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Description de la bascule de Quintenz (*).  (1) 
Exigences générales auxquelles la bascule doit répondre.

(*) Los notes sont placées à la suite de l’opuscule. Un petit chiffre intercalé 
dans le texte correspond au chiffre de la note.

La balance ordinaire se compose d’un levier du premier 
genre à bras égaux.

La balance romaine se compose également d’un levier du 
premier genre mais à bras iuégaux.

Les instruments de pesage dans lesquels s’offrent deux ou 
plus de deux leviers s’appellent bascules.

Les bascules où il n’y a que des leviers et des tringles 
rigides et inextensibles reposent toutes sur le même principe; 
de sorte que, si l’on connaît les conditions auxquelles doit 
satisfaire un seul type, il est facile d’en déduire celles aux­
quelles n’importe quel autre doit répondre aussi.

Comme la bascule de Quintenz est fort en usage et géné- 
ralemeut connue, nous la prendrons comme point de départ 
de nos considérations. Faisons précéder ici, avant la discussion 
mathématique, une courte description de cet instrument.

La fig. I est une figure schématique et la fig. II une coupe 
verticale de la bascule de Quintenz dans sa longueur.

La bascule consiste en un fléau A D reposant, au moyen 
d’un couteau d'appui B, sur un coussinet fixe, fig. I. A l’ex­
trémité A, est fixé un couteau qui, au moyen d’un coussinet, 
porte un plateau (ou bassin) destiné à recevoir le poids P, 
qui doit faire équilibre à une charge à peser C. Aux points 
F et D du fléau sont également fixés des couteaux auxquels 
pendent, également au moyen de coussinets, les tiges ou 
tringles FE et DG, qui portent les leviers triangulaires
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H. h. E hH et K, G K, aux points E et G. Dans ces leviers 
triangulaires sont fixés, aux points E et G, des couteaux qui 
reposent sur des coussinets adaptés aux mêmes points E et G 
des tiges dont nous avons déjà fait mention; tandis que le 
levier triangulaire K, G K porte, aux points H1 et H, des 
couteaux sur lesquels repose, au moyen de coussinets, le levier 
triangulaire H, h, E h H. Enfin, le levier triangulaire K, G K 
s’appuie sur des coussinets fixes au moyeu de couteaux dont 
il est muni aux points K, et K.

Au levier triangulaire H, h. Eh H, est fixé à demeure le 
tablier destiné à porter la charge C soumise au pesage.

Or, si la charge C est placée sur le tablier, le poids se 
partagera sur les trois couteaux H,, E et H. Les tractions 
en H et H tâcheront d’abaisser le couteau D du fléau et la 
traction en E tâchera d’abaisser le couteau F, à quoi s’op­
posera le poids P dans le plateau.

Donc trois forces agissent sur le fléau, qui s’équilibrent à 
cause de la résistance du coussinet B, notamment une force 
en A, une en F et une en D.

Lors de l’emploi de la bascule, c’est une condition essen­
tielle, dans la position normale du fléau (2), que l’équilibre 
entre la charge C et le poids P soit indépendant de la place 
qu’occupe la charge sur le tablier.

Dans les paragraphes 2—5, nous rechercherons à quelles 
conditions doit répondre la bascule pour que cette indépen­
dance ait lieu; provisoirement nous ne prendrons pas en 
considération les frottements, dont nous ne nous occuperons 
qu’au § 7.

ci 
co.

Le plan de mouvement de chaque point de 
la bascule doit être parallèle au plan 

de mouvement du fléau.

La fig. III est une représentation partielle de la bascule, 
dans laquelle le tablier H, h, E h H et la tige F E de la fig. 
I sont expressément omis. De même que dans la fig. II, A D

Le plan de mouvement
de chaque point de la
bascule doit être
parallèle au plan de
mouvement du fléau



3

représente, dans la fig. III, le fléau, DG la tige à laquelle 
est suspendu le levier triangulaire K, GK et Gko une verti­
cale qui, du point G, est abaissée sur l’axe K, K.

Nous supposons qu'il y ait équilibre entre la charge sur le 
tablier et le poids dans le plateau.

La charge sur le tablier fait que le couteau G est abaissé 
comme si, sur ce couteau, agissait une force verticale que 
nous représenterons par J (8).

Décomposons cette force J dans les deux forces I et I,, 
dont I agit dans la direction du prolongement de D G, et I,, 
dans une direction tombant verticalement sur DG.

Suivons d’abord la composante I. Il est évident que celle- 
ci, quelle que soit l’oscillation du fléau, doit toujours demeurer 
dans le plan de mouvement du fléau (4), sinon il en résul­

terait une torsion qui diminuerait la sensibilité et la stabilité 
de l’instrument. En outre la composante I, dans l’état d’équi­
libre de la bascule doit, autant que possible, tomber vertica­
lement sur l’axe longitudinal du fléau, puisque, sans cela, la 
force transmise par elle aurait pour effet de presser les 
couteaux contre les coussinets, chose qui doit nuire aussi bien 
à la stabilité de l’instrument qu’à la conservation des couteaux 
et des coussinets.

Nous acceptons donc que la tige D G se trouve dans le 
plan de mouvement du fléau. Si l’axe K, K ne tombe pas 
verticalement sur ce plan, alors la seconde composante de J, 
c’est-à-dire I,, ne tombe pas verticalement sur K, K. Il en 
résulte que les couteaux K, et K ont une tendance à glisser 
au delà des coussinets, d’abord dans la direction K, K et 
secondement dans une direction latérale. Ces deux actions 
disparaissent lorsque l’axe K, K tombe verticalement sur le 
plan de mouvement du fléau; et c’est donc là la position la 
plus avantageuse pour l’axe K, K. En outre la composante 
I, doit être aussi petite que possible, puisqu’elle tend à faire 
glisser le levier triangulaire au delà des coussinets K, et K 
dans la direction de k0 G; par conséquent, dans l’état d’équi­
libre normal, la tige D G doit être verticale, et le fléau A D 
doit être horizontal.
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Pour la même raison, il est évident qu’également la tige 
F E, fig. I et II, doit se trouver dans le plan de mouvement 
du fléau et doit être dans une direction verticale lorsque la 
bascule se trouve dans un état d’équilibre normal; et l’axe 
H, H et les couteaux de la bascule doivent être perpendicu­
laires à ce plan.

Nous acceptons donc dans la suite que la bascule répond 
à ces conditions essentielles, que les tiges F E et D G se 
trouvent dans le plan de mouvement du fléau et que les 
couteaux et les axes H, H et K, K sont perpendiculaires à 
ce plan.

§ 3.

Pour que l’équilibre de la bascule, à chaque 
position du fléau, soit indépendant de la place de la 

charge sur le tablier, le tablier, pendant les 
oscillations du fléau, doit toujours se mouvoir 

parallèlement à sa position normale.

La distance entre les couteaux A et F, fig. I, et la ligne 
B D ou son prolongement, la distance entre l’axe H, H et le 
plan K, G K, les directions et les longueurs des tiges F E et 
D G, ainsi que les angles que forment les lignes AB, B F, 
B D et les plans K, G K et H, EH avec le plan horizontal, 
restent entièrement indéterminés.

Nous admettons que la bascule est dans l’état de repos, 
c’est-à-dire que toutes les forces en action se font équilibre. 
Nous fixons la distance entre la verticale qui passe en E et 
la ligne H, H égale à b, la distance entre la verticale qui 
passe par le centre de gravité de la charge et la ligne H, H 
égale à x, la distance entre cette même verticale et le plan 
de mouvement du fléau A D E h0 k0 égale à y, et enfin 
H, h0 = h, et H h0 = h.

La charge C (5) se partage entre les points H,, E et II, 

comme si, sur ces points, agissaient des forces verticales ;

Pour que l'équilibre de
la bascule, à chaque
position du fléau, soit
indépendant de la
place de la charge sur
le tablier, le tablier,
pendant les
oscillations du fléau,
doit toujours se
mouvoir parallèlement
à sa position normale
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nous nommerons ces forces » pression en H,", » pression en 
E" et » pression en H.”

Afin de déterminer l’équation d’équilibre entre ces pressions 
et le poids P, c’est-à-dire les conditions d’équilibre entre 
C et P, nous donnons au fléau un angle d’inclinaison infini­
ment petit, grâce à quoi les points H,, E, H et A parcourent 
des chemins infiniment petits.

Si nous nommons les projections sur la ligne verticale des 
chemins parcourus par les points H,, E, H et A, respective­
ment »élévation H,", »élévation E”, etc., alors, d’après le 
principe des vitesses virtuelles, l’équation d’équilibre se tra­
duit par

(pression en H,), (élévation H,) + (pression en E). (élévation E) + 
+ (pression en H). (élévation H) + P. élévation A = o;

& Gpog 52)d‘où l’on obtient

: C.éération E C (h,, élévation H + h. élévation H,)b h hi (b)
(élévation H — élévationH.) L A

— C -------------- ------ --------------1. y‘1 — — P. elevation A = 0 hhi
L' équation doit tout d’abord être indépendante de y, parce 

que l’équilibre doit être indépendant de tout déplacement de 
la charge dans la direction perpendiculaire au plan du fléau, 
donc avant tout il faut que »élévation H," = »élévation H”, 
grâce à quoi l’équation d’équilibre, indépendante de y, devient:

X
6

C (élévation E — élévation H) + C. élévation H+P. élévation A = 0

L’équation doit être aussi indépendante de x, parce que 
l’équilibre ne peut pas dépendre d’un déplacement de la charge 
sur le tablier dans une direction parallèle au plan du fléau, 
donc il faut aussi que »élévation E” = »élévation H”, grâce 
à quoi l’équation d’équilibre, indépendante de x et de y, devient:

C. élévation H + P. élévation A = o.
C’est pourquoi il faut, en vue de l’indépendance dont nous 

nous occupons, que „élévation H," = »élévation H” = »élé- 
vation E”, c’est-à-dire que le tablier, pendant que le fléau
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fait l’angle d’inclinaison infiniment petit, doit se déplacer 
parallèlement à sa position normale. Maintenant, pour que 
l’équilibre de la bascule, dans quelque position que ce soit 
parmi les positions infiniment nombreuses dans lesquelles peut 
se placer le fléau en mettant quelque poids additionnel dans le 
plateau, soit indépendant de a et de y, il faut que l’équilibre, 
quelle que soit la position du fléau, satisfasse à la dernière 
équation. D’où il résulte, que, pendant que le fléau parcourt 
un angle d’inclinaison arbitraire, le tablier doit se mouvoir 
parallèlement à sa position normale, et c’est ce qu’il fallait 
démontrer.

Inversement, dans toute bascule dont le tablier pendant 
les oscillations du fléau se déplace parallèlement à sa position 
normale, il sera satisfait à la dernière équation; c’est pour­
quoi aussi la sensibilité de cette bascule, de même que son 
équilibre dans la position normale, seront indépendants de 
la place qu’occupent les marchandises sur le tablier.

§ 4.

Recherches des conditions auxquelles doit 
satisfaire la bascule pour que le tablier, lorsque 

le fléau fait un angle d’inclinaison arbitraire, se déplace 
parallèlement à sa position normale, c’est-à- 

dire pour que a l’équilibre et b la sensibilité 
soient indépendants de la place qu’occupe 

la charge sur le tablier.

Si, fig. I, pendant les oscillations du fléau, le tablier 
h. Eh se déplace parallèlement à sa position normale, alors 
évidemment la ligne h0 E, de la coupe de la bascule avec 
le plan de mouvement du fléau, se déplacera toujours paral­
lèlement à sa position normale.

