’original de la traduction a paru en allemand dans les Géttinger Nach-
richten, 1goo. M. Hilbert a fait ici quelques modifications & P'original au § 13 et
quelques additions au § 14 et au § 23. (L. L.)
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temps non seulement permettent de jeter un regard sur le passé,
mais encore altirent notre pensée sur I’avenir inconnu.

Le grand role joué par des problémes déterminés dans le progres
général de la Science mathématique est non moins incontestable
que l'influence qu’ont ces problémes sur le travail particulier du
chercheur. Tant qu'une branche de la Science jouit d’une abon-
dance de problémes, elle est pleine de vie; le manque de problémes
dénote la mort, ou la cessation du développement propre de cette
branche. Et de méme que dans toute entreprise humaine il faut
poursuivre un but, de méme dans la recherche mathématique il
faut des problémes. La puissance du chercheur se retrempe dans
leur résolution, il y trouve de nouvelles méthodes et de nouveaux
points de vue, d’ou il découvre un horizon plus vaste et plus libre.

[l est difficile et souvent impossible de préjuger exactement de la
valeur d’un probléme; c’est, en effet, exclusivement le profit que
tire la Science de la solution du probléme qui permet de porter un
jugement sur la valeur de ce dernier. On peut néanmoins se de-
mander s’il n’existe pas des attributs généraux caractérisant un bon
probléme mathématique. -

Un mathématicien francais des temps passés a dit : « Une théorie
mathématique ne doit étre regardée comme parfaite que si elle a été
rendue tellement claire qu'on puisse la faire comprendre au premier
individu rencontré dans la rue. » Cette clarté, cette limpidité si
énergiquement exigée ici d’'une théorie mathématique, je 'exigerais
encore davantage d’un probléme mathématique parfait; ce qui est
clair et limpide nous attire en effet, ce qui est embrouillé nous
rebute. .

Pour avoir de attrait, un probléeme mathématique doit dtre dif-
ficile, mais non pas inabordable, sinon il se rit de nos efforts; il doit
au contraire étre un véritable fil conducteur & travers les dédales
du labyrinthe vers les vérités cachées, et nous récompenser de nos
efforts par la joie que nous procure la découverte de la solution.

Les mathématiciens des siécles précédents s'occupaient avec ar-
deur de la recherche des solutions de quelques problémes trés diffi-
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ciles. Ils en appréciaient la valeur &4 son juste prix. Je me conlen-
terai de citer le Probléme de la brachistochrone de Jean Ber-
noulli. L'expérience démontre, c’est ainsi que s’exprime Bernoulli,
en proposant ce probléeme au public, que les nobles esprits ne sont
jamais davantage incités au travail pour faire progresser la Science
que lorsqu’on leur propose des problémes difficiles autant qu’utiles;
il espére mériter la reconnaissance du monde mathématique, si, &
I'exemple de savants comme Mersenne, Pascal, Fermat, Viviani et
autres, qui I'ont fait avant lui, il pose un probléme aux analystes
les plus distingués de son temps, afin qu'ils puissent, comme avec la
pierre de touche, essayer l'excellence de leurs méthodes et en méme
temps mesurer leurs forces entre elles. Clest de ce probleme de
Bernoulli et de problémes analogues que le calcul des variations
tire son origine.
On sait que Fermat annonca que 1'équation de Diophante

xll + J,h‘. —_— sh.

(sauf en certains cas qui sautent aux yeux) est impossible & résoudre
en nombres entiers, , y, 3. Le Probléeme de la démonstration de
celte impossibflilé nous offre un exemple frappant de I'influence
que peut avoir sur la Science une question trés spéciale et en appa-
rence peu importante. Clest, en effet, le probleme de Fermat qui
conduisit Kummer a I'introduction des nombres idéaux et a la dé-
couverte du théoréme de la décomposition univoque des nombres
d’un corps du cercle (') en facteurs premiers idéaux, théoréme qui,
par l'extension qu’en ont faite Dedekind et Kronecker aux do-
maines algébriques quelconques, est devenu le point central de la
théorie moderne des nombres et qui a une importance s’étendant
bien au deld des limites de cette théorie, jusque dans les régions de
I’Algébre et de la Théorie des fonctions.

(1) En allemand Kreiskirper. Cest un corps déterminé par les racines de 'unité
d'un degré quelconque déterminé. On trouvera les plus récents développements de
ces diverses théories dans le compte rendu : Die Theorie der algebraischen
Zahlkérper, par M. Hiserr (Jahresbericht der D. M. V., t. IV; 1894-1895-
Berlin, Reimer; 1897, p. 174-542).. (L. L.)
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Passant 4 un tout autre champ d’études, je citerai le Probleme
des trois corps.

M. Poincaré, en entreprenant de traiter & nouveau ce difficile
probléme et d’en avancer la solution, a découvert des méthodes
fécondes et d’'une grande portée en Mécanique céleste, qui sont
aujourd’hui admises et appliquées méme par l'astronome pratique.

Ces deux problémes, celui de Fermat et celui des trois corps,
nous semblent occuper comme les pdles opposés dans I'ensemble
des problémes; le premier, libre création de la raison pure, le se-
cond, posé par les astronomes et indispensable pour la connais-
sance des phénoménes fondamentaux les plus simples de la nature.

Il arrive souvent aussi qu'un certain probléme particulier se rat-
tache aux branches les plus diverses de la Science mathématique.
Clest ainsi que le Probléeme des lignes géodésiques joue un réle
des plus importants au point de vue de l'histoire ainsi que des
principes, dans les fondements de la Géométrie, dans la théorie
des courbes et des surfaces, dans la Mécanique, et enfin dans le
Calcul des variations. Dans son livre sur 1'lcosaédre, M. F. Klein
a, de méme, trés bien fait ressortir I'influence du rdle que joue le
Probléme des polyédres réguliers dans la (zéométrie élémentaire,
dans la théorie des groupes et des équations, et dans la théorie des
¢quations différentielles linéaires.

Pour mettre encore en pleine lumiére I'importance de certains
problémes, je rappellerar que Weierstrass regardait comme une
bienveillante disposition de la Providence d’avoir, au début de sa
carriére, rencontré un probléme fondamental auquel il pht s’atta-
quer, tel que le Probléme d’inversion de Jacobi.

Ayant exposé I'importance générale des problémes en Mathéma-
tiques, je passe a la question de savoir quelles sont les sources ou le
mathématicien les puise. Les premiers et les plus anciens problémes
de chaque branche de la Sciencé mathématique tirent certainement
leur origine de 'expérience, et c’est le monde de la connaissance
extérieure qui les inspire. Les régles des opérations sur les nombres
eniters ont été certainement découvertes lors d'un état infe-
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rieur de culture de I’humanité, absolument comme, aujourd’hui
encore, 'enfant apprend a appliquer ces réegles par la méthode
empirique. Il en est de méme des premiers problémes de la Géo-
mélrie : problemes posés dans 'antiquité, la duplication du cube,
la quadrature du cercle, et ces problemes qui se sont présentés les
premiers dans les théories de la résolution des équations numé-
riques, des courbes, du Calcul différentiel et intégral, du Calcul
des variations, de la série de Fourier et du potentiel ; sans parler de
cette abondance et de cette richesse de problémes proprement dits
de la Mécanique, de I’Astronomie et de la Physique.

Mais, dans le développement progressif d’une discipline mathé-
matique, l'esprit humain, encouragé par la découverte des solu-
tions, a conscience de son indépendance; il crée lui-méme des
problémes nouveaux et féconds de la facon la plus heureuse, sans
impulsion extérieure apparente et uniquement par combinaison
logique, par généralisation et particularisation, par séparation et
réunion des idées. Clest alors lui qui, placé au premier plan, pose
essentiellement les questions.

C’est ainsi qu’ont pris naissance le Probléme des nombres pre-
miers et les autres probléemes de I’Arithmétique, la théorie de
(Gralois, des équations, la théorie des invariants algébriques, celle
des fonctions abéliennes et automorphes; c’est enfin 14, d’une
maniére générale, l'origine de presque loutes les questions les plus
délicates des théories modernes des nombres et des fonctions.

Drailleurs, tandis que travaille le pouvoir créateur de la raison
pure, le monde extérieur fait de nouveau sentir son influence ; il
nous conduit, par les faits extérieurs, & de nouvelles questions, il
nous ouvre de nouvelles régions de la Science mathématique; alors,
en nous efforcant de faire rentrer ces nouveaux domaines de la
Science dans le royaume de la raison pure, nous rencontrons sou-
vent la réponse a d’anciens problémes non résolus et nous faisons
avancer les anciennes théories de la maniére la plus avantageuse.
Ce sont, ce me semble, sur ces échanges répétés entre la raison et

I'expérience que reposent tant d’étonnantes analogies, ainsi que
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cette harmonie, en apparence préétablie, si souvent remarquée par
le mathématicien dans les questions, les méthodes et les conceptions
des divers domaines de sa Science.

Examinons encore rapidement les exigences et les conditions
générales auxquelles doit répondre la solution d’un probléme
mathématique. Avant tout, je placerai l'exactitude de la solution
qui doit é&tre obtenue au moyen d’un nombre fini de conclusions et
qui doit reposer sur un nombre fini d’hypothéses fournies par le
probleme méme et formulées dans chaque cas avec précision. Or,
cetle condition de la déduction logique au moyen d’un nombre fini
de conclusions n’est pas autre chose que celle de la rigueur dans les
démonstrations. En effet, la rigueur dans la démonstration, condi-
tion aujourd’hui en Mathématiques d'une importance proverbiale,
correspond a un besoin philosophique général de notre entende-
ment; d’autre part, c’est seulement en satisfaisant & cette exigence
que les problémes manifestent complétement leur fécondité et leur
portée. Un nouveau probléme, lorsqu’il tire son origine du monde
extérieur, est comme un sauvageon qui ne se développe et ne porte
des fruits que lorsqu’il a été greffé avec tous les soins de 'art du
jardinier sur la souche mére, c’est-d-dire sur les connaissances
mathématiques que nous possédons complétement.

Ce serait, du reste, une erreur de croire que la rigueur dans la
démonstration est ennemie de la simplicité. De nombreux exemples,
au contraire, montrent que la méthode la plus rigoureuse est aussi
la plus simple et la plus facile & saisir. La recherche de la rigueur
nous conduit toujours & découvrir des raisonnements plus simples,
elle nous ouvre aussi la voie & des méthodes plus fécondes que les
anciennes qui étaient moins rigoureuses. Ainsi la Théorie des
courbes algébriques a éprouvé des simplifications incontestables
et a beaucoup gagné en unité depuis I'emploi des méthodes rigou-
reuses de la théorie des fonctions et depuis 'introduction des consi-
dérations transcendantes auxiliaires. De méme la démonstration que
les séries de puissances admettent 'application des quatre opérations
élémentaires de I’Arithmétique et peuvent étre différentiées ou
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intégrées terme par terme, a simplifié I’Analyse tout entiére. Tl en
est ainsi tout particuliérement des théories de 1'élimination et des
équations différentielles, ainsi que des démonstrations d’existence
exigées dans la derniére de ces théories. Mais, a mon avis, 'exemple
le plus frappant dans cet ordre d’idées est celui du Calcul des varia-
tions. Le traitement de la variation premiére et de la variation
seconde des intégrales définies exigeait certains calculs extréme-
ment compliqués et les développemems des anciens mathématiciens
manquaient sur ce sujet de la rigueur nécessaire. C’est Weierstrass
qui, le premier, nous a' montré un chemin conduisant a une nou-
velle fondation bien assurée du Calcul des variations. A la fin de la
Conférence actuelle, j'indiquerai rapidemenlt, en prenant comme
exemple I'intégrale simple et 'intégrale double, comment, en sui-
vant la voie ouverte par Weierstrass, on simplifie d’'une maniére
¢tonnante le Calcul des variations; je ferai voir que, dans la démon-
stration des critéres nécessaires et suffisants pour I'existence d’un
maxunum ou minimum, le calcul de la variation seconde et une
partie des fatigants raisonnements relatifs & la variation premiére
sont absolument superflus, sans parler du progrés considérable
apporté par la disparition de la restriction a des variations telles que
les dérivées des fonctions ne varient que de peu.

Mais si je place avant tout la rigueur dans le raisonnement
comme condition nécessaire a la solution compléte d’un probléme,
je n'en éléverai pas moins la voix contre cette opinion que ce ne
sont que les questions de I’Analyse ou méme de I'Arithmétique qui
solent. seules susceptibles d’un traitement parfaitement rigoureux.
Cette opinion émise de temps & autre par des autorités scienti-
fiques, je la regarde comme absolument erronée.

Une notion si étroite de la condition de rigueur conduirait rapi-
dement & ignorer toutes les conceptions tirées de la Géomeétrie, de
la Mécanique et de la Physique; elle barrerait le cours de tout ce
qui découle du monde extérieur et, comme derniére conséquence,
elle ménerait enfin au rejet des concepts du continu et du nombre
irrationnel. Aussi quelle source de vie verrions-nous alors extirpée
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des Mathématiques par la suppression de la Géométrie et de la
Physique mathématique! Tout au contraire, je pense que partout
ot se présentent des idées mathématiques, soit en Philosophie
(théorie de I'entendement), soit en Géomeétrie, soit en Physique, le
probleme se pose de la discussion des principes fondamentaux,
bases de ces idées, et de I'¢tablissement d’un systéme simple et
complet d’axiomes; et cela doit se faire de telle fagcon que la rigueur
des nouvelles définitions et leur applicabilité ne le cédent en rien
aux anciennes définitions arithmeétiques.

A de nouvelles 1dées correspondent nécessairement de nouveaux
symboles; nous devons choisir ces derniers de maniére qu’ils nous
rappellent les phénomeénes qui ont été 'origine des nouvelles idées.
Ainsi les figures de la Géométrie sont des symboles qui nous rap-
pellent I'intuition de I'espace, et c’est ainst que tout mathématicien
les emploie. En méme temps que de la double inégalité a>b>e,
entre trois quantii¢s a, b, ¢, qui ne se sert du dessin de trois points
situés I'un 4 la suite de I'autre sur une droite comme symbole géo-
métrique traduisant le mot entre? Lorsqu'il s’agit de démontrer
rigoureusement un théoréme difficile sur la continuité des fonc-
tions ou sur I'existence de points de condensation, qui de nous ne
fait usage du dessin des segments de droites et de rectangles com-
pris les uns dans les autres? Comment se passerait-on de la figure du
triangle, du cercle avec son centre, ou de la figure formée par trois
axes rectangulaires? Et qui donc renoncerait a la représentation des
vecteurs, aux dessins de familles de courbes el de surfaces avec
leurs enveloppes, images qui jouent un role d'une si grande impor-
tance dans la Géométrie infinitésimale, dans la fondation du Caleul
des variations, ainsi que dans d’autres branches des Mathématiques
pures ? _

Les signes et symboles de I’ Arithmétique sont des figures écrites,
et les formules géométriques sont des formules dessinées; aucun
mathématicien ne pourrait se passer de ces formules dessinées, pas
plus qu’il ne pourrait, dans-les calculs, se passer de parenthéses ou
crochets ou autres signes analytiques.
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L’application des symboles géométriques comme méthode rigou-
reuse de démonstration présuppose la connaissance exacte des
axiomes qui sont la base de ces figures, et la possession compléte de
ces axiomes; pour que ces figures géométriques puissent étre incor-
porées dans le trésor général des symboles mathématiques, une dis-
cussion axiomatique rigoureuse de leur contenu intuitif est de toute
nécessite. De méme que dans I'addition de deux nombres on ne
doit pas poser les chiffres les uns sous les autres d’une facon
inexacte, mais au contraire appliquer exactement les régles de cal-
cul, c’est-a-dire les axiomes de I'Arithmétique, de méme les opéra-
tions sur les symboles géométriques doivent étre déterminées an

~moyen des axiomes de la Géométrie et de leur association.

La coincidence entre la pensée géométrique et la pensée arithmé-
tique se réveéle encore en ceci : dans les recherches arithmétiques,
de méme que dans les considérations géométriques, nous ne remon-
tons pas & chaque instant la chaine des déductions jusqu’aux
axiomes; au contraire, lorsque pour la premiére fois nous attaquons
un probléme en Arithmétique, exactement comme en Géométrie,
nous employons d’abord une combinaison de raisonnements, rapide,
inconsciente, non encore définitive, avec une confiance absolue en
un certain sentiment arithmétique et en l'efficacité des symboles
arithmétiques; sans cette confiance nous ne pourrions pas plus pro-
gresser en Arithmétique que nous ne le pourrions en (Géométrie
sans la faculté de voir dans’espace. Comme modéle d'une théorie
arithmétique, opérant d’une maniére rigoureuse avec les concepts
et les symboles de la Géométrie, je citerai I'ouvrage de M. Min-
kowski : Geometrie der Zahlen (*).

Ici se placent tout naturellement quelques remarques sur les dif-
ficultés que peuvent présenter les problemes mathématiques et sur
la maniére de les surmonter.

Si nous ne pouvons parvenir 4 résoudre un probléme mathéma-
tique, la raison en est souvent que nous n’avons pas encore atteint

(1) Leipzig, Teubner, 1° fasc.; 18g6. L
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le point de vue plus général d’ou ce probléeme ne semble plus qu’un
anneau d'une chaine de problémes de méme nature. Mais une fois
que nous avons atteint ce point de vue, non seulement le probléme
devient plus abordable, mais encore nous sommes mis en posses-
sion d’'une méthode applicable aux problémes de méme espéce. Je
citerai comme exemple, dans la théorie des intégrales définies, 1'in-’
troduction par Cauchy des chemins complexes d’intégration et,
dans la théorie des nombres, l'introduction par Kummer de la
notion des nombres idéaux. Cetie facon d’arriver aux méthodes
les plus générales est sans aucun doute la plus accessible et la plus
stre. En effet, celui qui chercherait des méthodes sans avoir devant
les yeux un probléme déterminé, chercherait le plus souvent en
vain.

D’autre part, & mon avis du moins, la particularisation joue, dans
les problémes mathématiques, un role plus important que la géné-
ralisation. Quand nous cherchons en vain la réponse 4 une question,
insuccés, la plupart du temps, tient peut-étre 4 ce que nous
n'avons pas encore résolu ou 4 ce que nous avons résolu seulement
d'une maniére incompléte des problémes plus simples que celui en
question. Tout revient alors a trouver ces problémes plus simples
et & en obtenir la solution, 4 'aide de moyens auxiliaires aussi com-
plets que possible et a I'aide de concepts susceptibles de généralisa-
tion. Cette maniére de procéder est comme un levier des plus puis-
sants propre a lever les difficultés mathématiques, et c'est de ce
levier, ce me semble, que 1'on se sert, méme inconsciemment, la
plupart du temps. .

Il se peut aussi que l'on s’efforce d’obtenir une solution en se ba-
sant sur des hypotheses insuffisantes ou mal comprises et que, par
sutte, on ne puisse atteindre le but. Il s'agit alors de démontrer
l'impossibilité de résoudre le probléme en se servant d’hypothéses
telles qu’elles ont été données ou interprétées. Les anciens nous ont
donné les premiers exemples de pareilles démonstrations d’impossi-
bilité ; ils ont démontré ainsi que dans un triangle rectangle isoscéle
Phypoténuse et le coté de 'angle droit sont dans un rapport irra-
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tionnel. Dans la Mathématique moderne, la question de I'impossi-
bilité de certaines solutions joue un rdle prépondérant; c'est a ce
point de vue de la démonstration de I'impossibilité que d’anciens et
difficiles problémes, tels que ceux de la démonstration de I'axiome
des paralléles, de la quadrature du cercle et de la résolution par
radicaux de I’équation du cinquiéme degré, ont regu une solution
parfaitement satisfaisante et rigourcuse, bien qu’en un sens tout
différent de celui qu’on cherchait primitivement.

Le fait remarquable dont nous venons de parler et certains raison-
nements philosophiques ont fait naitre en nous la conviction que
partagera certainement tout mathématicien, mais que jusqu'ici per-
sonne n’a étayée d’aucune preuve, la conviction, dis-je, que tout
probléme mathématique déterminé doit étre forcément susceptible
d’une solution rigoureuse, que ce soit par une réponse directe a la
question posée, ou bien par la démonstration de U'impossibilité de
la résolution, c’est-a-dire la nécessité de Pinsuccés de toute tentative
de résolution. Proposons-nous un probléme déterminé non encore
résolu : par exemple, posons-nous la question de l'irrationnalité de
la constante C d’Euler ou de Mascheroni, ou encore la question de sa-
voir §'il existe une infinité de nombres premiers de la forme 2" - 1.
Quelque inabordables que semblent ces problémes, et quelque
désarmés que nous soyons encore vis-i-vis d’eux aujourd’hui, nous
n’en avons pas moins la conviction intime que 'on doit pouvoir les
résoudre au moyen d’un nombre fini de déductions logiques.

Cet axiome de la possibilité de résoudre tout probléme, est-ce
une propriété caractéristique et distinctive de la pensée mathéma-
tique, ou serait-ce peut-étre une loi générale du mode d'existence
de notre entendement, & savoir que toutes les questions que se pose
notre entendement soient susceptibles d’étre résolues par lui? On
rencontre d’ailleurs aussi dans d’autres sciences d’'antiques pro-
blémes qui ont été, de la maniére la plus satisfaisante, finalement
résolus par la démonstration de leur impossibilité et qui n’en ont
pas moins été de la plus haute utilité pour le développement de la
Science. Je rappellerai le probléme du mouvement perpétuel. Apres
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tant d’essais infructueux pour construire un mécanisme réalisant
le mouvement perpétuel, on en vint & chercher les relations qui
doivent avoir lieu entre les forces de la nature pour qu’un mouve-
ment perpétuel soit impossible (*); ce probléme inverse conduisit &
la découverte du principe de la conservation de I'énergie, principe
qui, de son cdté, explique I'impossibilité du mouvement perpa’fuel
au sens primitivement requis.

Cette conviction de la possibilité de résoudre tout probléme ma-
thématique est pour nous un précieux encouragement pendant le
travail. Nous entendons toujours résonner en nous cet appel : Voila
le probléme, cherches-en la solution. Tu peux la trouver par
le pur raisonnement. Jamais, en effet, mathématicien ne sera
réduit a dire : « Ignorabimus ».

Inépuisable est la multitude des problémes de la Mathématique;
dés qu'une question est résolue, a sa place s'en présente une foule
d’autres. _

Dans ce qui suit je vais tenter, et cela comme preuve a 'appui
de mes dires précédents, de proposer quelques problémes déter-
minés pris dans diverses branches des Mathématiques, et donL
I'¢tude pourrait concourir & I'avancement de la Science.

Jetons un regard sur les principes de '’ Analyse etdela (IEOIHLLI‘]C
Les événements les plus suggestifs et les plus importants qui ont
eu lieu dans ces domaines durantle dix-neuviéme siécle sont, ce me
semble, la conception arithmétique de la notion du continu que 'on
trouve dans les travaux de Cauchy, Bolzano et Cantor, ainsi que la
découverte de la Géométrie non euclidienne par Gauss, Bolyai,
Lobatchefskij.

J'attirerai done en premier lieu votre attention sur quelques pro-
blémes appartenant & ces domaines. ‘

(') Comparez Hewmuorrz : Ueber die Wechselwirkung der Naturkrdfte und
fi!-& darauf beziiglichen neuesten Ermittelungen der Physik, Vortrag gehalten
in Konigsberg; 1854.
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I. — Probléme de M. Cantor relatif 4 la puissance du continu.

Deux systémes, c’est-a-dire deux ensembles, de nombres réels
ordinaires (ou de points) sont, d’aprés M. Cantor, dits équivalents
ou de méme puissance, lorsque Ton peut établir entre eux une rela-
tion telle qu'a chaque nombre de I'un des ensembles corresponde
un nombre déterminé et un seul de I'autre. Les recherches de
M. Cantor sur de tels ensembles rendent trés probable I'exactitude
d'un théoréme qui, jusqu'ici, malgré les plus grands efforts, n'a pu
étre démontré par personne. Ce théoréme est le suivant : Tout
systéme de nombres réels en nombre infini, c’est-a-dire tout en-
semble infini de nombres (ou de points), ou bien est équivalent a
'ensemble de tous les nombres entiers naturels 1, 2, 3, ..., ou bien
est équivalent & 'ensemble de tous les nombres réels, et par consé-
quent au continu, c’est-a-dire aux points d’un segment; au point
de vue de U’équivalence, il n’y aurait donc que deux ensembles
de nombres : Uensemble dénombrable et le continu.

De ce théoréme résulterait également que le continu formerait la
puissance immédiatement supérieure a la puissance des ensembles
dénombrables. La démonstration de ce théoréme serait alors comme
un nouveau pont jeté entre les ensembles dénombrables et le
continu. _

Citons encore une trés remarquable affirmation de M. Cantor,
qui a un rapport des plus intimes avec le théoréme précédent et qui
en serait peut-étre la clef de la démonstration. Un systéme quel-
conque de nombres réels est dit ordonné lorsque de deux nombres
quelconques du systéme on a convenu lequel est-le précédent et
lequel est le suivant; de plus cette convention doit étre telle que,
un nombre 2 précédant un nombre b, et le nombre b précédant a
son tour un nombre ¢, I'on devra regarder @ comme précédant c.
L’ordre dit naturel des nombres d'un systéme est celui ot l'on
regarde un plus petit nombre comme précédant un plus grand qui
sera de son cdté regardé comme suivant le premier. Il 'y a, c'est
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facile a voir, une infinité d’autres maniéres d'ordonner les nombres
d’un systéme. ) _

Maintenant, s1 nous constdérons un ordre déterminé de nombres
et si parmi ceux-ci nous mettons a part un systéme particulier de
nombres, ce que I’on nomme un systéme ou ensemble particl, cet
ensemble partiel sera également ordonné. Or, M. Cantor consi-
dére une espéce particuliere d’ensembles ordonnés qu'il nomme
ensembles bien ordonnés; ce qui caractérise ces ensembles bien
ordonnés, c’est qu'il existe non seulement dans ’ensemble méme,
mais encore dans tout ensemble parLic]'; un nombre qui précede
tous les autres. Le systéme des nombres entiers 1, 2, 3, ..., dans
son ordre naturel, est évidemment un ensemble bien ordonné. Au
contraire, l’ensemble de tous les nombres réels, c’est-a-dire le
continu, dans I'ordre naturel, n’est pas un ensemble bien ordonné.
En effet, considérons l'ensemble partiel formé par les points d’un
segment ott 'on a fait abstraction du point initial ; il est clair (Il.le cet
ensemble partiel ne posséde jamais aucun élément précédant tous
les autres. Il se présente alors cette question : L’ensemble de tous
les nombres ne pourrait-il étre ordonné d'une autre maniére telle
que tout ensemble partiel efit un élément précédant tous les autres?
Autrement dit, le continu peut-il étre congu comme ensemble bien
ordonné? A cette question, M. Cantor croit que I'on peut répondre
par l'affirmative. 11 me semble extrémement désirable d’obienir
une démonstration directe de celte remarquable affirmation de
M. Cantor, en assignant par exemple effectivement un ordre des
nombres tel que dans tout ensemble partiel on puisse assigner un
nombre précédant tous les autres.

II. — De la non-contradiction des axiomes de 1'Arithmétique.

Lorsqu'il s’agit de poser les principes fondamentaux d’une science,
Pon doit établir un systéme d’axiomes renfermant une description
compléte et exacte des relations entre les concepts élémentaires de
cetie science. Ces axiomes sont en méme temps les définitions de
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ces concepts élémentaires; aucune affirmation relative 4 la science
dont nous examinons les principes fondamentaux ne sera admise
comme exacte, & moins qu’on ne puisse la tirer des axiomes au
moyen d'un nombre fini de déductions. Si 'on considére les choses
plus exactement, la question suivante se pose : Cerlaines affirma-
tions conlenues dans des axiomes ne sont-elles pas dépendantes
les unes des autres, et, par suile, ces axiomes ne renferment-ils
pas des parties communes superflues que l'on doit supprimer
si ’on veut obtenir un systéme d’axiomes complétement indépen-
dants?

Mais avant tout, parmi tant de questions soulevées par I'examen
des axiomes, je regarde comme la plusimportante celle-ci : Démon-
trer que les axiomes ne sont pas contradicloires; c’est-a-dire
démontrer qu'en se basant sur les axiomes ['on ne. pourra
jamais arriver a des résultats contradictoires au moyen d’un
nombre fini de déductions logiques.

in Géométrie on démontre la non-contradiction des axiomes en
construisant un domaine convenable de nombres tel qu’aux axiomes
géométriques correspondent des relations analogues entre les
nombres de ce domaine et tel, par conséquent, que toute contra-
diction dans les conclusions tirées des axiomes géométriques serait
forcement reconnaissable dans l'arithmétique de ce domaine. De
cette facon la non-contradiction des axiomes géométriques est ra-
menée a la démonstration de la non-contradiction des axiomes de
I’ Arithmétique. '

Quant a la déemonstration de la non-contradiction des axiomes de
I’Arithmétique, elle demande a étre effectuée par voie directe.

Les axiomes de I’Arithmétique ne sont pas essentiellement autre
chose que les régles ordinaires du calcul auxquelles il faut ajouter
I'axiome de continuité. Il n’y a pas longtemps, j’ai énuméré ces
axiomes dans une courte Note ('); en méme temps 'y ai remplaceé
Paxiome de la continuité par deux autres plus simples, & savoir :

(1) Jahresbericht der.D. M. ‘V,, t. VIII, p. 180; 1900.

Droits reservés au Cnam et a ses partenaires



D. HILBERT, — PROBLEMES MATHEMATIQUES. 73

Paxiome connu d’Archiméde, et un nouvel axiome énoncant que
les nombres forment un systéme d’étres qui n’est susceptible d’au-
cune extension, si I'on conserve intacts tous les autres axiomes
(axiome d’intégrité) (). Or je suis persuadé que I'on peut trouver
une démonstration directe de la- non-contradiction des axiomes de
I'Arithméticque en appliquant & ce but les méthodes de raisonnement
connues dont on se sert dans la théorie des nombres irrationnels,
aprés les avoir remaniées en leur faisant subir des modifications con-
venables.

Pour caracériser encore 4 un autre égard l'importance du pro-
bléme,. je ferai la remarque suivante : si I'on confére & quelque
notion des attributs qui se contredisent, je dirai que, au point de
vue mathématique, cette notion n'existe pas. Par exemple, en
Mathématiques, il n’existe aucun nombre réel dont le carré soit
¢gal & — 1. 81 'on peut, au contraire, démontrer que les attributs
conférés 4 une notion ne peuvent jamais, par 'application d'un
nombre fini de déductions logiques, conduire a une contradiction,
je dirai que I'on a ainsi démontré 'existence mathématique de la
notion en question, par exemple l'existence d'un nombre ou d’une
fonction remplissant certaines conditions. Dans le cas actuel ou il
s'agit des axiomes relatifs aux nombres réels de I’Arithmétique, la
démonstration de la non-contradiction des axiomes de I’Arithmé-
tique serait en méme temps la démonstration de Pexistence mathé-
matique de I'ensemble de tous les nombres réels, c’est-d-dire du
continu. De la sorte, si 'on obtenait une démonstration compléte
de la non-contradiction des axiomes, les objections qui ont été sou-
levées de temps a autre contre l'existence de la conception des
nombres réels n'auraient aucune raison d’étre. A vrai dire, 'en-
semble de tous les nombres réels, c'est-a-dire le continu, envisageé
comme nous le faisons ici, n'est pas, & proprement parler, la tota-
lité de tous les développements possibles en fractions décimales ou

(1) Comparer une Note inédite écrite par M. Hilbert pour la traduction de sa
Festschrift : Grundlagen der Geometrie (Annales de I'Ecole Normale supé-
rieure, 3¢ série, t. XVIIL, p. 123; 1900). (L. L.)

Droits reservés au Cnam et a ses partenaires



74 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS.

'ensemble de toutes les lois possibles suivant lesquelles peuvent pro-
céder les éléments d'une série fondamentale : ¢’est plutdt un systéme
d’étres dont les relations mutuelles sont régies par les axiomes éta-
blis et pour lesquels sont vrais tous les faits, et ceux-la seuls, que
l'on peut déduire de ces axiomes au- moyen d’un nombre fini de dé-
ductions logiques. Cen’est qu’en ce sens, selon moi, que la notion du
continu est rigourcusement et logiquement concevable; et il me
semble effectivement que c’est ainsi que ce concept correspond le
mieux & ce que nous donnent ’expérience et I'intuition. La notion du
continu, et méme celle de l'ensemble de toutes les fonctions, existe
alors absolument au méme sens qu’existe, par exemple, le systéme
de tous les nombres rationnels, ou encore les classes de nombres et
les puissances plus élevées de M. Cantor. Je suis, en effet, convaincu
que l'existence de ces derniéres conceptions, au sens que je viens
d’indiquer, peut étre tout aussi bien démontrée que I'existence du
continu, tandis que c’est tout le contraire pour le systéme de toutes
les puissances ou encore de tous les nombres aleph transfinis de
M. Cantor, pour lequel on ne peut établir, au sens que j’ai indiqué,
un systéme non contradictoire d’axiomes, et qui forment alors, par
suite, une conception qui, suivant mon expression de tout a I'’heure,
n’a pas d’existence mathématique.

Dans le domaine des principes de la Géométrie, je citerai d’abord
le probléme suivant : 7

ITI. — De 1'égalité en volume de deux tétraédres de hases
et de hauteurs égales.

Dans deux lettres adressées & Gerling, Gauss (') exprime le
regret que certains théorémes-de Stéréométrie dépendent de la
méthode d’exhaustion ou, comme on dirait aujourd’hui, de 'aziome
de continuité (ou de I'axiome d’Archiméde). Gauss cite en parti-
culier ce théoréme d’Euclide, que deax pyramides triangulaires de

(1) Gavss, Werke, t. VIII, p. 241 et 244.
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méme hauteur sont entre elles comme leurs bases. Le probléme
analogue relatif au plan est aujourd’hui complétement résolu ().
Gerling (*) réussit & démontrer 'égalité des volumes de polyédres
symétriques en les décomposant en parties congruentes; mais la
démonstration, par ce moyen, du théoréme précité d’Euclide dans
le cas général, ne me semble guere possible. Il s’agirait donc alors
d'une démonstration rigoureuse de l'impossibilité du probléme.
On serait 1mmeédiatement en possession d’une telle démonstra-
tion du moment que l'on pourrait assigner deux tétraédres de
bases et de hauteurs égales qu'il serait impossible de dé-
composer en lélraédres congruents, et qui ne pourraient non
plus, par Paddition de iétraédres congruents, éire transfor-
mes en polyeédres, eux-mémes décomposables en tétraédres con-
gruents. ‘

IV. — Probléme de la ligne droite, plus court chemin d’un point
& un autre.

(est encore la un probleme relatif aux principes fondamentaux
de la Géométrie.

St des axiomes nécessaires a 1’¢dification de la Géomeétrie habi-
tuelle euclidienne, nous retranchons I'axiome des paralléles en sup-
posant qu’il ne soit pas vérifié, mais que, au contraire, tous les
autres le soient, nous obtenons, comme on le sait, la Géométrie
(hyperbolique) de Lobatchefskij. En ce sens, nous pouvons dire
que c'est une (éométrie qui se place 4 la suite de la Géométrie
euclidienne. Si nous supposons, en outre, que I’axiome en vertu
duquel de trois points d’'une droite il en est toujours un et un seul

(') Outre les auteurs antérieurs, consulter 4 ce sujet HiLsErT, Grundlagen der
Geometrie, Chap. 1V, Leipzig; Teubner, 18g9. Comparer aussi une Note ajoutée au
Chap, I'V de la traduction de cet Ouvrage (Annales de I’Ecole Normale, 3¢ série,
t. XVII; 1goo) ot M. Hilbert parle des travaux fondamentaux sur ce sujet de
M. Gérard, professeur au lycée Charlemagne.

(?) Gauvss, Werke, t. VIII, p. 242.
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situé entre les deux autres, cesse d’étre vérifié, nous obtenons la
Geéométrie (elliptique) de Riemann, en sorte que celle-ci se ma-
nifeste comme une Géométrie placée & la suite de celle de Lobat-
chefskij.

Si, d'une maniére analogue, nous voulons examiner les prineipes
dans le cas de l'axiome d’Archiméde, nous n'avons qu'i supposer
que cet axiome n’est pas vérifié et nous obtenons alors les Géomé-
tries non archimédiennes dont M. Veronese et moi nous avons fait
I'étude. Or, une question plus générale qui se présente ensuite est
celle de savoir si 'on pourrait encore, en partant d’autres points
de vue, édifier des Géométries qui, avec non moins de droit que les
précédentes, se placeraient & la suite de la Géométrie euclidienne
habituelle. A cet effet, jattireral votre attention sur un théoréme
‘que beaucoup d’auteurs d’ailleurs ont pris comme définition de la
ligne droite, & savoir que la ligne droite est le plus court chemin
d’un point & un autre. Cet énoncé se réduit essentiellement & ce
théoréme d’Euclide que, dans un triangle, la somme de deux cotés
est toujours plus grande que le troisiéme; il est facile de voir que,
dans ce théoréme, il ne s’agit que de concepts ¢lémentaires, c’est-
a-dire dérivant immédiatement des axiomes; il est, par suite, d'une
discussion plus abordable que la proposition en question de la droite
plus court chemin. Euclide démontre ce théoréme au moyen de la
proposition de I"angle extérieur en s’appuyant sur les théorémes de
congruence. Or, il est aisé de se convaincre que la démonstration du
théoréme d’Euclide en question est impossible si I'on invoque uni-
quement les théorémes de congruence relatifs au transport de
segments. et d’angles, et 'on voit qu'il est nécessaire, en outre,
d’employer dans la démonstration un théoréme -de la congruence
des triangles. Alors cette question se présente : Existe-t-il une Géo-
meétrie ol sont vérifiés tous les axiomes de la Géométrie euclidienne
habituelle et, en particulier, tous les axiomes de congruence, sauf
I’'axiome de congruence de triangles dont il vient d’étre parlé (c’est-
a-dire encore une Géométrie oi ne sera pas vérifié le théoréme
d’apres lequel les angles 4 la base d’un triangle isoscéle sont égaux )
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et ou, de plus, le théoréme que, dans tout triangle, la somme
de deux cétés est plus grande que le troisiéme, est posé comme
un axiome particulier?

Or, I'on reconnait qu'une telle Géomeétrie existe effectivement, et
n'est pas autre que celle exposée par M. Minkowski dans son
livre, Geometrie der Zahlen ('), et prise par lui comme base de ses
recherches arithmétiques. La (Géométrie de Minkowski est done
aussi une Géométrie qui se place a la suite de la Géométrie eucli-
dienne habituelle; elle est essentiellement caractérisée par les-
conventions suivantes ’

Premiérement, les points a égale distance d’un point fixe O sont
représentés par une surface convexe fermée de 'espace euclidien
habituel et dont le centre est le point O ;

Secondement, deux segments sont encore dits égauxr quand on
peutles faire coincider au moyen d’une translation de I'espace eucli-
dien habituel.

Dans la Géométrie de Minkowski, I'axiome des paralléles est
vérifie. Dans une Note (*) que j’ai publi¢e sur le théoréme relatif a
la droite chemin le plus court d'un point & un autre, je suis parvenu
a une Géomeétrie ot I'axiome des paralléles n’est pas vérifié, tandis
que tous les autres axiomes de la Géométrie de Minkowski le sont.
En raison du réle important joué par le théoréme de la ligne droite
plus court chemin d’un point 4 un autre, ainsi que par le théoréme
d’Euclide sur la somme de deux cotés d’un triangle, qui est essen-
tiellement équivalent, non seulement dans la théorie des nombres,
mais encore dans la théorie des surfaces et le Calcul des variations,
el comme je suis convaincu qu'une discussion approfondie des
conditions relatives a la validité de ces théorémes jetterait égale-
ment un nouveau jour sur le concept de distance ainsi que sur
d’autres notions élémentaires, par exemple sur la définition du
plan et sur la possibilité de le définir au moyen du concept de droite,

—_—

(') Leipzig, Teubner.
(*) Math. Annalen, t. XLVI, p. gr1.
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il me semble désirable que I'on fasse une discussion et une exposi-
tion systémaltique des Géoméiries possibles ici. '

Dans le cas du plan et en admettant 'axiome de continuité, le
probléme dont il s’agit conduit & la question traitée par M. Dar-
boux (') : Déterminer tous les problémes du Calcul des variations
dans le plan ou les solutions sont toutes les droites du plan; question
qui me semble susceptible et digne de généralisations fécondes et
intéressantes (?). : :

V. — De la notion des groupes continus de transformations de Lie, en
faisant abstraction de I'hypothése que les fonctions définissant les
groupes sont susceptibles de différentiation.

On sait qu'en employant la notion des groupes continus de
transformation, Lie a établi un systéme d'axiomes pour la Géomé-
trie, et a démontré au moyen de sa théorie des groupes continus de
transformations que ce systéme d’axiomes suffit pour édifier la Géo-
métrie.

Or, dans 'exposition de sa théorie, Lie suppose toujours que les
fonctionsdéfinissant les groupes sontsusceptibles de différentiation;
alors rien dans ces développements ne nous dit si, dans la question
des axiomes de la (Géométrie, cette hypotheése relative a la diffé-
rentiation est de toute nécessité, ou si elle ne serait pas plutdt une
conséquence du concept de groupes ainsi que des autres axiomes
géométriques employés. Cette considération, ainsi que certains
problémes relatifs aux axiomes arithmétiques, nous ménent & cette
question plus générale : Jusqu’a quel point le concept de groupes
continus de transformations de Lie est-il accessible, si l’on rejette
Uhypothése que les fonclions en question sont susceptibles de
différentiation ?

On sait que Lie définit le groupe fini continu de transformations

(1) Lecons sur la théorie générale des surfaces, 1. IlI, p. 54; Paris, 18¢4.
(%) Comparer les intéressantes recherches de M. A. Hirsch (Math. Annalen,
t. XLIX et L).
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comme un systéme de transformations
m,’:ft(.z“ ceey Ty A1y oy @) (‘5‘::) ceay 1)
tel que deux transformations quelconcues -

‘Z'E:f:'(xh vy Tpy Ay oo e a."):_
‘Tg:fi(mfl! MR w;i; blv L] bl)

du systéme, opérées I'une apres 'autre, fournissent une transforma-
tion appartenant également au systéme et, par suite, représentable
sous la forme

ai=filfi(®, @) oo, fa(@, a); by ooy B = fil@1, ooy Tas Cpy oy 0),

ouce,, ..., c, sont certaines fonctions de @, ..., a,;b,, ..., b,. La
propriété de groupe se trouve ainsi exprimée par un systéme
d’équations fonctionnelles.et ne soumet donc les fonctions £, ..., fu;
Cys +vey €. A aucune autre restriction. Maintenant la méthode de
trailement par Lie de ces équations fonctionnelles, & savoir la déri-
vation des équations différentielles connues dont on part, présup-
pose nécessairement la continuité des fonctions définissant le groupe
ainsi que la possibilité de les différentier.

Quant & la continuité, on.devra conserver d’abord cette condition,
quand ce ne serait qu’eu égard aux applications géométriques et
arithmétiques ou la continuité des fonctions en question apparait
comme conséquence de I'axiome de continuité. Aucontraire, la pos-
sibilité de différentier les fonctions définissant les groupes renferme
une condition que I'on ne peut exprimer dans les axiomes géomé-
triques que d'une facon bien détournée et bien compliquée, et il se
présente alors cette question : Ne serait-il pas toujours possible, par
I'introduction de nouvelles variables et de paramétres convenable-
ment choisis, de ramener le groupe 4 un autre on les fonctions qui
le définissent seraient susceptibles de différentiation? Ou encore
ne serait-il pas au moins possible, au moyen de I'introduction de
certamnes hypothéses simples, de ramener le groupe 4 un autre qui
serait accessible aux méthodes de Lie? La réduction aux groupes
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analyliques est, d’apreés un théoréme énoncé par Lie (') et dé-
montré par Schur (?), toujours possible, pourvu que le groupe soit
transitif et pourvu quel’on admette I'existence des dérivées premiéres
et de certaines dérivées secondes des fonctions définissant le groupe.

L’étude des questions analogues dans le cas des groupes infinis
est intéressante aussi, ce me semble. On est alors, en général, con-
duit au champ vaste et non sans intérét des équations fonction-
nelles. Celles-ci, jusqu’ici, ont été surtout étudiées dans 'hypothése
de la possibilité de différentier les fonctions qui s’y rapportent. En
particulier les équations fonctionnelles, traitées avec tant de perspi-
cacité par Abel (*), les équations aux différences finies, et d’autres
équations déja rencontrées ne nous apprennent rien par elles-mémes
sur cette condition .de la possibilité de différentier les fonctions en
question ; ce sont certaines démonstrations d’existence dans le
calcul des variations qui m’ont directement imposé ce probléme :
tirer d'une équation aux différences la démonstration de la possi-
bilité de différentier la fonction considérée. Dans tous ces cas on est
donc conduit a cette question : Jusqu'a quel point les affirmations
admissibles dans le cas ol I’on suppose les fonctions susceptibles
de différentiation conservent-elles, avec certaines modifications
convenables, leur validité dans le cas otz Uon rejetie celte hypo-
these? .

Remarquons d’ailleurs que M. Minkowski, dans sa Géométrie des
nombres précitée, prend comme point de départ’équation fonction-
nelle

S2ityn ooy e y)Sf (@ o ) =P Ia)

et parvient, au moyen de cette équation, a démontrer P'existence de
certaines dérivées pour les fonctions en question.

(1) Lig-Encevr, Theorie der Transformationsgruppe, t. 111, § 82 et 144. Leipzig,
1893.

(2) Ueber den analytischen Character der eine. endliche continuirliche
Transformationsgruppe darstellenden Functionen (Mdth. Annalen, t. XLI).

(3) OFuvres, édit. Sylow et Lie, t. I, p. 1, 61, 38qg.
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D’autre part; je ferai remarquer qu'il peut trés bien exister des
¢équations fonctionnelles analytiques dont les seules solutions sont
des fonctions non susceptibles de différentiation. Ainsi, on peut
construire une fonction 9 (z) uniforme et continue, non susceptible
de différentiation et qui représente I'unique solution des deux équa-
tions fonctionnelles

¢(z+a) —o(z)=f(=z),
e(xz--f)—¢(x)=0,

ot aet B sont deux nombres réels et ot f() désigne une fonction
uniforme analytique et réguliére pour toutes les valeurs réelles de .
La maniere la plus simple de construire de pareilles fonctions, c’est
d'employer des séries trigonométriques en se servant d'idées ana-
logues a celles que M. Borel a appliquées, ainsi que M. Picard (')
nous 'apprend, & la construction d’une solution non analytique,
doublement périodique d'une certaine équation analytique aux dé-
rivées partielles. :

VI. — Le traitement mathématique des axiomes de la Physique.

Les recherches sur les principes fondamentaux de la Géométrie
nous conduisent & envisager ce probléme : Traiter sur ce modéle
les branches de la Physique ow les Mathématiques jouent au-
Jourd’hut un réle prépondeérant; ces branchesde la Science sont,
avant toutes autres, le Calcul des Probabilités et la Mécanique.

Quant aux axiomes du Calcul des probabilités (), il me semble-
rait trés désirable que l'on en fit la discussion logiqué en méme
temps qu'en Physique mathématique on développerait paralléle-
ment d’une maniére rigoureuse et satisfaisante la méthode des

(1) Quelgues théories fondamentales dans !’Analyse mathématigue. Con-
férences faites a Clark University, 1goo. — Extrait de la Revue générale des
Sciences, publié sous forme de livre par Armand Colin et C', p. 22.

(*) Comparer BouLMANN, Ueber Versicherungsmathematik, zweite Vorlesung,

aus KLeiv und Riecke, Ueber angewandte Mathematik und Physik. Leipzig und
Berlin, 1g00.
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valeurs moyennes, et cela tout particuliérement dans la théorie ciné-
tique des gaz.

Quant aux principes de la Mécanique, nous possédons déja au
point de vue physique des recherches d'une haute portée; je citerai,
par exemple, les écrits de MM. Mach ('), Hertz (*), Boltzmann (*)
et Volkmann (*). Il serzait aussi trés désirable qu'un examen appro-
fondi des principes de la Mécanique fit alors tenté par les mathé-
maticiens. Ainsile Livre de M. Boltzmann sur les Principes de la
Mécanique nous incite a établir et & discuter au point de vue ma-
thématique d’une maniére compléte et rigoureuse les méthodes
basées sur l'idée de passage & la limite, et qui de la conception
atomique nous condutsent aux lois du mouvement des continua.
Inversement on pourrait, au moyen de méthodes basées sur I'idée
de passage a la limite, chercher a déduire les lois du mouvement
des corps rigides d’un systéme d’axiomes reposant sur la notion
d’états d’une matiére remplissant tout lespace d'une maniére
conlinue, variant d’une maniére continue et que Pon devra définir
paramétriquement.

Quoi qu’il en soit, c’est la question de I'équivalence des divers
systémes d’axiomes qui présentera toujours l'intérét le plus grand
quant aux principes. ‘

Pour que I'exemple de la Géométrie soit applicable au traitement
des axiomes de.la Physique, nous devons chercher a renfermer une
classe aussi générale que possible de phénoménes physiques dans
un nombre restreint d’axiomes; puis, au moyen de 'addition de
nouveaux axiomes, il faut parvenir successivement aux théories plus
particuliéres. Peut-étre pourrait-on ici emprunter un principe de
subdivision & cette profonde Théorie des groupes infinis de transfor-
mations de Lie. Le mathématicien, de méme qu'en Géométrie,
devra ici aussi avoir égard, non seulement aux théories qui se rap-

(1) Die Mechanik in threr Entwickelung. Leipzig, zweite Auflage; 1889.
(%) Die Principien der Mechanik. Leipzig; 1894.

(3) Vorlesungen itber die Principe der Mechanik. Leipzig; 1897.

(%) Einfiihrung in das Studium der theoretischen Physik. Leipzig; 1900.
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prochent de la réalité, mais encore en général & toutes celles qui
sont logiquement possibles, et il devra toujours soigneusement cher-
cher & obtenir une vue d’ensemble compléte sur toutes les consé-
quences qu’entraine le systéme d’axiomes choisi.

Enfin, pour compléter les théories physiques, le mathématicien
devra attaquer le probléme qui consiste en chaque cas 4 exa-’
miner si le nouvel axiome ajouté n’est pas en contradiction avec les
précédents. Le physicien se voit souvent obligé, par le résultat de
ses experiences, de faire de nouvelles hypothéses, et cela mén‘lclpen;
dant le développement de ses théories, et il invoque alors au sujet
de la non-contradiction des nouvelles hypothéses avec les précé-
dentes, ces expériences précisément, ou encore un cerlain senti-
ment physique. Ce sont la des procédés qui ne sont pas admis-
sibles dans 1'édification rigoureusement logique d’une théorie. La
démonstration requise de la non-contradiction de toutes les hypo-
théses faites me semble encore d’'une grande importance par la raison
que I'effort nécessité par cette démonstration conduit toujours de la
maniére la plus effective & un énoncé exact des axiomes mémes.

Jusqu'ici nous avons exclusivement examiné les principes fon-
damentaux des diverses branches de la Science mathématique.
Il est certain que I'étude et la discussion des principes d’une science
possédent un charme particulier et I'examen de ces principes sera
toujours un des plus importants sujets de recherches. « Le but final »,
adit Weierstrass, « quel’on doit avoir devant les yeux est la recherche
d'un jugement exact sur les principes fondamentaux de la science....
Pour pénétrer dans le domaine de la Science il est, sans doute, in-
dispensable aussi de s'occuper de problémes particuliers. » En effet,
pour pouvoir examiner avec fruit les principes d’une science, il faut
etre familiarisé avec ses théories particuliéres; seul, I'architecte qui
connait & fond, dans tous leurs détails, les diverses destinations d’un
batiment, sera capable d'en poser stirement les fondations. Nous
allons donc maintenant passer en revue des problémes spéciaux
dans les diverses branches de la-Mathématique, et nous commen-
cerons par I’Arithmétique et I’Algeébre.
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VII. — Irrationalité et transcendance de certains nombres.

~ Les théorémes arithmétiques de M. Hermite sur la fonction expo-
nentielle et leur extension par M. Lindemann feront certainement
I'admiration de toutes les générations futures de mathématiciens.
Cette admiration accroit encore notre désir de continuer dans cette
voie. C'est ce qu’a fait M. Hurwitz dans deux intéressants travaux
sur les propriétés arithmétiques de certaines fonctions transcen-
dantes ('). Aussi indiquerai-je ici une classe de problémes qui me
semblent devoir étre attaqués les premiers. Lorsque nous savons de
certaines fonctions transcendantes importantes de I’Analyse qu’elles
prennent des valeurs algébriques pour certains arguments algé-
briques, cela nous semble toujours particuliérement remarquable
et digne d’une étude approfondie. Nous nous attendons toujours
a4 voir les fonctions transcendantes prendre, en général, pour des
arguments algébriques des valeurs transcendantes, et quoique 1'on
sache bien qu'il existe des fonctions transcendantes entiéres possé-
dant des valeurs rationnelles pour tous leurs arguments algébriques,
néanmoins nous regardons comme extrémement probable que la
fonction exponentielle ¢, par exemple, qui, pour toutes les valeurs
rationnelles de 'argument z prend évidemment toujours des valeurs
algébriques, prenne d’autre part, pour toutes les valeurs rrration-
nelles algébriques de 'argument z, des valeurs toujours transcen-
dantes. Nous pouvons donner & cet énoncé la forme géométrique
suivante : Lorsque, dans un triangle isoscéle, le rapport entre
Uangle a la base et Uangle au sommet est algébrigue, mais
non rationnel, le rapport entre la base et lautre cité sera tou-
Jours transcendant. Malgré la simplicité de cet énoncé et sa res-
semblance avec les propositions découvertes par MM. Hermite et
Lindemann, j’en regarde la démonstration comme extrémement
difficile, et il en sera de méme de la proposition suivante : La puis-
sance af, pour une base algébrique o et un exposant algébrique

(1) Math. Annalen, t. XXII et XXXII.

Droits reservés au Cnam et a ses partenaires



D. HILBERT. —- PROBLEMES MATHEMATIQUES. 85

irrationnel 3, comme par exemple le nombre 2V* ou €™ = i~*, repré-
senle toujours un nombre transcendant ou pour le moins irra-
tionnel. 1 est certain que la résolution de ces problémes et d’autres
analogues doit conduire 4 des méthodes nouvelles, ainsi qu’a de nou-
veaux points de vue relativement 4 la nature de nombres irration-
nels et transcendants particuliers.

VIII. — Problémes sur les nombres premiers.

La théorie de la distribution des nombres premiers a recu, dans
ces derniers temps, une impulsion essentielle sous l'influence des
travaux de MM. Hadamard, de la Vallée-Poussin, H. von Mangoldt
et autres. Pour résoudre complétement le probleme posé dans le
Mémoire de Riemann Sur le nombre des' nombres premiers infé-
rieurs a une quantilé donnée, il est encore nécessaire de démontrer
l'affirmation si importante de Riemann que les zéros de la fonc-
tion {(s), qui est représentée par la série

I i | I
U)=1+ g+ g+ e

k
a3

ont tous leur partie réelle égale a 3, abstraction faite des zéros
connus, qui sont desnombres entiers négatifs. Une fois cette démon-
stration obtenue, le probléme ultérieur sera la discussion plus précise
de la série infinie de Riemann pourle nombre des nombres premiers,
et il fandra en particulier reconnaitre si la différence entre le
nombre des nombres premiers inférieurs a une quaniité z et le
logarithme intégral de x decient effectivement infinie avec x
d’un ordre inférieur a % il faudrait ensuite reconnaitre si les
termes de la formule de Riemann qui dépendent des premiers zéros
complexes de la fonction {(s) sont la cause véritable de la conden-
sation par places des nombres premiers, remarquée dans les dénom-
brements empiriques.

Aprés avoir épuisé ce sujet de la discussion de la formule de

Riemann relative aux -nombres premiers, on pourrait peut-étre
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donner une réponse rigoureuse au probléme de Goldbach () ou
I'on se demande si tout nombre pair est représentable par une
somme de deux nombres premiers; vient ensuite cette question
connue : Y a-t-il une infinité de couples de nombres premiers ayant
comme différence le nombre 2? Et ce probléme plus général : L’équa-
tion linéaire de Diophante

ax+by-+c=o,

ot les coefficients a, b, ¢ sont des nombres entiers donnés dont deux
sont premiers entre eux, est-elle toujours résoluble en nombres
entiers premiers x, y?

Mais un probléme d’intérét non moindre et qui me semble peut-
étre d'une importance encore plus considérable est le suivant : Trans-
porter les résultats obtenus pour la distribution des nombres pre-
miers rationnels a la théorie de la distribution des idéaux
premiers d’un corps de nombres donné k. Clest 14 un probléme
qui revient 4 'étude de la fonction

in(*‘):Zﬁ’

relalive au corps &, et ou la somme doit étre étendue & tous les
idéaux § du corps de nombres donné k, et ou 2 (1) désigne la norme
de I'idéal §. ]

Je citerai encore trois problémes particuliers de la Théorie des
nombres, & savoir un probléme sur les lois de réciprocité, un autre
sur les équations de Diophante, enfin le dernier appartenant au
domaine des formes quadratiques.

IX. — Démonstration de la loi de réciprocité la plus générale
dans un corps de nombres quelconque.

On demande de démontrer dans le cas d’un corps de nombres
quelcongue la loi-de réciprocité des résidus de puissances de

(1) Comparer M.-P. StAckgL, Ueber Goldbach’s empirisches Theorem ( Gdt+
tinger-Nachrichten; 1896), et M. Lanpav, loe. cit.; 1g00.
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degré [, [ désignant un nombre premier impair, ou encore / dési-
gnant soit une puissance de 2, soit une puissance d'un nombre pre-
mier impair. On pourra, je crois; établir la loi et découvrir les
méthodes essentielles nécessaires 4 la démontrer, en généralisant
convenablement la théorie que jai développée (') & propos du corps
des racines [®¢ de I'unité et ma théorie (*) des corps relativement
quadratiques.

X. — De la possibilité de résoudre une équation de Diophante.

On donne une équation de Diophante &4 un nombre quelconque
d'inconnues et a coefficients entiers rationnels : On demande de
trouver une méthode par laguelle, au moyen d’un nombre fint
d’opérations, on pourra distinguer st Z’e’gu&lion est résoluble
en nombres entiers rationnels.

XI. — Des formes quadratiques a coefficients algébriques quelconques.

Nos connaissances actuelles dans la Théorie des corps quadra-
tiques (*) nous permettent d’attaquer avec fruit la T/héorie des
Jormes quadratiqgues a un.nombre quelconque de variables et
dont les coefficients sont des nombres algébrigues quelcongues.
Nous sommes conduits alors & cette question des plus intéressantes :
Etant donnée une ¢quation quadratique & nombre quelconque de
variables et a coefficients algébriques, la résoudre en nombres en-
tiers ou fractionnaires faisant partie des domaines algébriques de
rationalité déterminés par les coefficients.

(*) Bericht der D. M. V., itber die Theorie der algebraischen Zahlkorper,
5¢ Partie, t. IV; 1897.

(*) Math. Annalen, t. LI, et Géttingen Nachrichten; 1898.

(®) HiLBERT, Ueber den Dirichletschen biquadratischen Zéihlenkirper ( Math.
Annalen, v. XLV)., — Ueber die Theorie der relativquadratischen Zahlkirper
(Berichte der D. M. V.; 1897, et Math. Annalen, . L1). — Ueber die Theorie
der relativ-Abelschen Korper (Gottinger Nachrichten; 1898). — Grundlagen
der Geometrie. Festschrift, Leipzig; 1899, Chap. VIII, § 83 (traduit dans les
Annales de I'Ecole Normale, 3¢ série,; t. XVII; 1900).
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Le probléme important qui suit servira de trait d’union entre la
Théorie des nombres, d'une part, et 'Algébre et la Théorie des
fonctions, d’autre part.

XII. — Extension dun théoréme de Kronecker sur les corps abéliens
a un domaine de rationalité algébrique quelconque.

C’est & Kronecker que 'on doit ce théoréme que-tout corps de
nombres abélien dans le domaine des nombres rationnels est en-
sendré par composition de corps de racines de P'unité. Ce théoréme
fondamental de la théorie des équations a coefficients numériques
entiers renferme deux affirmations :

Premiérement, le théoréme répond & la question relative au
nombre et & l'existence des équations qui, dans le domaine des
nombres rationnels, ont un degré, un groupe abélien et un disecri-
minant assignes.
~ Secondement, le théoréme nous dit que les racines de telles
¢équations constituent un domaine de nombres algébriques qui coin-
cide exactement avec le domaine que I'on obtient lorsque, dans la
fonction exponentielle ¢, on donne successivement 4 I'argument =
toules les valeurs numériques rationnelles.

La premiére affirmation souléve la question de la détermination
de certains nombres algébriques au moyen de leur groupe et de leur
ramification; cette question correspond donc au probléme connu
de la détermination des fonctions -algébriques appartenant 4 une
surface de Riemann donnée.

La seconde affirmation fournit les nombres demandés par un
moyen transcéndant, a4 savoir, au moyen de la fonction exponen-
tielle ef™=. '

Aprées le domaine des nombres rationnels, le plus simple est celui
du corps imaginaire quadratique; le probléme qui se présente
d’abord est donec celui d’étendre a ce corps le théoréme de Kro-
necker. Kronecker lui-méme a affirmé que les équations abéliennes
dans le domaine d’un corps quadraiique sont fournies par les équa-
tions de transformation des fonctions elliptiques & module singu-
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lier, en sorte qu'ici les fonctions elliptiques jouent le rdle occupé,
dans le cas précédent, par la fonction exponentielle. La démonstra-
tion de cette affirmation de Kronecker n’a pas encore été effectuée;
je crois que I'on peut y arriver, sans rencortrer de difficuliés insur-
montables, en sappuyant sur la théorie de la multiplication com-
plexe développée par M. Weber ('), en méme temps que sur les
théorémes purement arithmétiques que j'ai établis sur les classes
de corps.

Enfin, ce qui me semble d'une importance capitale, c’est 'exten-
sion du théoréme de Kronecker au cas ow, au lieu du domaine des
nombres rationnels ou bien des nombres du corps imaginaire
quadratique, on prend, comme domaine de rationalité, un corps
de nombres algébriques quelconques.

JE REGARDE CE PROBLEME COMME UN DES PLUS PROFONDS ET DES
PLUS IMPORTANTS DE TOUTE LA THEORIE DES NOMBRES ET DES FONC-
TIONS.

Ce probléme parait abordable d'une foule de cotés. La clef la
plus capable de nous ouvrir la voie a la solution de la partie arith-
métique du probléme est, selon moi, la loi générale de réciprocité
des résidus de puissances /#™* dans un corps de nombres quelconque
assigneé.

Quant a la partie du probléme qui est relative & Ja Théorie des
fonctions, le chercheur se laissera conduire dans ce domaine si
attrayant par les remarquables analogies que 'on observe entre la
Théorie des fonctions algébriques d'une variable et celle des
nombres algébriques. L'analogue du développement en série de
puissances d’une fonction algébrique, dans la Théorie des nombres,
a été établi et étudié par M. Hensel (?); quant & 'analogue du théo-
reme- de Riemann-Roch, il a été traité par M. Landsberg (*). En-

(') H. Wegser, Elliptische Functionen und algebraische Zahlen. Braun-
schweig; 18g1. :

(*) Jahresberichte der D. M. V., t. VI, ainsi qu'un Mémoire des Math. Anna-
len : Ueber die Entwickelung der algebraischen Zahlen in Potenzreihen.

(®) Math. Annalen, t. L; 18g8.
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suite I'analogie entre la notion du genre d’une surface de Riemann
et la notion du nombre des classes d'un corps de nombres saute
aux yeux. Pour ne parler que du cas le plus simple, considérons,
d’une part, une surface de Riemann de genre p =1, et, d’autre
part, un corps de nombres ou le nombre des classes est &= 2;
alors 4 la démonstration de I'existence d’une intégrale partout finie
sur la surface de Riemann correspond la démonstration de I'exi-
stence d’un nombre entier o dans le corps de nombres tel que le

nombre yo. représente un corps non ramifié relativement quadra-
tique par rapport au corps de base. Dans la Théorie des fonctions
algébriques on sait que, pour démontrer ce théoréme d’existence
riemannien, on emploie la méthode du probléme de Dirichlet; de
méme, dans la Théorie des corps de nombres, c¢'est la démonstration
de l'existence du nombre « qui présente aussila difficulté princi-
pale. La démonstration s’appuie essenticllement sur le théoréme
que dans un corps de nombres il existe toujours des idéaux premiers
possédant des caractéres résiduels assignés. Ce dernier fait joue par
suite, dans la Théorie desnombres, unréle analogue a celui que joue
le probléme de Dirichlet dans la Théorie des fonctions.

Dans la Théorie des fonctions 1'équation du théoréme d’Abel
énonce, comme on sait, la condition nécessaire et suffisante pour
que les points en question de la surface de Riemann soient les zéros
d’une fonction algébrique appartenant a la surface. L’analogue
preécis du théoréme d’Abel, dans la Théorie des corps de nombres, ot
le nombre des classes est & = 2, est I’équation de la loi de récipro-
cité quadratique (')

[
() ==

quinous dit que I'idéal § sera un idéal principal du corps de nombres,
au seul et unique cas ot le nombre « posséde par rapport & l'idéal
un caracteére résiduel quadratique positif.

Nous voyons que, dans les probléemes que nous venons d’exami-

(1)- Comparer Huserr, Ueber die Theorie der relativ-Abelschen Zahlkirper
(Géottinger Nachrichten; 1898).
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ner, les trois branches fondamentales des Mathématiques, & savoir
la Théorie des nombres, I’Algébre et la Théorie des fonctions, sont
dans le rapport le plus intime, et je suis convaincu que la Théorie
des fonctions analytiques de plusieurs variables ferait un progrés
essentiel si l'on arrivait 4 la découverte et Uétude des fonctions
qui, dans un corps de nombres algébrigques quelconque donné,
Jouent le réle analogue & celui joué, dans le corps des nombres
rationnels, parla fonction exponentielle, et, dans le corps imagi-
naire guadratique, par la fonction modulaire elliptique.

Nous arrivons maintenant & I’Algébre ; je parlerai dans ce qui suit
d'un probléme de la Théorie des équations, et d'un autre probléme
auquel m’a conduit la Théorié des invariants algébriques.

XIII. — Impossibilité de la résolution de l'équation générale
du septiéme degré au moyen de fonctions de deux arguments seulement.

La Nomographie (') a pour but Ia résolution des équations au
moyen du tracé de réseaux de courbes qui dépendent d’un para-
metre arbitraire. On voit immédiatement que toute racine d'une
¢quation dont les coefficients dépendent de deux paramétres seule-
ment, c’est-a-dire que toute fonction de deux variables indépen-
dantes, est représentable d'une foule de maniéres, d’apreés ce principe
de la Nomographie. Enfin, il est évident que ce principe, qui ne
comporte I’emploi d’aucun élément mobile, permet de représenter
une grande classe de fonctions de trois variables et plus, & savoir
toutes les fonctions que I'on peut obtenir en construisant d’abord
une fonction de deux arguments, puis en remplagant chacun de ces
arguments par une fonction de deux arguments, ces derniers 4 leur
tour étant encore remplacés par des fonctions de deux arguments et
ainsi de suite, en formant ainsi un enchainement fini de fonctions
de deux arguments. Par exemple, toute fonction rationnelle d’un
nombre quelconque d’arguments appartient i cette classe de fonc-
tions que I’on peut construire au moyen de tables nomographiques

(') M. v’Ocacne, Traité de Nomographie, Paris, Gauthier-Villars; 18gg.
’ grap ’
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en effet, cette fonction peut étre construite par addition, soustrac-
tion, multiplication et-division, et chacune de ces opérations ne
représente qu'une fonction de deux arguments. On voit de méme
que les racines de toutes les équations résolubles par radicaux dans
un domaine naturel de rationalité appartiennent a la classe pré-
citée de fonctions; en effet, aux quatre opérations élémentaires on
ne fait qu’ajouter 'opération d’extraction de racines, qui représente
uniquement une fonction d’zn argument. Semblablement, les équa-
tions du cinquiéme et du sixiéme degré sont résolubles par le moyen
de Tables nomographiques convenables; en effet, ces équations, par
le moyen de transformations de Tschirnausen, qui elles-mémes
n’exigent que I'extraction de racines, peuvent étre mises sous une
forme ot les coefficients ne dépendent que de deux paramétres.

~ Oril est probable que les racines des équations du septi¢me degré
sont des fonctions de leurs coefficients qui n’appartiennent pas a la
classe susdite des fonctions que I'on peut construire par le moyen
d’un enchatnement fini de fonctions de deux arguments. Pour le
prouver, il serait nécessaire de démontrer que [’édquation du
seplieme degré '

S +zxffy P +s5f4+1=0

est impossible ¢ résoudre au moyen de fonctions continues quel-
congues de deux arguments seulement.

Je remarquerai seulement qu’_un examen Tigoureux m’a prouve
qu’il existe des fonctions analytiques de trois arguments z, y, 3
tmpossibles & obtenir au moyen d’enchainements en nombre fini de
fonctions de deux arguments seulement (*).

XIV. — Démontrer que certains systémes de fonctions sont finis.

Dans la Théorie des invariants aigébriques, il me semble que les
questions ot il s’agit de savoir si les systémes de formes complets

(') Dans ce § XIII, en fait de méthodes nomographiques, M. Hilbert n’a visé que
celles qui ne comportent aucun élément mobile. En effet, 'introduction d'éléments
mobiles permet de construire des fonctions de plus de deux arguments. Clest ce
que M. d’Ocagne a fait voir (Comptes rendus, t. CXXXI, p. 522; 1g00), et cela
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sont finis présentent un intérét particulier. Derniérement, M. L.
Maurer (') a réussi & étendre les théorémes en question relatifs a la
Théorie des invariants démontrés par M. Gordan et par moi, au cas
ou ce n'est pas, comme dans la Théorie usuelle des invariants, le
.groupe général projectif qui est pris comme base de la définition
des invariants, mais un sous-groupe quelconque.

Un progres essentiel dans cette direction avait déja é1é effectué
par M. A. Hurwitz (*) lorsqu’il parvint, par une méthode des plus
ingénieuses, & démontrer d’une maniére générale que le nombre des
invariants orthogonaux d’une forme fondamentale quelconque est
fini. '

‘n m’occupant de cette question du nombre fini des invariants,
jai été conduit & un probléme simple qui renferme comme cas par-
ticulier la question susdite et dont la solution exige probablement
un développement de la Théorie de I'élimination et des systémes de
modules de Kronecker, poussé beaucoup plus loin qu’on n’a réussi
a le faire jusqu’a présent.

Supposons que I'on ait assigné un nombre /2 de fonctions ration-
nelles entiéres X, X,, ..., X,, des n variables z, x,, . . ., z,,

X :fi (21, Zgy -0y Tn ),
(S) . XE! :f2 (‘xlixi) ...,JJ,L),

% Xalz:fm(mn gy v ey mrz)'

Toute liaison rationnelle entiére entre X,,X,,...,X,, ou l'on
introduira les expressions ci-dessus, sera nécessairement une fonc-
tion rationnelle de z;,,,...,x,. Cependant, il peut aussi trés
bien se faire qu’il y ait des fonctions rationnelles fractionnaires de

précisément a 'occasion de la conférence de M. Hilbert ici traduite. La méthode
dite des points alignés, qui comporte I'emploi d'une simple droite, permet trés
aisément de donner une solution nomographique de I'équation du septiéme degré.
' (L. L.)

(1) Comparer les Sitzungsberichte der K. Acad. der Wiss. zu Miinchen ;
1899, et un Travail paru peu aprés dans les Math, Annalen.

(2) Ueber die Erzeugung der Invarianten durch Integration (Géttinger
Nachrichten; 1897).
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X,,X,, ..., X,, qui, aprés 'opération des substitutions (3), devien-
dront des fonctions entiéres en x,, x,, ..., x,. Uné telle fonction
rationnelle de X, . .., X,, qui, aprés que l'on aura effectué¢ les sub-
stitutions (S), sera devenue une fonction entiére en x,, . .., o, je
la nommerai une fonction relativement entiére de X,, ..., X,,. Il
est évident que toute fonction entiere de X, ..., X, est aussi rela-
tivement entiére; enfin, la somme, la différence et le produit de
fonctions relativement entiéres sont également des fonctions relati-
vement entiéres.

Le probleme qui se présente alors est celui-ci : Fst-il toujours
possible de trouver un systéme fini de fonctions relativement
entieres de X,,X,, ..., X,, avec lesquelles on puisse composer
d’une maniére rationnelle entiére toute autre fonction relative-
ment entiére de X,, X,, ..., X,,? On peut formuler le probléme
encore plus simplement, si 'on introduit la notion de domaine fini
d’intégrité. ‘

Par domaine fini d’intégrité, j’cnten\ds un systéme de fonctions
tel que I'on puisse toujours y choisir un nombre fini de fonctions a
I'aide desquelles toutes les autres fonctions du systéme soient expri-
mables d’une maniére rationnelle entiére. Notre probléme revient
donc & démontrer que toutes les fonctions relativement entiéres
d’un domaine quelconque de rationalité forment toujours un
domaine fini d'intégrité. :

Nous sommes enfin conduits a rendre le probléme encore plus
précis en le faisant rentrer dans la pure théorie des nombres;
on regardera, dans ce cas, les coefficients des fonctions données
Sis fas ooy fm comme étant des nombres entiers rationnels et, par
Jfonctions relaticement entiéres de X,, ..., X,,, on entendra seule-
ment des fonctions rationnelles de ces arguments, telles que, aprés
l’opération des substitutions (S), elles deviennent des fonctions
rationnelles entiéres de z,, ..., =, & coefficients rationnels entiers.

Un cas particuliérement simple du probléme ainsi précisé est
celui-ci : Soient X,, ..., X, m fonctions rationnelles entiéres &
coefficients rationnels entiers de 'unique variable , et soit p un
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nombre premier donné. Considérons le systéme des fonctions
rationnelles entiéres de #, qui peuvent étre mises sous la forme

G(XI! M X)H)
—""Pﬁ

2

ou G désigne une fonction rationnelle entitre de ses arguments
X, -.., X, et ol p* est une puissance quelconque du nombre pre-
mier p. Des recherches que j'ai publiées autrefois dans les Math.
Annalen, t. XXXVI, p. 485, font voir immédiatement que toutes
les expressions de cette nature forment, pour chaque exposant
déterminé 4, un domaine fini d'intégrité; mais il s’agit ici de savoir
§'il en est de méme pour tous les exposants %, c’est-d-dire qu'il
s'agit de savoir si 'on peut choisir un nombre fini de pareilles
expressions au moyen desquelles toute autre expression de cette
forme peut étre exprimée d'une maniére entiére et rationnelle pour
un exposant £ quelconque.

Je mentionnerai maintenant deux problémes qui font partie de ce
domaine intermédiaire qui confine & I'Algébre et & la Géométrie :
Pun est relatif 4 la Géométrie énumérative, Pautre & la Topologie
des courbes et des surfaces algébriques.

XV. — Etablissement rigoureux de la Géométrie énumérative
de Schubert.

Le probléme est le suivant :

Détermination rigoureuse des nombres de la Géométrie énu-
mératlive, et cela en fixant d’une maniére plus précise les limites
de leur validité, et, en particulier, des nombres que Schubert (*)
atrouvés en s appuyant sur le principe de son calcul énumératif,
dit de la position spéciale oz de la conservation du nombre.

Bien que I’Algébre moderne regarde, en principe, comme pos-

(") Kalcul der Abzdéhlenden Geometrie. Leipzig; 1879.
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sibles a effectuer les calculs des procédés d’élimination, les démon-
strations des théorémes de la Géométrie énumérative exigent des
considérations ultérieures, savoir : on doit effectuer les éliminations
relatives a certaines ¢quations de forme particuliére, en sorte que le
degré des équations finales soit possible & prévoir, ainsi que les
ordres de multiplicité de leurs solutions.

XVI. — Problémes de topdlogie des courbes et des surfaces algébriques.

Le nombre maximum des branches fermées et séparées que peut
posséder une courbe plane algébrique d’ordre n a été déterminé par
Harnack ('); reste la question de la situation mutuelle qu’occupent
entre elles dansle plan les branches d’une courbe. En ce qui concernc
les courbes du sixiéme ordre, je suis parvenu & prouver (?), en
entrant, il est vrai, dans beaucoup de détails, que les onze branches
que peut avoir une courbe du sixi¢éme ordre; d’aprés Harnack, ne
peuvent jamais avoir leurs cours tous séparés et qu’il doit, au con-
traire, exister une branche a 'intérieur de laquelle se trouve une
branche unigue, tandis que les neuf autres ont leurs cours a son exté-
rieur, et réciproquement. Une étude approfondie des positions
relatives des branches séparées dans le cas de leur nombre
maximum me semble présenter un grand intérét, et il en est de
méme de la recherche analogue relative au nombre, a la Sforme
et a la position relative des nappes d’une sur face algébrigue dans
Uespace. Jusqu’ici d’ailleurs 'on ne sait absolument rien sur le
nombre maximum effectif de nappes que peut avoir une surface du
quatriéme ordre de I'espace & trois dimensions (*).

Comme suite & ce probléme purement algébrique, j’attirerai I'at-
tention sur la question suivante, qui me semble pouvéir étre attaquée
au moyen de la méthode de la variation continue des coefficients; la

(1) Mathematische Annalen, t. X. ‘

(2) Ueber die reellen Ziige algebraischen Curven (Math. Annalen, t. XXXVIII,
p. 116-138).

(3) Comparer Ronn, Fldchen vierter Ordnung. Preisschrift der Furstlich
Jablonowskischen Gesellschaft. Leipzig; 1886.

Droits reservés au Cnam et a ses partenaires



D. HILBERT. -— PROBLEMES MATHEMATIQUES. 97
réponse a cette question est d’ailleurs importante pour la topologie
des familles'de courbes définies par des équations différentielles :
Déterminer le nombre maximum el la situation relative des
cycLes Loutes de M. Poincaré dans le cas d’une équation diffe-
rentielle du premier ordre et du premier degré de la forme

ay

dy Y
dz X’

ou X, Y désignent des fonctions rationnelles entiéres de degré n,
de z, v, ou, en employant I'écriture homogéne, de la forme

" ds dyN\ [ dx dz . dy dx
PR QA 5 — — S/ I JC A Vi
X’("y et dr.) Y( a4 > * (r de =/ d.c) o

ou X, Y, Z désignent des fonctions rationnelles entiéres et homo-

énes de degré 7, de x z, ces fonctions devant étre déterminées
8 2 ) 3 Yy %,

comme fonctions du paramétre.

XVII. — Représentation des formes définies par des sommes de carrés.

Une fonction ou forme rationnelle entiére 4 nombre quelconque
de variables et a coefficients réels est dite définie lorsqu’elle ne
prend jamais de valeurs négatives pour aucune valeur réelle des
variables. Le systéme de toutes les formes définies se comporte
d’une maniére invariante vis-a-vis des opérations de I'addition et de
la multiplication; le quotient de deux fonctions définies, tant que
c’est une fonction entiére des variables, est une forme définie. Le
carré d’une forme quelconque est évidemment toujours une forme
définie, mais, ainsi que je I'ai démontré ('), une forme définie quel-
conque ne peut pas toujours étre composée par addition au moyen
de carrés de formes; il se présente alors cette question, que j’ai
résolue dans le sens affirmatif dans le cas des formes ternaires () :
Une forme définie quelconque peut-elle étre toujours représentée

— —_ S—

(1) Math. Annalen, t. XXXII.
(2) Acta mathematica, t. XVIL.
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comme quolient de sommes de carrés de formes? Il serait en
méme temps extrémement utile de savoir, dans certaines questions
relatives & la possibilité de certaines constructions géomeétrigues, si
les coefficients des formes représentantes peuvent étre toujours pris
dans le domaine de rationalité donné par les coefficients de la forme

représentée ().
Je citerai encore un probléme géométrique.

XVIII. — Partition de 'espace en polyédres congruents.

Dans les questions ot il s’agit de ces groupes de déplacements
dans le plan, pour lesquels il existe une région fondamentale, on
sait que la réponse est trés différente suivant que 'on considére le
plan (elliptique) de Riemann, le plan (parabolique) d’Euclide, ou
le plan (hyperbolique) de Lobatchefskij. Dans le cas du plan ellip-
tique, le nombre des régions fondamentales d'une espéce essentielle-
ment différente est fini, et il suffit d'un nombre fin: d’exemplaires
de régions congruentes pour recouvrir sans lacunes le plan tout
cntier : le groupe est constitué par un nombre fini de déplacements.
Dans le cas du plan hyperbolique, le nombre de régions fondamen-
tales d’une espéce essentiellement différente est infini : ce sont les
célébres polygones de M. Poincaré; pour recouvrir sans lacunes le
plan tout entier, il faut un nombre infin: d’exemplaires de I-ég'ioné
congruentes. Clest le plan parabolique euclidien qui forme le cas
intermédiaire; en effet, dans ce cas il n'existe qu'un nombre fini
d’espéces essentiellement différentes de groupes de déplacements
a région fondamentale, tandis que pour recouvrir sans lacunes le’
plan tout entier il faut un nombre infini d’exemplaires de régions
congruentes.

Des faits complétement analogues ont lieu dans P'espace & trois

(1) Comparer HiLBeRT, la Festschrift déja citée; Grundlagen der Geometrie,
Chap. VII, en particulier le § 38.
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dimensions. Le fait que le nombre des groupes de déplacements
dans 'espace elliptique est fini est une conséquence immédiate d’un
théoréme de M. C. Jordan (*), en vertu duquel le nombre des espéces
essentiellement distinctes de groupes finis de substitutions linéaires
4 n variables ne peut dépasser une certaine limite finie dépendant
de n. Les groupes de déplacements & région fondamentale dans
Pespace hyperbolique ont été étudiés par MM. Klein et Fricke dans
les Lecons sur la théorie des fonctions automorphes (*); enfin
MM. Feodorow (*), Scheenflies (*), et derniérement M. Rohn (?)
ont démontré que, dans I'espace parabolique d’Euclide, il n’y a qu'un
nombre fini d’espéces essentiellement différerites de groupes de dépla-
cements & région fondamentale. Or, tandis que les résultats et les
méthodes de démonsirations relatives aux espaces elliptiques et
hyperboliques s’¢tendent immédiatement aux espaces 4 n dimen-
sions, 11 semble, au contraire, que la généralisation du théoréme
relatif & l'espace euclidien présente des difficultés considérables;
il serait donc & désirer que 'on se proposat cette recherche : Recon-
naitre s, dans Uespace euclidien a n dimensions, il ”’existe gu’un
nombre ¥z d’espéces différentes de groupes de deéplacements ¢
région fondamentale.

Une région fondamentale de chaque groupe de déplacements,
jointe aux régions congruentes provenant du groupe, fournit évi-
demment un recouvrement sans lacunes de l'espace tout entier.
Alors se pose la question suivante : Kuiste-i-il aussi des polyédres
quUINE se présentent pAs comme régions fondamentales de groupes
de déplacements, et au moyen desquels cependant on peut, en
Juxtaposant convenablement les exemplaires congruents, arriver
@ remplir sans lacunes l'espace tout entier? Je citeral aussi une
question qui se relie & la précédente; question importante pour la

(V) Journal fur Mathematik, . LXXXIV; 1878, et A¢ti della Reale Accademia
di Napoli; 188o. ‘
(2) T. 1, en particulier Section I, Chap. IT et IV; Leipzig, 1897.
(*) Symetrie der regelmdssigen Systeme von Figuren; 18go.
(
(

)
Y) Krystallsysteme und Krystallstructur; Leipzig, 8g1.
5) Math. Annalen, t. LVIIIL.
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‘Théorie'des nombres et peut-étre utile aussi en Physique et en
Chimie : c’est la question de savoir comment on pourrait, avec la
plus grande densité possible, remplir 'espace au moyen d’unnombre
infini de corps de méme forme assignée d’avance, par exemple au
moyen de sphéres d'un rayon donné ou de tétraédres d'arétes données
(on pourrait aussi assigner d’avance la position des arétes); autre-
ment dit, on demande de répartir ces corps dans l'espace de fagon
que le rapport de 'espace rempli a I'espace vide soit le plus grand
possible.

Si nous jetons un coup d'ceil sur le développement de la théorie
des fonctions pendant le xix® siécle, nous remarquons avant tout le
role fondamental joué par cette classe de fonctions que 'on nomme
aujourd’hui fonctions analytiques, classe de fonctions qui reste-
ront toujours le point central de I'intérét mathématique.

Il serait facile de distribuer toutes les fonctions concevables
digﬁes d’intérét en classes formées a des points de vue divers. Con-
stdérons, par exemple, la classe des fonctions susceptibles d’étre
définies au moyen d’équations différentielles algébriques ordi-
naires ou au moyen. d’'équaltions de méme nature auz dérivées
partielles. On remarque immédiatement que cette classe de fonc-
tions ne renferme pas des fonctions qui proviennent de la théorie
des nombres, fonctions dont I'étude est pour nous de l'intérét le
plus élevé. Par exemple, la fonction { (), dont on a déja parlé, ne
vérifie aucune équation différentielle algébrique, comme c’est facile
a reconnaitre au moyen de la relation connue entre {(s) et {(1 — s)
et en invoquant le théoréme ot M. Hélder (') démontre que la
fonction I'(«) ne vérifie aucune équation différentielle algébrique.
Il est aussi trés vraisemblable que la fonction des deux variables s
et x, définie par la série

(1) Math. Annalen, t. XXVIII.
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et qui est intimement liée & la fonction {(s), ne vérifie aucune équa-
tion algébrique aux dérivées partielles; dans I'étude de cette der-
niére question, on devra faire usage de 1’équation fonctionnelle

D’autre part, si par des considérations arithmétiques et géomé-
triques nous sommes conduils & envisager la classe de toutes les fonc-
lions continues et susceptibles d’étre différentides indéfiniment,
nous devrons dans leur étude renoncer 4 ce moyen de travail si ma-
mable des séries de puissances et & cette propriété que la fonction
soit complétement déterminée par la succession de ses valeurs dans
ane région quelconque, sipetite qu’elle soit. Par conséquent, tandis
que la précédente limitation du domaine fonctionnel semblait trop
¢troite, celle-ci nous parait beaucoup trop large.

Le concept de fonction analytigue, au contraire, embrasse dans
son domaine toutes les fonctions les plus importantes de la Science,
quelles proviennent de la Théorie des nombres, de la Théorie des
¢quations différentielles ou des équations fonctionnelles algébriques,
ou méme encore de la Géométrie et de la Physique mathématique;
c'est donc avec raison que, dans le royaume des fonctions, I'on
donne le réle prépondérant aux fonctions analytiques.

XIX. — Les solutions des problémes réguliers du calcul des variations
sont-elles nécessairement analytiques?

Je regarde comme un des faits vraiment les plus remarquables
des éléments de la Théorie des fonctions analytiques qu'il y ait des
équations aux dérivées partielles dont les intégrales sont toutes
nécessairement des fonctions analyliques des variables indépen-
dantes, ou, pour abréger le langage, qu'il y ait des équations aux
dérivées partielles qui ne soient susceptibles que de solutions analy-
tiques. Les équations aux'dérivées partielles les plus connues de
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cette espece sont I’équation du potentiel

&’f Bf_
dzt

0

T
et certaines équations linéaires étudiées par M. Picard ('), enfin
I'équation différentielle

’f O

- ——y

dzr oyt 7

I’équation aux dérivées partielles des surfaces minima et beaucoup
d’autres. La plupart de ces équations aux dérivées partielles ont ce
signe distinctif commun : ce sont des équations différentielles de
Lagrange, de certains problémes du Calcul des variations, & savoir
de ces problémes de variation définis par la formule

[[F(p, q, 5; &, ¥)dedy = minimum

,— 9% =95
P= 9z lid‘y ’
ol pour tous les arguments considérés doit avoir lieu I'inégalité

d*F (]‘JE d*F \?
op? d;]‘; o B,Tdf}

>o0,

I étant une fonction analytique. Nous nommerons un tel probleme
du Caleul des variations, un probléme régulier. Ce sont les pro-
bléemes réguliers du Calcul des variations qui jouent un réle prin-
cipal en Géométrie, en Mécanique et en Physique mathématique;
on est donc conduit & se demander si toutes les solutions des pro-
blémes réguliers du Calcul des variations sont toujours nécessaire-
ment des fonctions analytiques, c’est-a-dire si loute équation aux
dérivées partielles de Lagrange d'un probléeme: régulier du
Calcul des variations a comme propriété de n'admettre que des
intégrales analytigues, alors méme que la fonction, comme dans
le probléme de Dirichlet, prendrait sur le contour des valeurs quel-
conques continues, mais non analytiques.

(1) Journal de I'Ecole Polytechnique; 18go. .
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Je remarquerai encore qu'il existe, par exemple, des surfaces a
courbure gaussienne constanté négative qui sont représentées par
des fonctions continues et susceptibles de différentiation successive,
mais non analytiques, tandis qu'il est au contraire probable que
toute surface & courbure gaussienne constante positive est nécessai-
rement une surface analytique (*). On sait bien, d’ailleurs, que les
surfaces a courbure constante positive sont intimement lides & ce
probléme régulier du Caleul des variations : faire passer par une
courbe gauche fermée une surface dont'aire soit un minimum, cette
surface étant assujettie 4 la condition de renfermer avec une surface
fixe un volume donné, la surface fixe elle-méme devant passer par
la courbe gauche donnée.

