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Préface 

 
 
Marcel Frelin a été mon professeur au Conservatoire national des arts et métiers. Ayant obtenu 

mon diplôme d'ingénieur en spécialité "Machines", j'ai rejoint cette institution en 1986. En 
charge de travaux de recherche à la chaire de turbomachines et moteurs, mon activité a porté 

principalement sur les études et essais des moteurs à combustion interne et l'adaptation du 
turbocompresseur au moteur. Dès lors Marcel Frelin m'a apporté un soutien effectif dans mes 
travaux mais m'a aussi permis de collaborer à ses enseignements de thermodynamique et 

d'élasticité. 
Marcel avait à cœur de publier sous forme numérique, un recueil des cours qu'il a enseignés 

sous le titre général : "Mécanique des milieux continus et thermodynamique techniques : 
Application aux turbomachines". 
Ce recueil est constitué de quatre grandes parties constituées de cours et d'exercices. 

Concepts généraux (Livre 1) 
Mécanique des milieux continus (Livre 2) 

Thermodynamique (Livre 3) 
Turbomachines (Livre 4) 
J'ai repris ce recueil et apporté quelques corrections de présentation quant à la mise en forme 

du texte. 
Le livre 4 se termine au chapitre 25, Marcel n'ayant malheureusement pu poursuivre la rédaction 

de cet ouvrage. 
 
Je remercie chaleureusement Josette Frelin de m'avoir confié les travaux de son mari, en vue 

de leur diffusion. 
 

Pierre Podevin 
Ingénieur de recherche à la chaire de turbomachines du Cnam. 
Le 10 février 2025 
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D'après les historiens, la roue aurait été découverte en Mésopotamie environ trois mille cinq 
ans avant notre ère. Elle est considérée comme la mécanique initiale pour toute civilisation, 

sans cette pièce il n'y a pas de mécanisme, pas de machine. De façon triviale, on peut dire que 
la roue est l'ancêtre de toutes les machines tournantes. 

Avant cette invention, la principale source d'énergie était le muscle humain. La roue a permis 
d'utiliser la force animale pour transporter et faire tourner des moulins broyeurs de grains. La 
technique était née. 

La science est apparue avec les Grecques qui avaient hérité des connaissances scientifiques 
égyptiennes. Ils sont considérés comme les fondateurs des mathématiques. Par exemple 
Archimède est l'un des principaux scientifiques de l'Antiquité. Aujourd'hui on le qualifierait de 

mécanicien. Parmi ses principaux domaines d'étude on peut citer l'hydrostatique, la mécanique 
statique, le principe du levier et bien sûr la vis d'Archimède. 

Jusqu'au 16ème siècle les progrès techniques ont précédé les progrès scientifiques. La première 

révolution industrielle se situe vers la fin du XVIIIe avec l'extraction massive du charbon et 
l'exploitation de la machine à vapeur. Il y alors, un rapprochement entre sciences et techniques. 
Les scientifiques s'inspirent des progrès techniques pour mieux comprendre certains 

phénomènes naturels, la thermodynamique en est un bon exemple. Elle permet en effet de 
comprendre le comportement des machines thermiques, qui sont au cœur de la révolution 

industrielle. 

Le premier ouvrage sur les moteurs thermiques a été écrit en 1824 par Sadi Carnot. Il s'intitulait 
"Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette 

puissance". La thermodynamique était née. Malgré tout, ses fondements seront établis quelques 
années plus tard en énonçant le premier principe de la thermodynamique. Ce fut ainsi la fin de 
la théorie du calorique qui était perçu comme un fluide sans masse capable de pénétrer les 

solides et les liquides. 

Vers la fin du 19ème siècle, deux courants de pensée virent le jour. L'un respectant l'apparente 
continuité des solides et des fluides et l'autre, au contraire, considérant la matière discontinue 

formé de particules extrêmement petites en mouvements incessants et rapides. Aujourd'hui, 
beaucoup d'historiens considèrent même que Démocrite est le "père de la science moderne". 

Cet ouvrage se limitera à l'aspect macroscopique de la matière. Il se bornera à l'étude de la 

mécanique et de la thermodynamique des milieux continus orientée vers les applications 
industrielles et plus précisément les turbomachines. Aujourd'hui, la plupart des civilisations 
modernes ont placé l'énergétique au premier rang de leurs préoccupations. Il faut produire et 

utiliser de l'énergie au moindre coût en respectant les contraintes environnementales. 

Des éléments d'analyse vectorielle indispensable à la théorie de la mécanique seront rappelés. 

Ce qui permettra d'évoquer les théorèmes généraux de la mécanique rationnelle, de donner des 
notions sur la théorie de l'élasticité et de fournir les éléments de mécanique des fluides 
nécessaires à l'étude des turbomachines. 