L’inverse est également vrai. Car le mouvement du point 
h0 est tout à fait indépendant de la longueur de la ligne 
K, K; et, en outre, il est évident que tous les points de 
l’horizontale H, h0 H auront toujours des mouvements égaux

Recherches des
conditions auxquelles doit
satisfaire la bascule pour
que le tablier, lorsque le
fléau fait un angle
d'inclinaison arbitraire, se
déplace parallèlement à sa
position normale, c'est-à-
dire pour que a l'équilibre
et b la sensibilité soient
indépendants de la place
qu'occupe la charge sur le
tablier
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et parallèles dont les projections sur un plan vertical seront 
toujours réciproquement égales.

Si donc, pendant les oscillations du fléau, la ligne h E 
demeure parallèle à sa direction normale, alors aussi le tablier 
H,E H doit demeurer parallèle à sa position normale.

Il nous suffira donc de rechercher quelles sont les condi­
tions auxquelles doit satisfaire la coupe de la bascule avec le 
plan de mouvement du fléau, pour que la ligne b0 E, en 
même temps que le fléau fait un angle d’inclinaison, se 
déplace parallèlement à sa direction normale.

Soit flg. IV cette coupe.
Ici, voyez flg. II, les points A et F sont en dehors de la 

ligne B D, le point H en dehors de la ligne G K, et les 
directions et les dimensions des lignes F E et D G sont prises 
assez arbitrairement.

Les lettres identiques dans les figures 1I et IV ont la même 
signification; de sorte que B et K représentent des points fixes 
et que la ligne A B et le point F sont reliés à la ligne B D, 
de même que le point H est relié à la ligne G K; c’est pour­
quoi les distances des points A, B, F et D entre eux, de 
même que celles des points K, H et G, sont constantes. Les 
lignes BD, D G et G K, nous les considérons comme unies 
par des charnières en D et G, de même que le sont les lignes 
B F, F E, EH et H K en F, E et H; tandis que la ligne 
brisée A B F D repose sur une charnière fixe au point fixe B, 
et la ligne brisée GH K au point fixe K; de sorte que 
lorsque le point A se déplace, les lignes brisées B D G K et 
B F E H K changent en même temps de forme. Le tablier est 
fixé à la ligne E H, et la charge C agit sur le point M de 
la ligne E H et nous établissons HM =x. Les bras de fléau 
D B et AB forment un angle de (180°—«), les bras de fléau 
DB et F B un angle de 01, et les bras de levier H K et G K 
un angle de a2, tandis qu’en cas d’équilibre entre la charge 
C et le poids P suspendu en A, le bras B F forme l’angle 
( avec l’horizontale. Les autres angles, que les lignes susdites 
forment avec l’horizontale, sont donnés dans la figure. Les 
dimensions des lignes A B = a, BD=e, D G = s, G K = r, 
BF = en FE = S], E H = 6, HK=r et BK=n sont
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constantes, de même que les angles a, 01, «2 et 2; tandis 
que provisoirement tous les autres angles, notamment Q, 0, 
%, 3, et fi sont considérés comme variables. Soit, à l’avenir, 
l’angle Q considéré comme le variable indépendant.

Soit encore Pô le poids du plateau suspendu en A, Z le 
poids et Z le centre de gravité du fléau, BZ=z et l’angle 
que B Z fait avec l’horizontale égal à T; ensuite Z, le poids 
et Z, le centre de gravité du levier triangulaire GKH; 
K Z, =2 et T, l’angle que la ligne K Z, fait avec l’hori­
zontale; représentons enfin le poids des tiges DG et FE 
par S et S, et celui du tablier par B, agissant en Di, F et 
E, soit G D, = i, EF, =t et H E, = c.

a. L’Equilibre.
D’après le principe des vitesses virtuelles, la condition 

d’équilibre est représentée par l’équation

Z, .d {21 sin r 13 S.d St sin à r siny3 +
— B.d{c sin ( + r^in (•y + 02)3 HC.d La sin G + r sin (y x2}+
S.d{t sin b sin s+ri sin (x + «2)} +Z.d{z sin T} — 

— (P+ PO) • d sa sin (a + a + Q)3 = G ; 
ainsi, puisque dr=d@ et dr,=dy,

. dy . doo dy).Z. 2. COS T. . -r— — o u COS 3 . -- --------r cos y . ——> - do dodo) 
+ B Le cos 6 . 46 +r cos (x + a) 42+ 

+ C{coss.4+ r, cos (+42) 42 +

+S, L Cos 5, . +bco s.48+7 cos (y + &,) . 42 +

+ Z Z COS T — (P+ Po) « cos ( + 0+ 0) = 0 
ou

. . . do.Stcoso. —----- — S. t. COS . -1 —

+ z, z, .cosT, +Sr.cosy +(B+ C+ S,)r, cos(y + a,) dx 4

+(Bc +Ca+S6) cos fi • ao + Z2 COS T --

- (P + Po) a cos ( + 0, + 2) =0. • • (1)
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A cette équation, il doit être satisfait indépendamment de 
x; l’équation (1) renferme donc les deux équations de condition :

• • (2)

et

Si cos 3 . —------ S, t. cos 0. . -1 — do 11 1do
( ) d y+ 37 % cos Ti+Srcosy+(B+C+ Si) * cos (y + a2)j. do 4

+ Zzcosr — (P+ Po) a cos (a +,+P) = 0 . (3)

L’équation (2) donne la condition à laquelle, en cas de 
position normale du fléau, le, résultat du pesage sera indépen­
dant de la place de la charge sur le tablier; l’équation (3) 
donne, dans cette position de la bascule, une équation entre 
C et P.

b. Là Sensibilité.
La valeur du rapport dp exprime la mesure de sensibilité;

on obtient cette valeur en différentiant l’équation d’équilibre (1). 
Nous trouvons

a. . d2à c.O t cos à . -—= — ot sin 0 dot
t. cos ? — S. t. sin 0.

&
 

0
4
 

1
9

& Q

I

— 3Z, z, sin r Sr sin y(B+ C+ Sj) ri sin (y + «2) +

72 3 (7812 +(Bc+ C.+8. b) cos/.aoa-(Be+ Ca + Si b) sin / . (ap) - 
d P

— Z z sin T +(P+ Po) a sin (a ai +0) — acos (* + 1 +9) do = 0.(4)

Si nous admettons qu’on ait satisfait à la condition (2), 
alors le terme avec (46) disparaît; et, comme la sensibilité 

doit être indépendante de æ, la dernière équation se trans­
forme dans les deux équations de condition suivantes:
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et divisant par a cos (x+«+ (), 
- v d2 à o d)

Ip Stcoso. — St sin (-) 40-(+00+*+04—add..-,+00

S, t, cos >,. — S, t, sin

a cos (a+ai+ Q)
22 y141 % cosni+Srcos+(B+C+ Si) * Cos ( + 02)3 dq2

a cos (« + «1Q)

1Z1 21 sin T, +Srsiny+(B+ C+S)r, sin ( Zz sin r
_ ____ ______  (6)

a cos (a Y «J I Ç)
L’équation (5) exprime la condition à laquelle la sensi­

bilité, en cas de position normale du fléau, sera indépendante 
de la place de la charge sur le tablier; l’équation (6) donne 
l’inverse du coefficient de sensibilité dans cette position de la 
bascule.

Le résultat de notre calcul est donc que, pour construire une 
bascule telle que lorsque le fléau est dans sa position normale 
aussi bien l’équilibre que la sensibilité soient indépendants 
de x, la bascule doit répondre à deux exigences, c’est-à-dire 

que — = 0 et que - = 0.
Tdo 1 d(2

Pour pouvoir apprécier l’importance de ces conditions, nous 
j . . dô, d( dy dô devons exprimer les quotients différentiels — et -dodode d
et mettre

A cet 
obtenons

ensuite
46=0 et 426—0. 
d@ d 2 

effet, sont nécessaires quatre équations que nous 
en projetant les lignes fermées B F E II K B et 

BDGKB sur une horizontale; alors nous obtenons
e, cos Q4 8, cos à b cos s + ri cos (y + «2) = ncos E . (7) 

— e, sin Q4 si sin 3,b sin G+r, sin (x +a2) = n sin E . (8)
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e cos (H —a.) —s cos à r cos y = n cos E .... (9) 
et — e sin(N a) ts sinr siny = n sin 2. . . . (10)

Et en différentiant ces équations,

. . do j n d . x dy n — e. sin O — S. sin 3. .   b sin. — r. sin ( — N,) . —— == 0 
1 1 de do 4 d 

— e. COS O—s COS . — 4- 0 cos P . - — r. Cos (y — . —— = 0 1 do" dQ 1 N2 d® 
. . do . dy . — e Sin (OH N.) — s sin 3 .   T 8iRY. - ==0 . .

dô dy 
et—e cos(o — «.) — s cos o . — — r cos y . — =0 . .- dO do

(11)

(12)

(13)

(14)

En multipliant (11) par cos 0, et (12) par sin 3, nous 
obtenons en additionnant:

0- e, sin (9 +à)-6 sin (8 - à,) ap-n sin ( + - 0,):a0=0 

d’où
dy

dg en sinGi 0) * sin 01-7—2) do 
dO b sin (3, — )

En multipliant (13) par cos à et (14) par sin à et en 
ditionnant ensuite, nous obtenons: 

d y
— e sin (9 % +3) — " sin ( — à). do = 0

d’où

ad-

dye e sin ( 0 + «,) 
d@ r sin (0 — 7)

de sorte que (15) devient:

&
|

R
•

S

e, sin (3, +0) - resin0i-7-). sin0+0+%)
U________ r sin (3 — Y)______

b sin (0, — 3)

(15)

(16)

(17)

Si maintenant -— == 0, alors le numérateur du second 

membre de (17) doit être égal à 0, tandis que le dénomina- 
tour garde une valeur finie; donc la condition 26 =0 équi- 

vaut à la relation :
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je sin(,+Q)_ e sin0+0+0.) (18)
r sin (0, — y — &2) r sin ( —y)

ou, en d’autres mots: »les projections de B F et K H sur une 
» perpendiculaire à la ligne F E doivent être proportionnelles 
»aux projections de BD et K G sur une perpendiculaire à 
»la ligne D G.”

dSi inversement cette relation existe, alors — == 0, ce qui

ressort immédiatement de (17), à moins qu'également
sin (5, — () = 0, c’est-à-dire =0, ou à, — = 180° (c.-à-d. 
G =), -180°), ou à, — = - 180° (c.-à.-d. s=+ 180°). 
Comme cependant aucune de ces valeurs de (3 ne peut se 
présenter dans la bascule que nous considérons, et que, par 

d( 
conséquent, sin ^1 — (3) ne peut pas être égal à zéro, do 

sera donc aussi = 0, si la relation (18) existe.

d213On obtient l’expression pour d02 en différentiant l’équa­

tion qui précède immédiatement (15); nous trouvons alors

. I X do-d3 . d— e Cos (5, + P). -----do------ H b sin 0. — B) a d +

d(3 d\—d(3d2y + b «0 (S, - B)api do + * sin 07 82) aq2 + 

+ „ cos (3, — , — «.,). dy. d,dy =0 
1 4 d@ d@ 

ou, en admettant qu’on ait satisfait à la condition 4=0 0 
1 do 

et donc aussi à (17): 

do-dx, . d2y a26 <,«(>,+«)—^—-*sin0i=779aq 

d Q2 b sin (à, - B) 
, dy d3,—dy 

— T. COS (0.-Y- «2). —. — ,— " do 
b sin (>, - ) ‘ • ‘

Dans cette expression, nous devons encore exprimer les 
quotients différentiels dans les données.
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A cet effet, nous obtenons, en additionnant (13) et (14), 
après avoir préalablement multiplié (13) par cos y et (14) 
par sin y,

dè_esin(+a,+2). (20) 
dO s sin (Y— 3) ’ ; 

par l’addition de (11) et (12), après avoir multiplié (11) par 
d( cos ( + a2) et (12) par sin ( + «2) en supposant que do = 0 

et que, par conséquent, on a satisfait à la condition (18),

do. _ e sin ( 1 2 1 0)
d® s, sin (Y Hœ2 — ^1) ’ • (21)

et en différentiant (16), en prenant en considération (20),

&
 & 6.