XX. — Probléme de Dirichlet dans le cas général.

Un important probléme, intimement lié¢ au précédent, est celui
de I'existence des solutions® d’équations aux dérivées particlles de-
vant prendre des valeurs assignées le long de contours donnés. Les
méthodes si perspicaces de MM. H.-A. Schwarz, C. Neumann et
Poincaré ont résolu ce probléeme, dans le cas de 'équation de
Laplace, quant aux points les plus essentiels, mais en général ces
méthodes ne semblent pas susceptibles d’étre étendues au cas ou
sont encore assignées, le long du contour, les valeurs des dérivées ow
encore des relations entre ces derniéres et la fonction, ou bien lors-
qu'ilne s’agit plus de surfaces potentielles, mais, par exemple, de sur-
face minima ou de surfaces 4 courbure gaussienne constante positi;ve,
assujetties a passer par une courbe gauche assignée ou a toucher
une surface annulaire le ldng d’une courbe fermée. Je suis persuadé
que I'on parviendrait a effectuer ces démonstrations en se basant
sur une idée meére générale a laquelle se rattache le principe de

(1) Comparer le Mémoire subséquent de M. Hilbert sur ce sujel: Ueber fldchen
von constanter Gausschen Krummung ( Transactions of the American mathe-
matical Society, Vol. 1, n° 1, p. 87-gg; January 1901). (LL.)
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Dirichlet et qui nous permettrait d’aborder de plus prés cetle
question : Chaque probléme régulier du Calcul des variations ne
posséde-t-tl pas une solution, pourvu que certaines hypothéses
sotent véerifices, relativement aux conditions limitatives données,
relativement, par exemple, 4 la continuité et a la possibilité de
différentier, plus ou moins de fois successives, les fonctions dont il
s’agit, el pourvu nécessairement aussi que la notion de solution
soit convenablement généralisée (*)? '

XXI. — Démonstration de 'existence d’équations différentielles linéaires
ayant un groupe de monodromie assigné.

Dans la Théorie des équations différentielles linéaires a une va-
riable indépendante z, j'atlirerai l'altention sur un trés important
probléme, que Riemann d’ailleurs avait déja en vue, et qui consisfe
a démontrer qu'il existe toujours une équation différentielle li-
néairede la classe de M. Fuchs ayant des points critiques donnés
et un groupe de monodromie donné. €e probleme exige donc que
I'on trouve » fonctions de la variable z qui se comportent partout
réguliecrement dans le plan de la variable complexe z, sauf en cer-
tains-points critiques donnés : en ces points I'ordre d’infinitude des
fonctions doit étre fini, et lorsque la variable = décrit un contour au-
tour de ces points, les fonctions doivent éprouver les substitutions
linéaires données. L’existence de pareilles équations différentielles
est renduc trés probable an moyen d'un dénombrement de con-
stantes, mais jusqu’ici I'on n’est parvenu & une démonstration rigou-
reuse que dans le cas particulier ot les racines des équations fonda-
mentales des substitutions données ont I'unité pour valeur absolue.
M. L. Schlesinger (*) a établi cette démonstration en s"appuyant sur
la théorie des fonctions zeta-fuchsiennes de M. Poincaré. Il est clair

(1) Comparer ma Note sur le Principe de Dirichlet (Jahresbericht der D.
M. V., t. VIII, p. 184; tgoo, traduite dans les Nouvelles dnnales de Mathéma-
tigues, 3° série, t. XIX; 1900).

(2) Handbuch der Theorie der linearen Differentialgleichungen, Vol. 1,
Partie IT, ne 366. ) .
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que la théorie des équations différentielles linéaires gagnerait essen-
tiellement en unité si 'on parvenait & résoudre d’une maniére géné-
rale le probléme que je viens d'indiquer.

XXII. — Relations analytiques exprimées d'une maniére uniforme au
moyen de fonctions automorphes.

On sait que M. Poincaré a démontré le premier qu'une relation
algébrigue quelconque entre deux variables peut toujours étre ex-
primée d'une maniére uniforme au moyen de fonctions automorphes
d'une variable ; autrement dit, étant donnée une équation algebrique
entre deux variables, on peut toujours trouver pour ces derniéres
des fonctions uniformes automorphes d’une variable qui, portées
dans I'équation algébrique, la vérifient identiquement. L’extension
de ce théoréeme fondamental & des relations quelconques non alge-
briques, mais analytiques, entre deux variables, a été faite avec
grand succés par M. Poincaré ('), et cela par une voie tout autre
que celle qui I'avait conduit au but dans la question antérieure du
cas algébrique. .

Mais la démonstration par laquelle M. Poincaré fait voir qu’il est
possible d’exprimer d’'une maniére uniforme une relation analy-
tique quelconque entre deux variables ne nous montre pas encore
si I'on peut choisir les fonctions uniformes de la nouvelle variable,
de telle sorte que, tandis que cette variable parcourt le domaine
régulier de ces fonctions, on obtienne une représentation effective
de I'ensemble de tous les points réguliers de la fonction analytique
donnée.

Au contraire, il semblerait, d’aprés les recherches de M. Poin-
caré, que, abstraction faite des points de ramification, on doit encore,
en général, mettre de coté une infinité de points isolés de la fonc-
tion analytique donnée, que I'on obtient seulement quand la nou-
velle variable tend vers certains points limites des fonctions. Un
claircissement el une solution de ces difficullés me paraissent

(') Bulletin de la Soc. Math. de France, t. XI; 1883.
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extrémement désirables en raison de | ’imporlance fondamentale
de la question traitée par M. Poincaré.

A la suite de ce probléme prend place la méme question dans le
cas de relations algébriques ou analytiques entre trois ou un plus
grand nombre de variables, probléme que 'on sait résoudre en un
grand nombre de cas; les nouvelles recherches de M. Picard sur les
fonctions algébriques de deux variables doivent étre regardées ici
comme des travaux préliminaires de la plus grande importance et
du plus grand secours.

XXIII. — Extension des méthodes du Calcul des variations.

-Jusqu’ici je n’ai cité, autant que possible, que des problémes déter-
minés et particuliers, car je pense que ce sont précisément les pro-
blémes déterminés et particuliers qui nous attirent le plus et qui ont
I'influence la plus immédiate sur I'ensemble de la Science. Je vais
néanmoins terminer cette Conférence par un probléme général,
probléme ayant trait a une discipline que j’ai déja plusieurs fois
mentionnée; cette discipline, malgré les progrés considérables que
lui a fait faire Weierstrass, il n'y a pas bien longtemps, n’est cepen-
dant pas encore, selon moi, appréciée par les mathématiciens a sa
juste valeur. Clest du Calcul des variations (') que je parle. Le
peu de progrés de cette discipline tient peut-étre i ce que 'on man-
quait jusqu'ici de livres écrits au point de vue moderne sur ce sujet.
On en doit d’autant plus de remerciments & M. A. Kneser, dont

(1) Comme Traités je citerai : Moieno-Linperor, Lecons sur le Caleul des
variations; Paris, 1861, et A. KNesEn, Lehrbuch der Variationsrechnung;
Braunschweig, 1goo. )

Pour donner une idée du contenu de ce Livre, nous ferons simplement observer
que M. Kneser, dans les problémes les plus simples, de méme que dans le cas ol
une limite d’intégration est variable, établit des conditions suffisantes relatives &la
valeur extréme et emploie I'enveloppe d’une famille de courbes qui vérifient les
équations différentielles du probléme, pour démontrer la nécessité de la condition
de Jacobi relative 4 la valeur extréme. Attirons encore l'attention sur ce point que
M. Kneser, dans son Livre, applique aussi la théorie de Weierstrass 4 la question
de la valeur extréme de quantités définies par des équations différentielles.
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nous venons de citer le Livre en note. Ce traité de Calcul des va-
riations est rédigé d’aprés les points de vue les plus nouveaux, et
’Auteury a toujours eu égard & la parfaite rigueur exigée aujour-
d'hui. :

Le Calcul des variations, au sens le plucs large, est l'étude de la
variation des fonctions et nous apparait, & ce point de vue, comme
une continuation nécessaire du Calcul différentiel et intégral. A ce
point de vue, les recherches de M. Poincaré sur le Probléme des
trois corps, par exemple, forment un Chapitre du Calcul des varia-
tions, en ce sens que M. Poincaré, au moyen du principe des varia-
tions, déduit d’orbites connues, ayant certaines propriétés, de nou-
velles orbiles jouissant de propriétés semblables.

Aux remarques générales, faites au début de cette Conférence
surle Calcul des variations, je vais ajouter ici une rapide exposi-
tion de ce qui faisait 'objet de ces remarques.

Le probleme le plus simple du Calcul des variations propre-
ment dit consiste, comme on sait, & trouver une fonction y de la va-
riable z, telle que l'intégrale dLﬁﬂlG‘

b
) )

prenne la plus petite valeur de toutes celles que prend ladite inté-
grale quand on y remplace y par d’autres fonctions de & en conser-

vant les mémes valeurs initiales et finales données dans l'intégrale
définie. On sait que, dans l'interprétation habituelle, I'évanouisse-
ment de la variation premiére -

8] =o

fournit, pour obtenir la fonction y cherchée, I'équation différen-
tielle bien connue du second ordre

(1) —{f;‘ —F,=o (F — ﬂ; F,= ()F) .

Maintenant, pour approfondir les conditions nécessaires el
suffisantes a 'existence du minimum cherché, considérons 'inté-
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grale
N b
D LT
[

. dF(p,yi)
I_]‘ =F(p, y;=), F,= uﬁi[—)-—
et cherchons comment nous devons choisir p comme fonclion
de z, y, afin que la valeur de I* soit indépendante du chemin
d’intégration, c'est-a-dire du choiz de la fonction y de la va-

riable x. 1’intégrale J* a la forme
b
J* *f (Ayz—B)dx,

ot A et B ne renferment pas y,, et 'évanouissement de la variation
premiére
aj*=o,
interprétée ainsit que 1’exige la nouvelle maniére de poser la ques-
tion, fournit I’équation '
dA JB
S —o
().’I/' dl}, H
c’est-a-dire que, pour la fonction p des deux variables z, y, nous
avons I'équation aux dérivées partielles du premier ordre
N aF d(plF,—F
(" i AV el ) S
dx dy
L’équation différentielle ordinaire du second ordre (1) et I'équa-
tion aux dérivées partielles (17) que nous venens de trouver ont entre
elles un rapport intime. Clest ce que nous fait voir de suite claire-
ment la transformation simple

b
s J* ;f [Fy8y +F,ép+ (8y,—Sp)F, + (y.—p)iF,]dz

.

—_j [Fy 8y +4- 8y Fp+ (ye—p) 8F,]dz

1] ~

—aJ +f (¥« —p)EF,d.
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De cette formule nous concluons les faits suivants : Sinous con-

sidérons une famille quelconque simple de courbes intégrales de

Iéquation différentielle ordinaire du second ordre (1) et si nous for-
mons alors une équation différentielle ordinaire du premier ordre

(2) Ye=p(Z,¥)

qui admette également comme solutions ces courbes intégrales, la
fonction p(, y) sera toujours aussi une intégrale de I'équation aux
dérivées partielles du premier ordre (1*); et réciproquement, si l'on
désigne par p(x,y) une solution. quelconque de l'équation aux
dérivées partielles du premier ordre (1), toutes les intégrales non
singuliéres deI’équation différentielle ordinaire du premier ordre (2)
seront également intégrales de T'équation différentielle du second
ordre (1). . ‘

En abrégeant le langage, on peut dire: Si y,=p(x, y) est
une équation intégrale du premier ordre de I'équation différentielle
du second ordre (1), p(x, y) représentera une intégrale de I'équa-
tion aux dérivées partielles (1*) et réciproquement; les courbes
intégrales de 'équation différentielle ordinaire du second ordre (1)
sont, par conséquent, ausst les caractéristiques de 'équation aux
dérivées partielles du premier ordre (1*). _

Dans le cas précédent nous trouvons aussile méme résultat au
moyen d'un calcul facile; ce calcul nous fournit respectivement les
équations en question (1) et (17) sous la forme

(I) y-z'-Tl?}'.z'J"z -+ y'rFfo.T+ FJ’.zZ' - ]'?J" — 0y

(1) (pe—+ppy)Fpp+ pFpy+Fpp—Fy—o,

ou les indices inférieurs, d’aprés une netation facile & interpréter,
désignent les dérivées partielles prises par rapport a z, ¥, p, ¥,.
Ces formules permettent de reconnaitre aisément I'exactitude de la
relation dont il était question.

L’étroite relation que nous venons d’exposer et de démontrer
entre I'équation différentielle ordinaire du second ordre (1) et
Uéquation aux dérivées partielles du premier ordre (1*) est, ce me
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semble, d’une importance capitale au point de vue des principes
fondamentaux du Calcul des variations. En eflet, la valeur de 1'in-
tégrale J* étant indépendante du chemin d'intégration, on aura

] b
(3) f[F{pH(JI -p)l?,)<p>]cf-x-=f F(y,)dz,

t a

ot dans le premier membre I'intégrale est prige le long d'un chemin
¥ quelconque, tandis que I'on supposera l'intégrale du second

membre prise le long d’'une courbe intégrale y de équation diffé-
rentielle
yo=p(x, 7).

A Taide de I'équation (3) nous parvenons a la formule de Weier-

strass
’ ' b b b
f F(y.)dx —f F‘(y_.,)dx ff E(yaz p)dz,

et

{4)

ou E désigne 'expression de Weierstrass
E(e P)=F(7a) = F(p) — (ya—p)F,(p);

dépendant des quatre arguments y,, p, ¥, . Comme, d’aprés cela,
tout revient uniquement & border la courbe intégrale  en question,
dans le plan des z, y, d'une mani¢re continue et univoque, avec
des valeurs d’une fonction intégrale correspondante p(z, y), les
développements indiqués conduisent évidemment, et cela sans in-
troduire la considération de la variation seconde et en effectuant
simplement 'opération polaire (*) sur I'équation différentielle (1),
a I'établissement de la condition de Jacobi, et fournissent la réponse
i la question de savoir jusqu’a quel point la condition de Jacobi,
jointe a la condition E > o de Weierstrass, est nécessaire et suffi-
sante pour qu'il existe un minimum.

(1) Pour ia définition de cette opération, voir le comptre rendu de M. Meyer Sur
la Théorie des invariants (Jahresbericht der D. M. V., t. I, p. 199), ou encore le
méme, Traduction de M. Fehr, dans le Bulletin de M. Darboux, t. XIX, p. 24;

1895. : (L. L.)

Droits reservés au Cnam et a ses partenaires



D. HILBERT. — PROBLEMES MATH]."?)IXTIQUES. Ini

Les développements indiqués peuvent, sans autre calcul, s’étendre

au cas de deux ounun plus grand nombre de fonctions cherchées, ainsi

qu’a u cas d'une intégrale double ou multiple. Ainsi, dans le cas
d'une intégrale double

. dz ds
J— / F(zg, Syy By Ty ¥) dw (:x: ();, Sy = Q},):

¢tendue & une région donnée w, 'évanouissement

aJ ey ¢ ]
de la variation premiére, interprétée dans le sens habituel, fournit,
pour la fonction z cherchée de «, y, I'équation différentielle du
second ordre bien connue

P ) ) » o OF o OF o JF

D’autre part, considérons I'intégrale

J* -:[l__l_" A+ (fx—p) ¥+ (5,— q)Fyldw

) , _ oF(p,q,z,2.v) dF(p,q,s5, 2, ¥y
F:J"(Ps ([!:1-7451’/)’ ]4,'::’ (p iﬂ; 3 Ff,f_'-—_- i ! :)r/ _—)J'

et demandons-nous comment nous devons prendre p et g comme
fonctions de x, v, 5, de maniére que la valeur de J* soit indé-
pendante du choix de la surface passant par la courbe gauche
fermée donnée, ¢’est-g-dire indépendante du choiz: de la Sfonc-
tion z des variables x, y.

L’intégrale J* a la forme
J* ;_—:J(Azx+ Bz, — G)duw,

et évanouissement de la variation premiére

sJ* — o,
interprétée d’aprés le sens exigé par la nouvelle maniére de poser
la question, fournit I'équation

A OB 4G
s o 4 =— =20}

dx = dy 05
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c'est-a-dire que nous obtenons pour les fonctions p ct g des trois
variables z, v, 5 I'équation différentielle du premier ordre

OF, 0y  d(pFp+gF—F)

(I") dx T dy ds

A cette équation si nous adjoignons encore l'équation aux déri-
vees partielles
(I Pyt 4Pz =gzt Pz
tirée des équations

sp= plx, ¥, 5), Sy=q(x, ¥, 5),

oun voit que I'équation aux dérivées partielles du second ordre (I),
relative & la fonction z des deux variables , ¥, et le systéme simul-
tané (1") des deux équations aux dérivées partielles du premier
ordre, relatif aux deux fonctions p, ¢ des trois variables z, y, z,
sont dans une relation tout a fait analogue a celle qui a lieu dans le
cas précédent de Pintégrale simple entre les équations différen-
tielles (1) et (1),

L’intégrale J® ayant une valeur indépendante du choix de la sur-

face d'intégration, on a
f[F(p, ) — (2= ), (P, q) + (53— )Fy (p, )] do = fr(;:, 3y)do,
ou l'intégrale du second membre doit étre étendue & une surface
intégrale z des équations aux dérivées partielles

sa=p(z.y,5),  z=q(z,y.3);

au moyen de la précédente formule nous obtenons immeédiatement

la suivante

(V) fF(sx,zy)dm ~f1“<?x, 5 )dw :fr< o Py q)do,
ou

E(z2) 55y Ps §) =F (82, 5y) —F(p, §) — (52— p)Fp(p, q) — (5y—q)Fq(p; q)s
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qui joue relativement & la variation de l'intégrale double un réle
tout & fait pareil & celui que joue la formule (4) précédemment
établie dans le cas de I'intégrale simple; nous avons-encore par cette
formule (I'V) répondu & la question de savoir jusqu’a quel point la
condition de Jacobi, jointe & la condition E > o de Weierstrass, est
nécessaire et suffisante pour qu'il existe un minimum.

Ces développements ont beaucoup de rapport avec les modifica-
tions que M. Kneser ('), en partant d’ailleurs d’autres points de’
vue, a apportées a la théorie de Weierstrass. En effet, tandis que
Weierstrass, pour obtenir les conditions suffisantes relatives a la
valeur extréme, fait usage des courbes intégrales de 'équation (1)
passant par un point fixe, M. Kneser emploie une famille quel-
conque. simple de ces courbes, et pour chaque pareille famille il
construit une solution caractéristique de ’équation atix dérivées
partielles que 'on doit regarder comme la généralisation de 'équa-
tion de Jacobi et Hamilton.

Les problémes dont j’a1 parlé ne sont que des essais; ils suffisent
néanmoins a nous faire voir combien riche, multiple et étendue est
la Science actuelle, et I'on est conduit ainsi 4 se demander si la
Science mathématique ne finira pas, comme c’est depuis longtemps
arrivé pour d’autres Sciences, par se partager en subdivisions sépa-
rées dont les représentants se comprendront a peine les uns les
autres et dont la connexion deviendra toujours moindre. Je ne le
pense ni ne l'espére; selon moi, la Science muthématique est un
entier indivisible, un organisme dont la force vitale a pour condition
Uindissolubilité de ses parties. En effet, quelle que soit la diversité
des matiéres de notre Science dans ses détails, nous n’en sommes
pas moins frappés de I'équivalence des procédés logiques, de la
parenté des idées dans I'ensemble de la Science ainsi que des nom-
breuses analogies dans ses différents domaines. Nous remarquons

(1) Comparer le Traité déja cité, § 14, 13, 19, 20.
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encore ceci: plus une théorie mathématique se développe, plus son
exposition gagne en harmonie et en unité, et plus on découvre de
relations entre cette théorie et les branches de la Science qui lui
dtajent étrangeres jusque-la. Clest ainsi qu’avec l'extension des
Mathématiques leur caractére d’unité ne se perd pas, mais devient,
au contraire, de plus en plus évident.

Mais, nous demandons-nous encore, avec 'extension dela Science
'mathématique ne deviendra-t-il pas enfin impossible au chercheur
individuel d’embrasser toutes les branches de la Science? Comme
réponse & cetle question, jec me contenterai de remarquer combien
il est caractéristique de notre Science que chaque progres effectif
marche la main dans la main avec la découverte de moyens auxi-
liaires plus rigourcux et de méthodes plus simples qui, en méme
temps qu’ils facilitent la compréhension des théories antérieures el
qu’ils ameénent la disparition d’anciens développements inutiles, per-
mettent de s’orienter dans toutes les branches des Mathematiques
bien plus aisément que dans toute autre Science.

Le caractére d’unité de la Mathématique est essence méme de
cetle Science. En effet, les Mathématiques sont les fondements de
toutes les connaissances naturelles exactes. Pour qu’elles remplis-
sent complétement ce but élevé, puissent-elles étre dans le nouveau
siecle cultivées par des maitres géniaux el par nombre de jeunes

gens brilant d’un noble zéle!

———e e
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DU ROLE

DE LINTUITION ET DE LA LOGIQUE

EN MATHEMATIQUES,

Par M. Hrxet POINCARE (Paris).

[l est impossible d’étudier les OEuvres des grands mathématiciens,
et méme celles des petits, sans remarquer ¢t sans distinguer deux
tendances opposées, ou plutdt deux sortes d’esprits entiérement
différents. Les uns sont avant tout préoccupés de la logique; & lire
leurs Ouvrages, on est tenté de croire qu’ils n’ont avancé que pas a
pas, avec la méthode d'un Vauban qui pousse ses travaux d’approche
contre une place forte, sans rien abandonner au hasard. Les autres
se laissent guider par I'intuition et font du premier coup des con-
quétes rapides, mais quelquefois précaires, ainsi que de hardis cava-
liers d’avant-garde. '

Ce n’est pas la matiére qu'ils traitent qui leur impose 1'une ou
Pautre méthode. Si 'on dit souvent des premiers qu’ils sont des
analystes et sil'on appelle les autres géométres, cela n’empéche pas
que les uns restent analystes, méme quand ils font de la Géométrie;
tandis que les autres sont encore des géometres, méme s'ils s'occu-
pent d’Analyse pure. C'est la nature méme de leur esprit qui les
fait logiciens ou intuitifs, et ils ne peuvent la dépouiller quand ils
abordent un sujet nouveau.
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Ce n’est pas non plus I'éducation qui a développé en eux I'une des
deux tendances et qui a étouffé 'autre. On nait mathématicien, on
ne le devient pas, et il semble aussi qu’on nait géomeétre, ou qu’on
nait analyste.

Je voudrais citer des exemples et certes ilsne manqﬁcnt pas; mais
pour accentuer le contraste, je voudrais commencer par un exemple
extréme; pardon, si je suis obligé de le chercher auprés de deux ma-
thématiciens vivants.

M. Méray veut démontrer qu'une équation binome a toujours
une racine. S’il est une vérité que nous croyons connaitre par intui-
tion directe, c’est bien celle-1&. Qui doutera qu'un angle peut tou-
jours étre partagé en un nombre quelconque de parties égales?
M. Méray n’en juge pas ainsi; a4 ses yeux, cetle proposition n’esl
nullement évidente et pour la démontrer, il lui faut plusieurs pages.

Voyez au contraire M. Klein : il étudie une des questions les plus
abstraites de la théorie des fonctions; il s’agit de savoir si sur unc
surface de Riemann donnée, il existe toujours une fonction admet-
tant des singularités données : par exemple deux points singuliers
logarithmiques avec des résidus égaux et de signe contraire. Que
fait le célébre géomeétre allemand? 11 remplace sa surface de Rie-
mann par une surface métallique dont la conductibilité électrique
varie suivant certaines lois. Il met les deux points logarithmiques en
communication avec les deux poles d’une pile. Il faudra bien que le
courant passe, et la facon dont ce courant sera distribué sur la sur-
face définira une fonction dont les singularités seront précisément
celles qui sont prévues par I'énoncé.

Sans doute, M. Klein sait bien qu’il n’a donné la qu’'un apercu :
toujours est-il qu’il n’a pas hésité a le publier; et il croyait proba-
blement y trouver sinon une démonstration rigoureuse, du moins je
ne sais quelle certitude morale. Un logicien aurait rejeté avec hor-
reur une semblable conception, ou plutét il n’aurait pas eu a la
rejeter, car dans son esprit elle n’aurait jamais pu naitre.

. Permettez-moi encore de comparer deux hommes, dont I'un
vient tout récemment de nous étre enlevé par la mort, dont 'autre
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est encore notre doyen vénéré, mais qui tous deux sont depuis
longtemps entrés dans Pimmortalité. Je veux parler de M. Bertrand
et de M. Hermite. Ils ont été éléves de la méme école et en méme
temps; ils ont subi la méme éducation, les mémes influénces; et
pourtant quelle divergence; ce n’est pas seulement dans leurs écrits
qu'on la voit éclater; c’est dans leur enseignement, dans leur facon
de parler, dans leur aspect méme. Dans la mémoire de tous leurs
eléves, ces deux physionomies se sont gravées en traits ineffacables;
pour la plupart d’entre nous qui avons eu le honheur de suivre leurs
lecons, ce souvenir est encore tout récent; il nous est aisé de
Pévoquer.

Tout en parlant, M. Bertrand est toujours en action; tantét il
semble aux prises avec quelque ennemi extérieur, tantdt il dessine
d’un geste de la main les figures qu'il étudie. Evidemment, il voit
et il cherche a peindre, c’est pour cela qu’il appelle le geste 4 son
secours. Pour M. Hermite, c’est tout le contraire; ses yeux sem-
blent fuir le contact du monde; ce n’est pas au dehors, c’est au
dedans qu'il cherche la vision de la vérité.

Parmi les géometres allemands de ce siécle, deux noms surtout
sont illustres; ce sont ceux des deux savants quiont fondé la théorie
générale des fonctions, Weierstrass et Riemann. Weierstrass ra-
meéne tout a la considération des séries et a leurs transformations
analytiques; pour mieux dire, il réduit I’Analyse a une sorte de
prolongement de I’Arithmétique; on peut parcourir tous ses Livres
sans y trouver une figure. Riemann, au contraire, appelle tout de
suite la Géomeétrie a son secours, chacune de ses conceptions est
une image que nul ne peut oublier dés qu'il en a compris le sens.-

Plus récemment, Lie était un intuitif; on aurait pu hésiter en
lisant ses Ouvrages, on n’hésitait plus aprés avoir causé avec lui;
on voyait tout de suite qu’il pensait en images. M™¢ Kowalevski
¢tait une logicienne. '

Chez nos étudiants, nous remarquons les mémes différences; les
uns aiment mieux traiter leurs problémes « par I’Analyse », les
autres « par la Géométrie ». Les premiers sont incapables de « voir
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dans 'espacc », les autres se lasseraient promptement des longs
caleuls et s’y embrouilleraient.

Les deux sortes d’esprits sont également nécessaires aux progrés
de la Science; les logiciens, comme les intuitifs, ont fait de grandes
choses que les autres n’auraient pas pu faire. Qui oserait dire s’il
aimerait mieux que Weierstrass n’elit jamais écrit, ou s'il préfé-
rerait qu'il n’y efit pas eu de Riemann? I.’Analyse et la Synthése
ont donc toutes deux leur réle légitime. Mais 1l est intéressant
d’étudier de plus prés quelle est dans 'histoire de la Science la part
qui revient a l'une et a Pautre.

II.

Chose curieuse ! Si nous relisons les OEuvres des anciens, nous
serons tentés de les classer tous parmi les intuitifs. Et pourtant la
nature est toujours la méme, il est peu probable qu’elle ait com-
mencé seulement dans ce siecle a créer des esprits amis de la
logique.

Si nous pouvions nous replacer dans le courant des idées qui
régnaient de leur temps, nous reconnaitrions que beaucoup de ces
vieux géomeétres étaient analysies par leurs tendances. Euclide, par
exemple, a ¢élevé un échafaudage savant ot ses contemporains ne
pouvaient trouver de défaut. Dans cette vaste construction, dont
chaque piéce, pourtant, est due a 'intuition, nous pouvons encore
aujourd’hui sans trop d’efforts reconnaitre I'ceuvre d'un logicien.

Ce ne sont pas les esprits qui ont changé, ce sont les idées; les
esprits intuitifs sont restés les mémes; mais leurs lecteurs ont exigé
d’eux plus de concessions.

Quelle est la raison de cette évolution?

Il v’est pas difficile de le découvrir. L'intuition ne peut nous
donner la rigueur, ni méme la certitude, on s’en est apercu de plus
en plus.

Citons quelques exemples. Nous savons qu’il existe des fonctions
continues dépourvues de dérivées. Rien de plus choquant pour I'in-
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tuition que cetle proposition qui nous est imposée par la logique.
Nos péres n’auraient pas manqué de dire : « 1l est évident que toute
fonction continue a une deérivée, puisque toute courbe a une tan-
gente. »

Comment 'intuition peut-elle nous tromper a ce point? Clest que
quand nous cherchons 4 imaginer une courbe, nous ne pouvons pas
nous la représenter sans épaisseur ; de méme, quand nous nous re-
présentons une droite, nous la voyons sous la forme d'une bande
rectiligne d'une certaine largeur. Nous savons bien que ces-lignes
n’ont-p&s d’épaisseur; nous nous cfforcons de les imaginer de plus
en plus minces et de nous rapprocher ainsi de la limite; nous y par-
venons dans une certaine mesure, mais nous n’atteindrons jamais
cette limite.

Et alors il est clair que nous pourrons toujours nous représenter
ces deux rubans étroits, I'un rectiligne, l'autre curviligne; dans une

position telle qu’ils empiétent légérement 'un sur 'autre sans sc
traverser ( fig. 1).

Nous serons ainsi amenés, 4 moins d’étre avertis par une analyse
rigoureuse, 4 conclure qu'une courbe a toujours une tangente.

Je prendrai comme second exemple le principe de Dirichlet; on
s'est contenté d’abord d’une démonstration sommaire. Une certaine
intégrale dépendant d’une fonction arbitraire ne peut jamais s’an-
nuler. On en conclut qu’elle doit avoir un minimum. Le défaut de
ce raisonnement nous apparait immédiatement parce que nous em-
ployons le terme abstrait de fonction et que nous sommes familia-
risés avec toutes les singularités que peuvent présenter les fonctions
quand on entend ce mot dans le sens le plus général.
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Mais il n’en serait pas de méme si I'on s'était servi d'images con-
crétes, si 'on avait par exemple considéré cette fonction comme un
potentiel électrique; on aurait pu croire légitime d’affirmer que
I'équilibre électrostatique peut étre atteint. Peut-étre cependant unc
comparaison physique aurait éveillé quelques vagues défiances. Mais
si 'on avait pris soin de traduire le raisonnement dans le langage
de la Géométrie, intermédiaire entre celui de I’Analyse et celul de
la Physique, ces défiances ne se seraient sans doute pas produites,
et peul-élre pourrait-on ainsi, méme aujourd’hui, tromper encore
bien des lecteurs non prévenus.

L’mtuition ne nous donne donc pas la certitude. Voila pourquoi
I'évolution devait se faire; voyons maintenant comment elle s’esl
faite.

On n’a pas tardé & s'apercevoir que la rigueur ne pourrait pas
s'introduire dans les raisonnements, si on ne la faisait entrer d’abord
dans les définitions.

Longtemps les objets dont s’occupent les mathématiciens étaient
pour la plupart mal définis; on croyait les connaitre parce qu'on se
les représentait avec les sens ou 'imagination; mais on n’en avait
qu'une image grossiére et non une idée précise sur laquelle le rai-
sonnement pit avoir prise. _

(Zest 1a d’abord que les logiciens ont dit porter leurs efforts.

Ainsi pour le nombre incommensurable.

Lidée vague de continuité, que nous devions a l'intuition, s’est
résolue en un systéme compliqué d’inégalités portant sur des nombres
entiers. ‘

Par la les difficultés provenant-des passages a la limite, ou de la
considération des infiniment petits, se sont trouvées définitivement
¢claircies.

Il ne reste plus aujourd’hui en Analyse que des nombres entiers
ou des systémes finis ou infinis de nombres entiers, reliés entre eux
par un réseau de relations d’égalité ou d’inégalité.

Les Mathématiques, comme on I'a dit, se sont arithmétisées.
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I11.

Une premiére question se pose. Cette ¢volution est-elle terminée?

Avons-nous atleint enfin la rigueur absolue? A chaque stade de
I'évolution nos péres croyaient aussi 'avoir atteinte. S’ils se trom-
paient, ne nous trompons-nous pas comme eux?

Nous croyons dans nos raisonnements ne plus faire appel a I'in-
tuition; les philosophes nous diront que c’est la une illusion. La
logique toute pure ne nous ménerait jamais qu’a des tautologies; elle
ne pourrait créer du nouveau; .ce n’est pas d’elle toute seule qu’au-
cune science peut sortir. \ .

Ces philosophes ont raison dans un sens; pour faire I’Arithmé-~
tique, comme pour faire la Géométrie, ou pour faire une science
quelconque, il faut autre chose que la logique pure. Cette autre
chose, nous n’avons pour la désigner d’autre mot que celui d’intui-
tion. Mais combien d'idées différentes se cachent sous ce méme
mot? )

Comparons ces quatre axiomes :

1° Deux quantités c¢gales a une troisiéme sont égales entre elles.

2° 81 un théoréme est vrai du nombre 1 et si'on démontre qu’il
est vrai de n + 1, pourvu qu'il le soit de n, il sera vrai de tous les
nombres entiers.

3o Sisur une droite le point C est entre A et B et le point D entre
Aet G, le point sera entre A et B..

4° Par un point on ne peut mener qu’une paralléle & une droite.

Tous quatre doivent étre attribués a l'intuition, et cependant le
premier est 1'énoncé d’une des régles de la logique formelle; le
second est un véritable jugement synthétique a priori, c’est le fon-
dement de I'induction mathématique rigoureuse; le troisiéme est un
appel 4 I'imagination ; le quatriéme est une définition déguisée.

L’intuition n’est pas forcément fondée sur le témoignage des sens;
les sens deviendraient bientét impuissants; nous. ne pouvons par
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‘exemple nous représenter le chilogone et cependant nous raisonnons
souvent par intuition sur les polygones en général, ui comprennent
le chilogone comme cas particulier.

Vous savez ce que Poncelet entendait par le principe de conti-
nuité. Poncelet élait 'un des esprils les plus intuitifs de ce siecle; il
I'était avec passion, presque avec ostentation; il 1‘eg;.irdaitle principe
de continuité comme une de ses conceptions les plus hardies, el
cependant ce principe ne reposait pas sur le témoignage des sens;
c’étail plutot contredire ce témoignage que d’assimiler I'hyperbole
a Pellipse. Il n'y avait la qu’une sorte de généralisation hative et
instinetive que je ne veux d’ailleurs pas défendre.

Nous avons donc plusieurs sortes d’intuitions; d’abord, Vappel
aux sens et a I'imagination; ensuite, la généralisation par induction,
calquée, pour ainsi dire, sur les procédés des sciences expérimen-
tales; nous avons enfin Iintuition du nombre pur, celle d’oli est
sorti le second des axiomes que j’énoncais tout & I’heure et qui peut
engendrer le véritable raisonnement mathématique. '

Les deux premiéres ne peuvent nous donner la cerlitude, je l'al
montré plus haut par des exemples; mais qui doutera sérieusement
de la troisiéme, qui doutera de I’Arithmétique?

Or, dans I"Analyse d’aujourd’hui, quand on veut se donner la
peine d’étre rigoureux, il n’y a plus que des syllogismes ou des
appels & cette intuition du nombre pur, la seule qui ne puisse nous
tromper. On peut dire qu’aujourd’hui la rigueur absolue est atteinte.

v.

Les philosophes font encore une autre objection : « Ce que vous
gagnez en rigueur, disent-ils, vous le perdez en objectivité. Vous
ne pouvez vous élever vers votre idéal logique qu’en coupant les
liens qui vous rattachent & la réalité. Votre Scicnee est impeccable,
mais elle ne peut le rester qu’en s’enfermant dans une tour d’ivoire
et en s'interdisant tout rapport avec le monde extérieur. Il faudra
bien qu’elle en sorte dés qu’elle voudra tenter la moindre appli~
cation. » ‘
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Je veux démeontrer, par exemple, que telle propriété appartient a
tel objet dont la notion me semble d’abord indéfinissable parce
qu'elle est intuitive. J'échoue d’abord ou je dois me contenter de
démonstrations par a peu pres; je me décide enfin & donner & mon
objet une définition précise, ce qui me permet d’établir cette pro-
priété d'une maniére irréprochable.

« Et apres, disent les philosophes, il reste encore & montrer que
lobjet qui répond a cette définition est bien le méme que I'intuition
vous availt fail connaitre ; ou bien encore que tel objet réel et concret
dont vous croyiez reconnaitre immeédiatement la conformité avec
votre idée intuitive, répond bien a votre définition nouvelle. C'esl
alors seulement que vous pourrez affirmer qu'il jouit de la propriété
en question. Yous n’avez fait que déplacer la difficulté. »

Cela n’est pas exact; on n’a pas déplacé la difficulté, on l'a
divisée. La proposition qu'il s’agissait d’établir se composait en
réalité de deux vérités différentes, mais que 1’on n’avait pas distin-
guées tout d’abord. La premi'eré était une vérité mathématique et
elle est maintenant rigoureusement établie. La seconde était unc
vérité expérimentale. L’expérience seule peut nous apprendre que
tel objet réel et concret répond ou ne répond pas a telle définition
abstraite. Cette seconde vérité n’est pas démontrée mathématique-
ment, mais elle ne peut pas 'étre, pas plus que ne peuvent I'étre les
lois empiriques des Sciences physiques et naturelles. Il serait dérai-
sonnable de demander davantage.

Eh bien, n’est-ce pas un grand progrés d’avoir distingué ce qu’on
avait longtemps confondu & tort?

ist-ce a dire qu'il n’y ait rien & retenir de celte objection des
philosophes? Ce n’est pas cela que je veux dire; en devenant rigou-
reuse, la Science mathématique prend un caractére artificiel qui
frappera tout le monde; elle oublie ses origines historiques; on voit
comment les questions peuvent se résoudre, on ne voit plus comment
et pourquoi elles se posent.

Cela nous montre que la logique ne suffit pas; que la Science de
la démonstration n’est pas la Science tout entiére et que l'intuition
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doit conserver son role comme complément, j'allais dire comme
contrepoids ou comme contrepoison de la logique.

Dans 1'Enscignement mathématique, cette Revue créée par
M. Laisant et qui commence & étre bien connue du monde savant,
jai déjh en P'occasion d’insister sur la place que doit garder I'intui-
tion dans I'enseignement des Sciences mathématiques. Sans elle, les
jeunes esprils ne sauraient s’initier a l'intelligence des Mathéma-
tiques; ils n’apprendraient pas 4 les aimer et n’y verraient qu’une
vaine logomachie; sans elle surtout, ils ne deviendraient jamais
capables de les appliquer. ;

Mais aujourd’hui, c’est avant tout du role de I'intuition dans la
Science elle-méme que je voudrais parler. Si elle est utile a I'étu-
diant, elle I'est plus encore au savant créateur.

V.

Nous cherchons la réalité, mais qu’est-ce que la réalité?

Les physiologistes nous apprennent que les organismes sont for-
més de cellules; les chimistes ajoutent que les cellules elles-mémes
sont formées d’atomes. Cela veut-il dire que ces atomes ou que ces
cellules constituent la réalité ou du moins la seule réalité ? La facon
dont ces cellules sont agencées et d’ou résulte 'unité de I'individu,
n’est-elle pas aussi une réalité, beaucoup plus intéressante que celle
des éléments isolés, et un naturaliste qui n’aurait jamais étudié
I’éléephant qu’au microscope croirait-il connaitre suffisamment cet
animal ? 7 '

Eh bien, en Mathématiques, il y a quelque chose d’analogue. Le
logicien décompose pour ainsi dire chaque démonstration en un trés
grand nombre d’opérations élémentaires; quand on aura examine
€es opérations les unes aprés les autres et qu’on aura constaté que
chacune d’elles est correcte, croira-t-on avoir compris le véritable
sens de la démonstration ? I.’aura-t-on compris méme quand, par
un effort de mémoire, on sera devenu capable de répéter cette dé-
monstration en reproduisant toutes ces opérations élémentaires dans
I'ordre méme oti les avait rangées I'inventeur ?
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Evidemment ngu, nous ne posséderons pas encore la réalité toul
entiere, ce je ne sals quoi qui fait I'unité de la démonstration nous
échappera complétement.

Dans ces édifices compliqués élevés par les maitres de la Science
mathématique, il ne suffit pas de constater la solidité de chaque
partie et d’admirer ’ceuvre du magon, il faut comprendre le plan
de 'architecte.

Or, pour comprendre un plan, il faut en apercevoir & la fois
toutes les parties, et le moyen de tout embrasser dans un coup d’ceil
d’ensemble, c’est 'intuition seule qui peut nous le donner.

L’Analyse pure met & notre disposition une foule de procédés dont
elle nous garantit l'infaillibilité ; elle nous ouvre mille chemins diffé-
Tenls ol nous pouvons nous engager en toule confiance; nous
sommes assurés de n’y pas rencontrer d’obstacles; mais, detous ces
chemins, quel est celui qui nous ménera le plus promptement au
but? Qui nous dira lequel il faut choisir? Il nous faut une faculié
qui nous fasse voir le but de loin, et, cette faculté, c’est 'intuition.
Elle est nécessaire a I'explorateur pour choisir sa route, elle ne I'est
pas moins & celui qui marche sur ses traces et qui veut savoir pour-
quot il I'a choisie. '

Si vous assistez 4 une partie d’échecs, il ne vous suffira pas, pour
comprendre la partie, de savoir les régles de la marche des picces.
Cela vous permettrait seulement de reconnaitre que chaque coup a
été joué conformément a ces régles el cet avantage aurait vraiment
bien peu de prix. C'est pourtant ce que ferait le lecteur d'un livre de
Mathématiques, s'il n’était que logicien. Comprendre la partie, c’est
tout autre chose; ¢’est savoir pourquoi le joueur avance telle piéce
plutdt que telle autre qu'il aurait pu faire mouvoir sans violer les
régles du jeu. Cest apercevoir la raison intime qui fait de cette série
de coups successifs une sorte de tout organisé. A plus forte raison,
cette faculté est-elle nécessaire au joueur lui-méme, c’est-a-dire &
Iinventeur.

* Laissons 1a cette comparaison et revenons aux Mathématiques.

Voyons ce qui est arrivé, par exemple, pour Iidée de-fonction
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continue. Au début, ce n’élait qu'une image sensﬂ)le, par exemple,
celle d'un trait continu tracé a la craie sur un tableau noir. Puis elle
s'est épurée peu a peu, bientdt on s’en est servi pour construire un
systeme compliqué d’inégalités, qui reproduisait pour ainsi dire
toutes les lignes de I'image primitive; quand cetle construction a été
terminée, on a décintré, pour ainsi dire, on a rejelé celte représen-
lation grossiére qui lui avait momentanément servi d’appui et qui
4tait désormais inutile; il n’est plus resté que la construction elle-
méme, irréprochable aux yeux du logicien. It cependant si I'image
primitive avait totalement disparu de notre souvenir, comment
devinerions-nous par quel caprice toutes ces inégalités se sont écha-
faudées de cette facon les unes sur les autres ?

Vous trouverez peut-étre que j'abuse-des comparaisons; passez-
m’en cependant encore une. Vous avez vu sans doule ces assem-
blages délicats d’aiguilles siliceuses qui forment le squelette de cer-
taines éponges. Quand la matiére organique a disparu, il ne reste
quane fréle et élégante dentelle. Il n’y a la, il est vrai, que de la
silice, mais, ce qui est intéressant, c’est la forme qu’a prise cette
silice, et nous ne pouvons la comprendre si nous ne connaissons
pas I'éponge vivante qui lul a précisément imprimé cette forme.
(est ainsi que les anciennes.notions intuitives de nos péres, méme
lorsque nous les avons abandonnées, impriment encore leur forme
aux échafaudages logiques que nous avons mis & leur place.

Cette vue d’ensemble est nécessaire & 'inventeur; elle est néces-
saire également a celui qui veut réellement comprendre l'inventeur;
la logique peut-elle nous la donner ?

Non; le nom que lui donnent les mathématiciens suffirait pour
le prouver. En Mathématiques, la logique s’appelle dnalyse et ana-
lyse veut dire division, dissection. Elle ne peut donc avoir d'autre
outil que le scalpel et le microscope.

Ainsi, la logique et I'intuition ont chacune leur rdle nécessaire.
Toutes deux sont indispensables. La logique qui peut seule donner
la certitude est 'instrument de la démonstration: I'intuition est 'in-
strument de I'invention.
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Mais, au moment de formuler cette conclusion, je suis pris d'un
scrupule.

Au début, )’ai distingué deux sortes d’esprits mathématiques, les
uns logiciens et analystes, les autres intuitifs et géoméires. Eh bien,
les analystes aussi ont ¢lé des inventeurs. Les noms que j'ai cités
tout & 'heure me dispensent d'insister.

Il'y a la une contradiction au moins apparente qu'il est nécessaire
d’expliquer.

Croit-on d’abord que ces logiciens ont toujours procédé du géné-
ral au particulier, comme les regles de la logique formelle semblaient
les y obliger? Ce n'est pas ainsi qu'ils auraient pu étendre les fron-
lieres de la Science; on ne peul faire de conquéte scientifique que
par la généralisation.

Dans un travail imprimé dans la Revue de Métaphysiqgue et de

.

Morale, j'ai eu l'occasion d’étudier la nature du raisonnement
mathématique et j’ai montré comment ce raisonnement, sans
cesser d’étre absolument rigoureux, pouvait nous élever du parti-
culier au général par un procédé que j'ai appelé 'induction ma-
thématique.

C'est par ce procédé que les analystes ont fait progresser la
Science et sil’on examine le détail méme de leurs démonstrations,
on I'y retrouvera a chaque instant a c6té du syllogisme classique
d’Aristote. '

Nous voyons donc déja que les analystes ne sont pas simplerent
des faiseurs de syllogismes a la facon des scholastiques.

Croira-t-on, d’autre part, qu’ils ont toujours marché pas a pas
sans avolr la vision du but qu'ils voulaient atteindre? I a bien fallu
quils devinassent le chemin qui y conduisait, et pour cela ils ont eu
besoin d'un guide. _

Ce guide, c'est d’abord 'analogie.
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Par exemple, un des raisonnements chers aux analystes est celui
qui est fondé sur 'emploi des fonctions majorantes. On sait qu’il a
déja servi a résoudre une foule de problémes; en quoi consiste alors
le role de 'inventeur qui veut appliquer & un probléme nouveau?
11 faut d’abord qu’il reconnaisse l'analogie de cette question avec
celles qui ont déja été résolues par cette méthode; il faut ensuite
qu’il apercoive en quol cette nouvelle question differe des autres, et
qu'il en déduise les modifications qu’il est nécessaire d’apporter 4 la
méthode.

Mais comment apercoit-on ces analogies et ces différences?

Dans V'exemple que je vieris de citer, elles sont presque toujours
évidentes, mais j’aurais pu en trouver d’autres ot elles auraient été
beaucoup plus cachées; souvent il faut pour les découvrir une per-
spicacité peu commune.

" Les analystes, pour ne pas laisser échapper ces analogies cachées,
c¢’est-a-dire pour pouvoir étre inventeurs, doivent, sans le secours
des sens et de I'imagination, avoir le sentiment direct de ce qui fait
I'unité d’un raisonnement, de ce qui en fait pour ainsi dire I'ame et
la vie intime.

Causez avec M. Hermite; jamais il n’évoquera une image sensible,
et pourtant vous vous apercevrez bientot que les entités les plus
abstraites sont pour lui comme des étres vivants. Il ne les voit pas,
mais il sent qu’elles ne sont pas un assemblage artificiel, et qu’elles
ont je ne sais quel principe d'unité interne.

Mais, dira-t-on, c’est la encore de I'intuition. Conclurons-nous
que la distinction faite au début n’était qu'une apparence, qu’il n'y
a qu'une sorte d’esprits et que tous les mathématiciens sont des
intuitifs, du moins ceux qui sont capables d’inventer?

Non, notre distinction correspond & quelque chose de réel. J'at
dit plus haut qu'il y a plusieurs espéces d'intuition. J'ai dit combien
I'intuition du nombre pur, celle d’ott peut sortir I'induction mathé-
matique rigoureuse, différe de 'intuition sensible dont I'imagination
proprement dite fait tous les frais.

L’abime qui les sépare est-il moins profond qu’il ne parait d’abord?
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Reconnaitrait-on avec un peu d’attention que cette intuition pure
elle-méme ne saurait se passer du secours des sens? C'est i affaire
du psychologue et du métaphysicien et je ne discuterai pas cette
question.

Mais il suffit que la chose soit douteuse pour que je sois en droit
de reconnaitre et d’affirmer une divergence essentielle entre les deux
sortes d’intuition ; elles n’ont pas le méme objet et semblent mettre
en jeu deux facultés différentes de notre 4me; on dirait de deux
projecteurs braqués sur deux mondes étrangers I'un a I'autre.

Cest intuition du nombre pur, celle des formes logiques pures
qui éclaire et dirige ceux que nous avons appelés analystes.

Cest elle qui leur permet non seulement de démontrer, mais
encore d'inventer. Cest par elle qu'ils apercoivent d’un coup d’ceil
le plan général d’un édifice logique, et cela sans que les sens
paraissenl intervenir.

En rejetant le secours de I'imagination, qui, nous I'avons vu, n’est
pas toujours infaillible, ils peuvent avancer sans crainte de se trom-
per. Heureux donc ceux qui peuvent se passer de cet appui! Nous
devors les admirer, mais combien ils sont rares!

Parmi les analystes, il y aura donc des inventeurs, mais il y en
aura peu.

La plupart d’entre nous, s'ils voulaient voir de loin par la seule
intuition pure, se senliraient bientdt pris de vertige. Leur faiblesse
a besoin d’un biton plus solide et, malgré les exceptions dont nous
venons de parler, il n’en reste pas moins vrai que I'intuition sensible
est en Mathématiques I'instrument le plus ordinaire de I'invention.
A propos des derniéres réflexions que je viens de faire, une ques-
tion se pose que je n’ai le lemps, ni de résoudre, ni méme d’énoncer
avec les développements qu’elle comporterait.

Y a-t-il lieu de faire une nouvelle coupure et de distinguer parmi
les analystes ceux qui se servent surtout de cetie intuition pure et
ceux qui se préoccupent d’abord de la logique formelle?

M. Hermite, par exemple, que je citais tout a I'heure, ne peut
étre classé parmi les géometres qui font usage de I'intuition sensible;

9
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mais il n’est pas non plus un logicien proprement dit. Il ne cach
pas sa répulsion pour les procédés purement déductifs qui parter
du général pour aller au particulier.

Je ne puis que soumettre ce nouveau sujet & vos méditations; ca
I’heure nous presse, et cette conférence est déja trop longue.
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EXTRAIT D'UNE COMMUNICATION PLUS IZZTEJ\'DUE,

Par M. G. MITTAG-LEFFLER (StockaoLu).

La funeste année 1870, qui causa & deux grands peuples tant de
deuils et de larmes, mais qui souleva en méme temps et surexcita les
passions patriotiques, avait bouleversé les tranquilles habitudes du
grand analyste des bords de la Sprée. Weilerstrass était alors en
passe d’étre considéré, tant en Allemagne qu’a I'étranger méme,
comme le savant qui avait su pénétrer mieux qu’aucun de ses
contemporains les énigmes les plus cachées de I’Analyse. Trois ans
plus tard, je vins 4 Paris suivre le cours d’Hermite ; je n’oublierai
jamais la stupéfaction que j’éprouvai aux premiers mots qu’il
m’adressa : « Vous avez fait erreur, Monsieur, me dit-il ; vous auriez
dii suivre les cours de Weierstrass 4 Berlin. C'est notre maitre &
tous. » Hermite était Francais et patriote ; j'appris du méme coup
a quel degré aussi il était mathématicien.

Weierstrass avait dii renoncer a son voyage d’été habituel. 11 le
déplore dans une lettre & Konigsberger du 25 octobre 1870 :

Hoffentlich (') wird das kommende Jahr uns friedfertigen Leuten wenig-
stens den ungestirten Genuss unserer Ferien gewihren, denen wir nach
der Aufregung der Gegenwart doppelt benésthigl sein werden.

Il n’avait commencé ses conférences sur les fonctions elliptiques

(1) Espérons que, année prochaine, les gens pacifiques comme nous pourront
au moins profiter sans trouble des vacances, dont nous aurons doublement besoin
aprés l'agitation actuelle. : '
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que devant vingt auditeurs seulement, alors que, deux ans aupara-
vant, la méme conférence en avait réuni cinquapte.

Um (') so schwerer trifft es uns, dass der bis jetzt unbeugsame Wille
des hohen Senats uns nicht einmal den Ersatz génnen mag, der uns
aus lhren Hinden in der Person lhres bisherigen weiblichen Zuhirers
geboten wird, und mit den richtigen Gewichts-Coefficienten versehen,
vielleicht ein recht werthvolier sein méchte.

Sophie Kowalevski avait été, depuis le printemps de 186,
I’éléve de Konigsberger 4 Heidelberg, mais elle avait en méme
temps écouté les lecons de Helmholtz et de Kirchhoff et aussi fait
connaissance avec Bunsen. Avant méme d’avoir vingt ans révolus,
elle s’était vue transportée dans cette vie intellectuelle et élevée qui
avait fasciné ses réves de jeune fille. Leslecons du disciple (Konigs-
berger est bien en effet un des premiers disciples de Weierstrass)
lui avaient inspiré le désir d’aller s’asseoir aux pieds du maitre lui-
méme pour recueillir le savoir de ses propres lévres. Si Weierstrass
a eu plus d’un disciple qu’il a su enflammer par son enseignement,
par sa personne méme, nul n’apporta en 'approchant un si ardent
enthousiasme, une attention aussi fortement tendue que Sophic
Kowalevski. , _

- Or, elle avait vingt ans, et, bien qu’elle appartint a une famille
de grande noblesse ayant un grand train de vie, elle n’avait guére
plus 'habitude du monde qu'une simple écoliére, car I'éclat de sa
sceur ainée, de son Anjuta adorée, I'avait toujours fait placer dans
'ombre. Clest avec modestie et non sans émotion qu’elle s’appro-
chait de 'homme qui était a ses yeux le plus grand savant de notre
époque et qu'elle avait résolu d’avoir pour maitre dans la science
des sciences. Elle apportait & sa résolution cette force de volonté
qu’elle déployait d'une facon si éclatante aux moments critiques de
sa vie. Elle en avait donné une preuve quelques années auparavant,

(1) Ce qui nous est d’autant plus pénible, c’est que le haut Consistoire acadé-
mique, jusqu’ici inflexible, nous refuse encore la compensation qui s’offre a nous de
votre part, dans la personne de la dame qui a été jusqu'a présent votre auditrice;
cette compensation affectée de son véritable coefficient d’influence aurait pu avoir
peut-étre une valeur considérable.
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lors de son mariage, par la maniére méme dont elle 'avait conclu.
Comment était Sonja (c’est le nom que lui donnérent toujours ses
amis depuis ses années d’études)a cette époque? Nous pouvons nous
en faire une idée par une lettre d'une de ses tantes écrite deux ans
auparavant, le 28 septembre 1868, et ot I'on trouve une description
de ses noces :

...und (') zuletzt erschien Sonja, frisch, gliickstrahlend und hiibsch, wie
man sich eine Braut nur wiinschen kann. In Lisa’s (?) Zimmer wurde die

Brauttoilette vorgenommen : ein einfacher Anzng, in welchem sie aber

51
reizend aussah. Ihre schdnen Haare fielen in langen Locken auf den Nacken

berab ; ein Kranz von Myrthen und Orangebliithen war auf dem langen
Tillschleier befestigt. Kein einziges Schmuckstiick, nichts von Ausputz,
aber ein so grosser Liebreiz, dass alle Anwesenden erklirten, niemals eine
so liebliche Braut gesehen zu haben. Der strahlende Ausdruck verliess
siewithrend der ganzen Handlung auf keinen Augenblick, aber es war nicht
der Ausdruck einer oberflichlichen Regung sondern die tiefe Ueberzeu-
gung des wahren Gliickes.

Si avec tout le reste de la famille a4 I'exception d’Anjuta, qui
avait été du complot, la tante lisait a tort dans « l’exlpression
radicuse » de Sonja le bonheur d'un' amour naissant, elle ne se
trompait pas en interprétant cette expression comme le reflet, non
pas d'un sentiment fugitif, mais d’une intime conviction de vrai
bonheur.

Tels étaient I'état d’ame et la physionomie de Sonja au moment ol
elle s’engageait dans ce pseudo-mariage dont le seul objet était &
ses yeux de lui ouvrir toutes grandes les portes de la science des

(') ...et enfin parut Sonja, fraiche, rayonnant de bonheur et aussi jolie'qu’on
peut souhaiter une fiancée. Dans la chambre de Lisa elle revétit sa robe de mariée,
une toilette simple, mais dans laquelle elle était ravissante. Ses beaux cheveux
tombaient en longues boucles sur sa nuque, et sur le long voile de tulle était
fixée une courcnne de myrtes et de fleurs d’oranger. Pas un seul bijou, ni de
parures, mais tant de grice que tout le monde déclarait n’avoir jamais vu si aimable
fiancée. A aucun instant dela cérémonie elle ne perdit son expression radieuse; et
ce n'était pas l'expression d’un sentiment superficiel, mais I'intime conviction du
vrai bonheur.

() Lisa était la mére.
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nombres et de I'espace. On se représente aisément d’aprés cela ce
que fut sa premiére entrevue avec Weierstrass. Elle se présenta le
visage recouvert par un grand chapeau rabattu, afin de cacher la
timidité de ses vingt ans et 'émotion que lui causait ¢ette épreuve
qui, & ses yeux, devait décider de son avenir. Weierstrass ne vit rien
de ces yeux merveilleux a I'éloquence desquels nul, quand elle le
voulut, n’a pu résister. Il raconte lui-méme deux ou trois ans plus
tard, 4 la suite d’une visite & Heidelberg, comment Bunsen, le vieux
célibataire endurei, lul aurait dit, sans savoir qu'elle était son éléve,
que Sonja ¢tait « emne gefahrliche Frau (') ». Bunsen aurait ajouté, a
lappui de son dire, qu'il s’était promis de ne jamais admettre de
femme dans son laboratoire, et surtott une femme russe; mais
Sonja était venue le trouver « und hatte ihn so allerliebst gebeten,
dass er nicht habe widerstehen koénnen und seinem Vorsatze unge-
treu geworden sei () »; il avait alors accordé 4 une de ses amies et
compatriotes le privilege demandé. 1l circulait & ce moment des
bruits de toutes sortes, et non des plus avantageux, sur le compte des
étudiantes russes qui avaient leur principale résidence & Ziirich, et
‘Weierstrass n’¢tait guére prédisposé en faveur d’une éléve qui appar-
tenait peut-&tre & cette catégorie tant décriée. Il ne parait pas avoir
eu le moindre pressentiment que Sonja diit étre un jour le plus cher
de ses disciples, celui qui s’approcherait de lui plus qu’aucun
autre. Il demande & Konigsberger son opinion sur-les aptitudes de
Pétrangeére aux études mathématiques approfondies et s’inquiéte
également si « die Personlichkeit. der Dame die erforderlichen
Garantieen bietet (*) ». Mais toutefois il se déclare décidé, en cas de
réponse favorable, a poser de nouveau, devant le Consistoire acadé-
mique, la question de 'accés de M™ Kowalevski aux conférences
de Mathématiques. Le haut Consistoire demeura inébranlable, et ce

n’est que bien des années plus tard, quand Sonja était déja profes-

(1) Une fomme dangereuse.

(2) Et avait si gentiment prié¢ qu’il n'avait pu résister et avait été infidéle a sa
résolution.

(3) La personnalité de Ia dame offre les garanties nécessaires.
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seur a I’'Université de Stockholm, qu’elle finit par obtenir, au cours
d’une visite faite & Berlin en temps de vacances, d’assister & quel-
ques lecons de Weierstrass.

Cependant aux demandes qu'il s’¢tait vu adresser, Konigsberger
répondit d’une maniére plus que satisfaisante. M™¢ Kowalevski
réitéra ses visites chez Weierstrass, fut moins timide et renonca au
chapeau rabattu. Elle avait appris les fonctions elliptiques au cours
de Konigsherger; Weierstrass lui remit un cahier de ses conférences
sur les fonctions hyperelliptiques. Il fut si satisfait de la capacité et
de la pénétration qu'elle déploya, qu’il s'offrit & lui faire, 2 titre
‘privé, le méme cours qu'il professait a I’Université.

Elle allait réguliérement chezlui tous les dimanches, I'aprés-midi,
ct Weierstrass lui rendait sa visite chaque semaine.

Cet enseignement se continua de 'automne 1870 & l'automne
1874. Weierstrass était souvent empéché par suite de refroidisse-
ments fréquents, et en outre Sonja el lui s’absentaient pendant les
vacances.

Clest a ces circonstances que l'on doit une série de lettres de
Weierstrass a Sonja; il n'y en a pas moins de quarante et une, la
premiére datée du ri mars 1871, la derniére du 18 aolt 1874. S'il
en est dans le nombre qui ont un intérét scientifique, elles ont
cependant avant tout I'importance de documents biographiques.
On voit les relations se resserrer de plus en plus entre le maitre et
I'éléve, et Sonja finir par jouer un role considérable dans la vie
de Weierstrass. Quand elle eut quitté Berlin dans 'automne de 1874,
la correspondance continua a intervalles plus ou moins longs pen-
dant le reste de ses jours. La dernitre lettre de Weiersirass est datée
du 5 février 18go. Cette partie de leur correspondance comprend
trente-sept lettres, dont un certain nombre ont une grande impor-
tance scientifique. De longtemps cependant on ne saurait les
publier intégralement, plus d'une opinion et plus d'un jugementy
¢tant formulés sur le compte de personnes encore vivantes. Quant
aux lettres de Sophie Kowalevski & Weierstrass, il les brila toutes
aprés sa mort, ainsi que la plupart des “autres lettres qu’il avait
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regues, et probablement aussi plus d’'un manuscrit mathématique.
Aprés la mort de Sophie Kowalevski, Weierstrass sut que ses
lettres étaient entre mes mains et ne fit aucune objection. J'avais
cependant déclaré ne vouloir lire ces lettres (je connaissais déja
une partie de celles de la derniére époque par Sonja elle-méme)
que dans le cas ol je survivrais 4 Weierstrass. Clest pourquoi
cette correspondance n’a pas été mise a la disposition d’Anne-
Charlotte Leffler, et par la s’explique le peu de place qu'elle donne
dans sa biographie aux relations de Sonja avec Weierstrass. Elle ne
put en effet ni montrer l'influence capitale de ces relations sur la
vie de I’héroine, ni donner une idée exacte de la valeur mathéma-
tique de Sonja.

Je n’entrerai pas ici dans une analyse approfondie de toutes ces
lettres. Je réserve cette besogne pour une autre occasion, mais je
me permettrai de lire quelques extraits qui sont d’un intérét tout
spécial tant au point de vue scientifique qu'au point de vue de la
biographie de Weierstrass. '

6 Mai 1874 (*). — In Betreff’ des am Sonntag besprochenen Gegen-
standes kann ich dir jetzt Folgendes mittheilen. :

Es sei A eine reelle Verdnderliche und (%) eine Function derselben,
welche nur folgenden Bedingungen unterworfen ist : '

1° Sie soll bei endlichen Werthen von A, d. h. wenn man diese Grisse
zwischen zwel beliebigen endlichen Grenzen %, 2, einschliesst, nicht
unendlich gross werden ;

2° Sie kann an beliebig vielen, aiich an unendlich vielen Stellen unstetig

LW

oder unbestimmt sein, aber in der Art, dass das Integral [_/’(7\) di.s

(1) 6 Mai 1874. — Relativement au sujet discuté dimanche, je puis maintenant
te faire part de ce qui suit :

Soit A une variable réelle et f()) une fonction de cette variable, assujettie
seulement aux conditions suivantes :

1° Pour des valeurs finies de A, c'est-2-dire quand on fait varier cette grandeur
entre deux limites finies arbitraires A, X,, elle ne peut devenir infinie.

2° Elle peut étre discontinue ou indéterminée pour un nombre quelconque de

g
valeurs et méme pour une infinité, mais de telle sorte que l’intégralef J() dr
Vo,
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unter Zugrundelegung der Riemann’schen Erklirung einen Sinn hal.
(5. R’s Abhandlung iiber die Fourier’sche Reihe).

3° Wenn X sich den Grenzen — oo, - oo nihert, so braucht £ (%) nicht
endlich zu bleiben, muss aber so beschaffen sein, dass

Logl /(M)
e

fir A ==+ o verschwindet. (Das ist z. B. der Fall, wenn (%) unendlich
wird wie eine posilive Potenz von A oder wie e wo a, f positive Gros-
'sen und 3 < 2.)

" Alsdann gilt folgender Satz. Es seien u«, ¢, w complexe Verinderliche
von denen die erste der Bedingung unterwofen ist, dass jhr reeller Theil

stels positiv sein soll; so hat das Integral

+ o

/ S (hye—tadi+ehem gy

v w

bei endlichen Werthen von u, ¢, w stets einen bestimmten ebenfalls end-
lichen Werth, und ist eine regulire Functionvon u, v, w. Dieselbe kann
also, wenn i/, ¢, e’ irgend ein System bestimmter Werthe von u, ¢, w ist,
noch ganzen positiven Potenzen von u — ', ¢ — ¢/, w — o/, in eine Reihe

entwickelt werden, welche slets convergirt, wenn u so nahe bei @

ait un sens, dans l'interprétation de Riemann (voir le Mémoire de Riemann Sur
la série de Fourier).
3° Si A tend vers les limites — oo, 4~ o, f(}) ne reste pas nécessairement finie,
mais doit étre telle que
' log | F(M)]

e

s'annule pour A =+ . [ C'est, par exemple, le cas quand f()) augmente indéfini-
ment de la méme maniére qu'une puissance positive de A, ou comme et @
et B étant positifs et B < 2].

On a alors le théoréme suivant: « Soient u, ¢, w des variables complexes dont la
premiére est assujettie d ce que sa partie réelle reste constamment positive; I'inté-
grale N

4w .
f‘ f(l)c—-]u}.f—o— vl 4w} d)\

a alors pour des valeurs finies de u, ¢, w une valeur bien déterminée et également
finie et elle est une fonction réguliére de u, v, w. Si u', ¢', w' désignent un sys-
téme quelconque de valeurs déterminédes de u, v, w, elle peut étre développée en
série suivant les puissances entiéres et positives de w — ', ¢—¢', w — w', cette
série étant toujours convergente, si u est assez voisin de u' pour que toutes les
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angenommen wird, dass in allen andern Werthen dieser Grisse, die
denselben Abstand von «' haben, der reelle Theil positiv ist.

Diese Reihe wird ferner erhalien, wenn man

/(}\ )671,”).‘14&)\ + W)

nach Potenzenvon u—u', v — ', w—uw' entwickelt und darauf jeden
Coefficienten der so entstehenden Reihe von — o bis -—x integrirt.
Dieser Satz angewandt auf das Integral

AR G
ff(}.)e T di

oz, t)= e
o= e Vi

lehrt, dass dasselbe, wenn die Grisse ¢ der Bedingung unterworfen wird,
. . P . 1 a

dass ihr reeller Theil stels positiv sei (also auch der von f)’ withrend x

unbeschrinkt verinderlich ist, in eine bestindig convergirende Reihe

von der Form

a2

e

;f%(z)-»‘ gi()x +. .= ga(t)z .

entwickelt werden kann, wo 9,(¢), 2, (¢), ..., regulire Funclionen von ¢

valeurs de cette quantité, dont la différence avec w' a le méme module, aient
leur partie réelle positive.
» De plus, cette série s’obtient en développant
f()\)€|~-1r7\“w—u:h+wjl -

sutvant les puissances de u—u', v — ', w — ' et en intégrant ensuite de — =
@& -+ o« chaque coefficient de la série ainsi obtenue. '
» Ge théoréme, appliqué a U'intégrale

(h—a)

o t)= —= — [ fOe 0 i,

V=SV

montre le fait suivant: si la quantité ¢ est soumise 4 Ia condition que sa partie
, . . - . . Y . .

réelle soit toujours positive <et par suite aussi celle de ;), tandis que x varie sans

limitation, cette intégrale peut étre développée en une série uniformément con-
vergente, de la forme

a?

“_‘/:_;im(:) 9 (8)T A 0 (OB ]

ol 9q(2¢), 1(t), - .. sont des fonctions réguliéres de ¢. En outre, ¢(x, ¢) satisfait
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sind. Es geniigt ferner ¢ (2, ¢} der Differentialgleichung
do(zx,t)  olz.t)
gt dx?
in dem ganzen Bereich (z, ¢), fiir welchen die Function definirt ist.

Der Beweis der aufgestellten Satzes ist sehr einfach; auch lisst sich
cin viel allgemeinerer begriinden, der zeigt, wie aus ganz willkiirlichen
Functionen einer reellen Verinderlichen analytische Funclionen com-
plexer Griéssen abgeleitet werden kénnen. Ueber alles dies und manches
daran sich kniipfende miindlich Weiteres und Niheres.

Du siehst, theuerste Sonia, wie deine Dir so einfach scheinende
Bemerkung iiber die Eigenthiimlichkeit partieller Differentialgleichun-
gen, dass eine unendliche Reihe, welche einer solchen D. Gl. formel!
geniigen kann, ohnedoch fiiv irgend welche Werthsysteme ihrer Verin-
derlichen zu convergiren, fir mich der Ausgang von Untersuchungen,
die viel Interessantes haben und manche Aufklirung verschaffen
geworden ist. Ich wiinsche, dass meine Schiilerin auf diese Weis,
fortfahren mége, lhrem Lehrer und Freund Ihren Dank zu bethiitigen.

Quelquefois des envieux ont essayé de faire croire que Sonja,
en rédigeant sa Thése de doctorat, n’avait pas été aussiindépendante
qu'elle aurait da I'étre, et qu’elle devait & Weierstrass plus qu’elle
n'avouait elle-méme.

Les propres paroles du Maitre nous sont aujourd’hui une preuve
du contraire.

d I'équation différentielle
dg(x. t) d*e(w, i)
dt dx?

dans tout le domaine (#, t) pour lequel la fonction est définie. »

La démonstration du théoréme énoncé est trés simple; on peut méme en établir
un beaucoup plus général, qui montre comment on peut, de fonctions tout a fait
arbitraires d'une variable réelle, déduire des fonctions analytiques de grandeurs
complexes. De tout cela et de beaucoup d’autres choses qui s’y rattachent, nous
tauserons prochainement.

Tu vois, trés chére Sonia, comment ta remarque, qui te paraissait si simple, sur
la propriété d’équations aux dérivées partielles d’étre satisfaites formellement
par une série infinie, sans que celle-ci converge pour aucun systéme de valeurs
de ses variables, est devenue pour moi* le point de départ de recherches qui ont
beaucoup d’intérét et expliquent bien des choses. Je souhaite que mon éléve con-
linue de cette maniére a témoigner ses remerciments & son maitre et ami.
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La démonstration que I’équation différentielle

de(z,t) _ Po(x, i)

dt dar2

est satisfaite formellement par une série de puissances qui ne con-
verge pour aucun systéme de valeurs des variables indépendantes
était une des parties les plus originales de la Thése et était & celte
époque une découverte de haute importance.

9 Mai 1874 ('). — Eine kleine Aufgabe. Die p. D. Gl.

dp %o
ot ~ dat
hat ein particulires Integral
o= (pt)y*F(u), u:—l;(x—)\),

Vit

wo A, w, v willkiirliche Constanten bezeichnen, und F(«) der Diff. Gl.
F'(u)+ % mub' (u)+peF(u)=o0

geniigen muss. Welches ist die allgemeine Lisung dieser Gleichung ?

Fiir

(1) 9 Mai 1874. — Un petit probléme. L’équation aux dérivées partielles

. dilg d*z(?

ot~ ox?

a une intégrale particuliére

o =(ut)*F(u), u:%(:&'-—?(},
Vit

ol A, p,'v désignent des constantes arbitraires, et F(«) une solution de 'équation
différentielle

F'(u +l- wF (u) 4+ ne F{u) =o.
2 :

Quelle est la solution générale de cette équation?
Pour ‘
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kann man selzen
F(u)=f(h)e *

und erhilt aus dem part. Integral

das allgemeine

l\
8 +
8
~
<t~
B
N
=
~|1
-
=
2
-

Wenn aber /() tiir unendlich grosse Werthe von ) in stirkerem Maasse
unendlich wird, wie die Function

e—¢ s

bei beliebig kleiner Constante ¢, so hat der vorstechende Ausdruck keinen
Sinn. Bekommt man vielleicht in diesem Falle durch Anwendung einer
allgemeinen Function F(u), die der aufgestellten D. Gl. bei anderen
Werthen der Constanten geniigt, einen brauchbaren Ausdruck? Oder ist
diewillkiirliche Function nothwendig an die Beschrinkung gebunden, dass

Log | /(M| _
oo

on pCU[ poscr

F(u)==f(kje *

et de I'intégrale particuliére

(r—3,"

, 1

o S 3
' Vi

on déduil la génerale

ER P PN Wl_z_rflw‘-‘r
igi}e_ Pt g

J_w Vi

Mais si, pour des valeurs infinies de X, f(A) ercit indéfiniment et plus vite que la

fonction ’ '

Q© =
T

— A2
€ E

ol ¢ est une constante aussi petite que 'on veut, 'expression précédente n’a plus

aucun sens. Peut-étre, dans ce cas, en employant une fonction générale F(u)

satisfaisant & U'équation différentielle écrite plus haut, pour d’autres valeurs des

constantes, peut-on parvenir a une expression utilisable? Ou bien la fonction arbi-

traire est-elle nécessairement assujettie ala restriction que pour A = == w0, P'on ait
A2 ’
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Il convient de rapprocher de ces lettres le passage suivant qui se
trouve dans une lettre a Sonja du 27 décembre 1883, et ot Weier-
strass lul donne certains conseils relativement a un cours projeté par
elle sur les équations différentielles partielles:

Dagegen (') wiirde ich Dir sehr anrathen, einige partielle D. Gl. aus
dem Gebiete der math. Physik ausfiihrlicher zu behandelr, obwohl deren
Integration mit dem ersten Theil Deiner Vorlesung kaum etwas gemein
hat. In Riemann’s und Dirichlet’s Vorlesungen findest Du Beispiele.
Namentlich ist von grossem Inleresse die Gl.

‘Wenn mann annimmt, dass fiir
=0, w= f(x)
gegeben sei, so kann f(z) eine ganz willkiirliche, nur integrabele Func-
tion sein, und dann wird o (¢, 2) fiir jeden positiven Werth von ¢ eine
anélyti_sche Function von z, lisst sich aber nich fiir negative Werthe
von ¢ definiren, wobei an die Eigenthiimlichkeit dieser D. Gi., welche Du
in Deiner Dissertation bemerkt hast, erinnert werden kann. Der enorme
Unterschied in dem Charakter der beiden #usserlich so verwandten D. Gl.
do uiiﬂq o
dt © Ox?
ist sehr frappant und belehrend.

(1) Par contre, je te conseillerai vivement de traiter de quelques équations aux
dérivées partielles du domaine de la Physique mathématique, bien que leur inté-
gration ait peu de rapports avec la premiére partie de ton cours. Dans les legons
de Riemann et de Dirichlet tu trouveras des exemples. En particulier I'équatibn

o 2o

3=
est d'un grand intérét.

Si I'on suppose que pour
t=o, Q= f(-r)

soit donnée, f{@) peut étre une fonction tout a fait arbitraire, seulement assujettie
a la condition d’étre intégrable, et alors, pour toute valeur positice de f, ¢ (¢, 2
devient une fonction analytique de #; mais elle ne peut se définir pour les valeurs
négatives de ¢, et Pon peut rappeler ici la propriété de cette équation différentielle
que tu as remarquée dans ta thése, L’énorme différence des caractéres des deux
équations différentielles
020 02w , %o

@ oz’ e =Y o

0
ot

si analogues en apparence, est trés frappante et trés instructive.
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Il faut comparer encore la derniére partie du Mémoire de Weier-

strass : Ueber die analytische Darstellbarkeit sogenannter will-

kirlicher Functionen einer reellen Verdnderiichen. Zweite Mit-

theilung. (Math. und Naturw. Mitth. aus den Sitzungsbh. der
Kénigl Preuss. Akad. der Wiss. zu Berlin. 1885, 3o juli.)

23 October 1875 ('). — Ich habe einen schinen Satz, der ganz allge-
mein fiir die Zuriick(iihrbarkeit eines Integrals von beliebigen Range auf
eins von niedrigerem Range ein noth wendiges und hinreichendes Krite-
rium ausspricht.

15 Augusti 1878 (). — Meine eigentlichen Untersuchungen angehend,
so haben die iiber die 272-lach periodischen Functionen, oder besser gesagt,
die Systeme von n Functionen ebenso vieler Argumente, fiir die ein alge-
braisches Additionstheorem besteht, endlich einen Abschluss gefunden,
der mich befriedigt, so dass ich jetzt mit der Verdffentlichung vorgehn
werde. ‘Ich muss dabei [reilich ziemlich mit dem Ende anfangen, aus
dussern Griinden, weil man nimlich auch in Frankreich jetzt anfingt,-
sich mit den periodischen Functionen mehrerer Verinderlichen zu
beschiftigen. Der Beweis dafiir, dass alle eindeutigen Functionen von n
Veriinderlichen, wenn sie bei endlichen Werthen ihrer Argumente wie
rationale Functionen sich verhalten und 27 von einander unabhingige
Perioden-Systeme besitzen, sich durch ©® Funclionen ausdriicken lassen,
hoffe ich noch in diesen Ferien druckfertig machen zu kénnen. Fiir das
Uebrige habe ich umfangreiche Ausarbeitungen in meinem Besitze.

(1) 23 Octobre 1875. — J'ai un beau théoréme, qui donne d’'une maniére tout i
lait générale les conditions nécessaires, et suffisantes de réduclion d’une intégrale
de rang quelconque a une autre de rang inférieur,

(2) 15 Aoiit 1878. — LEn ce qui concerne mes recherches personnelles, j’ai enfin
terminé d’'une maniére salisfaisante celles qui concernent les fonctions & an pé-
riodes, ou, pour mieux dire, les systémes de n fonctions du méme nombre n
d’arguments, pour lesquelles existe un théoréme algébriqué d’addition, de sorte que
je vais pouvoir m’occuper maintenant de leur publication. A vrai dive, je suis obligé
de commencer presque par la fin, pour des motifs étrangers au sujet, parce que
'on commence aussi en France & s’occuper maintenant des fonctions périodiques
de plusieurs variables. Pour la possibilité d’exprimer par des fonctions © toutes les
fonctions uniformes de n variables qui se comportent comme des fonctions ration-
nelles pour des valeurs finies de leurs arguments et qui possédent 2 7 systémes indé-
pendants de périodes, j'espére que je pourrai encore en livrer la démonstration a
Pimpression pendant ces vacances. Pour le reste, j'ai déja en ma possession de volu-
mineuses rédactions, ’
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Ces volumineuses rédactions ont toutes disparu. En revanche
il se trouve dans le troisiéme volume des OEuvres de Weiersirass une
preuve du théoréme : '

Jede (1) eindeutige Funclion von n Argumenten, welche bei endlichen
Werthen der letztern den Charakter einer rationalen Function besitzt
und zugleich 2 n-fach periodisch ist, entspringt in der beschriebenen
Weise (dans une introduction au traité) aus einer ® Function derselben
Verinderlichen.

Il est intéressant de comparer cette communication avec le
passage suivant qui se trouve dans une lettre de Sophie Kowalevski
a moi-méme du 8 janvier 1881 :

Je commencerai ma letire aujourd’hul par vous parler de M. Weier-
strass. J'al eu le plaisir de le trouver en bonne sanlé, mais accablé
d’ouvrage qui, & mes yeux du moins, aurait tout aussi bien pu étre rempli
'paf quelque mathématicien plus jeune, dont le temps n’est pas encore
aussi précieux. Son Gours, quil lit maintenant Lous les jours, et devant
un audiloire de deux cent cinquantle personnes, la revision de 'édition
des OEuvres de Jacobi et de Steiner, les différents Academie-Senats-
Faculuitssitzungen et autres remplissent sa journée au point de lui rendre
la terminaison de ses propres recherches presque impossible, surtout en
vue de son Age déja assez avancé et de sa santé, qui ne lui permét
pas de se fatiguer impunément. Je ne comprends vraiment pas comment
les aulres mathématiciens de Berlin ne parviennent pas & faire com-
prendre ay ministre combien il serait nécessaire de délivrer M. Weier-
strass, pour un temps du moins, de toate occupation extérieure et de lai
assurer les moyens de se livrer pendant une année exclusivement  la
publication de ses OEuvres. Sous ce rapport aussi la mort de M. Bor-
chardt est un bien grand malheur, car c’était, je crois, le seul des amis
influents de Weiersirass qui prenail vraiment & ceeur ses intéréts, qui
sont aussi ceux de la Science. C'est vraiment par trop regrettable que
nous ne verrons peut-étre jamais un exposé complet de sa théorie des
fonctions abéliennes, 'car je trouve qu'un des plus grands mérites de
‘Weierstrass consiste justement dans 'unité de sa méthode et dans la

(1) Toute fonction uniforme de n arguments, qui, pour les valeurs finies de
ceux-ci, posséde le caractére d’une fonction rationnelle, et qui admet 2 n périodes,
se déduit, ainsi qu'il a été exposé (dans une introduction au Traité), d’une fonction €

~des mémes variables. :
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maniére aussi naturelle que logique dont il déduit toute la théorie d'un
seul théoréme fondamental et la présente vraiment comme un fowt
organique; et c’est justement ce cOté-la de son génie qui se perd com-
pletement de vue a la publication de ses recherches par fragments,
comme il I'a fait jusqu’a présent, et qui n’est justement apprécié que par
un pelit nombre de ses éléves. N'est-ce pas étonnani vraiment comme, &
I'heure qu’il est, la théorie des fonctions abéliennes avec toutes les parti-
cularités de la méthode qui lui sont propres et qui en font justement une
des plus belles branches de I'Analyse, est encore peu étudiée et peu com-
prise partout ailleurs qu’en Allemagne? J'ai é1é vraiment indignée en
lisant, par exemple, le Traité des fonctions abéliennes par Briot, qui jus-
qu’a présent ne m’élait pas tombé sous les yeux. Peut-on exposer une
aussi belle matiére d'une maniére aussi aride et aussi peu profitable pour
I'étudiant? Je ne m’élonne presque plus que nos mathématiciens russes,
qui ne connaissent toute cette théorie que par le livre de Neumann et
celui de Briot, professent une indifférence aussi profonde pour Iétude de
ces fonctions. Me croivez-vous, par exemple, quand je vous dirai que j’ai
eu & soutenir, il y a peu de temps, une discussion Lrés vive contre plu-
sieurs professeurs de Mathématique de I'Université de Moscou, qui pré-
tendaient gue les fonctions abéliennes ne s'étaient encore montrées
capables d'aucune application sérieuse, et que toute cette théorie était
encore embrouillée et aride an point d’étre tout & fait impropre & servir
de sujet & un cours universitaire?

11 April 1882 ('), — Hast du Notiz genommen von den neuesten Ar-
beiten Poincaré’s ? Der ist jedenfalls ein bedeutendes mathematisches
Talent, so wieiiberhaupt jetzt in Frankreich wieder eine junge Genera-
tion von Mathematikern mit dem besten Erfolg bemiiht ist, auch auf dem
Gebiete der Analysis, deren einziger Vertreler, nachdem Liouville sich
von ihr abgewandt hatte, lange Zeit nur Hermite war, Eroberungen zu
machen. Die von Poincaré in Anschluss an Arbeiten von Iuchs, Schwarz
nnd Klein begonnenen Untersuchungen werden jedenfalls zu neuen
analytischen Transcendenten fiithren, wenn er auch vielleicht jetzt noch

(1) 11 Aeril 1882. — As-tu pris connaissance des derniers travaux de Poincaré?
(’est & coup sir un talent mathématique considérable; aussi bien, il y a mainte-
nant en France une nouvelle génération de jeunes mathématiciens qui s’efforcent
avee le plus grand succés de faire des conquétes dans le domaine de I'Analyse elle-
méme, dont le seul pionnier fut longtemps Hermite, depuis 'abandon de Liouville
Les recherches commencées par Poincaré, se rattachant aux travaux de Fuchs,
Schwarz et Klein, conduiront certainement & de nouvelles transcendantes analy-
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nicht ganz auf dem richtigen Wege ist. Es ist nur zu beklagen, dass
den jungen franzosischen Forschern die Akademie ein zu verlockendes
Ziel ist. Jede Woche einen Artikel in die Comptes rendus zu bringen,
der wirklich Werth hat, das ist doch unméglich.

14 Juni 1882 ('). — Mit den andern Matematikern (*) wirst Du nun
wohl auch in Verkehr treten miissen, die jingern, Appell, Picard, Poin-
caré werden Dich am meisien interessiren. Poincaré ist nach meiner
Ansicht von allen der zur mathematischen Speculation berufenste,
mige er nur sein ungewohnliches Talent nicht za sehr zersplittern und
seine Untersuchungen reifen lassen. Die Theoreme iiber algebraische
Gleichungen zwischen zwei Verinderlichen un diiber die linearen Diffe-
rentialgleichungen mit algebraischen Coefficienten, welche er in den
Comptes rendus gegeben hat, sind wahrhaft imponirend ; sie eréiTuen
der Analysis neue Wege, welche zu unerwarteten Resultaten fithren
werden. Gleichwohl bin ich der Ueberzeugung, dass die neue Behand-
lungsweise der in Rede stehenden Gleichungen, in ihren Grundgedanken
richtig, doch noch von verallgemeinerten, hohern Gesichtspunkten aus
wird unternommen werden miissen. Gestatte mir, dies etwas genauer aus-
zufiihren. Wenn eine algebraische Gleichung f(z,y) = o gegeben ist, so
sagt Poincaré, dass alle dieser Gleichung befriedigende Werthsysteme zy

tiques, méme s'il n'est pas encore maintenant tout & fait sur la voie exacte. Il n'y
a qu'a regretter que ’Académie soit pour les jeunes savants frangais un but si
séduisant. Donner chaque semaine dans les Comptes rendus un article qni ait une
réelle valeur, c’est cependant impossible.

(1) 14 Juin 1882. — Il faudra bien aussi qué tu entres maintenant en rapport avec
les autres mathématiciens (*); les jeunes, Appell, Picard, Poincaré, t'intéresseront
extrémement. Poincaré est, selon moi, de tous le plus remarquablement doué pour
les spéculations mathématiques; puisse-t-il seulement ne pas trop éparpiller son
rare talent et laisser miurir ses recherches. Les théorémes qu’il a donnés dans les
Comptes rendus sur les relations algébriques entre deux variables et sur les équa-
tions différentielles linéaires & coefficients algébriques sont véritablement impo-
sants; ils ouvrent & I’Analyse de nouvelles voies qui conduiront a des résultats
inattendus. . _

Je suis néanmoins convaincu que la nouvelle maniére de traiter les relations en
question, exacte dans son point de départ, devra étre tentée en se plagant encore
a des points de vue plus généraux et plus élevés. Permets-moi de m’expliquer d'une
mapiére un peu plus précise. Etant donnée une relation algébrique f(z, y) = o,
Poincaré dit que tous les sysiémes de valeurs z, ¥, liés par cette relation peuvent

(*) Sonja avait raconté & Weierstrass qu'elle venait de faire la connaissance dc

M. Hermite.
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sich darstellen lassen in der Form
x =9(t), .Jf_‘?(‘!)v

wo @ (t), b (t) eindeutige Functionen der unabhingigen Verinderlichen
¢t bezeichnen, deren Bereich ein beschrinkter oder unbeschrinkter sein
kann. Diese Functionen haben nun die Eigenschaft, dass sie unverindert
bleiben, wenn fiir £ gewisse lineare Functionen derselben Grisse geselzt
werden. Die Coefficienten der letzlern aus den gegebenen Werthen der
Coefficienten der Gl. f(z,») zu bestimmen, ist jedenfalls eine dusserst
schwierige Aufgabe, die im Allgemeinen auf transcendente Gleichungen
complicirtester Natur fithren wird. Wenn die Coefficienten von f(z,y)
rationale oder algebraische Functionen von unbestimmen Gréssen a, b, .
sind, so wird offenbar die vollstindige Bestimmung von o(z), 4 (x)
anders und anders sich gestalten, jenachdem jene willkiirlichen Con-
stanten so oder so in der Gleichung vorkommen.