Une partie importante de ce livre est consacrée à la thermodynamique classique, qu'on appelle 
parfois la thermodynamique phénoménologique, par opposition à la thermodynamique 

statistique. La thermodynamique passe, à juste titre, pour une science difficile. Sur le plan 
pédagogique, l'entropie fait parfois l'objet de polémiques. Cette notion, délicate pour les 
étudiants, est introduite, ici, en insistant sur les postulats de Clausius et de Thomson Kelvin. 

https://fr.wikipedia.org/wiki/Muscle
https://fr.wikipedia.org/wiki/Math%C3%A9matiques
https://fr.wikipedia.org/wiki/Scientifique
https://fr.wikipedia.org/wiki/Hydrostatique
https://fr.wikipedia.org/wiki/M%C3%A9canique_statique
https://fr.wikipedia.org/wiki/M%C3%A9canique_statique
https://fr.wikipedia.org/wiki/Levier_(m%C3%A9canique)
https://fr.wikipedia.org/wiki/Vis_d%27Archim%C3%A8de
https://fr.wikipedia.org/wiki/Thermodynamique
https://www.futura-sciences.com/sciences/questions-reponses/epoque-contemporaine-y-t-il-eu-revolutions-industrielles-5443/
https://www.futura-sciences.com/sciences/questions-reponses/epoque-contemporaine-y-t-il-eu-revolutions-industrielles-5443/
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L'application pratique de ces notions fondamentales est consacrée à l'étude des turbomachines 
que l'on rencontre dans de très nombreux domaines industriels. On peut même ajouter que 
demain, rares seront les projets énergétiques qui ne comporteront pas de turbomachines. 

Ces machines sont traversées par un fluide qui assure un échange d'énergie avec un rotor, muni 
d'aubages (ou pales), qui est animé d'un mouvement de rotation à vitesse constante. Ainsi, on 

mesure l'apport précieux que constitue la thermodynamique pour analyser le fonctionnement 
de ces machines. 

Ces machines se décomposent en deux grandes familles : les turbomachines hydrauliques et les 

turbomachines thermiques. 

Les turbomachines hydrauliques sont constituées par les pompes, les ventilateurs, les éoliennes 

et les turbines hydrauliques. Les pompes et les ventilateurs reçoivent de l'énergie alors que les 
éoliennes et les turbines en fournissent. 

Les turbomachines thermiques se composent essentiellement des compresseurs, des turbines à 

vapeur que l'on rencontre dans les centrales électriques, des turbines à gaz terrestres et des 
turbines aéronautiques. 

La théorie des petites turbines centripètes fait, également l'objet d'un chapitre. Ces petites 
turbines équipent les turbocompresseurs de suralimentation des moteurs à combustion interne. 

Le contenu de ce livre a été dispensé au Conservatoire national des arts et métiers ainsi qu'à 

l'Ecole supérieure de mécanique et d'électricité pendant une vingtaine d'années. 
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Notations et symboles 

 
Symbole Définition Dimension Symbole Définition Dimension 

A ou 𝛺  Surface m2 P Puissance  W 

a Célérité du son m/s PI Puissance interne W 

cal 

Ancienne unité de 

quantité de chaleur 

1cal = 4,1855 J 

J/kg Pth Puissance thermique W 

C Couple m.N p Pression Pa 

Cf Coefficient de frottement 
sans 

dimension 𝑝̅ Pression moyenne Pa 

Cx Coefficient de traînée 
sans 

dimension Q Quantité de chaleur J 

Cz Coefficient de portance 
sans 

dimension Q Quantité de chaleur 

massique J/kg 

Cp 

Capacité thermique 

molaire à pression 

constante 

J/mol.K qm Débit massique  kg/s 

Cv 

Capacité thermique 
molaire à volume 

constant 
J/mol;K qr 

Débit massique d'une 

roue de turbomachine 
kg/s 

cp 

Capacité thermique 
massique à pression 

constante 
J/kg.K qv Débit volume m3/s 

cv 

Capacité thermique 
massique à volume 

constant 
J/kg.K qf

 débit de fuite dans la 

roue 
kg/s  

d Diamètre m R 
Constante universelle des 

gaz parfaits J/mol.K 

EC Énergie cinétique J r 
Constante d'un gaz 

parfait 
J/kg.K 

ec 
Énergie cinétique 

massique 
J/kg r Rayon m 

EP Énergie potentielle J S Entropie J/K 

ep 
Énergie potentielle 

massique 
J/kg s Entropie massique J/kg.K 

𝐹⃗  Force N T Température Kelvin K 
δF Dégradation élémentaire J t Température Celsius °C 

𝛿𝑓 
Dégradation massique 

élémentaire 
J/kg t Temps s 

G Module de Coulomb Pa u Energie interne massique J/kg 

E Module de Young Pa U Energie interne J 

h Enthalpie massique J/kg 𝑢⃗⃗ Vecteur vitesse moyenne m/s 

i Angle d'incidence - u2 
Vitesse quadratique 

moyenne (m/s)2 

KB Constante de Boltzmann. J/K 
𝑈⃗⃗⃗ Vitesse d'entraînement m/s 

l Largeur m U Norme de U⃗⃗⃗ m/s 

Lv 
Chaleur latente de 

vaporisation 
J/kg 𝑉⃗⃗ Vitesse absolue m/s 

M Nombre de mach 
sans 

dimension 
V Norme de V⃗⃗⃗ m/s 

m Masse kg 𝑉̅ Vitesse moyenne m/s 

M Masse molaire kg/mol Vu Vitesse tangentielle m/s 

N Nombre d’Avogadro 
sans 

dimension 
Vr Vitesse radiale m/s 

N Vitesse de rotation tr/min Vz Vitesse axiale m/s 
n Nombre de mole mol    
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Symbole Définition Dimension Symbole Définition Dimension 