3 S

1 , e cos (Qa)r cos (5

r sin (3 — y)

R
 —
 

©
X

1 L2

De sorte que, en substituant dans (19) la valeur que nous 
d2 y avons obtenue pour d62 en prenant en considération (16),

Z2 3(18) et (21), nous trouvons que la condition do= 0 équi­

vaut à la relation
r sin (3 — y)

ri sin (3, — y — «2)
d8\2 /dy do)rcos0-%) (do

e1 Cos (3, +9)+ (do) +TT cos 0.-7 “2)(do

Si ce rapport existe en sens inverse, alors doa sera aussi 

égal à zéro, à moins qu’en même temps sin (31 — G) = 0, 
ce qui, comme nous venons de le faire remarquer, ne peut 
pas être le cas dans la bascule dont nous nous occupons en 
ce moment.

Les équations (18) et (23) expriment donc, dans les don­
nées, les conditions auxquelles la bascule doit répondre pour
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que, lorsque le fléau se trouve dans la position normale, l’équi­
libre et la sensibilité soient indépendants de la place de la 
charge sur le tablier.

Construction de la coupe d’une bascule dont, 
pendant les oscillations du fléau, le tablier se déplace 

toujours parallèlement à sa position normale.

Nous avons prouvé, dans le paragraphe précédent, que, 
lorsque le fléau est dans sa position normale, l’équilibre et la 
sensibilité sont indépendants de la place de la charge sur le 
tablier, pourvu qu’il ait été satisfait aux conditions (18) et (23).

Les équations (7), (8), (9) et (10) font dépendre les gran­
deurs qui se présentent dans (18) et (23) de quatre conditions, 
de sorte qu’en tout il existe six conditions entre toutes les 
grandeurs de la bascule.

Donc il y a dans la bascule — en ne comptant pas, il est 
vrai, le poids des parties mobiles — en tout dix-huit grandeurs, 
à savoir: e,, Q, 81, 31, b, (3, r,, &2, r, %, s, 5, e, a,, n, S, 
a et a, qui dépendent donc de six conditions seulement, de 
sorte que nous pouvons encore admettre arbitrairement douze 
conditions, qui sont indépendantes les unes des autres et 
également des six conditions connues.

Le problème: Construire une bascule dont, lorsque le fléau 
se trouve dans la position normale, l'équilibre et la sensibilité 
soient indépendants de la place de la charge sur le tablier, est 
donc très indéterminé.

Si provisoirement nous admettons, pour obtenir de simples 
équations de condition, p. e.

& = 0, a, = 0 et A = A 
e r' 

alors (18) devient
sin (0, + Q) _ sin (à + Q)
sin (0, —y) sin (à — 7)54 

à quoi ou satisfait e. a. en posant

Construction de la
coupe d'une bascule
dont, pendant les
oscillations du fléau, le
tablier se déplace
toujours parallèlement
à sa position normale
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3,=3 (£).
Si nous posons dans (23) «1 == 0,02 == 0,01 =3eter = r, g, 

alors nous obtenons

"% (ao) =**o)i 

et, en transférant de (20) et (21) dans la dernière expression 
1 1 J dô d les valeurs de — et , dÇ d@

s er'

De 3, = 3, il résulte, étant données les conditions arbitraires 

a, = 0, 02 = 0 et a = T, que les tiges DG et F E de la 

figure IV doivent être parallèles, comme il est indiqué dans 
la fig. V; et, comme s et s, sont proportionnels à e et e,, 
les points B, E et G tombent dans une ligne droite.

Il résulte ensuite que
g r _ GK GB

s — 8, r — r, GH GE’ 

donc E H doit être parallèle à BK et (3 = Z.
Enfin nous avons:

r - r 
b:=(r— n):r ou ben. ------- 1

Les égalités obtenues 3, = 3, =2, etc. ne valent jusqu'ici 
que pour la position normale du fléau; elles demeurent cepen­
dant valables quelle que soit la position du fléau, ce qui 
peut être indiqué de la façon suivante:

s.YAdmettons -==-1= A

et par conséquent

6 = n,.î—A = «^1---- p) =n( — à); 

ensuite <x, = 0 et a,== 0, égalités qui évidemment persistent 
quelle que soit la position de la figure, du moment qu’il y a
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été satisfait dans une position déterminée; et, si nous sub­
stituons ces valeurs dans (7) et (8), nous trouvons:

A e cos Q+As cos 8 (1 — A) n cos G+Ar cosy = n cos 2 
et
— xe sin O+As sin 3, (1 — A) 7i sin G+Ar sin y =n sin S.

De ces équations, nous soustrayons respectivement les équa­
tions (9) et (10) multipliées par A, alors

A s(cos 0, — cos 3) + (1 — A) n cos s=(1-x)n cos 2 
et

A s (sin 0, — sin 0) (1 — x) n sin /3 = (1 — A) n sin 2 ; 
ou

A s (cos 0, — cos 3) = (1 - A) n (cos 2 — cos ) 
et

A s (sin 0, — sin 3) = (1 — A) n (sin 2 — sin 3); 
en place de quoi, nous pouvons aussi écrire:

A s sin 1/2 (3, + 3) . sin 1/2 (3, — 3) =
= (1 — A) n sin 1/2 (2 + B), sin 1/2 (E — () 

et
à s sin 1/2 (3, — 3). cos 1/2 (3, +3) =

= (1 — A) n sin 1/2 ( — B), cos 1/2 (E + ().
Ces équations sont générales et sont valables quelle que 

soit la position de la figure. Si nous n’avons pas 3, = 3 et 
(=2, alors nous obtenons en divisant:

tg ‘/ 0, +3)=tg ‘/a (2 + B), 
donc

1/2 P. + S) = 1/2 (+6) ±n *, 
ou 

3,=+0±2nr.
Si nous supposons qu'uniquement dans la position normale 

0,=0 et =E, alors est valable, pour toutes les positions 
excepté la position normale, la relation

>,+=+G+2n=.
Mais, si cette relation est valable pour toutes les autres 

positions, alors elle doit l’être aussi pour la position normale, 
attendu que le mouvement est continu et qu’il ne peut se 
présenter de modifications brusques; de sorte que cette rela-

3 N
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tion, qui existe de façon continue, ne peut être suspendue 
lorsque le fléau revient dans sa position normale.

Cette relation doit donc également être valable dans la 
position où s=2 et 0, = 3; donc

=-nr, 
ce qui, comme il résulte de la figure, aboutit à l’absurde. Il 
ne reste donc d’autre ressource que de poser

3,=3 et =: 
pour toutes les positions de la figure, par quoi il est satisfait 
aux dernières équations.

Suit ici la construction complète de la figure:
Nous prenons, fig. V, arbitrairement les points B et K, 

c’est-à-dire les grandeurs n et E; tirons les lignes B D et 
KG dans des directions arbitraires, et y prenons arbitraire­
ment les points F, D et G, par quoi nous avons admis 
arbitrairement les sept grandeurs n, S, Q, y, ex, e et r. Nous 
joignons D et G, et tirons en F une ligne parallèle à DG; sur 
cette ligne parallèle, le point E doit être placé de telle façon que 
FE:DG=BF:BD; à cet effet, nous joignons B et G; E 
est le point d’intersection de B G avec la parallèle à DG 
tirée du point F. Ensuite, de E, nous tirons une ligne paral­
lèle à B K, parce que nous devons avoir (=2; H est le 
point d’intersection de cette ligne avec G K. Comme (=2 
demeure constant pendant les oscillations du fléau, le tablier 
se déplace parallèlement à sa position normale. Le point E 
décrit donc un cercle autour d’un point fixe K,, qui est 
déterminé par E K,, que nous admettons égal et parallèle à 
H K. Le quadrilatère E H K K, est donc toujours un parallé­
logramme. Nous pouvons encore prendre la ligne B A dans 
une direction arbitraire et lui donner la longueur que nous 
voulons.

2
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Recherches des conditions auxquelles doit satisfaire la 
bascule pour que la sensibilité soit grande lorsque 

le fléau se trouve dans sa position normale.

Nous pouvons évidemment nous contenter ici de considérer 
la coupe du levier triangulaire et du tablier avec le plan de 
mouvement du fléau, car, quelles que soient les positions des 
centres de gravité du levier triangulaire et du tablier par 
rapport au plan de mouvement du fléau, ces points, lorsque 
le fléau fait un angle d’inclinaison, subissent des mouvements 
absolument identiques à ceux de leurs projections sur le plan 
de mouvement du fléau.

Si, dans la fig. IV, nous admettons « = 0, 0,== 0 et 
0 r— = —, et que la bascule est construite, voyez flg. V, con- € r

formément au § 5, alors 3,=0 dans toutes les positions; donc
d), dô d20, d2 3 , , iaussi - = --- et - = -; et (6) devient, apres sub-d@ d g dot dot 2

stitution de St+S,t = X et Sr +(B+ C+S,)r =Y,

d Pap=(P+ Po) tg («+9)+

coSX d23 .d02) ( , )d2y-—- — sin o — —2.2 COST. L eos Y7 -—-dp2 do/)(1 )dp2C
i

 
2

9ZI 2, sin r, + Y sin y Z z sin T

&

a cos (« — Ç)

Pour connaître la signification de cette expression, nous 
22 3 devons encore exprimer le quotient différentiel dq2 dans les 

connues. Eu différentiant (20), nous obtenons, en prenant en 
considération (16),

/ d3\2 /dy\242 à _ ecos(9+7) + - d(aq) (ao)
d @2 8. sin (% — 3)

Recherches des
conditions auxquelles
doit satisfaire la
bascule pour que la
sensibilité soit grande
lorsque le fléau se
trouve dans sa
position normale
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Si nous posons encore p. e. a = 0, y = 0, Q - 0, 3 = 90°, 
Z=0 et Z, = 0, alors (25) devient

d •
et la bascule est en équilibre instable.

La bascule doit cependant répondre à la condition que, si 
le fléau fait un angle d’inclinaison restreint Q, elle demeure 
sensible et que l’équilibre est stable entre 0 =0 et=0. 
On y satisfait e. a. en posant «,=0, », = 0 et a = 0 et, 
dans la position normale de la bascule, 0 =0, y =0, 3 = 90°, 
si e et rx e et en plaçant les centres de gravité Z et Z1 
au-dessous, mais cependant dans la proximité respectivement 
de l’axe du fléau et du levier triangulaire.

Car, si nous supposons que, dans ces données, le fléau 
fasse un angle d’inclinaison Q, infiniment petit du premier 
ordre, alors il résulte de (16) que y est un infiniment petit 
du même ordre, tandis que de (20) ressort que do, et par 
conséquent aussi cos S, sont des infiniment petits du second 
ordre; donc, en négligeant les infiniment petits du second 
ordre, (25) devient 
dP 1 e ) 72.aç=L(+Pasino+4,5cos n+Yad -

Jz • v- 1/d x\2 Z ■ -
— (-1 71 sin T, T Y sin 7) Z z sin 7

Or, selon (22) et (16), en négligeant les infiniment petits 
du second ordre, pourvu que e sin Q=r sin y : 
d2y e 2 • (et J dy\2 e2 

——- = sin O H , 81N Y = sin Y 3—,— 1L et ( — I ==-, d@2 r Tn2 ‘ (n2 )‘ do/ 721 

donc: 
48= [(P+ Pya sin $ + {z, ^' cos +I3 {4 -1siny- 

— 341 21 sin TY sin % 92 —Zzsin r =

ir ^ r ( )= - (P + Po)a sin I- „2 41% sin r, — cos r, .sin ?