Verfolgt man diesen Gedanken so wird man nothwendig zu folgender
Aufgabe gelangen :

Es sei gegeben eine algebraische Gleichung zwischen n + 1 Verinder-
lichen &, z,, ..., z, mit rationalen Zahl-Coefficienten. Man soll versuchen,
alle diese Gleichung befriedigenden Werth-Systeme (z, 2, ..., &,) in der
FOI‘rD

xi‘?(fh---a{n): -Tl:‘FI(th---vtu): ey Zn=Gu(lyy .oy ty)

dergeslalt darzustellen, dass o, ¢4, ..., 9, eindeatige IF'unctionen der unab-

étre mis sous la forme
z=9(t), y=9()

v (¢)etd (¢) désignant des fonctions uniformes de la variable indépendante ¢, dont
le domaine peut étre limité ou illimité. Ces fonctions ont la propriété de rester
inaltérées, si 'on substitue & ¢ certaines fonctions linéaires de ¢. Quant & déter-
miner les coefficients de ces derniéres au moyen des valeurs données des coeffi-
cients de I'équation f(x,y)=o0, c’est un probléme extrémement difficile, qui
conduira en général a des équations transcendantes de la nature la plus compli-
quée. Siles coefficients de /(x,y) sont des fonctions rationnelles ou algébriqueé de
quantités indéterminées a, b, ..., la détermination compléte de ¢ (x) et § (&) s’effec-
tuera évidemment par des procédés tout différents, selon la maniére dont ces
constantes arbitraires figurent dans I'équation.

En poursuivant ces réflexions, on arrive nécessairement au probléme suivant :

Soit donnée une relation algébrique, entre n- 1 variables, #, @4, ..., z,, & coef-
ficients numériques rationnels, Chercher 4 mettre tous les systémes de valeurs
(w,2y,... 2,) liés par cette relation sous la forme '

x=0 (I ..., ) Zy=0 (s e ln)ees, Xy =0, (L, .. yla),
de telle sorte que @, vy ..., 5, soient des fonctions uniformes des variablesindépen-
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hingigen Verinderlichen ¢,, ¢4, ..., ¢, sind. [ Das kann z. B. ausgefiihrt
werden, wenn die Gl. 32 = (1 — 2*) (1 — k2 2?) gegeben ist indem man
dann z, y, k durch die Function J) (¢, 7) auszudriicken im Stande ist].
Bei dieser Untersuchung wird man bestrebt sein miissen, uuter den alge-
braischen Gleichungen diejenigen aufzufinden, welche man Mutterglei-
chungen nennen kann, von denen jede einen besondern Affect besitat, und
auf welche die iibrigen zoriickgefithrt werden kiinnen. Zunichst aber wird
es die Aufgabe sein, Functionen mehrerer Veriinderlichen zu bestimmen,
welche dhnliche Eigenschaften haben, wie die von Poincarré « fonctions
fuchsiennes » genannten, von denen die Quotienten der Functionen
TPy e ey VuTits 12 T,e -, Ton) als Functionen der ¢ und t angesehn ein
Beispiel geben. Das sind sehr weitgehende Perspectiven, aber man muss
sich klar machen, welches die Endziele der von Poincaré so glinzend
begonnenen Untersuchungen nothwendig sein miissen.

In Betrefl der P’schen Untersuchungen iiber lineare Differentialglei-
chungen gilt das Vorstehende selbstverstindlich in erhiéhtem Masse.

27 August 1883 ('). — Unter den iltern Mathematikern giebt es ver-
schiedene Sorten von Menschen, ein trivialer Salz, der aber doch vieles
erklirt. Mein lieber Freund Kummer z. B. hat in der Zeit, wo er seine

ganze Kraft an die Aulfindung der Beweise fiir die hioheren Reciprocitits-

geselze selzte, sich nicht und nachher, nachdem er sie daran erschopft,

dantes #y, #5..., £,. [On y arrive par exemple, pour I'équation
rr=(i—a2) (1 Ra2),

en mesure d'exprimer @, ¥, k& au moyen -de la fonction 3y (v, =)]. Dans cette,
recherche on devra sefforcer de trouver, ‘parmi les équations algébriques, celles
qu'on peut appeler équations méres, dont chacune posséde un affect particulier,
et auxquelles on puisse ramener toutes les autres. Mais le premier de tous les
problémes sera de déterminer des fonctions de plusieurs variables, ayant des pro-
priétés analogues a celles que Poincaré appelle fonctions fuchsiennes, et dontun
exemple est fourni par les quotients des fonctions Jy (vi, va- .., vp, T11, Ti2- oy Tan)
considérées comme fonctions des v et des 7. Ce sont la des perspectives trés éten-
dues, mais on doit thcher de voir clairement quel doit étre nécessairement le but
final des recherches si brillamment commencées par Poinearé.

Quant aux recherches de Poincaré sur les équations différentielles linéaires, il
est bien clair que ce qui précéde s’y applique dans une mesure encore plus étendue.

(1) 27 Aott 1883, — Parmi les mathématiciens les plus avancés en dge, il y a
diverses catégories de personnes; proposition banale, il est vrai, mais qui explique
bien des choses. Mon cher ami Kummer, par exemple, aussi bien a 1'époque ol il
dépensait toute son énergie dans la recherche de démonstration des lois de réci-
procité supérieures que plus tard, et maintenant qu’il 'a épuisée sur ce sujet, ne
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erstrecht nicht mehr um das, was auf mathematischen Gebiete geschehen
ist, gekiimmert; er verhilt sich, wenn nicht ablehnend, doch gleichgiiltig
dagegen. Wenn Du ihm sagst, die Euclid’sche Geometrie fusse auf einem
unbewiesenen Grundsalze, so giebt er Dir daszu; von dieser Einsicht
ausgehend aber nunmehr die Frage so zu stellen : Wie gestaltet sich
denn die Geomelrie ohne diesen Grundsatz? Dasist seiner Natur zuwider,
die darauf gerichteten Bemiihungen und die daran sich reihenden allge-
meinen, von dem empirisch Gegebenen oder Angenommenen sich los
machenden Untersuchungen sind thm miissige Speculationen oder gar
ein Griuel. Kronecker ist anders, er macht sich mit allem Neuen rasch
bekannt, sein leichtes Aulfassungsvermigen befihigt ihn dazu, aber es
geschieht nmicht in eindringender Weise er besitzt nicht die Gabe, sich
mit einer gulen Iremden Arbeit mit dem gleichen wissenschaftlichen
[nteresse wie mit einer eigenen Untersuchung zu beschiftigen.

Dazu kommt ein Mangel, der sich bei vielen hichst verstindigen
Menschen, namentlich bei denen semitischen Stammes findet, er besitzl
nicht ausreichend Phantasie (Intuition michte ich lieber sagen) und es
ist wahr, ein Mathematiker, der nicht etwas Poet ist, wird nimmer ein
vollkommener Mathematiker sein. Vergleiche sind lehrreich : Der allum-
fassende auf das hichste, das Ideale gerichtete Blick zeichnet Abel vor
Jacobi, Riemann vor allen seinen Zeitgenossen (Eisenstein, Rosenhain),

se souciait et ne se soucie plus vraiment de ce qui se passe dans les divers
domaines mathématiques; ou bien il se récuse, ou bien cela le laisse indifférent.
Si tu lui dis que la Géométrie euclidienne repose sur un principe non démontré,
il te 'accorde; mais alors, quoique admettant ce point de vue, il répugne & sa
nature de poser ainsila question : Comment se comporte alors la Géométrie sans ce
principe? Les efforts dirigés dans ce sens et les recherches générales qui se sont
succédé en vue de s'alfranchir de données empiriques ou d’axiomes sont pour lui
des spéculations oiseuses, voire méme une abomination. Kronecker est tout autre :
il a vite fait de prendre connaissance de tout ce qui est nouveau, sa facile puissance
de conception le rend apte & cette assimilation, mais cela n'a pas lieu d'une maniére
profonde; il ne posséde pas le don de s’occuper d’'un travail fait par une autre
personne avec le méme intérét scientifique que s'il s’agissait de ses propres
recherches.

A cela s'ajoute une imperfection qu'on rencontre chez beaucoup d’hommes
extrémement intelligents, notamment chez ceux de race sémite; il n’'a pas assez de
fantaisie (je devrais plutot dire d'intuition), et il est certain gqu'un mathématicien
qui n’est pas un peu poéte ne-sera jamais un mathématicien. complet. Les compa-
raisons sont instructives; les vues d’ensemble embrassant tout et dirigées vers les
sommets les plus élevés, vers I'idéal, placent d’une maniére éclatante Abel avant
Jacobi, de méme Riemann avant ses contemporains (Eisenstein, Roserhain), et
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Helmholtz vor Kirchhoff aus (obwohl bei dem letztern kein Tripfchen
semitischen Blutes vorhanden) in ganz eclatanter Weise aus.

Uebrigens habe ich, was meine wissenschaftlichen Bestrebungen angeht,
von denen ich reden darf in dem Bewusstsein, dass sie, so wenig sie in
dem Entwicklunsgang der Wissenschaft bedeuten mégen, stets nur dem
Dienste derselben gewidmet gewesen sind; so habe ich lingst darauf ver-
zichtet, bei dlteren Collegen denselben Eingang zu verschaffen; es ist die
Jugend, an die ich mich gewandt, und bei der ich auch vielfach Ver-
stindniss und begeistertes Eingehn gefunden habe.

a4 Mdrs 1885 ('). — Zu der grossen Anzahl von Zuhorern gratulire
ich Dir von Herzen ; freilich wirst Du auch wohl die Erfahrang machen,

dass bei vielen der Wille gut aber das Vermigen schwach ist, so dass
man selbst bei den Ausdauernden nicht sicher sein kann, ob das Inte-
resse an der Sache oder Pflichttreue sie hiilt. Kénnte man immer einen
Kreis von hichstens zwilf talentvollen, wohl vorbereiteten und fiir ihre
‘Wissenschaft begeisterten Zuhorern um sich versammelt haben, so wire
das akademische Lehrami die lohnendste und interessantesie Beschifti-
gung in der Welt. Dazu muss freilich noch eins kommen, dessen ich
immer mehr und mehr entbehren muss, ein eintrichtiges, auf Ueber-
einstimmung in den Principen und gegenseitiger aufrichtiger Anerken-
nung beruhendes Zusammenwirken mit den Fachgenossen....

Wiihrend ich sage, dass eine sog. irrationale Zahl eine so reelle Existenz

Helmholtz avant Kirchhoff {bien que chez ce dernier n’existe aucune goutte de
sang sémite).

En ce qui concerne dureste mes tendances scientifiques, dont je puis parler avec
la conscience que, si peu qu’elles aient contribué au développement de la Science,
elles ont toujours été consacrées uniquement a son service, en ce qui concerne mes
tendances, dis-je, j'ai renoncé depuis longtemps a les faire accepter par des col-
légues plus 4gés que moi; c’est vers la jeunesseé que je me suis tourné, et chez elle
j’ai rencontré beaucoup d’intelligence et un accueil enthousiaste.

(1) 24 Mars 1885. — Au sujet du grand nombre de tes auditeurs, je te félicite de
tout ceeur; & vrai dire, tu feras aussi Pexpérience que pour beaucoup d’entre eux la
volonté est bonne, mais les facultés médiocres, de sorte que, méme pour les plus
persévérants, on n’est jamais certain si ¢’est I'intérét & la question qui les retient ou
la fidélité au devoir. Si 'on pouvait toujours avoir réuni autour de soi un cercle
d’au plus une douzaine d’auditeurs remplis de talent, bien préparés et passionnés
pour leur science, Penseignement académique serait 'occupation la plus enviable
et la plus intéressante du monde. A la vérité, il faut encore y ajouter une chose dont
je dois me passer toujours de plus en plus: c’est la collaboration avec ses collégues,
basée sur la concorde, l'accord dans les principes et une sincére approbation réci-
proque.

Tandis que je dis qu'un nombre dit irrationnel posséde une existence aussi réelle
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habe wie irgend etwas anderes in der Gedankenwelt, ist es bei Kronecker
jetzt ein Axiom, dass es nur Gleichungen zwischen ganzen Zahlen
giebt....

Schlimmer ist es aber, wenn Kronecker seine Autoritit dafiir einsetat,
dass alle, die bis jetzt an der Begriindung der Functionentheorie gearbeitet
haben, Siinder vor dem Herrn sind. Wenn ein wunderlicher Kauz wie
Christoffel sagt, in 20-30 Jahren wird die jetzige Functionentheorie zu
Grabe getragen und die ganze Analysis in die Theorie der Formen aufge-
gangen sein, so beantwortet man das mit einem Achselzucken. Weunn
aber Kronecker den Ausspruch thut, den ich wdrtlich wiederhole :
« Wenn mir noch Jahre und Krifte genug bleiben, werde ich selber der
mathematischen Welt zeigen, dass nicht nur die Geometrie, sondern
auch die Arithmetik der Analysis die Wege weisen kann, und sicher
die strengeren. Kann ich es nicht mehr thun, so werden’s die thun,
die' nach mir kommen... und sie werden auch die Unrichtigkeit aller
jener Schliisse erkennen, mit denen jetzt die sogenannte Analysis
arbeitet »; so ist ein solcher Ausspruch von einem Manne, dessen
hohe Begabung fiir mathematische Forschung und eminente Leistungen
von mir sicher ebenso aufrichtig und freudig bewundert werden wie
von allen seinen Fachgenossen, nicht nur beschimend fiir diejenigen,
denen zugemuthet wird, dass sie als Irrthum anerkennen und abschwiren
sollen, was den Inhalt ihres unablissigen Denkens und Strebens
ausgemacht hat, sondern ist es auch ein directer Appell an die jiin-
gere Generation, ihre bisherigen Fiihrer zu verlassen und um ihn als

que n'importe quel autre dans le domaine de la pensée, c’est maintenant pour Kro-
necker un axiome qu'il n'y a que des équations entre nombres entiers...

Mais le pis est que Kronecker emploie son autorité & soutenir que tous ceux qui
ont travaillé jusqu'ici 4 fonder la théorie des fonctions sont des pécheurs devant
le Seigneur. Qu'un original comme Christoffel dise que dans vingt ou trente ans
la théorie actuelle des fonctions sera enterrée et que toute I’Analyse se raménera
4 la théorie des formes, on répond par un haussement d’épaules; mais que Kronec-
ker Lienne ce propos que je reproduis mot pour mot : « Sijen ai encore le temps
et la force, je montrerai moi-méme au monde mathématique que non seulement la
Géomélrie, mais encore I'Arithmétique peuvent montrer la voie 4 I'Analyse, et cer-
tainement la plus rigoureuse. Si je ne puis plus le faire, ceux qui viendront aprés
moi le feront. .. et ils reconnaitront aussi Uinexactitude de toutes ces conclusions
sur lesquelles repose maintenant ce qu'on appelle analyse »; un tel propos, de la
part d’un homme doué 4 un degré aussi élevé pour la production mathématique, et
dont j’admire les travaux éminents aussi sincérement et avec autant de plaisir que
tous ses confréres, n’est pas seulement humiliant pour ceux i qui il demande de
reconnaitre comme une erreur et d’abjurer ce qui a constitué le sujet de leurs
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Jinger einer neuen Lehre, die freilich erst begriindet werden solf, sich
zu scharen. Wirklich, es ist traurig und erfiillt mich mit bitlerm Schmerz,
dass das wohlberechtigte Selbstgefiihl eines Mannes, dessen Ruhm unbe-
stritten ist, ithn zu Ausserungen zu lreiben vermag, bei denen er nicht
einmal zu empflinden scheint, wie verletzend sie fiir andere sind. Aber
genug von diesen Dingen, die ich nur berithrt habe, um Dir zu erkliren,
aus welchen Griinden ich an meiner Lehrthitigkeit selbst wenn meine
Gesundheit es gestatten sollte, sie noch einige Jahre fortzusetzen, kiinf-
tighin nicht mehr dieselbe Freude haben kann wie bisher. Dua wirst aber
dariiber nicht reden; ich méchte nicht, dass Andere die mich nicht so
genau kennen wie Du, in dem Gesagten, den Ausdruck einer Empfind-
lichkeit sihen, die mir in der That fremd ist. Niemand weis besser als ich
selbst, wie weit ich von dem Ziele entfernt geblieben bin, das ich in der
Begeisterung der Jugend mir gesteckt hatte, niemand soll mir aber auch
das Bewusstsein rauben, dass mein Streben und Wirken nicht ganz
umsonst gewesen ist und der Weg, auf dem ich der Wahrheit nachge-
gangen bin, nicht als ein Irrweg sich erweisen wird.

Februari 1889 ('). — Dass wir, ich und meine Schwestern vor allen,
dann auch die Freunde die Du hier hast, Fuchs, Hettner, Knoblauch,
Hensel, P. Dubois und der kiirzlich heimgekehrte Hansemann uuns herz-

pensées et de leurs efforts incessants, mais ¢’est encore une invitation directe a la
jeune génération d’abandonner leurs guides actuels pour se grouper autour de lui
comme autour de I'apotre d’un nouvel enseignement qui doit étre fondé. Vraiment,
il est triste, et cela me remplit d’une amére douleur, de voir un homme dont la
gloire est hors d'atteinte, se laisser entrainer par le sentiment bien justifié de sa
propre valeur, a des manifestations dont il ne semble méme pas comprendre eflet
blessant pour d’autres. Mais c’est assez sur ces choses, dont je ne te parle que pour
te faire comprendre pour quels motifs je ne puis plus avoir désormais le méme
plaisir qu’autrefois & mon enseignement, méme si ma santé devait me permettre de
le poursuivre encore quelques années. Tu n’en diras rien; je ne voudrais pas que
d’autres, qui ne me connaissent pas si bien que toi, puissent voir dans ce que je dis
I’expression d'un sentiment, qui, en fait, m'est étranger. Nul ne sait mieux que
moi-méme & quelle distance je suis resté loin du but que je m’étais fixé dans 'en—
thousiasme de la jeunesse, mais personne non plus ne pourra m’enlever le senti-
ment que mes cfforts et mon activité n’ont pas été tout a fait stériles et que le
chemin sur lequel je me suis engagé a la recherche de la vérité ne se trouvera
pas étre une voie d’erreur.

(1) Février 1889. — Je n'ai pas besoin de t'assurer combien ton succés nous a
réjoui le ceeur & moi et & mes sceurs, avant tous, ainsi qu'a tes amis d’ici, Fuchs,
-Hettner, Knoblaich, Hensel, P. Dubois et Hansemann, récemment revenu. J'en
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lich iiber Deinen Erfolg (') gefreut haben, brauche ich nicht za versi-
chern. Ich ganz besonders empfinde dariiber eine wahre Genugthuung;
haben doch jetzt competente Richter das Verdikt abgegeben, dass es
mit meiner « treuen Schiilerin », meiner « Schwiiche », doch nicht « eitel
Humbug » ist.

Mespanmes er Messirurs,

Vous voudrez bien me permetire de terminer ici cette courte
revue des lettres de Weierstrass Sonja. Comme vous 'aurez bien
compris, la tiche que je me suis proposée n’a pas été de retracer
avec des couleurs propres et d’aprés ma conception personnelle les
relations de Weierstrass et de Sophie Kowalevski. J'ai laissé
Weierstrass parler lui-méme. Il nous a entretenus non pas seule-
ment de ses relations personnelles avec Sonja, mais aussi du méme
coup de toute une série de questions de la plus haute portée scienti-
fique. A ce dernier jour de la session du second Congrés interna-
tional de Mathématiques, lequel a rassemblé un si grand nombre
de mathématiciens, j’ai pensé qu’il y aurait peut-étre intérét
écouter la parole d'un homme que nous sommes unanimes, je pense,
a reconnaitre comme le plus grand, avec Riemann, des mathéma-
ticiens du demi-siécle qui vient de s'écouler.

éprouve tout particuliérement une vraie satisfaction; des juges compétents ont
donc maintenant prononcé le verdict que ma « fidéle éléve », ma « faiblesse »,
n’est pourtant pas un « vain humbug ».

(1) Sonja avee recu le prix Bordin de 'Académie des Sciences de Paris la-veille
de Noél 1888.
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COMMUNICATIONS.

SECTION I. — ARITHMETIQUE ET ALGEBRE.

SUR

LES GROUPES D’ORDRE FINI

CONTENUS DANS LE GROUPE LINEATRE QUATERNAIRE REGULIER;

Par M. Ltox AUTONNE (Lyon).

Désignons par la notation (a;;) ou

gy ca. Qyp
(... aij N Ll=1,2, ..., 0,
T e Apn

la substitution linéaire n-aire
dop=|2; agjx;|,

o le déterminant des constantes a;; est 2£ o.

Nommons S, un groupe de o, et €, le probléme qui consiste
construire tous les S, d’ordre fini.

®, a été depuis longtemps résolu par MM. Klein, Jordan et Gordan.
¥y a é1é résolu par M. Jordan (J. /. r. . a. M., t. LXXXIV). Plus tard,
dans un Mémoire couronné par I’Académie de Naples, M. Jordan a donné
une Méthode générale pour la résolution de %, el montré que tous
les S, d’ordre fini appartenaient 2 un nombre limité de types. L'appli-
calion de ces procédés généraux a permis de poursuivre assez loin la
construction effective des S;. Toutefois, M. Jordan s’est arrété devant
une inlerminable discussion arithmétique ol les hypothéses a examiner
se présentaient par milliers.
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Nous croyons que le probléme @, général continuera longtemps encore
a défier les efforts des géomeires. Par contre, nous espérons un meilleur
succes dans un cas particulier, assez étendu du reste, qui fait I'objet de la
pI'éSeHLB COmml]iliCaLl‘.On-

Supprimons dorénavant U'indice 4 dans ®;, S;, ;.

Toute ol ui admet pour invariant I'expression
aydr)—z dey — xy dry ==yl

sera réguliére par définition. Les réguliéres forment un groupe régulier.
Je m'occuperai de construire les S réguliers d’ordre fini.

Les réguliéres ont été introduites par moi dans le Mémoire sur la
théorie des équations différenticlles du premier ordre et du premier
degré, présenté en 18g0 4 I’Académie des Sciences de Paris, et inséré au
LXI® Cahier du J. . P. Plusieurs résultats relatifs aux réguliéres, dus i
Lie ou 4 Knothe, se trouvent aussi dans le troisitme Volume (p. 258 el
suivanles) de la Theorie der Transformationsgruppen, 1893, de Lie-
Engel.

L’interprétation géométrique des réguliéres est simple quand on prend
les & pour les coordonnées homogénes d'un point de l'espace.

Nommons capital un certain complexe linéaire et capitale toute droite
complexe. Le groupe régulier permute transitivement les b capi-
tales. Appelons normal un tétraédre ol deux aréles sont conjuguées par
rapporl au complexe capital etles quatre autres sont capitales. Le groupe
capital permute transitivement les dicers tétraédres normaux. Le
tétra¢dre de référence est normal. 5i la réguliére b transforme la figure g
en la figure g’, je dirai que g vient ricuriEreEmENT sur g'. Si A et B sont
des symboles de substitutions ou de groupes, la relation

d—1AJd =B .
veut dire que A se met wiouLiEREMENT sous la forme B. Tout tétraddre
normal peut venir réguliérement sur celui de référence et les considéra-
tions géométriques permetlent de placer, sans sortir jamais de la régula-
rité, les groupes S sous une des formes simples telles que celles ci-aprés,

La présente matiére se rattache & une aulre qui, au premier abord, en
parait bien éloignée : c’est la théorie des substitutions =, planes, biration-

D "\
2]

o= ’ ‘ (2215273):
\

o u(3.)

nelles et de contact
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ot les ¥ et les ¢ sont les coordonnées ponctuelles ou linéaires homogénes
dans un plan, les ¢ et les y sont des formes biternaires ayant les dimensions
marquées par les entiers posilifs p, p', ¢, ¢'.

La construction des groupes I', formés de substitutions ¢ ol aucun des

qualre entiers p, ¢, p', g' ne dépasse 2, coincide avec celle des groupes
qualernaires réguliers.

Voici maintenant la théorie algébrique des réguliéres & = (a;)) :

Si Ton pose.

i dyj

ay; Ay
les conditions de .r-(f’g'ula.r'iié sont
r2) = (34), 23) == (23}, Y= {4
( )' (31) (q )’ (J.; (H)’ (41) (12)— (34) = 1.
(34) = (12), (31)' =1(3r), (42)=(42)
IT.

Si A= (@) est la transposée de la réguliére b = (ay;), on a

B I
0w ¢ est la régulicre
B 1-?1'1 €Ty Ty Ty
) | @y —axy —ax, Ty |
I,

Toute réguliere d’ordre fint peut étre régulicrement mise sous
Jorme canonigue

e riwil [=1,2,3, 4,
avec
P ry=rar,=1
Les r sont, bien entendu, des racines de 'unité.

Jai constrait aussi les groupes réguliers d’ordre fini décomposables.
Voici dans quel cas M. Jordan dit qu'un groupe 2 —aire est décomposable :
les n variables, convenablement choisies, peuvent éire réparties en
systemes T, T', ..., tels que toute substitution du groupe remplace les
variables du systéme T, par exemple, par des fonctions linéaires homo-
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génes des variables d'un autre systéme, tel que T'. Alors T et T con-
tiennent évidemment le méme nombre de variables.

Voici 'énumération des groupes réguliers décomposables d'ordre fini.
On a omis, pour abréger, quelques groupes holoédriquement isomorphes
a des groupes de permulalions enlre quatre lettres. Il va sans dire que
tous les groupes ci-dessous ont éLé régulierement mis sous leur forme la

plus simple.

TyrE 1.
Réguliéres de la forme
@1y Q43 o o
g az 0O 0o
o 0 azy ag
\ 0 Oy Ay

ou
@y g Ayy Az,
== = 1.
3} Cln) Qyz Ay
les groupes P et Q dérivés des binaires
a s Qyy  Gyg\
11 12) et 33 .‘h—)
@21 a3 . Ay gy
étant d’ordre fini,
Tyee II.
S s’obtient en combinant avec un sous-groupe A du type I la régulicre
o 0 by by
0 o by by

b3y b3a o o
by bys © o

(0:3 bn)_ by b3y o
\bas ba/  \ D, bu)i ’

uh2 fait partie de &, lequel est permutable & v et contient la moitié des
substitutions de S. Nommons X et @ les binaires

_ (b by o — by by
b b)) P T by b))
et P et Q les groupes qui figurent dans X. On a

P = ELQIQ‘IJ‘, . Q == }._1 P:‘.
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Type III.
Réguli¢res de la forme
A o B o :
o rD o rG - A B
5 o D o ! ! e b
o rB o rA
oli le groupe binaire
A BY
(¢ )
est d'ordre fini.
Tyer 1V.

S s’obtient en combinant avec un sous-groupe ¥ du type I la réguliére
unigue

o a o 3

0d ot o | a 8 |
e B >, ot =| L

o vy o & [y 8|

28 o px o,

®? figure dans . ¥ est permutable 4 ® et contient la moitié des substi-
tutions de S. .

Il est remarquable que, dans la structure des groupes réguliers décom-
posables d’ordre fini entrent des groupes binaires, mais jamais ter-
naires. Celle circonstance est particuliérement heureuse dans la
constraction, que j'ai abordée, des groupes réguliers indécomposables.
En effet, d'une part, d’aprés la méthode générale de M. Jordan, la
recherche des groupes indécomposables repose sur celle des décompo-
sables et, d’autre part, les groupes ternaires sont plus compliqués que les
binaires, tout en présentant, jusqu’d ce jour, certaines incertitudes dans
leur énumération compléte (*).

(1) Postérieurement au Congrés, j'ai précisé toute celte théorie dans une Note
insérée aux Comptes rendus du 11 mars rgoi, ct dans un Mémoire qui paraitra
dans le Journal de Mathématiques.
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REMARKS ON KRONECKER'S MODULAR SYSTEMS;

By Harmis HANCOCK.

Je voudrais dire quelques mots sur le Mémoire intitulé : Some remarks on Kro-
necker's modular systems, que j'ai Ihonneur de présenter au Congrés des Mathé-
maticiens.

On dit qu'une fonction entiére rationnelle o () aux coefficients entiers
q f

r{.(;r:) = @y + @yt @yt a,

est réductible en facteurs par rapport & un nombre entier premier p, s'il est
possible de trouver des fonctions entiéres rationnelles ¢, (x), @;(2) et y () a coef-
ficients rationnels entiers, telles que

(@)= vi(2) pa(z)+ py(=)
ou

o) =9 (x)o(x) par rapport au module p.

SiI'on ne peut pas trouver de telles fonctions, on dit que ¢ est irréductible par
rapport au module p.

On peut toujours trouver un entier « tel que

Ayt =1 (mod p)
et, par conséquent, on peut écrire
ap{z) = P(z)+ pl(z),

%(x) étant une fonction rationnelle entiére a coefficients entiers et ®({x) ayant la
forme

Z)=1.20+ Azt l+ Ay 24, + A,
Lo )

ol Ay, Ay, ..., A, sont des entiers plus petits que p.

On sait que dans le domaine des nombres rationnels tous les nombres entiers peu-
vent étre distribués par rapport au module p enp classeset que chaque entier appar-
tenant & Y'une des classes est congruent (mod p) a l'un des entiers o, 1, 2
P—1, et 4 un seul. .

Si maintenant on multiplie la fonction ¢(z) par tous les entiers possibles, on
voit que les fonctions résultantes peuvent étre distribuées en p classes par rapport au
module p, et que 'on peut prendre comme fonction représentative de chaque’classe
les fonctions que Pon obtient en multipliant la fonction ® () respectivement’ par

IBEEEE]

It
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les entiers o, 1, 2, ..., p —1 et en réduisant les coefficients des fonctions ainsi ob-
tenues par rapport au mod p.
On définit le systéme modulaire

[p; g ()]
comme le complexe de toutes les fonctions linéaires de p et ¢ ()
pz(z) -+ o(z)p(x),

dans lesquelles a() et B(2) sont des fonctions entiéres de # quelconques a coeffi-

cients entiers.
On voit immédiatement que les deux systémes

[p, o(z)] er [p, ®(x)]

veprésentent le méme complexe de fonctions et, par conséquent, on dit que les
deux systémes sont équivalents et U'on écrit

[p o(z)]en|p, ®(2)].
Dans la fonction

P(z)=ar+ A1+ Ay .+ A,

les entiers Ay, Ay, ..., A, peuvent avoir I'une quelconque des valeurs o, 1, 2, ...,
p —1 et, par conséquent, il y a p® fonctions de la forme ®(xz).

Les pr-—1 fonctions autres que ®(x) peuvent étre appelées le systéme complet
des résidus incongruents par rapport au systéme modulaire [p, ®(x)].

Les caractéristiques de ces fonctions sont: 10 la différence de deux quelconques
d’entre elles n’est pas = o[ mod p, ()], et 20 toute fonction entiére en = & coef-
ficients rationnels entiers est congruent & l'une de ces fonctions par rapport au sys-
téme modulaire [p, ®(x)], et a4 une seule.

Si 'on désigne les ¢ = p»—1 fonctions par Ry, Ry, ..., Ry, on a

k=v k=v
(1) [J—rro=]]@-Rr) [mod.p, ¢(2)]
' k=1 k=1
(Zétant =1, 2; ..., ¢)
et
(2) Ri=1 [mod p, ®(=z}],

qui est une forme générale du théoréme de Fermat.

Si ®(w) est une fonction irréductible par rapport au module p, le systéme
[p, ®(x)] est un systéme modulaire premier.

Dans ce cas, si r désigne une quelconque des ¢ fonctions, et si

G(ry=dolm)rm+dy(z)rm-t+. +dp(z)=0 [mad p, ®(2)],

ot Yo(z), d1(2), ..., Ym(x) sont des fonctions entidres en & coefficients ration-
nels entiers, la congruence ne peut avoir plus que m racines incongruentes

{mod p, ®(2)]-
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Puisque
Rt—i1=o0 [mod p, ®(2)]

a v racines, savoir les ¢ guantités Ry, Rs, ..., Ry, on voit que cette congruence
peut étre mise sous la forme

R —1= l] [R—(AianTt4 Ayan—24...4Ay)] [mod p, ®(2)],

le produit étant étendu & toutes les fonctions que I'on obtient en remplagant les A
par les différentes valeurs o, 1,2, ..., p—1
Il résulte immédiatement que

—IEH(AIZ"“'1+;\gw'1*2+...+AH) " [mod p, #(x)],

ce qui est une forme générale du théoréme de Wilson.

De ce que nous avons dit il résulte que les fonctions entiéres en z, i coefficients
rationnels entiers, jouent, par rapport au systéme modulaire [p, ®(z)], le méme
role que les nombrcs rationnels entiers par rapport aux nombres premiers comme
modules dans la théorie élémentaire des nombres. )

Les résultats que mous avons trouvés ne différent que par leur forme de ceux
donnés par Serret (Cours d’Algébre supéricure, 1.11, Chap. III), et 'on trouvera
que les résultats généraux, développés dans le Mémoire que je présente au Congrés,
peuvent étre regardés soit comme extensions des théorémes de Serret, soit comme
généralisations de la notion de Gauss sur un seul module, et c’est naturellement ce
dernier point de vue qu’a suivi Kronecker.

De ce cas simple de I'équivalence

[.y, ?("W’")]W[Ps ‘19(.1,‘)1,

on voit que.la question qu'il faut considérer d'abord est la réduction du systéme
modulaire de la forme

[”-"17 My, « .oy mp.a.fl(x)r_ 1f?(‘7"}]:

dans lequel les éléments my, m,, ..., ny, sont des entiers rationnels et les fonc-
tions fi(2), fa(®), ..., fo{®) des fonctions entitres en z a coefficients entiers,
dans leur forme la plus simple. :

Cela a été le sujet d'un Mémoire qui a paru dans le Journal de Cre!le vol. 119.

Dans un autre Mémoire qui va paraitre prochainemént dans le méme journal, j'ai
considéré la réduction des systémes modulaires ol les éléments sont des fonctions
entiéres de plusieurs variables & coefficients entiers rationnels, et la decomposmon
en systémes modulaires premiers a été effectuée.

Ces fonctions & plusieurs variables et ces systémes modulaires premiers occupent
dans le domaine général de la discussion Ja méme place que les nombres entiers
rationnels et les nombres premiers dans le champ usuel de linvestigation, et I'on
trouvera que les théorémes, dans la théorie usuelle des nombres, sont des cas parti-
culiers de cette théorie plus générale.

Le Mémoire que j'ai I'honneur de présenter au Congrés considére le cas plus gé-
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néral encore ou les coefficients,; au lieu d’étre des nombres entiers rationnels, sont
des nombres entiers algébriques. ‘

Les résultats sont obtenus par 'extension des idées de Dedekind et Kronecker
et I'on a obtenu de nouveaux résultats que, jespére, on trouvera intéressants.

The study of the cyclotomic equation was for a long lime an interesling
subjet for mathematicians. Proofs of its irreducibility are given among
others by Gauss, Kronecker, Eisenstein and Schénemann (see Notice by
Schénemann in Crelle’s Journal, bd. 4o; p. 18\8). Later Kronecker
[ Grundziige einer arithmetischen Theorie der algebraischen Gréssen,
§4 (Crelle's Journal, bd. 92)], derived a general criterion for the irredu-
cibility of an integral function of any number of variables with rational
integral coefficients.

The notion of the irreducibility of an integral function of one variable
with rational integral coefficients with respect to a prime integer as a
modulus is found in Schénemann’s paper (Crelle’s Journal, bd. 31,
p- 269); while the more general idea of the decomposilion into factors of
such a function with respect to two moduli p, ¢(2), of which p is a prime
rational integer and 9(z) an irreducible (mod p) integral function with
integral coefficients, is given by Serret (Cours d’Algebre supérieure,
t. II, Chap. 1IT).

The extension of this notion to an integral function of any number of
variables with rational integral coefficients with respect to a finite number
of moduli that are integral in the variables in question with rational inte-
gral coefficients, is a natural consequence.

Until the beginning of this century investigalions relative to the theory
of numbers were confined to rational numbers.

The early researches of Abel, Gauss, Cauchy, Jacobi and Eisenstein in
the theory of algebraic numbers were continued especially by Kummer,
Dedekind and Kronecker ; Kummer by the introduction of the ideal prime
numbers overcame for the simple case of the algebraic numbers that are
derived from the roots of unity many of the difficulties that the older ma-
thematicians had encountered; while Dedekind, extending the ideas of
Kummer, founded for the general algebraic numbers an independent
theory as was done by Gauss for the usual rational numbers.

With the introduction of the algebraic numbers into the investigation
Galois, Jordan and other mathematicians wished these quantities to hold
a similar position as the usual rational numbers hitherto had done and there-
fore they widened, so to speak, the domain of rationality by allowing to
‘appear in'such domain the rational functions of these algebraic numbers.
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Kronecker always with the idea of arithmetizing the problems which he
considered, made the integral functions of any number of variables«with
algebraic integral coefficients take the place of the oa‘dinéry rational inte-
gers in the usval theory of numbers and in his realm of rationality these
functions occupy the same place as the rational numbers in the hitherto
restricted realm.

The more extended notion of the decomposition into factors is with
Kronecker the reduction of an integral function y of several variables
with algebraicintegral coefficients into its irreducible factors, where such
areduction is taken with respect to a finite number of moduli which are
likewise integral functions of the variables in question with algebraic in-
tegral coefficients.

‘We have to consider therelore, on the one hand, the nature and charac-
teristic properties of the function  with respect to a system of moduli
and, on the other hand, the nature and properties of the modular system
itself. _

The reduction of such a modular system to its simplest form and the
derivation of the prime modular systems is a problem of the first impor-
tance. IFor it will be found that the [unctions, in the realms of investiga-
tion considered, have with respect to the prime modular systems many of
the analogous properties that the usual rational numbers have with re-
gard to prime rational integers, and the prime modular systems have
with respect to the modular systems the same relations as the prime
integers Lo the ordinary rational integers.

Jacobi (Gesammelte Werke, bd. I, p. 379) wished to give to lhe trans-
cendenls

f('r)dr

where X is a function in xz of degree greater than the fourth, the name
Abelian transcendents, since they were first introduced inlo analysis by
Abel, who showed their great importance by a comprehensive theorem.
This theorem Jacobi calls A4bel’s theorem since it carries « das gansze
Geprége seiner Gedankentiefe ». '
We do not consider it less appropriate to call these modular systems
Kronecker’s modular systems ('), as they characterize so much of the
work done by that great mathematician : on the one hand, in the extended
realm of rationality such systems appear in the same relalions to the

(') Cf. Quart. Journ. of Mathematics, vol. XXVII, p. 147

Droits reservés au Cnam et a ses partenaires



166 SECONDE PARTIE. — CONFERENCES ET GOMMUNICATIONS. — SECTION I.

integral ‘algebraic functions with integral algebraic coefficients as the
ordinary rational integers do as moduli in the usual Gaussian theory
of numbers and thus the whole theory of numbers is extended in great
generality; on the other hand, they stand in direct connection with two
other great mathematical theories that were particularly interesting to
Kronecker, the theory of algebraic functions and their integrals (lhe
abelian integrals) and the theory of algebraic equations (the principles

of Galois).
The extended notion of division.

We say that an algebraic integer p. belonging to the algebraic realm Q
is decomposable into factors, if Lhere exist in Q two algebraic integers y.,
and p, different from the algebraic unities in Q, such that

w=upe;  hence  norm(w) or  N(u)=N(um) N(m),

or, denoting these norms respectively by the rational integers m, m,, m.,,
we see that m = mm,, so that the divisibility of . into the two factors g,
and ., corresponds to the decomposition of the rational integer m into
the two factors m; and m,. Also corresponding to the case where the
norms are prime in[egers, there clearly exist algebraic integers that are
not decomposable into factors.

But here we meet with the difficulty : the decomposition of an alge-
braic number into its irreducible factors is not unigue. '

Take for example the realm @ = P(9), where 0, a root of the equation

62+ 5 =o,

is adjoined to the realm of rational numbers.

In this realm, 6 = 2.3 = (1 4+ 0)(1 — 6), and in both cases the factors
are irreducible [¢f. Depexinp ('), p. 451]. ‘

To overcome this difficulty we make use of the following extended
notion of division which was initiated by Kummer : In the realm of ra-
tional numbers P we have the conception of what is known as the great-
est common divisor of several numbers a, b, ¢, .... This divisor d we
express in the form '

d=axr-+by+cs—+...,

where z, y, %, ... are delerminate integers.

(*) I shall use the word Dedekind as a simple method of refering to Dirichlet’s
Zahlentheorie by DEDEEIND, 4 edition.
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We may say also that a rational number m s divisible by the complex
@, b, ¢, ..., when we can determine integers z', »', 5/, . . ., sach that

m=ax' + by + ¢z +....

But clearly so long as we remain in the realm P, this conception of
divisibility is superfluous, since any number that is divisible by the com-
plex &, b, ¢, ..., is divisible by the greatest common divisor d of these
numbers, and every number that is divisible by d is divisible also by the
complex e, b, ¢, ....

Hence, so long as we remain in the realm of rational numbers, the con-
ception of the divisibility by the complex «, b, ¢, ... is identical with
that of the divisibility by d.

The number m is divisible by d if there exists an integer x such that
m=dzx.

We have also the theorem, that, if the product of several integers is
divisible by a prime integer p, then at least one of the factors is divisible
by p; from this it follows that every integer is decomposable inlo a pro-
duct of a finite number of prime integers in one and only one way.

If the realm Q is an arbitrary algebraic realm, then also an algebraic
number p of this realm is said to be divisible by an algebraic integer 8 of
this realm, if we can delermine within @ an algebraic integer &, such
that == 55

Also the algebraic number w is said to be divisible by the complex of
algebraic numbers «, 8, y, ... in Qif it is possible to determine in this

)
vealm algebraic integers §,4,%, ..., so that

po=af -+ By =yl +. ...

But this conception is no longer superfluous; for suppose that & is
another algebraic number by which the algebraic numbers a, 8, v, ...
are divisible, then every number that is divisible by the complex «, 3,
Y, ... is also divisible by 3. The inverse, however, is not true : every
number that is divisible by 8 is not divisible by the complex a, B, v, . ..
since, in that case, 3 must have the form

?

8= ab' - B+ +...,

where §', 7/, T, ... are algebraic integers in Q, and, on this assumption, &
is therefore divisible by every divisor common to the numbers «, 8,7, .. .
and must consequently be the greatest common divisor of these numbers

in the sense customarily given in the theory of rational numbers.
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But in this sense a greatest common divisor of the algebraic numbers
a, 3,7, «... only exists so long as we remain in the infinite realm of all
algebraic numbers. If then we leave the realm Q out of consideration, there
exists something which is the analogon of the greatest common divisor of
rational numbers. On the other hand, unless we take a fixed finite realm
of rationaliLy, to which all our quantities must belong, there exist no
such thing as prime integers and the notion of the unique decomposition
of an integer into its prime factors is lost; for so long as we remain within
the infinite realm of all algebraic numbers, if « is an algebraic integer,
then o = ‘/;:\/&, and \f& is also an algebraic integer. Consequently every
algebraic integer is decomposable into factors ad infinitum.

Hence the notion of divisibility by the complex of the algebraic num-
bers 2, 8, %, ..., is no longer superfluous, when we limit ourselves to a
finite fixed realm Q; and we may therefore say that an algebraic num-
ber . is divisible by the complex a.B,y, ..., if it is possible to deter-
mine algebraic integers £,4, ¢, ..., such that

w=oat + By +L+...,

where all quantities introduced belong to the real Q, the coefficients
e, 8,7, - .. of the linear form being fractional or integral, while the
variables £,1,¢, ... are integers.

The collectivity of the algebraic numbers that take the above form when
the quantities §, 1, {, ... are varied and given rational integral values
is called by Dedekind (p. 494), a modul and denoted by[e, 3,y,...]=1,
say.

The quantities «, 3, v, ... are called the elements of the modul.
We say then that a number p is divisible by the modul [, 8,v,...],
when we may so determine rational integers z, ¥, 5, ... that

me=aw 4+ By s 4.

and the modul b= (B, 8,, B3, ...) is divisible by the modul a when
each element of b is divisible by the modul & or, what is the same thing,
when every number that is divisible by b is also divisible by .
If all numbers that are divisible by the modul a are expressible in the
form
@ By A Ay Ty~ o Ay Ty

where %, s, ..., z, are ralional integers and the coelficients a, oy, ...
%, are numbers that are divisible by the modul a, then the modul ais
called a finite modul of the rank n and the quantities (o, #,, . .., a,) are
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called a basis of this modul. As we have to do only with finite modauls,
we may determine for every modul a definite basis.

All the algebraic integers that belong. to the algebraic realm Q of the
n'* degree form a finite modul of the a™ rank, which Dedekind (p. 537)
denotes by .

Let w,, ws, ..., w, be a basis of the modul ¢. Then if £, 7, ... are
algebraic integers in Q they are expressible in the form '

v ! !
E=wiz 4+ waat .+ wuxll,

= w2 A P o wal,
................................ )
S , o . - . .
where 2\, 2", ..., 2, 2P, 2, .., 2 ... ave rational integers.
If then
to= af —+ B L+
we have
p=aw rVrawgr . raw, B P - Bwaa L B,
Since awy, oWy, ..., Bwy,... are numbers belonging to the realm Q, it is

seen that 1 is expressible as a linear form of a finite number of rational
integers with coelficients that belong to Q.

As this number is finite, and as the rank of a finite modul in Q cannot
be greater than n, the degree of @, and as ¢y, w,, ..., w, are independent,
so that the rank is not less than n, it follows that all algebraic num-
bers in Q of the form

af + B +vi+...,

where a, B, v, ... are integral or fractional and the numbers &, 1,
€, ..., are integral, constitute a modul of the n** rank in the realm Q
of the n* degree. .
This s_yslém of numbers 15 called an {deal and denoted by (2,8, v,...).
If then o, 8, v, ... are quantities of Q, then the ideal (a, 8,v,...)

’ I
consist of all numbers which may by expressed in the form

() 2k B (L

where &,4,, ..., are integral algebraic numbers in Q, while the
modul [, 3, v, ...] consists of all those numbers which have the form (1)
for integral rational numbers §, 1, ¢, .. ..

With Dedekind (p. 493) we use the symbol > as that of division, so
that ¢ > & means that w is divisible by b. '
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A modulus ¢ which has the two properties :

1° o>,

2° I>x,

is called‘by Kronecker (Grundsziige, § 5) an art or species and by
Dedekind (p. 305) an order (Ordnung).

Since every realm except the ¢rivial case that consists of only zeros
contains unity, it follows that

>0,

and since also ¢p, or ¢2>> ¢, it is seen that ¢ is a species.
. [ . .. . .
Fuarther since v° = = the ideal ¢ is its own species and is called the

principal species of the realm Q. This species takes the same place in
the realm Q as unity does in the realm of rational numbers.

Modular systems.

%y« M, be integral functions of any
number of variables with algebraic integral coefficients that belong to the
realm Q, the integers y and v being finite.

As above, we say that A is divisible by the modular system

My, M,, ..., M,], when
A=o [mod My, My, ..., My],

Let A; My, My, ..., My; M, M

that 15, when
A =M X;+ MyXa-t...+ MyX,,

where X,, X;, ..., X, are also integral functions of the variables in
question with algebraic integral coefficients that belong to the realm Q.
If we have the p- congruences

Mp= o[mod M}, My, ..., M,] (h=1,2,..., ),
the modular system [M,, M,, ..., M,] is said to contain the modular
system [M}, Mj, ..., M,].
From this it is seen that a modular system contains. another modular

system when each element of the first system is divisible by the second
system; that is, if

[My, Mg, ..., My_] =o[mod M|, M}, ..., M}],
or, using Dedekind’s symbol of division, if
) g J ’

[My, My, .00y My ] > [MY, MY, L, M
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[f also .
[MYy, My, ..o, M > [My, My, ..., M, ],

we have the equivalence
[Mq My, .., My]on [ M, MY, .., M),

From what we have written above it appears that a modular system
contains another modular system when it is divisible by that system.
Hence, the two conceptions of being divisible by and of being contained
in, which are usually the opposites of each other, are here identical.

It is evident that any system [M;, M, ..., M,] may be transformed
into an equivalent system by adding to or subtracting from any element
of the system a linear function of the other elements, where the coeffi-
cients of the linear function are integral functions of the variables with
algebraic integral coefficients that belong to the realm Q; and any ele-
ment may be adjoined to a modular system or dropped from it when this
element is divisible by the remaining elements (in the sense of divisi—

bility employed above).

The reduction of modular systems.

In the realm of rational numbers the system
[6, 15, 18] en[6, 15— 2.6, 3.6] e~ [6, 3]en[3].

In general, the greatest common divisor d of the integers a,, aa, ...,
@, may be expressed in the form

d=a1x1-+ arxs+...- apy,

where z,, #,, ..., £, are determinate integers. Hence we may adjoin
the element d to the modular syslem (@, @, - .., @,), which then be-
comes (d, @y, @z, ..., a,); and since a,, @s, ..., @, are all multiples
of d, these elements may be dropped from the system, leaving

[a; @y, ..., ] n[d].
Consider next the modular system
[”‘1! 12]

where a,, o, are algebraic integers of the realm Q, that is, quantities be-
longing to the realm of integrity [¢], since all integers of @ are divisible
by ¢.

Droits reservés au Cnam et a ses partenaires



172 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. —— SECTION I.

As any element may be added to a modular system when this element
is divisible by the elements of that system, it is seen that

[a; as]en [y, 25, 12y, Eaxa],

where &, and &, are algebraic integers in Q.
In a similar manner
[ar, @3] v [T.ay, T, ey, vas],
¢ being the principal species which contains all the algebraic integers of Q.
Further since 1> ¢, it follows that
[ar; @a] en[eay, vaa].

An ideal v may be uniquely decomposed into its prime factors, so that

vo = ph gl .,
where p,, Pa, ... are prime ideals and {,, /,, ... ralional integers.

If two ideals ¢8, and ¢f3, are relatively prime, then their greatest
common divisor is ¥ and may be written (Depexinp, p. 556),

pBi+03, =
From this it is seen at once that the syslem [pa,, va,] is equivalent to
the system (P%.9¢%, ...), where the product of ideals p%, g¢, ... is common

to both ideals vao;, va,.

Forif
poy =pf.ogl. .,
and
@y = ]Jk-qf- o« lg,

where 1, and 0, are ideals that are relatively prime to each other, then

[vay, vag]emn [peaaleong; phogloiags phog/e o+ pFogl. . L0,

e [pEaaloay; pEal e pEall el e [pEagl v ]enpRagf. L]
It follows at once that the modular system
fary @2 ooy anls

where the elements o, ., . . ., @, are integral quantities of the realm [v];
is equivalent to the system '
Tphopke. ],

where £y, fia, ... are rational integers, and the prime ideals p,, pa, .- .
occur Lo these powers in each of the elements

Py, Poay o ovy Ve

Droits reservés au Cnam et a ses partenaires



H. HANCOCK. — REMARKS ON KRONECKER'S MODULAR SYSTEMS. ]’75

In particalar, if there is no ideal common to all the elements Vo,
Vg, -+ -, ¥, then the system

[ala Zay en ey 1JL|V3F9]-

The analogon in the realm of rational numbers is the system
[ai! Qgy «ooy Ap I w“d [I]:

if there is no divisor save unity common Lo all the integers a,, ., ..., a,.

Reduction of the modular systems which have as elements integral functions of
one variable with algebraic integral coefficients that belong to the realm Q.

The integral gquantities that appear as elements in these systems are fo
gral q PP J
the form
Ayt A= ol - ay,,

where oy, 2, ..., @, are algebraic integers of the realm Q.
‘We may therefore say that such quantities belong to the realm of inte-
grity [v, z].

Consider first in the realm of integrity {1, ] the modular system
[azxt+ cx +— e, bx + d],

where a, ¢, e, b, d are rational integers.

We may assume that the two elements ax®-- ¢z + e and bx +- d have
no faclor in common, since such a factor could at once be taken out as a
factor of the modular system.

Owing to the identical relation

(ax?+ca+e)b2=(aby + be — ad) (bz + d) + b*e — bed + ad?,
it is seen that the positive or negative integer

m=~be— bed+ad?=o [mod az?+ cx -+ ¢, b + d|

may be added as an element to the system [ax®+- cx -+ e, bx + d] with-
out altering the equivalence. '

Consider next the same system in the realm [¢, 2], where now a, ¢, e,
b, d are algebraic integers in Q. Then as above, if we assume that the ele-
ments ax?+ cx + ¢ and bz -+ d have no common factor in this realm,
the algebraic integer

p=b?e—bed + ad?

1s different from zero.
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Since on the other hand

o [mod ax?+ cx + e, bx + ],

Il

il

it is seen that p may be added as an element to the given modular system,

which becomes
[, axr®+ cx + e, br + d].

Further since it does not change the equivalence of this system, if we
multiply each element by ¢, we may consider the coefficients of the
elements either as the integral numbers a, ¢, ¢, &, d or as the integral
ideals va, ve, ve, vh, vd, since (see DepErinD, p. 542) the divisibility of
the algebraic integer A by the algebraic integer w is identical in meaning
with the divisibility of the ideal ¢ by the ideal ¢ p..

Suppose that the ideal § is a common faclor of the ideal va, ve, ve,
so that vaz®—+ vex 4+ ve = J(va' x*+ oc’z -+ ve'); then it may be
shown that if g is not a divisor of the ideal ¢ (a divisor which is a factor
of vu in the sense employed in the domain of rational numbers), the
element §(va' 2?4+ vc'z + ve') may be replaced in the modular system
by the element B(t:a’.;u? + e’z -+ ve'), where 8 is a determinate ideal which
is a divisor of ¢, and that by this change of the elements, the equivalence
of the modular system has not been altered.

In order to prove this let & be an ideal which is the greatest common
divisor of the ideals § and ¢ so that therefore (see Depexinn, p. 554),

8=+ ru
The system
lop, n(va’2-+vc'x +ve'), br + d]

is, owing to the presence of the element ¢, equivalent to

[ 1y a(va’ @+ oc' & + ve'), pu(va Tl o'z +ve'), bx 4 d]
»[pw, a(va’'z? - vc'x 4-ve'), (9 -+ v ) (va'z?+ve'w + ve'), br + d|

w v, qva’z2+ ec'z 4+ ve'), 0(va' @+ ve'w + ve'), b + d],
which system, since § is a muliiple of 8, is equivalent to
[vy, S(a'z2+ 'z +¢€'), bz +d].
In the modular system
[op, az?+ cx + e, bz + d],

suppose that ¢pu=7p,.p, where p, and P, are ideals that are relatively
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prime to each other; and for brevity write

Jilz) = az?+ cx + e,
Ja(w) = bw +-d.

We say then that the system
[v1 f1(2), fo(2)]
is equivalent to the product of the two systems
[po fi(@), fa(2)] and [y, fi(2), fa(2)].

For the product of these systers is
[pe-p2s pf1(@), pofi(@), pifa(@), poful®), F1(@)?, fa(2)2, fi(@) fa(@)].

Owing to the presence of the two elements p,f,(z) and pof, (z) we
may add (P, + Pa) fi () or ofi (z) to the system; but as of, (z) = fi (),
we may adjoin f; (), and in a similar manner also Ja(z) to the system,
which reduces then al once to

[Pi.92, f1(®), fa(=®)]

‘We may therefore consider instead of the modular system

. [-UH.,f](.T),fi(.ﬁ;')]:
systems of the form

[p:.fl(x)’fﬂ‘rﬂ)

where p is a prime ideal or the power of a prime ideal.

‘What has been proved above for the special values given to f,(x) and
Ja(z) may be proved in general where for £ () and f, (z) are taken any
integral functions of # with integral coeflicients belonging to the realm Q.

If we assume that there is no factor common to both of these functions
(since such a factor may be immediately taken out as a factor of the mo-
dular system), we may by the usual method of the algorithm of the
greatest common divisor determine an algebraic integer p belonging to
the realm Q, which may be added to the system without altering ils equi-
valence.

In general if we assume that in the modular system

[fl(m)lfﬂ(-r)’ . . -:.fn(‘z')]r

the elements are integral functions in x whose coefficients belong to
the realm [¢], and further that there is no divisor common to all the
elements, then by the ordinary method of the algorithm of the
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greatest common divisor we may determine an algebraic integer u
belonging also to [v], which is expressible as a linear function of the
elements of the modular system and may consequently be added as
an element to the modular system without altering its equivalence.

The system becomes then
[.U-a,fl (‘T)v f!(’rJ- fu(x)]

In a similar manner as in the special case considered above, if

where p,, Ps, ... are prime ideals and e,, e, ... rational integers, we
may consider instead of the original system, the system

[-pi‘:fi(x):f‘l(w)s '-'a,fu(""')]r [p'._a’_}’l(a')afl(“r) :fn(x)—l sy

whose product is equivalent to the original system.
Let us consider the system

qu:’ fl(x)’ f‘Z{'T)' . ‘/"(‘L}J

If the coefficients of any of the elements, for example f,(z), have
a common factor, then since the element may be replaced by another ele-
ment in which the factor is a divisor of p%, it is seen that the modular sys-
tem must be of the form

[p, phrgu(e), plega(x), ooy pingu(®)],

where the integers d,, d,, ..., d, are not necessarily different and are
either zero or divisors of e, including unity. We may further assume that
the coefficients of none of the elements gy(z)(i=1,2,...,n) have a
common factor.

In the present discussion we shall take ¢, = 1, and the modular system

of the form
[pu 5’1(55'); 5’2(:8}) vy g”(:rj].

Consider first the simpler form N

h“r 5’1(5'5'): é’z(-z‘)]:

where
£1(x) =@ + =t ...+ a,,
ga(z) = Bozm+ Bt .. 4 By,
nzm.

‘We may assume that none of the coefficients g, oy, « ..y} Boy Biye ey
fBn is divisible by p, since in that case the term containing such a coef-
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ficient may be dropped from the function the, equivalence of the modular
system remaining unaltered.

In the realm of rational numbers the integers

0, 1, 2, ..., p—I,

form a system of incongruent residues (mod p}, and consequently all
integers of the realm may be distributed into p classes, where every inte-
ger belonging to a given class is congruent (mod p) to one and only one
of integerso, 1, 2, ..., p — 1. .

In the same way the integers of Q may be distributed into (¢, p) classes
(Depexinp, p. 509). Denote this number of classes by & = (o, p).

‘Any integer in a class may be chosen as a representative of that class.
Hence if we choose an integer from each of the k classes, we have a sys-
tem of integers, which may be called a representative system of integers
of the realm Q with respect to the modulus p.

Every integer in Q is congruent (mod p) to one of the representatives
of these £ classes. :

The representative system is therefore characterized by the following
properties.

1° The representatives of the system are all divisible by o;

5% The difference of no two representatives is divisible by p;

3° Every algebraic integer in € is congruent (mod P) to one of the
representatives.

The integer 1 being one of the integers in Q helongs to one of the
k classes, and we shall take it as a representative of the class to which it
belongs, and as representatives of the other & — 1 classes we take those
algebraic integers whose norms are less than the norm of p.

There representatives we denote by

Pr=1, Pay - vuvy Phv
1

Since the norm of an ideal mt (DepExinn, p. 564) is equal to (¢, m), it is
seen that N(p) = (v, p) = k. Gonsequently the rational integers N(p,),
N(es), ..., N(px) are all less than £.

If next a function /() integral in 2 with coefficients that are integers
in Q, be multiplied successively by all the integers in Q, the different
funetions that thus arise may in turn be classified with repect to the mo-
dulus p into &k = (v, p) different groups and the k& representatives that
thus arise, are had when we multiply the function f(z) by the £ algebraic
integers that constitute the representatives of the & classes. Further any
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one of the representative functions may be used instead of the funclion
S (), as it is evident that such a function when multiplied in turn by each
of the / algebraic integers thal constitute the representative system will
give the same system of representative functions as found above.

If then gy (z) =apax®+ a; 2" ' <. .. -} a4, it s certain that one of the
representative system of algebraic integers, say p;, is such that

piog=1 (mod p).
Hence we may replace the function g (2)in the modular system

[, g1(a), g2(2)]
by the element

Gi(z)=pigi(w) =+ azt ozt .. + W (mod p),
where o, o, ..., 2, are algebraic integers that are found among the inte-
ZETS Py, Poy - v s Phe

We call G, () the reduced element of g(z). Let §»(x) be the redu-
ced element of g, {x).
It is seen that
[0, s1(x), g2(@)] en [9, Gu(2), Ga(2)]

Since the degree of (,(x) is nol greater than the degree of §, () we have

by division

Gulz) ., Ru(=)
Gulz) ~ YO TGy

where the coefficients of Q, («) and R, («) are algebraic integers in Q and
where the degree of R;(#) in 2 is less than the degree of either ¢, (z)

or Go(x).
From the above relation it 1s seen that

Gi{z)= Qi(«)Ga(2) + Ry (2);

and consequently since
Ri(z)=o0 [mod §y(x), §2(2)]

and
Gi(z)y=o0  [mod(y(=z), Ri(=z)],

it follows that we may adjoin the element R, () to the system

[r. Grlz), Ga(2)]
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and drop G, (z) from it without changing the equivalence, 50 that
[;‘: gi('r)'l gz(%‘ﬂw [P; Q‘z(z‘): Rl(z)]

Let the reduced element of Ry (z) be Hy(x) and as above form the
relation
Ga(w) = Qu(x)Hy (@) + Ry(z).

Adjoin R; () to the system, and drop from it G, (2). The system which
we have then to consider 1s

[#, Ra{z), Ra(2)].

As the degrees of the new elements that are adjoined to the system are
being continuously decreased and cannot become negative, it is seen that
by continuing the above-process we must finally have

I.]-‘: Hufl(-’))u Ilv(-"’-’)Ju

and here either H,_ () 1s divisible by H,(z) (mod p) or I, (z) becomes
an algebraic integer which is relatively prime to p.

In the first case the modular system [ p, H,_, (z), H,(z)] is.equivalent
o [p, H,(2)] and in the second case it is equivalent’to [¢]and is without
[arther interest.

In precisely the same manner the more general modular system written
above '
[, g1(@), g2(2); - -, gal2)]
reduces to a system of the form
[p,F(z)] ortd [v].

The latter case being withoul interest, we shall consider more closely

the system
[v, F(2)],

where the element F (z) may be written

F(z)=a%+ vzt + ya2T 24 v,
n which vy, vs, ..., yr are found among the quantities py, Py, -, 4

The residues (incongruent quantities) of this modular system must
have the form

R(z) = Bo+ B2 + Baa®+. ..+ Br_yaT-1,

where the B's can have any of the values gy, pa, ..., pr.
The number of functions having this form is consequently £, and
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since one of these functions is divisible by the modular system, the total
number of residues of the modular system is v = k¥ — 1.

Denote Lhese v residues by Ry, Ry, ..., R,. It is easy to prove that
these v functions are incongruent [modp, F(z)], as are also the products

R,[R;, R,;Rg, RiR;;, ...,RiP\V (I:‘—" I, 2, ...,‘J).

‘We consequently have

k=v k=v
(1) H(r - R,-n,,)_;l](x.__ Ri)  [modyp, F(z)]  (¢e=1,2,...,v).
k=1 k=1
and also
=V A=v
H(Rin,,.);I[Rk [mod p, F ()],
k=1 =1
D!‘_‘
k=¥ o=2
RY 17[ Ri= l_[ Ry [mod p, F(x)] (Z=1,2,...,v)
A=1 k=1

k=v
Stnce further n Ry is not divisible by the modular system [p, I (z)],
k=1
it follows that

R!=1 [mod p, F(z)] (i=1,2,...,4),

whichis a general form of Fermat's theorem.
Writing for v its value AT —1, it is seen that

R’;’T = R; [mod p, I'(2)] (i=1,2,...,v),

and consequently also

;E‘ff".—fo(Z‘)l?(“") [mod p],

where ¢(x) is a quantily belonging to the realm [¢. z].
Hence (mod p) the function z+"
(¢f. Serrer, Cours d’Algebre supérieure, t. 11, Chap.IIl, p. 131; 1866).
With Serret (loc. cit.) we say that the function F(x) is decomposable
into factors o(z), 4(x) (mod p), if it is possible to determine a func-

tion ¢ () such that

x is divisible by the function F(z)

(i) g(@)(z) = F(z)+py (&),
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where all the functions introduced belong to the realm [v, z]; other-
wise the function ¥ (%) is irreducible (mod p).
If then the relation (1) is true, it follows at once that

Ip: F(.ﬂ’:)l el L {J, 'j—‘("[) r“f("’r)]‘

Suppose further that ¢ («) and ¢ () have no common factor {mod p).
We may then prove that

[, F@)enln ola)]in, d(=)].
For the product just written is equivalent to
[9% 0d(a), po(x), o(x)b(x)]

But, since ¢ () and 4 () are relative prime to each other, their greatest
common divisor (mod p) is v and may be written

=o(z)+ $(z) [mody].
Heunce we have the equivalences
[#% 0d(2), po(), (@) (2]
[ pd(x), pol@), pbz) +po(x), o(x)(a)]
W [p%, p3 (@), polx), n, (@) (@) ] en [0y o(2)d(2)]-
We may therefore consider next a system of the form

[», g2}

where ¢ (2) is an irreducible function (mod p).
This system is a prime modular system (cf. Knonecken, Werke, 11T,
p. 138).

Suppose that ¢(z) has the form
o(x)= ok ".'13')‘71 - al,,_,z.).fe+_ co

where y(, vs, ..., 7o are lo be found among the fixed integers o,

93, cean Dp.

There are consequently m == k*—1 residues of the system [p, o (x)]
which we denote by r(, ra, ..., 1.
We therefore have as above

i'-,if)\.-—lzl [modyp, v {2)] (i=1,2,...,m).
Lexwa. — If r denotes any of the above residues and if

G(ry=Aprm+Arn—i,  ,+A,=0 [mod p, ¢(x)],
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where Ay, Ay, ..., A, are integral functions in x whose coefficients
belong to the realm [v¢] and Ay 3£ o [mod p, o(x)], then the above
congruence cannot have more than m incongruent [modyp, o(x)]
roots.

We shall first prove this lemma for the special case m —1.

Take the congruence

Agr+A;=o0 [mod p, ¢(=)],

where Aj £ o0 [modp, p(x)], and suppose that r, and r. are two roots
of this congruence, so that therefore

Agri+ A =0 [mod p, o(2)],
and
Agrs+ Ay =o [mod p, o(x)].

By subtraction we have
Ag(ri—r)=o0 [mody, ¢(x)],

and since A, is not divisible by the prime modular system [p, o(2)], it
follows that
ry=ry [mod p, (z)].
Hence a congruence of the first degree can have at most one incon-
gruent [mod p, p(z)] root.
Returning to the general case suppose that »; is one of the roots of the

congruence
G(ry=o [mody, o(x)],
so that therefore

Gri—G(r)) =(r—ri)Gi(r=o [modyp, o(2)],

where G, (r) is a function of the same nature as G(r) and is at most of
the (m — 1)* degree in r.

By the method of induction, grant that the lemma has been demon-
strated for functions of the (m — 1)* degree, so that therefore

Gi(r)=o0 [mody, ¢(z)]
cannot have more than m — 1 incongruent roots, then from above since
r—ri=o0 [mody, o(#)]

cannot have more than one root, the theorem is proved in general.
Suppose next that the congruence

G(ry=o  [modp, ()]
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has exactly m incongruent roots [mod p, ¢(2)] and let these roots be r,
Pay veny Py again let

G(ry=Ajrma- Arm—t4 .+ Ay,
and form the congruence

) S Agrmt - Ayrm—top Ay — Ag(r— 1) (r—71y) ee. (P—rp)==0
( [modp, o(x)].

This congruence is at most of the (m — 1)** degree, since the terms A, 7™
cancel each other. It has, however, more than (m — 1) incongruent roots
[modp, g(x)] since it is satisfied by the m functions ry, ry, ..., I'm.
Hence all the coefficients of this congruence must be divisible by the
modular system [p, o(z)]. . '

It follows therefore that the congruence (1) must be satisfied identi-
cally, and we must have

— A =ri b e [mod p, o(2)],
-t j\g E PPy Pyt o= =1 [mud 1‘! C?(’L‘)],
(—nmA,=rir,...ry, [meod p, o(2)].

If therefore the congruence of the mth degree
G(ry=o mod p, ¢(x)],

has exactly m roots ry, ray, ...., r'm, we have identically the con-
gruence

i=m

G(}‘)EAU:[I(I‘-—-I‘E) [mod p, o ()].

i1
Returning to the congruence
r—1_1=o0 [mod p, o ()],

it has been shown that this congruence has m = k*—1 roots ry, rs, .o, I'm,
these roots being the residues of the system [P, o ()] in which the ele-
ment o () has the form

o(@) = ah+ p @h 1y ah =t L
The residues are consequently of the form
8155')\_1 -+ 827‘_2—9—- A a)‘,

where 8, 8, ..., &) can take any of the values 5y, p2y .+ -, p1e
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Hence it is seén that
L P I I [r—(8iar1+ 8,2h 24, .+ 8))] [ mod p, w(x)],

where the product extends over the totality of functions that are had when
for each of the & we substitute in turn the & values py, po, + .., 24,
excepling the one parlicular case in which each of the &' is replaced by
the p that is == o (mod p).

Equating the coefficients of equal powers of r on either side of the
above congruence, we have the very general form of Wilsor's theorem

—_1= I [(alw:’\—‘+ Saxh—? . 1 8)),

where the product is to be taken over the totality of funcltions in which
the 8, have the values just mentioned.

.
Primary prime functions.

‘We have written m = k*-—1 where £ = (v, p) = N(p)=p/, p bring
is the smallest prime rational integer that is divisible by the prime
ideal p and where the positive rational integer fis the degree (Depexinp,
p. 565) of the prime ideal p.

Hence m — p» —1 and the above congruence may be written

PRy =0 [mod p, o(x)].

Consider the series of functions -
[Y(z))r, [d(m)P's [Yl=))ts ...,

where () 1s any arbitrary integral functions in z whose coefficients are
integers in Q. '

In this series we must finally come to a function [{(z)]?" which
is =[{(x)]”" {modp, p(«)]; for if this does not happen before, it is cer-
tainly true for s = A f.

We shall call the smallest rational integer £ different from zero which
satisfies the congruence

[Y(z)r'=b(z) [modyp,e(z)],

the height of the function U(z) with respect to the modular system

[p,9(2)]
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Raising both sides of the above congruence to the p# power, we have
[ (2)]P" P = [ (@)= b(=) [”1.0(1 ¥ e (2],
and consequently also
(Y2 =[b(a)]p' [modp, g(x)].
If therefore t = s (mod %), then is
[Y(=)'=[d(=)]"  [mody, ¢(z)],
and reciprocally if

[Y{z)P=[d(x)]" [modyp,s(=x)],
then is
t=s (mod A).

We have indirectly proved also the following theorems :
L. Ifsisincongruent to t (mod ), then is also
(@) = [$(2))rt [modp, o o))

1. If
(@) # [Ya))*  [modp, g 2)],

then is s incongruent to t (mod A).
Consider now the series of the infinite number of functions

Loy ()]s [l [$ ()],

with respect to the modular system [p, o(2)].

The first /& of these functions, where /£ is the height of the func-
tion ¢ (&) with respect to the modular system [p, ¢(2)] are incongruent
with respect to this system. The next & functions are repeated in the same
order as the first £ of then; consequently we may (¢f. Depexinp, p. 571)
call the £ functions

[GG)", [, (W@, ., (4],

the period of the function $(x) with respect to the modular system
(b, o(2)].

It is clear that the period of any of the functions [ (z)]7', where ¢ is a
rational integer, contains the same functions with respect to the modular
system [p, 9 ()] as the period of the function ¢ (z).

Suppose next in the congruence !

[d(z))p'—1=0 [modyp,o(x)]
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that f==1, and consider the congruence
[V(x)]Pr=d(x)  [modyp,g(a)].
Take first in the realm of rational numbers the modular system
[P, ®()],

in which p is the prime rational integer that is divisible by the prime
ideal p, and ®(x) has the form

D(z) = 2P+ gt 4 gyaht4. .+ &,

where g, g2, ..., g3 can have any of the values 0, 1, 2, ..., p — 1.
There are consequently p*—1 residues of the modular system

[P, ®(z)].

Hence if W(x) is any integral function of z whose coefficients are
rational integers, we have

[W(x)]="(z) [mod p, ®(z)].
Further wriling as above

0(@) = h @Al ppah 2o,
suppose that
S1=T1 (mod p),
S2="2 (mod p),

1= (mod p),

that is, the quantities g and y,; g and Y23 -+ &) and 1y are algebraic
integers belonging to the same classes in lhe distribution that we made
on page 17. ,

It follows at once that the modular system [ p, ®(z)] is divisible by the
modular system [p, ¢ ()] and consequently that

[W(z)]=W(z) [mod p, o(x)].

From this we see that every integral function in z with rational
integral coefficients has a height with respect to the modular system
[p, o(x)] which is equal to the degree of the function p(x).

We shall now show reciprocally that every function of the height )
with respect to the modular system [p, ©(z)] is congruent [mod p, ¢ ()]
to an integral function in x of degree not greater than h—1 whose
coefficients are rational integers that have been reduced (mod p).
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In accordance with what was proved above, the congruence

P = [modp, o (2)],

is satisfied by the p* functions

Zrohtam gy ah-te L L4 g,

where the g’s take the values o, 1, 2, ..., p—1, and further since these
p* functions are all incongruent [mod p, 2(z)], it follows that the con-

gruence '
o] R
ret—r=o [mod p, ¢ (x)],

has as many incongruent [mod p, o (z)] roots as the degree d = p* of the
congruence, and consequenlly see p. 23 (if ry, 19, -+, Fa_y, Pq=0) are
the roots of this congruence, we have the identical congruence

P r=r(r—r)(r—ry).. (r—rgq)=o0 [mod p, o{z)].

If then  (z) is a function of the height ) with respect to the modular
system [ p, o ()], then we must have

[7(z)]Pt—y(x)=0  [mody, g(z)], .
and therefore

@)y (e)—r][y(x) —rl.  [y(x) —re—1] =0 [mod p, w(x)].
From this it follows that
wz)=r  [modyp, ¢(x)]

where 7 is one of the integral functions ry, ra, ..., ry_,,rq=o0, whose
degree is nol greater than A — 1 in 2 and whose coefficients are rational
integers, reduced, mod p.
Reciprocally : if 7 (x) is congruent [mod p, ¢ ()] to r, where r is an
integral function in « whose coefficients are rational integers, so that
. y(2)=r [mod p, ¢(2)],
then is also
[y (@)= ret [mod p, @ ()]
But since
. ri*=r  [modyp, ¢(x)],
1t follows that ‘
[x(z)]rt=r  [modyp, ¢(x)],
and consequently o
[x(@)]et =y (=) [mody,p(z]].

We have then the theorem : every integral function in z whose
coefficients belong to [v], which is congruent [modp, o(z)] to an inte-
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gral function in z whose coefficients are rational integers, has the
height ) with respect to the modular system [p,¢{z)]; and every
integral function in x whose coefficients belong to [¢] that has the
height ) with respect to the modular system [p, ¢ (x)]is congruent with
respect to this system to an integral function in z of degree not
greater than . —1 with rational integral coefficients, reduced, mod p.
We know that if
R(a, B,

I I

)y =lan Lan-t 8-

is an integral function in the quantities =, 3,v, ..., and 4, 4, ..., are
rational integers that

[R(a, B,v, ...0]p=R{ar, Beyyr, . .0) (mod p),

where p 1s a prime integer.
Hence also, if p is divisible by the prime ideal p,

[Rie, By, ... 0)]e=R(ar, B, yr, .. ) (mod p).

Sappose next that ¢(z), any function of the realm [¢, z], has the
height % and form the symmetric function

e =S¥ @ @) (9 @)1 o [ (@],

so that co:lSequcnll_y g 1s an inLegral function in & whose coefficients are
integers in Q.
It is seen that

o= (S1Te @0 @, [er, o @)
= Siv@r @Y @Y, .. [P

= Slv@r, @, B@p, b @) (mod ),

or
ar=gq (mod p).

Since

Mr=ar=ga (mod p),
it follows also that

aht=g [mod p, o(2)].

From this it is seen that since the height of the function ¢ with respect
to the modular system [p, ¢o(«)] is A, the function & is congruent
[mod p, ¢(«)] to an integral function in x of degree not greater than
A —1, whose coefficients are rational integers, reduced, mod p.
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In the same way it may be proved that every integral symmetric
Junction of the h functions
[b(=3], [d(e]ty [$()®, ..y [§(a)]P™,

is congruent [mod p, ¢(x)] to an integral function in z of degree
not greater than \— 1, whose coefficients are rational integers, redu-
ced, mod p.

Let us next form the product
br— 412l fr— (4@ {r—[9@P' | = [P,

which we denote by P(7, z).
Developing this product in powers of r, we have

P(r,z)=rt+c ri-lcyrh—24 .. .+ ¢y,
where ¢, ¢a, .. ..cs are integral symmetric functions of the functions
Vi), [d2e, [$@)P, o [t

The function P(r,z) is therefore congruent [mod p, o(z)] to an
integral function of the ht* degree in r, whose coefficients are inte-
gral functions in x of degree not greater than ) — s, and the coef-
cients of these functions in x are rational integers, reduced, mod p.

The function P (r,z) may be called @ prime function (Deprxinp,
p- 571); for it is easily proved that it is not possible to determine two
functions f(r,z), g(r, x) integral in r and z such that

Plryx)=f(r,z)g(r z) [mod p, o (2)].
Returning to the congruence
[($(@)V=14(2)  [modyp, p(a)),

it is seen that if 4 is the height of the function ¢ (2) with respect to the
modular system [p, ¢(z)], then

[Y(z)]t=4(=) [modyp, o(x)]
Hence it follows that

[L(@)]PY = [d(z)]" [mod p, o(x)].
From this congruence (see p. 25) we must also have the congruence

h=%f (modh),

and therefore A f must be divisible by A.
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We have therefore the theorem : The height of any function with
respect to the modular system [p, o{z)] is a divisor of Af, where f is
the degree of the prime ideal P, and ) the degree of the function o(z)
in z.

We shall next show that il & is a divisor of Lf, there exist functions
of the height h with respect to the modular system [p, o(z)].

If there exist such a function, say {(x), then evidently there exist 2
such functions, viz.

Yiz), [Y(=)]7, [b(=)]", ..., [Ll,(.z-)JP"*"

Hence on the supposition that there exist funclions of the height £ with
respect o the modular system [p, ¢ ()], it is seen that we can distribute
‘all such functions into groups, there appearing / functions in each
group.

Denote the number of groups by Lk and consequently the number of
incongruent functions of the height & with respect to the modular system
(P, o(z)] by A ya-

Since A fis divisible by &, we may write ) f = /i g, where g is arational

integer.
Also since
L“_)‘f__r - 1_;_[)-’1_,_.!;21’4_,_.__.,_[)(,.r,f—l)h
[J"‘M-I . - ’
]))J".r—.] . .. . .
so that £——— is a posilive integer, it follows that
pr—1

[4 ()Pt —

[zl =

=G (a),

where G(z) is an integral function in « of degree p*/'— p* wilh integral
coefficients belonging to the realm Q. .
Hence

[Y(2))V—Y(z) = |[Y(2)])"— H'J(J’f');' G(z) [modyp,e(x)]
Since
(Y)Y —d(zy=0 [modyp, o(z)], -

has p» incongruous [mod p, ¢ (2)] roots and since G(z) cannot have
more than p*/' — p* such roots, it follows that the congruence

[$(@)P'—Y(z)=0 [modyp, o(z)]

must have at least p* such roots. Since this congruence cannot have more
than this number of incongruous [ mod p, ¢ ()] roots, it follows that the
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CO.’Eg‘I'HETlC(ﬂ
(42— () =0  [mody,g(z)],

has p* incongruent [mod p, ¢(x)] roots.
It then we have a function w(z ), which has the height % with respect
to the modular system [P, @ (2)], it satisfies the congruence

(1) [Vm(a;')Jp"E w(x) [mod p, a(2)],

and reciprocally if the fonction = () satisfies the congruence (1), it has a
height % or a height d, where d is a divisor of 4.

Hence we see Lhat each of the incongruent [ mod p, (z)] roots which
satisfy the congruence (1) has either the height £ or ahelghb d, where d 1s
a divisor of A.

If d is a divisor of 7, then the number of the incongruent functions of
the height d with respect to the modular system [p, o(z)] is, employing
the above notation, dvy 4.

It follows therefore that the number of the incongruent functions of
the height / or the height &, where d is a divisor of & with respect to the

modular system [p, o(z)] is
L
z d“/‘((;

where the summation is taken over all the divisors of £, including 4 itself.
Since this number is also equal Lo p#, it follows that

u_z dyq-

We have seen (p. 27) that
(h ri’“—r:H(r—— ry) [mod p, o(x)],

where the product is to be taken over a system of p% incongruous roots
which have the height #, or the height d, d being a divisor of A, with
respect to the modular system [p, o(z)].

If one of the roots r4, say, of the above congruence 1s of the height &
with respect to the modular system [ p, ¢(2)], the product

(=) (7= o) (r = 1) (= ),

enters as a factor in (I).

We may write for this product the function P(#, 2) which is intlegral
inrand z, of the /2 degree in r, and in z not greater than the A —1 degree
and whose coefficients are rational integers, reduced, mod p.
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In the same way if  is a divisor of &, there enters as a factor in (I) the

product
(r—r){(r—rl)(r—rif.. .(r—-f'.’j'l"),

where ryis a function of the height o with respect to the modular system.

We may therefore replace this product by another prime function inte-
gral in » and 2, of the d* degree in r and a degree not greater than
h —1 in x, whose cocfficients are rational integers, reduced, mod p.

It is thus evident that

PPt — = I I P(ryz) © [modp, o(z)|,

where the product istobe taken overa certain number of prime functions.
Such prime functions in which the coefficients of the highest powers
of r are unity are called primary prime functions.
If we denote by w; the number of primary prime functions that occur
to the height d with respect to the modular system [p, »(z)], it may be

slrown that (*)
Z dm(,' —2 clx([:pﬂ.

Consequently the above product is to be taken over all the exisiing
primary prime functions P(r, z) whose degree in r is h or a divisor
of hand in x the degree is not greater than h — i, whose coefficients
are reduced (modp).

The theorem has been proved by Dedekind (p. 571-592) for the simple
case of algebraic integers taken with respect Lo a prime ideal. I shall
therefore call it Dedekind’s theorem. It seems to have, a similar signi-
ficance in the extended realm of rationality as the theorems of Wilson
and Fermat in the usual realm.

In his lectures at Berlin, Professor Frobenius worked oul in greater
detail the Dedekind results, and, following his methods, T have derived the
above results for the algebraic functions in the realm [¢, 2] taken with
respect to the prime modular system [p, o(2)]. In a doclor’s thesis at
Paris I have extended the theorem for the case of several variables (see
Ann. de ’Ecole Norm. Supér. 1gor). ‘

As none of the prime funclions in the above product is repeated, we
-may write the following équivalence

(A) b, o(@), ' —rlon [ ] v ¢(2), P, 2],

(') See American Journal of Mathematics, Jan. 1goz.
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where the product is Lo be taken over all possible modular systems of the
form [p, o(x), P(r, 2)], in which forthe primary prime function P(r, z)
we write all possible primary prime functions whose degree in ris 2 or a

divisor of %, and whose degree in 2 is not greater than X —1, and whose
coefficients are reduced (mod p).

For as we confine ourselves to rational integral coefficients in these
primary prime functions, it is evident, since any two of these functions
Pn(r, z) and P, (r, ) have no common divisor in r, that we can find two

? H »

functions Fm(r, z) and P, (r, z)integral in r and & with rational integral
coefficients such that

Pu(r, @) Pu(r, @)+ Pul(r,2)Pulr, )= k(z),

where &(x) has no common divisor with ¢(z) [mod p].
It is also seen that we may determine two functions k(z) and ¢(x)
integral in z with coefficients in [¢] so that

k(@) k(@) +9(2) 3(2) = o
where « is an integer in [¢].

Finally it is seen that the greatest common divisor of « and p is v,
or o4 p =wv.
Hence the product

[p, 9(x), Pul(r, )] [9, 9{x), Pu(r, )],
is equivalent to :

(I { [p% po(®), pPrul(r @), o(@)?, 9 (z) Pulr, =),
1 9Pul(r, @), (@) Pulr, @), Pulr, @) Pu(r, ).

From the elements p2, po(z), pP.(r, x), PPun(r, z) we construct the
system '

[PZ: }1?(-23'), pl)ﬂ(")g")r me(r,x)] [Z¢)} F[Py (P(‘Z')l Pm(r,x),P”(z',x)]mp[v]mp,

As we may now adjoin p to the system (1), we form from the elements
pe(z) [which may alse be adjoined to (I)], o(x)?, ¢ (2)P.(r,2) and
o(z) Pn(r, z) the system :

elx)[p, (@), Pu(r, &), Pu(r, &)l eno(z) [¢]uwn g(x).
Hence the system (I) is equivalent to
l [p,.ry(w),P,,L(r',x)l)”(r,.z')],

and consequently also the equivalence (A). )

e

13
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SUR LA

DISTRIBUTION DES NOMBRES PREMIERS,

Parn HELGE vox KOCH (Stockholm).

Les' résultats dont je vais dire quelques mots concernent la fonc-
tion f(z) de Riemann et les fonctions numériques analogues (*):

Soit # un nombre positif donné; désignons par F(z) le nombre des
nombres premiers inférieurs & x et définissons avec Riemann la fonc-
tion f(x) en posant

Sz =F(@)+1F(a?) + 1 r(av) 4.

Définissons encore la fonction numérique ¢ (z, r) par la formule

b(x, r)= Zp—rlogp.;_ Z p2rlogp +...,
p<x e

la premiére somme s'étendant & tous les nombres premiers inférieurs i z,

1
la seconde & tous les nombres premiers inférieurs & #* et ainsi de suite.
Ces fonctions f el § sont liées par la relation

@) = [ W, rdr.

Pour trouver une expression de §(z, r) nous prenons comme point de
départ la formule d'Euler :

EZp~slogp+ Zp~¥logp +...=—

s étant supposé réel et plus grand que 1 et {(s) étant la fonction de

(1) On trouvera la démonstration de ces résultats dans un Mémoire. gui sera
publié¢ dans les Mathematische Annalen. L e
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Riemann définie, tant que la partie réelle Rs > 1, par la formule

Dans cette formule, remplagons s par 7 + ¢s, ¢ étant un nombre positif
entier, et multiplions les deux membres par
—_ -1
N s
. !
Faisant la somme de toutes les égalités obtenues en prenant successi-
vement
p=1 2, 3, ceny
et remarquant que la somme des premiers membres est une série multiple
absolument convergente, il vient

X x

Ep-rlogp |J —e (F) ] + Zp—2rlogp [I— 3_<F) ] +.o=W(a,s, r),

i Y1 ! -+
11;’(_2.: 5, r) :_Z( ?|7wvst'(r - 08)

— ﬁ(r—t—vs).

On démontre sans difficulté que la série du premier membre converge
uniformément pour les grandes valeurs de-s. Pour passer a la limite
(s =o0) il est donc permis de mettre dans chaque terme s = oo,

Or, on a

-

lim [,ke_(%)(] 7]‘ I, si p< T,

s=w o, si pr>w

(le cas p*= z est exclu si, comme nous le supposerons, z n'est pas un
nombre entier). _
Le premier membre de notre formule se réduit donc a ¢(z,r) et I'on
obtient
Y(z,r)=lim W(z,s, r).
s=m

On trouve de méme

J(=) :[-w lim W(z,s, r)dr.
Jy s=w

Pour ce qui va suivre, il est essentiel d'observer qu'on n’a pas besoin

d’aller jusq_u’é la limite s = oo : pour avoir une approximation suffisante,

1l suffit de prendre

sZazloga.
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On peut démontrer, en effet, que, dés que s-satisfait a cette.condition
P : y que, q _ on,
Lexpression

(1) [wlF(.r, s, rydr
o

ne différe de f(z) que par une quantité inférieure & un nombre fize.
r
Or, si I'on décompose ; en éléments simples, en s’appuyant sur le
= .
théoréme fondamental de M. Hadamard (Jourrnal de Mathématiques,
1893), nos expressions prennent des formes plus commodes pour le but
que mous Nous proposons.
Aprés des calculs assez longs, mais trés élémentaires, on parvient & la
formule suivante :

!

da
5\]0‘ lp(xsr)df—‘h(x')—“i“gz*f (z*— 1)z logz
sxp

I
a -+ a(x, S)_I‘-Og.’L‘EF“(x’S p(v——o)

Li(x) désignant le logarithme intégral de x et la somme EP s'étendant
a tous les zéros imaginaires de la fonction {(s). Les fonctions x(z, s)

(2)

eta({x,s, p) qui figurent dans cette formule sont exprimées par des inté-
grales définies et jouissent des propriétés suivanles :
lim a(a, s) = o,

S=w

@

. zp zp—r
Sl;rxlac(x,s,p)pmgz _._[ : -dr.

Si Uon prenait 5 = oo, la formnle (2) se réduirait 4 la formule de Rie-
mann :

dz
=L —1 — %y Li

F(@) = Li(z)—log2 -+ f T vaTogs — SeLi(?)
qui, comme I'on sait, a été rigoureusement démontrée par les travaux de
M. Hadamard et de M. von Mangoldt. Mais on verra qu’il y a avantage de
prendre s = 2z logx au lieu d’aller jusqu'a la limite (s = o).