V Volume m3 𝛼 
Coefficient de dilatation 

isobare 
Pa-1 

v Volume massique m3/kg 𝛼 Angle  formé par U⃗⃗⃗ et V⃗⃗⃗ - 

Vm
 Volume molaire m3/mol 𝛽 

Coefficient de 

compression isochore 
Pa-1 

   𝛽 Angle formé  par U⃗⃗⃗ et W⃗⃗⃗⃗ - 

wI 
Travail massique interne 

d'une turbomachine J/kg 𝛽𝑚  Angle réel des aubages - 

wa 

Travail massique sur 

l’arbre d’une 

turbomachine 

J/kg 𝛾⃗ Accélération m/s2 

wp 
Travail massique 

polytropique J/kg 𝛾 
Rapport des capacités 

thermiques massiques 

sans 

dimension 

𝑊⃗⃗⃗⃗ Vitesse relative (roue) m/s 𝜀 Jeu m 

W Norme de W⃗⃗⃗⃗ m/s η 

Rendement thermique 

d'une transformation 

cyclique 

sans 

dimension 

W Travail échangé avec le 

milieu extérieur 
J 𝜂𝑔  Rendement global 

sans 

dimension 

w 

Travail massique 

échangé avec le milieu 

extérieur 
J/kg 𝜂𝑚é𝑐  Rendement mécanique 

sans 

dimension 

Wi 
Travail des forces 

intérieures J 𝜂𝑃  Rendement polytropique 
sans 

dimension 

wi 
Travail massique des 

forces intérieures 
J/kg 𝜂𝑆  Rendement isentropique 

sans 

dimension 

w
isen

 
Travail massique 

isentropique 
J/kg 𝜇 Viscosité dynamique Pa.s 

WI 
Travail interne d'une 

turbomachine J  Angle 
 

Z Nombre d'aubes sans 

dimension 
 

Coefficient d'élasticité de 

Lamé 
Pa 

   
Coefficient de perte de 

charge 

sans 

dimension 

   
Coefficient de viscosité 

dynamique Pa.s 

   
Coefficient de viscosité 

cinématique m2/s 

    Coefficient de Poisson 
sans 

dimension 

   𝜉
Dégradation énergétique 

massique interne 
J/kg 

    Masse volumique kg/m3 

    Contrainte normale Pa 

   𝜏 Contrainte tangentielle Pa 

      

    Glissement 
sans 

dimension 

   t
Coefficient de 

compressibilité 

isotherme 

Pa-1 

   𝜔⃗⃗⃗ Vecteur rotation rad/s 

   𝜔 Vitesse de rotation rad/s 
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Chapitre I  

Notions sur l’aspect microscopique 
 

1 Remarques sur la structure de la matière 

1-1 Atome 

La matière est à structure discontinue et constituée d’atomes. Un atome est, étymologiquement 
la plus petite parcelle d’un corps donné qui reste capable de présenter les propriétés chimiques 

qui caractérise ce corps. L’atome lui aussi est à structure discontinue, il se compose d’un noyau 
autour duquel gravitent les électrons. Le noyau, également à structure discontinue, est constitué 
de particules élémentaires appelées nucléons ; protons et neutrons, eux-mêmes composés de 

particules élémentaires appelées quarks. 

Le diamètre des atomes est de l’ordre de 10-7mm, alors que celui du noyau n’est que de10-11mm. 

Il y a donc un vide relativement grand entre le noyau et les orbites des électrons. Le noyau 
occupe, dans l’atome, moins de place que le soleil dans le système solaire. C’est ce qui fait dire 
que la matière est essentiellement constituée par du vide. 

1-2 Molécule 

On donne le nom de molécule à la plus petite partie de matière existant à l’état libre. Les 
molécules sont des assemblages d’atomes. 

Un corps composé constitue toujours une molécule. 

Cette particularité de la molécule est traduite par la notion d’atomicité. L’hélium He, l’argon 
Ar sont monoatomiques. L’oxygène O2, l’azote N2, l’hydrogène H2 sont diatomiques. Le gaz 

carbonique CO2, l’eau H2O sont triatomiques. 

1-3 Corps purs 

Lorsque l’assemblage d’une molécule est constitué d’atomes identiques on dit que la matière 
est un corps pur simple. Si les atomes sont différents mais formant une seule structure on dit 
que la matière est un corps pur composé. Par exemple l’or, l’argent, l’hydrogène, l’oxygène 

sont des corps purs simples alors que l’eau, l’acide chlorhydrique, l’oxyde de carbone sont des 
corps purs composés. 

1-4 Mélange 

Lorsque l’assemblage est constitué d’atomes différents mais formant plusieurs structures on dit 
que la matière est un mélange homogène ou hétérogène. 

Par exemple l’eau et le vin est un mélange homogène alors que l’eau et l’huile forment un 

mélange hétérogène 
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2 Moles et nombre d’Avogadro 

Jusqu’en 1961, les chimistes avaient institué un système de proportions relatives de la masse 
des atomes en donnant arbitrairement à l’atome d’oxygène la valeur 16. 