— Z z, cos T + Y sin y — Zz sin r ,
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ou, suivant (3) en négligeant les infiniment petits du second 
ordre :

Z, =, cos T+Y = XP + P.) a — Za cos + —, 

ainsi nous trouvons, après réduction, en prenant en considé- 
r .ration que — sin y = sin O:

dP 1 (e2 )
do =---- ,2. zi(sin Ti — cos Ti. sin %) +Zz(sin T-cosT. sin P)y

ou, étant donné que (sin T, — cos T, . sin ^) et (sin r — cosr. sin () 
ne diffèrent respectivement que d’une grandeur infiniment 
petite du second ordre de sin (r. — y) et sin (r — Q):

dP 1 (e2 }
do =,*7% sin (n-7)+Z% sin (r - P) (

A l’effet de rendre la bascule pratique, la somme des deux 
termes du second membre de la dernière équation doit être 
positive, ce qui a lieu e. a. lorsque les centres de gravité Z et 
Z, sont situés respectivement au-dessous de l’axe du fléau et 
du levier triangulaire. Dans ce cas, la sensibilité augmente 
en raison que Z1, Z, zt sin (T. — y), z sin (T. — Q) et e devien­
nent plus petits et que par contre a et r deviennent plus 
grands, c’est-à-dire à mesure que le fléau et le levier triangu­
laire sont plus légers, et que leurs centres de gravité tombent 
plus dans la proximité de leurs axes, et à mesure que B D = e, 
fig. IV, est pris plus petit et que, par contre, A B= a et 
KG=r sont pris plus grands. En même temps, il résulte 
de la dernière formule qu’aussi longtemps que l’angle d’in­
clinaison © reste très petit et que le frottement n’entre pas 
en considération, le poids de C et celui de P n’ont pas 
d’influence sur la sensibilité de la bascule, pas plus que s et 
81, c’est-à-dire la longueur des tiges de traction DG et F E.

Grâce à (25), on peut aisément constater que la dernière 
expression obtenue pour la sensibilité, en cas d’une valeur 
croissante de , sera d’autant plus longtemps valable que les 

e erelations — et - seront plus petites, c’est-à-dire en raison que 

e sera plus petit et que r et s seront plus grands. —
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Les conclusions concernant Z, et Z, que nous avons tirées 
dP

de la formule qui fait connaître la valeur de -, ne sont T dQ
vraies que pour autant que les leviers ne fléchissent pas 
considérablement, même lorsque la bascule est sous l’action 
de sa charge maximum. La formule nous apprend donc seu­
lement par rapport à Z, et Z, que les leviers doivent être 
faits de telle sorte que toute diminution dans leur solidité 
aurait pour effet une flexion sensible.

La flexion d’un levier dépend de la matière dont il est 
fait; de sa longueur et de la forme de son profil; de la 
grandeur, le point d’application et la direction de la force 
qui agit sur lui; etc. Il nous est possible, en cas de poids 
égal, de longueur égale et de charge égale, de réduire à un 
minimum la flexion d’un levier et cela en le fabriquant d’une 
matière dont le module d’élasticité est grand; en lui donnant 
une coupe plus haute que large; en diminuant peu à peu, 
vers le point d’application de la force, cette hauteur de la 
coupe, et en plaçant le centre de gravité très près du point 
d’appui. En général les bascules en usage dans le commerce 
satisfont suffisamment à ces exigences, en tenant compte que 
lors des pesées effectuées par la bascule on ne réclame pas 
une précision rigoureuse. L’important est de prendre pour les 
bascules des leviers bien solides, afin que les pesées maxima 
ne les fassent pas fléchir et en même temps de donner à z 
et z, une valeur petite. —

On sait que le frottement augmente et que pour la même 
raison la sensibilité diminue à mesure que le poids des leviers 
et des tiges augmente; mais le frottement est insignifiant lorsque 
les couteaux et les coussinets de la bascule sont faits d’un acier 
très dur et parfaitement poli, que les couteaux sont convenable­
ment affilés et que, de même que les coussinets, ils sont d’un 
travail bien fini. Je connais une balance à bras égaux dont le 
fléau est massif et de très grande hauteur (ainsi relativement 
très lourd) et de si bonne construction que son centre de 
gravité ne se déplace presque pas à la charge maximum de 
la balance. Grâce à la bonne construction du fléau, pour ce 
qui regarde les couteaux, les coussinets, le rapport de sa
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hauteur à son épaisseur et la place de son centre de gravité, 
cette balance, chargée dans chaque plateau d’un poids de 
40 K. G., est encore sensible pour un poids additionnel de 
1 m. G., sensibilité qu’elle garde à peu près pour toutes les 
charges jusqu’à la charge nulle. On voit combien, dans cette 
balance, est minime l’influence du frottement sur la précision 
des pesées. Cependant, on ne peut pas perdre de vue que la 
bascule de Quintenz, p. e., compte plusieurs (au moins dix) 
couteaux, tandis que la balance ordinaire n’en compte que 
trois; qu’en général les couteaux et les coussinets des bascu­
les sont assez grossièrement construits, et que par conséquent 
il est recommandable, dans cette construction, d’éviter toutes 
causes qui pourraient augmenter le frottement, pour autant 
qu’on ne contrevienne pas aux autres exigences auxquelles 
la bascule doit satisfaire.

Dans l’expression pour la sensibilité

Z, 21 sin (r, —y) + Z z sin (r — Q)8,
 & 6'
8

II I a-
 

%
 °

les relations — et , ne se présentent pas, d’où résulterait que 

la sensibilité est indépendante des valeurs de ces relations. 
Si cependant nous avions aussi porté en compte la flexion, 
nous aurions trouvé que ces relations doivent être aussi 
petites que possible, parce que plus les points H et F, fig. V, 
s’éloignent respectivement de K et B, plus aussi doivent être 
grandes, à charge et à flexion égales, les dimensions des 
leviers KG et BD, à la suite de quoi leur poids et par 
conséquent aussi le frottement augmentent, de même que le 
prix de la bascule et l’espace qu’elle occupe, tandis qu’il 
devient aussi plus difficile de la déplacer. La longueur de r 
dépend de la dimension de la charge la plus volumineuse 
que doit peser la bascule; si nous admettons donc pour r 
une certaine longueur, alors e, et e doivent être aussi petits que 
le permet la construction du fléau.

Si nous soustrayons de l’équation d’équilibre (1) celle 
obtenue en mettant dans (1) C = 0 et P = 0, c’est-à-dire 
l’équation à laquelle il est satisfait en tarant, alors nous 
obtenons pour l’équation d’équilibre entre C et P:
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3

(15) et (16), devient

Ce, = P a ou C
P

Ble

tandis que, selon (19), 40 =0, d’où résulte que, dans ces 

conditions, l’équilibre et la sensibilité sont indépendants et 
de la place de la charge sur le tablier et de l’angle , c’est- 

à-dire de la relation s; voyez fig. IL

§ 7.

Le Frottement.
De préférence la charge doit être placée sur le tablier 

dans la proximité de l’axe du levier triangulaire 
supérieur.

Si la bascule est en repos, il faudra placer dans le plateau 
un poids additionnel P, pour mettre la bascule en mouve­
ment, c’est-à-dire pour vaincre le frottement des couteaux 
sur les coussinets. Lorsque la bascule est chargée nous pou­
vons, en plaçant la charge sur le tablier, aider à diminuer P,.

Pour démontrer ce fait, admettons que le travail pour 
vaincre le frottement soit proportionnel à la pression et à 
l’angle de rotation.

Dans cette conjecture, il s’agit de déterminer le poids qui, 
lorsque la bascule est en repos, doit être mis dans le plateau 
pour vaincre le frottement.

Déterminons d’abord le frottement pour autant que celui-ci 
est produit par la pression des couteaux sur les coussinets, 
exclusivement par la charge C et le poids P; de sorte que

Le Frottement. De
préférence la charge
doit être placée sur le
tablier dans la
proximité de l'axe du
levier triangulaire
supérieur
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provisoirement nous négligeons le poids des parties mobiles 
de la bascule.

Soit, fig. V, M le point d’application de la charge sur le 
tablier (9), MH =2; et admettons que la bascule soit en 

équilibre dans sa position normale, qu’en outre les tiges F E 
et D G soient verticales et que au a2) «, y et © soient 
égaux à zéro; représentons encore les pressions que la charge 
produit sur les couteaux par K, H, G, E, etc., pressions 
qui agissent sur les points du même nom, alors nous avons:

H+E= C.
Considérant comme égaux les moments de (H — E) et C 

par rapport au point H, nous avons

Eb—Ca, ainsi E=F= $ Cet H=b-=.C; 
b b

nous avons ensuite
Gr=Hr, ainsi G=D=”..C, 

rb
K=I_G= r-n.-.c 

r b
et

B=A+F-D=P.C+T..C 
r r b

Selon le principe des vitesses virtuelles, il faut que le 
travail accompli par le poids additionnel, soit égal au travail 
accompli par le frottement. Maintenant, suivant la conjecture 
précédente, quand f est une constante, le travail du frotte­
ment sera

„ r—r b—x , 
en K = -6 Cfdxi

en H = ”.Cfay,

en G=.". Cf(y-dà),

en E=g Cfd^,

en D = - .T.Cf(do+d>), 
r b
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en F=S.Cf(o+d)),
en B=(P"c+ .@c)fdpet 

\ r T b/
en A= Pfdo;
tandis que le travail accompli par le poids additionnel équi­
vaudra à

P,a d o.
Par conséquent, en négligeant d^ — grandeur qui, selon 

(20), en cas que Q, y et (90° — 3) seraient des infiniment 
petits, est elle-même infiniment petite par rapport à do et 
dy (10) — nous avons

a f(r-r b—x dyb-a dy_r b-x dy 
l~al r ‘ b doT b dpfri b do

+ n.6c+ #C+P+C+ r=n . * C+P,
rb b r r b 

ou, en prenant en considération (16):

qee+n-E ( de -r) 
P,= 2 ------------- ------------  . C -l- P

T
et donc pour =0

p -2/s+n.c+P .1*=0 a ( r )
et pour a=b

P,..-24c+P);
et la différence

(27)

V T. % &I%

8 -IIOIIH

A
T I1*

A
T

Dans la bascule de Quintenz de dimensions ordinaires, la 
différence est certainement positive; et, par conséquent, il y 
a un avantage certain à faire tomber le centre de gravité de 
la charge au-dessus du point H (11). Si nous posons par 
exemple r=4e=6r et P=AC, alors la différence s’élève 
presque à la moitié de P,_%. —
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Soit Po le poids du plateau en A, Z le poids du fléau, 
Z celui du levier triangulaire, S, et S ceux des tiges, B 

celui du tablier, etc. comme dans le § 4.
Le poids des parties mobiles effectue les pressions suivantes: 

en E= C B, Z. 
— b— en H=  7  B, b 

en G-.B+E COT z, 
r b r 

en K==.-B+ r-R CosT, „ 
r b r 

en DD.-B+E CTZ+S 
r b r 1 

en F=S B+S,

en BE-.B+B C08TZ+8+B+S+Z+Pet 
rb T b 

en A = Po.

Si nous calculons le poids additionnel qui est nécessaire 
pour vaincre le frottement occasionné par ces pressions, alors 
nous trouvons que ce poids équivaut à: 

3[7**+1044***5*+84+544+] &=
De cette dernière expression et de (27), résulte entre autre 

que le frottement diminue en prenant a et r grands et en 
prenant par contre e et rt petits; nous devons par conséquent, 
si nous voulons que la sensibilité de la bascule soit grande, 

e T diminuer e, = —1 autant que le permet la construction de la r
bascule. Concernant e, nous avons déjà trouvé un même 
résultat à la fin du paragraphe précédent.
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§ 8.