On peut démontrer, en_eflet, que les fonclions a(z, s) et a(z, s, p)
satisfont aux inégalités

|a(e, s)] <k

. dés que s2axlogz
a(a, s, p)] < & (dés que s2 gx),

k désignant une constante. De 1a et du résultat énoncé plus haut sur la
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différence entre f(x) et I'intégrale (1), il résulte que, pour
szZoxlogw

Uexpression

sxp

Li(2) — — alz, s, p) ——
_ @) longP L P =)

ne dt:/fére‘ de la fonction f(x)que par une quantité inférieure & un
nombre fize. ‘

Il est facile de démontrer que la série qui figure dans celle expression
converge absolument et uniformément par rapport & z dans tout inter-
valle fini. Ce sont 13 des avantages que présentle celte série sur celle qui
figure dans la formule de Riemann. s '

On pourrait se servir de ce résultat pour le calcul de la fonction f(z).
Mais, pour cela, il faudrait calculer les racines p, ce qui parait extréme-
ment difficile; et d’ailleursla série présente encore cel inconvénient que
la convergence devient moins rapide & mesure que x augmente.

St la formule oblenue n’est pas commode pour le caleul de f(z), elle
esl, semble-t-il, intéressante pour I'étude des propriétés de cette fonclion.
Ainsi; elle permet de démontrer (') le théoréme suivant, sur Uordre de

grandeur de la différence f(z) —Li(z):

S Uon admet, avec Riemann, que la partie réelle de chacun e_;,fes'
z€éros g est égale a 1 (2), on obtient
| f(z)— Li(z)| < klogay'z
k désignant une constante.
Comme la différence f(x)—F(x)est de Vordre de V}E: cette méme

formule s’applique a la fonction F(z), qui exprime combien il y a de
nombres premiers inférieurs & z.

(1) Une autre démonstration, fondée également sur Vemploi de la fonction
1— e—*, se trouve dans mon Mémoire Sur la distribution des nombres premiers
(Acta mathematica, t. XXIV). ' : .

(2) On sait que Riemann (Math. Werke, 1. Auil., p. 139) a énoncé comme trés
probable ce théoréme, qui parait étre d’une importance fondamentale pour la
théorie des nombres premiers. Malgré bien des efforts, on n’a pu encore le démon-
trer rigoureusement. Mais, d’aprés une Note récente de M. Jensen (Acta mathe-
madtica, t. XXI1), on peut.espérer que cette lacune ne tardera pas a étre comblée.

——
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COVARIANT RESOLVANT DE LA FORME BINAIRE
' DU CINQUIEME ORDRE,

Par M. Raou. PERRIN (Paris).

Dans un Mémoire publié en 1884 dans V'American Journal, t. VI,
M. Macclintock mentionne comme nouvelle la résolvante sextique

W=2T2—UP =0

de I'équation du cinqui¢me degré U = o, en ajoutant qu’elle aurait été
obtenue par Schulenburg en 1881, sans une faute de caleul qui avait vicié
ses résultats et dont personne ne s’était apergu depms

J’avais annoncé dés le mois de décembre 1882 I'existence dc cette ré-
solvante covariante de U, en indiquant trés sommairement le principe de
la méthode suivie, dans une Note publiée dans le Tome XI(1882-1883) du
Bulletin de la Société mathématiqgue de France (Sur les cas de ré-
solubilité par radicauz de U'équation du cinquié¢me degré).

Cette résolvante que les mathématiciens américains ont qualifiée de
centrale, par opposition aux autres résolvantes antérieurement connues,
est considérée par eux comme la plus simple et la plus commode. Dans
un Mémoire de 1898 (American Journal, t. XX), M. Macclintock donne
Pexpression de 1'une quelconque des racines de W en fonction des cing
aulres, et aussi en fonction des racines de U : cette derniére expression
différe sensiblement, au moins en apparence, de celle qui résulte immé-
diatement de la marche que j'avais suivie en 1882 pour obtenir la résol-
vante W =o0. Il y a donc encore quelque intérét & faire connaitre en
détail cette marche et les calculs qui permettent d’arriver au résultat dont
il s’agit. Ce sera I'objet de la premiére Partie de ce Travail; dans une se-
conde Partie j'étudierai le covariant W lui-méme au point de vue de la
théorie des formes, ce qui n’a pas encore été fait & ma connaissance, et
j'en déduirai quelques conséquences intéressantes au point de vue de la
résolution de I'équation du cinquiéme degré, tant par radicaux, quand
cela est possible, que par I'emploi des fonctions elliptiques.

Droits reservés au Cnam et a ses partenaires



200 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION I.

L

Soeit I'équation du cinquiéme degré, privée du second terme et mise
sous la forme type

(1) U= ul[25+ 10hz3+ 10022+ 5(u?s — 3Ah*)o + wiu'—2hn] =o,

dans laquelle «, &, n, s, ©' sont repectivement les péninvariants dits prin-
cipaux, obtenus en fonction des coefficients @, b, ¢, d, e, fde la forme
compléte

V=aXs+56X'Y+10cX3Y?+10dX2Y3+ 5eXY4+ Y5,

par les formules connues

u=a,
h :ac—bg,
(2) n = a*d—3abe + 203,

s =ae—4bd + 3e?,
w'=a’f—iabe +aacd -+ 8b*d — Gbe?,
et U dérivant de V par la substitution

X =ux— by, Y =ay
et 'hypothése yr = 1.

Soient zy, &y, 2, 3, z; les cing racines de U, et posons
(3) z; =007+ 020k + 03] 4 B m (t=w0,1,2,3,4),

B étant une racine imaginaire cinquiéme de 'unité.

De (3)) on déduit
o} = 0% j2 4 B4 k2 01 12 03 m2 - o (031 jk 4 047U 4 0Lkm + 6% Im + fm +kL),
et, f)ar suite

Zm? = 10(Jm + k).
i

On trouverait de méme

: Exé‘ = 15(7% + k2] + *m 4+ m2k),

13

Zm? = 20(j3k - KPm - Bf 4+ m3l) + 30(/2m® - k2 12) + 1205kim,

i
|
Emf =5(j5+ I8+ 5+ mb) + 100 (¥ m + I3 jI 4 I3 km + mi jk)

-~ 150(ji2m2 4 kj2 {2 + k2 m? -+-_mj2/(3). ‘
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Egalant anx expressions données par les formules de Newton, et po-
sant, pour abréger,

( jm=a, kl=38,
, Slemik=vy, kj+Dlm=3
W Jrlk+mdl=s, Bm--1) =1,
Ve mi =, fo - 18 =
11 viendra
[ a4 B =—2h,
v+ 8 =—2n,

f s L4 3(22 4 B2) + 6af = 13A2— uls,

A+ o 20(ay + B3) - 3o(ad + By) =r102/n — utu'.

Ce qu'on peut encore écrire
[ a+B=—2h,
R
v +8 =—2n,
&+ ’;—0—3@{3 = 7h2— u?s,
L A+ g 10{ad + By) = 22hn — w2y,
Les huit quantités «, 8,7, 8, ¢, {, A, o sont en outre lides par les
quatre identités suivantes, faciles & vérifier :

[ 78 = af -+ Be,
“ el = ad?+ Byr— 4a2 82,

; ve 8 = ap - B 4 B2y + a3,

VO -y = g2 (2 BT ay? — faf(ar - B2).

Il est clair que, si, au moyen des huit équations (5) et (6), on peut ob-
tenir les valeurs de ces huit quantités, en fonction de w, &, n, s et &/, on
obtiendra ;3 et m?® par I’équation du second degré

(7) X2~ QX +ab =0
et de méime £* et I8 par 'équation du second degré
(8) Y2— puY -+ B8 = o.

et l'on en déduira 'expression des cing racines de (1), au moyen des for-
maules (3).
Cherchons done & résoudre le systéme des équations (5)-et (6). Nous
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poserons tout d’abord

{9)

ce qui permet de supprimer les deux premiéres équations (5) et réduit les
quantités inconnues a 6, savoir: ¢, {, X, i, v et 5. Les équations subsis-
tantes deviennent, en y porlant les valeurs de «, 3, y, 8 tirées de (g),

e L= 42— uls + 307,

A+ pw=2hn—ut'—20v¢23,

hle +0)+9(e—T) = v23t— n?,

e = —a2hv?s® —f4nvis — 4o+ 8Rh202—2hn?— 4 A%,

A(A+p)+e(h—p)—n(e+0)—vrs(s—{) = —2np2— 4 ho?z—2h®n,

(ro)

Vn(h - p)—es(A—p) 4 e Lm0 o2 a2 { not s+ 8ot — B At—a An? = o,

- Pour éliminer ¢, §, %, w, tirons ¢+ ¢ de la premiére équation (10),
»—~+ p de la deuxiéme; Ja troisieme donnera alors I'expression suivante
poure —{:

(11) ag’éﬁgl_”?(z?*'f‘h)*“”]’

¢ étant le péninvariant défint dans la théorie de la forme du cinquiéme
ordre par I'identité (ou syzygie)

{12) n?+ 4hd = n?hs — udt.
La cinquiéme équation (10) donnera de méme
(13) - )._H:%[u2(53+13hz+n2)+ua(:z+h')1,

h' étant le péninvariant gauche défini dans la théorie de la forme du cin-
qui¢me ordre par la syzygie '

(14) uh' = hu'— ns.

D’autre part, de la premiére et de la quatriéme des équations (10) on
tire, en tenant compte de I'équation (12),

(15) 24-02= 1704 (§ ha? - B s+ 8 A2— G uls) vt u? (u? s2— { uht — 4 h?s) + B At

La derniére des équations (10) devient alors, en ordonnant par rapport
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ay,

(16) 250t — (2~ 1115+ gns+ 6us — 8 A2 o?— ud 122+ 'z — (ug +2/t)] = o,
en tenant compte de la syzygie

(17) nu' = ul(st— q) — 6uht — 4hls.

Pour obtenir une autre équation entre ¢ et z, il suffit de remplacer,

dans 'identité
(e+L0P2—(e—L)— 4L =0,

les trois quantités ¢ + §, ¢ — ¢, e{ par leurs valeurs tirées de (10) (pre-
miére el quatriéme équations) et de (11). Il vient

2508 — (¥ — 14 hz? — 165 4 17 A2 4 Guls)et
— ud (215 2ht — us?)o?— ubit=o.

(18)

Il ne reste qu’a égaler a zéro le résultat des deux équations (16) et (18)
par rapport & ¢* pour obtenir une équation qui ne renfermera plus que
l'inconnue z.

Mais, auparavant, on peut simplifier I'équation (18) en en retranchant,
membre & membre, I’équation (16) multipliée par ¢2. Elle devient alors

25(hat 4 nz — A)pb + ud[— 122+ Az - (ust—ug — 4ht)]e:— ust =o.
Ajoutons encore au premier membre de celte équation celui de (16)
multiplié par A2; elle deviendra

252(hz + n)vt— A2zt - (udt 4+ 11 /8) 5% (9hin — udh')z
+ 6u?hls + Judht+ ut(g — s*) — 8 A]e2
— ud[ Rtz + hPh'z — R (ug +24t) +ud 2] =o.

Mais, si I'on tient compte des syzygies (12), (14), (17) et, en outre, de
celle-ci :
(19) nh'= u?st — uhg — 6 h2¢,
on vérifie sans peine que le premier membre de 'équation écrite ci-dessus
est divisible par 2z + n, en sorte qu'on peut I'écrire

(hs +n) {2550t — [ ha® — na? —&—(7}12 + u?s)z+2hn —utu']e?
—ud (htz +~hbh'—nt)} = o.

(20)
Le probléme est ainsi ramené & tirer v et 5 des deux équations (16)

et (20). - '
Une premiére solution se présente tout d’abord : en faisant hz.+ n = o,
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V'équation (20) est satisfaite quel que soit ¢; il suffit donc de remplacer z

n . . . Sy
par — dans I'équation (16), qui devient alors
(21) a5 hbot— 1 (wh?s2+ ud e — oyl hst -+ 6R3E) w2 uSh2 2= o,

et qui fournit deux valeurs de ¢* en fonction des coefficients de I'équa-
tion (1).

Mais cetle solution ne peut élre considérée comme générale. En effet,
¢} étant une de ses racines, on doit avoir, en vertu de (g),

o == vy — I,
f=— (v h),

o n _\ R«
0= 3 n—h=) R’

n
Vo= %’(Vl—&—h)z 5

(22) ad — By = o,
c’est-d-dire, en vertu de (4),
(23) JIEmA - myr k2 == kjrir+ Tk me,

Cette relation ne pourrait avoir lieu d’une maniére générale que si elle
se réduisait 4 une identité quand on y remplace 7, &, {, m par leurs valeurs
tirées de (7)), savoir :

1 1

JR—— Q&
I =5 2

AN
k=2 ¥ @0,
5
(24) { .
(= e
1 .
m= -5—2.1',-8',

Or elle se transforme dans ce cas en une relation entre les cinq racines
de (1), & 'exclusion des coefficients de I'équation (1). Nous verrons plus
loin que ce cas particulier rentre dans le cas général au point de vue de
la solution du probléme que nous étudions.

Prenons donc 'équation (20) débarrassée du facteur £z -+ n. Elle est
du second degré en ¢2, comme 1'équation (16), et le résultant de ces deux
équations, égalé & zéro, donnera |'équation en z que nous cherchons. On
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sait qu’un tel résultant peuat s’écrire sous la forme -
(AC' — CA")2+ (BG'— CB') (BA'— AB"),

dans laquelle nous avons ici-a faire

A =25, .
B =— (&4 +11ha?+ gns + 6uls — 8A2),
C=—ud[ts2+ A'z — (ug + 2ht)].
A'=952z,
B'=—[hzt—nz+ (7h+ us)zs + 2hn — uu'],

C'=— ud(hts + hh'—nt),-
On en déduit

‘ AC'— CA'=25u? [tz + h'5*—(ug +3ht)s + nt— hhA'],
(25) { BC'— CB' =u"(ps—q’),
BA'— AB'=-—25[s%+10A5 - 10n2%-+ 5(u?s — 3 A%) 5+ utu'— 2hn],

en utilisant, outre les syzygies déja rappelées plus haut, celles-ci :

u(h's —u't) =a2hr — ng,
(26) th'uw'=u(lh+qgs—s3)—0Ghst,
’ ug' ='u'q —ars,
bup =Jh 4295 — st gf?,

‘ ur =o2hh'—3ni,

qui sont également connues dans la théorie de la forme du cinquiéme
ordre. Mais on a pour la forme type du covariant canonique T de la
forme du cinquiéme ordre :

T=tad+ a2y —( ug+ 3ht)zy?+ (nt —hh')y?;
pour celle de son covariant linéaire lle plus simple :
P=pz—qy,
et pour celle de la forme elle-méme, comme il a été déja dit :
U=ul[at-+1ohadyl+rona?yd - 5(us — 3h2)xyt+ (ulu'— 2 hn)ys].
L.'équation en z, résultant de (16) et de (20), n’est donc autre que celle-ci :
(27) . 25T:—UP=o, '

ot U, P, T sont respectivement la forme elle-méme, son covariant linéaire
le plus simple, et son covariant canonique (du troisiéme ordre), dans
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lesquels on a remplacé & par 5 et y par I'unité. C'est ce covariant

(28) W = 25T*— UP,

que j'appelle le covariant résolvant, et que je me propose d’étudier plus
loin au point de vue de la théorie des formes.

Voici done quelle sera la marche & suivre pour résoudre par radicaux,
quand cela est possible, P'équation du cinquiéme degré privée du second

terme.
Former le covariant W et chercher s'il posséde un facteur rationnel
" . . . S
* =] —_—
Rz -+ Sy. §'il en existe un, poser 5, = —— 5

Soient Ty, Uy, P, ce que deviennent respectivement T, U, P, quand on y
fait £ = z,, y = 1. La racine commune aux deux équations (16) et (20)

sera, comme on sait :

- d’ou

' T, u? Py
— —+ u? = s
(29) = \/ U,- \/ T,

Calculer alors «, 3, A et  par les formules suivantes, tiréesde (g), (10)

et (13):

ozr:—h+u“_
B=—"h—yvy,
' ) ‘ : wd(tzi+Ah')]
(30) { A = I [2hn—M?M'—-znv%z[+— 0188 +~13hz5 +n) - Lﬁ%&)] )y
2 . 1 .
1 \ ud(ts+ A
. p.:l—):[akn—-ui’u’—o,ovle——vi(z?--T—I3hz1—|—n)—%]-

Prendre pour j5 et m? les deux racines de 'équation
(7) X2— X 4 ab =0,
et pour A%, {5 les deux racines de I’équation
(8) | Y2y Y - B5 = o,
en choisissant les signes de maniére & satisfaire aux équations dugroupe (4),
complétées par (g), savoir

Sl mik=—n—v 3,

(31)

k- 2m =—n 4 vy 54,

et enfin calculer les cing racines 2y, 2, ..., &; par la formule (3).
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Comme toutes les quantités inlermédiaires employées dans les caleuls
ci-dessus (h, n,u', ¢, A',...) sont des péninvariants de la forme binaire du
cinquiéme ordre, rien n’empéche d’appliquer les formules et la marche
qui viennent d’éire indiquées & I'équation générale

aXs+ 56X 10X+ 10d X2+ 5eX - f = o,

. - : . b . .
a condition de prendre pour z, 'expression - -+ 3y, 5, étant la racine
rationnelle dua covariant W construit avec la forme compléte (2 moins
gqu'on ne préfére construire le covariant W avec les péninvariants comme

si 'on avait préalablement fait disparaitre le second terme de I'équation);
o b, ) .
et ensuite d'ajouter — ~a chacune des racines &, z,.. ., £, pour obtenir

les racines correspondantes X,, X,,..., X, de l'équation générale. Les
péninvariants el invariants a introduire dans les calculs s’obtiendront
d’ailleurs aisément de proche en proche par les formules suivantes bien
connues, dont j'ai déja rappelé ci-dessus les cing premiéres :

u  =a,

h = ac — b2,

n =ad — 3abe 4+ 203,

s = ae — 1 bd + 3c?,

v =atf—3abe+ 2acd+ 8b2d — Gbe?,

) :

¢ = ace +2bcd—adi—6234c3:u—ﬂ(uﬂhs—n?uifﬁ),

| ulqg = uls?— 6uht— fhis — nu',

32
(32) ( u) = w't4- 12 ust 4~ 4 hs?,

up =Jh-+2g95—s53+ 9i?

us' =st—3qgt— hp,

uK =({Js—128)t— p(g+s?),
3ul = (p2+ 41— Ks)t — 3 pss',

uh' = hu'— ns,
‘I ur = 2hh'— 3nt,
Vug' =u'qg—oars.

Cas oét w = 0. — Un cas particulier intéressant est celui o le cova-
riant W admet le facteur y, c'est-a~dire oit le péninvariant w = 252 — up
qui est sa source se trouve nul: cest ce qui arrive par exemple peur
I'équation de Vaudermonde, dans le calcul des racines 11mes de 'unité:

X5 Xé— 4X3 4+ 3X2 43X —1 = 0.
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Dans ce cas, I'équation (27) s'abaisse au cinquiéme degré; on peut
prendre g, == o0, d’ot @ = §, et v, =o0. En introduisant ces hypothéses
dans les équations (g), (10), {11), (13), on trouve successivement

=4hn—uw,

(v1531 )2 =n+ (4 A>— uls)= — udt,
vz = uy— ut,

A+ p=2hn—uw,

sl =2h(2udt -+ 2h3— u?hs),

g — Ci — thZ_E_:',
—ut
. w?(ug — ht)
A —_— = T .
# \/ -ut

Les équations () et (8) deviennent alors

(33) X“—e—(—;uﬂu’—hniu(uqihé) Mﬁul)x-—hf‘:o,

2

et le calcul s’achéve sans difficulté.

Application a Uégquation de MM, Bougaieff et Lachtine. — La

144 : q 8

seule application que je veuille donner ici pour la méthode générale indi-
uée ci-dessus sera la résolution de ’équation que MM. Bougaieff et

q : q q g

Lachtine ont indiquée comme résoluble par radicaux (Annales de la Soc.

math. de Moscou, 18go), savoir

, o WD)
(34) BTy s el Oy r ey sl

Posons

A=p—r, B=p—11, C=p?24+4.
L’équation (34) devient
4C(hz)+~AB(Az) +2B =o.
Pour le calcul des péninvariants successifs, on peut prendre

AB B
a=1, b= o, ¢=o, d=o, €= -—7> f—-E;
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d'ots

w=1 h=o0 n=o0 i_AB { =2
=1, =0, = 0y = 200G’ =0, “’—‘ZC’

A2B2 B2 , A3B?

=yma =i M=o IR
, A3Bs A2B?
s'=o, K——2955051 Lfny r =0, 9725520,,’
. AB B ) Arps :
U=a= R Ry P = opg(Az—10),
AR
T=—gsa®
Az B2

(35) W=25T2—UP =— - _—_

Mais pour 2 =1, la parenthése s’annule en vertu des valeurs de A, B, C
en w'. La résolvante W =0 admet toujours la solution rationnelle 1,
Prenons donc z;, =1; il vient

U= TIGMC +AB+2B) = );?‘
. AmB
ST Yok
AZR2 .
Tiiﬁ%iﬁi ' )
d’ol .
B
= Vi
B__ _B
=056 P=T oysa
B B2 B B —_
)\:#Fj_m+m:m(mm§m5+\/50),

B= YE)%.(_ZA_S — ‘/5'5)

Le calcul est dés lors aisé & terminer, si 'on se donne les valeurs de w'.
Prenons par exemple p/=—1, ce qui correspond a I'équation
(36) S5z5+6x—6=o0.

1l vient alors

6 6
Pp=—— — q£=——3 =t —
25 25 25
3 12 " 18
ETY A t 125
14
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Les équations (7) et (8) deviennent

. 2yt x 2
X2+ |15X 55 = O
18 . 65
2 __ -
Y 125Y+ 56 = O

233 s 2234
J"*--S—;‘: me = — s 3
pr 23% I 2% 33

—_ 2 5 — .
T 58 7

d’ou pour 'expression générale des racines de (36)

(37) ai=

(01 ¥/24 -+ 02 {/18 + 031 /{32 — 0% ¥/3a1).

Ol

Ce résultat ne différe que par la forme de celui qu'ont obtenu MM. Bou-
gaieff et Lachtine.

Expression des racines du covariant W en fonction de cellesde la
Jorme du cingquiéme ordre. — D’aprés les caleuls qui ont conduit a
prendre W comme résolvante, une racine 5 de ce covariant a pour expres-
sion

L S=y_Rj+Dm—jl— mk
(38) T B Jm—kl )

En remplagant j, &, [, m, parleurs valeurs tirées de (24), on trouve sans

peine expression suivante de z

o 9 o
A2 i@ Tiva— § R T By i, — @iy + Saiwl, + Bapal, — Sapwd,,
= - ’
Exi @1 — 2 Tisn

9) 2=

Ol =

expression dans laquelle le signe X s’applique aux cinq valeurs de 7, et
qui n'a elle-méme que six valeurs quand on permute les racines entre
elles de toutes les maniéres p0551blcs. .

‘Dans le cas particulier envisagé plus haut, ol af = ﬁv cette t‘elallon
donne, en vertu des équations (5),

o2

5
L_, "“’72
PR

| oz
R
_CD

et, par conséquent, la valeur particuliére de z, que nous avions trouvée
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I3 by I , r i
égale & — - dans ce cas, est égale a

c’est-d-dire & sa valeur dans le cas général. Le cas particulier ot a8 = By
ne se distingue donc en rien du cas général, et 'on obtiendra toujours la
solution en considérant le covariant W tel qu'il a été défini.

Les racines de U étant écrites dans I'ordre

Ty, X1y Ty Xyy Ly,

on-obtiendra les vingt permutations qui laissent z invariable en écrivant
les mémes racines de 2 en 2, de 3 en 3, ou de 4 en 4, puis en prenant
une quelconque des racines pour lettre initiale. On en conclut sans peine
que les six valeurs différentes de = peuvent éire regardées comme corres-
pondant aux six permulations du Tableaua ci-dessous :

Ty, Ty, Xy, gy, T,
Loy, X1y Ly, Xy, Ly,

&g, Xy, Xy, Xay Xy,

Toy Ty Wy Xy, X,

obtenu en laissant les rangs de x4 et de #, invariables.

Il en résulte immédiatement que, si U a une racine double, par
exemple x,==x;, les six valeurs de z deviennent égales deux & deux,
et W doit devenir un carré. parfait. Si U admel une racine triple, par
exemple xy = &3 = x4, les six valeurs de z coincident, en sorte que W doit
devenir une sixiéme puissance exacte. Enfin, si U a deux racines doubles
distinctes, W doit admettre un facteur double et un facteur quadruple.
Je montrerai, dans la seconde Partie de ce Travail, comment on peut véri-
fier qu’il en est bien ainsi. - ‘

Mais, auparavant, il me reste & expliquer la différence qui existe entre
I'expression de z trouvée ci-dessus (formule 3g) en fonction des racines
de U, et celle qu’a donnée M. Macclintock dans son Mémoire de 1898, et
qui s’écrit ainsi, avec les notations que j'ai employées :

(40j : EX i) Tivg— DX Xiag Bigy
e . .
L@y — B &irg
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o . .y

Solent cing quantités quelconques Zoy X4y Xay T3, Ty, €L posons -
Lxi i T — XX e Ty = T

0 A2 L+h ey

ol a2 2 S g 0.2 _
”$i<w1-|-1 +°"v"i-+—:.) —‘xl(miﬂa ' x:’+3) =
22 Wi — LTy = 0.

On vérifie aisément '1dentité suivante :

T = g,

La valeur de 5 fournie par (3g) étant

jm—op
5a
dcrire ' .

& =

ki

peut donc encore s

]

i
F

13

Et lorsque Yz; est nul, comme nous I'avons supposé, elle coincide avec
celle qui fournit la formule (4o), savoir :

ald

Mais, si I'on revient &4 la forme générale non privée du second terme, les
deux expressions ne coincident plus. On peut, d’ailleurs, remarquer que
si Xy, X4, ..., X4 sont les racines de I’équation compléte, zy, 2y, ...,
z, celles de I’équation privée du second terme, les deux séries de quan-
tités sont lides par les relations

b
X = X,‘-i- —3
a

et que les formules (24) restent encore vraies quand on y remplace les 2;
par les X;. Donc P'expression de la racine z du covariant W est la méme
en fonction des racines X; de la forme générale qu’en fonction de celles
x; de la forme pfivée de second terme : ce qui devait étre, d’ailleurs,
puisque W est un covariant de la forme.

I1.

Le covariant résolvant W est une forme du sixiéme ordre par rapport
aux variables et du sixiéme degré par rapport aux coefficients de la forme
quintique U. Ses quatre invariants indépendants A, B, C, D doivent étre
des fonctions rationnelles des trois invariants J, K, L. de U; il existe donc
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entre A, B, G, D une relation qui caractérise W parmi les formes du
sixiéme ordre, et qu'il est intéressant de rechercher.

Calculons d’abord les quatre invariants de W, au moyen de la méthode
que j’aiindiquée en 1883 (Comptes rendus de I’ Académie des Sciences),
et appliquée depuis 4 diverses reprises, notamment pour I'étude du sous-
discriminant (Journal de Mathématiques pures et appliquées, 1895).

A cel effet, écrivons W sous sa forme type, savoir

(41) W = woat+ 6w 28y + 15 wead y2 4. . .+ Bwyayi-- we )b,

ol les coefficients s'xpriment comme suit en fonction des péninvariants

de U:

- 5 10
Wy == —a5 1t 4 n(/epn— Sj §2 L ?g:!),
5 .
Wy = — 2 g2 w(3hqg'—10rt—5h'q) - luzu”,
2 2 2
Vo, == 25 A2 %ulzz(js?j'- 20949)+ :;-u?(lg hs'+ 2 gs24-7582) -+ érc”(zps — 33.‘:‘),

25 25 13 25
s= — 2Rt = u{ = hr — hn —ns't
ws= 3 R2R' L u( 3 hrt—+ T hnp + g s )

—+ u? (2—5 qgr— 2‘—5 ns' fzh.u”> -+ ud (CE g's— lu’p)
6 18 3 ‘ 67" 6 !

1 we=—2o5h8 2+ wh?t(4s*— 37q) + uth(2gs®— 435t — 33 hs") _
G udt(2Jh—2512) + ut(Jg + 6ss').

Calcul de A. — L'invariant A a pour valeur
(43) wow— 6wy w15 wawy, — 10w},

et, comme il est du second degré par rapport aux coefficients de- W, il
doit étre du douziéme par rapport a ceux de U; l'expression ci-
dessus, quand on y aura remplacé w,, w,, ..., o par leur valeur, devra
donc devenir divisible par u%, et le quotient se réduira & une fonction de
I, K, L.

Pour le calcul, il est permis de supposer nul ’un quelconque des
péninvariants, par exemple ¢. ' ‘
Les coefficients de w deviennent alors, en tenant compte des syzygies
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relatives au cinquiéme ordre,

wo=—up,
I I
W= < ugq .
3 q

I

Wy =-— u?s’,

Wy = %(hq’ﬂ np—>5h'g),
u? ,
wi= = (197s"+ 2952+ 2 ups),

wy = g[Sohh’q —15h' ¢ —auns'— u(w'p—5q's)],
wi=u?{ —h(2gs2+17hs') + u2({J g + 255",

En introduisant ces valeurs, on trouve, toutes réductions faites,

(44) A= Z(JK—16L),

Pour le calcul des invariants B et G, qui sont respectivement des
degrés 4 -et 6 par rapport aux coefficients de W, et, par conséquent, des
degrés 24 et 36 par rapport & ceux de U, je commencerai par calculer le
covariant &' biguadratiquele plus simple [Q] de W, celui dont la source
a pour expression

(15) WQng.iW1W3+3W§.

Je calculerai ensuite les invariants quadratique et cubique de [Q],
lesqpuels ont pour valeur, comme on sait, respectivement

I I
o 2 O = .
(46) 3= (A2—36B) et 0= _——(5C+108AB—A3);

A étant déja connu, l'expression du premier permettra d’obtenir B, et
celle du second, C.

Calcul de [Q]. — Pour le calcul des covariants, il n’est plus permis,
en général, de supposer nulun péninvariant quelconque. Mais [ Q] n’étant
que du quatriéme ordre, le hessien H de U, qui est du sixiéme ordre, ne
peut entrer dans son expression; A disparaftrait donc de lui-méme du
résultat. Rien n’empéche, par conséquent, de le supposer nul, pour sim-

plifier le calcul.
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Dans cette hypothése, il vient

wy=251*— up,

25 1
wy= - h't+ < uq'
1 3 ﬂ"G 9
Sut
w,:—-—3—(29—.s’),
25 5 T :
Wy = — ?nt’—— 5 w(art+h'g)—+ 3 utu’,

Wy, = %uﬂs(zqs—f— 7))+ %u“(zps—BJt).
Su?stituant ces valleurs dans l'expression (45), on trouve en divisant
par u', toutes réductions faites,
(47) [Q] = 3 (2KS-- IS+ 168'2),
ce qu’on peul écrire

(48) [Q1= 5 [328'— (3 4 VA)$][328'— (v — V&) 8],

en appelant A le discriminant J2 — 128 K de la forme primitive U.

Le covariant biguadratique [ Q] étant décomposable en deux covariants
quadratiques, ses invariants X et © s’expriment, comme on sait, en fonc-
tion des discriminants 3, &' et de l'invariant commun ¢ de ces deux cova-
riants quadratiques par les formules suivantes : '

‘ Tor & = %(_.i?—e-mﬁﬁ’i,

(49) ‘
? 192 © = — (3688 — i)
192 8 = 216” .
Calcul de B et C. — En vertu des relations (46), il vient alors
1 " Y
A?—36B = — (i2 +- 123¢8"),
Q2
(50) 12 ]
54C +108AB — A= —' (3633 — i),

192

Le calcul de 7, 8, &' se fait aisément en prenant les deux covariants
sous leur forme type, savoir

(51) {323’—0iy/ﬂ)s]xﬂ—2[[6(1&"—!—5&')4—%‘[-‘—5‘—14’]37]

+[32(wlt —ups — hs') 4+ (I £ /&) (hs + 3ut)] 3y,
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et supposant pour plus de simplicité s = o, comme il est permis de le
faire pour le calcul d'invariants. On trouve

(8 =— i [J2— 320K —1536L + (32 + 32 K)y/3),
(52) s or I ) ) —
(a— —D[Jﬂ-—-31JK—1536L—(J2+32K)\/A],
i= g6(16L—1JK).
d’on
(53) 88 = 28{g(16L— JK)2— (K2 3JL)A].

La troisi¢me des formules (52) équivaut a

576

5

(54) f=— 2724,

On peuat dés lors éliminer 7 et 68 entre (54) et les deux relations (50),

et obtenir, comme relation caractéristique entre les invariants A, B, C
de W, l'identité suivante :
(55) 33750 4- 2700AB — fA3 = 0.

Je reviendrai plus lein sur les conséquences de celte relation caracté-
ristique. l

Les formules (50), (53), (54) donnent d’ailleurs pour les expressions
complétes de B et de C

( B (K24 3JL)A t1(JK —16L)?
= ——— ————— e

(56) W3
a
o 370K —16Ly  (JK-i6L) (K2--3JL)A
N I R

Calcul du discriminant D de W. — Quant au discriminant D de W,
on l'obtient par la méthode que j’ai indiquée, savoir en annulant les deux
premiers coefficients de W, élevant le second au carré pour faire dispa-
raftre les péninvariants gauches, et éliminant tous les péninvariants droits
au moyen des syzygies connues. Voici du reste la marche du calcul. Soit
posé

"wy= 2512 —up =o,

6wy =S5oh'p+ug'=o,
k] a - r .
c est-a-dlre, en élevant au carré,

25002 h"2+ ut gt 1oouth’'q' = o.
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Si l'on remplace 4’2, g2, A'q’ par leurs valeurs en fonction des pénin-
variants droits, la seconde équation devient, en tenant compte de la pre—
miére '
75 hp?—+ 200 pgt — 100 ps? ¢ -~ u(J ps + 63 ps'— J*t - 103K¢) = o.
Mais st 'on ajoute au premier membre la quantité identiquement nulle

25t{uK — Ist +125't + pg <+ ps?) — 75 p(us'— s?t -+ 3gt + hp),

1l se réduit a
(128 K — J2).

Le covariant W n’admet donc un facteur double que dans les deux cas
survants

1° 51 D =1J2— 128K est nul, c’est-a-dire si la forme U admet elle-
méme un facteur double.

2° Si =0 en méme temps que wy==o0, ce qui exige que UP ait ce
facteur commun avec W = 25 T2 — UP; mais alors ce facteur étant double
dans W et dans T2 est double aussi dans UP; et si 'on suppose que A
ne soit pas nul, il faut qu'il soit commun a4 U et & P, ce qui exige que les
résultants de T et de P, aussi bien que de U et de P, soient nuls. Le
premier de ces résultants est l'invariant gauche I de M. Hermite; le
second est, comme on sait, I(J2— 3K); pour qu'ils solent nuls simulta-
nément, il faut que I soit nul.

Donc enfin le discriminant de W se réduit, & un coefficient numérique
prés, au produit d’une certaine puissance de A par une certaine puissance
de I; et comme il doit étre de degré Go par rapport aux coefficients de U,
alors que A et I sont respectivement de degré 8 et 18, on a nécessaire-
ment

(56 D = al2A%,

o élant un coefficient numérique.

Il y a enfin l'invariant gauche E de la forme du sixiéme ordre, du
quinziéme degré par rapport aux coefficients de W, par. conséquent du
quatre-vingt-dixiéme par rapport & ceux de U. go n’étant pas multiple
de 4, I'expression de E admet nécessairement en facteur une puissance
impaire de I'invariant gauche I. Je dis qu’elle admet en outre le facteur A2.
En effet, lorsqu'on veut calculer 'expression de E2? en fonction de A, B,
C, D, on trouve (SaLmon, Lessons intr. to the modern higher Algebra,
3¢ édition, p. 237) que la partie indépendante de D est le produit de

3375C + 2500AB — 4 A3
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par le carré d’un certain résultant. Mais ce facteur ici est nul [form. (55)];
E? admet donc D en facteur, c’est-a-dire 12A3, et, par conséquent, E est
divisible par 1A2, le quotient étant un invariant composé de degré 56, que
je n'’ai pas cherché a calculer.

Ezpression de W quand U a un facteur carré. — D'aprés les
formules (44) et (56), on voit que si U a un facteur carré, ce qui
entraine A —o, les invariants A, B, C se réduisent a des puissances
de JK —16L, multipliées par des facteurs numériques; en éliminant
cette quantité, on Lrouve qu'ils satisfont aux deux relations suivantes :
57) 1T1A24- gooB = o,
37A% —2275C = o,
qui caractérisent précisément, lorsque le discriminant D est d’ailleurs nul,
les formes du sixiéme degré qui ont trois facteurs carrés, c'est-a-dire qui
se réduisent & un carré parfait. Nous avons donc ici la démonstration
directe du fait annoncé plus haut, savoir que, lorsque U admet un facteur
double, son covariant résolvant W se réduit & un carré pﬁrfait.

Décomposition de U quand il existe un facteur double. — Cette
propriété de W permet d’obtenir immédiatement la racine double de U.
Soit, en effet, @ le polynome dont W est le carré. On a

25T? — UP = @2,
D’ou -

(58) UP = (5T + 8)(5T — @).

L’une des formes cubiques 5T == @ est donc divisible par P; le quotient
de cette division et Pautre forme cubique constituent les deux facteurs
de U, le premier quadratique, le second cubique. D’ailleurs, ils ne peuvent
avoir de facteur linéaire commun, sans quoi ce facteur diviserait a la fois U
et T, et Uinvariant [ serait nul, supposition que nous pouvons écarter ;
donc le facteur double de U doit diviser I'une de ces deux formes, et
il est naturel d’admettre que ¢’est la forme quadratique (je l'ai d’ailleurs
vérifié sur des exemples numériques). Donc enfin, étant donnée une
forme quintique U a facteur double, si I'on forme ses covariants P, T et
W =125T2—UP, W est un carré parfait ©2; 'une des deux formes
5T == O est divisible par P, et le quotient est un carré parfait; en extrayant
la racine, on obtient le facteur linéaire correspondant & la racine double
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de U. Ce facteur n’est donc autre que le covariant, irrationnel en général
q ) g 3

£ 5T = /25 T2 — UP
P z

mais qui devient rationnel (les extractions de racines se faisant exacte-
ment 4 condition de prendre les signes convenables) lorsque A = o.

Casow U posséde deux facteurs doubles. — Lorsque la forme U pos-
séde deux facteurs doubles, on sait que les invariants satisfont aux deux

conditions
A =o,
JK —16L = o.

Donc dlors A, B, G, D s’évanouissent tous a la fois, ce qui signifie
que W admet un facteur au moins quadruple, comme il avait été prévu.
De méme, si U admet un facteur triple, les covariants J, K, L s’annulent,
etil en est de méme de A, B, G, D : d’oit la méme conclusion.

Hessien de W. — J'ai calculé le covariant hessien de W en formant
I'expression
Wy Wg— W7,

simplifiant au moyen des syzygies et divisant finalement par «2. Il vient,
tous calculs faits :

(59) R:é[UAT—i—(.}S—SQS’)'\V].

Lorsque A = o, ce covariant devient divisible par W, comme on pou-
vait le prévoir, puisque W admet alors trois facteurs carrés, qui doivent
aussi étre des facteurs carrés de son hessien d’aprés la propriété connue
des covariants hessiens : done W doit diviser son hessien. Ce résultat
confirme done ceux obtenus précédemment.

Résultant de W et du covariant S. — Puisqu'il suffit de connaitre
une racine de W pour obtenir I'expression par radicaux des cing racines
de U, il est clair que U sera résoluble par radicaux toutes les fois que
ses trois invariants J, K, L seront tels que le résultant de W et d'un
autre covariant quelconque de U soit nul. Il y a done quelque intérét a
former quelques-uns de ces résultants.

Calculons par exemple celui de W et du covariant quadratique le plus
simple S de U (covariant du second degré par rapport aux coefficients
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de U) 11 suffit pour cela de poser

s =0,

(60) 2512 = up,
d’écrire tes cing syzygies qui relient les trois invariants et les sept pénin-
variants droits u, ¢, &, 5,5, ¢, p, et d’éliminer six de ces derniers : le sep-
tiéme restera, en vertu de ’homogénéité, comme facteur d’une certaine
fonction de J, K, L, laquelle sera le résultant demandsé.

Les cinq syzygies sont :

up — Jh—ogs +s3—gt>=o,

us'— s*t + 3qt + hp = o,

(61) ¢ uK—1Jst+125't+pg + psi= o,
- 3.uL—-p2t——/|Js'.f.+Kstfsl.‘-ipss’:o,

\ ups —ult— q*+ 3st2+ fhs'=o,
et le calcul indigué donne comme résultat
(62) I (4IK +11L)+ 1024 L2+ 64 JKL +17J2 K2,

Les formes quintiques pour lesquelles cet invariant composé est nul
sont donc résolubles par radicaux : il suffit de prendre pour s,, dans les
calculs de la premiére partie de ce travail, la racine commune.aux deux
covariants S et 25T2 — UP.

On pourra celculer ainsi autant de conditions invariantes qu’on vou-
dra, suffisantes pour caractériser une forme quintique résoluble par
radicaux : de méme qu’en calculant les résultants de U et de ses divers
covariants on obtiendrait des relations invarianles caractérisant cha-
cune une forme quintique qui admette un facteur rationnel.

Conditions de résolubilité par les fonctions elliptiques. — Lorsque W
n’admet pas de racines rationnelles; on peut se proposer d’exprimer ses
racines au moyen des fonctions ellipliques. Toutes les équations algé-
briques qui ont été demandées dans ce but 4 la.théorie des fonctions
elliptiques dépendent de deux paramétres seulement, qui correspondcnf
aux deux invariants de la fonction elliptique; aussi ces équations, consi-
dérées au point de vue de la théorie des formes, sont-elles caractérisées,
si elles sont du cinquiéme ordre, par une relation invariante, et, si elles
sont du sixiéme ordre, par deux relations invariantes; ce qui s’oppose
a ce qu’elles soient appliquées & la résolution de 1'équation générale du
cinqui¢éme ordre, sans l'emploi préalable d'une transformation non
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linéaire. Toutefois, de méme que la méthode de résolution de M. Her-
mite est directement applicable, par une s'imple transformation linéaire,
4 I'équation du cinquidme ordre dont le premier membre est une forme
ayant son invartant L égal 4 zéro, et celle de M: Brioschi, dans les mémes
condilions, & I’équation du cinquiéme ordre dont le premier membre a
ses trois invariants liés par la relation

2L=yA(I— 41YA -+ ga),

de méme on peut se demander quelles relations invariantes doivent étre
satisfailes, pour que 1'équation 'W = o soit directement transformable
par. substitution linéaire en une des équalions du sixiéme ordre que
fournit la théorie des fonctions elliptiques, de telle sorte qu'une de ses
racines étant obtenue par cette théorie, la résolution de U devienne pos-
sible par radicaux, aprés adjonction d'une transcendante elliptique.

Les développements donnés plus haut permeltent de répondre i cette
question. La théorie des fonctions elliptiques fournit en effet plusieurs
équations du sixiéme ordre dont le premier membre satisfait a la méme
condition invariante que W, savoir

(55) 3375C +4- 2700AB — fA3 = o;

chacune d’elles est caractérisée en oulre par une seconde relation inva-
riante, dans laquelle il suffit de reporter les expressions données ci-dessus
pour A, B, C en fonction de J, K, L, pour avoir la condition invariante &
laquelle doit satisfaire la forme quadratique U pour que ce mode mixte
de résolution lui soit applicable. Voici & quels résultats on arrive dans cet
ordre d’idées :

1° L'équation modulaire relative a la transformation du cinqui¢me-
ordre est la suivante :
(63) g8 551522 — jsp — 5 = o,
et elle est caractérisée par les deux conditions invariantes A =o, C=o0:
la relation (55) est donc satisfaite, et il saffit, d’aprés (44) et (56), que
l'on ait JK —16L = o pour que W puisse étre ramené par une substi-
tution linéaire & la forme (63) (voir pour les détails du calcul la Théorie

des formes binaires algébriques de Clebsch, § 114). Donc toute

forme U du cinquieme ordre qui satisfait & la condition invariante
(64) JK—16L =0

est résoluble par radicaux, portant sur une transcendante fournie par la
théorie des fonctions elliptiques.
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2° Aulieu de I’équation modulaire on peut prendre ’'équation au mul-
tiplicateur dans la transformation du cinquiéme ordre, savoir

(65) &5 — a8+ 2562k (s +1) =0
dont les relations caractéristiques invariantes sont

A2 235 B=o,

(66)
8A34-3375C == o.

La relation (55) se trouve encore satisfaite, et 'une ou l'autre des re-
lations (66) équivaut

(67) A(K2+ 3JL) = 5(JK — 16 L),

Les formes U du cinquié¢me ordre qui satisfont a cette condition (69)
sont donc résolubles par le procédé dont il s’agit (voir pour le detall des
calculs le méme Ouvrage de Clebsch, §115) (4).

3° Prenons enfin 1’équation de la dtVISIOI’] des périodes par 5, telle que
la donne Halphen dans sa Théorie des fonctionselliptiques, t. 111, p. 3 :

(68) ab—S gyt — jogat — S gt — B8 g gy —Hgli=o.
Les caractéristiques invariantes de la forme du sixiéme ordre qui con-
stitue le premier membre de cette équation sont

4A2— 225B =0,

6
(69) 44 A%+ 3375C = o.

Elle satisfait donc bien encore a la relation générale (55); etla forme W
pourra y étre ramenée par substitution linéaire, sil'on a en plus

4A2—225B = o,
ce qui, d’aprés les formules (44) et (56), correspond pour U 4 la condi-
tion invariante :
(70) A(K?+ 3JL) = g(JK — 16 L)2.
La substitulion propre a mettre sous la forme (68) le premier
membre 'W d’une équation du sixiéme ordre qui satisfail aux condi-

tions (70) est d'ailleurs facile & trouver, car il suffit de prendre pour 'y
de la transformée le facteur double du covariant (Q) [ covariant biquadra-

(') Les notations employées par Clebsch pour les invariants A, B, C de la forme
sextique sont un peu différentes de celles que j’ai adeptées 1ci, et qui sonL con-
formes aux indications du T'raité d’Algébre supérieure de So;lmon

Droits reservés au Cnam et a ses partenaires



R. PERRIN. — SUR LE COVARIANT RESOLVANT DE LA FORME BINAIRE. 223
dratique le plus simple, formules (47) et (48)] dont le discriminant

(A2—36B)—(A3—108AB — 54C)2

s'évanouit en vertu de (70) ('), et de subslituer ensuite & = la variable
ax -+ By qui fait disparailre le second terme de W ainsi préalablement
transformé : les coefficients obtenus donneront les valeurs de g, et de g3,
invariants de la fonction elliptique 3 introduire, et si 2@ est 'une de ses
périodes, on pourra prendre pour une des racines de (68) 'expression

(71) z':,})—ﬁ'—-'i’l}l—.!

ce qui donnera une valeur de 5 annulant le covariant W, et conduira 4 la
résolution de U par radicaux portant sur I'expression (71).

(1) La formule (53) montre que, siles conditions (69) sont remplies, le produit 83’
des discriminants des deux covariants quadratiques irrationnels 32 8'—(J == /A) S,
dont le produit constitue (Q), s'annule : donc un de ces deux covariants irrationnels
se réduit & un carré parfait et fournit le facteur & prendre pour I'y de la trans-
formation.

———ee———
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THE KNOWN SYSTEMS OF SIMPLE GROUPS
AND THEIR INTER-ISOMORPHISMS;

By L.-E. DICKSON (Cuicico).

The widespread intevest laken in the group-theory seems to be due 1o
its ready application to many problems in geometry, function-theory and
number-theory, as well as in the theory of algebraic and differential
equations. When a problem has been exhibited in group phraseology,
the possibility of a solation of a certain character or the exact nature of its
inherent difficulties is determined by a study of the group of the problem.
For example, the question of the solution of an algebraic equation by
radicals or of the integration of a differential equation by quadratures is
answered by a knowledge of the group of the equation. Ultimately it is a
question of the structure of the group, as determined by the chain of
stimple groups arising from its decomposition. As the chemist analyzes a
compound to determine the ultimate elements composing it, so the
group-theorist decomposes the group of a given problem into a chain of
simple groups. While the chemist is concerned with about sevenly
elements and their various compounds, the mathematician has to study a
universe formed from an infinite number of elements, the simple groups.

Much labor has been expended in the determination of simple groups.
For continuous groups of a finite number of parameters, the problem has
been completely solved by Killing and Cartan, with the result that all
such simple groups, aside from five isolated ones, belong to the systems
investigated by Sophus Lie, viz., the general projective group, the pro-
jective group of a linear complex, and the projeclive group leaving inva-
riant a non-degenerate surface of the second order. The corresponding
problem for infinite continuous groups remains to be solved.

‘With regard to finite simple groups, the problem has heen attacked in
two directions. Holder, Cole, Burnside, Ling and Miller have shown
that the only simple groups of composite orders less than 2000 are the

19
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previously known simple groups of orders 60, 168, 360, 504, 660, 1092.
On the other hand, various infinite systems of finite simple groups have
been determined. The cyclic groups of prime orders and the alternating
group on n letters (n > 4) have long been recognized as simple groups.
The other known systems of finite simple groups have been discovered
in the study of linear groups. Four systems were found by Jordan (') in
his study of the general linear, the abelian, and the two hypoabelian
groups, the field of reference being the set of residues of integers with
respect to a prime modulus p. Generalizalions may be made by employing
the Galois field (2} of order p” (designated GF[p”]), composed of the p*
Galois complexes formed with a root of a congruence of degree n irredu-
cible modulo p. Groups of linear substitutions in a Galois field were
studied by Betti, Mathieu and Jordan; but the structure of such groups
has been determined only in the past decade. The simplicity of the group
of unary linear fractional substitutions in a Galois field was first proved
by Moore (*) and shortly afterwards by Burnside (*). The complete
generalization of Jordan’s four systems of simple groups and the deter-
mination of three mew triply-infinite systems have been made by the
writer.

Aside from the cyclic and alternating groups, the known systems of
finite simple groups have been derived as quotient-groups in the series
of composition of the following linear groups:

1. The group of all linear homogeneous substitutions {7}

m

~ .
5’{:2‘1”&] (i=1,2,...,m),

j=1

on m indices with coefficients in the GI[ p7]. The quotient-group may
be exhibited concretely as the group of linear fractional substitutions of

determinant unity on m —u indices.

2. The abelian linear group (¢) of all linear homogeneous substitutions

(1Y Traité des substitutions.

(2)-Gavors, OFueres mathématigues, Paris, 1897. — Moone, Congress Mathe-
matical Papers, p. 208-242.

() Bulletin Amer. Math. Soc., Dec.1893;in full in the Congress Math. Papers.

(%) Proe. Lond. Math. Soc., vol. XXV, Feb. 18g4.

(3) JompaN, Traité; n°* 119, 169. — DicksonN, Annals of Mathematics, p. 161—
183, 1897 ; University of Chicago Record, Aug., 1896.

(%) Quarterly Journal of Math., p. 16g-178, 1897; p.383-384, 189g.
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, m) which leave invariant

in the GF[p"] on 2 m indices &;, n; ({ =1,

the bilinear function
. n
Eit

2

3. The first and second hypoabelian groups ('), beth subgroups of the
abelian group. They may be defined as the largest linear homogeneous
groups in the GF[2%] on 2m indices which leave invariant the respeclive

i1

.
Siz T2

m

EE{'FH-;

i=1 i=1
where % is a mark such that £, 7, + 3E* + l‘qf 15 irreducible in the field.
4. The first orthogonal group (*), composed of all linear homogeneous

substitutions on m indices with coefficients in the GI'[ p”], p > 2, which

m
. . e
1(’,8\"6 mvariant E Cj

i=1

(uadratic forms
[
Eimi-+ MY + Aqi,

-3. The second orthogonal group (*), composed of all linear homo-
geneous substitutions on 2/m indices with coefficients in the GF[ p],

v

-~

p > 2, which leave invariant the quadratic form

am—1 .
(v = nok-square ).
i=1,

6. The hyperorthogonal group (%), composed of all linear homogeneous
substitutions on m indices in the GI'[ p**] which leave invariant the
function : -

ﬂ)"u 1_{7 E;}‘Url%_ L EE::.Li_
Denoting by £ the conjugate EP" of § with respect to the GF[p#], the
defining invariant may be writlen ZELE, S

. 495-

(1) Quart. Journ. Math, p. 1-16; 1898, — Bull. Amer. Math. Soc., p

5103 1898. fArzzer*. Journ. Math., p. 220-243 ; 1899. )
(2) Bull. Amer. Math: Soc., Feb. and May 1898. — Proc. Cal. Acad. Sciences,

, vol. I, n®* 4 and 8. — Amer. Journ., vol. XXI, p. 193-256."
3) American Journal of Mathematics, vol. XXI, p. 193-256.

(3)
(
(*) Mathematische Annalen, vol. L1I, p. 568-581,
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Whether or not there exist further systems of finile simple groups has
not been determined. The particular forms chosen for the defining inva-
riants do not involve as much specialization as is apparent. In fact,
every linear group in a Galois field defined by a quadratic invariant may
be transformed linearly into one of the hypoabelian or one of the ortho-
gonal groups ('). Again, the structure ol the linear homogeneous group
in a Galois field defined Ly an invariant :

2)\,—5’5 (r>a2; A;in the feld)

2

depends only upon the hyperorthogonal grouﬁs (?). Finally, no new
simple groups are reached by the decomposition of the lincar groups
defined by the invariants (3)

ELLY O ECD (1)
iy Sis Siq I
m m Fion (23 >\“)
EoE, E. S‘ Sil Eiq Sig
SE1CE2 « v Cigy 3
i=1 i:lr " " ‘
) (g
Eu Pzt Eir[

which for ¢ =2 define certain orthogonal, abelian and hypoabelian
groups.

Just as there occur coincidences among the three systems of continuous
simple groups, so also holoedric isomorphisms are found between certain
groups of the nine known systems of finite simple groups. The group of
linear fractional sabstitutions in the GF[p"] on one variable is isomor-
phic with the binary abelian group and the ternary orthogonal group in
the GF[ p], as well as with the binary hyperorthogonal group in the
GF[ p**]. According as p = 2 or p > 2, the unary linear fractional group
in the GF[p"] is isomorphic with the quaternary second hypoabelian
group or the quaternary second orthogonal group in the GF[ p"]. Accor-
ding as pm?is of the form 27, 4{-1 or 4{— 1, the linear fractional
group in the GF[p”] on three variables is isomorphic with the senary
first hypoabelian, the senary first orthogonal or the senary second ortho-
gonal group (). Similarly, according as p"= 27, 4131 or 4/ —1, the
qdatcrnary hyperorthogonal group in the GF[p27] is isomorphic ()

(1) Amer. Journ., vol. XXI.

(2) Mathematische Annalen, vol. LII, p. 561-581.

(3) Proé. Lond. Math. Soc., vol. XXX, p. 200-208. - Quar. Journ., July, 18gg.
(#) Proc. Lond. Math. Soc., vol. XXX, p. 70-98.

(5) Bulletin Amer. Math. Soc., p. 323-328; 1g00. — Transactions, July, 1goo.
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with the senary second hypoabelian, the senary second orthogonal or
the senary first orthogonal group in the GF[ p*].

Until quite recently it had been an open question whether or not there
exist simple groups of the same order which are not isomorphic. Inde-
pendent proofs (') show that the alternating group on eight letters is not
isomorphic with the simple linear fractional group in the GF[22] on two
variables, each having the order $8! Moreover, there exist two triply-
infinite systems of simple groups of like order which are not isomorphic,
viz., the simple groups derived from the abelian group on 2m indices
and those derived from the first orthogonal group on 2m -4~1 indices,
where m >a (2). For m=1or m=2, the simlﬂe groups in questio'n
are isomorphic.

(') ScHorTENFELS, Annals of Math., 1900. — Dicksox, American Journal,
vol. XXII, p. 231-252. ’

(%) Quarterly Journal of Math., July, 1g900.
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A METHOD

OF

COMPUTING THE COMMON LOGARITHM

OF A NUMBER WITHOUT MAKING USE OF ANY LOGARITHM
BUT THAT OF SOME POWER OF 10,

By Artemas MARTIN ( Wasuinerox).

The series usually given in text-books on Algebra for the computation
of Logarithms contain, at least, the logarithm of one other number
besides the one sought, and therefore necessitate the use of a Table.

It 1s the object of this paper to deduce from the ordinary logarithmic
series, converging series for the computation of the common logarithm of
any given number independent of any other logarithm but the logarithm
of 10™, which is readily seen by inspection Lo be m.

[ shall make use of the various known forms of logarithmic series
without stopping to show how they were deduced.

I. In the well-known series
loge(a + «) = log.a -+

' @ 1 fz\? 1 /s
_logﬂ(a—z)::_}ogea — 275 (—) — —]( )

pul & == 10™; then will
N2 N3 Nk

log nmo gy = Y d _l z _1 .x,,, _— I i )

(0 0810 (10 ®)=m Bl[l()”t z(mf” © 3 10’”) 4 lo’”) ' ’

o x 1/ & \? 1/ x \3 L/ o \E
2 no__ o _ . T i e | -
(2) loge(to z)=m—M |i1(th 5 (io'”) 3 {10'-‘!) Faliom ST I

where M =0,43429448190325182765 +, the modulus of common or
Brigg's logarithms.
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232 SECONDE PARTIE. ~— CONFERENCES ET COMMUNICATIONS. — SECTION I.

The series (1) and (2) are very convenienl for the purposes of compu-
tation when z 1s a small number.

Ezamples. — 1. Iind the common logarithm of roo2.

Solution. — Here m = 3 and z = 2, and (1) gives

" 2 5 \3
1 a3 M| 2 (2 M2y L
0g9l002 =3 M [,"-"’ N ([O:’ + 3 (158 .
N\

T ( . 5
== {3

i 3

5 \ 103/

=3 + M(o0,00199800266267 + ),

)

)
)

EENE

2
IO

[~

D) -

== 3,000867721531 +,

which agrees to the last figure with the value given by Brigg’s in his
Arithmetica Logarithmica (London, 1624).

2. Find the common logarithm of gg3.
Solution. — Here m =3, x = 5, using (2), which gives

5 5\ 5\2 5\ 1 /5 \s ’
logs003 — 3 — M | 2. + X ;) JLSNV T _) 1 ;) +l
081099 =3 \I[:o3+z(1o' 3 \10? 44 103, + 5 \los 1’

=3 — M(0,00501254 182291 + ),
=3 —o0,002176919251 +,

= 2,997823080745 +,
which also agrees with Brigg’s resuls.
Il. Put N == 1o™(1 - z), then

logiyN = m + Mlog,(1+ ),

[

T, I T, | - ]
=+ M (x — 22+ Jpd— —ph S — b, L)
2 3 4 5 G

Put N = r0™(1 — z}, then

(4) 1Dg1uf::m.-—M(:r+ ixﬂ—a-_‘;-ri‘-'-:--
2

B

I LI .
A i ml L N
5 6

When 2 is small, (3) and (4) will converge rapidly.

FEzamples. — 3. Find the common logarithm of ggoo.
. I 1
Solution. — g9goo = 10000 (I — —-——) = 10% (1 — ——); therefore
: 100 100
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I
— — . "y
m={, 2= —; and we have by (4)

1 I 142 I 1 3\3
log =4—M - 4 - — e = [ —
78109900 y : [([OU) I 2 (IUU) 3 (m())

L ) e )LI L)“;_i '_) ]
T4 \Geo) T35\ T0n) T 6 \ioo " 7 \ 100 e
= 3,993635194597 —+.

4. To find the common logarithm of 1oo160.

. 16 . 16 Y
Solution. — 100160 = 100000 (I -+ —m) — 10°% (1 -+ ); there-
N i 10000 10000

16

-, and by (3) we have

fore m =5, z =
10000

. 6 2 6 \3
logig100160 = 5+ M [<~16—> — 1 ( = ) + 7 (—-!-—
: 10000 2 3 10000 3 \ 10000
1/oa6 NE T/ a6 N\ 16\ ]
— = + o] — = e r
4 (woou) 5 \ 10000 6 \ 10000

== 5,000694315 866 +.
III. 1n the well-known series

- l(z'wlji‘—- I—(.:r;-fl)’*f-j« %(x--f[)-" —é(x‘—l)“—%...,

1
logewr = (& —1)— ~ (@ —1)2-+ -
° 2 : 3 4

n;—
pul £ =/, and we have

| togroa = [(Va )= L (Ve = §(Va—ar—§ (Va—)
( e (a—) — fa—0re,

(3)
where 7 may be any number whatever, and can be so chosen that ({/a — I)
will be a very small quantity, @ being greater than unity, and then the
series will converge rapidly, and only a few terms will be required to
delermine the logarithm sought to several places of decimals; but when @
is a large number, the labor will be very great. It will be most advanta-
geous to take n equal some power of 2. ’

If n be taken a very large number, one term of the series will be saffi-
cient and in that case we will have

(6) logipa = Mn(Va —1).

If greater accuracy be desired, take two terms and have

(7) logma:Mn[(’{/;f-l)u-é(” EE--:)"].
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See Stephen Chase’s T'reatise on Algebra, New York (1849), pp. 252
and 254, where he takes n — 25°. Brigg’s took n == 2%%. A much smaller
value of » will suffice when the logarithm is wanted to only 8 or 10 places
of decimals.

FEzample. — 5. To find the common logarithm of 3
Solution. — Taking n == 2%, we have

1
logip3 = M < n > ( "—1) = 0,47712125 471966
Iv II.l (5), put @ = LA then we have
* 2P T qom? ©

s LA o T
e e
| =51V G ==

where, asin (3), n may be any number chosen at pleasure, but it will be
best to take r some power of 2. This is a convenient series for numbers

(8) ¢

u-"—q

greater than 710.

If n be a large number, one term of the series within the braces will
give the logarithm with sufficient accuracy for ordinary purposes. In that
case we have

(9) ) logigb = m —+ J\In[\/(]ofn)-_l},

If greater accuracy be required, take two terms and have

W/ ) =] =3l ) -
o e (=) () s (=R ()

Substituting v ( ) for x we have

(10) logjpb =m + Mn

om

Ve sl-ven)
L=V ) =5V

!

s logiob =m +~Mn

(”)'(
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W}ICI‘C n may be as-

V1. Loz,

Put
then

and

loge(y +a) =logey +2 [

— A METHOD OF COMPUTING THE COMMON LOGARITHM.

in (8)

O] =

Let ¥ —10™, then we have

(12) ’\
|

logg(10m+a)=m+2M ;—(
Jotol >

[ a Ik
+z |+
5 [2(10’") -+ aJ

(a—l—sr) l’.x I (.’Z’)‘l z‘)ﬂ I ( y
—— ) =2l -t =)+ =)+ =
“Na-—x a 3 \a (a 7

a 1
tem)+—a 3 |2(iom

Example. — 6. Find the common logarithm of 3.
Solution. — 2% = 10324 = 1000 + 24 = 10% - 24 ; therefore

and

By (1.2),

lﬂgjg?- =

If we put z = Py

|Oge(l}f—a):}c|ae]_2 k..a 4,.1 L 3_|_]
S 3\ay - 5

Take as before y —

(13)

“ we get
T weg

logye2!0 == 10 logye2 =log e (103 + 24),

f
logie2 = o logso (102 + 24).

3 2 3 7 ( 3 )“ 1/ 30\8
— =M | = + 3 + =
o io [-)_53 3 \253 5 <253>

ERUNENE R
+o\a3) Tgl\ass) T

0,301029995663 +.

a-—x ¥
a—x

2y —a

10™ and we have

logyp (1o — @) =m -—2aM ; @ SR [

l 2(tom) —a 3

e

(&1
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Examples. — 7. Find the common logarithm of 3.

. B I 1 -
Solution. — Log, 3 = ~ log o9 = 5 log,o (10 — 1); thereflore by (13),

1 I/1\3 1 /133 1
log =1 —2 I _— = | — e [ — U
o103 =12l [19 3(19) 5<19> 7

= 0,477121254719 —+.

() =5 6) =]

8. To find the common logarithm of 5.

. ~ I 1
Solution. — logy, 5 = 3 logyy 125 = 3 logiy (100 + 25); therefore,

by (12),

. 3
logieh = é +2M [é - ; (é) -

= 0,698970004336 +. !’
9. To find the common logarithm of 5.
Solution. — Log,,7 ==log,o(10 — 3); therefore, by (13),
3 V/A3NE /3N 1 f3NT 1 /3N
gy =1=o [ 5 () 3 (5) 1 () 5 () ]
=0,845098040014 .
10. To find the common logarithm of 1.
Solution. — Log,, 11=log, (1o +1); therefore, by (12),
1 1 /1\3 1/1\% /17 P /e ’
log,011_1+zM[—2—£+§(;) fg(;/) —c—;(;) +5j(2—1> +...J,
=1,0{1392685158 +. = = -

VII. — Take

N m T\ ) 1 n, ) I ny ) 1 my
TS (T (8 (SN o I

then

1 1 1
logiaN=m—+ my Iogm(l -+ E) -~ my log [1 - fﬁmJ ~+ mg3logy, [1 -+ ]
(14)

(10} (10)?
—i—m,,]ogm[i + (_1:)")-“] -+ my Ing[I -+ (I;T)O:I “+. ...
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The logarithm of [1 “he (I;—)”J may be had from the series
1 1 1

low )y — M A 3 -
0g1o(1+ ) <z‘ 27 3% i

by putting 2 = then

' .
(1o)n’

logig| 1+ — | =M {L S L S ———
2 (10)n (10)*  a(1on)? 3(10%), 4(1om)F i

The above method is a modification of that made use of by Oliver
Byrne in his little book on logarithms, but it requires the use of Tables or
the computation of other logarithms than the one sought.

.
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A RIGOROUS METHOD

OF

FINDING BIQUADRATE NUMBERS
WHOSE SUM IS A BIQUADRATE,

By Arremas MARTIN (WasHmwGron).

Euler and others have shown that the sum of two biquadrate numbers
can not be a biquadrate; and Euler asserts (Commentationes Arithme-
ticar Collectee, vol. II, p. 281-282, 450, 456) that @ + b*+ ¢ =d* 1s
impossible, and states that he had not been able to find four biquadrate
numbers whose sum is a biquadrate number, but that he had noticed that
it is possible to determine in many ways five biquadrates whose sum is a
biquadrate. The writer has not been able to find that Euler actually
obtained any sets of five biquadrate numbers whose sum is a biquadrate.

In the Mathematical Magaszine, vol. 1I, n® 10 (January, 1896), the
writer published a paper, About biquadrate numbers whose sum is a
biquadrate, in wich he employed tentative processes to find many sets
of biquadrate numbers whose sum is a biquadrate.

I. To find five biquadrate numbers whose sum is a biquadrate number.

Solution. — Let v, w, x, ¥, 5 be the roots of the required bigqua-
drates, and s the root of their sum; then
L) P et 2t Y B = sk,

Assume v =2a,w=a— b,z =a-+ b,y =d,

d'Z__ 8‘1!
F = —e— and § = e H
2€ 28

then, by substitution,

(2a)h - (@ — b)Y+ (@ + b+ db+- (‘ﬁ_”q) - (d”f)’*-
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Expanding, transposing, and uniting terms,

@ (s eh) -
2(3ai-- b2)2 -+ dt = (71(1

( B
Transposing d* and multiplying by 2e?,

ter(3ar+ b2 2= di(dv-+et) —adied=d?(d* —adel-ct) = d2 (di— 2 )%

Exiracting square root,

2¢(3a?—- b*) =d(d>— e2};
whence

(2) b= —— ' 3a’

In (2), take d = 2¢ and we gel

. m?
b= 3er—3a’=3(et—a?)=3(e+a)(e—a), =3 (e —a)? say;
whence
T Umr3nr
.
Taking e = u(m?* -~ 3#7%) we have
PO m N
a=2(m?— 3n?), b::—l(erw-a):w.mn, d=92e=4(m?+ 3n2);
I
therefore
¢v=2a=4(m?-—3n2), w=a—>b=2m?—12mn—6n2
x=a-+b=a2mr12mn—6n?, y=d=ne=4(m*+ 3n?),
: Je , 2 4+ o2 5e ,
5= - S = 2 = 3(m2+4 3n?); ;- —— = ~— = 5(m? Jn?).
2€ 2 o 2€ 2 )

Substituting in (1) we have

(4m?—12n?)+ (am?—1omn—6n2 )+ (am? - 12mn — 6n2)+
+ (4dm2412n?) -+ (3m2-+ gn?)t= (5m2+ 15n2)%

—

Ezamples. — 1. Taking m =1, n =1, we have, after dividing by
2b o 2 B (4= 5,
2. Taking m==2, n==1, we have
4% == 21% 4 298 4~ 26% 4+ 284 = 354,
3. Taking m =1, n = 2, we have

2%+ 39% - 445 - {65 -+ St = 6%
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6.

-1

10.

11.

14.

15.

16.

A

Taking

Taking

Taking

Taking

Taking

Taking

Taking

Taking

D

Taking

Taking

MARTIN. — METHOD OF FINDING BIQUADRATE NUMBERS.
m=4, n=—r1, we have

22% - Hak - 5ok 4 o4 6% = g5,
m=1, n=4, we have

46% 4+ 140k 4 1475+ 188% 4- 196+ = 245

m=—4, n =3, we have

F4% 4 12k 4129 + 166% < 172% = 215%,

m =275, n =19, we have

m =12, n=>5, we have

52 - g4t - 11 r - 146% + 148% = 1855,

22% 4 2374+ 2624 + 2845 4 316% = 3g5%.

m =2, n—23, we have
26 + g2% - 3%+ 1184 + 124% = 155%.

m=n1, n=2~0, we getl

’ r

n ==, n

yh) 2, we get

%

142t 286% 4+ 3274 - 4284+ [306% == 5454,

4%+ 148% 4 1834 242% - 2444 = 3054,

m=2,n=—=175, we get

’
118%-- 453% — 434% + 572% + Go4t = 7555,

m=—r, n==4, we get

4%+ 2915+ 334+ 338+ 388% = 485+

m . - .
Taking m = 4, n =7, we get

714+ 489 + 524 + 5984 4- 63a% = §15%

Taking m =38, n=r1, we get

26% - 201% - 218% - 244+ -+ 2068% = 335*%

Taking m =1, n =8, we get

286% + {78%+ 579% + 7644+ 7724 = g65
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When n =11n (3), then

(1) (4mr—12)r 4 (2m?—12m —B)*+ (2m?+12m — 6)*
o - (g m2-12) - (3m2+4- g = (5 m?—+15),

and when m =1 in (3), then

(5) V (12n2— )+ (6A%412n — 2 )+ (6n2—12n —2)*
{ {1202+ 4 ) - (gn?+ 3 )= (15n2-+5)4
Ezamples. — 17. Taking m =10 1n (4), we gel

74% - 309%-+- J14% 4 388% 4~ 419t = 5154,

18. Taking n» =11 1n (5), we get
I.ﬁ8"" -+ 214% - 273% + 362% -+ 364% = §55%,

Take d == 2 in (2}, then

b o2 [1 02 - 2
pr=1 =i E30%
[ e
Pug e = ¢2; then
b — te—3a%?
br="1 p and .

Now let

§- 3@t = (o 3y
and we get

10 H
3at=12-—1i0!¢% . or a? =] — 2= < P ) :

7 T o — ?t
whence .
: = PPT
3p2+10g?
r 209*— 6 p? 2 — 3¢
a =% = ; = -,
q 3 p?-+ tog? ¢
2 2 pg9 =
e = r = et {—
¢ (3p2+mg—’) 4 ?

Another Method. — Assume
(6) (2a) (4 y)r+ (2 — p )+ wii gb = sb,

ixpanding and uniting terms we have

2(3 224~ p2 P+ wh 4 34 = sb,
Now take -
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and we have
w2+ 32 = 52,
which 1s satisfied by
w=p—q', s=2pq, s=p+gh

and by substitution (6) becomes

{7) (2a)+ (2 +y)+(z—y)-=(pt— g +(2pg )= (p*+ g% )
But

yio- 32t = wz = 2pg (p>— gq¥),
whence

y == VOF (P35
Hence we must have
(8) 2pq(p*—q*) —3x*=1[
Let p =2, g =1, then (8) becomes

m?

12— 3zx=3(s—a)(2+ax)=0= = (2 —a)? say,
and we getby reduction
am?—b6n?
T Tmr3nr’
”m 12 mn dm2—1an?
rERmm = 2T e
i 2m?--r12mn — 6n? am?—i12mn — 6 n?
S s 3 T 1 R
w =3, z =4, s =15

Substituting these values in (6), and multiplying by (m?+ 3nr?)%, we

have (3).

The artifice of putting 322+ y*= wz is due to Mr. Cyrus-B. Halde-
man of Ross, Butler Co, Ohio (U. 5. A.), who has contributed an exten-
ded paper on biquadrates which will be published in n° 12, vol. II, of
the Mathematical Magaszine edited and published by the writer.

In order to obtain a more general solution of

2pg(p*—q*)— 322 =10,

puat
-
2 pg (pi—q?) = 3br= 2

,_':L 5

(p+q)(p—q)%
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then
":z‘(\p—--q)f(p*r/)zfSxizr:]:
or
3 [1:(/>+q)(p- : f/)+$] X'i %W‘*q)(p—ﬂ—xJ =0
Put
3[53(p+9)(p*f1)+x-|
- .2 n 2
<[Zornw—n—]=5|2er00—0-s|
then

L m ’ rrTm ‘ ;
S|Reroe—0+e| = [Eene—n—z|,

from which we get

o (mr?—3ns?) (p*—q?)

n(rt+ 3s?)
From
3Im? 3m2pt—3Imig?
2pg = e (PZ*{[Z) :pinzg'
we get
. tn?pg
PR i S 2
9p = 99%
whence
p_ nt=y/(gmir bty
q 3m? ’
‘We must yet make
(9) gmb—-nb= .

This is satisfied by » — 2m; let, therefore,

m=1_t+ b, n=1at-+e,

and by substitution and reduction we have

(10) 252++-(36b + 32¢) 3+ (54624 24c2) 2+ (36634 8¢3) ¢ - gbt+ ¢t = [].

Assume

(10) = [Stz-;—(l—s—biﬂﬁc> t -+ A:Ii,'
: 5
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then by substitution and equating like terms we get
(11) 10A —.—4(18b+16c)?:5‘1b2+2dc?,
20

{12) %‘;A.(]Sb+166)t—1—A2:(3GIJ3+ 8e3)t + gbv+ct.

From (11) and (12) we easily find

51302 — 288bc 1722
I - — 2

25(54 62+ 21(;‘2)—(186 +14¢)?
125

250

A=
= S(gbirct—AY)
T 2A(180 4-16¢)— 5(3603 -+ Be3)
Retracing our steps we have

t-+b=m, 2t -+ ¢ = n;

p_m=V[5235108b - 16e) 1+ A
L= Al

I m2
_(mr*—3ns?) (p2— g?) rfm,
e I L

w = p?— q?, 5 —2apq.

This result is to complicated for convenient use, and the numbers in
most cases, if not in all, will be large. Special solutions may be obtained
which whill give better results.

Ifin (g) we put n =om — d we get

(13) 2hmi—3amdd - 2fm>d2— S md3 4+ dt = [].

Now put
(13) =(5m?2— {md - d?)?

and we find

d=-—4m, n=-—am,
and then
p_3
g I

Hence we may take p = 3, ¢ — 1, which values being substituted in (8)

lead us to the same result as arrived at in (3).

Putting 342 for apg(p*— g*) in (8) we have

3(6r—2?) = 3(b+2) (b—a) =0, :?’;(bmw)? say,
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whence
b(m2—3n?)
T = e
m¥ -4~ 3 nt

then

m 6bmn

y=2(b—z)= "0,
) n mt+ 3n?
- b(m2+- 6mn — 3n? b(m?— Gmn — 3n?)
x = S N 2 —y—= : R
Y m2-- 3 nt v m?+ 3 n2

Therefore we have by (%)

(14) [2b(m?—k3n5)}’*_;__ [‘b(mﬁ—ﬁmn-n 3&2)]*

mi—4 3 n# m?4- 3 n?

b(m*+6mn—73n2)|*+ R N e e

For another solution of (8), put

P=35+2q and © xr=1-+12¢2%;

then by substitution we get

(r3) 2gs+12¢252 - 22q3%s — 12— 12tgr=[].
Taking
—3t2—12lgr= o,
we have
’ t=— fi(]l
and then
- ' 4m?2
28t 12¢%s%-+22q75 =[], = %g‘-’sﬁ say;
n?
whence
. 2.m?
s2-6gs +11g?= ~——gqs.
n?
By transposition,
2mbt
s (6— —;)--)(]s.—.-—uq?;
n?

whence

_g(m?—3n?) = q\/(m'*—{‘nm?n?-- - 2n%)

n?
m=23n satisfies mt—6m2nt—an?= [,
and gives
§ =1, g =1, or s=1, g =13
and then .
p=13or3;
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also,

’

r=2q%— 44 =— 32;

2.

y = -
J

n (gs)y=13>x2x11="00.

The values p =13, g == 3 give, after dividing by 2,
2% - 13% 4= 3ok - 4% 84% = 85%,
By similar methods six, seven, eight, and any number of hiquadrates
whose sum is a biquadrate may be found.
II. To find nine bigquadrate numbers whose sum is a biquadrate

number.

Solution. ~— Dividing (3) by (m*--n?)*, and then multiplying the
quotient by 57, and also by 3, we have

‘ [20(1]13—3n‘~’)]-* ) [’m(m‘l—ﬁmn 7311,9)'1'4
-+

(16) m? - 3 n? m?+ 3 n?
16) - .
1o(m?+ 6mn —3n?)N* . . .
I e - | A 15% 4 20b = 25%,

m?—+ 3 n2

and
6(m2—6mn -+~ 3n2)7]4

m# - 3n?

(17) [ o

Substituting the value of 153% from (17) in (16) we get

mt+ 3n m?2- 3 n? m2+ 3 n2

" ]__'_).(__m:i—_ﬁ_)] v [ G(m,ﬂ_—_ﬁmn — 3n?) 'J'* ) [ 6(m2+6mn— 3nr?) ’|’+

m2—+ 3 n?

31;2);\'*_* ('Io(mﬁ———ﬁmn—E}n?)’* ‘ [lo(m‘"—;— ﬁm,n—a—Snﬂ)]'

t Tao(m2—
’ ' m2--3n) m? - 3n?

\ + g% 12% - 20% = 254,

3n?=r and we have

Kramples. — 19. If m=2,n=1, then m*+3n>=~

12% 4 20% - 63% 4 66+ 78% 4 84* + 110% -+ 130% - 140% = 1755,

20. If m =1, n =2, then m?+4 2n*=13 and we have

6%+ 10% + 1174 - 132% + 1384+ 156% + 220% + 230+ + 260% == 3254,

III. To find thirteen biquadrate numbers whose sum is a biquadrate

number.
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Solution. — Multiplying (18) by 5*

[ 6o(m?-—3n?) |* \ o(m?—Gmn — 3n? ) Jo(m2+ 6mn —3n2) 4
s mt+3n? | mi 3nt ) m?-+ 3 n?
19) ¢ 2 — . ¥ [So0(m2—6mn —3n?) '*+ 50(m?-+ 6mn — 3n?)]*
f ‘ n? L 1™ m? - 3n? m2 - 3n? i}
4= 454 - Gob 4+ 100 = 12)%,
Multiplying (17) by 37,
{ [36(m?— in? Lo 8(m2—b6mn—3n)*
. \ mi-3n? ' mia-3n?
(20) ' _ . o e Th
’ 1I8(m2-+-6m—3n2)|* L g .
- - —— —- 274 - 306% = 454,
m2-- 3 n?

Putting the left-hand member of (20) for 45 in (19), we have

/ 5(:(]?1-—5” ) 18 (mr—6mn—3n2) |t 18(m?2 —f—f]i’ftﬂ—;n )
— e + - e ..|.
mEo- 3n? m?—+ 3 nt m*—+ 3n?
60(n‘?3—3n, )14 [30(m?—6mn —3a2)]* '30(1112—0— 6mn - Jnif *
(21) Tt 3n? " mix3n? 1 mE43a

100 (m2—3n?) So(m2—6mn —3n? ) [ So(m?+6mn — 3n? )’
mr-e3nr mi+ 3nt m2—+ 3 n?
4+ 27+ 4= 36% 4+ 60* -+ 100* = 125%.

Example. —21. f m=2and n=1, m*+- 3n*=17 and

36% +— Go* + 100*+ 18g% <+ 198% 4+ 234% + 2524 - 330%
; 9 9
- 390* -+ 420% + 550%+ Bi0* + 7oot = 875+,

‘o, 85, 20, ..., 5+ 4t biquadrate

[n the same way can be found 17,
3,4, 5,....

numbers whose sum is a biquadrate number, where ¢

» 2y
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UN NOUVEAU

SYSTEME TRREDUCTIBLE DE POSTULATS
POUR I’ALGEBRE

Par M. Aressaxnoro PADOA (Romg).

I. —— Avant-propos.

Dans Ulntroduction logique ¢ une théorie déductive quelcongue qui
préceéde notre Essai d'une théorie algébrigue des nombres entiers (*),
nous avons analysé la structure formelle d'une théorie déductive quel-
conque, pour établir les principales conditions de sa perfection logique
et les régles pratiques pour reconnaitre si ces conditions se trouvent
vérifiées dans une théorie donnée.

Maintenant, nous ne faisons que rappeler ces conditions et énoncer
ces régles, dont 'étude appartient 3 la 10gi([u(z générale, pour en faire une
application mathématique & J'analyse des principes de I'Algébre.

D’abord il faut déclarer quels sont les symboles dont on fait usage
dans la théorie sans les définir (symboles non définis) et énoncer les
propositions (définitions exceptées) qu’on accepte dans la théorie sans
les démontrer (postulats) ().

Les postulats doivent étre compatibles; c'est-a-dire qu’ils ne doivent
pas se contredire.

Pour démontrer (@ compatibilité d’un systéme de postulats, -il faut
lrouver une interprétation des symboles non définis, qui vérifie simul-
tanément tous fles postulats (7).

(') Communiqué au Congrés international de Philosophie ( Paris, 3¢ série, t. VIII;
1900 ). ’

(2) Par une convention, fort commune d’ailleurs, nous identifions chaque idée
avec le symbole qui la représente et chaque fait avec la proposition quil'énonce.

(3) Chacune de ces interprétations vérifie nécessairement toutes les propositions
de la théorie considérée.

Droits reservés au Cnam et a ses partenaires



250 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION 1.

Le systéme des postulats doit étre irréductible; en d’autres termes, les
postulats doivent étre absolument indépendants; c’est-a-dire : il faul
qu’aucun des postulats ne puisse étre déduit des autres; on bien encore :
il faut qu’en remplacant séparément chaque postulat par sa négation
on obtienne un s)stéme de propositions compatibles.

Pour démontrer 'irréductibilité d’un systéme de postulats, il faul
trouver, pour chacun d’eux, une interprétation des symboles non définis,
qui nevérifie pas le postulat considéré, mais quivérifie simultanément
tous les autres.

Le systéme des symboles non définis doit éire irréductible par rapport
au systéme des postulats; en d’autres lermes, il faut que des postulats
on ne puisse déduire ancune proposition qui soit une définition possible
d’un des symboles non définis au movyen des autres (*).

- Pour démontrer ’irréductibilité d’un systéme de symboles non définis
par rapport a un systéme de postulats, il faut trouver une interprétation
des symboles non définis, qui vérifie simultanément tous les postulats,
et quicontinue & les vérifier lorsqu’on change convenablement la signi-
JSication d’un seul des symboles non définis, et cela pour chacun d’eux.

II. — Nos symboles non définis et nos postulats.

Nos symboles non définis (1) sont an nombre de trois:

1. entier,
2. le successif de (abrégé par suc),
3. le symétrique de {abrégé par sym).

Nos postulats (1) sont au nombre de sept :
Si @ est un entier quelconque :

1. suca est un entier,

2. syma esl un entier,

3. sym(syma)=—a (?),

sym | suc[sym(suca)]j == a.

5. Il y a un entier (*) =, tel que syma = .

(1) Ici nous considérons les seules définitions nominales (et non les dé finitions
par induction, par abstraction, etc.).

(2) Le symbole = (qu’on peut live est édgal ¢ ou bien est la méme chose que)
appartient a la logigue générale, ainsi que les symboles classe, est un, etc.

(#) Sans'exclure qu’il y en ait plusieurs.
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A. PADOA. — UN NOUVEAU SYSTEME. IRREDUCTIBLE DE POSTULATS. 251

6. Il n’y a pas d’entiers = et y, différents entre eux, tels que symz =
et symy = .

7. Siune classe u vérifie les condilions

) il y a un entier (') qui appartient 4 la classe «,

B) toutes les fois qu'un entier z appartient & la classe «, sucz appar-
tient aussi a la classe u,

v) toutes les fois que 2z est un entier tel que sucz appartienne a lz
classe u, x appartient aussi a la classe «,

alors tout entier appartient 4 la classe u.

III. — Compatibilité de nos postulats.

Nos postulats (I1) sont compatibles (1).

En effet (1), voici une interprétation de nos symboles non définis (1)
qui vérifie simultanément tous nos postulels :

entier signifie {*) nombre entier relatif (3),

et, st x est entier quelconque,

suc.z signifie 1 + =z,

symz signifie — z ().

IV. — Irréductibilité de notre systéme de postulats.

Notre systéme de postulats (11) est irréductible (L.
En ellet (1), voici, pour chacun des postulats, une interprétation de

(1) Sans exclure qu'il y en ait plusieurs.

(?) Dans cette étude, aprés le mot signifie, il faut toujours sous-entendre les
mots ce que signifie d’ordinaire.

(3) Cest-a-dire nombre entier, positif ou négatif, o compris.

{(*) On constate immédiatement que {’interprétation énoncée vérifie les pos-
tulats 1, 2, 3; elle vérifie aussi le postulat 4, parce que

— i+ [+ a)]} =a.

Puisque o est un entier et symo = o, le postulat 5 est ausst vérifié.

Puisque o est le seul entier », tel que symz = », le postulat G est aussi
VEPLfiE.

Le postulat 7 est aussi vérifié : en effet, soit @ un entier qui appartient a la
classe u (cette supposition est légitime d’aprés la condition ), alors, & cause de la
condition B, tout entier plus grand que a appartient aussi a la classe u; et, &
la condition v, fout entier plus petit que a appartient aussi a la classe u; par
suite, tout entier appartient a la classe u.
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252 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION 1.

nos symboles non définis (11, yui ne vérifie pas le postulat considére
mais qui vérifie simultanément tous les autres.

Dans ces interprétations, a, b, ¢, d, e représentent des objets que
congques, mais tous différents entre eux.

1. INTERPRETATION QUI NE VERIFIE PAS LE SEUL POSTULAT I.

entier signifie classe dont le seul individu est a;
suca = b, such == a;
syma — a, symb =5 (').

2. INTERPRETATION QUI NE VERIFIE PAS LE SEUL POSTULAT 2.

entier signifie nombre entier positif, o compris.
i, s1 & est un entier relatif (*),

sucx signifie 1 + 2,

sym.x signifie — 2 (3).

3. INTERPRETATION QUL NE VERIFIE PAS LE SEUL POSTULAT 3.

entier signifie ensemble des oh‘jcl.s a, b, e, d,

suc ¢ — b, suc b —¢ = a,

sym @ = ¢, sym b — d, sym ¢ — b, sym d = ¢ (*),

(1) L’interprétation 1 ne veérifie pas le postulat 1 (parce que, par hypothés:
a et b sont différents), mais on constate immédiatement qu’elle vérifie les pos
tulats 2, 3, 5.

Elle vérifie aussi le postulat 4, parce que

sym |suc[sym(suce))| = sym[suc(symé&)] = sym(sucd) == syma =

le posmlat(‘) (parce qu’il n'y a qu'un entier) et le postulat 7 (en effet, puisqu’
n'y a qu'un entier, de la seule condition « de son hypoéthése on déduit immédi
tement sa thésc).

(2) Voir la note (3) au § III.

(%) L’ miwpretauon 2 ne vérifie pas le postulat 2 (car, par exemple, 1 est u
entier, mais symr n’est pas un entier), tandis qu'elle vérifie lous les autres [vo
la note (+) au § III].

(*)y L'interprétation 3 ne vérifie pas le postulat 3 [car, par exemple,

sym(symé) = symd = ¢],

mais on constate immédiatement qu'elle vérifie les postulats 1, 2, 5. Elle vérif
aussi le postulat 6 (parce que, par hypothése, &, ¢, 4 sont tous différents ent:
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4. INTERPRETATION QUI NE VERIFIE PAS LE SEUL POSTULAT f.

entier signifie ensemble des objets «, b, ¢, d, e,

suca=—>b,such—=c,succ—d, sucd=ce, suce=aq,
syma=a, symb =d, symc —e, symd = b, syme =c¢ (').