Les autres atomes étaient caractérisés par des nombres qui forment avec 16 un rapport de la 
masse réelle de ces atomes avec la masse réelle de l’atome d’oxygène. 

En 1961, l’union internationale de chimie a fait adopter une base commune pour les chimistes 
et les physiciens, et conventionnellement, on a affecté à l’isotope le plus abondant du carbone 
la valeur 12. 

On appelle "isotope d’un même élément" des atomes qui le différencient entre eux que par le 
nombre de neutrons dans le noyau. Le nombre de protons et d’électrons restent le même d’un 

atome à l’autre. 

La mole est définie comme étant la quantité de matière d’un système contenant autant de 
particules élémentaires (atomes, molécules, ions, électrons ou autres particules) que 0,012 kg 

de carbone 12. 

Cette constante, appelée nombre d’Avogadro, est désigné par NA ou L. Sa valeur est 

approximativement : 

NA= 6,0221415 1023  

La loi d’Avogadro précise que dans les mêmes conditions de pression et de température, un 

même volume de gaz parfait quelconque contient le même nombre de molécules. Par exemple 
c’est le nombre de molécules contenues dans une mole de gaz. 

La mole, de symbole mol, est l’unité de quantité de matière du Système International. 

3 Masses et volumes 

3-1 Volume molaire 

Le volume molaire de symbole Vm s’exprime en mètre cube par mole (m3/mol). C’est le 

quotient du volume V par le nombre de moles n. 

𝑉𝑚 =
𝑉

𝑛
 

Dans les conditions normales de température et de pression (T= 273,15 K et p at = 101 325 Pa) 

le volume molaire d’un gaz parfait est : 

𝑉𝑚𝑜 = 0,02241383
𝑚3

𝑚𝑜𝑙
 

À titre de comparaison le tableau ci-dessous montre les écarts avec quelques gaz réels dans les 

conditions normales de température et de pression. 
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Tableau I.1 gaz réel 

3-2 Masse molaire 

La masse molaire est le quotient de la masse m par le nombre de moles n. On peut également 

dire que la masse molaire d’un gaz est la masse qui occupe le volume molaire. Son symbole est 
M et s’exprime en kilogramme par mole (kg/mol). 

M =
m

n
 

3-3 Volume massique 

Le volume massique est le quotient du volume V par la masse m. On le désigne par v et il 

s’exprime en mètre cube par kilogramme (m3/kg). 

𝑣 =
𝑉

𝑚
=
𝑉𝑚
𝑀

 

Exercice I.1. 

En supposant que le propane C3H8 se comporte comme un gaz parfait, calculer son volume 

massique dans les conditions normales de pression et de température. 

Rappel : 
La masse molaire du carbone est de 0,012 kg/mol. 

La masse molaire de l’hydrogène est de 0,001 kg/mol. 

Corrigé. 

La masse molaire du propane est donc : 

M=3×0,012+8×0,001=0,044kg/mol. 

D’où le volume massique dans les conditions normales : 

𝑣 =
𝑉𝑚0
𝑀
=
0,02241383

0,044
= 0,5094 𝑚3/𝑘𝑔 

3-4 Masse volumique 

Le quotient de la masse m par le volume V est appelé la masse volumique. Son symbole est ρ 

et s’exprime en kilogramme par mètre cube (kg/m3). 

𝜌 =
𝑀

𝑉𝑚
=
1

𝑣
=
𝑚

𝑉
 

Gaz. Hélium. Hydrogène. Azote. Oxygène. 
Gaz 

carbonique. 

Volume molaire 
en dm3 22,426 22,428 22,404 22,39 22,228 
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4 Notions sur la théorie cinétique des gaz 

4-1 Libre parcours moyen 

Lorsque la matière se trouve à l’état solide, les molécules occupent une place bien déterminée 
en se contentant d’exécuter des oscillations autour de leur position moyenne. L’attraction des 

molécules entre elles est considérable. 

Dans un liquide, les molécules sont également très rapprochées mais, par contre, elles sont 

libres de se déplacer. 

Lorsque la matière se trouve à l’état gazeux, les molécules sont dans un état d’agitation 
continuelle et se déplacent librement. Leurs vitesses sont de l’ordre de quelques centaines de 

mètres par seconde. Au cours de leur mouvement, les molécules se heurtent mutuellement. 

Entre deux chocs successifs une molécule décrit une trajectoire en ligne droite et la distance 

correspondante est appelée ; libre parcours moyen. 

Désignons par σ le diamètre obtenu en traçant autour du centre de chaque molécule une sphère, 
bien que les molécules soient loin d’être sphériques. Cette sphère, appelée sphère de protection, 
ne peut jamais contenir le centre d’aucune autre molécule. 

Dans les conditions normales de pression et de température, indiquons pour trois gaz la valeur 

du diamètre  σ, du libre parcours moyen et du nombre de chocs. 

 

Gaz 
Libre parcours moyen 

en mm 
σ en mm 

Nombre de chocs d’une 
molécule par seconde 

H2 1123.10-7 2,70.10-7 15,0.109 

O2 647.10-7 2,90.10-7 6,6.109 

CO2 397.10-7 3,24.10-7 9,1.109 

Tableau I.2 Caractéristiques particules 

Dans les conditions normales de pression et de température 1mm3 de gaz parfait contient : 

𝑁𝐴
𝑉𝑚𝑂

=
6,0221415.1023

0,02241383.109
= 2,687.1016 molécules 

Lorsque la pression diminue ces nombres se modifient assez rapidement. 