Recherche concernant l’influence de petits défauts de 
construction de la bascule sur l’indépendance de 

l’équilibre et de la sensibilité de la place 
de la charge sur le tablier.

Toujours, dans les bascules en usage dans le commerce, 
se produiront de petites inexactitudes dans la position et les 
dimensions des leviers et des tiges, inexactitudes provenant 
d’une construction défectueuse, ou bien elles se produiront à 
la suite des flexions et des tensions des tiges pendant le 
chargement du tablier; elles se produiront aussi à la suite de 
l’usure des couteaux et des coussinets, et à cause de la dila­
tation et de la contraction du matériel dont la bascule est 
formée; etc. Aussi le point E n’est pas dans la ligne B G, 
comme dans la fig. V, mais les tiges F E et D G sont, comme 
dans la fig. II, à peu près d’égales longueurs.

Nous allons rechercher quelle influence ces déviations de 
la forme parfaite ont sur l’indépendance dont nous avons 
parlé plus haut. Nous partons à cet effet de la supposition 
qu’on s’est efforcé de construire la bascule de telle sorte 
que, dans la position normale, «, = 0, a2 = 0, « = 0, Q = 0 
et 3, =3 = 90°.

a. L'équilibre.
Suivant (26), l’équation d’équilibre entre Cet P s’exprime par

SII6+* 
+88eA
4I 

CO
- 

es
 

co3&

S
 

+
 

>O
 

ci
8

+
 

èS5O

Si nous acceptons maintenant que les grandeurs a, «n 021
Q, y, 90° — à et 90° — 0, sont des infiniment petits du

e T 
premier ordre et qu'il a été satisfait à l'égalité l = -, alors, 

en négligeant les infiniment petits du second ordre, la dernière 
équation d’équilibre, en prenant en considération (16), devient 

Cet _ sin$—%) 1 Ca cos 3 d).
Pa sin (à + Q 4 «,) ( Pa dp)'

Recherche concernant
l'influence de petits
défauts de
construction de la
bascule sur
l'indépendance de
l'équilibre et de la
sensibilité de la place
de la charge sur le
tablier
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tandis que (17) devient

d fi e, sin (à—). sin (, Q) — sin (0, — Y—X2).sin(0ci)

& 6l II

sin (3, — (3) . sin (3 — y)

Puisque maintenant chacun des angles (à — y), (0, + Q), 
(,—Y — «2) et (+ a,) n’a, avec 90°, qu’une différence 
infiniment petite et que, par conséquent, le sinus de chacun 
de ces angles n’a, avec l’unité, qu’une différence représentée 
par un infiniment petit du second ordre, il est évident que — 
indépendamment de la valeur positive ou négative de fi, pourvu 
que (5 — fi) représente une grandeur finie — la valeur de la 
relation d sera un infiniment petit du second ordre; d’où 

do
e Y

résulte que, s'il a été satisfait à l'égalité 1 = -, la longueur e r
de la tige F E, voyez fig. II, et les petites déviations dans 
la construction de la bascule, n’auront pas d’effet appréciable 
sur l’indépendance de l’équilibre de la place de la charge 
sur le tablier.

b. La sensibilité.
On peut dériver de (4) la sensibilité.
Comme il est ressorti précisément que, dans les conditions 

données, la valeur de 46 est un infiniment petit du second 

d2 fiordre, uniquement le terme en (4), dont d02 est le facteur, 

détermine si la sensibilité est dépendante de la place qu’oc­
cupe la charge sur le tablier.

d2 fiL’expression pour do2 se présente sous (19), dans la sup­

position que 26 =0, et est donc maintenant aussi utilisable 

dfiparce que do est du second ordre; et, puisque, selon les 

conditions posées, étant donnés (16) et (21), d 3, est un 
infiniment petit par rapport à do et dy, nous pouvons, en 
négligeant les infiniment petits d’un ordre plus élevé que 
le premier, et après substitution de (16) et (22), écrire
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ou, après substitution de —1 = — et, en négligeant ensuite 
e.T 

les infiniment petits d’un ordre plus élevé que le premier:

2 - 6=68,283 • l^01+0+: kor 0,-7- 4 -
--- cos (0 «i)----- COS ( — 7)

Comme maintenant chacun des termes du dernier] membre 
d2G 

est un infiniment petit du premier ordre, 202 est également 

une grandeur du même ordre, d’où résulte que de petites 
inexactitudes dans la construction de la bascule auront de 
l’influence sur l’indépendance de la sensibilité de la place de 
la charge sur le tablier; c’est-à-dire, que si la charge repose 
au-dessus] du point H, flg. II, et que si elle est ensuite placée 
dans la proximité du point G, alors — abstraction faite du 
frottement — le rapport des poids additionnels Pi et P2, 
qui, dans les deux positions, doivent être respectivement mis 
dans le plateau pour donner au fléau un même angle d’incli­
naison, diffère de l’unité.

La question est maintenant de savoir si la différence en 
sensibilité est appréciable. Cela dépend — abstraction faite 
du frottement — de la valeur de la somme des termes dans
le second membre de (6), surtout de la valeur des termes 
Z, z, sin T et Z z sin T. Si cette somme est relativement 

grande et si, par conséquent, la bascule n’est pas très sen­
sible et si les défauts dans la construction sont peu impor­
tants, alors, lorsque le fléau fait un petit angle d’inclinaison, 
la différence de sensibilité aux différents points du tablier ne 
sera pas appréciable. Si au contraire la somme des termes 
Z, z, sin T, et Z z sin T est très petite et que, par conséquent, 
la sensibilité de la bascule soit extrême, alors la différence,
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en cas de défauts considérables dans la construction et si le 
fléau fait un angle d’inclinaison relativement grand, sera 
assez appréciable (13).

Comme généralement dans le commerce ou n’exige pas une 
exactitude fort scrupuleuse, mais comme il importe surtout 
de pouvoir peser rapidement, une trop grande sensibilité 
rendrait la plupart du temps la bascule moins utilisable. Nous 
pouvons par conséquent accepter que si, dans une bonne 
bascule de commerce — donc une bascule dont e. a. la sen­
sibilité n’est pas excessive — », »,, 2, %, Q, 90°—à et 
90° — 3, sont très petits dans la position normale, le terme 
72 32 — indépendamment de la valeur de 3 — sera si petit 
d (
que la sensibilité, à un angle d’inclinaison pas trop grand, 
sera suffisamment indépendante de la place de la charge sur 
le tablier.

De ce qui précède il résulte donc, que la bascule de Quiu- 
tenz, dans laquelle les tiges, de même que dans la fig. II, 
sont à peu près de la même longueur, peut répondre aux 
conditions d’un bon pesage aussi bien que la bascule con­
struite conformément à la fig. V.

Evidemment les résultats qui ont été trouvés dans le § 7 
concernant le frottement demeurent entièrement applicables si 
les tiges DG et F E, fig. II, sont à peu près de la même 
longueur; et, en même temps, la possibilité que le tablier se 
déplace, si le fléau fait un angle d’inclinaison, demeure plus 
petite que lorsque les tiges, comme dans la fig. V, diffèrent 
considérablement en longueur; il est donc préférable, étant 
donné ce qui précède, de construire la bascule conformément 
à la fig. II que conformément à la fig. V.
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§ 9.

Formes de bascules dont la théorie équivaut à celle 
de la bascule de Quintenz.

10. Si, en laissant de côté le bras de fléau A B, fig. Y, 
une force agit en R sur le bras de levier prolongé B D dans 
le sens indiqué par la petite flèche, alors nous obtenons en 
principe la bascule représentée par la flg. VI. Cette bascule 
est en usage pour le pesage de charges très lourdes et de 
grandes dimensions, comme par exemple des voitures chargées, 
etc. L’équation d’équilibre, dans la position indiquée par la 
fig. VI, est

C_MN RB
PNQ ’ F B ’ 

s’il a été satisfait à l’égalité

KH FB 
K G ~ D B‘

Si nous prenons MN=10 NQ et RB= 10 F B, nous 
avons

C= 100 P.
Cette bascule est donc une centésimale.
Pour épargner de la place, le fléau M Q, dans beaucoup 

de bascules, est perpendiculaire à la position indiquée dans 
la figure VI.

Il est évident que cette position du fléau, en prenant en 
considération le déplacement restreint du couteau Q lors des 
pesages, ne peut pas avoir d’influence marquante sur l’équi­
libre et la sensibilité de l’instrument, pourvu qu’entre autre 
la tige Q R ne soit pas trop courte.

Cette dernière remarque est aussi applicable à la bascule 
centésimale représentée par la fig. VIa. Cette bascule con­
siste dans la réunion de deux leviers triangulaires K G K, et 
k G k,, dont les plans, dans la position normale de la bas­
cule, tombent dans un seul plan horizontal et dont les extré­
mités G, très proches l’une de l’autre, sont élevées au moyen

Formes de bascules
dont la théorie
équivaut à celle de la
bascule de Quintenz
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de deux tiges DG qui en haut aboutissent à un seul cous­
sinet reposant sur le couteau D, lequel est fixé sur le levier 
RB; le levier RB lui-même repose en B sur un coussinet 
fixe et est élevé en R par la tige RQ; tandis qu’ à son 
tour cette tige repose en Q sur le levier Q M, qui repose 
sur le coussinet fixe N.

Le tablier de la bascule repose à gauche sur les points H 
et H, du levier triangulaire K G K,, et à droite sur les points 
e et e, des tiges he et h, e,, qui sont suspendues en h et 
h, au levier triangulaire kGkr

Si dans cette bascule N M. BR. Gk,= 100 QN . DB .h, k,, 
alors C= 100 P(*).

(*) G k, représente une perpendiculaire de G sur kk,; h, est le point d’inter­
section des lignes Gk, et h h,.

Il est évident que, conformément à la théorie, cette bas­
cule ne peut satisfaire aux conditions (2) et (5) dans aucune autre 
position que la normale, vu que les points H et C, lorsque 
le point D s’élève, ne décrivent pas des courbes égales, de 
sorte que, en cas de déplacement du point D, la ligne He 
ne peut se déplacer parallèlement à sa position primitive, et 
non plus par conséquent le tablier.

Cependant, il résulte du § 8 que, si, comme il est d’usage, 
les leviers triangulaires KGK et kGk sont grands et si 
respectivement les distances, entre les points H et h et les 
lignes KK, et k k,, sont petites et si aussi l’angle d’incli­
naison est petit, les différences de sensibilité, en cas que la 
charge soit placée sur divers points du tablier, seront peu 
appréciables (14).

Parfois aussi le tablier de cette bascule n’est pas suspendu 
à des tiges ou à des chaînes en h et h., mais il s’appuie 
aussi en ces points directement sur les leviers k G et k. G; 
d’où résulte nécessairement qu’avec n’importe quel angle 
d’inclinaison du fléau il doit se produire un frottement extrê­
mement nuisible entre les coussinets du tablier et les couteaux 
sur lesquels ils reposent.

2°. Si nous prenons, comme dans le § 5, «, = 0, «, = 0,
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e Y
3. = 3 et - = -, mais cette fois e. > e, alors nous obtenons 1 er 1 
d’après (18) et (23) de nouveau

s e

La fig. VII représente, dans la forme la plus simple, la 
coupe de cette bascule.

3°. Par la combinaison de deux formes selon la fig. VII, 
nous obtenons la bascule de comptoir conforme à la fig. 
VIII (système de Béranger) (15).