5. INTERPRETATION QUI NE VERIFIE PAS LE SEUL POSTULAT 5.

entier signifie ensemble des objets a et b,
suc ¢ == b, suc b = a,
syma = b, sym b —=a (*).

cux), fe postulal § (parce que

- sym|suc[sym(sucea)]| = sym|[suc(symé)] = sym(sucd) = syma = a,
b

................. ¢ B B T -
........... R - ST 7 SN e N
................. dooo GG bl L dD

et le postulat 7 (parce que des scules conditions « et 8 de son hypolhése on déduit
sa Lthése).
(V) Linterprétation 4 ne vérifie pas le postuleat 4 (car, par exemple,

symisuc[sym(suca)|} = sym[suc(symé)] = sym(sucd) = syme = c),

mais on constate immédiatement qu'elle vérifie les postulats 1, 2, 5. Elle vérifie
ausst le postulat 3 [parce que

sym({symea) = syma — «,

........ boooo....d., D,
........ Y T N
........ do....... b . d,
........ [ 2

le postulat 6 (parce que, par hypothése, b, ¢, d, e sont tous dillérents entre eux)
et le postulat 7 (parce que des seules conditions o et § de son hypothése on dé-
duit sa thése).

(*) Linterprétation 5 ne vérifie pas le postulat 5 (parce que, par hypothése,
& et b sont différents), mais on constate immédiatement qu’'elle vérifie les postu-
lats v, 2, 6.

Elle vérifie aussi le postulat 3 [parce que

sym(syma) = symbd == a, sym(symb) =syma = b],
le postulat 4 (parce que

sym | suc|sym(suca)]} = sym[suc(symb)| = sym(suca) = symb = a,
et B @i Boevovvva...b)

et le postulat 7 (parce que des seules conditions « et B de son hypothése on dé-
duit sa thése),
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6. INTERPRETATION QUI NE VERIFIE PAS LE SEUL POSTULAT 6.

entier signifie ensemble des objets @ et b,
suc a =— b, suc b — a,
syma =a, symb= b6 (').

7. INTERPRETATION QUL NE VERIFIE PAS LE POSTULAT 7.

entier signifie ensemble des objets «, b, ¢,
suca —a, such —c, succ — b,

syma=a,symb=c, symec="5(?)
V. — Irréductibilité de notre systéme de symboles non définis
par rapport a notre systéme de postulats.

Notre systéme de symboles non définis (I1) est irréductible (1) par
rapporta notre systéme de postulats (1I). En voici la démonstration (1):

(1) L'interprétation 6 ne vérifie pas le postulat 6 (parce que, par hypothése,
@ et b sont différents), mais on constate immédiatement qu'elle vérifie les postu-
lats 1, 2, 3, 5.

Elle vérifie ausst le postulat 4 (parce que

sym|suc{sym(suca)]| = sym[suc(symb)| = sym(such) = syma = a,
................. Y U SO S

el le postulat 7 (parce que des seules conditions « et § de son hypothése on dé-
duit sa thése). )

(%) L'interprétation T ne vérifie pas le postulat 7 (car si, par exemple, @ est
le seul entier qui appartient a la classe u, cette classe vérifie les trois conditions
de Vhypothése du postulat 7, mais elle n’en vérifie pas la thése, parce que, par
hypothése, a, &, ¢ sont tous différents entre eux); mais on constate immédiatement
qu'elle vérifie les postulats 1, 2, 5, 6.

Elle vérifie aussi le postulat 3 [parce que

sym(syma) = syma — a,
........ [/ P
........ [

et le postulat 4 (parce que

sym {suc[sym(suce)]| = sym[suc(syma)] = sym(suca) = syma = «,
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(Dans les interprétations suivantes, a, b, ¢, d, e, f représentent des
objets quelconques, mais tous différents enire eux.)’

Si

suce = b, suchb =rc, succ-—=a, sucd=e, suce=/f, sucf=d,
syma = a, symb=¢, symc=>0, symd=4d, syme=f, symf=e,,

tous les postulats sont vérifiés, soit que

entier signifie ensemble des objets «, b, ¢,
soit que

entier signifie ensemble des objets d, e, £ (1).

En considérant la premiére seulement des significations énoncées
d'entier, nous savons donc que, si

entier signifie ensemble des objets a, b, ¢,
suca — b, such-—¢, succ=a,
syma = «, symb=rc, symc=25,

tous les postulals sont vérifiés.
Mais éls continuent & étre vérifiés si, en conservant ces interpréta-
tions d entier el de sym,

suca =c¢, sucb=a, sucec=~0(2),

et aussi st, en conservant les interprétations précédentes d’entier et de
sue,
syma =~5, symb=a, symec=c(?).

(1) En donnant a entier la premiére des significations énoncées, on constate
immédiatement que les postulats 1, 2, 5, 6 sont vérifiés; pour le postulat 3, voir
la note a linterprétation 7 (IV); pour le postulat 4, on constate que

sym | suc[sym (suce)]| = sym[suc(symé&)] = sym(suce) = syma = a,
................. Y S Y cb

L]

et pour le postulat 7 on constate que, des seules conditions & et 8 de son hypo-
thése, on déduit sa thése.

Silon remplace réciproquement @ avec d, b avec e, ¢ avec f, la signification de
suc ne change pas et celle de sym non plus, tandis que les deux significations
d’entier se remplacent véciproquement. Par suite, en donnant 2 entier la seconde
des significations énoncées, tous les postulats sont ausst vérifiés.

(?) En effet, nous n’avons fait qu'échanger b et c.

(*) En effet, nous n’avons fait qu’échanger @ et ¢, b et a, c et b.
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Ainsi nous avons démontré que notre systéme de symboles non
définis et notre systéme de postulats satisfont a toutes les conditions
logiques que nous avons énoncées dans le § 1 (*).

(") Pour les définitions des autres symboles de cette théorie (moyeunant nos
symboles non définis) et les démonstrations des autres propositions de cette
théorie (moyennant nos postulais), voir I'Essai que nous avons cité au commen—
cement (Brbl. du Congrés int. de Phil., t. lI1, p. 309-365; Armand Colin, Paris,
1goi), on sa traduction idéographique [Numeri intert relativi ( Revue de Math.,
t. VIII, n® 2, p. 73-84; Bocca fréres, Turin, 1go1)].

e T
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APERCU SUR LES DEVELOPPEMENTS RECENTS

THEORIE DES FRACTIONS CONTINUES,

Par M. H. PADE (Porrizss).

Les développements de la théorie des fractions continues dont il est
question dans celte Communication (') ont leur origine dans 'examen de
cette question : Que faul-il enlendre par le développement en fraction
continue d’'une fonction?

1. Une généralisation facile deJa théorie des fractions continues arith-
métiques a conduit, depuis longtemps, i la notion du développement en
fraction continue d'une fonction représentée par une série ordonnée sui-
vant les pulssances décroissantes de la variable :

! @y 22 3
f - | = &g -+ — + i RICR RN

Les numérateurs partiels de cette fraction continue sont égaux a 'unité,

ses dénominateurs partiels sont des polynomes entiers en z, et ses réduites
sonl caractérisées par lapropriété que chacune d’elles donne une approxi-
mation dont l'ordre est supérieur au double du degré de son dénomina-
teur. Dans ce qui suit, je donnerai, pour abréger, a celte fraction continue

, . p s . . 1
le nom de développement canonique relatf a la Ioncmonf(:).
&

La notion du développement en fraction continue ne se présente pas
avec la méme simplicité quand il s’agit d’'une fonction ordonnée suivant
les puissances croissantes de la variable. Un exemple va le montrer
immédiatement.

(1) J'ai eru pouvoir, en rédigeant cette Communication, la compléter en quelques
points que le peu de temps accordé par le réglement des séances du Congrés ne
m’a pas permis de développer oralement.

17
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2. Considérons le cas de la fonction exponentielle

x xr? 3
I

et == [+ — —— = ——
2 r1.2.3

I.
cing développements en fractions continues de cette fonction ont ét¢
donnés avant ces dix derniéres années (). Denx proviennentdes formules
générales d’Euler et de Gauss; les trois aulres ont été donnés spéciale-
ment pour la fonction e* par Lagrange.. *

Par feur aspect extérieur, ces cing développements présentent & la fois
des analogies et des différences faciles 4 apercevoir; mails si l'on fait le
caleul des premiéres réduites de chacun d’eux, on reconnail immédia-
tement qu’il n'en est pas deux pour lesquels ces réduites ne solent diffé-
renles; et c'est alors que 1'on se trouve en face de cette question : Quel
sens précis faut-il attribuer a cetie locution de développement en frac-
tion continue d'une fonction? Et, en outre : Quel est le nombre de ces
développements? par qui sont-ils caractérisés ? quelles relations ont-ils entre
eux? ete. (*).

C'est ainsi que, dans une Communication faite, le 7 février 1876, ala
Société royale d’Edimbourg, M. Thomas Muir remarque que deux déve-
loppements en fractions continues de arc tang z (dont I'un est celui
d'Euler) ne s’accordent pas dans le fond, en ce sens qu'ils n’ont pas les
mémes réduites. Dans une autre Communication, du 1o février 1876, &
la Société mathématique de Londres, il met en parallele le développement
classique de Gauss avec la fraction continue déduite, pour la fonction
Fla-+-1,8-+1,7y+1,2)

F(a,8,v,2)

(1)

3

(1) Les auditeurs de cette Communication avaient recu une feuwille ol étaient
reproduites les formules nécessaires pour suivre aisément mon exposition; ces for-
mules n’étant pas données ici, je renverrai simplement & mon Mémoire : Sur les
développements en fractions continues de la fonction exponentielle (Annales
scientifiques de 'EKcole Normale supérieure, 3¢ série, t. XVI; 18gg), d’ou elles
avaient été en grande partie extraites.

(?) Aprés avoir donné sa célébre fraction continue et celles qui en découlent,
Gauss s’exprime ainsi : asserigue potest vizx wllas fractiones continuas secun-
dum legem obviam progredientes ab analystis hactenus erutas esse, quee sub
nostris tanguam casus speciales non sint contente. En réalité, la fraction
continue de Gauss, pour e¥, est distincte, comme nous venons de le dire, des frac-
tions continues, relatives a la méme fonction, d’Euler et de Lagrange, qui lui sont
antérieures. La fraction de Gauss ne renferme, comme cas particulier, aucune des
fractions données antérieurement; elle ajoute seulement, pour les fonctions parti-
culiéres auxquelles elle s’applique, une nouvelle fraction & celles déja connues anté-
rieurement.
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de la relation qui lieles trois fonctions
Fla,,v,2), Fla+n,8+ny+n2), Fa+2,862,v+2,2).

Rien n’est plus propre que ces deux Notes, présentées a la méme époque,
par le méme auteur, a faire sentir la difficulté vis-a-vis de laquelle on se
trouve. Les fractions conlinues données pour arc tang 2 méritent bien, en
effet, lenom de développement en fraction continue de arc tang x, mais
non pas la [raction continue que M. Muir fait correspondre au quotient
précédent de deux fonctions hypergéométriques; outre que, au point de
vue formel, celle-ci présente déja, avec Lloutes les précédentes, cetle
différence fondamentale que les numératenrs partiels ne sont plus de
simples monomes, elle ne se rattache aucunement 4 la fonction (1) par
le lien essentiel qui, & mon sens, caractérise un développement en
Jraction continue de cette fonction, et qui est la base des considérations
qui vonl suivre.

3. Ce lien est constitué par cette propriété, commune & loutes les
réduites des différentes fractions, que chacune de ces réduites, dévelop-
pée en série de Maclaurin, reproduit la série qui définit la fonction jusqu’a
un terme inclusivement de degré au moins égal 4 la somme des degrés
des termes de la véduite.

Ainsi s’offre d’elle-méme la question plus générale de I'étude des frac-
tions rationnelles satisfaisant, pour une fonction donnée, & cette condition
d’approximalion; et voici les principaux résiltats auxquels elle conduit,
et quej'ai fait connaitre dans ma Thése de doctorat: Sur lareprésentation
approchée d’une fonction par des fractions rationnelles (Annales
scientifiques de U'Ecole Normale supérieure, 3° série, t. 1X, 18g2).

A chaque couple (., v) de nombres entiers positifs ou nuls, ou, sil'on
veut, a chaque point (&, v) da plan 20Oy, correspond une fraction ration-
nelle et une seule, & savoir : 'unique {raction rationnelle irréductible qui,
pour z infiniment petit, différe de la fonction d'une quantilé dont Iordre
infinitésimal est le plus grand possible, tout en salisfaisant & ces condi-
tions, que le degré du dénominateur soit-au plus égal 4 p et le degré du
numérateur au plus égal a v. Je la nomme la fraction rationnelle
approchée relative au point (@, v).

L’ordre de 'approximation donnée par cette fraction est d’adlleurs tou-
jours plus grand que la somme des degrés de ses termes.

Dans le cas général, ces degrés sont égaux précisément a p etv, et
Pordre de 'approximation est égal & p v +1. Clest ce qui a lieu, par
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exemple, quel que soit le point (i, v), pour la fonction e*. La fraction
est alors dite normale.

Dans un tableau uniquement composé de fractions normales, tel que
celui qui est relatif & e¥, il y a lieu de considérer newf dispositions
élémentaires de trois points A, B, C, dans chacune desquelles chaque
point est contigu au précédent et plus avance que lui dans le tableau.
Pour une telle disposition, les numérateurs A, B,, C, et les dénomina-
teurs Ay, B,, C, satisfont 4 une méme relation de récurrence

(2) A +aB =C(,

ol @ est un monome a coelficient et exposant diflérents de zéro, et @ un
polynome a terme constant différent de zéro. De Lelles relations ont déja
été données par M. Frobenius dans son Mémoire Ueber Relationen
zwischen den Néherungsbriichen von Potenzreihen (Journal de
Crelle, t. 90, 1881).

Sil'on considére maintenant une suite A, B, C, D,... limitée ou illimitée
de points tels que trois consécultifs quelconques offrent toujours une des
neuf dispositions élémentaires, il est évident, par suite de l'existence des
relations. de récurrence, que les fractions correspondantes seront les
réduites consécutives d’une fraction continue, ayant pour numérateurs
partiels les monomes a et pour dénominateurs partiels les polynomes «
qui se présentent dans les formules de récurrence successives. '

Pour des dispositions réguliéres convenables de points, on obtiendra
des fractions continues offant une parfaite régularité. Pour la fonction ev,
par exemple, ces fractions réguliéres sont an nombre de six; mais ce
sont des fractions dont chacune renferme une indélerminée laquelle peut
étre attribuée une valeur entiére positive ou nulle quelconque, en sorte
que chacune des six fractions en renferme une infinité d’autres. Les cing
fractions anlérieurement connues et dont j'ai parlé précédemment (n° 2)
se retrouvent ainsi, comme des cas trés particuliers, parmi tous les déve-
loppements réguliers en nombre illimité auxquels donne naissance le
tableau des fractions ralionnelles approchées de eT.

Jarrive maintenant au cas plus compliqué ot le tableau des fractions
rationnelles approchées renferme une ou plusieurs fractions anormales.

La distribution de ces fractions dans le tableau se fait suivant une loi
d’une grande simplicité : une (raction anormale correspond toujours i
tous les points d’un carré dontles cdLés sont paralléles aux axes, et dont
le cdté comprend un nombre de points égal 4 la différence entre la somme
des degrés des termes et 'ordre de I'approximation.
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Pour avoir, dans ce cas, une relation de récurrence a trois termes, telle
«ue la relation (2), il suffit encore de considérer les fractions qui corres-
pondent & trois points contigus et progressants; mais la définition de
ces expressions exige ici des détails dans lesquels je n’entrerai pas.

Si l'on considére une suite de points dont trois consécutils quelcongues
satisfassent ala condition précédente d'étre contigus et progressants, il lu
correspond un développement en fraction continue de la fonction.

Nous arrivons ainsi aux conclusions suivantes :

Etant donnée une fonction développable par la formule de Maclau-
vin, tl correspond, & chague point du plan de coordonnées entiéres
positives ou nulles, une fraction rationnelle spéciale, dite fraction
rationnelle approchée de la fonction, caractérisée par certaines con-
ditions qui la déterminent complétement. .

A une succession de points convenablement choisis dans le plan
correspond un développement en fraction continue de la fonetion,
les réduites n’étant autres que les fractions rationnelles approchées
relatives auzx points de la succession considérée. .

Auw point de vue formel, les différentes Jfractions continues ainsi
Jormées ont en commun ces caractéres que tous les numérateurs par-
tiels sont des monomes & coefficient et exposant différents de zéro, et
tous les dénominateurs partiels des polynomes rationnels et entiers é
lerme constant différent de zéro. Au point de vue du fond, elles sont
caraclérisées par ces conditions que toutes leurs réduites appartiennent
aw tableauw des fractions rationnelles approchées de la fonction, et
donnent une approximation dont ordre croit constamment quand on
passe d'une réduite a la suivante.

Ce sont ces fractions continues que j’al nommées les fractions conti-
nues holoides delafonction|[ Mémoire Sur les développementsen fractions
continues de la fonction exponentielle (Annales scientifiques de I’ Ecole
Normale supérieure, 3° série, t. XVI; 18gg]; etil y a lieu enfin d’ajou-
ter que: Parmiles fractions continues holoides, il faut distinguer, dans
le cas oil elles existent, les fractions continues réguliéres qui renfer-
ment comme cas trés particuliers les développements en fractions
continues antérieurement connues pour quelques fonctions spéciales.

4. Jexaminerai succinctement les conséquences les plus immédiates de
ces nouvelles notions.

La p.remiérc quesiion qui s’offre est celle de la recherche des rapports
qui existent entre l'unique développement canonique relatif 4 la .fonc—
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. T . . " . A -
tion f (Z) et les fractions continues holoides, en nombre infini, qui cor-
respondent a la fonction /().

. - 1
On trouve immédiatement, par le changement de — en z, que cette frac-

tion canonique correspond a la fraction continue holoide qui donne les
réduites de labissectrice y — 2 du tableau des fractions ralionnelles appro-
chées. 5i, sur cette bissectrice, se rencontrent des fractions anormales,
celles-ci se trouvent signalées, dans le développement canonique, par unc
élévation correspondante du degré des quotients incomplets. Un tel quo'-
tient, en eflet, esl toujours de degré égal au nombre des points de la
bissectrice auxquels correspond la réduite précédant celle a laquelle il se
rapporte lui-méme, ¢’est-a-dire celle que Pon obtient en limitant la frac-
tion continue A ce quotient incomplet.

Si « désigne un nombre entier positif, la fraction countinue holoide
donnée par les points de la paralléle y ==z -1-2 4 la bissectrice correspond

au développement canonique de Ja fonction :“/(%) J’al énoncé cetle
proposition dans une Note présentée i 'Académie des Sciences le 15 jan-
vier 19oo. Elle fait entrevoir immédiatement la différence profonde qui
sépare le cas des séries ordonnées suivant les puissances croissantes
de la variable, et celui des séries ordonnées suivant les puissances
décroissantes de la variable; elle donne, sans doute, la ralson intime des
difficultés rencontrées par M. Hermite dans sa tentative de passer, par
simpleanalogie, da premier cas ausecond {Sur la généralisation des frac-
tions continues algébriques (Annali di Matematica pura ed applicata,

2% série, t. XXI; 1893)].

5. In se limitant toujours au cas des fonctions d’une seule variable, la
question de la généralisation de la théorie des fraclions conlinues peut
étre envisagée de deux points de vue différents.

Et d’abord, au lieu de considérer le sew! point zéro de la fonc-
lion f(z), on peut demander de représeuter approximativement la fonc-
tion par une méme fraction rationnelle, dans le voisinage de plusieurs
points discrets, I'ordre de lapproximation étant donné, a priore, pour
chacun d’eux, en ce sens que, en chacun de ces points, la fraction et un
nombre déterminé de ses dérivées successives doivent acquérir les mémes
valeurs respectivement que la fonction el ses dérivées. Cette idée, émise
déja par Jacobien 1845, dans son Mémoire Ueber die Darstellung einer
Reihe gegebener Werthe durch eine gebrochene rationale Function
(Journal de Crelle, t. 30), est celle-1a méme qui a inspiré a M. Her-
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mite ses belles recherches Sur la formule d’interpolation de Lagrange
(Journal de Crelle, 1. 84; 1878).

Dans le cas exiréme ol tous les points considérés sont regardés comme
simples, la fraction qui résout la question n'est autre que la fraction d’in-
terpolation de Cauchy. Jai indiqué récemment (Comptes rendus des
séances de I’ Académie des Scienees, 12 mars 1goo) comment se généra-
lisent, dans ce cas, loutes les propriélés que j'ai fait connaitre plus haut
d’un tableau de fractions rationnelles approchées toules normales.

Le second point de vue, duquel on peut encore envisager la généra-
lisation en question, a aussi son origine dans les travaux de Jacobi. Clest
celui auquel s’est placé M. Hermite dans son Mémoire, cité précédemment,
Sur la généralisation des fractions continues algébrigues.

Il consiste a rechercher les systémes de trois polynomes P, Q, R, tels
que, pour des limites supérieures fixées a priori de leurs degrés respec-
tifs, 'expression PS,+ Q8,4 RS,, ot 8,, S,, S; sont trois séries entiéres
données, soit d’ordre infinitésimal maximum. Clest & cette question que
Tchebichef, généralisant les recherches d’Abel sur les intégrales pseudo-
elliptiques, a rattaché la détermination en termes finis des intégrales abé-
liennes qui dépendent d’un radical cubique.

La notion de 'ensemble des fractions rationnelles approchées, rempla-
cées 1ci par des systémes de trois polynomes, celles des lois derécurrence,
dela généralisation des fractions continues holoides, des fractions continues
réguliéres, etc., s’étendent encore & ce cas beaucoup plus difficile, et méme
au cas ol il s’agit de 'expression lindaire générale

P151+P282+--- +l.)115rr-

C'est ce que j'ai montré dans mon Mémoire Sur la généralisation des
Jractions continues algébriques (Journal de Mathématiques pures et
appliquées, 4° série, 1. X; 1894).

6. Je voudrais, en terminant, indiquer le role que me paraissent appe-
lées & jouer dans les applications les nouvelles notions introduites dans la
théorie.

Ces applications ont toujours été basées, jusqu'ici, soit sur le dévelop-
pement canonique, soit sur un nombre trés limité de fractions continues
holoides de la fonction. Ainsi, Tchebichef, dans ses admirables recherches
relatives aux questions de maximum et de minimum, a 'intégration sous
forme finie des différentielles algébriques, a l'interpolation et I'évaluation
approchée des intégrales définies, etc., semble n’avoir fait usage que de
Punique développement canonique; Jacobi et Halphen n’ont envisagé que
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deux des fractions holoides régulié¢res correspondantes au radical ellip-
tique qu’ils développent; Stieltjes, enfin, dans son beau et dernier Mémoire
st hautement apprécié par M. Poincaré, n'a considéré qu’une fraction des-
cendante spéciale, correspondante & une fraction continue holoide régu-
liere donnant deux catégories de réduites douées de propriétés différentes;
et 'on pourrait multiplier les exemples.

N’est-il pas légitime de croire que les propriétés reconnues a quelques-
unes des fractions continues holoides qui correspondent & une fonclion
doivent, dans des cas étendus, convenir encore aux autres fractions
continues holoides de la fonction. Onle pensera certainement, en songeant
a l'identité du lien qui rattache ces diverses fractions a la fonction, leurs
réduiles venant toules se confondre, sous un point de vue commun, dans
Pensemble des fractions rationnelles approchées de la fonction.

La plus grande partie des résultats oblenus jusqu’ici par l'usage des
fractions continues me semble donc devoir se préter 4 une large générali-
sation; et 'on doit méme s'attendre 4 ce que celle généralisation seule

leur fasse acquérir le plus grand degré de sunplicité donl ils sont sus-
ceptibles.
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SUR L’EVANOUISSEMENT

DES

FONCTIONS o DE PLUSIEURS VARIABLES,

Par M. TIKHOMANDRITZKY (Knarxorr).

On sait que la fonction
pE
(1) O(u;,—1Ip)
1 @y

. s . P e . :
de p variables indépendantes u;, définies par les équations
1

P
(2) rt,i::ZIf, (h=1,2,..., p)
i l(ll‘ .

g . ¢ ,ye ty . . . >
(I, étant l'intégrale abélienne de premiére espéce) devient égale a
i
. . r .
zéro : 1° lorsque quelques-uns des poinls (x;, j;) viennent tomber au
i

. ’ P .
point (&, yz), ou 2° lorsque tous les points (z;, ;) viennent sur une
1

méme courbe adjointe de premiére espéce

me—=2 n--2

(3j ‘?( €, ¥ ):W 0,
équation fondamentale du genre p étant

m n

(4) F(x, y)=o.

Si 'on définit (ce que je tiens pour le plus naturel) la fonction © d’aprés
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Weierstrass au moven des transcendantes abéliennes de deuxiéme
espéce ’
f.’
_ P ~ T
(3) B en = It
1

. kS
i=1

[II; désignant I'intégrale de seconde espéce, laquelle devient infinie ¢! an
X'

point fondamental (az, Ox)] par les équations

P S . P
(6) P(up | E) -—'/ Z[@k-’-')(ltn+1n}k]flf-ﬂf;,
1 S - 1
pk v
(7) O(uy,—1, :eq’“’i"E‘, ’
1wy

on doit déduire la propriété mentionnée de celte fonction de celles de la
transcendante abélienne de la deuxiéme espéce (5); c’est & cela qu’est
consacrée cetle Note.

1. Les arguments de celle transcendante dans I'équation (G) peuvent
élre exprimés par les sommes des intégrales de premiére espéce a l'aide
du théoréme d’Abel

r r
1 i — T ag
(8) Z‘ Ip= L=+ 1p,
@ a; E
i=1 i=1 B
. r \ , . P
les points (&, 3z) et (a; y,,) étant les zéros et les points (z; 3;) el
1 - 1
(@x, bi) les infinis de la fonction principale de la variable (5, ;)

' o
(9) Rz e(an, ba; xisljﬁ');

mais on ne réussirait pas 4 représenter ainsi la transcendante 3 de (6)
par celle de (5), car le théoréme d'Abel pour les intégrales de la deuxiéme
espéce devient illusoire, lorsque 'une des limites de l'intégrale se confond
avec son parameélre; ¢’est pourquoi nous prendrons pour point de départ
la fonction principale

. '"
(10) . Pag(a, s @i yi)
1

(«', ') désignant un point trés rapproché du point (a4, b4), mais non pas
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confondu avec lui. Alors on aura, par le théoréme d’Abel :

P r

oy N
(”) I,= Iﬂ*‘lhz
a; a;
i=1 i=1

(12) 2‘ i = IJ/L + JI, — D Jog Bop e, y'; 9:“ o)

Xy
i=1 i=1

)
<0u lonaD,, M’) a4 ) Comme on a pour (', ') trés rapproché

0by oy,
de (e, by) )
dﬁ?(m-, bi)

) o= — P e,
£ -
c)ﬂ(x',y')
)
—— = P (2= ar),

aj;

(14) iru,f%:y,wr-}n) =

on trouvera aisément qu'a la limite, lorsque le point (2, ) se confondra
avec le point (ax, b;), le second membre de I'équation aura une valeur

finie et déterminée. Par la méme méthode des limites on pourrait discuter

\ 1 . P X
le cas ot quelques-uns des points (x;, ¥:), en nombre A par exemple,
1

coincideraient avec le point (£, _y, mais I'autre cas, celui de I'indétermi-

A

nation, le cas ol les points (xg, _}f,‘) ‘viennent sur la courbe adjointe de
1

premiére espéce (3), échappe a cette méthode, appliquée directement;

¢’est pourquoi nous allons donner d’abord a la fonction principale une

autre forme,

2. Nous écrirons maintenant aprés 'argument de la fonction adjointe
ses zéros arbilraires et puis ses zéros non arbitraires, en les séparant des
premiers par un trait vertical. Ainsi

n—2 n—2 p—1

(r3) o & y&;xhyuruy)

représentera une fonction adjointe de premiére espéce avee les p —1
p—1
zéros arbitraires aux points (:r” i) et les autres p — 1 zéros, qui sont

complétement définis par ceux-ci, aux pomts (z's, _y ;). De méme

(16) ~.r' P(Z .}’z;l’u.ﬂ’“EJ"i“uJ’a)
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représentera une fonclion adjointe de troisiéme espéce avec les infinis
aramétres)aux points (2, 1) et (@ ,, 17,), laguelle a ses p zéros arbitraires
I E 7y Yp)laq F
- 1

. i . ) . )
aux points (z; i) et (E, ye) et les zéros non arbitraires aux points
i

P . r r
(%, ¥4, ), ces derniers étant les mémes que les p autres que (£, 3¢) zéros
1
de la fonction (10), car ils sont déterminés d’aprés les mémes données

P . . 1o
(2, o), (x,-,l_y,-), (§, »t), seulement maintenant par I'intermédiaire des

\
'

I) . - .
(.7:2,1_)/,). Il est facile de vérifier qu’on aura

p—1 P
P o 'Lk
('Lf‘.-l‘y(z!.y:: Ty ¥it & VE| af?lyi.)
1

. ; r
(17) ‘J.‘_—,g_(z", ¥’ ;a:f,iy,—) = ;

T m—2 n—2 Pt )
o = o | '
(.‘( & 3 FVz; -'Ut:_J’lll-Zi:.}/z)

c’est sous cetle forme nouvelle de Ja fonction principale que nous allons
la considérer maintenant.
. . o . v
Lorsque le point (xp, ¥,) viendra coincider avec le point (&, 1) ou
p -1

avec l'un des points (z;, yi), par exemple avec le point (Zp—1s I peih
1

comme 'un des deux infinis de la fonction (16) sera absorbé par l'un de

ses zéros arbitraires, V'un de ses zéros non arbitraires (op, ¥a,), par

exemple, doit coincider avec Uautre infini («',y") de la fonction,

pour I'absorber aussi, car il n’existe pas de fonctions adjointes qul

agraient un seul infini. Donc, dans les deux cas, la fonction {(16) se

réduira & une fonction adjointe de premiere espéce : dans le premier cas, &
m—2 n—32

. , P
(18) w( &, ¥ xia}’i!“h.}’&:):

a quoi 'on aura, comme il est aisé de voir :

, N p—1 . p—1

(19) (i You) = (Zir Ji)s

dans le second a

) . ue—2 pe—2 p—2 p—1

(20) o( 2, Yz &p Yii & VE| @ Yah
1 1

les équalions (19) n’ayant pas lieu maintenant. Dans le dernier cas, la
fonction (17) reviendra a Ja fonction

m—2 n—2 !)172r N p—1
ol 2 , ¥s; z‘;,lyz; & re | a;,iya;)
(21) —— ~y

m—2 n—2 I

p— 1
(2 yai o i | 2 i)
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F

2
3 2] 1 ] 1 1 J p . . b+ A - - v’ - - ! .
qui aura les p infinis aux points (x,,lyi), CAT ON A Xp == Xp_y, ¥p== Yy

. p—1 . p—2 ,
et les zéros aux p points (§, yz) et (%, ¥y,), les points (z;, ¥;) élant les
1 ’ 1

zéros communs du numérateur et du dénominateur. On aura donc dans
ce cas, par le théoréme d'Abel,

p—1 .
kil g
(22) 0= I+1, (fl:[,{lj :P)-
_
i=

en ajoulant cetle équalion a I'équalion (2), on aura

,u—l '

. —~ O £
(23) wy, = -1, (h=1,2, ..., p).
. t; ay
=1

Mais c’est justement la méme forme que prend, en vertu des équations (1g),
I'expression de wu, dans le premier cas, lorsque (z,, ¥p) vienl Lomber
en (§, y¢). Donc, a l'aide de I’équation (22), qui existe dans le second cas,
ce cas est ramené au premier. ll ne resle donc a considérer que ce pre-

mier cas.

3. Dans le premier cas, en vertu de (19), la fonction (17) se réduira &
Panité et I'équation (12) deviendra une identité, quelque proche que soit
le point (z', ') de (ax, bz); donc, on a & la discuter par la méthode des
limites. En vertu de la propriété bien connue de la fonction adjointe de

troisiéme espéce

P & P
(24) P, 2= L, — Doy,

el de cette autre, exprimée par 'équation (en n’écrivant que les zéros
arbitraires ), )

@ R AT

l.i':n'ﬂ(aa Yz xi'slj"[: o .}"E) =

m—2 n-—2

g1 r—1
= By, (& e @ Y5 5 =) ep( 5 yes @ Yk y),

o

m-—2 n—2 p—1i

op( 5 5 Yo 1‘;,1,}’;; §, ¥¢) désignant une fonction adjointe de premiére

N . . p-—1
espéce ayant ses zéros arbitraires aux points (#;, y;) et prenant une
1

valeur == 1 au point (£, yz), on aura, lorsque (&', ') est trés rapproché
de (ax, bi) et (zp, yp) de (€, »2), le développement suivant pour la fonc-
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tion ®,. ¢ de (12):
| p—1 P
{ - 2k foe z . -
1 C’DI,’ -71',;(0"11: b-’ua &y iy.a': E: Y [ th.y“i) -
oF (ag, by)
00

2.6 ( = — - — —
(26) S P )

¢ N(T[h'«lp)

“'_}’p m—2 n-
— 0[1(“:’;: b-’n.;vru}’z)_'“r (Z[J"E);

)

| zp—E

en portant ce développement au lieu de la fonction dans 1’équation (i2),
on trouvera, ayant égard & (13), que

s

. a X p—1 ) P
lim (Hfr Do log &, w(@ps bps @h i3 & e | o .Ya‘) =
3 1 1 K=, y'=bg

(27) 0F (@p, ¥p)
t)? m—=3 np—12
_ ¥p p— &
L T E T opl ar , br; @, } )+ P(zp—5)-
»
m-2 n-2 p—1

Comme D, loge( ax , by; zs, yi | @), ¥i) est une quantité finie, nous
1

aurons
07(311_:_.?%’)
Pk d m—2 n—2
(28) Cp—+3 (”}LT%’})I&"" T.,Vﬁa - '-[‘p( Qp bp y Ty _}’z)"‘ ke,
p-

ki désignant les termes qui ne contiennent pas des puissances négatives
de (z,— £). Donc, en portant cetle expression dans 1’équation (6), on

trouvera, vu que

f))(:c,,, ‘V,,) — P
2 d.’i:‘, = ) b& 3 Loy ) d A7)
( 9) £ lj_}’p "12_1: (P.’( ak sy Ok ’}’r_) U,
l’équation
(30) ‘b({zk £)=log(z,—E&)+ I,
1

! pe contenant pas de puissances négatives de z,— £, et par I'équa-
I P g P S P qua

tion (7)

(31) a(uh*]}a)—(l’p )c[:

Lo
d'oti 'on voit qu’effectivement la fonction © devient égale 4 o, lorsque

. r . s
'un des points (y, y:), par exemple (zp, ), vient coincider avec le
1

point (€, ).
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Ce n’est que pour abréger I'exposition que nous avons supposé qu'un
seul point (zp, 3,) tombe en (&, y¢); s'il y en avait A de pareils, on
aurait & remplacer dans I'équation (12)la fonction principale par la somme
de A expressions pareilles & (17), construites pour chacun de ces X points,
x . .
en lui donnant le role de (xp, y,).

Dans le second cas, lafonction == @ pouvant étre réduite 4 la forme (31),

- p—1 \ ’ . :
quels que soient les (§, y%) et {x;, 3;), I'évanouissement de cette fonction
1
j)
. . .-
aura lieu identiquement. C'est parce que, les p — 1 des (u;, ya;) restant
1

- ., P . . .
indéterminés comme les (xy, ), le dernier vienl toujours tomber
1

en (ax, by).
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SUR

UNE EXTENSION DE LA SERIE DE TAYLOR,

Par M. MITTAG-LEFFLER (SrtocRuoLm).

[J’Cxpression limite

].Jlim 2 TIT Fi'(a)(z—a),

n=ow k=0

connue sous le nomde série de T'aylor, posséde la propriété fondamentale
d’étre uniformément convergente pour chagque domaine-a I'intérieur d’un
certain cercle, soit G, mais de diverger pour chaque point en dehors du
méme cercle.
L’expression limite L Gz a
P dim n(z | a)

n=m=m

n? ntt
) 7 r—a ).1-+4...+?».,,‘
Gu(z | a)= 2‘ 2‘ z DN Nlltl-»- cFhal (@) (— ni) 3

=10

que je viens d’étudier dans des Mémoires récents, posséde la propriété de
converger uniformément pour chaque domaine a Pintérieur de Véioile
principale A, appartenant aux constantes K™ (a) (p—=o0,1,2,...,0), etde
ne converger uniformément pour aucun:continuum embrassant un sommet

de A. JI est pourtant parfaitement possible que LimG,,(ac | @) converge

encore en dehors de A. Il y a cette différence essentielle entre Iexpres-

san ZNF‘"' a)(z—a)* et I'expression. L G, (z | a), que le

n=o A=0 n=w

cercle € est toujours une étoile de convergence de I'expression

L{m STFW (@) (@ —a),

n—w» ).:0
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is qu'il n’ : i I’étoile A soit une étoile d
mais qu'il n’est pas nécessaire que I'étoile A soit une étoile de convergence
de I'expression L Ga(z | @).
1m
n-—-w

Le problémesuivant se pose alors de soi-méme. Remplacer L Gp(z | a)
. 1m

n=uw

par une autre expression limite qui posséde I'étoile A comme étoile de

convergence.
Ce probléme peut étre résolu de différentes maniéres.

Voici ma premiére solution :

my m, my
S Lin Liw . Lin 2 3 X
rlz | @)= Lim Lim .. im Ch b ooty FME ) (@) (22— @ )bt tha,
my=o my=w my= o =0 Ay=0 hp=10

Les constantes ¢, s, .., sont des constantes numériques données dont

I I I\ M 1 [\ Fithatig
S W PN AT e PN WA 7

et qui deviennent des irrationalités algébriques pour n >3. On voit

que Sn(x | @) pour n="1 n’est pas autre chose que la série de Taylor.

L'expression S (x | a)posséde toujours pour toutes les valeurs de n
n

une étoile de convergence de forme bien déterminée. Pour n =1, cetle
¢toile devient le cercle C. Elle s’approche indéfiniment de I’étoile A quand
n augmente suffisamment.

L'expression limite

Lim-S,l(;?; | a,l)

n= o

posséde 1'étoile A comme étoile de convergence et l'on a en méme

FA (2) = !les,i(x | a@).

Voici maintenant une seconde solution. Posons

‘Sa(z' | ey=F(a)+ le E(J (@ —a)

== i

. 1 . JACN
Q;(:ﬂ—a)'- h)\ 1({3) Fli a)(TL;QCP)_'—zI(‘X_ (ﬁ) b(z)( )( a>?+.”

temps

TR —)! 2)!
RI-(RY z—a\1l g z—a\*
oy e (552 - ) (257)
=I—a
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2 = nombre posilif qui n’est pas supérieur & un,

MG T
r(la) 1(Y) : .
w=e (2 ) (2) =(5e)er[+ap(a)]
Les th"(fﬂ) sont des polynomes en 8 du degré p. dont les coefficients
sont des nombres rationnels positifs donnés. Ces polynomes disparaissent

pour  =o.
L’expression q (z | a) devient pour & =1 la série de Taylor. Elle pos-

séde une étoile de convergence parfaitement déterminée qui est pour
o.=1 le cercle G et qui s’approche de plus en plus de 'étoile A quand o
s'approche de zéro. D’un autre cdté 'expression limite

Lim Sn(.:v | @)

e=0
posséde 1'étoile A pour éloile de convergence.
On a donc; pour U'intérieur de I'étoile principale, égalité

FA(x)= le Gulz | a)= le S,L(m | &) = le Sa_(a? | @).

L’éroile A étant une étoile de convergence pour la seconde et la troi-
siéme de nos trois expressions limites, ne [’est pas nécessairement pour la
premiére. '

La premiére expression étant

an

leG” (= | Lun 24 2 2 M'M o —— Four —H,.)(a)(“" "”‘)1"’ S

n=oo nz=e A=0 k=0 ha=0

est une expression limite simple, la troisiéme étant

1) -
IJrlm Sa(z‘ | @)=TF(a)+ Lnn le E[l’ ;liﬁl)' F{lj(a)(g"ﬂaj>+"'

BB I o
-+ =T bn—u(a)(, — -+ F Fi(a) (_mh_) l

est une expression limite double, la seconde étant

Lim Su(x | a)

n=gs
my  m "y,
ﬁ[llm le le le 2 2 201 heveky PRt b (@) (2 — @ Yokt
n=m my==w My==w tpy==w k=0 ha=0 h,=0

est d’une transcendance beaucoup plus élevée.
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Ajoutons encore I'observation importante que voici. 1l y a entre C et A

une étoile intermédiaire Al qui peut étre amenée d’une maniére con-

tinue de G & A en faisant varier « depuis 1 jusque vers zéro, et pour

laquelle I'égalité

N
FA® (z)=F(a)-+ Lim ;gm(a,- )
L—1

n=w

a lieu. Cette étoile est une étoile de convergence pour l'expression
n

5 . oL s ’ . T .
Limz Gr(xz — @) qui est de son cdLé une expression limite simple.

n=owm A=0
Tous les théorémes que je viens d'énoncer peuvent étre étendus a des

fonctions analytiques de plusieurs variables indépendantes. Celte exien-
sion peut se faire de deux maniéres trés différentes. Dans la premiére, qut
est pour ainsi direla plus banale, 'ordre entre les variables indépendantes
ne joue aucun réle. Dans la seconde, an contraire, cet ordre a un role

prépondérant.

e G ——
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REMARQUES RELATIVES

A LA

COMMUNICATION DE M. MITTAG-LEFFLER,

Pan M. Eumwe BOREL (Pawis). -

M. Borel demande la parole pour présenter quelques observations a
Uoccasion de la remarquable Communication de M. Mittag-Leffler.

Il rappelle d’abord comment, dés la publication de la belle décou-
verte de ’éminent géométre suédois, il a donné dans les Annales de
I'Ecole Normale supérieure (18gg) une démonstration exirémement
simple du premier théoréme fondamental. Cette démonstration était
basée sur I'emploi de I'intégrale de Cauchy et se rattachait immédiate-
ment 4 un principe antérieurement développé par M. Borel dans ses
mémoires sur les séries divergentes. On peut le résumer briévement:
I'intégrale de Cauchy donne l'expression de toute fonction analytique

. c 1, . i .
comme somme d’une infinité d’éléments simples de la forme T il en

résulte aisément que, pour démontrer le théoréme de M. Mittag-Leffler
pour une fonction quelconque, il suffit de le démontrer pour la fonction

. 1 . . “ e .
simple ;——,i or, pour cette fonction simple, des propositions équiva-
— &

lentes (développements en séries de polynomes) résultent de recherches
de MM. Runge, Hilbert et Painlevé.

Soit maintenant, au lieu d’'une intégrale telle que celle de Cauchy,
une série, somme d'une infinité dénombrable de fractions rationnelles;
la méme remarque subsiste, d'ou la conséquence suivante déja indiquée
par M. Borel dans les Annales de I’Ecole Normale : le théoréme de
M. Miitag-Leffler peut s’appliquer dans des cas ou le prolongement ana-
lylique ne s’applique pas; il peut fournir un prolongement dans des cas
ou il n'y a pas de prolongement, au sens de Weierstrass. 1l en résulte
que D’étoile principale n’est pas nécessairement une étoile de conver-
gence pour l'expression limite simple donnée primitivement par M. Mit-

tag-Leffler.
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Mais on peut aller plus loin et, en employant une méthode indiquée
pour la premiére fois par M. Borel dans sa Thése et reprise par lui dans
ses premiéres Lecons sur la théorie des fonctions, on peut démontrer
la proposition suivante : Etant donnée une expression limite simple
quelconque, analogue & celle de M. Mittag-Leffler, c’est-a-dire caracté-
risée par des conslantes numériques déterminées, et toujours conver-
gente dans l'étoile ‘A, il existe des fonctions analytigues telles que
Uexpression limite simple correspondante n’admette pas Uétotle A
comme étoile de convergence, c’est-d-dire converge aussi en dehors
de A.

Cetlle proposition a été démontrée par M. Borel dans son Mémoire
sur les séries de polynomes et de fractions rationnelles (Acta mathe-
matica, t. XXIV), et aussi dans ses Lecons sur les séries divergentes
(Paris, 1go1).
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NOUVEAUX SYSTEMES ORTHOGONAUX

POUR LES

DERIVEES DES FONCTIONS THETA

DE DEUX ARGUMENTS;

Pax M. E. JAHNKE (Beruix).

On doit & M. Caspary (') le théoréme que les seize produits

Jup= Tup (21, ¥3) Tap (1, ¥a)

forment les coefficients d'un systéme orthogonal dans 'arrangement sui-

vant :
fG f(“ w—,fﬂﬂ
—Ja Jiz o fa
fr'r 7‘){‘14 .f'ﬁ-"
f13 ,f3 . fl

que j’appelleral arrangement casparyien.

- "fi%
gfﬂk
— Joe

,jr.’i:

Ce systéme comprend toutes

les relations algébrigues entre les fonctions théta de deux arguments.
En poursuivant les recherches de M. Caspary, j'ai trouvé (*) des sys-
témes orthogonaux comprenant un grand nombre de relations diféren-

tielles qui existent entre lesdites fonctions.

Dans ce qui suit, je vais énoncer trois théorémes qui fournissent de
nouveaux systémes-orthogonaux pour les dérivées des fonctions théta de
deux arguments et qui se déduisent enx-mémes du systéme général établi
dans le Journal fiir die reine und angewandte Mathematik, t. CXIX,

p. 240 (*):

I. Les nitmet dérivées des produits

aaﬁ(u’ﬁ-*- ay, Ta-t-ay) S'oe[i(-%— @y, Ty — ag),

(1) Crelle’s J., Bd 94, p. 77; 1881.
(%) C. R.,t. CXXV, p. 486-489; 1897.

(3) Comparez aussi C. R., t. CXXVI, p. 1014; 1898.
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ol a,, ay désignent des constantes, forment dans arrangement casparyien
les seize coefficients d’un systéme orthogonal.

II. Les nimes dérivées des produits
3.35(@, o) d? logTas (@, 23)

forment .dans 'arrangement casparyien les seize coefficients d’un systéme
orthogonal.

III. Les premiéres dérivées des dix fornctions théta paires et des six
fonctions théta impaires forment, dans I’arrangement casparyien, les seize
coefficients d’un systéme orthogonal. Ce systéme est le suivant :

co Fy (71, 23) Cot Ty (@1, F3) — oy Tyy (@1, ) — €5, Tau (@1, 2)
—ea Ty (@4, @) e1g Iy (21, ) Cay Ty (@1, Ty) —- €y Jou (1, @a)
e T (wyy ) — ey I, (@1, @) Cas 3’:1.';(’”;: @s) — Coy Tog(T1y @2 )
ey T3 (@, 2) ey Iy (my, @) ¢y Ty (2, wa) ey I (@, T2)-

Ce troisieme théoréme est un cas spécial d'un théoréme général qui per-
met de déduire de chaque systéme orthogonal de neuf coefficients un
systéme orthogonal de seize coefficients.
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SUR LES INTEGRALES COMPLETES

DES EQUATIONS AUX DERIVEES PARTIELLES
DU SECOND ORDRE,

Par M. Juees DRACH (Crermoxt-FERRAND ).

Les équations dont il s’agit sont & une seule fonction inconnue el &
deux variables indépendantes.

Les méthodes de Monge, d’Ampére et de M. Darboux épuisent, théori-
quement, ce qu'on peut dire de général sur la- recherche des solutions
dépendant de fonections arbitraires ou d’une infinité de constantes arbi-
traires. :

Notre but est d’apporter une modeste contribution & I’étude des solu-
tions qui ne dépendent que d'un nombre limité de constantes arbitraires,
en particulier des solutions & trois et a cinq constantes. M. J. Konig,
dans un Mémoire bien connu (Mathematische Annalen, t. XXIV), a
ramené la délermination de ces derniéres (intégrales complétes) a I'inté-
gration d’une équation linéaire du second ordre a sept variables indépen-
dantes et & des intégrations ultérieures de systémes complets. Nous
montrons qu’on peul remplacer 'équation de M. Konig (qui est déter-
minée) par une équation du second ordre (non linéaire) a sept variables,
dont la forme peut varier et qui renferme cing fonctions inconnues; de
plus, on peut éviter toute intégration ultérieurve. Tout se raméne donc a
trouver un systéme de cing fonctions de sept variables lices par une
relation du second ordre. M. Kénig n’a pas indiqué d’application de sa
méthode; nous n’en avons pas donné non plus, et ¢’est uniquement parce
quon sait fort pea de chose sur le sujet que nous avons jugé utile de
publier ces pages.

1. Considérons un systéme d’équations aux différentielles totales

[ d:r:1 = a, d.Z“r*ﬁL b1 d.’l‘,g,
(1) § dwg = as dx, + by dzy,

( dzy = ay dz, -+~ by dxy,
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ol les @ et les b sont des fonclions des cinq variables z, et supposons qu'il
admelte Lrois combinaisons intégrables; il faut et il suffit pour cela que
les équations linéaires

C . af  af 9 9

| A= 3L+ ar S e

I

e @ Ay = - A3t = O
oz, 1 9, 0y dxy ’

| nom O af of . of _
(B(f\ g, Tl b F g =0

(2)

forment un systéme jacobien, c’est-a-dire que I’on ait identiquement
(3) A(bi)=B(ay), A(bs)=B(a), A(b)=B(as).

Admettons maintenant, ce qui arrivera en général, que le couple
(ai, b, ) soit formé de deux fonctions distinctes des vauables z, et xy, de
telle sorte que z,, z, 5, ai, b, soient cinq fonctions distinctes des z;;
il sera possible de transformer le systéme (1) par 'introduction des nou-
velles variables (a,, b,) et le systéme transformé

dzy = ay dz, ~+ b,y dxs,
da; == A{ay) dz,+ B(a,) dzs,
dby = A(by) dz,+ B(by) dzy,

—

ot A(a,), etc., sont exprimés avec les variables z,, ., s, a., b,, admettra
toujours trois combinaisons intégrables.
Nous remarquerons qu'il suffit de poser

s=x,  T=@m, Y=oy p=an §=by
r=A(a), s =A(b;) =B(ay), t=B(b;)
pour donner au systéme (4) la forme connue
_ ( dz—pdz —qdy =o,
(5) dp — rdx —sdy =o,
dgu—scéx —tdy =o,
ou r, s, ¢ sont trois fonctions de z, ¥, 5, p, ¢ satisfalsant aux conditions

dr ds ds dt

© &= & &y ds

qui expriment que le systéme

(x=LperL e
(7) .
(Y(f f—n—qdf—n—s%---x—t%:

esl jacobien.
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On sait qu’alors, L, M, N désignant trois solutions fonctionnellement
distinctes du systéme (7), correspondant & trois combinaisons intégrables
de (5), les équations
Lz, y, 5 p,q) =1,
M(Z‘J Y, 8 Py 9’) == 1,
Nz, y,5,p,q)=n
sont compatibles, quelles que soient les constantes I, m, n, et déterminent
une solution, dépendant de trois constantes, du systéme des équations

r= A(al)E'R(m!J’s 5y Py g )s
s =B(ay))=A(b))=8(z, ¥, 5, p, g)
=B(b,)=T{z, 5, 5, p, q)

et aussi de toule combinaison de ces derniéres.

2. Les remarques précédentes monlrent comment on passe d'un systéme
d’équations & cinq variables
dz —pdr—qgdy =o,
(5) ) dp —rdz — sdy =o,
Vdg — sdor— tdy =o,
possédant trois combinaisons intégrables, au systéme le plus général de
méme forme qui posséde la méme propriété.
Posons, ‘en désignant par A, p deux variables auxiliaires
z=X(z', ¥, & %, p),
¥ = Y(Z‘,_}f’, .z", 1, p.),
(8) zf:Z(x',_y’, z'\)\, )
p=P(z, )y, 5 k),
g=Q(z" ¥, 5, & pn)
les seconds membres représentant cing fonctions distinctes de leurs argu-
p q g
ments, de telle sorte que 2', 3, 5', A, p s’expriment aussi avee 2, ¥,.5, p, ¢-

Le systéme transformé du systéme (5) s’écrira

dl, —PdX —QdY = o,
(9) { dP — rdX — sdY =o,
dQ) — sdX — tdY =o,

oul'ona remplacé dans r, s, ¢ les variables z, y, 3, p, ¢ par leurs expres-
sions (8); il .renferme les différentielles dz', dy', ds', dh, dp et peut
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éire résolu par rapport aux trois derniéres si I’on suppose, ce qui auralien
en général, le déterminant de leurs coefficients différent de zéro. On
obtient ainsi '

‘ dz' = p' dz' + q' dy',
(10) : cdh = 1lidy' + L dy’,

. . ,
\ dp = my dx'+ msy dy’,

Pq, Uiy tay, my, my ne dépendant que des dérivées premiéres des fonc-
tions X, Y, Z, P, Q, et 'on déduira immédiatement de la

dp'=r'dz'+ s'dy’,
(an j
[ dg'=s"dz'-+ t' dy’,
en posant
(o ' _ 9" dpt , op',  dp
\r, X(p" : dz’“a—z"”_ﬁfli*ﬁ’”“
. ;o by .\ 9g dg' 4 de
(r2) SﬁB(Q):Y(P)TE);: "dzf' j{* 1+ e ;
) : o' dg’ o’ g’
=Y et SENE e S G S Sy —L.m.
\ (") dy' 9 7 oA b+ L "

Dans le cas ou les fonctions p’ et ¢’ sont des fonctions distinctes des
variables A et i1, ce qui est évidemment le cas général, les équations (11)
peuvent remplacer les denx derniéres équations du systéme (10) et I'on
relrouve ainsi un systéme de méme forme que (5). Les expressions 7,
s', ¢ dépendent des dérivées secondes des fonctions X, Y, Z, I, Q et sont
connues immédiatement lorsque les variables sont 2/, 3/, 5/, A, 1} 1l suffit
de remplacer X et 1t par leurs expressions déduites des valeurs de p' et ¢’
pour les obtenir exprimées avec les variables 2/, 3/, 3/, p', ¢'.

3. Supposons maintenant qu’il s'agisse de déierminer une solution,
dépendant de trois constantes arbitraires, de I’équation quelconque
du second ordre

(13) F(z', v, &, p'y q', 7', s, ') = o;

partons d'un systéme de fonclions r, s, ¢ des variables z, ¥, z, p, ¢
pour lesquelles le systéme

(dz-—pdxggdyr—,oj
(3) { dp — rdz— sdy =o,
dg — sde —t dy =o0
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admet trois combinaisons intégrables, et faisons le changement de va-
riables indiqué par les formules (8); nous avons vu qu’on peut calculer p'
el ¢/, puis 7', ¢, ¢/ de [acon que le systéme transformé garde la forme

ds'— p'dz' — g’ dy' = o,
(14) ¢ dp’— rdxy-— § ([}f’ =0,

|

vdg'— s da'— ' dy'= o,

Il suffira donc d’assujettir les éléments 2/, ¥/, &, p', ¢', 1/, s/, t' & vé-
rifier la relation

(15, F', ', &, p,og, 1, s, t')=o0,

pour obtenir un systéme de trois fonctions /7 s/, ¢’ des variables 2/, y/, 3/,
Py @' pour lequel les équations (14) admettent trois combinaisons inté-
grables. La détermination de ces combinaisons revient & 'intégration d’un
systéme complet et conduit & une solution de I'équation (13) renfermant
lrois. conslantes arbitraires.

Le probléme proposé est ainsi ramené a la recherche d’une solution
particuliére de I'équation (15) dans laquelle p/, ¢/, #/, &', ¢/ sont des fonc-
tions des cinq variables #', 3/, 7/, A, u, qui dépendent des dérivées pre-
miéres et secondes des arbitraires X, Y, Z, P, Q. Cette équation (15) est
donc une éguation & cing variables x', y', &
Jfonctions inconnues (). '

» Ay o renfermant cing

Remarquons, en outre, que la connaissance d’une solution particuliére
de I’équation (15) et celle de la solution dépendant de trois constantes
du systéme (5) suffisent pour obtenir la solution cherchée de I'équa-
tion (13). Il suffira, en effet, de faire dans les équations

Lz, y, s py q) =1,

1\'1(:1', Yy &P 9) =m,

N('?"v Vi %y Py g) =n,
qui définissent les trois solutions distinctes de (5), le changement de: va-
riables |

x.:x(w’,‘}/’, &, )‘) \U')-n LERE] g:Q(z.f’yF.‘zf’ )‘: .U‘)=

et d'éliminer A et p entre les trois équations transformées, pour obtenir 2’
au moyen de z', »', {,’m, n. On n’a donc pas besoin d'intégrer chaque

’

(19, Les expressions de 7', &', ¢ sont d’ailleurs Zinéaires par rapport aux déri-
vées secondes de chacune des fonctions inconnues.
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fois le systéme (14) ou le systéme équivalent écrit avec les variables z/,
I
Yy 5,k w.
4. Des remarques analogues s’appliquent aussi & la recherche des inité-
grales complétes des équations du second ordre, qui dépendent de cinq
conslantes arbilraires.
Considérons une équation du second ordre, supposée résolue par rap-
port a r, '
(16) r=R(z, ¥, 5 p,q,5 t);

on sait que pour en obtenir une intégrale compléte 1l faut lui adjoindre
deux équations
\ """(1'7 Y& P, g, 5, t) =%,

(17}
v(z, ¥, By Py gy s, t)= gs

telles que le systéme formé par les trois équations soit complétement in-
tégrable quelles que soient les constantes « et 8. Les conditions d’intégra-
bilité s’obtiennent en écrivant les égalités
. dr s ds dt
(18) = 2=t
dy — d=x dy  dz

ry s, t étant définis implicitement par les trois équations considérées;
elles sont du premier ordre et bilinéaires par rapport aux dérivées de u

et p.
Tout systéme d'intégrales de ces deux équations (18) pour lequel le
; . D(u, v . , .
deLermmanLﬁ n’est pas nul permetira de déterminer s et ¢ de fagon
)

que le systéme
ds — pdr —qdy =o,

dp— rdx-—sdy =o,
dq—~sdz';td_y;:0

posséde_ trois combinaisons intégrables; Dlintégration introduira trois
nouvelles constantes {, m, n et 1'on obliendra ainsi une intégrale com-

plete.
La détermination de u et v a été étudiée, en particulier, par M. J. Kinig

(Mathematische Annalen, t. XXIV, p. 465); sil'on élimine ¢ [en résol-
) o . : L de dy . )
vant les deux équations (18) par rapport a 75 et &’ puis annulant le cro-

chet de Jacobi, pour exprimer que.le systéme est complet:l, on obtient
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pour déterminer v une équation du second ordre & sept variables x,
¥y 5, Py g,y S, L, linéaire par rapport aux dérivées di second ordre :

(19) A =o.

Bien entendu, le cas ou les équations (18) se réduisent algébriquement
4 une seule est écarté, la méthode d’Ampére élant alors applicable
(ef. J. Konig, loc. cit., p. 481, §IV).

Réciproquement, si ¢ salisfait 4 1'équation (19), les deux équations r—R,
w==0o possédent en commun une intégrale dépendant de quatre con-
stantes arbitraires; la détermination de cette intégrale exige encore des
intégrations : celle du systéme complet (18), ou du moins la détermination
d'une solution, et l'intégration compléte du systéme aux différentielles
totales, qui admet alors trois combinaisons intégrables.

Il suffit de se reporter aux résultats oblenus dans le paragraphe précé-
dent pour reconnaiire que la connaissance de trois fonctions r, s, ¢ de
Z, ¥, 5, p, g et de deux variables « et § pour lesquelles le systéme

dz—pde—qgdy =o,
(5) dp—rdr—s dy =o,
dg—s de—tdy=o

posséde trois combinaisons intégrables, raméne la détermination d’une
solutton compléte de I'égnation

(16) r=R(zy,2,p,q,s1)
i celle d’une solution particuliére de I'équation a sept variables

(9.0) = B(.’L",_}", zr’Pr’ ?r’ sr’ ll).

Celte derniére ne renfermera d’ailleurs, avec les cing fonctions inconnues
X,Y,Z, P, Q des variables «', »/, 7/, &, 1, a et B, que leurs dérivées
secondes par rapport aux cinq variables z', 3/, &, &, ; les expressions
de r', s, 1! sonl linéaires par rapport aux dérivées secondes de chacune
des inconnues. '

Ajoutons que si l'on connait, pour le choix des fonctions r, s, ¢ de
Z,¥, 5, p,q,a, 3 d’ot 'on est parti, les trois solutions distinctes du sys-
t¢éme aux différentielles tolales

S dz-——pdz—érdy:o,
'dp—rda;"—s d_)f.--ol,
L{Q'fé' dx_st d_)/:o‘,

Droits reservés au Cnam et a ses partenaires



288 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION II.
aucune intégration n’est nécessaire pour trouver l'intégrale compléte
de (16) quand on connail une solution particuliére de 'équation (20).
1l suffira de faire dans les expressions de z, p, ¢, au moyen des variables
x,y et des constanles o, 3, /, m, n, le changement de variables

r = X(_.‘Z",_}”.. 3, &, ?‘)‘ ey = Q ('TIJ.J(!: &, )‘! Py @y ?)!

et d’éliminer A, . entre les trois équations obtenues.

Ces remarques sont acluellement sans portée pratique; nous n’avons
aucune idée du degré de difficulté que présentent I'intégration de 1'équa-
tion (19) & sept variables ou celle de I’équation analogue

(20) r'=R(z, ', 5 p g8, ).

Il nous a cependant paru utile de montrer qu’on peut remplacer 1'équa-
tion (19), qui est entiérement délerminée, par une équation susceptible de
prendre des formes trés différentes, puisqu’elle contient, outre les fonc-
tions r, s, ¢ de X, Y, 7Z, P, Q, a, B, assujetties a la seule condition de
rendre le systéme (5) complétement intégrable, quatre fonctions de z/, 3,

/

', hy s % 3, que l'on peut choisir arbitrairement. Nous avons vu de plus

ta

que la détermination d’une solution particuli¢re de (20) doit étre regar-
dée en fait comme équivalente a celle d’une intégrale compléte de
I'équation:

r=R{x, ¥y, 5, p,q, 5,t),

puisqu’en choisissant convenablement les trois fonctions r, s, t de z, ¥, =,
P> Gy, B, aucune intégration ne sera plus nécessaire pour obtenir celle
intégrale compléte.

5. Nous n’insisterons pas ict sur la signification géométrique des
transformations en &, ¥, 5, p, ¢ que nous venons de considérer, transfor-
mations qui changent manifestement des {amilles de surfaces & trois ou
cing paramétres en familles analogues, et sont de contact pour’ensemble
des éléments ainsi définis. .

Bornons-nous & faire observer que la remarque fondamentale d’oti nous
sommes parti, relative 4 la transformatien d"un systéme jacobien de r équa-
tions 4 7 -+ g inconnues en un sysi¢éme de méme forme, est susccptible
d’applications variées. Signalons pour I'équation du second ordre

r=R(z,5,5,p,q,st)

la généralisation qui se présente quand om adjoint a I'équation deux
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autres relations :

onz oz
u(%.)’:%P:?a-"J».--;Wﬁ' W)::x'
ong anz
v (JF.JG PG, St -y W’ m) =B,

ol ne figurent que deux dérivées d'ordre n (les autres s’exprimant avec
celles-13) de facon & former un systéme complétement intégrable. M. Konig
(loc. cit.) a montré que les conditions d’intégrabilité

d onz N\ d ( dgnz N d onz d [fonz
5(wom) = wlamm=)  &lerm) =& (57
conduisent encore, dans le cas général, & une seule équation du second
ordre pour déterminer u, équation & an -+ 3 variables. La détermination
d’une solution de cette équation, jointe i des intégrations de systémes
complets, conduit & une intégrale compléte renfermant 2n + 1 constantes
arbitraires. Nous avous, avec la théorie indiquée plus haat, le moyen de
remplacer cette équation délerminée & an 4 3 variables par une autre
équation & 21 -+ 3 variables renfermant an 4-1 fonctions inconnues et

de supprimer les intégralions ultérieures de systémes complets.
Rappelons, en terminant, que l'étude du cas ou les deux conditions
d’intégrabilité se réduisent algébriquement 2 une seule a permis 2
M. Kénig de retrouver la méthode de M. Darboux; il n’est donc pas
nécessairement sans intérét d’étudier la détermination des solutions d'une

équation du second ordre qui ne dépendent que d’un nombre fini de
constantes arbitraires. ‘
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SUR LES

TRANSFORMATIONS DE CONTACT

ENTRE LES

LIGNES DROITES ET LES SPHERES,

Par M. E.-O. LOVETT, & Princeton (New-Jersey).

Une des plus belles découvertes de la Géométrie moderne est la trans-
formation de contact, connue sous le nom de transformation de Lie,
qui établit une liaison entre les lignes droites et les sphéres, c’est-a-dire
entre les éléments les plus essentiels de espace ordinaire. Proposons-nous
de trouver toutes les transformations de contact de l'espace ordinaire qui
changent les lignes droites en des sphéres. Dans le cas de trois variables
x, ¥, z il y aura trois classes de transformations de contact, suivant qu'on
établit une, deux ou irois relations enlre z, ¥, 5, X, Y, Z. Nous sommes
donc conduits a déterminer les formes de une, deux et trois équations
directrices qui sont capables de représenter droite-en-sphére transfor-
mations de contact.

1. Supposons qu'on parte d’une seule relation entre z, 5 X,Y,Z:
(1) ) . - @(x,y, 5 X,Y,L)=o0.

La droite
(2) r=az-+0b, y:cz+aé
sera transformée dans la surface donnée par I'équation

(3) w(X,Y,Z, a,b,cd)=o,
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que l'on obtient en éliminant 5 au moyen des équations '

ob

TEZO-

(4) b{az+b,cs+d,35X,Y,7) = o,

Pour que la transformation soit univoque, il est clair que le degré de
la fonction @ par rapport & la variable z doit éire égal 4 deux au plus;
c¢’esl-a-dire que la fonction ® doit étre de la forme

(5) Wi+ Wy 2+ Wya2 - W, 5 - Wyzw + Weay +~ Wi+ Wey +~ Wz + Wp=o,
ou les W; sont des fonctions des variables X, Y, Z. Ainsi, en posant

‘ P =a®¥ + 2 Wy+ W3+ W, + a W+ ac W,
(6) { Q=2abW,+ ncd W, +dWy+ bW;+ (ad + be) W+ aWq -+ ¢ Ty Wy,
[ R= 620, 20, bd W bW, 4 d Wyt Wy,

la transformée de la droite {2) est la surface

Q:— 4PR =0

oua

W BN 4 (ad — be)WE + a?WE 4 c2WE 4 W,

— 4 [(ad — be)2 Wy + bWy — b(ad — be) Wy + a(ad— be)Wy— adWo a?
— Wy [y - d{ad — be)Ws— c(ad — be) W — ed W+ 2 Wy |
Wy (BA Wt bW, AWy W)

2 W, [ bd Wy + d(ad — be)Ws+ (ad — 2be)Wy— cd Wy dWy— Wy, ]
—a2Ws[b(ad — be) W+ ab Wi (2ad — be)Wy— Wi+ 2aW |
+oWela(ad — be)W;+ c(ad — be) W+ (ad + bc)Wy—oacW]

+ 2 Wy (acWy-+ aW¥y)

| 4 2eWy Wy = 0.

Pour que cette surface (7) soit une-quadrique pour toutes les valeurs
de a, b, ¢, d, il faut que les fonctions W; aient la forme

(8) V=X +m Y + ng 2+ g, I=1,2,...,10,
ou les {;, my, ny, p; sont des constanies.

Si I'on veut que cette quadrique soitune sphére pour toutes les valeurs
de a, b, ¢, d, il est nécessaire que les fonctions

W, Wy, W, Wy, Wy, Wy

se réduisent 4 des constantes absolues. Donc, en introduaisant les hypo-

théses suivantes

(9) W= Wy == Wy = Wy Wy= Wy =0,
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qui n'imposent aucune restriction, 'équation de la quadrique devient

(10) (ad — bW, Wy d2W, Wy + B2W, Wy + a W, Wy 2 Wy Uy g+ W3 Wy = 0.

Pour que cette surface soit une sphére il faut et il suffit qu’on ail les
relations suivantes :

(11) Slly=Slyly=SIlyl;= Sl lyp=Slyly= Sl
(12) hmpy—bmy=limy—Lmy=...=lLny—ln=... = myny-— mpn; = o.
Les équations (12) sont équivalentes aux relations
Lilsilaidpny=myime.mg.myg=nNq:nNg.R3IMN;
par conséquent on a
Py =W — py=aX+ Y+ vZ, Oi=V— ;= k; Py, i =2,3,10;
et, en vertu des équations (11),

l{g = /('3 = ]f-[g ==1,
c’est-a-dire

(13) U, =aX+ BY + yZ + i=1,2,3,10.
Ainsi, la forme de la fonction directrice devient
(14) = (aX+BY +vZ)(22+ 32+ 2+ 1) + 2+ e 2+ 82+ = o.

1l faudra adjoindre & ceite équation, pour déterminer X, Y, Z, P, Q, les
équalions suivantes : '

9 9P _ e 0
gz Poz =% G TtluGE =9
dP 0P 0P 0P
x*P@=> w§TUlz=9

donc on trouve la forme explicite de la droite-en-sphére transformation
de contact au moyen de la résolution par rapport aux X,Y,Z,P,Q du
systéme
(24 5p) (2 X +-BY + yZ) 4 i@+ g p = o,
(7 +49) (@X 4- BY -+ yL) + oy + pag = o,
(15) (222 + 38+ 1) (e X+ BY + vZ) + m @2+ o+ pas?+ py= o0,
TP +a =0, 1TQ+B8=0.

Mais il n’est pas possible de résoudre ce systéme par rapport aux X,Y,Z,
et ainsi, la fonction ® (14) n’est pas capable de définir une transfor-
mation de contact. On conclut de 14 qu'il n’y a point de transformations
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de contact univoques déterminées par une équation directrice, qui
changent les lignes droites en des sphéres.

On remarque, en passant, que toutes les o transformations de contact
définies par une seule équation de la forme

(16) pr(xy ¥, 5) X 4-pa(2, ¥, 5)Y - o3(@, ¥, 5) L —py(@, 3, 53) = 0

changent les lignes droites en des surfaces développables, et que les
seules transformations de contact définies par une équation qui trans-
forment les lignes droites en des lignes droites sont les o' transforma-
tions dualistiques déterminées par Péquation bilinéaire
(17) { (WX 4+ Y+~ Z+ )+ (X +maY +neZ 4+ pa) y
7 .
! o (LX +m Y+ + ) s+ LX = m Y-, L+ = o
Les transformations (16) sont équivalentes aux transformations ponc-
tuelles

(2,

(\'18) oy = prl{z, ¥, 5) pa (@, ¥, 5) pal®, », 2

)
= Ll Zy = -/,
PC*(-T:.;V:'Z), 7 P#{-”afss), ! ) 8)

'\<

-

suivies de la transformation par polaires réciproques par rapport & la
sphére '
' X2-Y2rZ241=0

déterminée par I’équation directrice
(19) Xoy+Yy1+ZLa+1=0.

Dans le cas des transformations (17), les transformations (18) sont des
transformations homographiques

_hrmyy+ns+ oy

(20) Xy=
L+ my ¥y + nus—+ 1,

2. Supposons maintenant qu'il exisle deux relations entre z, ¥, z,
X, Y, Z,
(2r1) by (z,y,5 X,Y,Z)=0, Py, y, 5, X, Y, L)=0.
L]
La transformation déterminée par ces deux équations directrices change
la ligne droite

(22) y+kzx+m=o, z+lz+n=o
en la surface donnée par Péquation

(23) wX,Y,Z, &, l,m,n)=o0
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que I'on obtient en éliminant z, ¥, z au moyen des quatre équations (21)
et (22). _

Pour que laligne droite soit transformée dans une surface unique il faut
que 'une des équations (21) soit linéaire par rapport aux variables z, ¥, 5;
pour que la transformée soit une quadrique il est nécessaire que l'autre
équation soit linéaire dans z, y, z, et que les deux équations soient linéaires
par rapport aux variables X, Y, Z. ‘

Considérons donc les oo?° transformations qui sont déterminées par
deux équations bilinéaires

(24)  ERAEY P Ik Gi=0,  Tery et 39+ §5= 0,

(25) gr=a X+ Y+l + di.
La transformée de la ligne droite {22) sera la surface du second degré
1kl

|
|m n

P2 ©3

| Qs D1

P2 P

1% P8

Qs O P2 @ Q3

P51

P e

Ps P8

— k —m —n -+

91 g 5 Qo

Cette quadrique peut se réduire & une sphére, pour toutes les valeurs
de &, [, m, n, dans les deux cas suivants :
1* Quand un déterminant quelconque de la matrice

; (41 da e o
(a7 | bi= o, —d;
7 Rl by b b7 s ' '
se réduit 4 la forme
(28) const, (X2+ Y?* + Z2),

et les fonctions ¢; correspondant aux fonctions {; restant dans la matrice
se réduisent & des constantes; ou : '

2° Quand tous les six déterminants de la matrice (27) sont de la
forme (28). '

Dans le premier cas, nous trouvons six familles de o2 transformations
définies par deux équations bilinéaires de la forme
wmi=(a X+ Y+ Z+d)o+diy+dsz+a,X+b,Y+e,Z+dy=o,

),C
(29) wo= (a5 X 4 by Y - cs L dy) o+ doy +doz+as X+ bsY - cs L+ dy =0,

ol les constantes sont assujetties aux conditions
aras— a,ay— b1by— b by = cic5— ci 05,
(3 ) &1bg+agb1'“d1,bﬁfa5b5:0,
O
- bycg+ bgey — bey— bye,= o,

Cy Qg+ Cg @y— € A5— ba @y = 0.
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En formant les équations

ow dwy dw dwy dw dw dw d
. — e A= e I Rl R et S e L Wey __
(31) { Oz A P( oz da) o dy  dy + 9 ( 03 at z) "

%._\-)\gﬂ ‘ P(dml )\dw2>—o r)(u1+)dtu2+Q<dm1 ‘ )\dmg> o
i 7o g - =0, - N —- = 0,

w; =0, Wy =0,

oX ox 9Z T OL oY aY 9z oz

nous vérifions facilement que les transformalions définies par les équa-
tions (29) et (30) sont des transformations de contact.
Les droites se transforment en des points, si

(32) dyidyidsidy=ds:dg:d:ds
et en des plans si

thyey=asibyicsag by ey,

Nous voyons ensuite que, en particularisant les constantes de la
maniére suivante

(34)

j ay=ag=b1=by=c,=¢cy=d|=dy=dsy=di=dg=o0
(‘ ;aﬁﬁclz-—cs,‘:d;‘::du::l, bg:*[}a: — I,

ay =
nous avons la correspondance célebre étudiée par Lie

(35) Zz+z+X+iY=o, (X—iY)z+y—Z=o.
Enfin les valeurs

a;:a{: ay=ag= Q7= b= by= b, = by= b
(36) = =ag=g=g=g=d=d=d=d=d=dy=0,

Qg =Qg—=— Qg =—Cyg=Cr=d =1, by=—bg=1
donnent la transformation de contact définie par les équations

Ly—(X+iY)z—r1=0,

(57.\!‘ xW(X._..iY)_y—Zz=O:

qui est équivalente & une transformation par polaires réciproques déter-
minée par I'équation directrice (g) suivie de la transformation de Lie (35).

Le deuxiéme cas, savoir quand tous les six déterminants de la ma-
trice (27) sont de la forme (28), bien que ses conditions soient plus
nombreuses, donne des familles plus remarquables et plus étendues de trans-
formations de contact. On signale deux familles de oo!? transformations.
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En effet, les équations

‘ aiag— apa; = bibg— br,bj: CiCg—CpCj,

(38) | agbg+agb;—apb_,— -aij:u,

(’),-cc,- -+ bgcz'—-[)PCj — bjCP =0,

Cj g —+ Cpli— Cplj— Cjlg==0,

qui sont nécessaires et suffisantes pour que le déterminant

$iba— Yoy
soit changé dans la forme (28), possédent les solutions symétriques

bi=a/=i,  bma =i, bpm—apV =T,  be=—ag/—T,

c; == a,, c; ==+ ag, Cs = ¢ ai, Co=1F a};

(39) g

ainsi on trouve que les deux systémes des deux équations bilinéaires

o, =a;X+ia,Y+ ¢;L+d; =oa,
(40) ,‘P! i J L+ a F=1,2,34,

—— ;. s ——
Q= c; X —ic;Y —a; L+ dji,= o,

¢, =a;X+ia;Y+ ¢;Z+d; =o, . v,
J=1,2,3,4,

)

¢jra=c; X —ic;Y +a;Z +dj.,=o,

définissent deax familles de'oo!® transformations qui changent les lignes
droites en des sphéres.
Maintenant on combine la transformation de Lie
(42) Zxy+5+X+1Y =o, (X—iY)zy+py—Z=o,
avec toutes les transformations du groupe projectif général
pa= o @ By 115+ 8y pay=o3® + B3 4 135+ 8,

(43) N 5
pr1= 2@ + oy + Y25 + p= a4 Puy + vz + 8

les co!® transformations de conlact résultantes sont droite-sphére trans-
formations déterminées par les deux équalions

(X+i Y+ Z+a)e+ (BhX+iBh Y+ BZ+Fa)y—+...=0,

LA
(44) (0, X — i)Y — a2+ ag)z + (B X — B Y — By Z + Ba)y +... = o,

qui sont de la forme (4o0). Donc, Ies transformations (40) sont équiva-
lentes aux produits des transformations du groupe projectif général par la
transformation de Lie.

On combine encore la transformation de Lie avec toutes les droite-droite

transformations définies par I’équation

45 X4+ Y L+ d)w .+ ay X B Y 4y, Z + 3= o;
P [ ! 't
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les '5 droite-sphére transformations de contact résultantes sont déter-
minées par les deux équations

6 (X —doy Y+ Z +a)x+ (B X—iB Y+~ BZ+B)y ... =0,

{6
(46) | (X i Y — oy Z +ag)z 4+ (B X+ 8, Y — B1Z = By)y +... = o,

de la forme (41). Donc les droite-sphére transformations (41) sont équi-
valentes aux transformations dualistiques suivies de la transformation
de Lie,

Donc en employant le théoréme de M..Darboux, que I'on exprime en
disant que la définition des systémes conjugués sur une surface est projec-
tive et dualistique, on voit que les oo'% droite-sphére transformations de

contact (40) et (41) changent les lignes asymptotiques en des lignes de
courbure.

3. Le cas de trois relations entre z 3, X, Y, 7 conduit aux trans-
1.V S By 1y K
formations ponctuelles; done, il n’y a pas de transformations de contact
déterminées par trois équations directrices qui changent les droites en
P q q 8 :
des spheéres.
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SUR' LES
CORPS REGULIERS ET SEMI-REGULIERS,

Par M. F.-J. VAES, 4 Rotterdam.

1. La Communicalion suivanie ne peut élre qu'unrésumé trés succinct
de quelques études sur les corps réguliers et semi-réguliers.

La seule propriété, qui sera mentionnée des corps réguliers, sera : que
ces corps peuvent étre tous inscrits dans un cube, et peuvent donc éire
obtenus facilement d’un seul morceau de bois ou de métal.

La propriété, que l'octaddre et le tétraddre peuvent étre placés dans un
cube, était bien connue. L'auteur démontra que le dodécatdre et l'ico-
saédre jouissent de la méme propriété.

Cette propriété méne a des conclusions remarquables concernant ces
deux corps et donne une extréme simplification dans les calculs que 'on
fait sur ces corps et sur les quatre corps réguliers étoilés (qui, a leur tour,
peuvent étre déduits du dodécaedre et de Picosaédre) : simplification qui
est d’ailleurs soutenue par une notation spéciale.

Des détails se trouvent dans une brochure de 'auteur : Het onderling
verband der regelmatige lichamen en twee der half-regelmatige
(c'est-d-dire Le rapport entre les corps réguliers et deux des corps
semi-réguliers, Leyde; 1899, chea Sythoff).

2. Considérons plus spécialement les corps semi-réguliers.

On verra dans ce quisuit que le dodécaédre et 'icosaddre, d’une part, et
le cube et I'octaédre, de 'autre, donnent naissance a une série de corps
semi-réguliers de la premiére ou de la seconde espéce.

La série déduite du dodécaédre et de l'icosaédre sera spécialement
examinée, puisque l'autre série, déduite du cube et de I'octatdre, peut
alors facilement étre construite par le lecteur qui s’y intéressera.

Les corps semi-réguliers ont été classifiés par Catalan (Mémoire sur la
théorie des polyedres, Journal de U Ecole Polytechnigue, t. XXIV,
p. 1-26; 1806o).
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Seulement, dans cette classification, on ne voit pas le rapport entre les
différents corps, et 'auteur s’est donc posé la question de dériver les corps
semi-réguliers I'un de 'autre ou des corps réguliers, et de trouver des
symboles simples pour chacun d’eux, qui immédiatement montreraient
leur rapport.

3. Si par les arétes d’an dodécaddre on fait passer des plans faisant
des angles égaux avec les faces adjacentes du corps, ces trente plans limi-
teront un corps, dont les faces sont des losanges (le triacontoédre de
Catalan).

En opérant de la méme maniére sur I'icosa¢dre, on obtient le méme
corps.

Les diagonales d'une des faces de ce corps sont donc des arétes d'un
dodécaédre et d'un icosaédre, placés de maniére que deux arétes s'inter-
sectent perpendiculairement en lear milieu (1).

4. Dans la position mentionnée du dodécatdre et de 'icosaédre, ces
corps ont un auatre corps en commun, limité par 12 penlagones et
20 triangles réguliers (le triacontadoédre & faces triangulaires et penta-
gonales de Catalan).

B. Sil'on agrandit le dodécaddre, de sorte que sa position ne change
pas et que son centre reste fixe, il tronquera l'icosaédre, et l'on peut
pousser I'agrandissement jusqu’a ce qu’on ait obtenu un corps & 12 penta-
gones et 20 hexagones réguliers (le triacontadoédre & faces pentago-
nales et hexagonales de Catalan).

6. Quand au lien du dodécaédre on fait grandir l'icosatdre, le dodé-
cagdre sera tronqué, et Pon peul obtenir un corps a 12 décagones et
20 triangles réguliers (le triacontadoédre & faces triangulaires et déca-
gonales de Catalan).

7. Voici donc déja quatre corps semi-réguliers; et il s’agit maintenant
de trouver des symboles simples pour les distinguer I'un de I'autre. Or,
nommant le dodécaddre simplement 12, et I'icosaédre 20, le corps, qui
leur est commun, signalé au n® 4, peut étre représenté par le symbole

(1) Puisque ces deux corps peuvent étre inscrits dans le méme cube, le triacon-
toédre peut étre taillé immédiatement dans un cube.
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12 20 . . .1 L
~r oules dénominateurs 2 indiquent que les arétes du dodécaédre et

celles de l'icosaédre s’intersectent en leur milieu.
. N ‘ ’ 12 20 \
Le triacontoédre, obtenu au n° 3, sera représenté par (7, E')’ ot les

crochets indiquent que ce corps enveloppe le dodécaédre et I'icosaddre,
placés dans la position mentionnée précédemment ou, plus simplement,
on peul représenter ce corps par le symbole 3o.

3 N . - 20 .
L'icosagdre tronqué (du n® 3) sera symbolisé par 12, =, puisque les
s |
aréles de l'icosaédre sont coupées au tiers de leur longueur.
. — . 12 .
Le dodécaédre tronqué (du n® 6) aura le symbole -~ 20, puisque
n

les arétes du dodécagdre sont coupées a  de leur longueur ; le nombre n
n'élant pas entier, mais pouvant étre calculé d’une maniére simple.

’ ’ Iz 20 I2 20 o
8. Les deux corps, représentés par S 5 et par (- — ) ou 3o,

A

donnent & leur tour naissance 2 d’autres corps semi-réguliers.
Considérant ces corps dans leur position de corps inscrits et circonscrits
au dodécaédre et a I'icosaédre (n° 4 et 3), on peut faire grandir le pre-
mier (sans en changer la position, ou la position de son centre), jusqu’a
ce que ses arétes intersectent celles de Pautre.
Dans cette position, les deux corps peuvent étre enveloppés par un
corps & 6o faces deltoides (le hexécontaédre a faces quadrangulaires de

12 20

3 B * B
Catalan), dont le symbole sera ::;0, )9_; » puisque les arétes du pre-
mier corps sont coupées en leur milieu et celles du second a % de leur lon-
gueur, le nombre n n’étant pas entier, mais pouvant étre calculé d'une
maniére simple.

Plus simplement, on pourrait prendre le symbole 6o.

9. E tre, le cor 2, 22) peut étre tronqué par le corps -2, 2%
. En outre, le corps (—> ) p qué p ps — -
de sorte que 'on obtient un corps semi-régulier qui peut avoir pour sym-
20 12 20 N . .
bole -3-,; — T‘ ot le dénominateur ' a une autre valeur que n dans le n°8.
n 2 2
. 12 20 . A .
Au contraire, le corps —» — ne peut pas directement étre tronque par
? 2" 2

Pautre.

10. Il est évident que 'on peut agir de la méme maniére avec le cube
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et 'octadédre (symboles 6 et 8), et I'on aura donc les corps suivants. Le
chiffre romain ajouté indique le numéro dans 'une des deux Tables de
Calalan, et le-1 ou 2 le numéro de la Table.

12

[ L -——3 20 I, 4
n
" 20 T
[ A, 12, 3 Y, 1
3. 2,2z X, 1
2 2
4 12 208 ou 3o X 2
PR 2, ) e
20
3o 3 ]
5 e s ou 6o XV, 2
n 2
3 ) «
6. 20, 1220 XV, 1
n’ a2
/R 958 I, 1
n
. 8
8. .. 6, = v, 1
¢ 6 8
9 i 3 s 1X, 1
6 8
| (O L (-3,—) ou riz IX, 2
2 2 ) .
12 6 8
LIV L 22 VII, 1
n’ a2 2
6 8
2, 2
2., ... ”-,E; 2 2) ou 24 VIT, 2
n 2

11. Mais le nombre des corps déduits du dodécaédre et de l'icosaédre
n’est pas épuis¢. Car plagant ces deux corps dans la position du n° 3 et du

n° 4 et pliant & I'intérieur les losanges du corps (17;, %?), qui les enve-

loppe, autour de leurs diagonales les plus courtes, on obtiendra un corps
limité par 6o triangles isoscéles. On peut plier jusqu’a ce que les angles
diédres des arétes nouvellement formées égalent ceux des autres aréles,
et 'on aura alors un corps semi-régulier de la 2° espéce. L'icosaddre
est devenu plus petit, et I'on peut nommer le corps obtenu symbolique-
ment (12, 200)
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12. Bien entendu, en pliant les losanges du corps (E, 23) autour de
2 2

leurs diagonales les plus longues, on peut obtenir un autre corps, symbo-
liguement représenté par (12¢, 20),

13. Le lecteur peut facilement vérifier Pexistence des corps suivants:

135 (12, 20¢) v, 2
I e i (129, 20) I, 2
5% e (6, 8v) v, 2
165 e (69, 8) I, 2
£ L (30; L;-; %0 v) XIV, 2
185, s (rlz;-(zaﬁv) XII, 2
2 2
10% el 3op; —, 22 XIV, 1
2 9 )
20" e rizv; §; 8 XIIL, 1
2 2
14. On peut ajouter a cette liste encore :
4
Y SO ;si,.a I, 1
22 e . (4, 4v) I, 2

le dernier étant formé, en pliant les faces-d’un cube, qui est un (

[SEF=N

IS,

Sa—
-

autour d’une de leurs diagonales).

15. Par les méthodes suivies dans ce qui précéde on n’a pas obtenu :

VI, 1 et 2, VII[, 1 et 2 de Catalan (prismes, pyramides doubles,
prismes tordés, pyramides pénétrantes); )

XI1 et2, XII1 et 2 (corps tordés et leurs conjugués, et qui ne sont
semi-réguliers que par hasard).

12, 20
16. Observant que le corps (?, 3—), ou 3o, enveloppe le 12 et le 20;
2 20 .

1 30 2

que le corps \ == -

» ou 6o, enveloppe le 3o et le i—:i. 2,:0, on peut
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imaginer un corps & 120 faces enveloppant le 6o, un corps & 240 faces
enveloppant celui & 120 faces, ete.

Les angles des arétes, qui concourent aux sommets communs & ces
corps el au dodécatdre et a I'icosaédre originaux peuvent immédiatement
étre calculés; de méme les angles diddres de ces arétes. Foir une Gonfé-
rence: Lichamen, afgeleid uit de regelmatige (c'est-a-dire, des corps
dérivés des corps réguliers) au 7° Congres national de Physique et
de Médecine, 1899 (Hollande). o

L’enveloppement de chaque corps par un autre peut étre continué jus-
qu'a U'infini. Il est facile de voir que le dernier corps sera une surface
courbe.

De méme, on peut continuer l'enveloppement du cube et de U'octaédre
par le r12, et du 712 par le corps a 24 faces, en formant nn corps de
48 faces, de g6 faces, etc., jusqu’a l'infini.

Le dernier corps de cetle série sera aussi une surface courbe.

.Le mode de formation des deux surfaces conduit & conclure : gu'elles
ne peuvent admettre d’équation analytigue.

17. La méthode précédente d’obtenir les corps semi-réguliers méne a
un grand nombre de propriéiés métriques et projectives.

[La notation appliquée dans la brochure mentionnée au n° 1 permet
de calculer trés facilement les éléments des corps. L’auteur espére pou-
voir publier les résultats ailleurs.