Pour des pressions de l’ordre de 10-7mm de mercure, le nombre de molécule par centimètre 
cube est encore considérable, de l’ordre de trois milliards, et le libre parcours moyen devient 

de l’ordre de plusieurs centaines de mètres. 
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4-2 Modèle du gaz parfait 

En utilisant des hypothèses simplificatrices, la théorie cinétique des gaz explique le 
comportement macroscopique d’un gaz à partir d’interprétations microscopiques. Notamment 
elle donne une interprétation facile de la température et de la pression. 

La théorie cinétique renonce à préciser les grandeurs physiques attachées à chaque molécule, 
elle s’intéresse uniquement aux valeurs moyennes. Il faut alors faire les hypothèses suivantes : 
- en un point d’une masse de gaz, le sens et la grandeur de la vitesse des molécules sont 

distribués au hasard. Toutes les directions sont également probables  ; c’est l’hypothèse du chaos 
moléculaire. 
- la distribution des vitesses autour de la valeur moyenne est la même pour toutes les parties du 

gaz. 

- l’action qu’exercent les molécules les unes sur les autres n’est importante qu’au moment des 

chocs. L’action des forces à distance reste faible devant les forces de choc. Cette hypothèse 
caractérise l’état gazeux. 

- les lois de la mécanique classique des systèmes macroscopiques s’appliquent aux molécules  

individuelles. 

En plus des précédentes hypothèses, un gaz parfait doit avoir les propriétés suivantes  : 

- les dimensions des molécules sont très petites par rapport aux distances qui les séparent, si 
bien qu’elles sont supposées ponctuelles. Au moment d’un choc, les forces qui s’exercent entre 
les molécules peuvent être considérées comme appliquées en leur centre d’inertie. 

- en dehors des chocs, les molécules se déplacent librement et n’exercent aucune force les unes 
sur les autres. Les forces d’interaction à distance entre molécules sont donc négligées. 

4-3 Equilibre statistique 

L’équilibre d’un gaz ne peut pas se définir à partir des lois de la mécanique classique qui 
exigerait l’immobilité des molécules dans un référentiel fixe. 

La théorie cinétique s’intéresse aux valeurs moyennes des molécules. Un gaz est en équilibre 

statistique si toutes les grandeurs physiques ont une valeur moyenne au cours du temps, et si 
cette valeur est indépendante du temps. 

Moyennes temporelles 

Supposons suivre le mouvement d’une molécule et mesurer les vitesses qu’elle prend au cours 

du temps. Par exemple en désignant par 𝑉1
→

, 𝑉2
→

, … . , 𝑉𝑗
→

, … . . , 𝑉𝐾
→

 nous pourrions définir le vecteur 

de vitesse moyen’𝑢⃗⃗ d'une molécule au cours du temps : 

 

𝑢⃗⃗ =  lim
𝐾→∞

(
1

𝐾
∑ 𝑉⃗⃗𝐽

𝐽=𝐾

𝐽=1

)  
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Dans un réservoir, 𝑢⃗⃗ est nul si le gaz est en équilibre statistique. 

Moyennes statistiques 

Autour d'un point M d'une masse de gaz, considérons un volume élémentaire dV à une date t. 
Bien que ce volume soit petit, il contient un nombre élevé N de molécules qui à la date t, ont 

chacune une vitesse𝑉1
→

, 𝑉2 ,
→

…. , 𝑉𝑖
→

, … . . , 𝑉𝑁
→

. 

En équilibre statistique ces vitesses observées simultanément, à un instant quelconque pour les 

diverses molécules du volume dV, sont celles que prend une molécule au cours du temps. 

La moyenne de ces vitesses, faite dans le volume dV, est appelée moyenne statistique. Pour un 

gaz isolé et en équilibre statistique, la moyenne statistique est égale à la moyenne temporelle. 

Pout un gaz en équilibre statistique, le vecteur vitesse moyen : 𝑢⃗⃗ =
1

𝑁
∑ 𝑉⃗⃗𝑖
𝑖=𝑁
𝑖=1  est donc nul. 

Vitesse quadratique moyenne 

La vitesse quadratique moyenne u2 est définie par la relation : 

𝑢2 =
1

𝑁
∑(𝑉⃗⃗𝑖)

2
𝑖=𝑁

𝑖=1

 

Remarques 

- Il ne faut pas confondre la vitesse quadratique moyenne et la vitesse moléculaire moyenne : 

𝑉 =
1

𝑁
∑‖𝑉⃗⃗𝑖‖

𝑖=𝑁

𝑖=1

 

- Si le gaz est en équilibre statistique, la moyenne temporelle est égale à la vitesse quadratique 
moyenne. Elle est indépendante de la molécule choisie, du temps et du lieu. C'est une constante 
pour un état d'équilibre donné. 