40. 3=3,+ 180° satisfait aussi à (24).

Si nous posons (23) a, = 0, &2 = 0, — = —1 et o= 180°, 
€ T 

alors nous trouvons:

s e'

e.-T.d’où, étant donnée la condition 1=1, il résulte ou bien e r 
que e, et r, doivent être négatifs et e et r positifs, ou bien 
que e, et r, doivent être positifs et e et r négatifs.

Pour e, et r, négatifs on a la fig. IX, et, pour e, et ri 
positifs, la fig. X.

5°. Par la combinaison de deux formes selon la fig. IX, 
on obtient la bascule de comptoir selon la fig. XI.

6°. Par la combinaison de deux formes selon la fig. X, on 
obtient la bascule de comptoir selon la fig. XII.

Si ici les bras de levier KG et K H sont pris égaux et 
si en outre K G, est égal à KG, alors nous obtenons la 
bascule représentée à la fig. XIII (16).

7°. 3, = 3 -]- 180° satisfait également à (24). Si nous posons 

en (23) 0, =0, 0 = 0, 3, = 180°+ à et 1 = , alors nous 

trouvons — —1 = —, et, par conséquent, il faut, si e, ri, r 
81 s

et s sont positifs, que s, soit pris négativement, c’est-à-dire, 
que le tablier, au lieu d’être, comme dans les autres figures,

c
o



suspendu à une tige doit au contraire reposer sur une tige, 
comme nous le montre la fig. XIV.

Il est évident qu’une telle forme serait peu pratique; du 
§ 8 cependant, il a déjà résulté que (3, ou, ce qui revient 
au même, que la longueur de la tige d’appui peut être prise 
fort arbitrairement et aussi négativement sans que ceci ait 
une influence marquante sur la sensibilité.

Naturellement les modifications dans la longueur et aussi 
éventuellement dans la nature des tiges demeurent sans effets 
sur l’état d’équilibre lorsque le fléau est dans la position 
horizontale, en supposant qu’alors les tiges se trouvent dans 
une direction verticale.

Nous pouvons donc, comme dans la fig. XV, suspendre 
tout aussi bien le tablier à une tige de longueur arbitraire (17).

Ici encore nous pourrions, par exemple, prendre et >e.
8°. Par la combinaison des deux formes selon la fig. IX 

et la fig. XV, nous obtenons la bascule de comptoir conforme 
à la fig. XVI.

L’équation d’équilibre des quatre dernières formes est pour 
toutes la même, notamment

CLBF
P B F

et, en même temps, il doit être satisfait à l’égalité
FBKH F, B, — K, H, 
BD KG BD K,G
FE FELes relations - et 1
DU D.G

peuvent, pour toutes les formes

de bascule ici représentées, pourvu qu’elles ne soient pas trop 
petites, êtres prises arbitrairement.

9°. y = 180° — Q satisfait également à (24).

Si nous posons en (23) 0, = 0, 02 = 0, €=, et 

y == 180° — Q, alors nous trouvons, en prenant en considé­
ration (16), (17), (20) et (21), et =r et par conséquent 

aussi e=r, indépendamment de la relation - et des angles 8
fi et 0,. La figure XVII représente la bascule en question.
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Pour arriver au dernier résultat, il faut que nous démon­
trions au cours des calculs que 46 == 0, si nous prenons

« =0, a = 0, et y = 180° Q.

Dans cette supposition, il résulte de (17)
d__ (r en — nie) sin (01 + Q) 
do b r sin (31 — [3) ‘ 

de sorte que la valeur de 26 devient zéro pour toutes les valeurs 

de 31 et (3 qui n’annulent pas sin (31 — G); tandis que, pour 
(=>, la dernière égalité devient = S. Mais si =>, 

alors de devient d'i et pour cette valeur particulière de (3, 
do dO

selon (21), indépendamment de la valeur de la proportion 
e-, nous avons:
T

0+9:46-46-0:
d’où résulte qu'également, pour cette valeur de , il faut 
que 46 = 0, indépendamment de A

Si nous acceptons encore que ey=e et que, par consé­
quent aussi r1 = r, il en découle les formes de bascules qui 
sont représentées par les fig. XVIIa, XVIIb et XVIIe.

Chacune de ces bascules — qui peuvent être nommées à 
bon droit, d’après leur inventeur, bascules de Roberval — 
consistent en un fléau auquel sont fixés les trois couteaux 
A, B et D. Ces couteaux ont les fonctions suivantes: Le 
couteau B du fléau repose sur un support fixe B K et sup­
porte donc le fléau; le couteau D soutient le tablier sur 
lequel doit être placée la charge C et le couteau A porte le 
plateau, qui peut contenir le poids P devant faire équilibre 
à la charge C. — Le support fixe est muni en K et le 
tablier est muni en G d’un couteau; ces deux couteaux sont 
réunis au moyen d’une tige qui empêche le chavirement du
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tablier. Dans les bascules de grand format et dans celles 
dont les tabliers doivent être assez grands, le fléau doit se 
terminer en fourche, de façon que le couteau d’appui, divisé 
en deux parties, repose sur deux coussinets et que le fléau 
supporte le tablier en deux points.

Il est évident que, dans les bascules suivant les fig. XVIIà 
et XVIIe, les charges ne pourront être placées qu’à gauche 
de la planche DG et que, par contre, dans les bascules con­
formes à la fig. XVID», les charges devront être placées seu­
lement à droite, à moins que la tige G K soit construite de 
telle sorte qu’elle puisse à la fois servir de tige d’appui ou 
bien exercer une traction, selon que la charge est placée sur 
le tablier soit à gauche soit à droite de la planche D G.

10°. La bascule de Roberval à deux tabliers consiste dans 
une jonction de deux des formes suivant la fig. XVIIb ou XVIIe.

La fig. XVIII représente la bascule de comptoir très connue 
de Roberval (18).

Ici D Di représente le fléau qui, en B, repose sur un sup­
port B M N et qui, en D et D1, porte les tiges DG et D. Gj 
auxquelles sont adaptés les plateaux. Ces tiges sont réunies 
aux extrémités par le levier G G).

Le support se termine par deux barres M et N qui se 
trouvent des deux côtés, quoique cependant très près du plan 
vertical qui passe par B et qui est perpendiculaire au plan 
de mouvement du fléau. Entre ces barres, se meut le levier 
G Gj qui toujours, au moyen d’une des deux dents dont en 
son milieu et suivant un plan horizontal ce levier est muni, 
repose contre le plan vertical d’une de ces barres. Ce levier 
sert donc à la fois de tige d’appui et de tige de traction 
(ainsi qu’il en a été question dans l’alinéa final sub 9°).

La tige D1 G. est, en bas, échancrée dans le sens de son 
axe et suivant un plan qui est perpendiculaire au plan de 
mouvement du fléau. Contre cette échancrure est fixée une 
petite plaque, partiellement ouverte, qui sert au levier G G 
à s’appuyer et à empêcher qu’il ne glisse de côté.

A l’extrémité G, du levier G G., est ménagée une ouver­
ture destinée à laisser passer l’extrémité inférieure de la tige
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D1 G1, grâce à quoi elle peut intérieurement reposer contre 
le levier.

Au point G de la tige D G et du levier G G1, la construc­
tion est la même qu’au point analogue Gj.

La fig. XVIIIa représente la coupe du levier G G], des 
barres M et N, des tiges et des plaques avec un plan hori­
zontal, qui passe par l’axe du levier.

Les fig. XVIIIb et XVIIIe représentent la liaison entre 
les tiges et les plaques, vue dans la direction G Gj.

La fig. XVIIId montre de quelle façon les tiges sont 
suspendues au fléau.

11°. Dans quelques formes de bascules, le principe de la 
bascule de Roberval est fusionné avec celui de Quintenz. 
Ainsi la bascule de George (19), suivant la fig. XIX, diffère 
de celle de Roberval en ce que le tablier ne repose pas direc­
tement sur le fléau, mais est porté au moyen d’une tige 
D G qui, eu D, est suspendue au fléau et, en G, agit sur le 
tablier. En outre le tablier est relié au support fixe au moyen 
de deux tiges et cela au moyen de la tige de traction K1 G1 
et de la tige d’appui K G.

12°. Si, dans la fig. XIX, nous intervertissons la tige 
d’appui et la tige de traction et si ensuite nous renversons 
le tablier, nous obtenons la bascule suivant la fig. XX. —

Il est évident que beaucoup d’autres formes de bascules 
peuvent être dérivées des formules que nous avons trouvées 
et qu’elles peuvent être combinées entre elles de différentes 
manières. Nous nous bornerons cependant à celles qui précè­
dent. Toute bascule basée sur un système de leviers et de 
tiges peu flexibles et peu extensibles, pourra être facilement 
étudiée au moyen des formules que nous avons exposées, de 
sorte qu’on pourra rapidement déterminer les conditions aux­
quelles elle doit satisfaire.
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§ 10.

Vérification des bascules de Quintenz et de Roberval. (45

a. Détermination, dans la bascule de Quintenz, de la grandeur 
des fautes dans la longueur des bras de levier, 

au moyen de pesages.

Nous admettons que la ligne Kj K, fig. I, est perpendicu­
laire au plan du fléau; que, dans la position normale de la 
bascule, les couteaux du fléau se trouvent à peu près dans 
un plan horizontal; de même les couteaux du levier triangu­
laire inférieur; que les tiges sont approximativement vertica­
les, et que la charge — dont le centre de gravité se trouve 
dans la verticale qui passe par le point M du tablier — fait 
équilibre au poids placé dans le plateau.

S’il faut, lorsque la charge est placée sur un autre point 
du tablier, ajouter un poids additionnel pour faire revenir 
le fléau dans sa position normale d’équilibre, alors ceci 
résulte — sans nous occuper du frottement —, conformé­
ment au § 8, uniquement de ce que les longueurs des bras 
de levier de la bascule ne satisfont pas à l’égalité

longueur de la verticale du couteau H sur K, K _
longueur de la verticale du couteau G sur K1 K 
longueur de la verticale du couteau H sur Kj K B F 
longueur de la verticale du couteau G sur K! K BD

Car, s’il avait été vraiment satisfait à cette égalité, alors le 
déplacement de la charge sur le tablier n’aurait pas eu 
d’influence appréciable sur l’équilibre.

La grandeur des fautes dans la longueur des bras de levier 
peut se déterminer au moyen de trois pesages, dans lesquels 
une même charge est placée la première fois au-dessus du 
couteau H, une seconde fois au-dessus du couteau Hi et une 
troisième fois dans le plan de mouvement du fléau au point 
Mi (20). Chaque fois la bascule est ramenée dans sa position 
normale en plaçant un poids additionnel dans le plateau.

Vérification des
bascules de Quintenz
et de Roberval

a. Détermination, dans
la bascule de
Quintenz, de la
grandeur des fautes
dans la longueur des
bras de levier, au
moyen du pesage
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A la suite des deux premiers pesages, on détermine la correction 
que doit subir une des perpendiculaires de II ou H1 sur Kj K, 
pour que ces perpendiculaires soient égales entre elles, tandis 
que le troisième pesage sert à pouvoir calculer quelle correction il 
faut faire aux perpendiculaires maintenant égales, qui tombent 
de Hj et H sur K1 K, ou à une des grandeurs BF et BD 
ou à la perpendiculaire de G sur K1 K pour donner la même 
valeur aux proportions de (28).