Deux propriétés seulement seront mentionnées ici :

1° Dans deux corps conjugués 'angle d’une aréte de 'un des corps avec
une diagonale principale qu’il rencontre égale I'angle diédre de I'autre
corps le long de l'aréte correspondante; ‘

2° Pour deux corps conjugués, 'angle d’une diagonale principale avec
une face, passant par 'une de ses extrémités, est le méme dans les deux
corps (pour des plans correspondants).
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APPLICATION OF SPACE-ANALYSIS

TO

CURVILINEAR COORDINATES,

By Pror. Arexanper MACFARLANE, Lehigh University,
South Bethlehem (Pennsylvania).

In several recent papers ('), I have investigated the vector expression
for Lame’s first differential parameter in the case of orthogonal systems
of curvilinear coordinates, and I have shewn how to deduce the expres-
sion for Lame’s second differential parameter by means of direct opera-
tions of the calculus.

The results indicate that the method is not confined to orthogonal
systems, but is applicable to what may be called conjugate systems.
I shall first indicate the results for the spherical system of coordinates,
then deduce the results for the complementary system of equilateral-
hyperboloidal coordinates, and finally show how the results are modified
for an ellipsoidal system of coordinates.

Let the spherical coordinates be denoted by », 0, © of which r denotes
the modulus, § the co-latitude, and ¢ the longitude. If ¢ denote the polar
axis, j and & the equatorial axes, then for any radius-vector R we have

R = r(cosf {+sin0 cosy j -+ sinB sing k).

The axis cosZ + sinfl cosg j 4-sinfi sing &k may be denoted by ;.
Since

P\ = rp,

| o dro dp
dR-A--pdi—}—lE}der‘%dnp.

(VY Vector differentiation (Bulletin of the Philosophical Society of Was-
hington, Vol. XIV, p. 73-92). — Differentiation in the Quaternion analysis
(Proceedings of the Royal Irish Academy, 3° series, Vol. VI, p. 19g-215).
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The general definition of the operator V for any function « of r, 0, © is

du _ du _. 0w
V—Tr\-r-‘ WW)_'— d—:?ch;

and as R itself 1s such a function,

 OR_ OR__ OR _
=pVr—+ rj—‘;‘?ﬂ-&-r gz Ve.
But VR = 3 absolutely;
therefore
1 I 1
Vr = E V6 = d_p Vo = r—{);.
"3 o

Hence for any function of r, §, o,

_ w1 du 1 du 1
Torp T 0 9 dp
"5 e

This operator applied to any function of r, 0§, » gives the complete
vector parameter.

When we pass to equilateral-hyperboloidal coordinates, r changes to
the hyperbolic modulus; itis no longer Vz? + 3% + z° but Jaei—y2— 52

modulus is no longer the simple length, but it still denotes what may he
called the hyperbolic length; it is the maltiplier which, applied to the
varying hyperbolic axis, gives the length. Also § now denotes the hyper-
bolic co-latitude ; ¢ remains unchanged in signification.

Let R denote the radius-vector as before; we now have

R=r)coshf :'—i—‘/l_ sin A6 (cosg j + sinw k)
— 1

The expression within the brackets may be denoted by p as before; it
means the radius-vector to the surface unity and is of varying length
according to its position; but its modulus is always one. The \/:_1 which
occurs in the expression has no directional, but an entirely scalar, signi-
fication. As before

oR N oR oR

dR:d—rdr : ﬁdﬂ—e—d—?dq.;
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and
du -, ou - du
V= E“VJ‘ -+ *d[jvof.‘-a%:‘ VCD,
du 1 duie 1 du 1
e R — —
drpo ' 00 dp  de dp
r -z r =
Poli] dy
where

p=coshli+ e sinhb (coswj +sing k)

— I

A
]
|

e I

dp I PR .
55 = ‘7—_— sinhf(— sing i+ cosg k)

-1

1 .
= sin 29 Co-

— 1

if oo be used to denote — sin 9 7+ cos p k.

. . 1 C
55 = sinkl ¢ \—/—— coshl (coso j 4 sing k)

. o7

It is to be noted that Vr is not now the rate of change of r per unit of
length along the normal; it is the rate of change of » in the direction of
the radius at the point; and 1 per p is the actual amount. Similarly V0 is
not normal to the surface § = constant; but has the direction of the con-

d9

. - . 1 . . . .
Jugate axis at the point; and ~ per 5 is the true amount in that direction.

But Ve remains normal to the surface © = constant, because the conju-
gate direction is identical with the normal. The vectors Vr, V8, Vo now
form a conjugate system, which is in general not orthogonal.

Return now to spherical coordinates, in order to consider the deriva-

tion of V2.

Ve dut | du 1 du 1 dui du i
O V=T o o o | ors
r—= I : r
d do i
J [du [>l
T ar\orp/o

\

0 die 1 e
(2) Ceb| g8 dp ) dp
( T I )
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L0 fduwry 1
(6) S d\orp) o
" o8
MU
) n( %)
do af
SR ()
(8) dg\drp/ Jdp
dp
LAY S '
(9) opl 90 do | oo
ab de

. Suppose that the operators are applied to a scalar function of r, 6, 0;
the only thing which remains to be determined before accomplishing the
operations is how to differentiate the reciprocal of an axis, such as e. In
the papers quoled I have shewn that an axis is differentiated in the same
manner as a sealar quantity, only the negalive sign is not introduced.

Hence
oy _u
1° term =G5 PE,
. _ 0%u i 4 du 1 1 9%
2 TO0 0N\t 902 (0p\? gt dp”
‘ ) : d_) db a9
a0 _ d?u 1 N ou ;_ 1 %5 1
3 = 'd?ﬁ ) ()9)2 d(? 72 ()9)9. dng ’). :
r de 09 do
40 _Pu 1 duw 1.
* ~ordb  dp b ,dp ’
" a6 F a6 *
5o _ 2u L du 1
.drd?r?p do 7‘2?{3
¢ P
- _Pw v dwidp 1
dhdr  dp ar p2dl  do
T " 50
” _ d?u 1 du. cosb 1
' = obdg Jo 0o risin? %
o dg 72 806 o, :ﬁ do rtsin?f % gg
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8° term a1 ,0u 1 do 1
~ dedr 0P " Or ret oy o’
& 7
9 _ Qu I _ du I dp
6908 op dp 0B 79p\? 0000 dp
db do 00 do

. . . 160u .
The space-coefficient for the terms involving Rl

1dpx  tdp 1,
e 90 dp " p? dg dp”
a9 %
. . 1 d .
that for the terms involving S gg7 1
I d%p 1 I 1 0% 1
dp Edﬁ?% T op + do\? dodh 5@’
(ﬁ) 6 0P ('dﬁ Jo

1 d“pi 1 cosh ¢
0o Ed—:‘a?dp 74?\0—-H__5ir179_ %’
(a@) do  op " fo 3

Introduce the principles of reduction,

6\ 2 2
pr=n1 (%%) =1 - (S-T'Z) = sin%0,

, o % dpdp _ dpdp do 9
Po0 =7 00°% dGog” dpe’  ap P T TP

which are simply the rules of quaternious generalized; the space-coeffi-
cients then become 2, cotl, and o respectively. By application of the
same rules, the square terms become

92 1 0% 1 ot
ort’ 2 902°  (rsin)? do?’
and the three pairs of product terms cancel. Hence

0? 1 02 [ 92 2 d coth o
o -

V=Gt aam T remoage T ror T i a6

Pass now to exspherical, that is equilateral-hyperboloidal coordinates.
The process of differentiation evidently remains the same as before : the
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question is how are the rules of reduction changed. Does o? remain equal
to 1? It does; it means not the square of the length, but the square

of the hyperbolic length. But (3—3)2 changes into — 1, for

f)g = sinh0i 4+ ,],_
ol Vv

— I

coshb (cos:faj+sincp k)

and therefore

(%)L: sin £26 — cos A%l = — 1.
do 2 . . . ‘ . 1 .

Also (d_) changes into — sin/20, for sin 0 changes into 7—= sin A%.
cc I

\/i
oo 00 92 in e . :
Because o 20 3 remain a conjugate, although not an orthogonal system ;

T

the other set of rules remain unchanged, viz

dp dg dp dp dp do dp dp

°98 T g6 P 60~ doadi’  dgP T

_;—x

Hence for exspherical coordinates

pof L 10t a0 eoshd o
dgr2 r2 002 (rsinh0)2 de2  ror sin 220 d0
Consider now the extension to ellipsoidal coordinates. The mode of
generalization will be seen by considering the simple case of the ellipsoid
of revolution. Consider a system of similar ellipsoids, in which the ratio
of the equatorial axis to the polar axis is denoted by A. For such a system
the axis is

p = cosl + AsinB(coseo j + sing k),

where § denotes the elliptic co-latitude, that is, the ratio of the area of
the segment to the area of the triangle formed by the semi-axes of the

ellipse.
And
dp . . .
%= sinf -+ A cos0 (cosg j + sing &),
dp 5 . .«
. géwksmﬁ(r——smrf_]rcosrgk).
As before -
. o 1
and
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but
9% _ A2 sin2f
L)‘F = sin
do do . .
As o, 5% and . still form a conjugate system, the other set of rules re-
o

main unchanged in form, that is

dp dp dp dp dp 0p dp dp

Pog T " e dpai’ dgf = F

Consequently, for such a system of coordinales

V- du1  duw 1 diw 1
"'—;"p_'_m_dg I;rri‘a
arr 95

and
o 4 ar i 02 2 0  cotl d
T o 08 T r2hisin®bder | rdr | Ahr® 90
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COUP D’EIL

SUR

LES COURBES ALGEBRIQUES
AU POINT DE VUE DE LA GONALITE,

Par Froerico AMODEOQO (Naples).

1. — Qu’est-ce gque la gonalité d’une courbe.

1. Suivant la maniére de voir de Riemann, la gonalité est le plus petit
nombre de points de la surface de Riemann de genre p, pour lesquels une
fonction rationnelle de la surface devient infinie du premier ordre
(OFuvres mathématiques, p. 115, 116). Cest cette méme idée qu’ont
exprimée avec plus de précision MM. Appell et Goursat en disant : « Pour
une courbe_donnée le nombre des poles d’une fonction rationnelle (tous
ces pbles élant supposés du premier ordre) ne peut pas descendre
au-dessous d'un certain minimum. Ce nombre minimum, qui se conserve
évidemment dans toute transformation birationnelle, parait devoir jouer
un réle important dans la théorie des courbes algébriques. » (Théorie
des fonctions algébriques et de leurs intégrales, p. 385, 386.)

2. Selon les concepts de la Géoméirie sur une courbe algébrique,
Iordre des séries linéaires complétes ou partielles (Vollschaar ou Teil-
schaar) simplement infinies, coupées sur la courbe par des faisceaux de
variétés, et, par suite, par des faisceaux de courbes adjointes, ne peut
descendre au-dessous d’un certain minimum. Cet ordre minimum des
séries linéairesco!, qui existent sur une courbe G, de ’ordre m, du genre p,
indique la gonalité de la courbe. Nous représentons par £ cette gonalité;
c’est un nombre qui peut varier de 1 & w. Les courbeg de gonalité 1 sont
les courbes unicursales ou rationnelles ; les courbes de gonalité 2 sont les
courbes hyperelliptiques, y compris les courbes elliptiques.
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2. —~ Méthodes et nomenclature pour I’étude de la gonalité.

3. Au point de vue analytique, la recherche de la gonalité d’une courbe
se réduit & la recherche des fonctions spéciales des surfaces de Riemann,
pourvu qu’on fasse abstraction des surfaces de genre zéro et des surfaces
elliptiques. A ce propos, M. Klein dit : « L’exposition etla recherche des
fonctions spéciales appartenant & une surface F,, est une des parties les
plus intéressantes, mais aussi des plus difficiles, de la Théorie des surfaces
de Riemann; et, jusqu’a présent, on n’a pu s’approcher, en aucune fagon,
d'une résolution concluante (1). » (Klein-Fricke, Elliptischen Modul-
Junctionen, Bd 1, p. 555).

(’est pourquoi il convenait d’aborder la résolution du probléme par la
méthode algébrico-géométrique; mais, par ce moyen aussi, la recherche
présente de grandes difficultés; car, lorsqu’on passe des courbes hyper-
elliptiques aux courbes de gonalité plus élevée, les théorémes trouvés ont
été toujours regardés comme douteux, parce qu’ils manquent d'une com-
plete généralité en ce qui concerne le genre.

4. Nous avons tenté cette voie, et nous sommes parvenu & y faire
quelques pas, et 4 nous débarrasser des grandes difficultés que le sujet
présentait, et cela tout simplement en pensant, en opposition avec ce que
MM. Brill et Nother avaient affirmé dans leur Mémoire classique, fonda-
mental, sur la théorie de la Géométrie sur une courbe algébrique (Math.
Ann., VII), qu'il devait y avoir une imporlance capitale dans I'étude
directe des courbes adjointes a la courbe C7 d'un ordre < m — 3, et
surtout des courbes adjointes ayant le plus petit ordre compatible avec
Pordre et le genre de la courbe donnée. Ce sont ces courbes que nous
avons appelées courbes adjointes minimes. Par intuition, nous nous
convainquimes que ces courbes devaient jouer, pour les courbes de gona-
lité > 2, le méme role que les courbes adjointes de 'ordre m — 3 sur les
courbes hyperelliptiques; et nous ne nous trompions pas, parce que toutes
nos recherches ont confirmé et démontré ce fait essentiel de la théorie.
Cette méthode de recherche nous a obligé & adopter une nomenclature
plus minutieuse que celle qu"on employait auparavant; ¢’est pourquoinous

(1) Die Aufstellung und Untersuchung der zu einer Fliche F,, gehorenden Spe-
cialfunctionen gehort zu den interessantesten, aber auch schwierigsten Theilen der
Riemann’schen Theorie und ist bislang keineswegs einer ahgeschlossenen Losung
zuginglich -gewesen. .
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avons réservé le nom de séries spéciales aux seules séries linéaires coupées
par les courbes adjointes de l'ordre m — 3 et non par des courbes
adjoinles_ d’un ordre plus petit; et nous avons appelé séries spécia-
lisées une fois celles qui sont coupées par des courbes adjointes de
Pordre m — 4, et non par des courbes ad‘jointcs d'un ordre plus pctit;_
séries spécialisées deux fois celles qui sont coupées par des courbes
adjointes de Uordre m — 5, etc. En outre, nous avons appelé :

¢ série canonique celle qui est coupée par toutes les courbes adjointes deTordre m — 3,
] id. m—4,

(@4 1)me ‘ id. (m—3—a).

5. La plus grande difficulté consistait dans la détermination de la
dimension effective des séries canoniques qui viennent aprés la premiére ;
et cette difficulté tenait a une autre qui, attaquée par M. Kiipper, avait
é1é jugée par celui-ci (Bibl. 1) bien difficile & surmonter. Voici de quoi
ils’agit. Etant donnée une courbe C™ de l'ordre m, une courbe adjointe
de Vordre m—3 —a doit avoir en tous poinis s~#P% de C™, un
point (s — 1)~“Pl, et, par suite, elle doit remplir -‘_—‘!-ES(S*I) conditions
linéaires, qui cependant peuvent ne pas étre toutes linéairement indépen-
dantes pour les courbes d’ordre m — 3 — @, si « > 0. Si 'on suppose
que py de ces condilions dépendent linéairement des autres, on dit que g,
estla surabondance du systéme des courbes adjointes de l'ordre m — 3 — a.
La difficulté consistait dans la recherche d’une limite supérieure de p,.
Une autre difficulté venait de la nécessité d’éclaircir, en quelque sorte, le
role et-de connaitre le nombre des points fixes que peuvent avoir sur C7,
en dehors des points multiples, les systémes de courbes adjointes d’un
ordre < m — 3; poinlts fixes qui manquent compl(‘:tement, comme on sait,
sur les courbes adjointes d'un ordre Z m — 3.

3. — Résultats génériques.

6. Nous distinguerons les résultats de nos recherches en deux caté-
gories, & savoir résultats génériques, et résultats relatifs & une gonalité
déterminée. .

Quant aux résultats génériques,le premier que nous sommes parvenu
établir, en considérant la (o 1)*¢ série canonique coupée par les
courbes adjointes de 'ordre m — 3 — o, a é1é une limite supérieure de gq,
résultat dont on a douté d’abord, mais qu’on a fini par admettre. Nous
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avons trouvé (Bibl., 4) que

(1) pasta(m—3 —a).

7. Un autre résultat est la forme que prend le théoréme de Riemann et
Roch étendu aux courbes adjointes de 'ordre 2 — 3 — a. Lie voici(Bibl.5):
St par un groupe G, d'une courbe Cz’passem owo’e courbes adjointes
de lordre m —3 —a, le groupe appartient o une série linéaire

o ) . i ) e
compléte g, dont la dimension ry ne peut étre inférieure &

Ry rg—p -1+ ta(a+3) + o4
de sorte gu’on dott avolir
(2) raZ(ng—+re) — (p—1) -+ ta(a+3) + py.

On peut énoncer ce théoréme comme il suit :
‘ . P . . N -4 .
La dimension de la série linéaire compléte g, résiduelle de la
-] .
(e \ (- . i ; . ,
série gie par rapport & la série canonique g\ coupée par les courbes
adjointes de ’ordre m — 3 — a, est

res(p—1)— (ng—ryg) —fa(a-+3) — Pa-

Or si nous faisons 'interprétation analytique de ce théoréme, en remar-
quant qu’un polynome adjoint d’'ordre m — 3 — « est unefonction spéciale
de la surface de Riemann du genre p, et que le nombre r; représente le
nombre des paramétres non homogénes qui entrent linéairement dans la
fonction dont il's’agit, qui admet comme poéles du premier ordre les n,
points, nous parvenons au théoréme suivant : Etant donnés n points,
tels qu'ils appartiennent & ©~=1r'--1 courbes adjointes de ’ordre
m — 3 — a, la fonction algébrique la plus générale, qui admet pour
péles ces points ou quelques-uns d’entre eux, renfermera linéairement
aw moins '

1

n-4+T—p—4I1-4ga(a-+3) -+ pg

constantes arbitraires homogénes.

8. Unautre résultat; d’abord cru douteux, ensuite reconnu exact, est
celui qui donne le plus pelit genre des courbes de I'ordre m, douées de
courbes adjointes de 'ordre m — 3 — . Ce minimum est

(3 p=tam—+1.

9. Un résultat, dont Pexactitude n’a été mise en lumiére qu’a la suile
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d'une polémique avec MM. Bertini et Burkhardt, est Pextension dua
théoréme de réciprocité de Néther aux courbes adjointes de I'ordre
m — 3 —o. ll a é1é reconnu que :

Les ordres et les dimensions de deux séries, résiduellesentre elles par
rapport & la série canonique gie, coupée par les courbes adjointes
de Uordre m — 3 — a, sont lides par les relations

(4) na+ na=Nay [2(ro—ra) —(ra—na)]S2[30(m—3 —a)—pa].

10. En outre, nous avons trouvé que la condition nécessaire et suffisante
pour I'existence des courbes adjointes Cm37% est

p2yam -1+ (3a— pa),

ol 8, représente la plus haute valeur donnée par la limitation (1) que p,
puisse atteindre, pourva que’on admette aussi le cas limite, 4 savoir que,
dans une courbe sans points multiples, tout point puisse étre considéré
comme une courbe adjointe de I'ordre zéro; et cela a sa raison d’étre

(Bibl., 12).

11. Enfin nous avons trouvé que la formule connue du plus haut genre
d'une courbe G dans un espace 4 d dimensions prend les formes suivantes,
selon que l'ordre m est congrud 1,a20u0,adoud—2,44oud— 3,

par rapport au module & —1:

(m—1)(m—d) (m—2)(m—d—1) (m—.’;d)(mﬁf—l{_[_])

2(d —1) ’ 2(d —1) " 2(d—1)

(rn—a'H'Ij‘1

o . _{m—1(m—d) (m—a){m—d—1) 2
peur 4 impair. p = - 2 d—1) , d—1) s eaey O

4. — Résultats relatifs aux courbes de gonalité donnée.

12. Afin d’exposer avec clarté les propriétés des courbes algébriques
qui ont rapport & une gonalité donnée, nous signalerons d’abord les pro-
priélés communes 4 toules les courbes de gonalité R, et nous eXPOoserons
ensuite les propriétés des courbes ayant méme gonalilé, mais remplissant,
en outre, quelque autre condition. 1l faut, avant tout, remarquer que, sur
les surfaces de Riemann, 4 modules généraux et de gonalité £, Riemann
méme a trouvé que : Lorsque les valeurs de ramification de la surface
ne satisfont pas a des équations de condition, il faut gque l'on ait
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(CE uores mathém., p. 116)
kz %p —+1.

A notre tour nous avons trouvé (Bibl., 6) qu’on doit avoir aussi
k<3(p+3),

d’ou il suit que : Les surfaces de Riemann, a modules générauz, sur
lesquelles les fonctions rationnelles admettent k comme minimum des
poles du premier ordre, sont celles des genres 2k —3, ok — 2. Ce
théoréme peut étre traduit et complété par le suivant :

Parmi toutes les courbes de gonalité donnée k, il W'y a que les
courbes des genres 2k — 3, 2k — 2, qui puissent étre ¢ modules géné-
rauz; et, parmi ces derniéres, celles dont le genre est 2k — 3 admet-
tent une simple infinité de gi, tandis que les autres en ont seule-
1
ment -kl(k%[)!--

Pour tous les autres genres les courbes admettent des modules particu-
liers; mais cela n'empéche pas que les courbes de gonalité &, des genres
2k — 3 et 2k — 2, puissent avoir des modules particuliers. 11 a été reconnu
(Bibl., 19) que cela n’arrive pas pour les courbes hypefclliptiques des
genres 1 et 2, ni pour les courbes trigonales des genres 3 et 4; mais cela
commence & étre vrai pour les courbes tétragonales. On trouve en effet
parmi ces courbes la Cf du septiéme ordre, de genre 6, qui est & modules
particuliers et admet une simple infinité de g} si elle est douée de trois
points triples; mais, si elle a deux points triples et trois points doubles
arbitraires, elle est & modules généraux, et n’admet que cinq g!. La pre-
miére de ces courbes est une transformée quadratique de la courbe du
cin-quiérnc ordre sans points doubles; I'autre est transformée quadratique

de la C¢ du sixiéme ordre avec quatre points doubles.

13. Voici les autres résultats, ayant rapport aux propriétés génériques
des courbes algébriques de gonalité donnée £ :

1° 8¢ une courbe k-gonale CJ' admet au moins k —a courbes
adjointes de l'ordre m —3 —a, linéairement indépendantes, les
courbes Cm—3~% qui passent par k — 1 — « points d’un groupe d’une
g, passent par tous les autres points du groupe; elles coupent une
RYutari—k desorte que les courbesadjointes Cm=3~% qui passent par
un groupe de cette série, rencontrent la gi (Bibl.,8 et 15). En particu-
ler : Tout groupe de la série gi équivaut & k — 2 conditions pour
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toute G~ % adjointe, @ k—3 conditions pour toute C™~3 adjointe, ...,

& une sewle condition pour toute courbe adjointede Uordre m — k —1.
2° Les courbes k-gonales de Uordre m ne peuvent avoir de courbe

adjointe d’un ordre inférieur & m — k — 1. On en déduit que :

a. Le plus haut genre que puissent atteindre les courbes k-gonales
de l'ordre m est

(6) _ p:(i{—l)ni—é(/r—r)(/c—‘_—z).

‘0. Si le nombre des points doubles d’une courbe plane simple, de
Uordre m, est moindre que é (m—k)(m—Fk—1), la gonalité de la
courbe surpasse k.

3° Sur les courbes k-gonales singuliéres dans leur. genre. il ne peut
exister de séries irrationnelles, involutoires, simplement infinies, de
p—{k—1)*

k :

4° Les courbes k-gonales, dont le genre surpasse (k—1)?, doivent

nécessairement avolr une sewle gi. (Bibl., 3 et 135).
5° Les courbes k-gonales & modules particuliers, dont le genre sur-
passe 2k — 2, mais non (k-— 1)*, peuvent aussi avoir une seule gi.

Vordre k et de genre = <

5. — Propriétés des courbes i-gonales douées de courbes adjointes Cm—k—1,

14. En nous bornant, pourle moment, 4 'examen des courbes k-ganales,
douées de courbes adjointes du plus petit ordre compatible avec la gona-
lité, nous trouvons en premier liea que ces courbes ont un caractére fon-
damental trés remarquable, qui est la source d’une foule de propriétés
simples et intéressantes. Le caractére donl il s’agit consiste en ce que
tout groupe de chaque g}, existant sur la courbe, a ses points en ligne
droite (Bibl., 6). Comme on a vu plus haut, chacun de ces groupes équi-
vaut & une seule condition pour toute courbe adjointe C7~4—1, d’on il
suit que : s’tly a une infinité de ces courbes adjointes G~k =1, toute g}
est coupée par un faisceau de courbes Cm—r—1,

Si, au contraire, il n’y a qu'une seule courbe adjointe Cm=%=1, Loute
g} qui existe sur la courbe donnée est coupée par un faisceau de courbes
adjointes de Pordre m — k.

18. 1° Le genre le plus bas que puisse atteindre une courbe
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k-gonale, douée de courbes adjointes minimes, ést
= 2 (k—2)m +1
(7) . p=_(k 1

20 Les courbes k-gonales, dont le genre satisfait aux limitations

suivantes :
(8) l(k—z)m-kl-%(akfg—- Picf‘z)gpé(k#l)m_%(/"“‘[) (k+2)
2 ),

ont certainement en lighe droite les points de tout groupe de
chagque gi.

16. L’enveloppe des droites qui coupent une gi sur la courbe
k-gonales Cyy est de la classe (Bibl., T).

ol § représente I'excés du genre maximum des courbes k-gonales sur le
genre p de la courbe donnée, et £ est le nombre des couples de points
communs & g} el & toule g, coupée sur la courbe par des faisceaux de
droites, ¢’est-a-dire le nombre des couples de points des groupes de g!'.
qui tombent aux points multiples de G},
situés sur des branches distinctes. On en déduit que :

Le nombre § est toujours égal a £, augmenté d’un multiple de

>k (k —1), Cesta-dire (Bibl.,6 et 19).

et qui proviennent de points

1 - 1
\ N o — ==k L — N — 1),
(10) =2 zk(/ I)t“zl (m—4 2

6. — Courbes k-gonales sans points fixes pour le C»—k—1,

17. Aprés avoir établi ces propriétés communes & toutes les courbes
k-gonales doudes de courbes adjointes minimes, il ne semblait pas facile
d'aller en avant; et, pour séparer les difficultés qui se présentaient, nous
etimes d’abord lidée de comsidérer, parmi ces courbes, seulement les
courbes de gonalité &, qui n’ont pas de points fixes dans la (£ — 1)ime série
canonique, coupée par les courbes adjointes G~ %=1 et pour lesquelles &
aussi est égal & zéro. Voici les propriétés que nous avons pu découvrir :

1° La série canonique coupée sur ces courbes par les courbes
adjointes Cm=k=1, lorsque la dimension du systéme de ces courbes est
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> 1, est une série gy toujours composée moyennant la série gi, R étant
la dimension du systéme des courbes adjointes de Uordre m — k —1;
de sorte que la (4 — 1)*m° série canonique se comporte pour ces courbes
comme la série canonique, coupée par les courbes adjointes Cm—3,
(Bibl., 6), se comporte pour les courbes hyperelliptiques.

2® Toutes les courbes adjointes G™~ %=1 qui passent par les groupes
d’une gj, coupées par des droites, qui contiennent un point du plan,
passent aussi par ce point (Bibl., 9 et 13).

18. Afin de pouvoir faire une étude & peu prés compléte de celte caté-
gorie de courbes, nous avons trouvé utile de la distribuer en familles, en
adoptant comme caractére différentiel un caractére projectif que mnous
avons appelé Uespéce de la courbe. Le nombre qui indique l'espéce de la
courbe est égal a la classe de I'enveloppe des droites qui coupent sur la
courbe toute g,. Cetle division en familles a été pour nous d’une grande
utilité comme moyen de recherche; mais elle disparailra peut-étre
lorsqu'on parviendra a retrouver d’une maniére directe les résultats obte-
nus. Elle nous a semblé surtout utile pour chercher et étudier des
courbes d’un genre et d’une gonalité donnés, douées de seuls points

doubles.

19. En nous bornant aux courbes de premiére el deuxiéme espéces, nous
avons pu faire connaitre leur construction effective au moyen de faisceaux
de courbes (Bibi., 9); nous avons signalé l'existence d’une infinité de
réseaux et de systémes triples, quadruples, ... de courbes de I'ordre m
sans points doubles, qui ont des réseaux & intersections variables, formds
de groupes de m — 1 points qui sont en ligne droite (B7bL., 11); el nous
avons pu-établir que :

1° Dans les courbes k-gonales de premiére espéce, les valeurs de p,
Piy «+vs Ph_2 SORL toules égales a zéro. _

2° Dans les courbes de seconde espéce, qui ont une seule courbe
adjointe de 'ordre m—k —1, c’est-a-dire dans les courbes C¥_,,,
on a

po= 0, op=1, P2 =3, ecrru...s

(11) [ e Pl = (](:3)9 Pr—i= (k:?‘)l P’f—zf(k:1>.

3° Dans les courbes k-gonales de seconde espéce, la séric coupée
8 ; P
par toutes les coniques du plan est contenue dans une série {inéaire

21
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compléte gy ; la série coupée par toutes les cubiques du plan est con-
tenue dans une g’ {inéaire compléte; eic.

20. Poar les courbes de gonalité % et d’espéce s> 1 en général, les résul-
tats les plus essentiels serapportent & la détermination précise des dimen-
sions de quelques-unes des séries complétes, coupée sur ces courbes par
les courbes adjointes et par des courbes non adjointes. Parmi ces résullats
on a jugé trés difficile, et important, celui qui concerne la dimension de
la série linéaire compléte, qui contient la série linéaire coupée sur les
courbes par les droites du plan. Voici les théorémes (Bibl., 15) :

1° La dimension de la série linéaire compléle, qui contient la série
coupée par les droites du plan, est égale & Uespéce de la courbe
augmentée de Uunité.

2° La surabondance g, du systéme des courbes adjointes de Uordre
m— 4 ests —1.

3° La surabondance pr_, du systéme des courbes adjointes de

I -

Uordre m — kest - (s —1) (k—2) (k—3).

4° La surabondance py_, du systéme des courbes adjointes de

1 \

Uordre m -k —1 est (s — 1) (k—1) (k—2).

5° La dimension de la (k — 2)¥™ série canonique, coupéé par les
courbes adjointes de ordre m — k, est oaR s 1, d'ott il suit que la
série en question est gl i n__u-

21. Du premier des théorémes qui précédent on déduit (Bibl., 17):

Toutes les courbes k-gonales de siéme espéce sont des projections de
courbes du méme ordre, mais normales pour Uespace de dimension
s—+1; et ces courbes normales appartiennent & des surfaces réglées
rationnelies de Uordre s, dont chague génératrice les rencontre k fois.

7. — Courbes k-gonales avec points fixes pour les Cm—¢-1,

22. Il nous reste a dire quelques mots sur les courbes algébriques
k-gonales, qui ont des courbes adjointes minimes de l'ordre m — & — 1,
el qui présentent en outre un certain nombre ¢ de points fixes pour ces
courbes adjointes, en dehors des points multiples, ou bien qui ont § 3£ o.
L’étude de ce sujet concerne aussi, pour § = o, ¢== o, toutes les courbes
considérées dans le paragraphe précédent, de sorte qu'on peut dire que
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nous allons maintenant considérer toutes les courbes k-gonales, douées de
courbes adjointes Cm~% =%, Le genre de ces courbes est donné par la
formule

(12) p=(k—1)m— = (k—1) (lc—e—z)—%(k—ur)irt—:f
= i(kg]) (am — ks —2) — &,

et, dans ce cas, U'enveloppe des droites auxquelles appartiennent les
groupes d’une g; est de la classe

§=1-+1.

Nous conserverons pour ces courbes la division en espéces; mais il ne
faudra pas perdre de vue que, parmi les courbes de 5™ espéce, on trouve
maintenant, non seulement les courbes déja considérées (7=§), mais encore
toutes les autres courbes, pour lesquelles les nombres s et £ ne sont pas
tous les deux nuls.

23. Le premier théoréme qu’il convient de signaler est le suivant :
I q 8

Toute courbe k-gonale, dont U'enveloppe de g} est de la classe s,
peut éire transformée birationnellement en une courbe k-gonale du
méme ordre, douée d’un point (m - k)*Pi, de s — 1 points kurles, et
d’autres points multiples, de multiplicité inférieure a k, équivalents
a & points doubles.

Cette courbe peut ausst se transformer birationnellement en une
autre courbe k-gonale de premiére espéce d’un ordre inféricur m'
douée d’un point (m' — k)*r et d’autres points multiples, de multi-
plicité inférieure a k.

Gréce 4 ce théoréme, les propriétés invariantives des courbes A-gonales
peuvenl étre obtenues par la considération des seules courbes k-gonales
de premiére espéce, douées d'un point (m — k)"P¢ et d’autres points
multiples, de multiplicité inférieure & £. :

24. Voici quels sont les caractéres de ces courbes : Ona 0 =E&; le
genre et I'ordre sont

p:%(k—l)(znl-ﬁ/{—z)fﬁ, mzk—o—l—e—?}?;

le nombre des points fixes est

o= (k—2)0 —kpp—s;
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la dimension R et 'ordre N de la (4 — 1)¥™ série canonique sont
R=m—k—1—(0—pp_y), N=kiR+o.
Le nombre des points doubles arbitraires est 0 — g;_,, et il y a, entre
0 et pg_2, la relation suivante '

pr2S E20,

qui nous a été communiquée par M. Kiipper.

23. En particulier, pour les courbes hyperelliptiques, on trouve (en
faisant A =2) o =-— kp,; mais & ne peut étre négalif, donc ¢ = o, ce
qui démontre (pour la premic¢re {ois, d’une maniére directe) qu’il ne peut
y avoir de points fixes dans la série canonique sur les courbes hyperellip-
tiques.

26. Les caractéres des courbes, dont il a été question au n° 24, peuvent
étre utilement exprimés en fonction de la dimension R du systéme des
courbes adjointes minimes

1 .
p= (k—1) (2R 4 &)+ (A —2)0 — (kA — 1 pr—n,
m=R+k+1+(0—pr—2)

et les courbes ont un point (m — k)°P, et d’autres points multiples de
multiplicité inférieure a &, équivalents & § points doubles. :

Les courbes adjointes minimes se réduisent au systéme de

R~ (0— pr—a)

droites dont § — ps_, sont fixes et déterminent les s points fixes de la
courbe.

27. Les courbes pour lesquelles ona gx_»== 0 ont une importance par-
ticuliére, parce qu’elles comprennent les courbes trigonales de premiére
espéce, :

Pour de telles courbes on a le théoréme que voici :

1° Les courbes G k-gonales de premiére espéce, pour lesquelles on a
0k.2==0, n'admettent que des points doubles, et un seul point
(m — k)rprie qui n’est pas en ligne droite avec deux de ces points.

2® La série coupée sur ces courbes par les droites du plan est com-
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pléte, d’ot il suit que les courbes en question sont des courbes normales
pour le plan.

En se bornant au cas particulier &/ = 3, on retrouve le théoréme de
Bobek, ¢ =1, et 'on arrive & établir la représentation normale de toutes
les courbes trigonales, résultat que nous avons eu 'honneur de communi-
quer & I’Académie des Sciences de Paris, et qu'on peut résumer dans le
théoréme suivant :

3° Toute courbe trigonale (par conséquent de genre p2 3) peut étre

représentée au moyen d’une courbe normale du plan, de Uordre {—}4— 3

— 1 . . . .
ou? =" 43, selon que p est pair ou impair. La courbe normale doit
2
. . p\uple . R
avolr un point (; et un seul point double dans le premier cas, et

. . . — 1\ uple
ne doit avoir, dans [’autre cas, qu’un point (3—;—) .
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ORTHOGONAL TRANSFORMATIONS

IN ELLIPTIC, OR IN HYPERBOLIC SPACE,

By Irvine STRINGHAM, Ph. D.,

PROFESSOR IN THE UNIVERSITY OF CALIFORNIA.

1. Let Cayley’s well known matric of the hexaparametric orthogonal
transformation be written in the form (')

3K, —83 —[aoboed] A+ ag + fo 80 Bo—+ by 500, Co ~- ¢o+ £y B4
Ay—as—f19 1K —07 —[a g hdl Hy— hy— ey 0y Gy—+ go+ 5y 9y
By— by— 208, Hy -+ hg+ ¢ @ 1Ky —00—[bshy fy]  Fo—fo— a8,
Co— co— ho 8y Go— go— 606y Fo—+ fo+ @;8, 1K, —03 —[eofog]

v 2 a - . - -
the factor (%) being prefixed hereto in order to indicate that each ele-
(]

ment of the matrix is to be multiplied by K_z, and theletters K, @, [ ],
0

(1) Crewie, Bd XXXII (1846), p. 119-123. Of other references I cite the fol-
lowing as of special utility : Stupy, Ueber die Bewegungen des Raumes, in Leipz.
Berichte, p. 341-354, 1890; Hausnorrr, dnalytische Beitrdge zur Nicht-Eukli-
dischen Geometrie, Leipz. Berichte, p. 161-214, 1899; KLEIN, Vorlesungen iber
Nicht-Euklidischen Geometrie, 11, Gottingen, 1893; GeruicH, Die Meirik in
projektivischen Koordinaten, Inaug. Dissertation, Ziirich, 18g9g; Kiiuing, Die
Nicht-Euklidischen Raumformen, Leipzig, 1885; LINDEMANN, Ueber unendlich
kleine Bewegungen und iiber Kraftsysieme bet allgem. proj. Massbestim-
mung (Math. Ann., Bd VII, 1874, p. 56-143); CAvLEY, On the Rotation of @
Solid Body round a Fized Point (Camb. and Dublin Math. Journal, Yol. I,
1846, p. 167-173, 264-274); RoboricuEs, Des lois géométriques qui régissent les
déplacements d’un systéme solide dans Uespace, etc, (Journal de Liouville, 1.V,
1840, p. 380-440).
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Ay, By, Cy, Fo, Gy, H, being used for brevity to represent the following
functions of the parameters :

Ko=1+af+ &) + ¢} +f} + g3 + 1§ + 03,
8= ao fo+ bogo-+ ¢y,
[@oboco]= a} + b} -+ cf, [avgoho] = a} + g3 + A3,
[bohofol= b} + A%+ Fi, ...,

Ag=boh¢— cy 50, By = eofo— ayhq, Co=aggo— bo fo,

Fo= gohg— b eq, GU:hO,fn“Cnan; Ho= fogo— agb,.

2. Let it be assumed that this matrix, which I denote by M,, is com-
posite, and let it be proposed to determine two other matrices M, M/,

such that
MM' = M,.

- For this purpose assume that M has the form

II_D[abc] 2A-J‘—-:zu 2B__+_b E)(_)_w'ﬁ_c[
K K K K !
|
A—a [agh] H-—7 G+
. } 7K T?TK K 2= |
-l B¢ H+h _[bhf] F—f |°
| 'K K K T
| c—e G—g Ff [ofs]
TR 7K Kk TR

whereby the condition
0 =af+ bg'+ch:0
is satisfied, and
K=r1+a+ b2+ e+ f2 4 g24- A2,
[abe] = a?+ b2+ ct.
A=bh—cg, B=c¢f—ah, C=ag—>bf,
F = gh— be, G=hf— ca, O = fg—ab.
Tlie transformation defined by this matrix has five independent para-
meters, while M,y has six. M’ must therefore introduce a sixth parameter

not contained in M. In order that this state of things may be exactly rea-
lized, that is, in order that the equation MM'= M, may be identically
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true, it suffices to give to M’ the form

[ L&A A'—f B—g il
TR TR TR TR
A g NUZA H+ ¢ G—¥
M — —rtx o T TR L
M= _ 13,_._[{", B H — ¢ q[cfarg F'+a
K’ 7K I K
G4 G'+ & F'—a L O]
X TR g TR

IN ELLIPTIC.

whose six parameters are connecled with those of M by the relations

a b ¢’

T =7 =

g n
a ra -

r being arbitrary. Here also

and the meanings of K',

O =af +bg+ch=ri8=o,

[1, A", B, U, etc., are

K =14 at - b2 ot e g B

AN=bl—cg,
— &'

F=gW

Observe that M’ may be derived from M by changing a, b, ¢, f, g, h
, D'y ¢, respectively.

cinto f, &', A, o

Lf' &' W= f"+ g+ h" ,
B=c¢f'—alk, C=a'g'—¥bf,
Ca‘, G’: hfffi C'a’, Hr:flgﬂ_ &!bll

329

H

3. Let the product MM’ be now formed by the ordinary rule for the

multiplication of matrices, the combinations being :

columns by rows.

It will be found that, except where unity appears as a term in the prin-
cipal diagonals, this multiplication process merely adds together the cor-
responding elements of the two factors. The terms 1, wherever found,

are not doubled but reappear unchanged in the principal diagonal of the
product matrix. The product MM’ is, in fact,

I (0 ) () (25 (E0)
) () ) () (88
(25l 2 Epra(log) ] (K)o
) a(rt) (GG —(EE) b)) -
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The form of this matrix shows at once that the multiplication is com-

mutative; that is
MM'= M'M.

4. The foregoing synthesis has produced a matrix whose elements are
functions of the seven parameters a, b, ¢, f, g, k, r, between the first six
of which the one relation exist

af 4 bg -+ ch = o.

This matrix therefore defines a hexaparametric transformation, which,
by virtue of the fact that it is the resultant of two orthogonal transfor-
mations, is itself orthogonal.

But it may be transformed into the Cayleyan matrix. The substitutions
by which the transition is made are

ay=a+ f’, by=5b+ g, co=c+ I,
So=f+a, go=g -+ b, ho="h+ ¢

and from these equations, by successive eliminations, are obtained

m:qun=;mzﬂ, 02 =(K—1)(K'—1), Ko=KK,
as+ foBo= aK'+ f'K, by 009y =DbK + g'K, o+ hy®y=cK + 'K,
fo+ @@= fK'+ a'K', o+ byB=gK'+4- 'K, ot co@=hK' + 'K,

A= AK'—A'K, By=BK'_—BK, Cy=CK—CK
Fo=FK'—F'K, Go=GK—GEK, H,=HK -HEK,

02 + a? + b + c} ai+b?+c? f2+ g2+ h'?
1—2 =1—2 . ,
K, K
02 +al +g2 + h} a? - gl+ R B2 4 g2 f2N
I — 9 —— — = I — 2 -+ 7 — ]
K, ‘ K
(-)3+b3+h§m:-f0 b2 +112—l—f2 2?4+ a't+4 g"
1—2 ; * - 7 :
Ky K
_ L, e S ed ( -r--ff—a—g? L @b h’ﬂ) .
Ko K K

All the forms thal appear in the two matrices under consideration are
here represented, and when the Cayleyan matrix is constructed with the
expressions on the left side of the signs of equality, their equivalents
on the right form the matrix which bas been counstructed as the product
of M and M'. Stated in general terms this result is as follows :

The orthogonal transformation with siz independent parameters
is expressible as the product of a pair of pentaparametric commuta-
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twe factors, each of which is defined by a matriz whose elements are
functions of siz letters; and these letters, being a, b, ¢, f, g, h and
e b, a, ¥, c respectively, satisfy the conditions :

— = = =

a b ¢ o I

af +bg+ch=a f'+bg+ch=o.

a o f R
g

5. Interpreted as homogeneous coordinates, w, x, ¥, 5 (') represent a
point in elliptic or hyperbolic space, provided a condition of the form

. W1 e B2 g y2 o 52 = k2
be satisfied. If then
' Wy To Yo Bo
oWy %y qi Y1
‘wg %y s *{gl‘
Bs

| 2
| o a8

be the matrix of an orthogonal transformation, the conditions

W +xl + ¥+ 53 =1,

w}a? B +yE=1 (i=1,2,3),

being satisfied, ki, kz,, ky,, kz, are the coordinates of a point and w;,
o, Piy vi may be interpreted as the homogeneous coordinates of a
plane.

An orthogonal transformation displaces the points of space (elliptic or
hyperbolic) in such a way as to conserve all distances between pairs of
points and all angles between pairs of planes, a fact which may be veri-
fied by showing that the transformation in question leaves unchanged all
functions of the forms

i

ww' + xz'+ yy -+ 23, ww' -+ ad’ + BB~ vy

In other words, an orthogonal transformation is a movement, without
distortion, of space in itself.

6. The general orthogonal transformation with six independent para-
meters leaves no point undisturbed; all points move. In fact the neces-
sary and sufficient condition in order that a point (w, z, y, z) may
remain fixed, when the Cayleyan transformation whose parameters are

(1) They may also be interpreted as representing points equidistant from the
origin in a parabolic four-dimensional space.
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a, b, ¢, f, g, k is applied to i1, is

— (@ t+at4- b2 c)w+(A+a+fO)r+ (B+b+g0)y+(C+c+h0)z =0,
(A—a—fo)w — (024 a?+ g2+ ANz +(H—h —c®)y +(G+g+ 060)z =0,
(B—b—g0)w +~(H+h+c0)x— (02 024+ 2+ f2ly+-(F—f—aB)z =o,
(C—c—hd)w4+(G—g—00)a+ (F4f+ad)y— (024 2+ f2+ g2)z5 =0,

or,.expressed in another form, it is A = determinant of the coeflicients ot
these equations = o. But it is easily verified that

- (024 a?+ b2+ c?) A+a+f0 B+b+g0 G+ c+h8
A—a-—fo — (024 a4 g2+ A?) H—h—coO G+ g+0b60
B—b6—g0 H-o+h+co — (024 b2+ A2+ f2) F—f—ab
C—c—ho G—g—be F+f+aod — (024 e fra g

2] a b c | l 1 I £ h 1 a b e
—a e —h g‘ i—f 1 —e¢ b C—a 1 —h £
= > > ’
— b h 8 —f 1——(@' c 1 —a —b h 1 —f
—c —g f 5] —h —b a 1 —c —g J 1
that 1s,
= 02K3,

where ® and K have their usual meanings

K=1+a?+ b2+ e+ f2 + g2+ A2+ 02,
O =af+bg+ch;

and for a real transformation K cannot be zero.
Hence, the necessary and sufficient condition for the existence of
the transformation (a, b, ¢, f, g, h), permitting aninvariant point, s

af + bog +ch = o.
The parameters of M and M/, the complementary factors of Mg, satisfy

this condition, and the corresponding transformations are therefore cha-
raclerized by the existence of invariant points.

7. The condition ® — o being satisfied, the coordinates of all the inva-
riant points' of the transformation (a, b, ¢, f, g, it} satisfy the equations
—(a*+ b 4-c)w -+ (A+a)r +~(B+b)y +(C+c)zs=0,
(A—a)w—(a?+ gt + Az +(H—Ah)y +(G+g)z=o0,
(B—&)w -+ (H+A)z— (62+ 2+ f2)y +~-(F —flz=o,
(C—e)w+ (G—g)e+(F+fiy—(c2+ 2+ g2)zs =o.
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With their terms rearranged these equations are

P —at—bn—cf{=o,

a®+ E—hn+gl=o,
b® + hE 'qu—fC::(),
c®—gi+ fon+ L=o,

where

5, {=ax-+by+cs aw+hy—gs bw— hr+ fz, cw—+gx—fy,
and since K is not zero, 9, &, 1, { must separately vanish; that is w, z
¥, 2 salisfy the equations

?

ar—+by + ci=o, bw—hx + fs=o0,

aw-+hy — gz=o0, cw+gx — fy=o.

These equations represent four planes whose common points of inter-
section, if there be such, are the invariant points of the transformation.
But in consequence of the condition ® = o, the first of the four equa-
tions is derivable from any two of the others by the elimination of w, and

flaw +hy —gz)+g(bw—hw+fz)-4-h(cw+ go— fy)=o.

Hence the four planes meet in a straight line, all the points of which
remain undisturbed by the transformation; and the investigation has
shown that there are no other invariant points. We may take, as the
equations of the invariant straight line,

ar+ by +-cz=o,
alaw +~hy-—gz)+b0(bw—hx+fz)+c(ew+go—fy)=o,

that 1is :
ar+ by +czs=o, Iw—Ax —By —Cs=o0,
where
[ = a2+ b2+ c2, A=bh—eg, B=cf—ah, C=ag—bf.

Interpreted as motion this result 1s :

If the condition af+ bg - ch = o be satisfied, the transformation
(a,b,¢,f, g,h) represents a rotation about a fived axis whose equa-
tions are :

az+by +ezs=o. Iw —Az—By —Cz=o.
The Pliickerian coordinates of this axis are :

— a, _b: — e f) &) h;

Droits reservés au Cnam et a ses partenaires



334 SECONDE PARTIE. ~— CONFERENCES ET COMMUNICATIONS. —— SECTION III.

8. By substitution in the equations of transformation it is shown that
the points (o, f, g, k), (f*+ g*+ A% A, B, CG) lie in the axis of the
transformation (&, b, ¢, f, g, h; ©® =0).

‘Write

I = f24 g2+ A2, I =a?+ b2+ c2.

If the coordinates of the origin, which are £, o, 6, o, are changed by

this transformation into kwy, kz,, ky,, £3,, the equations

woxr ¥y 3 ‘ fw oy 3
ko o o] Wy Ty Yo Fo
=0 . = 0,
o f & h o f g h
J A B G ] A B G

represent a pair of planes meeting in the axis, the first of which is, by the
same transformation, changed into the second. Expanded and reduced,
the first of these equations is

ar+by-+cs=o,

The coefficients in the second equation are

®y Yo Fo | wo Yo Zo | [ wy 2y 5 wo Zo Yo |

“f g h|, —| 0o g k|, o S h i, ‘ o f &1,
|

A B C J B G| J A Cf Lyl A B

or, in their expanded forms,

L o (Ce—BR)+yo (AL —Cf) -2, (Bf—Ag) =1 azy-+ byy+ c5),
wo(Bh —Cg)+239(0 —Vh)+5(Jg—o0) =I(—awy—hyi+ gz
wo(Cf —ARY+2p(Jh —o0) +5o(0o —If) =1(—bwy+hzy— faq),
wo(Ag —Bf)+zo(o —Jg)+po(Jf —0) =T(—cwi—gzo+ fyo)

But in the equations of transformation the values of Koy, Ky, Ky,

Kz,, are respectively K — 21, 2(A+a), 2(B+0), 2(C+¢), and
therefore

axy+byy+csp=2a(A +a)+20(B+0)+2¢(C+¢)=al,

--an—'h_j/u—'y—g.Z(]:*aI(ﬂ*263(.[+J.)ﬁ2A . ::aI{—q(A—:n{I),
—-bwu-—%ha)o-—fz(}::—-f)l{—% 25(1+-.I)— 2B = b K—2(B -+ &),
J— chn-é’$0+.f_)’o:'—' cK+2¢ (I+J)— 2C = cK —A(G -+ c)'

By these substitutions the equation of the sccond plane becomes
alw +(aK—2a—2A)r + (0K —2b—2B)y + (¢K—2¢—20)z =0,
or this may be writlen

(K—2)(az +by+cz)+a(lw—Azx—By—Cz) =0,
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a form which shows at once that the plane in question passes through
the intersection of the two planes

az -+ by - cs = o, Iw—Az—By—Cz=o0,

that 1s, through the axis of the rotation.
The angular displacement of the rotation is the angle between the two
planes
ar +by-+~cz=o,
ww - a2 + By 4+ 75 = 0.

where

w, 4, B,y =2l, ak —2a—2A, 6K —26—2B, ¢K—a2c—2Q.

Let the expression for the cosine of this angle be now formed. For this
purpose the coefficients, which are proportional to the coordinates of the
two planes, must be multiplied by proportionality factors, o and s,
determined by the conditions

p(a?+- 6%+ c?) =1,
o2 (Wit g B V2 ) =y,

from which are derived the values .

2 3 g2 =

1
1 K2’

p

The required expression for the cosine of the angle between the two

planes is
cos® =—ps(o.w+aa—+ 63+ cy)
=—po[(K—2)[—2(aA+ 6B+ cC)],
that is
_ RS X T SR S S ¥
But
cos @ — L= tanE D,
I+ tang?g P
tang?1d = a? 4 b2+ ¢ f2- g2 R,

or

sec2id =K (1)

The angular displacement of the rotation is hereby given in terms of

the parame Lers.

(1) Cf. Ropricugs, loc. cit., p. 402, and GavLEY, Crelle’s Journal, XXXII, p. 121,
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9. Itis immediately evident that the transformation complementary to
(a, b,c,f, g, h; ®=0), whose matrix is M' and which, in the notation
here employed, is denoted by (f', g, R, a’,¥,c; ® = o), represents
also a rotation aboul a fixed axis and that this axis has for its equations

Jx gy a-hs=o, Jw-+Az+By+ CGz=o0,
or, as its Pliickerian coordinates,
Soo& Rk, —a, —0b, c.

The angular displacement of the rotation is given by either of the for-

mula :

2 — K’
2o sectld =K =1 (K —1).

i

cosd' =
. K

10. A special and interesting form of the matrix (MM') of art. 3 1s

‘obtained by making r = 1. This matrix becomes, when a' = a, 0'= 0, etc.
cos®  h “w v
- —h cosb —v e
(MM') = s |
— v cos® —A
—y  —u A cos® |
where
2 — K a—+f b+ g c—+h
cos®, A, u,v= K’ Q--i"*) 2 K’ QT'

The coefficients of the transformation now satisfy the relation

L cos?d - A2 plvi=1,

Hence, if 7, j, & be the three 1maginary quaternion units, we may
write
g =cosP —th — jpu— kv,

and ¢ is a quaternion whose tensor is unity. Let

p=w-iz+jy+ kz;
then
Pg=wcosP + Az + uy+va
+ I(—hw + T cosP— vy -+ pa)
+j—pw 4 v+ ¥y cosd —2Az)
+h{(—vw —px+ Ay -+ zcosd),
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. .

Thus regressive multiplication of p by the quaternion ¢ produces iden-
tically the same result as the triparametric orthogonal -transformation
(cos @, A, w, v) applied to the point (w, x, ¥, 5) (). This is only a par-
ticular case of the identity of result obtained through multiplication by
quaternions and transformation by matrices of the fourth order. The
general quaternion form of the orthogonal transformation with six para-
melers is gpg', where ¢ and ¢' are unit quaternions, but otherwise inde-
pendent of one another. But the discussion of this phase of my subject
lies outside the proper scope of this paper.

11. The general conclusion to which this investigation has led may be
summed up in the following statement (2) :

The orthogonal transformation with six independent parameters, when
interpreted geometrically, represents a motion, without distortion, of
elliptic or hyperbolic space in itself, by which no points remain fixed; but
it is at once decomposable into the product of a pair of complementary
commutative transformations: {(a, b, ¢, f, g, h; 0 = o), ([, &'/, &', ¥, ¢;
0' = 0), whose parameters satisfy the conditions : T

g'_igic'ﬁf' 5;”__]#

a b = F g Rk’
af +bg+ch=af +bg'+ch=o,

o

and which represent rotations about a pair of axes that remain alternately
fixed. The equations of these axes are respectively

ax-+by+cz=o0, Iw—Az—By —Cz=0 (the I-axis),
and

Je+gy+hz=o. Jw+-Az+By+Cz=0 (the J-axis),

and the angular displacements of the two rotalions are respectively

) — , — K
O — 505—1!(} P = COS—J.?T.

K

12. The following dualistic relations, here announced without proof,
may be verified without difficulty :

1y Cf. Stupy, loc. cit., p. 351; HausDorrw, loc. cit., p. 200.

)
(?) Cf. LinpeEMANK, loc. cit., § 3 et 4.

22
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(@). A rolation about the [-axis displaces the plane
fo gy +hz=u0

in itself about the fixed point (J, A, B, C), and a rotation aboul the
J-axis displaces the plane

ax -~by +czs=o0

in itself about the fixed point (I, A, —B, — Q).

(b). Theplanesax 4 by 4+ ¢z =o0 and fx—+ gy +hz= o are per-
pendicular to one another. Their line of intersection passes through the
origin and meets the two axes (the I and the J axes) at the points

(J, A, B, C)and (I, —A, — B, —C)respectively.

(c¢). The I-axis meets the plane Jx 4+ gy + hz=o perpendicularly
at the point (J, A, B, C) and the J-axis meets the plane az by -~ cz=o
perpendicularly at the point (I, — A, — B, — ().

(d). The conditions @ = o, ® = o being satisfied, , b, ¢, f, g, & and
S, &, W,a,b.c are the Pliickerian coordinates of straight lines; the
former lies in the plane fz - gy + hz = o, the latter in the plane
ax + by -+ ¢z = o, and both therefore meet the intersection line of these
two planes.

(e). A rotation about the I-axis displaces the line (a, b, ¢, f, g, k) in
itself and a rotation about the J-axis displaces the line (f°, &', ¥, &/, ¥/, ¢/)
in itself.

(f). The distances from the origin, along the intersection of the planes
fr4+gy+hs=o0, ax -+ by + ¢z=o0, to the points (J, A, B, C) and
(I, — A, — B, — G) being denoted by OP and OQ respectivelyand coszu
being defined by

Ilf in
cos,&c:%(e" e ""),

these distances are determined by the formulae :

J 1
v ) — — — —
cos; O _\/KW], | coskOQa\/ K7’

and the perpendicular distance between the two axes is
OP +0Q = L k.

—
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SUR

LE THEOREME DE M. SALMON,

CONCERNANT LES CUBIQUES PLANES,

Par M. V. JAMET,

PROFESSEUR AU LYCEE DE MARSEILLE.

Je me propose de soumetire au Congrés une démonstration de cetle
proposilion bien connue : Les quatre tangentes & une cubique plane,
issues d’un point de la courbe, et différentes dela tangente en ce point,
ont un rapport anharmonique constant. Si cetle démonstration présente
quelque intérét, ce sera probablement sur le point suivanl : le calcul
auquel elle conduit permet d’'intégrer complétement une certaine équa-
tion différentielle du second ordre, ou interviennent les fonctions ellip-
tiques. J'ai d’ailleurs donné quelques indications sur ce point, dans une
Note insérée aux Comptes rendus (18go); jJ'ajoute cependant que, dans
Pintégration en question, j'avais déja été précédé par M. Appell. Je
demande a Messieurs les Membres du Congrés de vouloir bien accueillir
favorablement la suite des calculs dont je n’ai jamais publié les détails.

1. On sait que Pétude des propriéiés projectives des cubiques peut
toujours étre ramende a I'étude de 'équation
(1) Vi=axrdP+ bat+cw +e,

car ’équation d’une cubique se ramére toujours a cette forme, par des
transformations homographiques. Supposons donc que Péquation (1)
représente une cubique, et soit

(2) . y=mz+ n,

I'équation d'une droite. Pour que celle-ci soit langente a la cubique, il
faut et il suffit que I'équation

(3) (mz+nYl=ax*+baltcxr+e
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ait une racine double; soit z cette racine, et soit § I'abscisse du point ot
la droite (2) coupe la courbe; § est la racine simple de 'équation (2). En
vertu des relations entre les coefficients et les racines d’'une méme équa-
tion, on trouvera
a(2f+x)=m2—0b,
azlf=ni—e,
puis, par I'élimination de z,

, ja _(m*—b—al)
(4) ET T —e

9. Soit, d’ailleurs,
f()y=atd?+ b2+ ci+e.
De ce que I'équation (3) admet la racine £ résulte ’égalité
mk 4 n=£\f(E),

et on peut transformer comme il suit 'égalité (4)

sa(=VFE —mt) —e] = (mr—b —at k.
1l en résulte
(5) jalatr+ bt + cpam (&) + mt] = (m2— b — aky
ou bien encore, en désignant par » une constante, provisoirement indé-
terminée
(6) (mi—b—ab+u)l={4at+2u)mx8am\fE)

+4a(abi+-bE4-¢) —~2(b -+ al)u+ u

L’'introduction de cette constante a -pour but de former une résolvante
de 'équation (5), ot I'inconnue est.m. En effet, déterminons u de telle
sorte que le second membre de (6) soit le carré d'un binome du premier

degré en m; nous trouvons
—16a2f(E) + (4af -+ 2u)[fa(atr+bE+¢) —2(b + a)u—+ u] = o,

et cette équation présente une particularité remarquable : si on P'ordonne
par rapport aux puissances de u, on trouve une équation du troisiéme
degré, dont les coefficients sont indépendants de E.

C’est I'équation suivante

ut—o2but+ jacu—8a%e =o0;
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et st ’on pose u = — 2aa, onla transforme comme il suit
awd4- bl co+ e =0,
ou bien
Jla)=o.
3. Soit donc
f&)=alf—a)(E—B)E—1)

et soit, dans ce qui précéde,
U=—2ans.
L’équation (6) devient .
[mt—a+B+y—a)t=4a(l—a)mE=8am \/;(E-——m)(f —B)¢tE—-)

+ 4alaf?+ (an + b))t +aa+ ba—+c]

ou bien
[mt—a(f+8+y—a)t=4da(VE—amzyE—B)(E—1)"

Si l'on considére, en particulier, 'un des points de la cubique dont
'abscisse est égale a &, on peut écrire le signe — seulement, au lieu du
double signe, devant le deuxiéme radical qui figure dans cette équation ;
d’ailleurs il est possible de la résoudre par rapport & m, et1'on trouve, en
désignant ses racines par m,, my, my, My :

m= Va(Vi—a+yE—p—Vi—y)
m=  Va(VE=a—VE—E+Vi—1)»
ma=Va(—VE -+ VEZ B VE=y)s
my=—Va (V& —a+VE—B+VE—1)

Puis on vérifie que le rapport anharmonique {m, m,n,m,) estindépen-

dant de £. En effet,

mg—my \/E~=!+\/E~—*r_

M= \E e i §
my, — my _ —\/E————arr\/E——_g .

Ny~ Nty _ \-‘fg:ﬁ;z-—% ‘/,:_ —

En divisant ces deux égalités membre & membre, on trouve
i
ce qui démontre le théoréme de M. Salmon, énoncé au début de ce
travail.

o
(mymemzm,) = 7 P)
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4. D’aprés une proposition connue, les quatre fonctions de §, désignées
par m,, ma, mg, m,, sont quatre intégrales d’une équation différentielle
de la forme

dm

= / 2
dE—i—\—?—Bm—i—Cm o,

ott A, B, C désignent les fonctions de § (voir, par exemple, le Mémoire
de M. Picard, inséré aux Annales de I'E'cole Normale supérieure, 1877,
sur 'application de la théorie des complexes lindaires, ete.).

Proposons-nous d’établir cette équation. A cet effet, observons que la
racine double, z, de I'équation

(3) . (mr+nP=axi+ba?t+cxr+e
vérifie aussi I'équation dérivée
(7) am(me+n)=3azx:+2bxr + c.

Différentiant 'équation (3) et tenanl compte de l'équation (7), on
trouve ’
8) 23 dr_,,
Z &
Mais on a aussi \
(mE+n2=albd+bE2t ct +e
et 'on en déduit

dm  dn

'211£(25+n)+2(m5+n)(2r£ +

) =3abr+ 2bE 4+,
puis, en verta de (8)
dm -

(9) . am{mt+n)+a(mé—+n)(t—a) E T Jaki4-2bF +ec.

Retranchant (g) et (5) membre & membre, on trouve :

om?(§ — )+ 2(mb + n)(E—2) %’; =3a(f—2)(f+2)+20(—w),

ou bien
am?2+2(mé—+n) {TI? =3a(k +zx)+ 25,
ou encore |
am2-+-amy/ f(E) c;—? =3a(t+x)+2b.
Mais -

a(ax +E)=m2—b,
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comme il a été dit précédemment. On en conclut
—— dm 3
ami4amy f(£) - =3 (et +m2—b)+20b,
- 2
.
ou bien

— dm
AVFE) — = mi+ 3at -+ b,
et telle est l’équation différentielle que nous voulions établir.

5. D’aprés ce qui précéde, on connait déja quatre intégrales particu-
li¢res de celte équation; on sait d’ailleurs qu’il suffit d’en connaitre trois
pour trouver, sans-intégration, l'intégrale générale de I'équation proposce.
Si 'on désigne par G une constante arbitraire, par m l'intégrale cherchée,
par m;, my, my trois des fonctions m,, ma, my, m, antérieurement
définies, la fonction m est définie par I'équation

(mmymymy;) = C.

En outre, et c’est I3 le fait sur lequel nous voulons insister, la connais-
sance des fonctions m,, my, mg, m,; permet de connaitre 'intégrale géné-
rale d'une certaine équation différentielle du second ordre, intéressante
en ce qu’elle est au cas particulier de I'éguation

d*z

o — (A sn2¢ -+ B)z,

a laquelle Lamé, dans un Mémoire célébre, raméne le probléme de I'équi-
libre de température sur un ellipsoide. En effet, posons

£ = Bsn2¢ -+ yen?y,

sn et cn désignant les fonctions elliptiques que l'on sait, avec cette condi-
tion que leur module 4 est défini comme il suit :

kzzm.

=5

Nous trouvons

F—a=(B—y)sn2t—(a—y)=(y—a) [I—Esnit] = (y—a)dn?t,
E—B=@—Pfenrt f—y=(f—y)sm2e

(10) \/(E—“)(E—B)(E_'f):\/(x——y)(ﬁ—y)sntcntdnt,
(11) df =2(B—+y)sntentdnt
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et 'équation différentielle ci-dessus se transforme comme il suit :
—— dm
ayala—r1) -5 T mi=(y—a)a(—3A2sn2¢+ 1+ k).

Soit encore
m=2ayale—y)p

On trouve
" dp . 3 I+ k2

—_— e 2en?f — ——— >

2 TP i k?sn?t i
puis, en faisant .

wdt L4
5= Bf' ]

on trouve encore

d*z 3 [~ &2
(12) T = (Z/c‘—’snitg A )z,

et telle est I’équation différentielle du second ordre que nous voulions

établir (1)

6. Nous connaissons déja quatre intégrales particuli¢res de cette équa-
tion. En effet, si nous posons

mi=2yala— ), (i=1,2,3,4),
I'équation (12) admettra les quatre intégrales définies par la formule
&= Cfp'i'“,

en supposant que les fonctions m, mq, ms, m,, qui nous servent a définir
Its, Ua, |43, Uy, solent les racines, antérieurement calculées, de I'équa-
tion (5). Deux de ces intégrales particuliéres nous suffiront pour trouver
I'intégrale générale de (10); ¢’est pourquoi nous voulons étudier en par-
ticulier 'une au moins de ces intégrales. Nous trouverons, par exemple,

f\/&Tawx/é:_ﬁ
sy=eftdi=¢ 2=y

Or, en vertu des formules (10} et (11)

YE—Y 44,

2 dt _ dt
va—y VE—a)E—B)E—7)

(*) Depuis que ce Travail a été livré & 'impression, nous avons reconnu que
I'emploi des notations de Weierstrass permet de présenter tout Ie calcul qui suit
sous une forme bien plus élégante.
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et

fv‘ F_awvVE_B ﬁ vE gk
s =e" VE—a) E—BIE—T ﬁ):i—v:
ou bien

gf dE 1 /‘
a4y =c" J{E—p)ri—w “JOVES YJIE—GJ ViE— unF—B:

En effectuant les quadratures indiquées ci-dessus, on trouve, aprés
quelques transformaltions faciles

345

o VA= Ve (E—a+ vi—1)
_ VVE—a+yE—p
ou bien 7

2=

\/\/\Trﬁ(cnt—!— isnt)(‘/'Ychdnt—I—\/ﬁsnt)

VVY —adnt + /Yy — Bene
BN/ gy V(ent—+ isnt)(dnt + ik sni)

—_— ?
ydnz +kecnt

En appliquant la méme méthode au calcul des trois autres intégrales
on trouvera

5= VT — Dk \/(cnt+zs:1!)(dnt+krnt)
vVdnt + iksnt

z Vi —ay(dnt - iksint)(dnt + kent)
g= —— —
k y/(cuz-ri— rsnt
3
g T2 1
Vi

Vent-+isnt)(dnt - iksnt)(dnt-rllcnt)-

Mais nous obtiendrons encore des intégrales de la méme équation

el

différentielle, en divisant 3z, et 2, par k (y—@a), 35 par

Vy—=a
k
(y—a)*
2, par I %7,
5+ P VE

En désignant ces nouvelles intégrales par §,, §o, Tsy G4
nous formons le Tableau suivant

. \/(cnt+wnt)(dnc—|—a/rsnf)

Ll = pr——
Vdnt + kcnt

¢ venl+isnz)(dnt +—kent)

2=

vdnt 4+ iksnt)

£y = \f(dntrrafcsnt)(dnt—l—kcnt)
8=

\/cné+zsnt

[

Vient—+isne)(dnt+ ksnt)(dnt + k ent)
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et nous allons en profiter pour former d’autres intégrales (fonctions
homogénes et linéaires de deux au moins des mLecrr'ales ci-dessus) qui ne
renferment pas le signe i.

7. A cet effet, nous observons que l'intégrale {, est identique a

\/(cntgzsn!)(dnt—z/‘snt)

de sorte que les expressions de €, et de {, ne différent I'une de Pautre

que par le changement de <~/ en — /. D’ailleurs
O SR —
dn¢+ kcnt
et
cntdnt — ksn2¢
2= .
Gi+li=2 dnt -+ kent
Done
a(entdnz—ksn2t +1)
i3 r p == :
(13) TEl \/ dné 4 kent
et
) a(cnzdné — ksn2¢ —1)
14 — —1 .
(16) GG \/ dont¢ + kent

On peut donc écrire l'intégrale générale de I'équation (12) sous la
forme suivante :

(15) ~_Ay(cntdnt —ksn®t +1)+ Byentdnt — ksn*t —1
L& — ?
ydntt+ kcnt

A, B désignant deux constantes arbitraires. En.multipliant les deus lermes

de cette derniére fraction pary/dn¢ — kcn¢, on donne encore a Uinté-
grale générale la forme ci-aprés :

s=/dnt—kont(A yontdnt— ksnit+1 - B yentdnt — ksnt —1).

8. Dans tout le caleul qui précéde, on a désigné par £, indifféremment,
I'une ou 'antre des deunx racines carrées de ﬁ T{ Donc a toute intégrale

de I'équation (12) doit correspondre une mtégr‘al'e qui n’en difféere que
par le changement de & en — k. On vérifie qu'il en est ainsi pour les
deux intégrales §, et ,; 1l suffit, pour y parvenir, de multiplier les deux

termes de lexpression de {, par \/dn¢— kcn¢, et les deux termes de

I'expression de §, par \/dnt——-i/rsnL Les deux intégrales §; et G,
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jouissent de la méme propriélé. On s’en assure en multipliant les deux
termes de la fraction
I
V(ent - isnz) (dnt —+ dksne) (dné - kenz)

égale a G;, par

Vdo¢—iksn¢) (dnt+ kent).

On voit aussi que I'expression (13) que nous avons trouvée pour
L,+¢, correspond, d’aprés la méme loi, & 'expression de §, -+ », et,
de méme, P'expression (14) de {, — ¢, a celle de {3 — ;. En effet, on
trouve, successivement

Ca=+(dnt+kent)(ent +isnt) (dnt — iksnt),

ts=V{(dnt+ kent)(cent —isnt) (dnt -+ iksni);
2 +Ct =a(dot+ kent)(entdnt+ ksn2t),
L2ly=dne+ kent,
et, par suite,

Lo+ Ca=y2(dnt+ ken)(ent dnt + ksn®t +1)

(16) ___\/2((:!1“1;?; ksnt—+1)

?

dnt— kent

L —C=y2(dnt+ kent)(entdnt + ksn2t —a)

. /2(entdnt - ksn2i—1)
\/ dnt — kent '

(17)

Ces deux derniéres formules démontrent la proposition énoncée.

9. On en déduit une autre forme de lintégrale générale de I'équa-
tion (12), savoir :

A'Venttdnt 4+ ksn®é-+1 4+ B Ventdns - ksne—1

\/dnt-——/fcnf ’

et I'on sait, d’aprés la théorie générale des équations différentiellés, que

les deux formes (15) et (18) ne peuvent étre distinctes. En vérifiant leur

identité, nous serons conduit & une forme remarquablement simple de

(18) 5 =

I'intégrale générale. Considérons, par exemple, I'expression (13) de
C, + &, et écrivons sous la forme

=

(GL+ &)=y (entdnt— ksn®¢+1)(dn¢ — kent)

| "
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En tenant compte des relations

dn?¢ + ksn2t =1, sn?¢ -+ en%*¢ =1,
nous trouverons

VB oty = G T et ),

/o
et ceci nous permet de conclure que P'équation (12) admet 'intégrale

yent+—dné.

L’expression (16 ) de {y - §, etl'expression (13) de &, + ¢, ne différant
Pune de I'autre que par le changement de + & en — k, on trouvera

particuliére

[y —
‘/]T(tﬁ— %) = y(i+4&)(cent =+ dn<),
ce qui donne la méme intégrale particuliére.
Appliquons la méme méthode a l'expression (14) de §, — %,. Nous

trouvons

Vi— k2 ’
—IV—_If—(ti—Cb) = \/(cnzdut——l:sn”—l)(dut—]rcnt)
9,
(20) : .
=yentdn?¢ — kdnitsn?®t —dnt— ken®tdnt + k2sn?zen s + kent

=/(1+ k) (ecnz —dnt),

et l'on trouverait de méme, en vertu de (17),

De la encore l'intégrale particuliére de forme simple
\/cn t—dn¢.

En résumé, la vérificalion’ que nous venons de faire nous apprend
qu'on peut écrire I'intégrale générale de I'équation (12) sous la forme

simple

s=Aycnt+dnt+Byent—dnt,
A, B désignant deux constantes arbitraires,

10. Enfin, le théoréme d'Abel sur les intégrales des fonctions algé-
briques va nous permettre de trouver rapidement une forme, un peu
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moins simple, il est vrai, de l'intégrale générale de I'équation (12).
Observons en effet que, en vertu de la formule (10, § B), I'ordonnée 4

d'un point, mobile sur la cubique donnée, peut s’exprimer comme il
suit ; : '

3
n = \E(a—-*f)‘z ktsntentdni,
lorsque 1'abscisse £ du méme point est exprimée par la formule
(21) E=Bsn2r+ ycnit,
D’ailleurs, si P'on appelle &, 71, &, n2, &3, ms les coordonnées des
points ot la cubique est coupée par une droite mobile, et si I'on observe
qu'une droite qui, primitivement, coincide avec l'axe des z peut étre

amenée & telle position qu’on voudra, par suite d'un mouvement con-
tinu; il résulte du théoréme d’Abel que la somme

4 '}:1 52 ;q -E‘u 4
2 gl
hd _.i_f —== +/ .;

o« B 72 JY s

est constante. Mais cette somme ne différe que par un facteur constant

de la somme sutvante
3 s 15
f d!1+f dtg—f—f dt,
6, iy 0

3

By, By, §; désignant les trois valeurs de ¢ qui répondent & §= a, 7 =0,
E=p,n=o0,etE=vy, 1= o.
Or, d’aprés la formule (21},

1 du !
‘93“30, ngf —_—"
0 Vi—ur) (1— k2u?)

En outre, on a trouvé

| E—a=(y—a)dnt

et, d’aprés cette formule, § sera égal 4 o si I'on a

snt =

et, par conséquent,

b — k du .
T f Vi — o) (1 — kru?)

Soit donc 8,-+8; = C; on aura constamment

t -ty t3= C 4 mw + nw',
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w, w' désignant les périodes de la fonction snt, qui appartiennent aussi
aux fonctions £ et 1, et m et n des entiers. Si, de plus, une droite est
tangente & la courbe en un point répondant & la valeur © du paramétre ¢,
et si 'on désigne par ¢ la valeur de cet argument relative au point ou
cette tangente coupe la cubique, 1'égalité précédente deviendra

2+t =0+ mw + nw',

De plus, on trouvera une intégrale z de I'équation proposée en suppo-
sant que dans la formule
z = efpdt,

dont nous avons fait usage au § 6, il y ait, entre la fonction y et le coef-
ficient angulaire m de la langente & la cubique au point <, la relation

m=2 (L(m:i'jp..

Mais, en désignant par z et ) les coordonnées du point de contact de
celte tangente, on lrouvera

_dy Va(a—y) d(snzentdnx)
T dr 2 sntcnz dnt dt
pdt=—2pdi=— édlﬂg(SDTCU’CdﬂT).
De la Pintégrale suivante :

I
z

=,
Vsncentdns

qu'on peut transformer ainsi

1
= ]
\/ C—¢t C—t, C—1¢
51 - cn dn ——
2 9 2,

la constante ‘C étant définie comme précédemment, ou, si l'on veut, par

la formule

1
C=s ! du N k du
[ ‘/(-E:?Z)(]'—'kﬂug) ' [ ‘/([—uﬁ’}(lﬁkﬁuﬂ)

11. Pour bien établir l'indépendance de cette seconde méthode, par
rapport & la premiére, il reste 4 déduire, du résultat que nous venons
d’établir, une deuxiéme intégrale de I'équation (12 . A cet effet, rappe-
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lons que, si z; est une intégrale particuliere de I'équation différentielle

d?z

an = F(t) =,

la fonction 34, définie par la formule

dt
3y = &1 —
&1

en est une autre intégrale. Ici nous trouvons

2

C—¢t C—t, C—t
zzzzlfsn 2 en = dn 3 a’t:—2zfsn:cn'rdn':d::zi(—sn21+C’),

C! désignant une constante arbitraire. Nous pouvons donc adopter, pour
deuxiéme intégrale particuliére,

C—1t
F9 = 3y 5021, ou By = sn? —- z4

el, par suite, écrire l'intégrale générale trouvée sous la forme

A+ Bsn?2—

C—1¢

ﬁ\/ C—t C—t, C—i
sn cn dn
2 2 2

en désignant les deux constantes arbitraires par A et par B.

3
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UN NOUVEAU SYSTEME DE DEFINITIONS

POUR

LA GEOMETRIE EUCLIDIENNE,

Par A. PADOA (BRoue).

1. Etu_des précédentes.

La signification de quelques-uns des symboles qu'on rencontre en Géo-
métrie doit étre présupposée, méme si 'on présuppose celle des symboles
qui appartiennent a la Logique pure (). _

Comme il y a de 'arbitraire dans le choiz des symboles non définis,
il faut énoncer le systéme choisi (*).

(1) Presque toujours on identifie une chose avec son nom (on dit, par exemple :
Paris est une ville, et non Paris est le nom d’une ville), une idée avec le symbole
(mot ou phrase, signe ou suile de signes) qui la représente, un fait avec la pro-
position qui I'énonce : voila pourquoi on peut se borner a parler de symboles et
de propositions.

Puisque, en Géowmétrie, définir un symbole signific Uexprimer par d'autres
déja considérés et démontrer une proposition signifie la déduire d'autres déja
énoncées, Vimpossibilité de définir tous les symboles et de démontrer toutes les
propositions est une conséquence immédiate de la signification donnée aux mots
définir et démontrer.

En ajoutant qu’il serait impossible de définir les symboles dont on fait usage en
géométrie, au moyen de ceux qui appartiennent & la logique pure, nous avons
affirmé que la Géométrie est une théorie déductive particuliére, et non une
branche de la Logique pure : ce que d'ailleurs tout le monde accepte sans discus-
sion, bien que cette affirmation ne puisse pas étre justifiée et n’ait pas méme une
signification précise, si I'on n’établit préalablement les bornes de la Logique pure
[ce que nous avons tdché de faire dans une autre étude : Essai d'une théorie
algébrigue des nombres entiers, précédé d'une Introduction logique & une théo-
rie déductive quelconque (Bibliothéque du Congrés international de Philo-
sophie, Paris, Armand Corix, 1goo, p. 309-365)].

(?) La liberté relative du choix dont nous parlons est démontrée suffisamment
par cette méme étude. -

23

Droits reservés au Cnam et a ses partenaires



354  SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION Iil.
Nous- citerons seulement trois géométres qui se sont préoccupés de
cette question et qui ont réduit successivement le nombre des symboles
non définis, au moyen desquels (et au moyen des symboles qui appar-
tiennenl d la logique pure) on peut définir tous les autres symboles (V).
D’abord, M. Pasch, qui en 1882 (%) a réussi & définir tous les autres

symboles, au moyen des quatre suivanls :

1. point, 2. segment (de droite) (3),
3. plam (%), 4. est superposable a.

Ensuite, M. Peano, qui en 1889 (*) a réussi & définir plan, au moyen de
point et segment,-el qui en 1894 (°) remplaga dans le systéme des sym-
boles non définis est superposable & par mouvement (?) en réduisant ce

(1) Il n’est pas inutile de remarquer qu’'on peut répéter, 4 propos des proposi-
tions et des démonstrations, tout ce que nous venons d'avancer au sujet des
symboles et des définitions. [En effet : Parmi les propositions .(déﬁuitions
exceptées) qu'on rencontre en Géométrie, il y en a nécessairement qui ne sont pas
démontrées, méme en présupposant celles qui appartiennent a la logigue pure
(axiomes). Comme il y a de l'arbitraire dans leur choix, il faut énoncer le systéme
choist des propositions non démontrées (postulats), au moyen desquelles (et
au moyen des ariomes et des définitions) on peut démontrer toutes les aulres
propositions.] Malgré cetle frappante analogie entre leur rdle, la préoccupation
du choix des postulats est trés ancienne, tandis que la préoccupation du choix des
symboles non définis est tout & fait moderne. Sans en donner une démonstration
historigue, qui nous semble superflue, nous en donnons une philologigue, moins
banale qu’elle peut paraitre : Pour remplacer la phrase proposition non démon-
trée, il y a le mot postulat, mais on n'a pas encore inventé un mot pour rempla-
cer la phrase symbole non défini, car cette phrase a é1é employée si peu jusqu'a
présent, qu'on n’a pas trouvé nécessaire de l'abréger.

(2) Vorlesungen iiber neuere Geomelrie. Teubner, Leipzig.

{3y On doit donner au mot segment sa signification dlémentaire et non sa
signification projective; par conséquent, deux points sont toujours les extrémes
d’un sewl segment. :

Si @ et & sont des points distincts, au lieu de la figure continue « segment ab »,
on peut considérer d’abord (comme symbole non défini) la relation entre trois
points « x est un point placé entre & et &, » grice a laquelle on peut donner
cette définition : « segment ab » signifie « figure & laquelle appartiennent @, & et
tous les points & qui sont placés entre @ et b.»

(*) Méme seulement partie finie d'un plan.

(3) I principii di geometria, logicamente esposti. Bocea, Torino.

(%) Sui fondamenti della geometria (Revue de Mathématigues, Turin). .

(7) Au lieu de considérer l'infinité des positions successives d’une figure en
mouvement, il ne faut considérer que sa premiére et sa derniére position.

Si @ est un point (ou une figure) etsi m est un mouvement, on représente par
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systéme aux symboles :
1. point, 2. segment, 3. mouvement.

Enfin, M. Pieri, qui en 1899 (') a réussi a définir segment, au moyen de
point et mouvemendt.

Par conséquent, tous les symboles qu’on rencontre dans la Géomé-
irie euclidienne peuvent étre définis & U'aide de deux seuls d’entre
elx, savoir

1. point, 2. mouvement (2)

2. Question.

Maintenant, on peut se poser cetie question : Pour simple que soit le
systéme de symboles non définis choisi par M. Pieri, est-ce qu’on ne
pourrait en trouver un plus simple encore?

Il faut d’abord préciser cette question, en otant a la umplzcue dont
il s'agit son caractére de relativité et de subjectivité.

Chaque mouvement, selon MM. Peano et Pieri, est une fonction qui
transforme d’une cerlaine manitre les points en points. Or, puisque :

ma ce que devient le point (ou la figure) @ aprés le mouvement m. En d’autres
termes, il faut considérer chagque mouvement comme un signe parncuher de
fonction quitransforme les points en points.

Le lien logique entre le quatriéme symbole non défini de M. Pasch et le troi-
siéme de M. Peano devient alors évident : on peut les définir l'un par Uautre
4 l'aide du premier seulement.

En effet, la signification du S)qﬁholc est superposable & étant présupposée: « m est
un mouvement » signifie « 7 est un signe de fonction qui transforme chaque figure
en une figure qui est superposable a la figure donnée »;

Et réciproquement, la signification du symbole mouvement étant présupposée :
si @ et b sont des figures, alors « @ est superposable & & » signifie :
moins un mouvement m tel que ma coincide avec b ».

(1) Della geometria elementare come sislema ipotetico deduttwo (Memorie
della R. Acc. delle Scienze di Torino).

(2) Il parait que tout ce que je viens de rappeler est trés peu connu, car dans
plusieurs ouvrages qui ont pour but I'analyse des principes de la Géométrie, on
rencontre un nombre bien plus grand de symboles non définis. Voir, par exemple :

« il existe au

Kiwuine, Einfithrung in die Grundlagen der Geometrie, 1898,
HiLsert, Grundlagen der Geometrie, 19oo,
EnriQues, Questiont riguardanti la geometria elementare, 1goo,

Ce qui, évidlemment, n'empéche pas que ces ouvrages puissent étre intéressants
a d’autres points de vue.
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1° le nombre des points distincts est infini; 2° il ¥ 4 au moins un mouve-
ment qui transforme un point donné en un autre point donné; 3° deux
mouvements qui transforment différemment le méme point sont distinets;
on en déduit que le nombre des mouvements distincts est infini; et, par
conséquent, mouvement est la classe a lagquelle appartient un nombre
infini de fonctions détermindes (mouvemenls), et chacune de ces
Jonctions est une relation déterminée entre un nombre infini d’objets
(points).

Maintenant, nous précisons notre queslion : Aprés avoir choisi
comme primitif le symbole point, est-ce qu’il ne suffirait pas de choisir
comme second symbole primitif une relation particuliére entre un
nombre fini de points? _

Nous nous proposons de justifier la réponse affirmative que nous
croyons pouvoir donner & cetle guestion.

3. Introduction.

Nos seuls symboles non définis sont
1. point, : 2. est superposable a,

avec cetle restriclion, pour le second, que nous ne le définissons pas
dans le seul cas ou il est employé entre des couples de points (V). -

Aprés I'ouvrage cité de M. Pieri (n° 1), notre affirmation (n°2) sera
justifiée lorsque nous aurons défini le mouvement, au moyen de nos sym-
boles non définis, ce que nous allons faire daps le n° 4, en laissant de
cOté toute préoccupation didactigue (2). -

(1) Je dois avertir qu’a I'insu 'un de Vautre, M. Pieri et moi, nous avons eu en
méme temps la méme idée. En effet, M. Pieri, dans son étude Sur la Géométirie
envisagée comme un systéme purement logigue (qui est un abrégé de l'autre
déja citée et qui fut communiquée au Congrés international de Philosophie, par
M. Couturat, le 3 204t 1900, lorsque ma communication actuelle était déja préparée
et annoneée), énonce la possibilité de définir tous lés autres symbéles géométriques
au moyen des deux que j'ai choisis comme non définis, tout en ajoutant que la
complication excessive a laquelle Iui semble donner origine le développement de
ce systéme lui donne le désir d'entreprendre de nouvelles études a ce sujet, avant
d'en énoncer les premiers résultats. -

(2) Il est presque inutile de remarquer que, sil'on énoncait tout de suite cette
dé finition : mouvement signifie ala classe a laquelle appartient toute fonction m
telle que 1° si # est un point, ma est aussi un point; 2° quels que soient les points =
et y, le couple (m=, my) est superposable au couple (#,¥) », on pourrait en-
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Comme aujourd’hui nous ne voulons pas nous occuper des postulats,
nous supposons en avoir construit wun systéme dans lequel soient
énoncées quelques propriétés de nos symboles non définis, suffisantes
pour en déduire toutes les autres propriétés de ces symboles et des
autres qui, par leur moyen, seront définis (*).

Pour abréger nous écrirons :

Def aulieu de définition,
Sigure » ensemble de points,
» est superposable a, .
, b) T couple formé par les objets @ et b.

=

4. Définition de « mouvement ».

Def 1. — 8ia et b sont des points distinets (2 ),

droite a &

déduire que « la symétrie par rapport 4 un plan arbitraire est un mouvement»;
et alors le mot mouvement n’aurait plus sa signification ordinaire [tandis qu'il
I'a conservée dans I'ouvrage cité de M. Pieri, aussi bien que dans P’autre de
M. Peano (n° 1)].

(1) Il est donc bien entendu que, si aujourd’hui nous nous occupons seulement
des symboles non définis et des définitions, ce n'est pas que nous croyons pouvoir
nous passer de postulats.

Mais la désinvolture avec laquelle mous supposons avoir construit un systéme
de postulats, sans nous donner la peine de le construire effectivement, peut sembler
bien commode et peut-étre excessive. Nous espérons qu'une remarque, bien simple
d’ailleurs, sera suffisante pour nous justifier.

Si (aprés avoir choisi un systéme de symboles non définis et un systéme de pos—
tulats) on veut changer le systéme de symboles non définis, il n’est pas néces-
satre de changer le systéme de postulats (tout au plus, on pourrait les transcrire,
en remplagant les anciens symboles non définis par leur signification exprimée
au moyen des nouveauz; mais il parait que cela méme ne soit pas absolument
nécessaire, car il n’y a peut-étre pas un seul livre de Géométrie dont les postulats
soient énoncés sans faire usage explicite de quelques symboles définis).