4-4 Pression dans un gaz parfait 

Au cours de leurs mouvements, les molécules rencontrent les parois du récipient qui contient le 
gaz. Etant donné le grand nombre de molécules, les chocs contre la paroi se succèdent très 

rapidement sous des incidences et des vitesses très variées. 

La pression est la force moyenne exercée sur l'unité de surface de la paroi par les molécules en 
train de la heurter. 

Considérons un réservoir contenant une masse m d'un gaz parfait. Désignons par O l'origine 
d'un repère galiléen pris à l'intérieur de ce récipient. Soit M i le centre d'inertie d'une molécule 

de masse mi et de vitesse : 

𝑉⃗⃗𝑖 =
𝑑𝑂𝑀𝑖

→

𝑑𝑡
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Calculons la dérivée seconde de (𝑂𝑀
→

𝑖)
2

.  

Soit : 

𝑑2

𝑑𝑡2
(𝑂𝑀𝑖

→

)
2

= 2(
𝑑𝑂𝑀𝑖

→

𝑑𝑡
)

2

+2𝑂𝑀𝑖
→ 𝑑2𝑂𝑀𝑖

→

𝑑𝑡2
= 2𝑉𝑖

2 + 2𝑂𝑀𝑖
→

𝛾𝑖
→

 

Puisque, par hypothèse les lois de la mécanique classique s'appliquent aux molécules  
individuelles, nous pouvons écrire : 

𝑚𝑖𝛾𝑖
→
= 𝐹𝑖

→

 

La force 𝐹⃗𝑖 étant l'action exercée sur la molécule à l'instant considéré. Multiplions la relation 

ci-dessus par 
𝑚𝑖

4
, remplaçons 𝑚𝑖𝛾⃗𝑖 𝑝𝑎𝑟 𝐹⃗𝑖 et sommons sur les N molécules constituant Le gaz. 

∑
𝑚𝑖

4

𝑖=𝑁

𝑖=1

𝑑2

𝑑𝑡2
(𝑂𝑀𝑖

→

)
2

= ∑
𝑚𝑖𝑉𝑖

2

2

𝑖=𝑁

𝑖=1

+∑
𝑂𝑀𝑖
→

2

𝑖=𝑁

𝑖=1

𝐹𝑖
→

 

Supposons le gaz en équilibre statistique donc ∶  ∑
𝑚𝑖

4

𝑖=𝑁

𝑖=1

𝑑2

𝑑𝑡2
(𝑂𝑀𝑖

→

)
2

= 0 

D'autre part de la définition de la vitesse quadratique moyenne nous avons : 

∑
𝑚𝑖𝑉𝑖

2

2

𝑖=𝑁

𝑖=1

=
𝑚𝑖

2
∑ 𝑉𝑖

2 =
𝑁𝑚𝑖

2

𝑖=𝑁

𝑖=1

𝑢2 =
𝑚𝑢2

2
 

Il s'ensuit donc : 

𝑚𝑢2

2
= −∑

𝑂𝑀𝑖
→

2

𝑖=𝑁

𝑖=1

𝐹𝑖
→

 

Comme il s'agit d'un gaz parfait, les forces 𝐹⃗𝑖 sont uniquement dues aux chocs des molécules. 
Notons que lorsque la molécule "a" heurte la molécule "b", nous avons : 

𝑂𝑀𝑎
→

= 𝑂𝑀𝑏
→

 

Puisque les molécules sont supposées ponctuelles. D'autre part 𝐹𝑎
→

= −𝐹𝑏
→

 en vertu de la 
loi de l'action et de la réaction, et par suite : 

𝑂𝑀
→

𝑎 ∙ 𝐹𝑎
→

+ 𝑂𝑀
→

𝑏 ∙ 𝐹
→

𝑏 = 0 

Pour l'ensemble des molécules contenues dans le volume de gaz, il ne subsiste donc que les 
forces de pression exercées par la paroi sur le gaz. 
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             𝑛⃗⃗ 
       dA 

 

 
 

 
   Figure I.01 Pression 

Pour évaluer ces forces considérons un petit élément 

dA de la surface intérieure du récipient de volume V. 

Soit n⃗⃗ le vecteur unitaire perpendiculaire à dA et 
dirigé vers l'extérieur du volume V. La force de 
pression exercée par cet élément dA sur le gaz est : 

𝑑𝐹⃗ = −𝑝𝑑𝐴𝑛⃗⃗   

Compte tenu de ces remarques, la vitesse quadratique moyenne, s'écrit : 

𝑚𝑢2

2
= −∬

𝑂𝑀
→

2𝑀∈𝐴

(−𝑝)𝑑𝐴𝑛⃗⃗ 

Comme par hypothèse la pression p conserve la même valeur en tous points de la masse de gaz, 
nous avons en utilisant le théorème d'Ostrogradski: 

𝑚𝑢2 = 𝑝∬ 𝑂𝑀
→

𝑀∈𝐴
𝑛⃗ 𝑑𝐴 = 𝑝∭ 𝑑𝑖𝑣 (𝑂𝑀

→

)
𝑀∈Volume

 dV = 3pV 

La pression varie donc proportionnellement avec la vitesse quadratique moyenne. 