Supposons que la charge C au-dessus de H fasse équilibre 
au poids P; au-dessus de H1 au poids P + P1, et, au-dessus de 
Mj au poids P + P2; que lors du deruier pesage la verticale 
qui passe par le centre de gravité de la charge se trouve à 
la distance x de la ligne Hj H; et que Hj h. == h1, h H = h, 
que les perpendiculaires de H et Hj sur K1 K soient respec­
tivement égales à ri et r2 et que la distance de la ligne 
FE à la ligne qui passe par les couteaux H1 et H soit égale 
à b, alors nous avons les pressions

au premier pesage: en H = C' et en H1 et E = 0;
au deuxième pesage: en Hj = C et en H et E = 0;

au troisième pesage: en H= •1
&

h — h
h b—x 

en H=+h b • °

et en E=M. C. 
b

Suivant la notation du § 4, l’équation d’équilibre entre C 
et P, P+ P1 et P+ P2 s’exprime, conformément au prin­
cipe des vitesses virtuelles, respectivement par

C. d (rj sin y) — P. d {a sin (a +a+ Q)} = 0,
C. d (r, sin y) — (P+ P) ■ d la sin (a+a+ Q)3 = 0 

et
*#* * C.a0sü»)+****.0ac,*ü»)+

! X ( ■ , hr.thri ■ )—y.C.d'b sin 3 4-----4—, sin y? —b ( h 1 )
— (P+ P,) . d sa sin (a + a, + Q) = 0

ou
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Ces équations sont générales, de même que les valeurs de 
dr et de de (16) et (17).
d@ d@ 7 2

Si nous supposons maintenant que «, 01, 02, Q, (3, y, 
à — 90° et 01 - 90° sont très petits, alors les trois équations 
d’équilibre, en prenant en considération (16) et (17), deviennent

Cr.€=Pa, 

cr$=(+P)a 

et
ahnhr e er—re LPP 

C h+h r br *54*20

En soustrayant la première équation des deux dernières, 
nous obtenons

Con-n),=Pia(29) 

et
c.h(=n),+c.0rne.=P,a. . (30) 

h1hi r br - 7
En substituant en (30) l’égalité de (29), notamment 

h .C(r, -) ( = - . P, a, 

on trouve
er—rje h • 

br hfhi
d'où
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abr (h- P — P Cex+hl (31)

Tout d’abord un des points H1 ou H doit être déplacé 
pour rendre équivalents r2 et ri. Si, par exemple, on déplace 
H. alors r, doit subir une correction, de sorte que 

r2 + corr. r2 = r1, ou, suivant (29), 
P ar corr. r, ==------ ——. Ce

Après avoir corrigé r.2, r2 devient = ri; il faut maintenant 
encore faire subir une correction commune à ri et (^ + corr. r2), 
de sorte que nous avons

ri + corr. ri =1 . r, ou, suivant (31),

abr corr. r = —— 
Cex

° S Il reste encore à satisfaire à l’équation 
ej:(a + corr. a) = 1 : n 

d’où
corr. a = n e1 — a, 

n étant égal à 10 ou 100, suivant que la bascule est une 
décimale ou une centésimale.

La grandeur en n’est pas susceptible d’être mesurée exac­
tement; de (30) résulte

C
o II

%
|% I 08 (2
)

b. Détermination, dans la bascule de Quintenz, de la grandeur 
des fautes dans la longueur des bras de levier, 

au moyen d'un niveau d'eau.

S’il a été satisfait aux conditions posées au commence­
ment de ce paragraphe et en même temps à l’égalité (28) 
alors, suivant le § 8, le tablier, pendant les oscillations du 
fléau, se déplacera parallèlement à sa position normale. Si 
donc, pendant les oscillations du fléau, le tablier de la bas­
cule dont il est question au commencement de ce §, ne se

b. Détermination, dans
la bascule de
Quintenz, de la
grandeur des fautes
dans la longueur des
bras de levier, au
moyen d'un niveau
d'eau
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déplace pas parallèlement à sa position normale, alors ce fait 
prouve que les dimensions des bras de levier ne satisfont pas 
à l’égalité (28).

Maintenant il résulte de (16), que, si au fléau dans sa 
position normale on fait faire un angle très petit d’inclinai­
son Q et si alors l’angle, que fait le plan KiGK avec sa 
direction primitive, est égal à y, il sera très approximativement

sin Y=— szn (; 
r

ainsi l’élévation qui correspond avec l’angle d’inclinaison Q 
est très rapprochée

e 
élévation H=r.. sin r

et
e 

élévation H, = T2 • sin 0 ;

par conséquent
,, 1 hr—hr e .élévation h. = --------—- .—. sin O.h 1 T

Encore on a très approximativement
élévation E=ei sin Q.

Si nous supposons maintenant que l’angle que fait la 
ligne h0 E, lorsque le fléau fait un angle d’inclinaison Q, 
avec sa position lorsque l’angle d’inclinaison est nul, soit 
égal à S celui de la ligne H H1 égal à 91, et que le tablier 
dans la position normale de la bascule soit approximative­
ment horizontal, alors nous avons:

e(h hi) sin == élévation H— élévation H ==(r,—r_)—sin © .(32) T
et

b sin = élévation E — élévation h =(e,- hinihr. E) sin Q.(33) 
. hihi r/

Tout d’abord r2 doit subir une »correction r,", de sorte 
que nous avons de nouveau:

r2 + corr. r2 = ri
ou, suivant (32), étant donné que S1, et aussi § sont suppo­
sés très petits,

(1+h))r %, corr. r, = — -—-—- .2 e ©
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En substituant

r, — sin 0=(h h.) sin r - sin 0 T r 
de (32) dans l’égalité de (33), on obtient

b sin== Ci sin ( — ——- .—sin O — 
hfhi T

- *4K 0. + %) sin % + 7 7 sin %}, 

d’où
(— r — r,) sin $= sinz” sin %; 

ainsi, puisque r1 + corr. n=1r, on trouve pour la cor- 

rection commune à ri et (r2corr. r2)

corr. „=0+1%) . . . . (34)

De (83) résulte
LE hn+hr e 

1 7 h+hi r

Pour déterminer les angles § et 51, on peut faire usage 
entre autres d’un niveau d’eau très sensible ou d’un plomb 
pendant à un support.

c. Vérification de la bascule de Roberval.

La fig. XX1 représente la coupe de cette bascule dont les 
bras de levier B D et G K et la tige D G sont de longueurs 
plus ou moins inégales. Les points B et K sont des points 
fixes; le quadrilatère BDGK est variable; le tablier M M1 
est fixé à la ligne DG; en M repose la charge C. La lon- 
gueur de la ligne B D est égale à e; ensuite DG =s, GK=r, 
KB=n et BA=a; un angle de (180° — a) est inscrit 
entre les bras de levier A B et BD.

1°. Conditions pour l'indépendance de l'équilibre de la place 
de la charge sur le tablier.

e r
Dans 9°, page 34, se trouve démontré que si 1 = - et

c. Vérification de la
bascule de Roberval
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7=180° — Q, 26 =0, indépendamment de la relation S 

c’est-à-dire: il suffit, pour l’indépendance de l’équilibre dans la 
position normale du fléau, que BD et KG soient parallèles; 
les longueurs mêmes de B D et de KG peuvent être inégales (22).

2°. Calcul de la différence d’inclinaison de B D et de K G.

Supposons, lorsque l’angle d’inclinaison du fléau est Q, 
que la charge C en M fasse équilibre au poids P dans le 
plateau. Si nous transférons la charge C au point Mj, alors, 
au cas que les angles y et 180° — Q ne sont pas égaux, 
l’équilibre sera rompu, et il faudra ajouter au poids P un 
poids additionnel Pi pour replacer, avec le même angle 
d’inclinaison Q du fléau, la bascule en équilibre.

Si Mm et M1 m1 sont des verticales, et m m = x, alors 
nous trouvons, en soustrayant l’équation d’équilibre de C en 
M de celle de C en Mn

Ca cos?. ^ =P,a COS («+%),

ou, étant donné que selon (20)
do _ e sin (/ + Q)
do s sin (/— 3)' 

nous obtenons

sin 0+0 = ?!^±^tJ.
C e x cos d 

Si nous posons maintenant que M M, = y est approxima­
tivement horizontal et que chacun des angles a, Q, 180°—Y 
et à — 90° est très petit, alors nous avons approximative­
ment a cos d =y et

. . Pas sin (TO) = —— ; 
Cey 

ou, posant y = 180° — Y1, alors
sin (1 - 0) = Lias....................... (35)

Vey



45

d. Vérification de la bascule de comptoir de Roberval.

La fig. XXII représente la coupe d’une telle bascule, dont 
les bras de levier et les tiges ont des longueurs plus ou 
moins inégales.

Remarquons que, ci-dessous sub 1°, 2° et 30, les trois 
couteaux du fléau D B Di sont supposés perpendiculaires au 
plan de mouvement du fléau; de même pour les trois cou­
teaux du levier GKG,; en outre que le point K ne peut 
pas être un point fixe, mais qu’il doit y avoir en ce point, 
eu sens horizontal et vertical, quelque jeu entre les couteaux 
et les coussinets; car, dans le cas contraire, dans une con­
struction non absolument juste, il n’y aurait pas de mouve­
ment possible sans torsion du levier G G.

10. Recherche si les bras du fléau D B et B Di sont égaux.

Nous supposons qu’avant le chargement le fléau de la 
bascule ait une position horizontale. On s’enquiert si les bras 
du fléau D B et B Dj sont égaux en plaçant deux poids iden­
tiques P sur les plateaux aux points NI et Mi situés dans les 
verticales qui passent par D et D.; on peut admettre alors 
que les poids agissent sur les points D et Dj. S’il se présente 
maintenant qu’un des plateaux, par exemple celui qui repose 
sur la tige Dj Gp doit encore recevoir un poids additionnel 
P pour que le fléau prenne la même position qu’avant le 
chargement, alors nous avons:

% + & T

et, par conséquent, ex doit être corrigé, de sorte que nous
obtenons

Pe=(P+ P) (e — corr. €);
d’où

_ P,e Pe
corr. 015P+P, ■ P »

indépendamment de la longueur des bras du levier inférieur 
et de la longueur et de la position des tiges.

d. Vérification de la
bascule de comptoir
de Roberval
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2°. Recherche si le fléau et le levier inférieur sont parallèles.

Nous chargeons la bascule en M et M1 avec des poids 
identiques P ; soit O l’angle d’inclinaison ; et si ensuite, dans 
le plateau de gauche, nous déplaçons le poids du point M 
au point M2, alors, si la construction de la bascule est peu 
précise, il faudra, lorsque le poids P est en M2, ajouter le 
poids additionnel Pi pour rendre au fléau le même angle 
d’inclinaison Q. Suivant (35) nous avons alors, en admettant 
que (e, — e), Q, %I, 3 — 90° et 31 — 90° sont très petits, 
approximativement

sin (71 -)=p.5;

d’où l’on peut déduire, en cas de position normale du fléau, 
la position du levier inférieur par rapport au fléau. —

Nous pouvons aussi faire cette dernière épreuve au moyen de 
deux niveaux d’eau très sensibles posés sur les deux plateaux 
dans la direction du fléau. Si nous faisons faire au fléau 
avec sa position normale un angle d’inclinaison 0, alors 
nous avons, comme il résulte de (20),

dà e sin (x — Q) 
do s sin (Y — 0)

Si nous représentons par (3 la différence entre les angles 
que fait le plateau de gauche lorsque 0=0 et lorsque 
Q = , et si Q, 180° — y et 90° —à sont très petits, alors 
nous avons fort approximativement

Ghe =- sin (x + (), 

ou

d’où peut ressortir si Y1 diffère de Q.