Done, pourvu que quelqu’un ait construit un systéme acceptable de postulats
pour la Géométrie euclidienne, on pourra se servir de ce systéme, sans se préoc-
cuper de la diversité des systémes de symboles non définis.

(2) «x et y sont des points coincidents» signifie « x est un point et ¥ est le méme
pointy; « z et ¥ sont des points distincts» signifie : «x est un point et y est un autre
point ». Par conséquent, quoique les mots coincidents et distincts soient employés
presque exclusivement en Géométrie, les idées qu’ils représentent appartiennent a
la Logique pure aussi bien que celles représentées par les phrases le méme et un
autre.
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signifie : « figure & laquelle appartient chaque point z, tel qu'il n’existe
aucun point y, distinct de , qui vérifie simultanément les conditions
(e, y)y=(a,z) et (b,y)=(b,z). »
Def II. — Quels que soient les points a et &,

centre de («, &)
signifie : « point z tel que

(a,z)=(xb)
et qu'il n’existe aucun point y, distinct de x, qui vérifie simultanément
les conditions

(a,y)=(a;z) et (b,y)=(b,x)» (M)

Def 111. —

¢t est une translation

signifie : « quel que soit le point &, ¢z est aussi un point; et quels que soient
les points z et y, le centre de (a,ty) (Def II) est aussi le cenlre

de (tz,y) ».
Def 1V. — Sia et b sontdes points distincts,

r est une rotation antour de (a, &)
signifie : ‘
1° Quel que soit le point x, rz est aussi un point;
2° Quels que soient les points z et y, (rz, ry)=(z,y5);
3° ra et rb coincident respectivement avec @ et b;
4° Si un point z, qui n’appartient pas i la droite ab (Def I) coincide
avec 'z, tout point ¥ coincide avec 7y » ().

(*) On pourrait remplacer la Def IT par les suivantes :

Def IT'. — Quel que soit le point @ « centre de (a, @) » signifie ¢ ;

Def II". — Si a et b sont des points distincts « centre de (a, &) » signifie :
« point @, de la droite ab (Def I), tel que (a,z)=(z, b) ». )

Les postulats (n° 3) doivent énoncer, ou permettre de déduire, V'existence et
V'wnicité du point x considéré dans la Def JI" et doivent permettre aussi de
déduire la Def I de la Def I1.

(%) Voyons si un r qui satisfait aux conditions énoncées dans cette Def pourrait
ne pas étre une rotation autour de (a, b), selon lacception ordinaire de cette
phrase. Aprés les conditions 1°, 2°, 3°, on pourrait encore supposer que r soit une
symétrie par rapport a un plan déterminé, par exemple o, auquel appartiendraient
les points ¢ et &; mais alors, si @ était.un point appartenant au plan ¢ et non a
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Def V. — Bi a est un point,
r est une rotation autour de «
signifie : « on peut déterminer des. points b et ¢ distincts de @, une rota-

tion ' autour de (@, b) (Def IV') et une rotation r” autour de (a, ¢), de
maniére que, si  est un point quelconque, rx coincide avec r(r'z)» ().

Def VI. —

m est un mouvement

signifie : « on peut déterminer une translation ¢ { Def [}, un point « et
une rotalion 7 autour de @ (Def V"), de maniére que, si z est un point
quelcongue, mx coincide avec r{iz) » (*).

la droite a&, et si y était un point n’appartenant pas au plan s, # coinciderait
avec ra, tandis que y serait distinct de ry, ce qui serait en contradiction avec la
condition 4°.

Par suite, moyennant la Def IV, la phrase définie « r est une rotation autour
de (a, b) » acquiert exactement sa signification ordinaire. .

(*) Soit r une rotation autour de a, selon {’acception ordinaire de cette phrase;
alors ra coincide avec a.

S’il y a_un point » distinet de @ qui coincide avec ry, on aura rempli les con-
ditions énoncées dans la Def ¥, en identifiant & avec y, 7' avec r, ¢ avec un point
quelconque et 7" avec une transformation identique (dans notre cas, rofatior
nulle ou, ce quiest la méme chose & notre point de vue, tour complet).

*8i aucun point y distinct de @ ne coincide avec ry, on pourra remplir aisé-
ment les conditions énoncées dans la Def V, en choisissant & et r' de maniére
que pour un certain point y, quelconque maisdistinct de @, 'y coincide avec ry
[ par exemple, soit & le centre de (y, ) et soit r'un demi tour], en identifiant ¢
avec ry et en choisissant ' de maniére que pour un certain point z, quelconque
mais n'appartenant pas a la droite ay, r"(r's) coincide avec r% [ce qui est bien
possible car puisque

(a,r'z)=(a,s)=(a,rz) et (r'y, r'a)=(y, z’),—‘.(r"}f,_rz),

l'on a
(a, r'z)=(a,rz) et (e, r'z)=(c,rz)]

Aprés quoi, puisque a, y, & n'apparticnnent pas & une méme droite et puisque
ra, ry, rz coincident respectivement avec r'(r'a), 2" (r'y), r"(+'z), si & est un
point quelconque, rz coincide aussi avec 7" ('),

(2) Soit m un mouvement, selon 'acception ordinaire de ce mot,

8%l y a un point », qui coincide avec my, on aura rempli les conditions énon-
cées dans la Def VI, en identifiant ¢ avec une transformation identique (trans-
fation nulle), @ avec y, r avec m.

8i aucun point y ne coincide avec my, on pourra remplir aisément les con-
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5. Essai d’autres définitions.

Maintenant que nous avons accompli notre tiche (n° 4) en laissant de
c6lé toule préoccupation didactique (n° 3), nous désirons fajre remar-
quer la possibilité d’empl'oye'r notre systéme de symboles non définis (n°3),
méme dans 'enseignement élémentaire.

Naturellement il faudra modifier un peu la définition de mouvement (');
d’abord, on pourra définir d’autres symboles et en développer la théorie
au moyen de postulats (n° 3).

Nous donnerons ici un petit essai de ces définitions.

DefI. — (LaDef I dun®4.)

Def II. — (La Def II" énoncée dans la note ala Def Il du n° 4.)

Dans toutes les Def suivantes, il est sous-entendu que @ et b sont des
points distincts.

Def 1. —
surface sphérigque qui a pour centre « et qui passe par &

signifie : « figure & laquelle appartient tout point x tel que

(a,z)=(a,d) ».
DefIV. —

surface sphérique qui a-pour poles « et &

signifie : « surface sphérique qui a pour centre le centre de (a, b) (Def II)
et qui passe par b (Def II1) ». :

Def V. — Sicet d sont des points distincts de la droite ab (Def I'V),

(¢, d) nentrelace pas (a, &) (?)

ditions énoncées dans la Def FT, en choisissant ¢ de maniére que, pour un certain
point quelconque y, ¢y coincide avee my, en identifiant @ avec my et en choisis-
sant 7 de maniére que, si & est un certain point quelconque distinct de y et ¢ est
un certain point quelconque n’appartenant pas a la droite yu, r(tu) et r(iv)
coincident respectivement avec mu et me.

(1) Et I'on pourra méme se passer complétement de ce symbole, en définissant
la relation est superposable ¢ entre des figures quelcongues.
~(2) Pour éviter toute ambiguité, nous avons remplacé par nr’entrelace pas la
phrase, habituelle en Géométrie projective, ne sépare pas; car, si par exemple
les points considérés se suivent dans l'ordre a, ¢, d, &, il nous semble que I'énoncc
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signifie : « la surface sphérique qui a pour péles @ et b (Def IV) n’a aucun
point commun avec la surface sphérique qui a pour poéles cet d ».

Def VI. —

¢ est un point placé entre a et b

signifie : « 81 z est le centre de (@, b) (Def IT), ¢ coincide avec z ou est
un point de la droite ab (DefI) tel que (¢, ) n'entrelace pas (a,b)
(Def V) ».

Def VII. —
segment a b

signifie : « figure & laquelle appartiennent «, & et tout point placé entre

aeth(Def VI)».

Def VIII —
prolongement de ab (1)

signifie : « figure & laquelle appartient tout point z tel que & soit placé

entre a et z (Def V1) ».

Def 1Y, —
rayon ab (2)

signifie : « figure & laquelle appartient tout point du segment ab
(Def VII) et du prolongement de ab (Def VIII) » (®).

Def X. — 5i ¢ et d sont des points distincts de la droite ad (Def I),
d suit ¢ comme & suit a

signifie : « le prolongement de ab (Def VIIT) contient le prolongement
de cd, ou celui-ci contient celui-la ».

Def XI. — ’

symeétrique de « par rapport a &

signifie : « point x tel que b est le centre de (a, =) (Def 1) ».

« (¢, d) n'entrelace pas (@, b) » soit plus proche du langage ordinaire que I'autre
(c, ) ne sépare pas (a, b).

(1) Nous abrégeons ainsi la phrase trop longue « prolongement du segment ab
du coté de & ».

(2) Nous abrégeons ainsi la phrase trop longue « rayon qui sort de @ et qui
passe'pal‘ b on.

(%) Ou, en se rapportant directement a la Def VI, « figure 4 laquelle appartient
chaque point « tel qu’il existe au moins un point y Lel que & et & soient placés
entre @ et ¥ {Def VI) ». C : i
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*
¥ ox

Dans toutes les Def suivantes, il est sous-entendu que ¢ est un point
n’appartenant pas a la droite ab (Def I).

Def X1I. —

(@; &) est perpendiculaire a (b, ¢)

signifie: « b est un point de la surface sphérique qui a pour pdles @ et ¢

(Def 1V ».
Def X1II. — Si d est un point distinct de ¢,
(e, d) est parallélea (a, &)

signifie : «le symétrique de @ par rapport au centre de (b, ¢) (Def 11, /l’l)
est un point de la droite ¢d (Def I) ».

Def X1V. —

& est un point intérieur au triangle abc

signifie : « 2 esl un point distinct de @ et il y a un point du prolongement

de ax (Def VIII) qui est placé entre b et ¢ (Def VI)».
Def XV. —
A
@ est un point intérieur a 'angle abc (1)

signifie : « & est un point distinct de & et il y a un point du rayon bz

(Def 1.X) qui est placé entre a@ et ¢ (Def VI) ».
Def XVI. —

plan abe

signifie : « figure & laquelle appartieht tout point x tel qu'il n’existe
aucun point y, distinct de @, qui vérifie simultanément les conditions

(a,)/)=(a ), (b y)= = (b, ), (C:.}’)E(Ci‘T} P

*
x *

L’essai de Def que nous venons de donner nous semble suffisant &
prouver la possibilité d’adopter notre méthode, méme dans l'enseigne-
ment élémentaire.

(1) Nous considérons ici les angles convexes seulement.
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On remarquera l'analogie parfaite qui existe entre les Def I et AVI
des deux figures fondamentales droite et plan, et la possibilité de définir
le plan immédiatement aprés la droite () ou de différer la Def du plan,
ainsi que nous avons fait, pour définir auparavant les relations de perpen-
dicularité et de parallélisme enlre couples de points (ou droites),
qui n'en dépendent pas nécessairemenl.

(1) La Def XV ne présuppose, en effet, aucune des Def qui suivent la Def I.
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SECTION 1V. — MECANIQUE.

REMARQUES SUR LE CALCUL

PERTURBATIONS SPECIALES DES PETITES PLANETES,

. Par Jean BOCCARDI, A Cartania.

Je n’ai pas I'intention de proposer quelque modification a la théorie
des perturbations spéciales qu'éprouvent les petites planétes, mais seule-
ment de donner aux calculateurs d’orbites quelques conseils, dont I'ex-
périence m’a montré I'utilité pratique (*). Je n’attirerai votre bienveillante
allention que pendant quelques minutes.

Tout le monde connait les trois méthodes pour le calcul des pertur-
bations spéciales par quadratures mécaniques, c¢’est-a-dire : la méthode
d'Encke, celle de Hansen-Tictjen et celle de la variation des constantes.
Evidemment chacune de ces méthodes présente des avantages, mals
comme je me suis placé sur le terrain de la pratique, pour ce qui concerne
les petites planéles, je crois pouvoir affirmer que la véritable méthode &
suivre est celle de la variation des éléments.

La méthode d'Encke est trés utile lorsqu’il s’agit de calculerles pertar-
bations pour un court laps de temps, ce qui fait qu'elle est tout indiquée
pour les cométes; mais pour suivre une planéte pendant plusieurs oppo-
sitions, elle n’est plus suffisamment exacte, et d’ailleurs, il est difficile de
reconnaitre les fautes de calcul qui s’y seraient glissées, et qu'il n’est pas
facile d’éviter.

La méthode de Hansen-Tietjen dans laquelle on emploie les coordonnées
polaires, élégante pour I’enseignement et.commode pour les calculs, pré-
sente aussi des inconvénients dés qu'il s’agit d’étendre le calcul & un long

(1) Dans quelques mois, cent ans se seront écoulés depuis I'époque ol Piazzi
découvrait Cérés, la premiére des petites planétes; puisse cette Communication
étre un faible hommage 4 la mémoire de mon illustre compatriote!
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laps de temps. La méthode de Lagrange, trés simple dans son exposi-
tion, facile pour les calculs, se préte trés bien aux vérifications; ce qui
fait que, tout en exigeant des calculs un peu plus longs que les deux
autres méthodes, en définitive elle nous conduit plus rapidement au but
proposé. Dés qu’on a déterminé une premiére orbite d’une petite planéte
au moyen des observations d’une opposition, on a besoin de calculer les
perturbations jusqu'a I'opposition suivante, afin de pouvoir dégager les
observations, et ainsi corriger les éléments primitifs (*). On voit qu’il
n'est aucunement nécessaire d’osculer 3 une date intermédiaire entre la
premiére et la seconde opposition, ces planétes n’élant observées qu’aux
environs des oppositions, c’est-d-dire pendant un mois, et dans ce court
intervalle l'effet des perturbations étant presque nul. Par conséquent, on
peut 'épargner d’additionner les différentielles de proche en proche,
comme s1 on voulail osculer pour chacune des dates intermédiaires. I est
peut-étre utile d’avoir égard a la présence de la Lune sur horizon, afin
que 'osculation ait lieu 4 une époque 4 laquelle les observations pourront
se faire plus facilement.

Pour ce qui concerne la mise en train des caleuls, on recommande
généralement de se servir des Tables publiées par Tietjen (Verdffentli-
chungen des Rechen-Instituts zu Berlin, n° 1) qui permettent de déduire
de 'anomalie moyenne M I’anomalie ¢, sans passer par 'anomalie excen-
trique E. Ces tables, assez compliquées, d’ailleurs, donnent les anomalies
vraies 4 2" ou 3" prés, ce qui est plus que suffisant pour le calcul des per-
turbations, qui se fait 4 5, ou mé&me parfois a 4 décimales. Cependant, si
j'osais exprimer mon opinion, je dirais que les Tables de TieLjen sont Lrés
avanlageuses lorsqu’il s’agit de trouver l'anomalie vraie pour quelque
lieu 1s0lé; mais dés qu'il s'agit d’une série de lieux, comme il arrive dans
Ie calcul des perturbations spéciales, il est plus pratique de calculer
toutes les E et de passer tout de suite aux ¢ par les formules connues

M=E —¢sinE rsing = acosesinll recose = a(cosE —sine),
) 2 { 1 Y

(1) Certains astromomes, je le sais, se contentent d'une orbite approchée,
qui, loin de coincider avec tous les lieux observés durant une révolution entiére
de l'astre, ne fait que les toucher a peu prés. Iis négligent totalement les pertur-
bations, parce qu'ils comptent sur une compensation sérieuse. A mon avis, ce
n’est la qu'un palliatif ; on veut éviter de longs calculs; mais ce procédé ne pour-
rait pas suffire pour un long laps de temps. Pour que les planétes ne nous
échappent pas, il faut enfin calculer, au moins, les perturbations générales, avee
les méthodes de Gyldén, qui exigent une orbite exacte. Dong, il vaut mieux, je
pense, calculer les perturbations et représenter exactement les lieux dés les pre-
miéres oppositions. :
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en employant les logarithmes d’addition la ot il y a lieu. Il n’y a que les
déux premiéres valeurs de I répondant aux deux premieux lieux de la
série, qui exigent quelque tAtonnement, mais ensuite, en formant les
différences des différents ordres, on obtient immédiatement des valeurs
trés approchées de E. On peut faive ce calcul avec 6 décimales en s’arrétant
cependant & Ja seconde ronde ou bien 4 5 décimales en allant jusqu’aux
centiémes de minute. Il est vrai que quelquefois on calcule les pertur-
bations de 8o en 80 joars pour Saturne, et alors les différences premiére,
seconde, troisiétme des E ne suffisent pas pour obtenir une valear
approchée des E suivantes; mais comme on doit calculer aussi les pertur-
bations par I'action de Jupiter, ot le' caleul se fait tout au plus de 4o en
4o jours, on voil qu’alors la marche des duférences est trés réguliére.
L’avantage principal de ce calcul des ¢, en passant par les E, est qu'alors
on posseéde toutes les quantités dépendant des éléments de la planéte
perturbée, dont on a besoin dans le calcul des dérivées des éléments,
c'est-a-dire : w=¢ + w, r, siny, cos ¢, cos E. Tandis qu’en se servant
des Tables de Tietjen, aprés avoir obtenu ¢, il faut caleuler r par la

formule
a cos®@

o= - —

I+ sing cose
Ensnite, comme pour obtenir la dérivée de ’excentricité par rapport
a la composante tangentielle S, on a besoin de cos E, puisque
(9:8)=acoso(cosv + cosk),
on est obligé de le calculer par

cosp -+ sing

cose — 7
1+ Slﬂ.? cose

On pourrait plus simplement déterminer cos E par la formule

\

en calculant cos I 4 vue, aprés avoir trouvé sinE. Or, si Pon a égard &
tous ces calculs supplémentaires, on doit convenir qu'il est plus simple
de calculer les ¢ en passant par les E.

Pour la méme raison je ne consecille pas de calculer les ¢ en les déve-
loppant en série :

3 =
p=M-(2e—= sinM—b—(jeﬂ——I—[e* sinaM —+.,.;
4 A 23 '

quoique pour les planétes a faible excentricité, cette méthode soit assez
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rapide et suffisamment commode, parce qu'on peut, dans toutes les
années, se servic des mémes valeurs des coefficienls entre parenthéses,
attendu que’les perturbations n’altérent pas beaucoup l'excentricité. Il
reste toujours & calculer les aulres quantités auxiliaires. Afin d’éviter les
titonnements dans le calcul des anomalies excentriques, on peul avoir
recours aux Tables données par M. Callandreau (Bulletin astr.,
octobre. 1885) ou bien & celles plus étendues publiées par J.-J. Astrand
(Hilfstafeln zur leichten und genauen Aufldsungs des Kepler’schen
Problems ; Leipzig, 18go). Du reste, lorsqu’on a calculé les perturbations
pour une révolution entiére de la planéte, on a déja des valeurs appro-
chées des E pour tous les points dé l'orbite, l'effet des perturbations
n’étant pas bien sensible sur1’excentricité.

Pour ce qui est des intervalles dans lesquels on partage le temps d’une
osculation a lautre, on adopte ordinairement 4o jours pour Jupiter.
Cependant je pense qu’avant d’adopter ces intervalles il convient de
s'assurer que les valeurs différentielles soient assez petites, aulrement on
s'expose A des erreurs de plusieurs secondes sur les intégrales. Pour
reconnaitre 4 Pavance si les perturbations seront considérables, on doit
avoir égard & la position relative de la petite planéte et de Jupiter.
Lorsque ces deux planétes sont en conjonction, les différentielles
relatives au périhiélie pour des périodes de 4o jours atteignent quelque-
fois 120". Dans ces conditions, il est presque indispensable d’adopter
des périodes de 20 jours. Voici un exemple. Ayant calculé les pertur-
bations par 'action de Jupiter sur la planéte (347) Pariana, avec des
périodes de 4o jours, du 15 mars 1898 au 8 juillet 18gg, j’avais obtenu
les valeurs suivantes :

fAL:+1"‘J,I”,87, fA: =—12'14", 70, [Ap.:—ko”,f“)szﬁ.

La distance de Jupiler & Pariana varie entre 7,80 et 2,59 et la
distance & — @ étant = 1.

Or, en avril 1898, Jupiter et Pariana avaient été en conjonction avec
une distance minimum de 3,26. ‘

Ceci m’amena 4 recalculer les perturbations avec des intervalles de
20 jours. J'obtins alors :

fAL =41'18",118, f:ln:—lz'zz”,[;gi,ﬁ, IA.U. =+ 0",56640.

Donc le premier calcul, en prenant des périodes de 4o jours, me
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donnait une erreur de - 37,985 sur I'anomalie moyenne du 8 juillet.
Cette erreur se reportait enlicrement sur le lieu géocentrique.

On se convaincra facilement que dans bien des cas, surtout pour des
planttes plus rapprochées de Jupiter — car Pariana a un-mouvement
moyen assez fort, — on se convaincra, dis-je, que I'erreur pourra attein-
dre 10" sur I'anomalie moyenne, et croitre encore lorsqu’on passe aux
posilions géocentriques. Kt alors, le moyen de bien représenter un lieu
avec des erreurs pareilles sur les perturbations ?

Je passe & une autre remarque de quelque importance, c'est-a-dire
qu’il n’est pas toujours exact de négliger les perturbations de la part de
Mars, comme tout a fait insignifiantes. Ceci peut éire légilime pour les
planétes ayant un faible mouvement moyen; mais, dés que celui-ci a
dépassé goo”, on ne peut plus dire @ priori que l'action de Mars soit
négligeable. Je prends comme exemple la planéte Monachia (428), dont
le mouvement moyen est de 1009g". Pour me former une idée exacte de
ce que pouvaient donner les perturbations de la part de Mars sur cette
planéte, j'ai ea la patience d'en faire le calcul avec des périodes de
10 jours, du 19 avril 1899 au 7 janvier 1gor. On comprend que, attendu
la petitesse des perturbations, j'aie pu garder toujours les mémes éléments
dans tout ce calcul. Voici la disposition que j'ai adoptée pour le caleul
des composantes de la force perturbatrice. A premiére vue, elle parait un
peu plus longue que celle donnée par M. Buchholz dans Theoretische
Astronomie de Klinkerfues; mais c’est qu'il supprime des calculs, en
supposant qu’on les fasse mentalement. Cela n’est pas trop difficile en
calculant & 4 décimales, comme il le fait; mais tout le monde ne réussit
pas & le faire en calculant avee 5 figures.

A la vérité, les différentielles relativement a4 Mars étaient minimes, on
les dirait des infiniment petits; et cependant, lorsqu’on intégre du
19 avril 1899 au 13 juin 1goo, on obtient :

f&L =-+1"185, fATr:—[",_’,gg,

ce qui fait 4 2”,684 sur 'anomalie moyenne. Et dire que j'ai adopté
pour Mars w5, la plus petite qui ait été proposée ! Au fond, 27,684
ne sont pas grand’chose ; mais nous, qui lenons compte des milliemes de
seconde dans les -termes ¢levés des formules de quadratures, nous ne
devrions pas les négliger.

Je termine en exprimant quelques desiderata relativement aux calculs
et aux observations des pelites planétes. Mon premier veeu serait qu'on
nous donnét des Tables de logarithmes ne laissant rien a désirer pour les

24
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calculs d’orbites. Gertainement, on compte pér centaines les Tables de
logarithmes, et ily en a qui, sous certains rapports, sont excellentes, el
cependant je pense qu’il n'y en a pas qui répondent & tous les desiderata
des calculateurs. Pour les calculs d’orbites, évidemment, les meilleures
Tables sont celles & 6 décimales de Bremiker, revues par Albrecht. Leur
disposition est trés heureuse; le calcul des parlies proportionnelles se
fait & vue trés facilement. Cependant ces Tables ne me paraissent pas
excellentes sous tous les rapports. Kt d’abord, les Tables des logarithmes
d’addition et de soustraction, placées 4 la fin du volume, ne sont pas
aussi bien disposées que celles de Zech a 5 décimales. Dans celles-ci, on
retranche toujours le logarithme du nombre plus faible de celui du
nombre plas fort, et I'on fait ensuite I'addition ou la soustraction du
nombre donné par les Tables, avecle nombre plus fort. L’addition se fait
pour avoir le logarithme de la somme, la soustraction pouﬁ celui de la
différence. On voit que ce procédé est trés régulier. Celle maniére de
caleuler est trés commode et il est presque impossible de se tromper,
surtout sil'on a soin de marquer au crayon bleu, dans la série des dates,
les endroits ou il y a un changement d'opération. Au contraire, avec les
Tables de Bremiker, tantot on doit retrancher le logarithme plus faible du
plus fort, tantot on doit faire le contraire.

Je pense aussi qu’on ferait bien de donner une disposition plus com-
mode & la Table de Bremiker, pour la conversion des parties de I'équateur
en heures, minutes et secondes, et réciproguement. La disposition des
Tables correspondantes de la Connaissance des Temps est trés com-
mode. Il manque aussi au Recueil” de Bremiker une Table donnant la
valeur, en secondes d’arc, des minutes de 1 & Go et des degrés de 1°
i 360°. Cette Table serait trés utile pour le calcul de 'anomalie moyenne
des planétes d’une opposition aux suivantes; on la trouve dans les Tables
a4 5 décimales de Becker. Enfin, pour quele Recueil de Bremiker devienne
le manuel du calculateur d’orbites, le dispensant de tenir trois ou quatre
volumes différents sur son bureau, je pense qu’on ferait bien d'y ajouter
un recueil des principales formules relativement aux calculs d'orbites, et
une Table, pas trés étendue cependant, permettant d’obtenir, pour des
excentricités différentes, une valeur approchée de I'anomalie excentrique
répondant & une anomalie moyenne donnée. Le volume ne deviendrail
pas beaucoup plus gros, mais il serait en revanche le vade-mecum du
calculateur d’orbites. _

Les Tables de Becker & 5. décimales sont excellentes par leur dispo-
sition et par les Tables de logarithmes d’addition ou de soustraction,
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semblables a celles de Zech. Elles ne laissent rien 4 désirer pour les
calculs & cinq figures. Je remarque seulement qu’il y manque, au bas des
Tables des logarithmes des nombres, les expressions en degrés et minutes
des nombres correspondant aux Jogarithmes. Ces Tables seraient utiles
lorsqu’on résout, par tilonnements, 'équation de Képler, quand on
calcule a 5 décimales des éphémeérides des planétes, ce qui se fait assez
souvent, par exemple pour les Gendherte Oppositions-Ephemeriden du
Rechen-Institut. ‘

Enfin les Tables de Schrén sont excellentes ; cependant le calcul des
sinus et des langenles pour les arcs de 0° 4 6° ne sy fait pas commodé-
ment. Sous ce rapport, les Tables de Bruhns sont préférables.

Un autre desideratum serait que dans le Tableau abrégé des coordon-
nées héliocentriques des grosses planétes, destiné au caleul des perturba-
tions et donné par la Connaissance des Temps et par le Berliner
Jahrbuch, au lieu de donner les coordonnées susdites pour o heure
on les donnét pour 12 heures. On sait en effet que les éphémeérides des
planétes se calculent pour minuit moyen et que, ordinairement, 'anomalie
moyenne pour la date de losculation est donnée aussi pour minuit;
tandis que, dans le calcul des perturbations, on doit prendre les anomalies
a o heure, afin qu'elles correspondent aux dates des coordonnées hélio-
centriques. Cela est assez souvent une cause d’erreur.

Enfin, mon dernier veeu serait que les astronomes observateurs don-
nassent un peu plus de place aux observations des petites planétes.
Souvent, aprés avoir Lravaillé beaucoup a corriger une orbite et & donner
ane éphéméride poar Vopposition, on a la douleur d’apprendre que la
planéte n’a pas éié observée, parce quelle n’a pas é1é cherchée. Et
cependant il y a deux cents équatoriaux qui sont dirigés vers le ciel toutes
les fois que I'état de 'atmosphére le permel! Peut-étre ferait-on mieux
d’observer moins souvent les anciennes petites planétes, Cérés, Pallas,
Vesta, dont la théorie est faite depuls trente ou quarante ans; il resterait
alors du temps pour I'observalion des planétes récentes.

Voila, Messieurs, les veenx que j ose exprimer devant les Maitres de la
Science, afin qu'on vienne en aide aux esprits dont on peut dire que leur

verre west pas grand.
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SUR LES

EQUATIONS AUX DERIVEES PARTIELLES

A CARACTERISTIQUES REELLES,

Par M. J. HADAMARD (Paris).

Dans l'étude des équations aux dérivées partielles du second ordre, le
cas des équations & caractéristiques réelles se présente au premier abord
comme entitrement différent de celui des caractéristiques imaginaires. Les
conditions aux limites par lesquelles se détermine une solution mani-
festent une opposition parfaitement tranchée, les solutions des équations
a caractéristiques réelles’ se déterminant par le probléme de Cauchy,
tandis que ce dernier est, en général, impossible pour les équations &
caractéristiques imaginaires (').

J’a1 été conduit, non pas & nier cette opposition, mais & la considérer
comme beaucoup moins absolue que je viens de le dire. A beaucoup
de points de vue, les problémes relatifs aux équations a caractéristiques
réelles doivent étre envisagés comme des problémes mixtes, offrant des
caractéres intermédiaires entre ceux qu’on leur reconnait habituellement
et ceux des équalions & caractéristiques imaginaires.

Prenons pour exemple I'équation = a*AV. 1l est classique que,

J2
o2

(1) Dans le cas particulier de 'équation de Laplace, ce probléme conduirait a se

oV :
donner, pour x = o, les valeurs de V et de el On peut se demander, V étant tout

d’abord donné (pour x = o), comment il faut.choisir les valeurs de g; pour que le

\ . . . . . oV
probléme soit possible. Cette question n'offre aucune difficulté : on trouve que o
doit étre égal a la dérivée normale du potentiel d’une double couche d'épais—

g p P

Ay . . .
seur — , augmenté d’une fonction analytique quelconque.
2T
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pour celle équation, le probléme de Cauchy est possible et déterminé
lorsque la multiplicité initiale est ¢t =o. Mais ¢l n’en est pas de méme
si lon prend, pour multiplicité initiale, la multiplicité x— o, si l'on

’ av
se donne, par conséquent, pour & = o, les valeurs de V et de —- En

effet, supposons, en particulier, que ces valeurs soient indépendantes de ¢;
alors, ou bien la solution sera indéterminée (ce qui est peu probable, bien
que je n’aie pule démontrer vigoureusement jusqu’ici) ('), ou bien elle sera
unique et alors indépendante de ¢. Mais, dans ces conditions, I’équation
donnée se réduit 4 AV = o et nous savons qu’alors le probléme de Cauchy
n’est pas possible en général.

L’é¢quation précédente est celle du son. Lorsqu’il s’agit d’'une atmo-
sphére entiérement illimitée, sans la présence d’aucun solide, et qu’on
donne.la position et les vitesses initiales des différents points, le probléme
qui est ainsi posé est celui de Cauchy. Mais (et ceci est d’accord avec ce
qui précéde) la question est tout autre lorsqu’il s'agit du mouvement d’un
milien limité, remplissant, par exemple, dans sa position d’équilibre, la
région f(x, y, 5)Z 0. Dans ces conditions, les données initiales font con-
naitre : .

1° Sur la variété M, définie par ¢ = o, f(x, ,5) 20 : la fonction cher-
chée et sa dérivée normale;

2° Surla variété M, définie par f(x, ¥, 5) = 0, tZ 0 : la dérivée normale
seule.

En fait, on reconnait aisément que le probléme qui consiste & se donner,
en méme temps que la donnée ordinaire sur M,, la fonction seule ou sa
dérivée normale seule sur M,, ne peut admettre plus d’une solution. Un
fait tout semblable se produit pour I'équation .4 deux variables indépen-
dantes, lorsque les données aux limites se rapportent 4 une courbe coupée
par une caracléristique en plus d'un point.

L’analogie particlle avec le cas -des caractéristiques imaginaires est
ici bien manifeste : elle en entraine une autre relative aux solutions
qui penvent-éire données de ces différentes questions. L.es méthodes par
lesquelles on a pu résoudre le probléme de Cauchy (telles que celle de
Riemann pour I’équation & deux variables, celle de Kirchhoff pour I'équa-
tion du son) sont entiérement indépendantes de la forme de la multipli-
cité sur laquelle sont données les conditions aux limites. Au contraire, les
solutions du probléme de Dirichlet (ou des problémes analogues) sont

(1) J'ai obtenu cette démonstration ultérieurement (février 1go1r). Voir Notice
sur les Travaux scientifiques de M. J. Hapamarn. Paris, Gauthier-Villars, 1goi.
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toutes liées de la maniére la plus étroite & la forme de cette multiplicité,
Notre probléeme mizte posséde également ce dernier caractére (ainsi
qu’il est aisé de le reconnaitre pour I'équation 4 deux variables), ron pas
relativement & la multiplicité M, sur laquelle les données sont celles
de Cauchy, mais relativement & la multiplicité My sur laguelle les
données sont celles de Dirichlet (*).

Signalons encore une derniére analogie. La fonction fondamentale qui
sert 4 la résolution du probléme de Dirichlet est la fonction de Green
g{z,¥;20,¥0), laquelle est infinie pour z = x,, ¥ = ¥,. Dans le cas des
caractéristiques réelles et du probléme de Cauchy, un role analogue est
rempli par la fonction de Riemann, laquelle reste finie dans les mémes
conditions. Cependant cette fonction de Riemann est liée aux inlégrales
a singularités qui s’introduisent dans les théories relatives aux équa-
lions & caractéristiques imaginaires, et cela de la maniére sulvante.
M. Picard a remarqué que les intégrales analogues & logr, qu'il convient
d’'introduire pour I’étude des équations telles que A — cu = o, sont de la

forme A logr -+ B, A et B étant des fonctions réguliéres. Dans le cas de
. e “du dit .
Péguation @ - - .~ @ = - b — + cu = I'inté log T
équaltio adxdy - o= - bdy - ctt == o, l'intégrale analogue devra
avoir la forme Alog [(# — =) (¥ — )] + B. On trouve aisément les
conditions auxquelles doit satisfaire A et le résultat obtenu estle suivant :

La fonction A n’est autre que la fonction de Riemann.

(1) Voir mon Mémoire Sur l'intégrale résiduelle (Bulletin de la Société
mathématique de France, p. 79 et suiv.; 1900).
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EQUATIONS AUX DERIVEES PARTIELLES,

Par M. V. YOLTERRA (Roxe).

Tout le monde connait le théoréme de Poisson sur la fonction poten-
tielle. Si p désigne la densité d’un corps fini S, et r la d1stance d'un
point &, b, ¢ de S au point 2, ¥, =, et si I’ on pose

/- (P43
v _'[ >,
on a
BV RV g
(A) - g = ,-:—-;i_zp,

dz? oy 052

si le point z, y, 5 fait partie de D’espace S.

(La densité ¢ doit satisfaire a certaines conditions peu restrictives et
trés connues.)

Ce théoréme a été étendu sans difficultés & d’autres équations et & des
systémes d’équations différentielles du type elliptique.

Mais comment peut s'étendre ce théoréme aux équations différentielles
du type hyperbolique?

Soit @, ¥, 5 un point intérieur & \ espace S. Conduisons, en prenant le
point x, ¥, 5 pour sommet, un cone de révolution ayant 'axe paralléle
a z et dont I'ouverture soit de 45°. Soit §' la partie de S5 comprise &
Pintérieur de I'une des nappes du céne. Si nous remplacons V par

Vo [,

r

.
?

ou

r=y(z—ap—(y—b)—(z—0),
on aura

OV v g2V
(B) ﬁﬁi—,ﬁd—g-zzrp.
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De méme, si nous appelons 8" la partie de 'espace S extérieure aux
deux nappes du cOne, et si nous posons

W fpds"
V 7./?‘,4‘?'# IUn \/(},4_ b)g T (;)'27
ol
= \/(J/_ b)‘l+(5_c)2_(‘z‘_ (1)2,
on aura
PV VT ey .
(©) AR A

Les théorémes renfermés dans les formules (B) et (C) se déduisent
aisément des formules (E) et (F') que j'ai données dans mon Mémoire
Sur lesvibrations des corps élastiques isotropes (Acta math., t. XVIII).
Elles peuvent aussi s'obtenir directement et elles peuvent s’étendre a
d’autres équations el a des systémes du méme Lype.

Les formules (E) et (F') conduisent aussi a des résultats qui géné-
ralisent les théorémes bien connus sur les discontinuités des dérivées des
fonctions potentielles des surfaces et sur les discontinuités des fonctions
potentielles des doubles couches. ‘

Ces résultals comprennent des propriétés intéressantes que M. Levi-

Civita a obtenues directement par une voie différente [Sopra una clase
2y 0V 92V

0 T awt oyt (Nuovo Cimento, 4° série,

d’integrali dell’equazione A?

t. IV, r897)].
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NOTE ON THE MATHEMATICS

OF

THE OLD JAPANESE SCHOOL,

By R. FUJISAWA (Toxio).

The present short note is devoted to a subject which is entirely obsolete
nowadays, and which appears to have only historical interest. It has been
hastily written during my voyage, my coming to Paris to join this congress
having been only settled definitively about a week before I left Tokio.
Some of the works which T might have consulted were not accessible to
me, and L' had often to appeal to my memory alone. Owing to this circum-~
stance and no less to the nature of the subject with which it deals, the
present communication is vague in many respects. I crave your indul-
gence for this and many other shortcomings, which it may not be
necessary to enumerate in this place. o

There are circumstances which seem lo suggest that, the bare fact that
there is such a thing as the mathematics of the old Japanese school may
not be altogether unknown to at least a few of the western mathematicians.
To avoid misunderstanding, may I be allowed to say that I myself do not
belong to this school. It might appear to be rather curious tat I schould
speak upon a subject with which I am not familiar. To justify myself in
this respect, may I be permitted to make a few remarks on the almost
insurmountable difficulties which seem to accompany the study of this
subject in the light of modern mathematics.

The nomenclature and the notalions are as clumsy as they are awkward,
and are likely to be repulsive to any one who is accustomed to those of
the modern mathematics. Add to this, that there is a considerable number
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of minor or branch schools, into which this old school has been subdivided
in the course of time, each of them following notations which differ to a
certain extent from one another. In this connection, it may be observed
that many of the difficulties which one has to encounter in trying to make
himself familiar with the present subject, may be traced to the various
controversies and even jealousies which appear to have existed among
these minor schools.

There is an innumerable number of books relating to the subject, of
which a large number is not printed but preserved by transcription. Since
some time, the imperial university of Tokio has been collecting books,
manuscripts, etc., relating to the mathematics of the old Japanese school.
The collection now amounts to more than two thousand volumes, but it
seems to be only a small fraction of what must be collected to have any
claim to completeness. No doubt a large number of these are devoted to
subjects which are enlirely elementary; but it so happens that things
which seem to be original and valuable are mixed up with thecalculations
belonging to elementary arithmetic. On this account, one who would like
to make himself master of the subject must go, with all the disadvantages
of varied notations, lack of systemalisation and classification, ete.,
through almost all the innumerable books, in order not 1o miss things
which are really important. To start with, he knows that the complete
study of the subject is a life-work, or even more, for him, with the
prospect that a large part of his work will prove to be a waste labour. It
is needless Lo say that thisis by no means a fascinaling waork; at the same
time the difficulties which 1 have been mentioning, and which may
fairly be compared with those attending the siudy of Egyptian hieroglyphs,
are the difficulties which a historian must be prepared to meet with.
I hope to be able to find some among the young men who are studying
mathematics under my direction, whom I could persuade to devote their
lives to the profound study of the subject of which the present note gives
only a superficial account. It is in view of having such men that the
imperial university of Tokio has been collecting the literature relating to
this subject, as before said. o

In this connection, a new impetus was given by my friend and former
colleague Dr. Kikuchi. He has translated some of the methods of finding the
value of =, discovered by men of the old school, from the obsolete language
of the original into the intelligible language of modern mathematics.
His papers are coutained in the recent volumes and, I beleive, also in
the forthcoming volume of the proceedings of the Tokio mathematical
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and physical society, to which I have to refer for further particulars.

Relating more especially to those parts of the mathematics of the old
Japanese school which promise Lo have the chance of having permanent
value and interest, the following difficulties are to be met with. Very
often results only are given, and not seldom it is difficult to trace the
steps by which they might have been obtained. 1 can not express myself
better than by recalling the well known incident connected with the
publication of Fermat’s theorems. Again it was not customary with a
mathematician of this school to publish what he had discovered. He
would keep it to himself and only transmit it to posterity by telling it to
a select few of his disciples under oath that they in their turn shall follow
the example set by their master. Again what may be called problem-
challenge or perhaps mathematical tournament - I mean something like
the challenge of the problem of the brachistochrene by a Bernoulli
addressed to Newton, Leibniz and Marguis de I'Hospital — has been
constantly going on among the various minor schools mentioned ahove.
All these circumstances, to which I could add some more of analogous
nature, had the aggregate effect of making the mathematics of this school
extremely unintelligible and the course of its development difficult to
follow. That there is a peculiar kind of mathematics which had its origin
in Japan and its secluded development free from external influences, is a
fact ; but how for this mathematics has developed itself on the scale of
the progress of modern mathematics, 1s a problem which, so far as I am
aware of, has not hitherto been solved.

Before concluding these preliminary remarks, it is only just that I
should mention that a few years ago a book entilled the history of the
old Japanese school was published by my friend Mr. T. Ends. The
compilation of this work cost its author some sixteen years of arduous
labour and undaunted diligence. He seems to have spared neither time
nor pain in order to make the history as complete as possible, and I have
no donbt that it will serve as a useful guide to all the future students of
this peculiar mathematics. I myself owe a great deal to this work for the
little I know of this mathematics, and I take this opportunity Lo tender
my most cordial thanks to its author. Only the fear that 1 might be
misunderstood as agreeing with the author in those parts of his work
which stand outside of the sphere of facts, emboldens me to say that the
author is himself one of the few men belonging to the old school to be
found now-a-days, that his book is written in a language not entirely
intelligible and sometimes even repulsive to a student of modern mathe-
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matics, and in the characteristic tone peculiar to the men of the old school
and altogether at variance with the spirit of modern mathematics. May 1
hope that the remarks just made shall not have any effect on the great
credit Lo which the work is surely entilled in view of the immense diffi-
culties connected with its compilation.

Mathematics in the old days prior to the middle
of the seventeenth century.

I might just as well skip over a period covering more than two thou-
sand years prior to the middle of the seventeenth centary, during which
time no progress seems to have been made beyond the limit of arithmetic
and the rudiments of elementary algebra and geometry. I shall only
notice a few things which seem to have had their origin in those ancient
days, and survived to this day in some form or other.

The system of numeration seems Lo have been from the beginning the
decimal system with the circulating periods counsisting of four digits
instead of three. The most of the methods of calculation which are now-
a-days included under the general name of elementary arithmetic, seem
to have been known from the very early days. No doubt some of these
methods had their origin in Japan; at the same lime a large number of
them seem to have been derived from Chinese sources. For some account
of the Chinese arithmetic, with which I shall not have much o do in
the sequel, I may refer to an article in one of the early volumes of
Crelle’s Journal, the article Arithmetic in the Encyclopedia Metropoli-
tana written by Peacock, and some of the histories of mathematics,
such as the well known treatise of the president of this section,

Beyond the limits of elementary arithmelic, no essential advance seems
to have been made except perhaps the solulions of simple equations and
some rough methods of calculating lengths and areas, That the hypo-
thenuse of a right-angled triangle whose sides may be represented by 3
and 4 respectively, will be represented by 5, seems ‘to have heen known
from very remote days. No doubt this was found by experience or by
some tentative process. This so-called method of three-four-five is up to
this day still used by artisans in lesting perpendicularity, in some kinds
of rough carpentry work.

Some of the names given to the various methods of .calcalation are as
amusing as Llhey are suggestive of their primitive nature. The summa-
tion of an arithmetical progression whose common difference is unity is
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called the timber-piling-calculation, for which piles of shols may just
as well be substitued ; again the summation of a geometrical progression
whose common ratio is 2, is called the rats-calculation, by which no
doubt it is meant to sigaify that the sum increases with the number of
terms at an enormous rate, as rats are proverbially said to increase in
the course of 1ime.

In the early days, the actual calculation was done by means of rods,
at first made of bambhoo and afterwards of wood, but always known by
the technical name of bamboo-rods. The numbers from 1 to g are
designated by means of rods as follows :

o Lo

With these togeter with a symbol which stood for zero and which
was sometimes replaced by a vacant space, they were able to write down
any number, and calculate in exactly the same manner as we now-a-days
do with Arabic numerals. It may only be necessary to remark that a rod
put diagonally across a pumber shows that the number is to be subsirac-
ted, that two numbers put down one above the other are to be added, that
two numbers put down side by side are to be multiplied together, and
that two numbers put down on the epposite sides of a certain vertical
line are to.be divided one by the other.

The use of the bamboo-rods in numerical calculations has since bheen
entirely superceded by the introduction of a kind of abacus called soro-
ban, which took place towards the end of the sixteenth century. The
appearance of the soroban is depicted below :

Tt will not be necessary to describe the soroban, and how calcula-
tions are made with it, as no doubt this simple yet handy calcula-
ting machine is already well known, and even if this be not the case,
how to use this instrument is likely to be at once apparent, it being not
much different from other forms of abacus. It is very convenient and
indeed, | may say, almost indispensable to those who are accustomed
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to its use in adding numbers, especially when the numbers to be added
are, instead of being written down beforehand, read off in rapid succes-
sion. Addition, subtraction and multiplication are done with soroban
much in the same way as they are done in the ordinary written arithme-
tic. Division can also be performed on soroban in the same way as it is
donein the ordinary written arithmetic, and indeed itis often done in that
way; but here it is customary to make use of a peculiar nemonic which
may be called a division-table versus multiplication-table. For the
account of this nemonic as well as for a lucid explanation of the perfor-
mance of calculation on soroban, I can not do better than refer to a
paper written by prof. C.-G. Knott, formerly of the imperial university
of Tokio, but now of the university of Edinburgh, which is to be found
in the transactions of the Asialic society of Japan published about
twelve years ago.

The introduction of soroban was followed by progress, a litile beyond
the domain of elementary arithmetic. Something of algebra which seems
to have gone so far as the rational treatment of negative numbers but
could not possibly develop itself to any higher stage on account of its
altogether cumbrous notation, something of geometry chiefly concerned
with the study of regular polygons, magic square, etc., seem to have been
the subject of favourite study of the mathematicians of this time. How
much they really achieved, seems to be a question difficult to answer.
It appears, however, highly probable that the rigour of methods and
proofs so essential tho the systematic development of mathematics was
not recognized in all its importance. Most of the results arrived at,
seem to have been obtained in a haphazard way by the tentative method
of elaborate trials and subsequent verification. In support of this asser-
tion, a case may be cited where the value of = was assumed to be ‘[[“o—,
merely on account of the rough agreement of this number with the ratio
in question, /10 being 3.162 +. '

The Pythagorean theorem, likely without any rigourous proof, seems
to have beén known to the men of this time. In evidence of this, I may
quote an instance where the periphery of the 2'5 sided regular polygon
is calculated to a large number of decimal places, giving for the ratio
of the periphery to the radius of the circumscribed circle the number

3.141526 648777698869 248.

A book which appeared about this time contains a magic square con-
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taining the numbers from 1 to 400. It seems that this was obtained by the
elaborate wearisome method of trials. _

I have now passed over the period of years, which, as before said,
I might have just as well skipped, during which it is difficult to discri-
minate things really indigenous from those derived from Chinese sources,
and which after all seem to posses nothing but the interest of curiousity.

The mathematics of the old Japanese school properly so-called.

I now pass on to the most important part of the present note, namely
the mathematics of the old Japanese school properly SO—C&UG(’],“’hiCi[
originated in Japan and had its secluded development under no external
influence. This school of mathematics was founded and developed to
a considerable extent by a mathematician of the name Seki, who was
cotemporaneous with Newlon and Leibnitz, in fact, born in the same
year as Newton. Seki was surely a man of great mathematical ability and
originality. He had a tutor, of whom he might have said what Gauss is
said to have spoken of his tutor Pfaff. Seki’s success as the founder
of the new school of mathematics is to be traced to the great weight
which he, unlike his predecessors, laid on the rigour of the methods and
proofs. It 1s he who gave the first rigourous geometrical proof of the
Pythagorean theorem.

The remarks which I have made concerning the various difficullies
attending the study of the subject of this note, can not possibly be
applied with greater force than to the works of Seki. Most of his disco-
veries were kept in secret among a few of his disciples in his life time,
and were only published from time to time in fragmentary form after his
death. I believe that there are still some which have not been published
and that some have been lotally lost.

Seki seems to have begun his work on algebra by improving the clomsy
notations and cumbrous operations with the so-called bamboo-rods which
were in vogue up to his time. He was so far successful in as much as
every thing and every operation could be written down, so that he could
dispence with every thing but pen and paper. Connected herewith, he
introduced an improved notation, the advantage of which may be exem-
plified by the transition from writing the same letter repeatedly in succes-
sion to the exponential notation. These bappy innovations seem to haye
lead to numerous important discoveries, including among other things
the introduction of imaginary numbers, which resulted in the sudden

25
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expansion of the domain of algebra.  Seki in his late years was no doubt
in possession of most of the algebraic methods which we now-a-days find
in a treatise on algebra. ‘

It is difficult to draw any exact line of demarkation between the works
of Seki and those of his immediate disciples and successors, as it might
imagined [rom the circumslances mentioned above, under which Seki’s
discoveries were transmitted to posterity.

Among the discoveries' made by Seki, or, if not by himself, by his
immediate disciples and successors under the influence of their master’s
wcl)rkJ may, besides the algebra just mentioned, be enumerated :

1° Some theorems belonging to the theory of numbers;

2° Elgmentary geomelry both plave and solid, with special reference 1o
the theory of regular polygons;

3° Trignometry, accompanied by the construction of the trignometric
tables;

4° Elements of analytical geomelry;

5° Calculus of finite dillerences;

6° Some idea of limits, infinites and infinitesimals;

7° The theory, most probably algebraical, of maxima and minima ;

8° Summation of a certain class of series ;

9° The so-called principle of circle, including some methods of recti-
fication, quadralure, and cubature of curves and surfaces.

The so-called principle of circle mentioned last, which, in absence of
any suitable name, is literally translated from the original, seems to be
the climax of Seki’s discoveries, and is held by men of the old school as
comparable with the discovery of infinitesimal calculus by Newton and
‘Leibnitz. It appears to consist in an ingeneous application of the idea of
limits and the summation of infinite series Lo problems which now-a-days
belong to the geometrical application of integral calculus. My opinion is
that the so-called principle of circle is a name given to the aggregate of
the various methods of rectification, quadrature and cubature of curves
and surfaces withoul the formal use of differential -and integral calculus,
very much like the methods which were in vogue prior Lo the time of
Bernoulli and Euler, such as those to be found in the work of Wallis.
No doubt this name was given to the method, because it was first found
in connection with the rectification of the circle.

Judging from the figures which the mathematics of Seki’s school
furnishes for the ratio of the radius of the circumscribed circle to the side
of a regular polygon, it seems probable that Seki had found some method
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of solving hinomial equations. The following are some of the figures
given :

Number of the sides of The corresponding ratioc
a regular polygon. in question.

7 1,152382435 —+(a)

[ 1,714732766 —+ (&)

13 2,0892490734 + (b)

17 2,7210953575 -+ (¢)

19 3,037766g91 + (d)

(@) Greater than 1 inthe last decimal place.

{(0) Less than & in the last decimal place.

(¢) Considerably greater.

(d) Slightly greater.

In this connection, it may be remarked that neither Seki nor his
followers were in possession of logarithmic tables.

Following the usage prior to his time, Seki calculated the length of the
periphery of the 2'7 sided regular polygon in terms of the radius of the
circumscribed circle as unit, and found 3,141592653288g92775g... It
is told that the comparison of this number with those already found for
the 215 and the 2'¢ sided regular polygons lead Seki to the adoption of

3,1415926535g (slightly less)

for the value of w. It is to be observed that this number is correct to the
last decimal place. There are, however, circumstances which suggest that
this was merely a stratagem by which the true path of arriving at the
above correct value of = was kept in secret. Most probably he was in
possession of an expression of = in the form of an infinite series, derived
from the periphery of a regular polygon by making the number of sides
infinitely great, by which the value of w can be calculated to any desired
degree of accuracy. In support of this, it may be remarked that one of the
disciples of Seki calculated the value of = to 49 decimal places, which
value is found to be correct to the last figure.

Seki seems to have known something of continued fractions, as we find
among his posthumous work such a method as the reduction of quadratic
surds Lo continued fractions; but it is not at all likely that he was in
possession of the expression of = in the form of a continued fraction. This
may be inferred from the tentative method, by which he arrives at the
approximate value of w in the form of a fraction. Beginning with 3 over 1,
we have to add either 3 to the numerator and 1 to the denominalor,
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or 4 to the numerator and 1 to the denominator, according as the value of
the resulting fraction is greater or less than the true value of =. Continuing
this process 113 times, in the course of which we pass through fractions
such as 32, we arrive at the well known fraction 222, The expression of =
in the form of a continued {fraction appears, however, to have been found
by one of the men belonging to Seki’s school sometime after his death,

who gives for an approximate value of = the fraction

Numerator....... 428,224,593,349,304,
Denominator.. ..., 136,308, 121,570,117,

This fraction gives the value of = correct to the 29'" decimal place.

I have spoken somewhat at length of the work of Seki on the rectifi-
cation of the circle. It is, however, by no means meant to indicate that his
mathematical activity was confined tho this special subject. :

I now leave Seki and his immediate disciples, and pass on to speak ot
some of the men whose works had great influence on the further-develop-
ment of the mathematics of the old school. Foremost among them, stands
Yasushima, whose work was mostly done in the latter half of the
188 century. To him is to be attributed a complete theory of integration
based upon the summation of infinite series. Yasushima seems to have
begun his work in this direction by taking up again the favourite subject
of his school, namely the rectification and quadrature of the circle. Unlike
his predecessors, who occupied themselves with finding the entire peri-
phery and the entire area of a circle, he showed how to find first the area
of any sector and then the length of any are of a circle. In the following,
I shall reproduce his method with slight modifications conducive to better

‘understanding. :
Let OA and OB be two radii of a circle at right angles to each other.

o] D. A

Draw an ordinate CD parallel to OB. It is req_uired in the first place to

find the area OBCD.
Let the radius of the circle be denoted by » and the length of OD by a.
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Divide OD into n equal parts and through each point of division draw
an ordinate parallel to OB. Let these ordinates be numbered in succes-
sion from left to right, so that the last, e, g. CD, becomes the n'". Then
the length of the '™ ordinate will be given by

Yt

To free this expression of its radical, it is expanded by means of the
binomial theorem, which, by the way, seems to have been known since
the time of Seki. The result, as may easily be verified, is

. Imi(a‘l 11;1'*(@"* 1 mS/a\s 5 m8 fa\?®
2 n? \r 8 nt \r 16 7t :‘) 128 ns \r

7 mld (a.‘ Lo 21 m!? a)”
256 nto \ r 1024 ni?2 \ r

Following the usage of his time, Yasushima does not give the general
term of the series within the bracket, which may readily be found to be

1.3.5...2p—3 m2p (a)ﬂﬂ

ar, p! nir

r !

. . . o . .
Multiplying the above expression by - and summing with respecl to m
from 1 to n, we obtain

1 Em? (ai-\ 2 I Zmt fat
ar|1—-— . - — = =) —... >
2 ad \r) 8 nd r)

where I denotes summation with respect to m from 1 to n. It remains
only to make rinfinite. The worls which are said to contain the account of

n

E mh

4
kL

evaluating Lim were not accessible io me, but it seems to

n=w
me exceedingly probable that this limiting value was found in the fol-
lowing manner (it is needless to say that this limiting value is equal to

1
fa:" dz). By the binomial theorem

0

\ 5 s A (k- .
{(m - M1 — mh = (% +1) mh+ ﬁ(l z—l—J mA=l .,

Herein put m =1,2,3,..., n in succession, and add the resulting

equations side by side. We get

(R l— =+ I)Z mh 4 G +nX 2 mi—l L
1

I.2
1
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Divide by n**t and then making n infinite, we obtain

n

2 mk

. 1
Iim ———— = ——-
e MLAFL A1

Thus we oblain finally for the required area

[ 1 (cz)2 I (cz)' 1 (a>5 5 (a>3
arfi—=(—-) — — (=) —— o | -
6\ r qo \r 112 \ r 1152

\7 r
7 )10 21 a1z 7
S afi6 \ 7/ T 13312 \r I

the general term of Lhe expansion within the bracket being

1.3.5...2p—3 fa\?P
Tar plop a1 (7_ '

Again by subtracting from the area of OBCD just found the area of

the triangle OCD, e. g.
(5 =5 () = )=k

2 2

ayri—a? czr[‘ .

and dividing the result by r, we obtain the following expression for the
length of the circular arc BG

E]-E_“)E!g a\* 5 [fa\s 35 a8
2 | T 6\r/) T 4o F)ﬂ 112 (7 152 (7)

N 63 a 1U+ 23 f‘ 124‘
T a816 \ 7 13312 ;-) R

the general term of the series within the bracket being

1.3.5...2p—3.29p—1 (a)Ql'

. pliup 41 r

In passing by, it may be observed that the above gives a direct method
- - a
of expanding arcsin -

Yasushima gives a peculiar form to the above series; namely, patting
this series equal to

Vg

(ug+ U= Ug~+ Uz Uy Uz—+ us—t—)
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and (E)2: A, he writes
r

a | 1oug. A 32 uy A L 5% ws. A 7% Uy, A

2 ( T T S-S -
92, uy. A N _112: "-,"',pf_-, \
10. 11 12,13 )

Proceeding further on, Yasushima makes a fatal mistake by saying that

. . Tt - - . .

we may obtain the expression for = by putiing in the above series @ =
]

and r=r1, because the resulting series diverges. However this is very
instructive, as it shows that even such a prominent man of the old school
as Yasushima seems to have had no idea of the convergency of infinite

series. Nevertheless a correct expression for — might have been obtained
2

by dividing the expression of the area of a quadrant by the radius and then
putting r equal Lo unity. By so doing, he might have obtained

T T I I 5 7 21

4 6 j0 2 1152 2816 13312

Yasushima also discovered a method of double integration very much
on the same line as the method of simple integration exemplified above.
All these methods which were still included under the all comprehensive
name of the principle of circle, were successfully applied to such pro-
blems as the finding of the length of an elliptic arc, the common volume
of two intersecting cylinders, and the like. ,

Yasushima’s discoveries which seem to have been of the most varied
nature, include among other things a complete theory of spherical trigno-

metry. It may also be added that he or one of his immediate disciples
found a method for the numerical solution of equations.

I now pass on to Wada, who is held as anotber giant by men of the
old school and who published most of his discoveries early in the begin-
ning of the nineteenth century.
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Wada’s first labour seems Lo have been directed Ltoward improving the
various methods found before his time. To give only an example of his
work in this direction, he gives the fol‘lowing improvement on the method
of finding the lengh of a circular are. From the similarity of the triangles
OPQ and PSR in the adjoining figure, we have

OP . })Q = PS : RS
whence, with the notations already used in giving Yasushima's method,
we get

r a
are PS= ———— .

- man? R
rr— (
\

Further, proceeding in exactly the same way asin the above, we obtain
the same result as that found by Yasushima. It is interesting to observe
that the method, after passing through the various stages of development,
has developed itself to something which is not essentially different from
the modern method.

In trying to give some account of the works of some of the most pro-
minent of the men of the old school, T might have given examples other
than that of the rectification of a circular arc; but I have purposely con-
fined myself to this particular example, in order to give possibly some
idea of the various stages through which the development of this peculiar
mathematics seems to have passed.

The most important of Wada’s contributions to the mathematics of the
old school is said to consist in publishing various tables which give nume-
rical values of the coefficients of a large number of infinite series connec-
ted with rectification, quadrature and cubature. Wada seems also to have
been the first mathematician who applied the principle of inequality to the
evaluation of limiting values. He "tried also to express the length of the
various right lines connected with a circular arc in terms of the circular
arc, and was successful to a certain extent. Perhaps he was in possession
of inverse trigonometric funclions in some form or other.

Wada and some of his cotemporaries occupied themselves with the
study of such curves as the cycloid, the catenary and the like, and it
seems as if most of the well known properties of these curves were known
to them. The other favourite subjects of about this time seem Lo have
been the calculation of the centers of gravity of some simple figures,
magics quares and geometrical contact problems more or less complicated.

About the middle of the nineteenth century, logarithmic tables seem
to have been iritroduced from Dutch sources. We are told that some of
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the men of the old school were hard at work in calculating the common
logarithms of numbers, no doubt by some primitive method, as they were
not in Possession.of the logarithmic series.

About this time, some Dutch mathematical books came into the posses-
sion of the mathematicians of the old school. Although they must have
had great difficulties in reading Dutch, it is conceivable that these books
had some influence on the works of these men., There still remains one
thing which I should like to mention hefore quitting the subject of this
note. T was told that the theory of determinants and its application to the
solution of the system of linear equations were not entirely unknown to
the men of the old school. _

Before concluding this brief disconrse, may I be permitted to repeat
g of
things which are now entirely obsolete and which can have at most
historical interest, leaving however the chance that some really valuable
things might still be found in Lhoselregions of this mathematics through

once more what I have said in the beginning. I have been speakin

which I have not happened to pass. It was surely a wise policy on the
part of the educalional authorities that they, in organising the new
system of education, put this mathemalics of the old Japanese school enti-
rely out of sight, and were anxious to introduce free and unmolested the
mathematics which has no schools and whose universal language is intel-
ligible Lo all the civilized nations.

——— T ———
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LES

MATHEMATIQUES ET LA BIOLOGIE

PAR

M. Anger GALLARDO (Buenos-Aines).

Au premier abord, il semble y avoir une certaine contradiction dans
'emploi des procédés des Sciences exacles pour I'étude de questions si
complexes que les biologiques, qui sont encore vagues et peu précises.

Les applications des méthodes mathématiques & la Biologie ont soulevé,
en effet, beaucoup d’objections, et quelques personnes n’y voient que
de simples « jeux de nombres ».

Pour. ramener les questions biologiques & des prob]ém'es mathéma-
tiquement solubles, il faut, en général, les simplifier par des hypothéses
plus ou moins nombreuses, et rien n’est plus facile que d’introduire des
inexactitudes ou des erreurs dans la simplification d’un phénoméne com-
plexe. La plus légére divergence initiale est, en outre, exagérée par la
rigide inflexibilité des raisonnements mathématiques et conduit & des
résultats absurdes, tandis que le raisonnement ordinaire peul compenser
les défauts du point de départ en s’appuyant, 4 chaque pas, sur I’obser-
vation et I'expérience. Le péril augmente par cela méme que ces fausses
conclusions ont la prélention de s'imposer comme des vérités absolues
exprimées par des formules mathématiques pour lesquelles on a un
certain respect superstiticux. Quelqu’un a dit, & cause de ces sortes de
conclusions, que l'application du calcul des probabilités aux Sciences
morales est le scandale des Mathématiques. ‘

Toutes ces objections ne doivent pas étre adressées aux méthodes
mémes, mais & la maniére de s’en-servir, puisque aucun procédé n'est
bon s’il est mal employé. Les Mathématiques sont un admirable instru-
ment, mais ne peavent pas donner plus que ce qu'on y met, et, & cause de
leur propre exactitude et de leur propre délicatesse, elles doivent étre
employées avec la plus grande prudence et la plus grande circonspection.
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Les procédés des Sciences exacles et, en particulier, les tracés graphiques
permettent de présenter sous une forme synthélique un grand nombre
de données, soulageanl ainsi l'attention qui peut alors s’appliquer a
I'observation de relations et de particularités qui, sans cela, seraient
passées inapergues.

Je crois donc que les applications des Mathématiques a la Biologie sont
Iégitimes, pourva qu’on ait la prudence nécessaire et qu’on ne se propose
pas la solution de questions trop compliquées, imparfaitement connues,
et qui n’ont rien & gagner d’un traitement exact pour lequel elles ne sont
pas encore mires.

Les problémes biologiques éLudiés mathématiquement sont déji nom-
breux, et ils le deviendront chaque jour plus & mesure que les faits
d’observation seront mieux connus. Clest, du reste, ce qui est arrivé
pour la Physique.

On a appliqué ainsi avec succes les méthodes de la Mécanigue et de la
résistance des matériaux 4 Pétade des formes des os et des articulations ;
les principes de 'Hydraulique 4 la délermination de la forme et des
diamétres des vaisseaux sanguins, etc. Roux et son école de la Méca-
nique du développement des organisines, Cope et les néolamarckiens
américains et beancoup d’autres savants sont entrés dans celte voie, indi-
quée il y a déja assez longlemps par Fick.

Mais je veux altirer spécialement l'attention des mathématiciens qui
prennent part 4 ce Congrés sur les applications des méthodes statis-
tiques 4 Pétude des problémes biologiques de la variation et la corrélation
des caractéres, de I'hérédité et de I’évolution des: étres vivants. L’éLude
quantitative des organismes a é1é initiée par Quételet et par Galton dans
le terrain anthropologique et constitne aujourd’hui une branche impor-
‘tante de la Biologie, la Biostatique ou Biométrigue. L'élide quantitative
des animaux peut étre désignée sous le nom de Zoostatistique, et celle
des végétaux sera la Phytostatistique. 1l serail trop long de donner une
liste bibliographique de tous les articles biostatistiques (prés de 150),
liste qu'on peut trouver d'ailleurs dans le Livre de Duncker et dans les
Travaux de Ludwig. ’

Jindiquerai seulement ici les noms des personnes qui s'occapent de
cette nouvelle direction de recherches dans les différents pays, en laissant
de cOté les anthropologistes. ' '

En plus de Galton, un des fondateurs de la Bioslatistique, et de
Peanon, & qui I'on doit les plus grands progrés des méthodes mathé-
matiques, et de sés éléves Beeton, Fawcett, Filon, Hee, Whiteley et
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Yule, on peut citer en Angleterre les noms de Bateson, Thompson,
Vernon, Warren et Weldon pour la Zoostatistique, et de Pledge pour la
Phytostatistique.

“n Allemagne, Duncker (qui a fait un bon exposé élémentaire de la
méthode) et Heincke s’occupent de Zoologie, et ' W. Haacke, Jost, Vich-
ling et Weisse de Botanique. Le Professeur Ludwig, en particulier, a
beaucoup travaillé sur ce dernier sujet et a trouvé que les tracés gra-
phiques de la variation de la plupart des caractéres variables des végétaux
présentent des sommets pour les nombres de la série de Fibonacei :

y LG—I, 0, Ij

a I g s Q
1, 2, 3, 5, 8, 13, ar, 34, 33, 8g

W

(oey —8, +5 —3, 492, —1

e
L

que les mathématiciens nommient série de Gerhardt ou de Lamé.

Aux Etats-Unis, nous trouvons Blankinship, Brewster, Bullard,
Bumpus, Davenport (qui a éecrit un Livre élémentaire trés pratique) et
Field pour la Zoologie, et Lucas pour la Botanique.

Le promoteur des éludes expérimentales et de la culture des cas de
variation normale et tératologique des plantes est 'éminent directeur du
Jardin botanique d’Amsterdam, le Professeur H. de Vries, suivi en Hol-
lande par Verschaeffelt et en Belgique par de Bruyker, Mac Leod et
Vandevelde. : :

En Suisse, Amann a écrit en [rancais sur la variation des mousses, el
Camerano a étudié en Italie la variation des batraciens.

On s’est peu occupé en France de cetie question et je ne connais sur
le sujet qu’un article du Professeur Giard et les anaf_yses critiques de
Contagne et de Varigny.

Enfin, dans Ja République Argentine, Lahille a publié des Travaox sur
la variation des animaux, et moi-méme sur celle des plantes.

En général, la méthode de la statistique de la variation consiste dans la
mesure des caractéres variables et dans le traitement par les procédés du
calcul des probabilités des données numériques obtenues. Pour le calcul,
on dispose les nombres en séries, en réunissant toutes les grandeurs
égales dans une classe. Fréquence de la classe est le nombre des mesures
égales qu’elle contient. La moyenne des variations est donnée par la
formule

2 (¢f)
M= e
2N

dans laquelle ¢ représente la valeur d'une classe et f sa fréquence. La
moyenne est I'abscisse du centre de gravité du systéme des fréquences.
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Le mode est la classe la plus fréquente ou bien 'abscisse correspon-
dant & I'ordonnée la plus longue.

Pour les représentalions graphiques, on prend sur I'axe des abscisses
des longueurs qui représentent, a une cerlaine échelle, les classes; et sur
les ordonnées orthogonales correspondantes, on prend des longueurs pro-
portionnelles aux fréquences respectives. Le polygone empirique de la
variation du caractére sera oblenu en reliant par des lignes droites les
extrémilés des ordonnées successives; il est fermé par les ordonnées
extrémes {quand elles ne sont pas nulles) et par I'axe des abscisses. La
limite de ce polygone serala courbe de variation empirique du caractére
-considéré (synoptique, de Conlagne), nommée aussi courbe galtonienne,
du nom de Galton.

L’étude mathématique de ces courbes a rvéalisé de grands progrés,
grace aux travaux de Pearson, publiés par la Société royale de Londres.

On avait remarqué depuis Quételet et Galton que les courbes de varia-
tion dans la plupart des cas suivent & peu prés la loi de Gauss de la
distribution des erreurs accidenlelles et 'on s’efforgait de les ramener
toutes & ce type considéré normale. Or, celte courbe normale de proba-
bilités coincide assez exactement avec le tracé graphique du dévelop-
pemenl du binome de Newton (f —+ 1)”, dont I'exposant n est un nombre
trés grand; elle est par conséquent symétrique, c’est-a-dire que les pro-
babilités des écarts positifs et négatifs sont égales. Mais il y a d’autres
courbes de varialion nettement asymétriques qu'on ne peual pas ramener
a la loi de Gauss.

Pearson a calculé I'équation d’une courbe générale des probabilités qui
correspond trés approximativement a la binomiale (p + ¢)* dans laquelle p
et ¢ sont quelconques pourvu que leur somme soit égale a I'unité, sym-
bole mathématique de la certitude dans le calcul des probabilités.

La loi de Gauss n'est donc qu'un cas particulier de celle de Pearson.
Il a démontré aussi qu’il-y avait une relalion géométrique, indépendante
de n, entre la courbe de Gauss et la binomiale (§ + §)”, ce qui justifie
I'emploi de I'équation

2

28?

Y =Joe€ ]

méme pour des valeurs pelites de n, qu'on faisait depuis longtemps dans
les calculs statistiques.
L’équation générale de la courbe des probabilités est de la forme

; ) a\P
ha :.J/U<[+ Zl) eYs.
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Pour les applications & la statistique, Pearson en a déduit cing types
d’aprés la symétrie ou asymétrie des courbes et P'élendue limitée ou illi-
mitée de la variation.

Type I. — Courbes asymétriques, limitées dans les deux sens
2\ My a2\ My
= [ — L— =)
7 JO( 611) ( az)
Type 1I. — Courbes symétriques, limitées dans les deux sens
/ @2 m
e [ — — .
J Yo (\ 0:2)

C’est un cas particulier de la précédente dans lequel a,=a; et
m, = ms,.

Type 111. — Courbes asymétriques, limitées dans un sens

\

x
— e d
_}’—_}’u(l i cz) e 9,

Type IV. — Courbes asyméltriques, illimitées dans les deux sens

¥ = yo(cost)rm e,

xr

dans laquelle tangl —= fa

Cestla forme la plus fréquente des courbes biologiques asymétriques.
Ce type a éLé étudié par Poisson sous forme de série.

Type V. — Courbes symétriques, illimitées dans les deux sens
v
Yy = l}"oeiﬂ?.
C’est la courbe normale ou de Gauss dans toules ces formules :
0 l'ordonnée modale ou la plus grande fréquence qui doit éire calculée
pour chaque type;
¥, lalongueur de 'ordonnée & la distance z de y,; :
a, une partie de 'axe des abscisses que I'on doit calculer en fonction des
données empiriques;
e, base du systéme de logarithmes népériens;
e, indice de variabilité (défini plus loin).
Pour les courbes asymétriques, on calcule I'indice d’asymétrie
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en fonction de la distance d entre le mode et la moyenne et 'indice de
variabilité e. Dans les courbes symétriques, le mode et la moyenne coin-
cident et I'indice A est nul.

Les trois constantes : mode, moyenne et indice de variabilité, carac-
térisent une distribution de variations d’un Lype donné.

Pour déterminer & quel type de courbe correspond un polygone empi-
rique donné, Pearson a trouvé une méthode fondée sur la discussion des
relations entre les quatre premiers moments du systéme de fréquences par
rapport a 'ordonnée du centre de gravité du systéme.

Une fois déterminé le type de la courbe théorique, on peut la calculer
d’aprés son équation et les données empiriques de la distribution de
tréquences considérée. Pour le calcul des trois premiers types, on a besoin
d’employer une Table des valeurs de I'intégrale eulérienne T, et pour le
caleul du type IV des Tables des lignes Lrigonométriques. Quant 4 la
courbe normale, elle est aussi tabulée il y a longtemps.

L’accord entre la théorie et 'expérience peut étre déterminé par des
formules spéciales. Il est, en général, trés satisfaisant et la méthode des
courbes de probabilités de Pearson peut étre appliquée non seulement aux
guestions biologiques, mais ausst & toules sortes de problémes staLisLiques
dans lesquels il y a des courbes asymétriques.

La courbe générale devrait étre employée théoriquement de préférence
a celle de Gauss dans tous les cas pour lesquels on ignore si le phénoméne
étudié suit exactement cetle derniére loi. Mais, en pratique, on préfbr;e
plulét traiter comme normales les courbes qui n’en différent pas bean-
coup.

Toutes les courbes considérées jusqu’ici sont simples et a un seul
sommet {monomorphes, de Bateson); ce’sont des courbes unimodales.
Quelques courbes, quoique unimodales, doivent étre considérées comme
composées par deux ou plusieurs courbes simples (courbes complexes,
courbes de Livi, de Ludwig). Pearson a donné un procédé pour les
décomposer quand elles sont formées de deux courbes simples, mais cette
méthode n’est pas pratique et l’on n’a pas méme encore un crilérium pour
distinguer une courbe simple d’une complexe. Les courbes complexes
prennent naissance de la superpogition’ de plusiears courbes dans I'étude
statistique d'un matériel hélérogéne.

Ainsi elles peavent se produire par un mélange de caractéres variables
et invariables, par la somme ou différence de courbes de méme mode, mais
de variabilité différente, ou bicn‘ de courbes de modes différents. Ces der-
niéres donnent lieu & des courbes complexes dont le sommet est élargt;
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quelquefois, en augmentant le nombre des ordonnées ou classes, appa-
raissent les sommels des composantes.

Nous pénétrons ainsi dans la catégorie des courbes multimodales ou &
plusieurs sommets (pleiomorphes, de Bateson). Ludwig propose de dési-
gner les sommets par les lettres «, {3, v, 8, etc., selon leur importance
relative. Il manque encore une théorie mathématique des courbes multi-
modales et I’on ne sait méme pas si elles doivent étre toujours envisagées
comme I'ensemble de plusieurs courbes simples ou bien si dans quelques
cas on peul les considérer comme une seule courbe a plusieurs sommets,
susceptible d’étre exprimée par une fonction périodique.

Comment peut-on mesurer la variabilité des caractéres ? Il est facile de
comprendre qu’'un caractére trés variable donnera lieu a4 une courbe
aplatie, tandis que la variation d’un caractére peu variable sera repré-
senlée par une courbe étroile et relevée. L'étendue totale de la variation
le long de 'axe des abscisses a été employée par quelques auteurs comme
appréciation de la variabilité, mais cette mesure est défectueuse, parce
gqu'elle ne rend pas compte de la concentration des variations autour de
la moyenne. Or, c’est précisément cette concentralion qu'il est inléres-
sant d’évaluer, parce que deux caractéres peuvent avoir la méme étendue
empirique de variation avec une distribution des fréquences tout a fait
différente et, par conséquent, avec une variabilité différente. Les varia-
tions seront plus concentrées pour le caractére moins variable.

Une bonne mesure de la concentration est donnée'par la racine carrée
de 'écart moyen carré d'Airy, qui constitue ainsi l'indice de variabilité
le plus employé.

1l est exprimé parla formule

3 :\/E—u{’rafi,
' Z(/)

a = écarl de la moyenne (abscisse du baricentre du systéme) pour
chaque classe ; '
J = fréquence de chaque classe.

On peut voir que, pour le cas de la courbe normale, l'indice de varia-
bilité est I'erreur moyenne de la théorie des erreurs. Son carré est inver-
sement proportionnel au double du carré du module de précision. La
probabilité d’un écart donné augmente donc & mesure que ¢ augmente.
L’indice de variabilité est représenté par la portion de I'axe des abscisses
comprise entre 'ordonnée du baricentre et I'ordonnée d'un des points
d’inflexion de la courbe normale.

dans laquelle :

26
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L’indice de variabilité ¢ est aussi le rayon de giration du systéme de
fréquences autour de ordonnée du centre de gravilé et, par conséquent,
il reste encore une bonne mesure de la variabilité méme pour les cas qui
ne suivent pas la loi de Gauss.

Pour que ¢ soit le rayon de giration, il faut supposer les fréquences
concentrées le long des ordonnées correspondantes, ce qui arrive, en
effet, dans plusieurs cas (variations du nombre d’organes). Mais, dans le
cas d'une variation continue (longueurs, poids, etc.), on doit considérer
tes fréquences uniformément distribuées sur toute la surface comprise
dans la courbe de variation. Pearson a été ainsi conduit a calculer les
moments de la surface de variation décomposée en rectangles ou en tra-
pézes, d'ott il résulte une légére modification des moments et, par consé-
quent, du rayon de giration ou indice de variabilité. D’autres mesures de
la variabilité sont données par I’écart moyen de Lagrange et par la valeur
quartile de Galton, qui n’est autre que I'erreur probable de la théorie des
erreurs. Quand 1l s’agit de courbes normales, ces quantités peuvent étre
indifféremment employées; mais, pour les autres types de courbes, I'indice
de variabilité conserve seul sa signification comme rayon de giralion,
tandis que I'écart moyen et I'erreur probable ne servent que pour appré-
cier la variabilité des cas soumis i la loi de Gauss.

L’'indice de variabilité est un nombre concret exprimé par la méme
unité que les valeurs des classes; il ne peut donc servir pour comparer
la variabilité de différents caractéres. Pour mesurer la variabilité rela-
tive, on a proposé l'emploi de coefficients de variabilité. Pearson
divise l'indice de variabilité par la moyenne et multiplie le E[lloticalt par
100 et obtient ainsi un nombre abstrait qui peul éire comparé aux
coefficients de variabilité d’autres caractéres ou d’autres formes. Duncker
croit que les coefficients de variation n’ont pas de signification mor-
phologique.

Pour I'étude de la corrélation des caractéres, de I'hérédité et de 1’évo-
lation, on a trouvé des formules dont la simple énumération sortirait des
limites de cette Communicalion. Les résultats oblenus sont trés intéres-
sants et pleins de promesses pour I'avenir.

Avant de terminer, j'atlire spécialement P’attention des mathématiciens
sur les vides les plus sensibles de la méthode stalistique qui sont,
selon Duncker, une détermination et une analyse commodes des courbes
complexes, et l'investigation de la relation entre les coefficients de
corrélation et les courbes individuelles des variations corrélatives,

N> us devons espérer que, grice a l'usage prudent des nouvelles
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méthodes pour I'étude des problémes biologiques de la variation, de la
corrélation, de I'hérédité et de 'évolution, ces questions deviendront plus
précises et revéliront un caractére vraiment scientifique, puisque, comme
le dit Jord Kelvin, « on ne connait bien un phénoméne que lorsqu’il est
possible de I'exprimer en nombres ».
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SECTION VI. — ENSEIGNEMENT ET METHODES,

NOTE

SUR

LA CRITIQUE MATHEMATIQUE

PAR

Zor. G. pE GALDEANOQO (SirAGossE).

Dans sa Note, M. de Galdeano 2 indiqué le besoin, dans I’état actuel
des Mathématiques, de compléter leur enseignement au moyen d'une
nouvelle branche pédagogiqu“c, qui pourrait étre nommée Critique mathé-
matigue.

Elle contiendrait des développements historiques et étudierait les liens
de parenté qui unissent la génération historique et la génération logique
de nos connaissances. Dans une étude synthétique des diverses branches,
on viseraita I'enchainement des idées. On s’y occuperait sysiématiquement
de toutes les méthodes d’une portée trés générale, telles, par exemple, que
introduction d’étres de pure raison, gréce auxquels la Science s'unifie,
se simplifianl et se généralisant a la fois.

Il ne faut pas perdre de vue qu'un plan d’enseignement universitaire
doit embrasser non seulement I'enseignement technique qui fait connaitre
la Science en soi, mais aussi d'autres enseignements dont le but soit de
former lés futurs profésseurs, et de développer en eux des vocations
scientifiques inébranlables, capables de se communiquer aux éléves.
Les nations ont besoin autant des hommes aptes a appliquer les con-
naissances théoriques, que des savants dévoués au perfectionnement de

Pesprit, source des découvertes dans un avenir plus ou moins lointain.
i

——— e
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LE IPER-ARITMETICHE

E L'INDIRIZZO COMBINATORIO DELL’ ARITMETICA ORDINARIA

Par Avrrepo CAPELLI (Narres).

E a tutti ben noto come i progressi dell’ analisi malematica abbiano, gia
da tempo ormai abbastanza lungo, resa necessaria una revisione dei prin-
cipii fondamentali del calcolo infinitesimale e di quella parte della siessa
aritmetica che ha atlinenza diretta col concetto d'infinitesimo, cioé spe-
cialmente della nozione di numero irrazionale, di limite, ecc. La stessa
cosa non pud dirsi dei principii dell’ algebra propriamente detta che ha le
sue origini nel campo dei numeri naturali e raziondli, che & quanto dire nel
campo delle prime quatiro operazioni fondamentali dell’ aritmetica. In
questo campo abbondano, come del resto & naturale, le tradizioni; ma
manca ancora una lrattazione veramente sistematica, che potrebbe sol-
tanto essere il frutto di una critica completa e rigorosa. Di qui quel pro-
cedere per tentativi, che ha generato una multiplicit di trattati elementari,
nessumo dei quali ¢, forse, riuscito a soddisfare complelamente le esigenze
degli spiriti pin sistematici. Di qui quel bisogno, che si riscontra assai
spesso presso gli stessi autori di libri che trattano qualche ramo pil
elevato dell’ analisi, di riassumere brevemente, a guisa d’introduzione, la
parte pit elementare della Scienza allo scopo di riallacciare direttamente
le teorie pit elevate alle loro prime origini, cioé alle nozioni stesse di
numero e di operazioni. Poco ad essi importa se la via sia tracciata sol-

‘tanlo sommariamente, in modo direl quasi provvisorio, giacché i riassunti
di questo genere non hanno altro scopo senonché di Jasciar intravedere
al lettore la possibilitd di emanciparsi dalle trattazioni tradizionali troppo
spesso lurighe e tortuose, e quasi mai sistematiche.

Il carattere di provvisorieta pm};rio di tutte le introduzioni di questo
genere non & dunque altro che I'espressione di un desiderio : il desi-
derio di dare ai fondamenti dell’ aritmetica un indirizzo sislematico
che li metta all’ unisono coll’ indirizzo sistematico del rami piu elevati
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dell’ algebra e dell’ analisi. Formulato il desiderio in questo modo, &
chiaro come Il'indirizzo cercato differir non possa sostanzialmente da
quello che informa i moderni progressi dell’ algebra e dell’ analisi trascen-
dente, voglio dire ’indirizzso combinatorio, che ha oggidi la sua mani-
festazione pit caratteristica nel concetto di gruppo ed in quello ad esso
affine di tnvariantivita.

L’'importanza delle scoperte di Galois e dei suoi continuatori nella teoria
delle equazioni algebriche, e di quelle di altri sommi analisti moderni nel
campo delle forme invariantive nonché in quello dei gruppi discontinui
e dei gruppi continui di trasformazioni &, infatti, cosa troppo nota perché
si possa mettere in dubbio il carattere essenzialmente combinatorio della
maggior parte dei moderni progressi dell’ algebra e dell” analisi.

Le poche cose che mi propongo di dire, hanno appunto per iscopo di
dimostrare la possibilita di dare un indirizzo combinatorio affatto analogo
anche ai primi fondamenti dell’ aritmetica ordinaria e delle iper-aritme-
tiche in generale. La via da seguirsi a tale oggetto si troverd tracciata nel
modo piu naturale, quasi spontaneamente, appenaché avremo riconosciuto
come i concetti di gruppo ¢ di invariantivita si trovino gid impliciti (direi
quasi allo stato latente) peghi stessi primi fondamenti del calcelo algebrico.

Faro precedere un brevissimo riassunto di alcuni risultati, da me gia
pubblicati altrove ('), sulla questione dell’ ordine di precedenza fra le
quattro operazioni fondamentali, poiché in essi si ha una novella prova
(di indole pit elementare) dell’ opporlunita di dare all’ esposizione dei
fondamenti dell’ aritmetica un nuovo orientamento a base di matematica
combinatoria.

1.

1. La miglior prova della mancanza (cui ho accennato fin dal principio)
di un esame critico, sistematico ed esanriente, delle questioni relative
al primi fondamenti dell’ aritmetica, si ha nell’ incertezza stessa del-
I'ordine secondo il quale debbono definirsi ed introdursi nell’ aritmetica
razionale le quattro operazioni fondamentali.

La questione dell’ ordine di precedenza fra le operazioni si connette con
quella dell’ ordine secondo il quale si deve successivamente allargare il
campo primordiale dei numeri, il quale non pud ritenersi costituito che
da un numero finito di numeri conosciuli empiricamente, p. es. dall’
unila e dai numeri 2, 4, 5. Si pud anzi dire che le due questioni coinci-

(1) Reﬁdicanti della R. Accademia delle Scienze di Napoli (giugno 1goo).
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dano, giacché un’ operazione non si pué considerare (almeno dal punto di
vista scientifico) come veramente introdoetta nel caleolo, se il campo dei
numeri ad essa preesistenti non venga al tempo stesso ampliato in modo
che la nuova operazione si possa eseguire incondizionatamente, od abbia
almeno il massimo sviluppo possibile. Cosi, p. es. dare la precedenza alla
sottrazione od alla divisione significhe rd introdurre nel calcolo prima 1
numeri negativi e poi i frazionarii, oppure vice versa.

2. Questa questione ¢ stata da me esaminata accuratamente nella mia
recentissima pubblicazione testé menzionala, nella quale ho incominciato
dal far notare come sia perfettamente in nostro arbitrio di introdurre
come prima operazione 'addizione, ovvero la moltiplicazione; giacche
queste due operazsioni sono fra loro indipendenti. Questa indipendenza
non si trova messa nella dovuata luce dai trattatisti. Essa & perd manifesta,
se le due operazioni si definiscono come segue :

Prodotto di due numeri naturali m ed n é il numero delle coppie
che si possono formare combinando in tutti i modi possibili uno qua-
lunque degli elementi di un aggregato di numerosité m con uno
qualunque degli elementi di un aggregato di numerosita n.

Somma di due numer? naturali m ed n é il numero che rappre-
senta la numerosita dell’ aggregato che si ottiene riunendo in un
.unico aggregato gli elementi di un aggregato di numerosita m e gli
elementi di un aggregato di numerosita n.

Gli ordinamenti secondo i quali potrebbero introdursi, 'una dopo
I'altra, le quattro operazioni fondamentali, sono dunque sei, cioé:

(1) A, 8, M, D,
(2) A, M, D, 5,
(3 A, M, S, D,
(1) M, D, A, S,
(1) ‘ M, A, D, S,
{(II1) M, A,- 8, D,

dove ogni leltera ¢ I'iniziale del nome dell’ operazione da essa rappre-
sentata. ‘

3. Per ancor meglio giustificare I'epiteto di fondamentali attribuito
comunemenle alle primo quattro operazioni dell’ aritmelica, sembra
doversi pretendere che !'introduzione di ogni singola operazione produca
effettivamente, un allargamento del campo dei numeri ad essa preesistenti.
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Di qui ho dedotto un primo criterio per decidere cirta la preferenza da
darsi all’ uno piuttostoché all’ altro dei sei ordinamenti testé menzionati.
Ho posto, cioé, la questione : & possibile stabilire fra le quattro opera-
zioni fondamentali un ordine di precedenza (secondo il quale esse
debbano introdursi nel calcolo 'una dopo Ualtra) tale che ogni sin-
gola operazione produca un allargamento del campo dei numeri ad
essa preesistenti?

Poiche & agevole riconoscere che soltanto gli ordinamenti (1), (IT), (TIT)
soddisfano a siffatta condizione, s'incomincia a stabilire, in base a questo
criterio, il principio che : deve darsi la preferenza a quegli ordina~
menti che introducono come prima operasione la moltiplicazione.