Pour une mole de gaz nous aurions : 

𝑝𝑉𝑚 =
𝑀𝑢2

3
 

4-5 Température dans un gaz parfait 

Dans la théorie cinétique des gaz, la température absolue d'un gaz est définie comme étant 
directement proportionnelle à l'énergie cinétique d'une molécule : 

𝑚𝑖𝑢
2

2
=
3

2
𝐾𝐵𝑇 

KB est une constante universelle, dite constante de Boltzmann. 

KB=1,3806503…10-23 J/K 

Le coefficient 3/2 est introduit pour simplifier, ultérieurement, les relations. 

Multiplions cette expression par le nombre d'Avogadro NA. 

𝑚𝑖𝑁𝐴𝑢
2

2
=
𝑀𝑢2

2
=
3

2
𝑁𝐴𝐾𝐵  

De la relation obtenue ci-dessus pour une mole de gaz, nous déduisons : 

𝑝𝑉𝑚 =
𝑀𝑢2

3
=
3𝑁𝐴𝐾𝑇

3
= 𝑁𝐴𝐾𝐵𝑇 

En posant NAKB = R il vient : 

dF⃗⃗ 
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pVm=RT 

Cette équation fournit une relation entre la pression, le volume molaire et la température. Cette 
relation est appelée équation d'état des gaz parfaits. 

R est la constante universelle de proportionnalité dans la loi des gaz parfaits. Elle s'exprime en 
Joule par mole Kelvin (J/mol.K). 

R=6,0221415.1023 x 1,3806503.10-23 = 8,3144. J/mol. K 

De même, avec ce changement de variables, nous avons également : 

𝑀𝑢2 = 3𝑅𝑇 𝑜𝑢𝑒𝑛𝑐𝑜𝑟𝑒 𝑢 = √
3𝑅𝑇

𝑀
 

T est la température absolue du gaz et mesure en fait le degré d'agitation des molécules. 

Dans les conditions habituelles, les vitesses u sont de l'ordre de quelques centaines de mètres 

par seconde. 
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Chapitre II 

Analyse vectorielle 
 

1 Vecteurs 

Un vecteur est un être mathématique défini par sa norme, sa direction et son sens comme par 
exemple une force ou une vitesse. On peut dire également qu'un vecteur est un segment de 

droite orienté sur lequel on a choisi un sens. A et B étant les extrémités du segment on désigne 

un vecteur par la notation 𝐴𝐵
→  

. La droite indéfinie passant par A et B est appelée support du 
vecteur. 

Dans cet ouvrage un vecteur sera représenté par une seule lettre et on écrira par exemple 𝑉
→

pour 

une vitesse. 

La norme d'un vecteur est un scalaire. Par exemple |𝑉|est la norme de𝑉
→

mais nous écrirons tout 
simplement V. 

Un scalaire est une grandeur entièrement définie par un nombre réel et une unité comme par 

exemple la masse ou la température.  

Deux vecteurs sont dits égaux, s'ils ont même norme, même direction et même sens. Deux 

vecteurs sont dits opposés, s'ils ont même norme, même direction mais des sens contraires. 

Un vecteur libre est une grandeur géométrique ayant une norme, une direction et un sens mais 
dont l'origine est arbitraire dans l'espace. 

Un vecteur lié est un vecteur libre dont l'origine O est bien déterminée dans l'espace. 

Un vecteur glissant est un vecteur libre ayant son support bien défini dans l'espace sans que son 

origine O le soit. 

Rappelons quelques propriétés des vecteurs 

- Commutativité de l'addition :  𝑉
→
+ 𝑈
→
= 𝑈
→
+ 𝑉
→

 

- Associativité de l'addition :   𝑉
→
+ (𝑈

→
+ 𝑊
→ 
) = (𝑉

→
+ 𝑈
→
)+ 𝑊

→ 
 

  Si m et n sont des scalaires nous avons : 

- Distributivité : (𝑚+ 𝑛) 𝑉
→
= 𝑚 𝑉

→
+𝑛 𝑉

→
 

𝑚(𝑉
→
+ 𝑈
→
) = 𝑚 𝑉

→
+𝑚 𝑈

→
 

- Commutativité de la multiplication par un scalaire : 𝑚 𝑉
→
= 𝑉
→
m 

-Associativité de la multiplication : 𝑚(𝑛 𝑉
→
) = (𝑚𝑛)  𝑉

→
 



Chapitre II Analyse vectorielle                                               Concepts généraux 

 

11 

 

2 Produit scalaire et produit vectoriel 

Désignons par 𝑉
→

un vecteur de composantes V1, V2, V3 et 𝑈
→

un vecteur de composantes U1, U2, 
U3. 

Le produit scalaire des deux vecteurs 𝑉
→
𝑒𝑡 𝑈
→

 est un scalaire. 

𝑉⃗⃗ ∙ 𝑈⃗⃗⃗ = 𝑉1𝑈1  + 𝑉2𝑈2 + 𝑉3𝑈3 

Le produit scalaire de deux vecteurs 𝑉
→
𝑒𝑡 𝑈
→

 se définit également comme étant le produit des 

modules de𝑉
→
𝑒𝑡 𝑈
→

 par le cosinus de l'angle 𝛼 qu'ils forment entre eux. 