30. Recherche concernant l'égalité en longueur des tiges.

Nous venons de trouver 
do e sin (()
do s sin (Y—3)’
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de même nous avons l’égalité
d 31 _ ey sin (1+ 1).
d V1 81 sin(Y1 — 31)1 

ou bien, étant donné que >%= 360° et 0101=0, 
c’est-à-dire %= — %, 01= — Q et do=d01

doi  e1 sin (x + Q)
d® 81 sin (Y81)

Si y n’est pas égal à 180°— Q, alors nous trouvons en 
divisant 

do   e 81 sin (x).
do ens sin (y — 3) 1 

et si ensuite 180° — y, 90° — 01 et (ex — e) sont très petits, 
alors nous avons fort approximativement

dô _ 81 
dô,s‘

par conséquent, lorsque le fléau oscille, le plateau, qui est 
relié à la plus petite tige, fera le plus grand angle avec sa 
position primitive.

Si s et 81, c’est-à-dire les tiges, sont de longueur égale, 
alors les angles que les plateaux font avec l’horizon augmen­
teront d'une quantité égale.

Si nous représentons par G et 1 la différence entre les 
angles que font les plateaux en B et Di, lorsque 0 =0 et 
0 =0, alors nous avons

G _  81 __ s Hcorr. S
G1 s s'

( /G ou corr. s = s — — =8 ( — 1).
Bi Vi 7

40. Détermination des angles que font les couteaux de 
suspension du fléau avec le couteau d'appui.

Dans la fig. XXIII, b B représente le couteau d’appui et 
dD et d, Di représentent les couteaux de suspension.

Soit d b = m, ba, =n, D B =4, BD=p et bB=k; 
les longueurs d D, b B et dj Di peuvent être considérées 
comme égales.
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Si nous supposons maintenant, fig. XVIII11, que lorsque le 
fléau est dans sa position normale, une charge G fasse équi­
libre, au-dessus du point d, à la charge C1, placée au-dessus 
du point d,; que de même une charge C, au-dessus de d, 
fasse équilibre à la charge C2 au-dessus de Dj; et qu’enfin 
une charge C3 au-dessus de D fasse équilibre à la charge C, 
au-dessus de Di; alors nous avons

C
Cm= C1 n, d’où n= — m; 

C1 C 
Cm = C2 q, d’où g — — m; 

C2 
C

Cp=Cq=Cin= Cm, d’où p== m. 
C3

Si nous désignons par Q et Ç1 les angles que font les 
lignes d D et dj D1 avec b B, alors

k sin@=p — m C .) , . m C—C.Y-----1)m, d ou sin =-. ———S 
C37 k C3

et

II 
<

II 
=1 

€ 
II

E 
6

A 
-S0

C C) 1
y------—m, d 011C2 C17
- C—C2

9

ou

C 3 6
—

II
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k‘ Ci 91
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NOTES.

(1) Quintenz, de Strasbourg, est l’inventeur de la bas­

cule qui porte son nom. Elle fut construite pour la première 
fois par lui en 1821; plus tard Rollé, Scbwilgué, Schüller, 

— Béranger et d’autres y apportèrent des modifications. Voyez 
4) Friedr. Bamberger: Beschreibung und Abbildung der in neuerer 

Zeit erfundenen und verbesserten Maschinen zum Wagen; 
Quedlinburg und Leipzig, 1832.

(2) Nous entendons par -position normale du fléau”, la 

position où le rapport de la charge C avec le poids P est 
constant pour toute charge C pour laquelle la bascule peut 
être employée. Dans les instruments parfaitement achevés, le 
fléau dans sa position normale est placé le plus exactement 
possible dans la position horizontale.

Par » position normale du tablier” nous entendons la posi­
tion qu’occupe le tablier lorsque le fléau lui-même est dans 
la position normale; même remarque pour les leviers, les 
tiges, etc.

(3) Ici et dans la suite, nous entendons par »couteau" 

l’arête du couteau.
(4) Il s’agit du plan vertical dans lequel se meut l’axe 

longitudinal du fléau, lorsqu’il fait un angle d’inclinaison.
(5) Le poids des parties mobiles de la bascule peut rester 

hors de considération, puisqu’il n’a pas d’influence sur l’indé­
pendance que nous avons en vue ici.

(6) Il est évidemment inutile de considérer que l’équili­
bre est indépendant de a si cos G =0, c’est-à-dire que, si

Notes
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le tablier est vertical, la charge peut être déplacée dans le 
sens du centre de gravité sans que l’équilibre soit troublé.

(7) La sensibilité est également indépendante de a, si 
co= 0 et si en outre 4A = 0; voyez la note (6) concer- 

nant ce point.
(8) A l’équation (24) satisfont encore d’autres conditions 

que 3, =3; nous nous occuperons de ces valeurs dans le § 9. 
(9) La somme des pressions, occasionnées par la charge 

C sur les points H, et H, K1 et K, fig. 1, ne varie pas si, 
sur le tablier, la charge se déplace dans une direction per­
pendiculaire au plan de mouvement du fléau; par conséquent 
le frottement est aussi indépendant de ce déplacement de la 
charge; d’où résulte que nous pouvons ici aussi considérer 
la largeur du tablier et celle du levier triangulaire comme 
égales à 0.

(10) Généralement le point E de la tige FE et celui du levier 
triangulaire supérieur ne reposent pas l’un sur l’autre au 
moyen d’un couteau et d’un coussinet, mais au moyen d’un 
oeillet et d’un crochet de fer épais. Etant donnée la gran­
deur du frottement en E, il résulte que ce dispositif peut 
être appliqué sans guère intéresser la sensibilité de la bas­
cule. Voyez, e. a., le dernier alinéa de l‘ » Einleitung" du 
traité de » Th. Schônemanu: » Von der Empfindlichkeit der 
Brückenwagen" (Aus dem V Bande der Denkschriften der 
mathematisch-naturwissenschaftlichen Classe der kaiserlichen 
Akademie der Wissenschaften zu Wien).

(11) Les grandeurs a et r doivent être prises relativement 
grandes et les grandeurs e et ri relativement petites. Voyez, 
dans le § 6, l’alinéa précédant immédiatement l’avant-dernier.

(12) Voyez le dernier alinéa de 1* »Einleitung" du traité 
de Schônemann : » Von der Empfindlichkeit der Brückenwagen" 
et notre note (9).

(13) Voyez les notes (10) et (12).
(14) On trouve une description très détaillée de cette bas-
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cule avec figure sous le n° 317 dans le Traité sur la Balance 
ou théorie des Instruments de pesage par J. S. Lucciardi, 
Annecy, 1899, où se trouvent décrites longuement les bascu­
les admises en France à la vérification, ainsi que leurs prin­
cipales parties constitutives.

(15) Voyez n° 190 de l’ouvrage de Lucciardi précédem­

ment cité et la page 63 ainsi que les figures 41 et 45 de 
l’ouvrage de Ernst Brauer cité à la note (18) ci-après.

(16) Il s’agit ici de la bascule de comptoir de Pfanzeder, 

que les frères Pfitzer fabriquaient en grand nombre autrefois 
et qui, pour cette raison, a souvent porté leur nom. Cette 
bascule est admise à la vérification en Autriche et en Allemagne.

Voyez » Instruktion in Ausführung der Eichordnung vom 
16 Juli 1869;” Berlin et » Instruktion für die Aichâmter der 
im Reichsrathe vertretenen Kônigreiche und Lânder der Oester- 
reichisch-ungarischen Monarchie;'’ Wien, 1872.

(17) Les mêmes remarques concernant les tiges d’appui 
qui, dans les fig. XIV, XV et XVI, reposent en H et H, sur 
les coussinets.

(18) Les premiers instruments de ce genre parurent sous 
le nom de balances anglaises ou bien de balances de Roberval, 
parce qu’elles étaient l’application d’une particularité des 
leviers, qu’avait mise en lumière ce mathématicien, qui fut, 
au 17e siècle, professeur au Collège de Paris.

Dans la forme où elle est représentée à la fig. XVIII, 
cette bascule de Roberval est reçue à la vérification aussi 
bien en France qu’en Belgique. Pour ce qui regarde la Bel­
gique, nous renvoyons à la planche n° 24 de 1’ Atlas des 
Plans formant annexe au 1er supplément du Recueil des Arrêtés 
Royaux et des Instructions relatifs au service des poids et 
mesures, Bruxelles, 1895, où entre autres sont représentés 
dans tous leurs détails les instruments de pesage qui sont 
reçus à la vérification en Belgique.

En Autriche, la bascule de Roberval est exclue de la véri­
fication; autrefois c’était aussi le cas en Prusse; maintenant 
cependant, après que la tige G G. a été modifiée par West-



52

phal et Cramer, cette bascule est également admise dans 
l’empire allemand. Voyez Ernst Brauer: Die Konstruktion 
der Waage, Weimar, 1887, fig. 184. Cet important ouvrage — 
une continuation de l’excellent ouvrage de Schônemann, cité 
précédemment dans la note (12) — est une édition corrigée 
de Hartmann’s Waagen und ihre Konstruktion (Zweite ver- 
mehrte und verbesserte Auflage von Robert Jasmund) Weimar, 
1864. Ce livre de Brauer traite consciencieusement des instru­
ments de pesage en général, aussi bien au point de vue 
théorique qu’au point de vue pratique, surtout même à ce 
dernier point de vue, tandis que les parties constitutives d’un 
grand nombre de bascules sont représentées par des dessins 
extrêmement détaillés et clairs. Voyez aussi Precbtl: Tech- 
nologische Encyclopddie, Volume XX, tables 486—504.

(19) Voyez Schônemann: Von der Empfindlichkeit der 
Brückenwagen, § 9, et Ernst Brauer: Die Konstruktion der 
Waage, page 51.

(20) Aussi près que possible du point E.

(21) Recherche des défauts dans les dimensions d'une bascule 
décimale de Quintenz.

Soient, dans cette bascule (voyez aussi la fig. 1) les dimen­
sions de

AB = a = 482 m.M.;
BD=e= 290 »

Soient la distance entre la verticale F E et la ligne HH = 
= 6=1170 m.M.;

la distance entre la verticale DG et la ligne KK= 
=,= 1119 m.M. et

la distance de la perpendiculaire de H à la ligne KK= 
== 188 mM. ;

H h, == 305 m.M., 
H, h0 = 11 = 307 m.M.

En pesant une charge C= 100 Kilog., l’équilibre s’établit 
en plaçant dans le plateau:
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lorsque C’se trouve au-dessus de H un poids de P= 10,1083 Kilog.,
» C» » » » » H,» » » P+P= 10,054° » , 
» C» » » » » M,» » » P+P, =10,1923 »

R

8
Fig. 1.
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Soit placée, dans la dernière pesée, la charge dans le plan 
de mouvement du fléau et soit la distance, entre la verticale 
qui passe par le centre de gravité de C jusqu’à la ligne 
H Hj, a? = 690 m.M. ; alors on a:
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corr. a=ne—a = 496,273 — 482 = 14,274 m.M.
Nous avons donc à apporter les corrections suivantes:
Le coussinet H doit être déplacé de 3,49 m.M. dans la



54

direction de B vers A ; et le coussinet H.: 3,490+0,999 == 4,489 
m.M. Le bras de levier A B doit être allongé de 14,237 m.M.

(22) Le paradoxe statique de Roberval.
La justesse de la règle ressort immédiatement en faisant 

agir au point D deux forces perpendiculaires C de direction 
contraire; il se produit alors une couple qui, indépendam­
ment de la place de la charge sur le tablier M MJ, se trouve 
annulée par la résistance aux points fixes B et K, tandis 
que, en D, il subsiste une force C qui fait équilibre à P en 
A. Si la bascule est construite comme l’indique la figure 
XXII, alors la règle continue à se vérifier, également lorsque 
le levier D Di est courbé et que le levier G G} est ou non 
composé de deux parties, pourvu que D B //G K et B Dj // K G.. 
La règle est en défaut dès que le fléau cesse d’être dans sa 
position normale, parce que alors les leviers ne sont plus 
parallèles.
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