Passando poi dal campo algebrico-aritmetico al campo algebrico-for-
male, ho potuto stabilire un secondo criterio di preferenza ponendo la
questione : esiste per le quattro operasioni un ordinamento :

O'ls 02: 03> 01»7

tale che ogni risultato Q otlenuto operando sui numeri indeterminati
a, b,c, d, ..., u, colle quattro operasioni comunque eseguite, possa
anche ottenersi operando dapprima con sole operasiont del tipo Q,,
pot sut risultati con sole operazioni del tipo O,, e cosi poi con sole Oy,
e per ultimo con sole 0,7

Avendo riconosciuto che fra i sei ordinamenti in qucsti'onc, sollanto
uno, cio¢ 'ordinamento (1II),

(IIT) M, A, S, D,
pud considerarsi come soddisfacente alla condizione ora enunciata, I'in-
certezza che ancora restava dopo D'applicazione del primo criterio, si

trova del tutto eliminata, e si ha al tempo stesso una riconferma, ottenuta
per via affatto diversa, del principio gia stabilito col primo criterio.

4. L’ordinamento (III) pud chiamarsi I'ordinamento algebrico delle
quatiro operazioni fondamentali. Invero, se Q@ & un risultato ottenuto
operando in un modo qualunque, sulle indeterminate «, b, ¢, ..., u,
colle quattro operazioni, esso pud sempre ricondursi alla forma :

DN
Eu’ _Ew

dove ognuno dei termini U, V, U, V, sottoposti ai-simboli sommatorii,

(A)

Droits reservés au Cnam et a ses partenaires



A. CAPELLI. — LE IPER-ARITMETICHE. 411

rappresenta un prodotto

aa...abb...b,..,

di fattori scelti fra le lettere @, b, ¢, ..., u; e le operazioni che si debbono
eseguire per calcolare I'espressione (A) di Q si succedono appunto secondo
lordine (III). E, precisamente, si eseguiranno dapprima sole moltiplica-
zioni, poi sole addizioni, poi al piti due soltrazioni e per ultimo al pid
una divisione. Ora la forma (A) & appunto, nella sua parte pit sostan-
ziale, la forma tipica cui vengono ridotle dagli algebristi tutte le varie
funzioni razionali delle variabili a, b, ¢, ..., u, allo scopo di riconoscerne

L4 s - . . . P
I'identita, ossia I'equivalenza dei processi operativi che le rappresentano.

I

8. Dopoché il campo primordiale dei numeri sia stato esteso, mediante
le operazioni di"moltiplicazione e di addizione, fino ad abbracciare tutta
la serie dei numeri naturali, si presenta la questione della introduzione
nel calcolo dei nuovi enti aritmetici destinati a rendere possibili incondi-
zionatamente le due operazioni inverse, sottrazione et divisione.

Noi possiamo distinguere tre modi diversi di introdurre nell’ aritmetica
1 numeri negalivi o frazionarii.

Il primo metodo ha per base 'intuizione diretta di una certa particolare
categoria di grandezze; p. es. 'intuizione geomelrica dei segmenti di
una relta, mediante la quale noi stabiliamo p. es. I'esistenza di un seg-
mento che ¢ la n™@ parte di un segmento dato.

Il secondo metodo, diindole puramente algebrica, o meglio algoritmica,
consisle nel chiamare numeri negativi o frazionarii certi simboli composti
coi simboli dei numeri naturali, pei quali si definiscono opportunamente
le operazioni di addizione e di moltiplicazione. Questi simboli hanno la
loro giustificazione nel fatto di rendere possibili ‘incondizionatamente le
quattro operazioni fondamentali, senza mai condurre a contradizioni nel
campo dei numeri naturali preesistenti. '

Né l'uno, né laltro di questi due metodi pud dirsi perd pienamente
soddisfacente; soltanto la riunione o fusione di entrambi potrebbe forse
in quelche modo soddisfare. 1l primo infatti ha il pregio della sponta-
neitd (benché anche da questo lato si possarimproverargli l'indole troppo
particolare dell’ intuizione da cui é dedotto), ma non soddisfa completa-
mente l'algebrista, in quanto presuppone dei pastulati, di origine intuiliva,
che non sono affatto necessarii a stabilire la teoria puramente algoritmica
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dei nuovi numeri. Il secondo & sufficiente, di per sé solo, a dare tutto il
rigore desiderabile senza premettere postulati di sorta alcuna, e soddisfa
gquindi pienamente Valgebrista puro. Se perd si tien conto del fatto che
I'oggetto finale dell’ algebra & poi sempre quello di servire alla risoluzione
dei problemi nati dall’ intuizione, si richiede poi, affinché l'algebra da
esso costruita si possa applicare a cosiffatti problemi, una inlerpretazione
accurata dei processi algoritmici nel campo dell” intuizione (p. es. geo-
metrica) cul essi problemi si riferiscono.

Se ora si consideri che il numero ha la sua genesi, o meglio la sua es-
trinsecazione naturale, nell’'intuizione combinatoria (*) e che, d’altra
parte, l'intuizione combinatoria si pud riguardare come la madre di ogni
altro particolare genere d’intuizione fornito dal mondo esteriore, o,
almeno, come il tramite naturale per il quale ogni specie d’intuizione pud
rendersi suscettibile di essere sottoposta al calcolo algebrico; se si consi-
dera tutto ¢id, & agevole persuadersi che, come lo stesso concetlo di
numero ha la sua origine nei piti semplici fatti combinatorii, cosi anche
le operazioni fondamentali dell’aritmetica debbono introdursi in
base alla necessite di risolvere [ problemi pit elementari dell’intui-
zione combinatoria. La loro applicazione a qualsiasi altro particolare
genere d’intuizione non presentera allora pidt alcuna difficolta, giacche,
come si & detto, 'intuizione combinatoria & come un'intuizione primor-
diale preesistente a tutle le altre e da esse inseparabile.

6. Una stessa scienza pud dar luogo a diverse intuizioni combinatorie
concrete, aseconda che si tratli di una o di un’altra delle questioniad essa
attinenti. Noi dobbiamo perd riguardare come matematiche, sollanto
quelle questioni la cui corrispondente intuizione combinatoria sia sus-
cettibile di essere sottoposta ad un calcolo aritmetico od iper-aritmetico
(spiegheremo meglio-piu tardi il significato preciso di questa locuzione).

Tale calcolo, ove esso sia possibile, & caralterizzato :

1* Da un certo insieme J di oggetti o unita che voglia dirsi :

Uh IJE: Ua, LR ]

generalmente parlando in numero infinito. Sono questi gli oggetti semplici
(elementi) di cui si occupa quel pal"ticolalje ramo di scienza che ha dato
luogo all’intuizione combinatoria astratta che si deve sottoporre al calcolo.

2° Da una certa legge di composizione T, in virti della quale due
oggetti qualunque U; ed U; dell’insieme J possono comporsidando origine

{*) Vedi la definizione di numero data nella Nota sopra citata.
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ad un nuovo oggetto che si indicherd con U,Uj, ovvero con U,U;,
a seconda dell'ordine con cui si fa il composto. Il nuovo oggetto U;U;
dev'essere ben determinato ed appartenere allo stesso insieme J. La legge
di composizione pud essere dedotia direttamente dall’intuizione concreta
che ha dato origine all'intuizione combinaloria asiratta; ma pud anche
essere stabilila artificiosamente in base alla legge delle equivalenze di cui
ora parleremo, ‘

3° Da una certa legge di equivalenza E (legge dei valori) in virth
della quale cerli aggregati [che noi possiamo qui (*) ritenere costituili da
un numero finito di oggetti dell’insieme J | vengono dichiarati equivalenti
ciog avenli fo stesso valore. Si dird che due aggregati qualunque H ¢ K
formali con oggetti di J hanno la stessa importanza, o, meglio, lo stesso
valore, nell’ordine diidee prestabilito dalla scienza di cui si tratta, se sia
lecito, finché si resta nel deito ordine di idee, di sostituire l'uno all’altro
tutte le volte che occorra servirsi dell'uno di essi. '

7. I valori dei singoli aggregati H, K, ..., che si possono [ormare con
oggetti di J, si rappresenteranno con det simboli, p. es. letterali minu-
scoli @, b, ¢, ..., a,f,7, ..., che si chiameranno numeri-valori o anche
semplicemente numert; giacché il concetio di valore si pud riguardare
come una estensione del concetto di numero. L'uguaglianza o == 3 fra i
simboli numerici «, 3 rappresentanti risp. i valori degli aggregati H, K,
significhera che 1 due aggregati H e K sono fraloro equivalenti. '

8. Passiamo ora ad occuparci delle condizioni cui debbono soddisfare
le due leggi T ed E, affinché sia possibilc di costruire, per 1 numeri-valori
rappresentanti gli aggregati formati con elementi di J, un calcolo aritme-
tico ad iper-arilmetico, 0, come anche diremo pitt brevemente, un’iper-
aritmelica, la quale, ove ne sia dimosirata 1’esistenza, verra da noi de-
signata col simbolo [J, T, E]. )

Noi vedremo che le due leggi T ed E, oltreché soddisfare, ciascuna di
per sé, a certe evenluali condizioni sue proprie, devono anche soddisfare a
certe condizioni che legano I'una all’alira, cosicché esse non sono fra loro
indipendenti.

II.

9. La malematica combinatoria deve innanzi tutto occuparsi di ricer-
care quali possano essere le leggi di equivalenza E matematicamente

(*) Giacché ci occupiamo soltante di numeri razionali.

Droits reservés au Cnam et a ses partenaires



414 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION VI,

accettabili, cioé so‘ddisfaccnl,i a cerli postulati che Uesperienza ha inse-
gnato doversi ammettere in qualsiasi scienza in quanto essa sia suscel-
tibile di una trattazione matematica.

Il primo e piu semplice postulato di qualsiasi legge matematica di
equivalenza si & evidentemente che: due aggregati dichiarati equiva-
lenti ad un terzo esser debbono dichiarali equivalenti fra loro. Se
questo postulato & verificato, ed o, 3, y siano tre numeri-valori quali-
sivogliano, dalle uguaolxanze x=re rﬂﬁ‘y sard lecito di dedurre o = §.

11 second() postulato & : se £ du(’ aggregati A e B sono equivalent!
jra loro, ed H & un altro aggregato qualungue, U aggregato A, H
che nasce dalla riunione degli oggetti di A e diH, ¢ equivalente al-
Paggregato B, A che nasce dalla riunione di Be di H. Questo postu-
fato ¢ di grande importanza, perché, ove esso sia soddisfalto, ci sard lecito
definire la somma di due numeri-valori come segue : per somma o +3
di due numeri valori o e (3, s'intende quel numero che rappresenta
il valore dell’ aggregato ottenuto dalla riunione di un ags geregato
di valore « e di un aggregaio di valore B.

Dall’ essere soddisfatto questo p()stulato non ne viene di conseguenza
che sia anche necessariamente soddisfatto il postulato reciproco. Que-
st’'ultimo deve quindi assumersi come un terzo postulato, cioé : se 'ag-
gregato A, H é equivalente all’ aggregato B, H, ¢ lag gregato A
equivalente all’ aggregato B.

Conveniamo di dire che un aggregato K é multiplo di un aggregato H,
secondo il numero naturale n, quando K sia stato otlenuto dalla riunione,
di n aggregati tutti simili ad H, cio¢ formati da unitd equivalenti, una
per una, alle unita di H. Possiamo dopo ¢1d enunciare, un quarto postu-
lato come segue : se due equimultipli degli aggregati A e B sono equi-
valenti, anche A e B sono fra loro equivalenti. L'importanza di questo
postulato apparira in seguito.

.

10. Venianmo ora alla legge di composizione I considerata in relazione
alla legge E. Essa deve soddistare alla condizione che se Ued U’ sono due
elementi di J fra loro equivalenti, e V é un elemento qualungue di J,
i due composti UV ed U'V esser debbono fra loro equivalenti. Lo
stesso dicast dei due composti VU ¢ VU'. Pertanto, per caralterizzare la
legge T', basta définire, sceti a piacere U e V fra gli oggetli non equiva-
lenti di J, quello di questi stessi oggetti che ¢ équivalente ad UV.

Pit generalmente, se Uy, Us, ..., Un e V,, V,, ..., V, sono due
aggregati qualisivogliano formati con oggetti di J, taliche la legge
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(&3]

dei valori & riconosca U'equivalenza
U,Us .., U=V, Vs, ..., V,,

e C é un elemento qualungue di J, la legge di composizione.dev’ essere
tale che anche le equivalenze

U, C, UsC,y ..., UpC=V,C,V,C, ..., V,C

GU,CUy, ..., Gl = CV,.CV,, ..., CV,

siano fra quelle riconosciute dalla tegge E.
Se sono soddisfatte queste condizioni, che possiamo rappresentare sim-
bolicamente con

(B) EC=E  CE=E,

possiamo définire il prodotto di due nameri-valori «, 3 come segue : per
prodotto afd dei due numeri o, § si intendera il numero che rappre-
senta il valore dell’ aggregato che nasce dal comporre un aggre-
gato di valore o con un aggregato di valore . Per composto dei due
aggregati intendiamo, naturalmente, 'aggregato di tutti gli oggetti che
nascono dal comporre uno qualunque degli elementi del primo aggregato
con uno qualunque degli elementi del secondo.

11. Se, essendo U, V, W tre elementi qualisivogliano diJ, il significato
di U (VW) sia equivalente a quello di (UV)'W, si dira che la legge T
gode della proprieta associativa. K 'manifesto che in tal caso, nell’ iper-
aritmetica [J, T, E] il prodotto di pid numeri godra della proprieta
assoclativa, come nell’ aritmetica ordinana.

Se poi, qualunque siano 1 due elementi U, V diJ, il significato di UV
sia equivalente al significato di VU, si dira che la legge T’ gode della pro-
prietd commutativa. In tal caso il prodotto di due o pit numeri qualisi-
vogliano sara, neil’ iper-aritmetica [J, T, E] indipendente dall’ordine dei
fattor:. ‘

La proprietd distributiva del prodotto di due numeri sussistera poi in
ogni caso, purche la legge T' soddisfi alle condizioni (B).

12. Se la legge T gode della proprietd associaliva, si potrd dire che
gli elementi dit J formano un gruppo, rispetto alla legge T, nel senso
attribuito oggi a questa parola nella teoria delle operazioni (p. es. nella
leoria delle sostituzioni ). ‘ :

In particolare : se J & un ordinario gruppo abeliano, soddisfacente
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alle condiziont (B), esso dara origine ad un’ iper-aritmetica nella
quale Uoperazione diprodotto godra, come nell aritmetica ordinaria,
della proprieta associativa, commutativa e distributiva.

E facile riconoscere che ogni ordinario gruppo abeliano dard luogo
effettivamente a quelche iper-aritmetica; giacché basterd p. es. di
assumere come legge E la legge che non riconosce alcuna equivalenza fra
aggregali che non siano simili.

Da ciascuna delle (B) segue poi che, affinché una legge E sia associabile
ad un gruppo J allo scopo di dare origine ad un’ iper-aritmetica, & neces-
sario che il gruppo J sia isomorfo olvedricamente, ad un gruppo di
sostituzioni, fra gl oggetti di I, il quale lasci inalterato il sistema delle
equivalenze riconoscinte dalle legge E. '

Questo risultato si pud esprimere brevemente dicendo che il sistema
delle equivalenze riconosciute dalla legge ¥ dev’essere invariante
per tulte le sostituzioni di un gruppo isomorfo al gruppo 1.

13. Quando I rappresenta non solamente un insieme di oggetti, ma
anche un gruppo, l'iper-aritmetica, originala da I e da un certo sistema
di equivalenze E, si potra rappresentare pitt semplicemente con [I, E].

Dalle cose dette si pud ora dedurre il teorema : se l é un gruppo qua-
lunque, ed E un sistema qualunque di equivalenze, fra gli aggregati
Jormati cogli elementi di 1, esiste sempre un’ iper-aritmetica [ I, E'],
nella quale loperasione di moltiplicazione gode della proprieta
associativa e distributiva (ed anche della commutativa, se 1 ¢
abeliano), essendo E' un sistema di equivalense, che contiene in sé il
sistema I. Basterd infatti aggiungere ad E tutte le equivalenze deducibili
da quelle di E colle sostituzioni dell’uno e dell’altro gruppo I isomorfo

1

a T, di cul si & sopra parlato.
v

14. Nelle cose sin qui delte si trovano lracciate le linee generali per la
costruzione dei fondamenti, cosi delle infinile iper-aritmetiche, come
dell’aritmetica ordinaria che ne & un caso affatto particolare. Questo modo
di stabilire I primi fondamenti ha il grande vantaggio di mettere in piena
luce Vindole combinatoria della genesi dell’aritmelica ; cioé come essa
derivi spontaneamente da alcuni fatti combinatorii ad éssa preesistenti.
Per questa via viesce manifesto come il concetto di gruppo e quello ad
esso affine di inpariantivita, che soltanto dopo lanti secoli, anzi, si
potrebbe dire, quasi soltanto ai nostri giorni, si sono imposti come i
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fattori piu essenziali dei moderni progressi dell’alta algebra, erano invece
gia latenti negli stessi primiss‘imi principii dell’aritmetica, dai quali sono
organicamente inseparabili. E qui pin che mai il caso di dire, col pro-
verbio, che gli estremi si toccano.

Pertanto & fuori di dubbio che il premettere all'insegnamento dell’arit-
melica, a guisa di preparazione propedeutica, alcuni pochi principii di
matematica combinaloria, per gettare subito dopo i fondamenti
dell’aritmetica stessa in modo conforme alla sua genesi combinatoria, &
la via pia breve e pin sicura per giungere con metodo naturale ed uniforme
alle vette piti eccelse dell’algebra odierna; a quelle vette sulle quali I'ele-
mento combinatorio brilla, gia da oltre mezzo secolo, di luce meridiana.

15. Aggiungeremo ancora, prima di chiudere, che, per il caso particolare
dell’aritmetica ordinaria ( estesa ainumeri negativi e [razionarii), l'insieme
I & costituito da due serie di elementi :

U’F‘? I:S_:n’ IU‘E;J!,
ed
Uy, Ui, Uy,

La legge dei valori E & rappresentata dalle equivalenze :
U, U;=0 , (i=1,2,3 ...)
dove O rappresenla il niente, cioé Vaggregato fillizio che non contiene
alcun oggetto, e dalle equivalenze :
U =0y, Uy (U ..., (Upye-v
dove con (U2) (U3) ... s'intendono oggetti equivalenti ad U,
Quanto poi alla legge dicomposizione I, essa & rappresentata necessaria-

mente {come si potrebbe dimostrare invocando il postutato 1V° sulle
leggi di equivalenza) dal gruppo abeliano :

T TV e TILE V) — .
U‘i}z' U,}‘” *‘U}ura v 3 (.u,v =1, 2, 3,.. )

dove (p.~v) rappresenta quello dei due numeri o ed 1 cui & congrua
la somma p v (mod. 2).

Nora 1*. — Al momento in cui sta per passare alla stampa questa co-
municazione da me fatta nell’ Agosto 1goo, mi sia lecito di aggiungere
che il metodo da me proposto per la trattazione dei primi fondamenti
dell’aritmetica ordinaria ¢ gid-stato da me stesso trasportato nel campo

27

Droits reservés au Cnam et a ses partenaires



418 SECONDE PARTIE. — CONFERENCES ET COMMUNICATIONS. — SECTION VI.
della pratica nel primo fascicolo, che gia sié pubblicato, delle mie Fstitu-
sioni di Analisi algebrica (Napoli, editore B. Pellerano, 1go2).

Sarebbe desiderabile che si facesse altrettanto per 1 Quaternioni,
ormai gid tanto conosciuli, che rappresentano, fra le iper-aritmetiche,
uno del casi particolari pitt semplici ed interessanti.

Nora 2*. — Mi permetto anche di aggiungere, sia pure a semplice
titolo di curiositd, un’ osservazione da me fatta posteriormente alla mia
comunicazione; cioé¢ che 'ordinamento algebrico delle quattro opera-

zioni fondamentali :

Moltiplicazione, Addizione, Sottrazione, Divisione
¢ in certo modo suggerilo, pur restando nel campo dei numeri naturali
propriamente deiti (cioé dei numeri interi e positivi, esclusi Punita e lo
zero) dall’'ordine di successione quantitativa :

- — _a
absa-+ b;a——b;z.
Queste relazioni sono infatti sempre vere se @ e & sono due numeri natu-

rali propricmente detti, per i quali siano possibili le quattro operazioni
prop 1 P q p 1 P

nel campo di questi stessi numeri.
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SUR

LES DIVERS MODES D’APPLICATION

DE LA

METHODE GRAPHIQUE A L’'ART DU CALCUL.
CALCUL GRAPHIQUE ET CALCUL NOMOGRAPHIQUF, ‘

Par Mavrice D’OCAGNE (Paris).

L’art du calcul, en tant qu’il intervient dans les applications d’ordre
technique, a été complétement renouvelé, dans la seconde moitié du
si¢cle qui finit, par la généralisation de l'emploi des méthodes gra-
phiques.

Cette rapide et vaste extension porte en soi la preuve des avantages pra-
tiques qui s’altachent a de telles méthodes. Les hommes techniques, sou-
cleux avant tout d’économiser leur temps et leur peine, ne se laissent
point séduire par la beauté intrinséque des théories qu’on leur propose;
arriver par la voie la plus commode, la plus rapide, ol se rencontrent le
moins de chances d'erreurs, au résultat dont ils ont besoin, telle est, en
cet ordre d’idées, leur seule préoccupation. La faveur si générale qu’ont
trouvée auprés d’eux les procédés graphiques prouve donc que ceux-ci
sont doués de tels avantages. Aussi, pen & peu, une place a-t-elle é1é faite
a ces procédés dans l'enseignement des écoles techniques. Mais ici, les
applications ont, peut-on dire, précédé la théorie. C'est des solutions
particuliéres imaginées en vue de problémes spéciaux que se sont dégagés
4 la longue les principes généraux susceptibles d’'un mode d’exposition
didactique. II a pu en résulter certaine confusion d’idées que l'on ren-
contre dans divers écrits, qu'il nous a déja été donné de signaler & plu-
sieurs reprises, mais sur laquelle nous croyons utile d’insister de nouvean
afin, si possible, de la dissiper délinilivement.

L’idée dont on doit se bien pénélrer pour éviter celte corfusion, c’est
que les divers procédés de calcul qui reposent sur ’emploi du graphique
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dérivent de deux modes généraux, parfaitement distincts I'un de 'autre,
de figurer par le dessin les opérations arithmétiques dont 'ensemble exé-
cuté sur certains nombres constitue le calcul.

En premier lieu, ayant représenté les divers nombres intervenant
dans le caleul par certains éléments géoméiriques aisément mesu-
rables dont ils constituent précisément les valeurs, avec une certaine
unité convenue, on peut effectuer sur ces éléments une construction
géométrigue aboutissant @ un élément de méme espéce dont la gran-
deur mesurée avec la méme unité fasse précisément connaitre le ré-
sultat de caleul cherché.

Ces éléments géomélriques seront presque Loujours des segments de
droite, parfois des angles, plus rarement des aires simples, particuliére-
ment des aires reclangulaires. ‘

L’ensemble de ces procédés constitue le Calcul graphique proprement
dit dont, en 1840, sous le titre bien choisi de Calcul par le trait, Cou-
sinery a, pour la premiére fois, donné un exposé de quelque généralité.

A tire d’exemple, voici une élégante solution par le trait, due a
M. Lill, de I'équation du second degré

2+ pxr -+ q =0

Ayant pris deux axes rectangulaires Oz et Oy, marquons sur I'axe Oy

Fig. 1.

le point A dont l'ordonnée est égale & 1'unité de longueur choisie, puis
le point B dont les coordonnées, mesurées avec cette unité, sont

OH=—p, HB=gq.

Le cercle déerit sur AB comme diamétre coupe I'axe Oz en des points
dont les abscisses OM et ON, mesurées toujours avec la méme unité, sont

les racines de I'équation proposée.
L’application la plus vaste, la plus importante et la mieux coordonnde
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du calcul graphique est celle qui vise la recherche des conditions de sta-
bilité et de résistance des constructions et qui a donné naissance 2 la sta-
tigue graphigue de Culmann.

Encore convient-il deremarquer le caractére propre de cette branche spé-
ciale du calcul graphique. Ici, on n’a pas & substituer, comme dans le cas
général, a desnombres soumisau calcul, des segments de droite mesurés par
ces nombres, sur lesquels on ait & effectuer une certaine construction. Les
données sont fournies sous la forme méme de tels segments dont non seu-
lement la longueur mais encore la position relative intéresse la question.
L’objet de la statique graphique est de déduire de ces données graphiques
certains résullals de méme forme par des tracés dérivant systématique-
ment de certaines notions fondamentales comme le polygone des forces
et le polygone funiculaire. Ces résultats ne seraient atieints sans cela
quau prix de calculs longs et fastidieux dont les tracés effectués four-
nissent I’équivalent graphique et, par 13, le sujet se rattache au calcul gé-
néral par le trait; mais [a question, comme on voit, est d'essence un peu
différente.

Passons au second mode d’intervention de la méthode graphique dans
le domaine du calcul. Il ne s’agit plus ici de combiner par une construction
des éléments géométriques dont les grandeurs représentent des nombres
soumis i certain calcul, mais de fournir une sorte d'image des lois mathé-
matiques énoncées symboliquement dans les formules algébriques, de
fagon & avoir, par une simple lecture, le résultat fourni par ces formules
pour des données numériques quelconques. '

On congoil que si ’on considére les cotes d’un systéme simplement
infini d’éléments géométrigues quelcongues (points, droites, courbes)
comme les valeurs pouvant éire atiribuées & une variable intervenant
dans une éguation, et si les systémes cotés correspondant aux diverses
variables liées par cette équation coexistent soit sur un méme plan,
soit sur divers plans superposés dont on peut faire varier la position
relative, le lien constitué entre ces variables par l'équation pourra
se traduire par une relation simple de position entre les éléments
cotés correspondants, en sorte qu’étant connues les valeurs de toutes
ces variables moins une on n’aura, pour avoir celle de la derniére,
qu’a faire une lecture sur le tableau formé par Uensemble des sys-
temes cotés en observant la relation de position qui équivaut & Uéqua-
tion considérée, ‘

Par exemple, si trois systémes de lignes cotées coexistent sur un méme
plan, la relation de position la plus simple & établir entre lignes prises
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respectivement dans ces trois systémes sera de passer par un méme point.
Les coles correspondanles satisferont alors & une certaine équation dont
on aura ainsi la représentation.

L’ensemble de ces systémes d’éléments colés, complété par la connais-
sance de la relalion de position & établir entre eux, constitne un abague
ou nomogramme (') del'dquation proposée. La Nomographie fait con-
naitre tous les types possibles de nomogrammes applicables a des équa-
tions & un nombre quelconque de variables (2).

Nolons en passant que celle fagon trés générale d’envisager les nomo-
grammes permet de classer parmi eux les régles a calcul si répandues
aujourd’hui dans la pratique (3). -

On voit assez, aprés ce qui vient d'étre dit, en quoi le calcul nomo-
graphique se différencie du calcul graphique proprement dit : voici, par
exemple, pour rendre les idées plus claires, une solution nomographique
de Véquation du second degré écrite plus haut :

Aux valeurs de p correspondent les cotes des points de I'axe de gauche
dela fig. 2, aux valeurs de ¢ les cotes des points de I'axe de droite, aux
valeurs des racines positives les cotes des points de la branche d’hyper-
bole, points obtenus d’ailleurs individuellement, pour une cote donnée,
par une construction linéaire des plus simples (#). La relation de posi-
tion consiste dans I'alignement des points (p), (g) et (z) sur une méme
droite.

Alors que le calcul graphique exige une épure pour chaque état parti-
culier des données, le calcul nomographique fournit & la fois le résultat
pour tous les états possibles des données, entre les limites, bien entendu,
des graduations du nomogramme.

Ce n'est pas & dire qu’il existe entre ces deux genres de solution une

(1) Le terme d’abaque, proposé d’abord pour les tableaux graphiques offrant la
disposition d'un damier (a6af), s’est trouvé, par l'usage, étendu 3 toute espéce
de mode de représentation cotée des équations. M. le professeur Schilling, de
I'Université de Gottingen, qui a puissamment contribué a faire connaitre la théorie
nouvelle en Allemagne (et qui a méme publié en sa langue un résumé de 'Ouvrage
cité ci-dessous), a proposé de substituer a ce terme celui de romogramme, éty-
mologiquement bien plus général. Nous nous rallions bien volontiers & cette pro-
position qui n’est venue a notre connaissance qu’au moment de l'impression de la
présente Note (janvier 19o2).

() Traité de Nomographie, par Mavrice D'OcaeNe; Paris, Gauthiers-Villars;
1899.

(3) Loc cit., Ch. V, Sect. II.

(%) Loe. cit., p. 184.
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barriére infranchissable rendant impossible la réduction de 'un & I'autre.
En considérant les lieux géométriques des points qui interviennent dans
une construction lorsque, conservant la méme valeur pour une des don-
nées, on suppose que les aulres varient, on est amené 4 un nomogramme.
Un exemple bien simple précisera ce qu'il faut entendre par l&. Soit &
construire la formule

52 = x%-1- 2.

Prenant sur l'axe Oz le segment OA == z; surl'axe Oy, perpendiculaire

Fig. 2.
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au premier, le segment OB ==y, et élevant en A et B, respectivement
a Oz eta Oy, des perpendiculaires qui se coupent en P, on a OP = 3.
Or, pour z restant constant, le point P décrit une perpendiculaire & Oz;
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pour » constant une perpendiculaire & Oy; pour z constant un cercle de
centre O. De ld un abaque constitué par un quadrillage & axes paralléles
4 Oz et & Oy sur lequel sont tracés des cercles de centre O.

On ne peut pas dire que réciproquement tout nomogramme soit de
nature a donner naissance & une construction par le trait, attendu d’une
part qu’il y intervient souvent des lignes autres que la droite ou le cercle,
d’autre part que des graduations ne sont pas toujours réductibles a de
simples mesures de segments de droite ou d’angles, les seules qui soient
admissibles sur une épure. Ces graduations peuvent dériver de certaines
fonctions transcendantes, de la fonction logarithmique en particulier, ou
méme de certaines lois purement empirigques (*), ce qui, par parenthése,
permet 4 la Nomographie de parcourir un champ bien plus étendu.

Mais s'il est possible d’établir des ponts d’un domaine & l'antre, il n’en
resle pas moins acquis qu’ils sont essentiellement distinets. Il est certes
bien naturel que I'analogie du but poursuivi d'une part par le calcul gra-
phique, de 'autre par le calcul nomographique, les rapproche parfois
dans les programmes d’études des écoles techniques; mais il convient,
pour le bon ordre et la logique, de maintenir 4 chacun d’eux son autono-

mie propre en faisant ressortir nettement la différence de leurs points
de vue.

(1) Loc. cit., Ch. 1II, Sect. IV.
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SUR LUTILITE

DE LA

PUBLICATION DE CERTAINS RENSEIGNEMENTS

BIBLIOGRAPHIQUES EN MATHEMATIQUES

Par M. Eo. MAILLET (Panis).

Il y a en Mathématiques un grand nombre de sujets a traiter, que I'on
peut aborder en ne lisant qu’un nombre restreint de Mémoires ou Livres.
L'indication de ces sujets et des Mémoires ou Livres correspondants pour-
rait économiser beaucoup de temps a bien des Mathématiciens.

D’une part, ceux qui désirent s’occuper de plusieurs branches des Mathé-
matiques le feraient avec plus de facilité. Des indications de ce genre
pourraient éviler 4 quelques-uns I'ennui de faire des recherches biblio-
graphiques inutiles, ou de s’apercevoir aprés coup que les résultats qu'ils”
ont obtenus sont déja connus en tout ou en partie. Ce serail en tout cas
pour eux une économie de temps. :

D’autre part, en présence du développement croissant des Travaux
mathématiques, bien des amateurs et des débutants qui ont d’autres occu-
pations, qui sont parfois effrayés et rebutés par les recherches bibliogra-
phiques, et sont comme perdus dans une bibliothéque un peu considé-
rable, s'ils en ont une 4 leur disposition, qui lisent un peu au hasard et
qui ont beaucoup de peine pour trouver un sujet intéressant & traiter, sont
conduits & abandonner I'étude des Mathémaliques ou n’arrivent & rien.

Les indications dont nous avons parlé plus haut éviteraient & ces ama-
teurs et & ces débutants les lectures en partie inutiles, les tAitonnements et
le découragement qui peut en résulter. Elles pourraient développer leur
gott pour les Mathématiques, surtout s'ils réussissent une premiére fois,
et augmenter leur nombre.

Les démarches personnelles en vue de renseignements verbaux peuvent
bien remédier en partie 4 ces inconvénients; mais les amateurs et surtout
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les débutants ne savent pas la plupart du temps qui consalter; de plus les
mémes renseignements, une fois publiés, s’adresseraient a tous les Ma-
thématiciens et non 3 un seul.

On a déja fait bien des choses dans cetle voie : il nous suffira de citer
par exemple le Répertoire bibliographique des Sciences mathéma-
tiques, le Bulletin des Sciences mathématiques de M. Darboux, le
Jahrbuch iiber die Fortschritte der Mathematik, le Recuell Scientia,
U'Intermédiaire des Mathématiciens, etc.

Certains Traités ou Mémoires renferment parfois des indications de
cetle nature, plus ou moins complétes. Mais 1l faul penser ales consulter.

Pour répondre aux veeux que nous émettons ici il faudrait, croyons-nous,
pour chaque sujet d’étude, une Notice courte, avec les renseignements
bibliographiques indispensables, les indications du sujet a traiter, de
son degré de difficulté, et des langues & connaitre. Certains journaux,
Vintermédiaire des Mathématiciens oul’ E'nseignement mathématique,
publieraient sans doute volontiers une pareille Notice; on pourrait par la
suite la compléter chaque fois que la question ferait un pas important.

Au bout d’un certain temps, un Recueil de pareils sujets pourrait étre
publié par un éditeur.

Pour rendre plus claire nolre pensée et la préciser, nous ne croyons
pouvoir faire mieux que de prendre un exemple; on nous excusera d’y
citer nos Travaux : 1l est bien évident que ce sont souvent ceux qui ont
publié des Mémoires sur une (uestion qui peuvent indiquer un sujet a
traiter s’y rapporlant.

Dernier théoréme de Fermat : a7+ y" £ 5™,

-Fermat a énoncé sans démonstration cette propriété :

~« L’équation indéterminée &™ - y™=— sm est impossible en nombres
entiers quand 77 est entier > 2. »

Ce théoréme n'est pas encore complélement démontré. Pour en aborder
I'étude, lire :

Serret, Algébre supérieure; Legendre, Mém. de UInstitut, 1823;
Dirichlet et Dedekind, Zahlentheorie et Bachmaun, Theorie der Kreis-
theilung; ou, au lieu de ces deux livres, Bachmann, Zahlentheorie;
Kummer, J. de Math., t. XVI, J. fir Math., 1837, 1846, 1847, 1850,
et Abhandlungen der Wiss. zu Berlin, 1857 ; Mirimanofl, J. fir Math.;
Hilbert, Maillet, Mém. de I’Assoc. frang. pour U’avanc. des Sciences,
1897, Compt. rend. de I’ Acad. des Sc., juillet 18gg et Acta mat., 1goo.

I faut pouvoir lire suffisamment U’allemand et le francais.
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On peut se contenter d'essayer de démontrer que 2™ - 3 =z
(A nombre premier) est impossible en nombres entiers premiers entre
eux pour Loute valeur de ¢ supérieure & une certaine limite fonction
de ) : ce théoréme est déja établi quand z, y, 5 sont premiers entre eux
et & . Le sujet est trés difficile.

Enfin I'on peut étudier plus généralerent les équations ax* + by* = cz*
ou d'autres de méme forme (*).

(') Desindications de cette nature pour un grand nombre de points de la science
mathématique difficiles ou non, et résumant, en guelques lignes, I'état de chaque
question et les progrés 4 accomplir, seraient insérées trés volontiers par I'Jntermd-
diaire des Mathématiciens.
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SUR LA

LANGUE INTERNATIONALE AUXILIAIRE

DE

M. LE DoCTEUR ZAMENHOF, CONNUE SOUS LE NOM D  « ESPERANTO »,

Par M. Ca. MERAY (Dwox).

(Communication présentée par M. C.-A. LarsanT.)

Devant un Gongrés de Mathématiciens, il serait puéril d’insister sur la
trés grande incommodité qu’infligent aux savants, plus encore qu’au com-
mun des hommes civilisés, la diversité des langues et la difficulté de leur
acquisition pour les étrangers. Cette situation, que les hommes de science
connaissent trop et dont tous ont souffert plus ou moins, a fait naitre
depuis bien longtemps le besoin de quelque idiome conventionnel, pou-
vant servir d’interpréte commun entre les gens un peu instruits de tous
pays, quine parlent pas une méme langue naturelle. Ce besoin est si ancien,
si certain, que dés I’époque ou la guerre a cessé d’étre 'unique préoccu-
pation des peuples européens dans leurs rapports les uns avec les autres,
il a cherché satisfaction et en a trouvé un commencement dans I'emploi
du latin. Il est si persistant, que, malgré la difficulté propre du latin, qui
est trés grande, malgré sa pauvreté devenue excessive relativement aux
exigences de la pensée.moderne, cette langue, qui pourtant s’était laissée
mourir, n'est pas encore tout & fait abandonnée par la littérature scienti-
fique internationale. L'acuité croissante du méme besoin, I'insuffisance du
latin en méme temps, sont surtout démontrées par les 150 langues inter-
nationales ayant, d’aprés les érudits, existé, au moins en projet, pendant
le cours des deux derniers siécles, par les langues nouvelles de ce genre
qu'a celte heure I'imagination des invenleurs ne se lasse pas encore de
nous proposer, par l'histoire assez récente du Volapuk, I'une de ces
langues artificielles, ayant certes des qualités, qui, avant de succomber
sous le poids de graves défauts, a eu un commencement de diffusion et a
joul un instant d’une trés grande faveur. '
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La langue Esperanto, créée par M. le D Zamenhof, de Varsovie, et
publiée en 1887, fail en ce moment, dans son exlension, des progrés de jour
en jour plus marqués, el ses adeples, lant nouveaux qu'anciens, sont una-
nimes & proclamer qu’enfin elle a apporté Ia solution, si longtemps désirée
et infructueusement poursuivie, 4 ce probléme capital d’une langue inter-
nationale auxiliaire. M’étant rangé de tous points & cette opinion, dés
mes premiers pas faits dans l’etude extraordinairement facile de cette
langue dont un hasard dalant de quelques mois m’avait révélé I'existence,
élude entreprise, je peux le dire, par simple curiosité et avec beaucoup
de scepticisme, puis m’étant apergu avec la derniére surprise qu'elle était
absolument ignorée des savants, j’ai cherché aussitét a altirer leur atten-
tion sur elle. Certains esprits, dominés par une conception irréfléchie et
imparfaite du réle raisonnablement assignable & une langue artificielle
-auxiliaire, ont accueilli mes suggestions avec une grande défiance qui
pourtant n’a pas dit encore son dernier mot. D’autres, subissant peut-étre
'impression trop ficheuse qu’a laissée 1’échec retentissant du Volapulk,
butés, en tout cas, & I'idée fixe qu'un probléme creusé si longtemps sans
succes ne pouvait qu’étre insoluble, se sont contentés de leur opposer la
-question préalable, en souriant méme quelquefois comme a 'annonce de
la découverte du mouvement perpétuel. Mais j'ai eu aussi la satisfaction
d’en rencontrer quelques-uns, qui ont bien voulu m’écouter, qui, plus
prudents et avisés que les aulres, ont tenu, comme je 'avais fait, & jeter
les yeux sur 'Esperanto, et qui, aprés cet examen, n’ont pas hésité plus
-que moi & le juger capable de rendre trés promptement les plus grands
services aux sciences, comme & toutes affaires ayant un cdtéinternational.

Les points suivants sont ceux sur iesquels il me parait le plus désirable
que I'attention du Congrés s’arréte.

I. La facilité de I'acquisition de I'Esperanto, facilité incomparable et si
grande qu’elle ne manque jamais de surprendre et de charmer les nou-
veaux adeptes, méme prévenus par les affirmations les plus optimistes.

II. L’élat actuel de la diffusion del'Esperanto et ses progrés quotidiens;
réalisés, pour la plus grande partie, par des recrues ne possédant guére
qu’une instruction moyenne, ils semblent ne plus attendre qu'une impul-
sion venant d’an peu haut, pour passer rapidement au point ol la langue
rendra, dans leur plénitude, les services variés qui sont altendus d’elle.

I11. qussete des préjugés consistant a croire que toute langue non
maternelle est forcément difficile, et surtout, qu'une langue internationale
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auxiliaire, ne peut fonctionner utilement, & moins d’étre devenue uni-

verselle el exclusive & moins d’étre comprise et parlée méme par les
classes illettrées de la Société.

IV. Inaputude du latin & reprendre désormais le réle de langue inter-
nationale auxiliaire, que la force des choses lai a pe{1 4 peu arraché.

Je termine en signalant au Congrés I'existence d’appréciations des plus
favorables qui ont été formulées sur I'Esperanto par des hommes d’une
trés haute valeur, parmi lesquels : M. Max Muller, Associé étranger de
I’Académie des Inscriptions et Belles-Lettres; M. Ernest Naville, Associé
éiranger de ’Académie des Sciences morales et politiques; M. G. Picot,
Secrétaire perpétuel de cette derniére Académie ; M. L. Tolstof, le célehre
écrivain russe, ete.

P.-S. — Depuis Ia date de ces lignes, I'Esperanto a gagné un terrain
presque incroyable, & commencer par une estime sérieuse et loujours
grandissante dans les milieux & haute culture intellectuelle, ot naguére
son nom méme étaitinconnu. Les faits suivants, qui sont matériels, suf-
lisent 4 en marquer I'étendue : en juin dernier, les éditions primitives des
Manuels delalangue, jusque-la d’un écoulement fort calme, ont éLé tout 4
coup épuisées par I'enlévement de 1500 ‘séries demandées en moins de
trois mois; a la hate on éerit, la maison Hachette et Ci° cette fois imprime
une nouvelle série bien meilleure, et ses deux derniers numéros élaient
encore sous presse que le tirage du premier était de nouveau épuisé.
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LES

POSTULATS DE LA GEOMETRIE
DANS L’ENSEIGNEMENT,

Pir G. VERONESE (Pavous).

{ Traduction de MM. R. BricarD et E. Durorcy.)

Les recherches sur les principes de la Géométrie ont, dans le cours de
ce siecle, enrichi la Science de nouveaux résultats importants, de méthodes
générales et fécondes, et ont de plus ouvert aux philosophes de nouvelles
voies d'investigations sur la théorie de la connaissance des concepts
fondamentanx des Mathématiques; doivent-ils rester sans influence sur
Penseignement de la Géométrie rationnelle élémentaire, lorsque le but
méme de cel enseignement est de contribuer i préparer I'esprit aux
£tudes supérieures, en 'habituant au raisonnement rigoureux ?

Depuis que ces recherches ont mis en évidence les défants du texte
d’Euclide, qui avait servi durant plusiears siécles a I’éducation mathéma-
tique de la jeunesse, si 'on veuat faire un Ouvrage sérieux, lémoignant de
quelque progrés, ne doit-on pas se préoccuper de la nature, du réle des
postulats, de leurs relations intimes et des liens qui unissent les diverses
théories et les méthodes varides que ces recherches ont fait éclore ? Pour-
tant, si Euclide fut lui-méme un grand géoméire, n’est-ce pas précisé-
ment parce que l'ouvrage qu'il composa répondait aux vues de son
époque? Et la fortune qui accueillit en France et ailleurs les Eléments
de Legendre, peut-éire fut-elle due surtoul i la nouveauté des méthodes
et des idées qu’ils contiennent. Quant & ceux qui affirment aujourd’hui
que, pour écrire un nouveau trailé, on n’a pas a se préoccuper d’études
critiques sur les principes de la Géométrie, ils devraient prouver que I'en-
seignement élémenlaire est parvenu & son plus haut degré de perfection.
D’ailleurs, méme sans avoir la patience ou I'audace de composer un nou-
weau traité, le professeur qui voudra néanmoins en choisir un bon a

28
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I'usage de ses éléves, comment pourra-t-il convenablement guider son
choix, s’il ne s’intéresse pas lui-méme 3 ces questions? Toules les dis-
cussions auxquelles a donné lieu le texte d’Euclide démontrent clairement
que le probleme didactique dépend du probléme scientifique relatif aux
postulats. Nous parlons, bien entendu, du probléme didactique qui se pose
dans l'enseignement classique, dont 'objectif est le méme dans tous les
pays civilisés, et qui s’occupe partout des mémes sujets, a part quelques
varialions, d’une mation & l'autre, portant sur la quantité des matiéres,
mais non sur la qualité. Quant aux écoles spéciales, qui préparent aux
hautes études techniques, les Malhématiques doivent, plus encore que dans
Ienseignement classique (ol les études littéraires sont plus développées),
v contribuer & la formation de 'esprit et au culte du vrai. Concilier les
exigences de la Science, celles de I'enseignement, et aussi celles de I'in-
telligence moyenne des éléves, tel est donc, selon nous, le but que doit
se proposer l'auteur d'un nouveau traité de Géométrie élémentaire. Il
est nécessaire, enfin, que les professeurs aient foi dans le progrés de la
Science, et qu'ils se débarrassent de préjugés : car, dans toutes les parties
des Mathématiques, il n’en est pas ol les préjugés soient plus solidement
enracinés que dans celle des principes, ou il est si facile de travestir les
pensées des autres, que ce soit & cause de obscurité ou sonl incon-
sciemment tombés quelques auteurs illustres, ou encore par suite d'une
critique peu attentive et peu consciencieuse. Et il en est surtout ainsi
dans l'enseignement, par suite de I'habitude que prennent certains pro-
fesseurs d’enseigner aveuglément les Mathématiques 4 l'aide d’'une mé-
thode donnée, ce qui les met dans I'impossibilité de se renocuveler et les
pousse 4 mépriser le nouveau. _ ‘

Comment donc concilier les exigences de la Science el de 'enseigne-
ment? Il sera lout d’abord avantageux de rechercher & quel point on
y est parvenu jusqu'ici, celle recherche restant mieux déterminée et plus
simple. Ce fut Legendre qui, le premier depuis Euclide, tenta dans ses
Eléments une réforme de I'enseignement de la Géométrie, et ces Elé-
ments, qui datent de I'époque de la Révolution francaise, furent long-
temps comme le nouveau code de la Géométrie élémentaire, méme en
Italie; aujourd’hui encore, leur influence est manifeste sur les traités
francais modernes dont j'ai connaissance, et dont quelques-uns encore
sont adoplés en Italie dans les écoles techniques. Mais, malgré tout, on
ne peut dire que Legendre ait évité les défauts du texte d’Euclide, et
méme, comme l'observe Houel, qui, en France, étudia passionnément les
principes de la Géométrie, el dont l'opinion sur ce sujet fait autorité,
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Legendre altéra la beauté de la méthode grecque .par l'introduction de
procédés arithmétiques. C'est pour éviter cel inconvénient qu'en Tialie
les illustres mathématiciens Betti et Brioschi firent une tradoction des
Eléments I'Euclide et que le texte euclidien fut officiellement preserit
dans lenseignement classique; on n'avait pas d’ailleurs principalement
en vue l'adoption de ce texte, mais on désirait surtout I'introduction de
Ja méthode qui respecte la rigueur scientifique, et qui, jusqu’a la théorie
de la mesure, exclut du raisonnement géométrique lout soutien arithmé-
tique ou algébrique; et ce fut sage, méme si le texte d’Euclide ne répon-
dait plus aux exigences de la Science et de I'enseignement modernes. 1l
ne me semble d’ailleurs pas que les autres traités, ot sont suivies les
méthodes d’Euclide, ou celles de Legendre, ou d’autres encore, soient
parvenus 4 cette conciliation entre la Science et I'enseignement que dési-
reraient tant de professeurs, et qu’il est possible d’atteindre.

Dans la préface de mes fondements ('), je distingue les sciences ma-
thématiques en sciences formelles et en sciences expérimentales. Les
premiéres comprennent I'Arithmétique et les Mathématiques pures en
général, car; par exemple, dans sa formation primitive, I'idée de nombre
provient de fa faculté de compter des objets, qui peuvent étre purement
abstraits; ces sciences envisagent des étres qu'il n’est pas nécessaire,
pour pouvoir les déterminer mathémuliquement, de représenter en dehors
de la penste par des objets qui en seraient les images (bien entendu, en
dehors de toute opinion philosophique sur P'origine des idées mathéma-
tiques abstraites). La logique pure est, elle aussi, une science formelle.
Au contlraire, les sciences qui s'occupent d’objets qui existent en réalité,
en dehors de la pensée, ou d’objets abstraits analogues pouvant se repré-
senter en dehors de la pensée, sont des sciences expérimentales. Tandis
q-ue, dans les sciences formelles, la vérité résulte de ’accord avec diverses
conceptions primitives, toules reconnues comme vraies, dans les sciences
expérimentales, elle provient de I"accord entre I'observation et la pensée,
de sorle que ces sciences sont basées sur quelques vérités primitives
dont I'intuition accompagne la perception de cerlains faits, mais qui
pne peuvent se déduire les unes des autres. Ces vérités primilives sont
les axiomes proprement dits. Par exemple, la proposition suivante
« la droite, dans le champ de notre observation extérieure, est déter-
minée par deux quelconques de ses poinls » est un axiome, lorsqu’elle
n'est pas réductible aux prémisses. Il y a encore en Géomeélrie d'autres

(') Traduction en allemand de A. Scuepe. Leipzig, Teubner, 18g4.
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axiomes, qui résultent aussi de I'observation directe des objets exté-
rieurs, dans le champ limité de notre observation, mais que nous éten-
dons ensuite aux objets, hors de notre portée effective, qui se trouvent
en dehors de ce champ : c’est ce qui arrive pour 'axiome cité tout
I'heure et relatif 4 la droite, lorsque nous I'élendons & une droite illi-
mitée, c’est-d-dire 4 tout 'espace, qne nous ne pourrions observer. Il y
a enfin d’autres axiomes qui ne se rapportent plus qu’aux objets exté-
rieurs au champ géométrique correspondant 2 celui de notre observa-
tion : par exemple, ceux qui concernent le point déterminé par une
répartition de Dedekind, le point qui sert 4 la construction de 'espace &
quatre dimensions, elc. : ces axiomes n'ont plus alors qu'une existence
abstraite. Aussi est-il nécessaire, pour les axiomes des deux derniéres
espéces, de prouver leur compatibililé avec les axiomes proprement dits
qui dérivent de I'observation directe. Les axiomes des deux derniéres
catégories sont plus proprement des postulats ou des hypothéses. Il est
clair qu’au nombre des axiomes d’une science expérimentale il est inutile
de placer les principes ¢ui appartiennent a la logique pure et sont la
base de tout raisonnement, comme, par exemple, le principe de contra-
diction. Donc, en résumé : les axiomes et les postulats ou hypothéses
géométriques sont des propositions indémontrables ; les unes dérivent
d’'une maniére évidente de [’observation directe, les autres ne sont
en contradiction ni avec les précédentes, ni entre elles.

Les sciences formelles sont des sciences exactes. Nous considérons
aussi la Géométrie et la Mécanique rationnelle comme des sciences
exactes, parce qu’aux objets concrels qui ont servi i déterminer les
axiomes proprement dils, notre esprit substitue des formes abstraites,
pour lesquels la vérité se démontre au moyen des axiomes, indépendam-
ment de lear signification effective. Ce n’est donc pas sans raison que la
Géométrie et la Mécanique rationnelle sont considérées comme des
mathématiques pures. Il va de soi qu'une science est d’autant plus simple
et exacte que les axiomes sont plus simples et moins nombreux. On
pénétre de suite dans le domaine de I'observation,- lorsqu’on cherche &
établir empiriquement la vérité, en opérant sur les objets primitifs,
quand la réalité extérieure le permet, d’une maniére analogue & celle
qu’on emploie pour opérer sur les formes abstraites auxquelles ces objets
ont donné naissance. Par exemple, dans le plan euclidien, deux droites
quelconques non paralléles se rencontrent en un point; mais, dans le
champ de 'observation extérieure; il existe aussi sur un plan des droites
non paralléles, mais qui, méme prolongées en restant dans ce champ, ne
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se rencontrent pas. Mais st cerlaines opéralions sont possibles dans ce
champ de l'observation, avec certains objets, I'impossibilité pratique d'en
faire d’autres avec d'autres ohjets, dans le méme champ ou en dehors de
lui, n’infirme en rien la vérité acquise dans un domaine abstrait plus
étendu. Au contraire, je distingue neltement au point de vue scienti-
fique la Géométrie de ses applications pratiques, et je trouve des axiomes
qui ne sont pas nécessaires au développement logique de la Géomélrie,
mais le sont i ses applications pratiques : par exemple, qu’un corps
peut se mouvoir sans déformation, ou que l'espace physique est & trois
dimensions.

Dans un traité de Géométrie élémentaire, les postulats devront, autant
que possible, satisfaire aux conditions précédemment énoncées, mais il est
certain qu'ils ne pourront satisfaire a toutes au méme degré. Par exemple,
dans les recherches scientifiques, il conviendra de disséquer avec soin les
postulats, pour montrer l'indépendance de leurs diverses parlies; mais une
telle méthode serait antididactique : car, dans I'enseignement, il est
nécessaire d’attirer I'attention des éleves sur les propositions principales,
afin qu’ils en conservent une impression forte et durable. Et c’est non
sealement vrai pour les postulats, mais aussi pour les définitions et pour
les théorémes. Utile aux recherches scientifiques, la critique doit étre
exclue de I'enseignement, car elle aménerait de la confusion dans Pesprit
des éléves, bien qu'il soit nécessaire qu’elle ait occupé lauteur méme
d’on traité ou le maitre qui en choisit un pour son enseignement. Aussi
ne peul-on donner les postulats en ne les appliquant d’abord qu’a un
champ correspondant & celui de notre observation, et en démontrant
ensuite qu’on peut les admettre pour tout I'espace : ce serait, dés L'origine,
introduire trop de distinctions & faire. Par exemple, dans le plan, il
faudrait distinguer de suite les droites qui se coupent, celles qui ne se
coupent pas, mais ne sont pas paralleles, et enfin les droites paralléles.
Mais, d’un autre ¢6té, il faut que le professeur puisse dire qu’en admet-
tant les postulats pour une étendue-limitée de l’espace, on peut les
admettre ou les démontrer pour tout I'espace. Et, dés lors, on voit de
suile que le postulat d’Euclide relalif aux paralléles, et basé sur la défi-
nition commune des paralléles, comme étant deux droites. da plan qui,
prolongées indéfiniment, ne se rencontrent pas, n’est pas une proposition
déduite de l'observation directe, puisque personne n’a jamais vu deux
telles droites.

J’ai dit que, scientifiquement, les postulats doivent étre compatibles
et indépendants. La condition de compatibilité, c’est-a-dire de non
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contradiction, est encore nécessaire dans I’enseignement, bien qu'on ne
puisse la démontrer par un raisonnement didactique, pour les postulats
qui ne dérivent pas de I'observation directe. L'indépendance des pos-
tulats simples n’est pas seulement une question d'é/égance, mais aussi
de précision. En supposant qu’'un axiome (ou un groupe d’axiomes), A,
suffise & définir une figure, si I'on se donnail en outre comme propriété de
cette figure un aulre axiome B dépendant de A, on croirail que cela
signifie qu’il y a diverses sortes de figures satisfaisant aux conditions A,
et que c’est pour distinguer une de ces figures qu’on a eu recours a
Pautre condition B, ce qui serait absurde : ce défaut serail par exemple
manifeste dans une définition telle que celle-ci : un triangle isoscéle
est un triangle tel que deux cOiés soient égaux ainsi que les angles
opposés & ces c6tés. On le retrouve encore, ainsi que l'a observé
Gauss lui-méme, dans 'axiome qui sert communément & définir le
plan, et qui est le suivant : une droite qui a deux points communs
avec un plan y est située tout entiére; en effet le plan peut étre construit,
dans le systéme euclidien, en joignant un point aux divers points d'une
droite, et en menant par le point la parallele i ceite droite, ou bien
au moyen d’un triangle et d'un point intérieur; les propriétés du plan
devront toutes dériver des éléments de sa construction, et, par suite, des
postulats qui déterminent ces éléments. Malheureusement, I'indépendance
des axiomes est difficile & obtenir, méme scientifiquement, car ils doivent
étre décomposés en leurs parties simples. Par exemple, le postulat,
d’aprés lequel la droite est déterminée dans le systéme euclidien par
deux quelconques de ses points, contient autant de postulats qu'il existe
de couples de points sur la droite. J'ai, en effet, démontré dans mes Fon-
dements que, au moyen de postulats convenables, si 'on admet le postulat
précédent pour un couple et pour les couples égaux, ce postulat se
démontre pour tous les autres couples dans les systémes d’Euclide et de
Lobaauschewsky1 tandis que dans le systéme de Riemann (sphérique), il
se présente encore des couples qui ne déterminent pas la droite. On
voit donc que I'indépendance des postulats, au véritable sens du mot,
est encore un but idéal, dont on ne cessera de se rapprocher, mais que
personne encore n’a pu atteindre. H. Grassmann disait, non sans raison,
que la Science se développe dans deux sens, ’élévation et la profondeur,
également illimitées et obscures. Mais, alors méme qu'il arrive qu’au
point de vue scientifique les postulats d’un systéme donné ne sont pas
toujours tous indépendants, on est encore souvent obligé dans 'enseigne-
ment d’y adjoindre d’autres postulats, dépendant des premiers, pour
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éviter de trop morceler les propositions fondamentales et ne pas aug-
menter considérablement les matiéres, et pour ne pas étre astreint a des
démonstrations qui, bien qu’élémentaires, n’en sont pas moins Lrop com-
pliquées pour des études scolaires. Mais si ces raisons forcent a intro-
duire ainsi, dans I'enseignement de la Géométrie rationnelle, plus de
postulats qu’il ne serait nécessaire, 'auteur, comme le professeur, fera
bien de signaler que si ces propositions sont données sans démonstra-
tion, c’est pour abréger exposé, mais qu’elles n’ont pas le caractére de
postulats véritables. Aussi ne pourrons-nous jamais approuver les auleurs
qui, en croyant éviter loute difficulté, définissent I'axiome comme une
proposilion évidente par elle-méme. Alors il n’y aurait pas de raison
pour sarréter 4 moitié route, bien que, malgré cette définition de
I'axiome, les traités en question démontrent par exemple qu’un segment
rectiligne est plus court que toute ligne brisée ayant les mémes extrémi-
1és, et beaucoup d’autres propositions évidentes. Il n’y aurait plus alors
de possible, didactiquement, qu’'un systéme unique de postulats, consti-
tué par toutes les propositions évidentes de la Géomélirie élémentaire.
Mais ce qui serail pire que tout, ¢’est qu’on ne pourrait plus se fier aux
définilions, car, en considérant les propositions exprifmées par les axiomes
comme des résultats évidents par intuition, ou comme des conséquences
de l'observation, il n’en résulterait pas qu'elles puissent s’appliquer a
tout l'espace.

Il ne faut d’ailleurs pas croire qu’il ne puisse éire parfois utile de faire
abstraction de quelques postulats, méme au point de vue didactique. En
effet, on aura quelquefois avantage & faire usage de certaines analogies
entre diverses figures, comme par exemple entre la droile, le faisceau de
rayons, la circonférence, le faisceau de plans, ete. : la droite et la circon-
férence, dans le systéme euclidien, différent en ce que I'une est une ligne
ouverle et 'autre une ligne fermée, mais les autres propriétés de ces deux
lignes, considérées en elles-mémes, sont identiques, De méme, le faisceau
de rayons et la circonférence différent seulement en ce que I'élément du
faisceau est le rayon, et I’élément de la circonférence, le point. Supposons
donc donnés pour la droite des postulats A, B, C,D, d’oti on peut déduire
les propriétés E, F, G, etc.; si les propositions A, B, C, D subsistent
pour la circonférence, nous pourrons énoncer aussi, sans autre démons-
tration, les propositions E, F, G, etc., appliquées a la circonférence,
moyennant le changement de quelques termes, comme par exemple,
segment et arc. Mais si nous avions admis aussi la proposition E comme
un postulat relatif a la droite, il aurait fallu la démontrer pour la circon-
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férence, pour le faisceau de rayons el pour le faisceau de plans, el il
aurait fallu trois démonstrations au lieu d'une.

Mais ce qui importe avant tout dans 'enseignement élémentaire, c’est
'exactitude du raisonnement; aussi faut-il que Lous les postulats dont on
a besoin soient énoncés explicitement, et qu’on ne se serve jamais dans
les démonstrations d’autres propositions non admises. Et, bien que
Euclide et Legendre aient énoncé explicitement les axiomes (exemple que
tous les Traités devraient suivre), il n’est pas difficile de citer des propo-
sitions pour la démonstration desquelles ils ont employé tacitement
d’autres axiomes. Euclide, par exemple, dans la proposition I du Livre I,
s'appuie, pour construire le triangle équilatéral, connaissant son coté,
sur des théorémes relatifs & I'intersection de deux cercles, qui sont traités
bien aprés. De méme, sans avoir admis d’abord le postulat que la droite
est une ligne ouverte, ou le postulat des paralléles, on démontre parfois
la propriété de I'angle externe d’un triangle d’étre supérieur a chacun des
angles internes opposés ; or cetie démonstration ne devient exacte qu'en
y introduisant tacitement un autre axiome, qui n’est nullement évident.

La nécessité d’exprimer ainsi tous les postulats explicitement est d’ail-
leurs comprise dans une condition plus générale. Pour étre véritablement
exact, et non approximatif comme il le serait dans un enseignement
intuitif de la Géométrie, le raisonnement doit étre logiquement exact,
comme en Arithmétique : que faul-l entendre par 147 Cela signifie que
Pon devra faire abstraction de la signification géométrique des éires sur
lesquels on raisonne, c'est-a-dire absiraction de Dintuition de 'espace,
pour se borner & un raisonnement logiquement exact. EL ainsi, par suite
du but méme de l'enseignement de la Géométrie, on devra obéira ce prin-
cipe que, étant donné le systéme des vérités gdoméiriques, sil’on y fail
abstraction de Uintuition de espace, il devra subsister un systéme
de vérités bien détermindes logiguement, comme en Arithmétique. 11
est facile de faire cette abstraction en remplagant les éléments par d’autres,
par exemple, les droites par des systémes linéaires, déterminés par deux
éléments, en choisissant le systéme linéaire de sorte qu’il n’ait plus le
sens intuilif qu’op attache 4 une ligne, mais en prenant par exemple une
succession d’objets tels que des nombres.

Quand on discute l'exactitude d’une proposition ou d'un raisonhe-
ment, on fail précisément plus ou moins usage de ce principe. Voyez
néanmoins comment les Traités de Géoméirie élémentaire observent
peu cette condition essentielle. Euclide méme, qui certainement a cherché
& étre aussi rigoureux qu’il était possible & son époque, introduit dés le
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début dans les raisonnements des expressions telles-que longueur, lar-
geur, profondeur, ligne, surface, corps, etc., comme si 'on savait déja
ce qu’elles signifient géométriquement, bien que certaines d’entre elles,
telles que I'expression surface, soient adoptées parfois avec des sens
divers. Ainsi, on définit grossiérement la figure comme un ensemble de
surfaces, de lignes et de points. Avec de telles définitions, dés quon fait
abstraction de 'intuition, il ne reste plus rien de déterminé. Ainsi, on
dit tout & coup que U'espace est continu et homogéne, sans qu'on sache ce
que c’est que la continuité et '’homogénéilé; on dit que la droite est une
ligne divisée par un de ses points en deux parties, mais on ignore ce que
¢’est qu'une [igne et ce que c¢’est qu'une partie. D'ailleurs, si la notion
de la surface dérive par intuition de celle du corps, si la ligne résulte de
la surface, la droite illimitée n’est pas une ligne, puisque nous n’ayons
jamais observé de corps illimité; et, en oulre, ce qui divise en deux parties
une surface n’est pas toujours une ligne; c'est, par exemple, le cas du
sommet pour un céne. On dit encore que le plan est une surface telle que
toute droite qui a sur elle deux points y est située tout entiére. On peut
répéler a ce sujet I'observation faite précédemment & propos de ladroite :
¢’est qu'un plan illimité n’est lalimite d’aucun corps. D'ailleurs, en faisant
abstraction de l'intuition, et en supposant que la droite soit bien déler-
minée, sans qu'on ait bien défini le mot surface, la propriété, que toute
«droite ayant deux poinls communs avec un plan y est siluée toul entiére,
ne suffit pas a définir le plan, car cette propriété convienl aussi 4 Uespace
ordinaire et, en général, & toul espace linéaire. Les propositions énoncées
pourle plan ainsi défini ne sont pas exactes sans que 1’éléve ajoute de lui-
méme 4 cette définition quelque chose quin’y figure pas. Mais, dans ces
conditions, on ne luil apprend pas & raisonner exactement.... Aussi n'y
a-t-il pas & s’étonner que quelques éléves, qui deviennent ensuite des
philosophes, combattent les nouveaux concepts mathématiques dans le
domaine des principes, comme c’est arrivé par exemple pour la Géométrie
non euclidienne ou pour celle 4 plus de trois dimensions. Comme excuse,
on dit qu'on ne peut définir aucune notion telle, par exemple, que celle
d’espace. Mais il faut distinguer. On ne peut définir le continu intuitif,
mais on peut définir le continu géomélrique comme un groupe de poinls
qui satisfont & certaines propriétés, géométriquement suffisantes. Ainsi,
on ne peut définir I'espace intuitif, qui est en nous une représentation de
I'espace physique, abstraction faite de certaines de ses propriétés, mais
nous pouvons définir 'espace géométrique en déduisant de sa construc-
tion toules ses propriétés géométriques, comme on peut le faire pour le
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plan. On peut faire une observation analogue pour le postulat du mouve-
menl sans déformation qui sert communément & établir I'égalité des
figures, et qui mérite une mention spéciale. On dit, ou 'on suppose taci-
tement, comme le fait Euclide, qu'une figure pent se mouvoir sans défor-
mation, ou, en d'autres termes, que les relations mutuelles entre ses
¢léments ne sont pas modifiées. Dans mes Fondements J'ai démontré
que la Géoméirie théorique peut se développer indépendamment de tout
concept physique et mécanique, et, si Newton et Helmholiz ont consi-
déré la Géométrie comme une partie de la Mécanique, ¢’est parce qu'ils
ne distinguaient pas la Géoméirie rationnelle de ses applications pra-
tiques. Or, le postulat en question est précisément un de cenx qu'il est
nécessaire d’admeltre comme un moyen de conslruire pratiquement les
figures, mais qui n’est pas nécessaire pour la construction géométrique
abstraite de ces figures. Si l'on se conforme au principe énoncé plus haut
et auquel doit salisfaire le systéme des vérilés géométriques, une fois
qu’on fait abstraction de I'inluition du mouvement, que reste-t-il de ce
postulat placé a la base de la Géométrie? Il signifie qu'il existe dans
'espace des systémes continus de figures égales 4 une figure donnée (qui
se déplace), sans qu'on ait défini ni les systémes continus de figures, ni
les figures égales. Quand on emploie ensuite ce postulat pour définir
I'égalité des figures, on voit qu’une telle définition renferme logiquement
une pétition de principe. D'ailleurs ce postulat comprend des condi-
tions compliquées, telle que celle des systémes continus, qui ne sont nul-
lement nécessaires pour définir I'égalilé des figures. Euclide et Legendre,
bien qu’ils aient tacilement fait usage de ce postulat pour démontrer
égalité de deux figures, n’ont cependant pas défini fes figures égales
comme des figures superposables, ainsi qu’bn fait ordinairement actuel-
lement, en excluant ainsi les figures symétriques. Ce fut Legendre qui
distingua le premier I'égalité par symétrie et V'égalité par congruence,
ce qui est juste, puisque les relations mutuelles des éléments qui consli-
tuent deux figures symétriques restent aussi les mémes. D’ailleurs le cri-
terium de la superposition n’est pas le seul & donner celui de I’égalité,
parce que, dans ’égalité par superposition, c’est-i-dire la congruence; il
entre un aultre concept, d savoir 1’égalité de sens des figures dans I'espace
qui les contient, concept toul a fait étranger a la constitution des figures
prises en elles-mémes. C'est pourquoi deux figures symétriques, c'est-&-
dire égales et de sens opposé, ne sont pas superposables dans le plan,
mais le sont dans I'espace ordinaire, comme deux triédres opposés par
le sommet sont superposables dans l'espace & quatre dimensions, qui a,
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géométrignement, le méme droit & I'existence que I’espace ordinaire. Il
faut donc établir I'égalité des figures indépendamment du mouvement
sans déformation, introduire & son temps le concept de sens des figures
dans le plan et dans I'espace, puis définir Pégalité par congruence (figures
de méme sens) et par symétrie (figures de sens opposés), el alors le
principe de mobilité sans déformation d’une figure dont certains points
peuvent rester fixés, trouvera son explication géométrique, et Yon
pourra en déduire les propriétés fondamentales; par exemple, de cette
propriété que deux segments congruents d'une droite ne peuvent avoir
un seul point commun, on déduira qu'un segment ne peut se mouvoir sur
fa droite en ayant un de ses points fixe. Une fois arrivé & ce point, dans
I’exposé de la Géomélrie, on pourra se servir théoriquement du principe
de déplacement pour démontrer I'égalité, ou mieux, la congruence de
deux figures, puisque ce principe correspondra alors a des concepls et a
des propriétés géométriques bien établies.

Mais, en soutenant que le systéme des vérités géométriques doit étre
bien déterminé, je n’ai jamais eu I'intention d’exclure 'intuition spatiale,
ni d’en diminuer le secours, surtout dans l'enseignement. Ce n’est pas a
moi, qui ai fait largement usage de cetle intuition, méme o toute voie
peut lui sembler barrée, comme dans laGéométrie a plusieurs dimensions,
qu’on pourrait adresser une pareille objection. Il est certain que l'intui-
tion est nécessaire 4 la GéoméLrie, que les axiomes doivent étre simples et
intuilifs, et que, dans les recherches purement scientifiques, on doit pré-
férer les méthodes basées sur l'intuition spatiale. L'enseignement de la
Géométrie rationnelle doit éire précédé, a I'école secondaire inféricure,
par un enseignement rudimentaire intuitif, afin que I’écolier se familiarise
avec les figures les plus communes, dont il devra plus tard étudier les
propriétés & l'aide du raisonnement. Et, méme dans 'enseignement
rationnel de la Géométrie, toules les propositions et tous les raisonnements
doivent étre précédés et accompagnés par lintuition de 'espace an
moyen de l'observation de figures tracées sur le Tableau, ou de modeles,
destinés & développer I'imagination géométrique, afin que le raisonnement
apparaisse a 'écolier plutét comme une conséquence de la vision des
figures que comme le résultat d’une logique aride et abstraite. Aussi
doit-on, dans le Lexte et plus encore dans la lecon destinée 4 'enseignement
scolaire, avoir recours i des ohservations et & des exemples pratiques, ol
I’on emploiera tous les concepts intuitifs acquis par 1'¢léve, de sorte que
les idées de mouvement, d’espace, de corps, de surface, de ligne servent

Y

a expliquer et & consolider les postulats, ou & éclaircir les définitions,
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mais sans pourtant (et c'est la Uessentiel) que ni les postulats ni les
définitions ne soient basés sur des concepts indéterminés logiquement, et
sans que, dans le raisonnemenlt proprement dit, on fasse usage de
concepts non contenus dans les postulats ou dans les propositions dont
on part. Par exemple, on peut éveiller I'idée du point comme celle de
limite de la ligne, la ligne étant la limile de la surface, et celle-ci la limite
du corps, mais dans le postulat: il exisie des points distincts,il n’est
plus question de ces concepts de corps, de surface et de ligne : en faisant
abstraction de l'intuition, on a la proposition : il existe des éléments dis-
tincts. De méme, pour le postulat d'aprés lequel il existe sur la droite des
segments égaux el des segments inégaux, on peut faire usage, dans une
observation pralique, du transport des objets, mais, dans le postulat lui-
méme, 1'égalité des segments doit étre établie indépendamment de ce
moyen pratique. De méme encore, on peut, pour la commodité du lan-
gage, employer certains termes empruntés &4 !'ildée de mouvement, mais
sous la condition d’en spécifier le sens géométrique.

Recherchons maintenant quels sont les modes d’exposition les plus
convenables 4 'enseignement de la Géoméirie élémentaire. Méme en res-
tant au point de vue scientifique, la meilleure méthode est encore la
méthode géoméirique, parce qu'elle dérive du processus constitutif de
lintuition de 'espace. Puisque celte intuition est une condition primor-
diale et essentielle de la Géométrie, a laquelle elle fournit les premiers
objets géométriques et leurs propriétés indémontrables, la meilleure
méthode est celle qui, partant de ces premiéres propriéiés, étudie direc-
tement les divers éléments des figures de sorte qu’on puisse suivre pas a
pas le raisonnement en recourant i Uintuition spatiale. La simplicité
et I'¢légance de la Géoméirie dérivent de la facilité de ses constructions.
Et c'est 13 la méthode d’Euclide, Une méthode qui supposerait connue
indirectement une partie des propriétés géomélriques, ou qui s’appuierait
sur une notation dont I'établissement admettrait implicitement autant de
postulats, serait une méthode artificiclle et indirecte, qui pourra servir
a vérifier 'exactitude d’un systéme de postulats, a trouver de nouvelles
relations entre les vérités fondamentales de la Géométrie, ou & ouvrir de
nouveaux horizonsa laScience, mais elle ne pourrait étre utilisée a résoudre
d’une maniére plus satisfaisante les questions de principes, surtout si
I'on a en vue le probléme didactique. Lie, dans les applications qu'il a
faites de ses études célébres sur les groupes de transformations a des
recherches sur les principes de la Géométrie, conclut que « Die Geome-
trie soll in ihrem verschiedenen Stufen soweil méglich rein geometrisch
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begriindet werden, dass ist eine Forderung die gewiss jeder unterschrei-
ben wird. » On peut en conclure que I'habileté de Legendre, qui méle les
méthodes algébriques et géométriques, n’est pas recommandable didac-
tiquement. Dans plusieurs Traités, qui ne sont généralement pas italiens,
jai vu la facilité avec laquelle, dés le début, on considére les figures
comme des quantités, en lear appliquant, sans autre explication, les pro-
priétés des quantités avithmétiques; mais, quand on veut bien établir la
théorie des grandeurs géométriques, il faat démontrer que cela est pos-
sible. De méme lorsqu’on veut diviser le volume d’un solide en deux
parties égales, il faut d’abord introduire les notions géométriques qui
permettent d’aboutir & cette conclusion, en définissant complétement ce
qu'on doit entendre ainsi par parties égales, altendu qu’en Géoméirie on
considére diverses sorles d’égalités. La méthode arithmétique ou algé-
brique ne peut done étre appliquée que quand la Géométrie est déja suffi-
samment développée pour qu'on puisse montrer la possibilité de cetle
application, et c’est 14 ’objet de la théorie de la mesure.

En fixant les conditions auxquelles doivent salisfaire les postulats géomé-
triques, et en recherchant la méthode d’exposition la plus convenable &
I'enseignement, nous n’avons pas exclu la possibilité de divers syst¢mes
de postulats. Je pense d’ailleurs que les matiéres de la Géométrie élémen-
taire d’Euclide sont encore les plus propres 4 l'enseignement secondaire,
parce qu’elles sont la base de tout enseignement géoméirique, corres-
pondent le mieux aux besoins ordinaires de la vie et contribuent admira-
blement au développement des facultés logiques et intuilives de Pesprit,
ce qui est le but principal de 'enseignement des Mathématiques dans les
écoles qui préparent aux études supérieures. On ne trouverait par exemple
pas ces qualités dans les matiéres de la Géométrie projective propre-
ment dite. Il est certain, comme I'observe Chasles, que la Géométrie
ancienne w’a pas les méthodes générales de la Géométrie moderne,
que divers cas d'un méme théoréme ou d'un méme probléme sont
Lrailés & part comme autant de théorémes ou de problémes sans aucune
relation, et que 'unité de certaines théories y est trop morcelée. Mais il
n'en est pas moins vrai-qu’il y a dans la Géométrie élémentaire des théories
basées sur divers concepts fondamentaux, telles que la théorie de 'égalité,
les relations métriques entre les éléments d'une figure, la théorie de la
similitude, de la mesure, etc. La Géométrie élémentaire euclidienne est
de nature essentiellement mé¢rigue; on s’y sert moins des propriétés de
position que de celles d’égalité et d’inégalité, telles que les relations
entre les segments, les'angles, les propositions sur les triangles, etc.,
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qui sont toutes de nature métrique. La méthode projective de Cayley-
Klein, qui a été développée géométriquement et élémentairement par
M. Pasch dans son bean Livre : Ueber die neuere Geometrie, et sur
laquelle ont été publiés des travaux importants de MM. Peano, Schur,
Enriques, Pieri, et autres, est certainement la meilleure méthode de la
Géomélrie projective.

Cette méthode, fondée sur des propriétés optigues, suivant le mot de
M. Klein, permet, grace a des conventions appropriées, d'établir les prin-
cipes de la Géomélrie métrique, et par suite de la Géométrie élémentaire
commune. Mais, selon moi, il importe moins d’augmenter la quantité des
mati¢res que de les disposer en meilleur ordre, en évitant autant que
possible le manque de rigueur, et en recourant aux méthodes modernes
pour donner plus d’unité aux diverses parties de 'enseignement.

Reste par conséquent la méthode euclidienne, qui s’appuie sur les
propriétés mécanigues, ou, plus exactement, sur les propriétés d'égalité
et d'inégalité. '

(Vest ici que se pose la question suivante : convient-il d’énoncer an
début les postulats qui concernent l’espace, ou bien ceux qui concernent
la droite, pour passer ensuite au plan et enfin & 'espace? Les postulats
de I'espace sont naturellement plus complexes que ceux de la droite;
mais les partisans de la premiére méthode, qui veulent fondre la Géomé-
trie de I'espace et la Géométrie plane, donnent pour raison que cette
derniére trouve de précienx avantages a une semblable union. Je ne suis
pas de cet avis: la Géométrie élémentaire présente, avant toul, un carac-
tére métrigue, comme je l'ai rappelé plus haut, et les propriétés d'un
espace qui dérivent simplement des propriétés d’un espace supérieur sont
en général des propriétés projectives. La méthode en question peut
trouver quelques applications heureuses en Géométrie élémentaire, mais
cet avantage ne compense pas I'inconvénient didactique d’exposer simul-
tanément les principes de la Géomélrie plane el ceux de la Géométrie de
I’espace.

11 convient en effet, dans l'enseignement, d’aller du particulier au
général, du simple au composé. Euclide, Legendre et la majeure partic
des auteurs modernes exposent entiérement la Planimétrie avant d’aborder
la Stéréométrie. Je pense quil faut commencer par la Rectimétrie, du
moins en ce qui concerne les principes. Ces derniers étant bien établis,
les théories spéciales telles que celles de 1’équivalence, de la similitude,
de la mesure, etc., pourront élre. traitées simultanément dans le plan et
dans l'espace. Je ne veux pas dire, avec les fusionistes, que les figures a
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trois dimensions dans ces théories doivent intervenir dans la démonstra-
tion de théorémes planimétriques, mais bien que de nombreuses démon-
strations peuvent étre étendues simplement du plan a Pespace. Un tel
mode d’exposition économisera du temps et fera mieux saisir aux éléves
les relations qui existent entre les diverses parties d’une méme théorie.

Pour donner plus d'unité aux diverses théories, on se trouvera
bien d’appliquer un principe moderne, dont j’ai signalé, dans mes K/é-
ments, l'utilité didactique. Soient une figure A & laquelle se rapportent
les postulats @, b, ¢, d, ..., et une figure B, pour laquelle on peut énoncer
les mémes postulats, moyennant le changement de certaines expres-
sions de langage. Toutes les propriétés de la figure A qui se déduisent
de @, b, ¢, d, seronl exacles pour la figure B, si l'on apporte dans le
discours les modifications dont il s’agit. Il en sera de méme pour les
démonstralions de ces propriétés (V). J'ai appliqué ce principe & I'étude
de la ligne droite, du cercle, du faisceau de rayons et du faisceau de
plans; ainsi les propositions @, 0, ¢, d, ..., postulées ou démontrées pour
le plan, sont valables (sauf 'axiome des paralléles), pour la gerbe de
rayons, moyennant le changement de certains mots dans les énoncés
celle des propriétés du triangle, par exemple, qui sont indépendantes de
Paxiome des paralléles, font connaitre des propriétés des triedres. Lec
professeur sera ainsi conduit & faire remarquer, & la fin de son cours,
que la différence essentielle entre la Géométrie de la gerbe et la Géoméirie
plane tient a la présence, dans cetle derniere, du postulat d’Euclide.

Il est bon aussi de mettre & profit les analogies que présentent
diverses théories, par exemple celle des figures égales et celle des fizures
semblables : les définitions de ces deux espéces de figures se ram3nent
I'une a 'autre, en faisant se correspondre les expressions segments égauz
et segments proportionnels. La méme remarque s'applique aux raison-
nements faits sur ces figures. Remarquons d’ailleurs que les modifications
ne doivent pas étre apportées pour I'amour de la nouveauté, mais seule-
ment quand elles sont nécessaires ou du moins vraiment uliles.

(Clest dans cet esprit qu’ont été écrits mes L léments (*); dont jai
publié deux éditions, la premiére & I'usage des écoles classiques et des
instituts techniques, l'autre & 'usage des gymnases el lycées. J'énonce au
début les postulats relatifs a la droite, considérée en soi, et je définis

(1) Dans ce principe est compris celui de dualité, de la Géométrie projective.

(2) La premiére édition a été publiée en 1897, la deuxiéme en 1900, chez DRUCKER,
4 Padoue. J'ai eu comme collaborateur, pourla partie didactique, M le profasscur
Paolo GARRANIGA, du Lycée royal Tite-Live, a Padoue.
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I’égalité et I'inégalité des segments, sans recourir & la superposition. J'en
déduis les propriétés d’addition et de soustraction des segments. Toutes
ces propriétés sont valables, mutatis mutandis, pour le faisceau de
rayons, pour la circonférence et pour le faisceau de plans. Je donne ensuite
le postulat qui distingue la droite des autres figures, & savoir sa propriété
d’étre déterminée par deux points. Aprés I'élude des figures rectilignes,
vient la définition des figures égales. Jintroduis au début le concept du
couple de droiies (figure formée par deux droites), et j’énonce le postulat
relatif 4 la réversibilité de ce couple. J'arrive alors aux paralléles, définies
‘comme droites opposées par rapport & un point, et au postulat qui les
concerne. Dans la premiére édition, la plus compléte, je démontre que la
droile est une figure ouverte. La seconde est destinée & des éléves d’esprit
moins formé; c’est pourquoi j’y admets comme axiomatique la proposi-
tion dont il s’agit, tout en la distinguant des autres postulats, parce
qu’elle n’est pas indémontrable. J’aborde ensuite la construction du plan,
dont j'ai-démontré dans la premiére édition la propriété fondamentale : il
contient toute droite dont il contient deux points. Dans la seconde, cette
proposition est admise sans démonstration.

En raison de la correspondance signalée plus haut entre la droite et le
faisceau de rayons, I'angle se présente comme une partie du faisceau, de
méme que le segment est une partie de la droite. L'angle ainsi défini est a
distinguer de l'angle plan, partie du plan limitée par deux rayons : le
premier est un étre linéaire, le second un étre superficiel. Dans la
premiére édition je démontre toutes les propriétés du faisceau de rayons,
correspondant aux postulats de la droite, considérée en soi. Dans la
seconde, j'admets pour plus de brié¢veté quelques-unes de ces propriétés
qui sont intuitives dans le champ de notre observation.

Je termine le second Livre en traitant des constructions élémentaires
qui peuvent s’effecluer avec la régle et le compas.

Dans le troisitme Livre, j'établis les éléments’ de la Géométrie de
I'espace, jusqu’a la génération du céne, du cylindre et de la sphére. Dans
la premiére édition, j’ai ajouté un postulat & ceux qui sont indiqués plus
haut : il existe des points en dehors du plan. Je applique & la con-
struction de I'espace ordinaire (sans exclure la possibilité d’espaces supé-
rieurs, que je laisse de ¢61é pour ne pas trop étendre I’Ouvrage). J'ajoute
un postulat pratique (c'est-a-dire nécessaire aux applications pratiques),
d’oti I'on doit conclure que I'espace physique est & trois dimensions.
Dans la seconde édition, j'ai procédé autrement : au postulat : il existe
des points en dehors du plan, j'ajoute celui-ci : deux plans ayant
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un point commun ont une droite commune. La Géométrie se trouve
ainsi réduite, d'un coup, a I'étude de 'espace ordinaire, et les prcrmeres
notions de stéréométrie en sont rendues plus accessibles.

Les trois premiers livres concernent la Géoméirie générale de la
droite, du plan et de l'espace. Dans le livre suivant, je traite de 1'équi-
valence des figures planes et solides. Tl faut abandonner la définition
euclidienne, d’aprés laquelle deux figures planes ou solides sont dites
équivalentes quand elles ont les mémes aires ou le méme volume, sans
que l'on ait préalablement défini V'aire et le volume. Je donne deux
postulats relatifs, le premier aux polygones, le second aux polyédres,
postulats d’ailleurs démontrables. Pour I’équivalence, j'invoque le postulat
du continu rectiligne et celui d’Archiméde (s¢ @ et b sont dewx segments,
et st a < b, il existe un nombre n tel que an > b). Au moyen du
postulat d’Archiméde et de celui-ci : tout segment, méme variable,
contient un point distinct de ses exirémités, on peut démontrer le
postulat du continu rectiligne sous la forme de Dedekind : touze répar-
tition de Dedekind de points sur un segment est déterminée par un
seul point. :

M. Hilbert, dans son beau travail : Sur les fondements de la Géo-
métrie (') donne 4 l'axiome d’Archiméde le nom d’'axiome de continuité,
et démontre trés élégamment la possibilité d’'une Géométrie qui ne véri-
fierait pas cet axiome. Cetle géométrie difféere de la mienne en ce sens
que celle-ci est plus compléte et qu'on peut y définir une continuité plus
générale que la continuité ordinaire.

Mon postulat du continu non seulement est différent de celui d’Archi-
méde, mais il en est indépendant. On peut étendre le concept du point
de maniére & éviter d’énoncer le postulat de la continuité, tout en satis-
faisant aux autres axiomes, comme on peut, par une extension d’une
autre nature, construire dans Fespace a trois dimensions une variété a
quatre dimensions qui satisfail aux postulats de I'hyperespace. Aussila
Géométrie se généralise comme 1’Arithmétique, ot l'on étend la notion
de nombre en construisant successivement les nombres fractionnaires,
négaltifs, incommensurables, et aussi les nombres infiniment grands ou
infiniment petits actuels, auxquels s'appliquent encore les opérations
fondamentales.

Mais cette maniére d’éviter le postulat de la continuilé n’est pas a
recommander dans P'enseignement (2). Il est préférable, au contraire, de

(1) Traduit en francais par M. LAvuGEL (Palla, Gauthier- Vlllats)
(2) Il postulato del continuo (Rend. Ace. dei Lincei, 1898). Voir aussi l’apv
. 29

Droits reservés au Cnam et a ses partenaires



450 SECONDE PARTIE, — GONFERENCES ET COMMUNICATIONS. — SECTION VI.

lappliquer chaque fois qu'il ne s’ensuit pas de difficulté didactique.

Dans 'appendice de la premiére édition, destinée aux professeurs,
j'a1 démontré les propositians qui avaient été admises dans le texte sans
démonstration.

Ma méthode a été expérimentée dans ces derniéres années, et quand le
professeur s’en est assez bien assimilé les principes pour les exposer et
les interpréter clairement, les résultats sont, je puis le dire, des plus
satisfaisants (*).

Je me permettrai d’achever cette communication par quelques remar-
ques concernant la Critique. Pour remplir un rdle vraiment utile, la
Critique doit étre élevée et 1mpartiale. Elle doit étre élevée en ne s’attar-
dant pas aux minuties, mais en jugeant les ceuvres sur leur ensemble.
Elle doit étre impartiale, parce que la perfection ne saurail étre absolue,
lauteur ayant a tenir compte de conditions surabondantes ou spéciales.
Les ceuvres doivent donc étre jugées par comparaison avec celles du méme
genre, et non d’une maniére absolue. Enfin, comme un méme probléme
peut admettre diverses solutions également satisfaisantes, la Critique doit
étre tolérante. Cest dans ces seules conditions qu’elle pourra contribuer
aux progrés de I'Enseignement. Les Scuole di magistero, annexées
aux Facullés des Sciences, en Italie, peuvent, 4 ce point de vue, jouer
un rbéle utile, en ne se consacrant pas uniqu'ement aux recherches de
science pure, et en éludiant les questions de principes, laissées généra-
lement de c6té dans les cours universitaires. Le but primordial de ces
écoles, il ne faut pas P'oublier, est en effet de préparer de bons professeurs

pour les écoles secondaires.

pendice & la premiére édition des Eléments, édité séparément chez Drucker, &
Padoue (18g8). '

(1) En octobre 1go1 a été publiée la troisiéme édition, ainsi que la premiére édi-
tion des Nozioni elementari di Geomet. intuitiva, qui servent, dans les gymnases
inférieurs (trois années), de préparation 3 I’étude de la Géométrie rationnelle,
celle-ci étant enseignée, en Italie, dans les gymnases supérieurs (deux années) et
dans les Iycées (trois années).

FIN.
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