𝑉⃗⃗ ∙ 𝑈⃗⃗⃗ = 𝑉𝑈 𝑐𝑜𝑠 𝛼      avec   0 ≤ 𝛼 ≤ 𝜋 

Le produit vectoriel des deux vecteurs 𝑉
→
 𝑒𝑡 𝑈
→

 est un vecteur 𝑊
→ 

 de composantes : 

 𝑉⃗⃗  ∧  𝑈⃗⃗⃗  =    𝑊⃗⃗⃗⃗ 

  (

𝑉1
𝑉2
𝑉3

) ∧ (

𝑈1
𝑈2
𝑈3

) = (

𝑉2𝑈3 −𝑉3𝑈2
𝑉3𝑈1 −𝑉1𝑈3
𝑉1𝑈2 −𝑉2𝑈1

) 

Le vecteur 𝑊
→ 

est perpendiculaire au plan formé par les deux vecteurs 𝑉
→
 𝑒𝑡 𝑈
→

. 

La norme W du vecteur 𝑊
→ 

est égale à l'aire du parallélogramme formé par les deux vecteurs  

𝑉
→
 𝑒𝑡 𝑈
→

. En désignant par 𝛼 l'angle formé par 𝑉
→
𝑒𝑡 𝑈
→

, nous avons donc : 

 

 W = V U sin𝛼             (II.01) 

𝑆𝑖  𝑉
→
∧ 𝑈
→
=  0
→
  et si  𝑉

→
𝑒𝑡 𝑈
→

 sont des vecteurs non nuls ; alors 𝑉
→
 𝑒𝑡 𝑈

→
sont parallèles. 

Le produit scalaire est commutatif mais ce n'est pas le cas pour le produit vectoriel. 

 𝑉⃗⃗ ∙ 𝑈⃗⃗⃗ = 𝑈⃗⃗⃗ ∙ 𝑉⃗⃗   𝑉⃗⃗ ∧  𝑈⃗⃗⃗ = − 𝑈⃗⃗⃗ ∧ 𝑉⃗⃗ 

La combinaison des produits scalaires et vectoriels donne les résultats suivants : 

(𝑉⃗⃗ ∙ 𝑈⃗⃗⃗) 𝑊 ≠ 𝑉 (𝑈⃗⃗⃗ ∙ 𝑊⃗⃗⃗⃗) 

𝑉⃗⃗ ∙ (𝑈⃗⃗⃗ ∧  𝑊⃗⃗⃗⃗) = 𝑊⃗⃗⃗⃗ ∙ (𝑉⃗⃗ ∧  𝑈⃗⃗⃗) = 𝑈⃗⃗⃗. (𝑊⃗⃗⃗⃗ ∧  𝑉⃗⃗) 

𝑉⃗⃗ ∙ (𝑈⃗⃗⃗ ∧  𝑊⃗⃗⃗⃗) = |
𝑉1 𝑉2 𝑉3
𝑈1 𝑈2 𝑈3
𝑊1 𝑊2 𝑊3

| 

𝑉
→
 ∧  (𝑈

→
∧  𝑊
→ 
) ≠ (𝑉

→
  ∧ 𝑈
→
) ∧  𝑊

→ 
 

𝑉⃗⃗  ∧  (𝑈⃗⃗⃗ ∧  𝑊⃗⃗⃗⃗) = (𝑉⃗⃗ ∙ 𝑊⃗⃗⃗⃗) 𝑈⃗⃗⃗ − (𝑉⃗⃗ ∙ 𝑈⃗⃗⃗) 𝑊⃗⃗⃗⃗ 

(𝑉⃗⃗   ∧  𝑈⃗⃗⃗) ∧ 𝑊⃗⃗⃗⃗ = (𝑉⃗⃗ ∙ 𝑊⃗⃗⃗⃗) 𝑈⃗⃗⃗ − (𝑈⃗⃗⃗ ∙   𝑊⃗⃗⃗⃗) 𝑉⃗⃗                    (II.02) 



Chapitre II Analyse vectorielle                                               Concepts généraux 

 

12 

 

Le produit 𝑉
→
 ∙  (𝑈

→
∧ 𝑊
→ 
) s'appelle le produit mixte. 

Le produit 𝑉
→
 ∧  (𝑈

→
∧ 𝑊
→ 
) s'appelle le double produit vectoriel. 

3 Champ de vecteurs 

Nous dirons, tout simplement, qu'un champ de vecteurs (ou champ vectoriel) est une fonction 
qui associe un vecteur à chaque point M de l'espace euclidien. Si nous travaillions dans le repère 

défini par la figure (II.01) nous aurions : 

𝑉
→
= 𝑉1(x, y, z) e⃗⃗1 +  V2(x, y, z) e⃗⃗2  + 𝑉3(x, y, z) e⃗⃗3 

Les lignes de champ sont les courbes telles qu'en tout point de l'une d'elles le vecteur champ, 
en ce point, lui soit tangent. En mécanique des fluides nous les appellerons ligne de courant à 

l'instant t0. 

Analytiquement les lignes de champ sont définies par les relations différentielles : 

 
dx

𝑉1(x, y, z)
=

𝑑𝑦

𝑉2(x, y, z)
=

𝑑𝑧

𝑉3(x, y, z)
                                       (II. 03) 

4 Circulation du vecteur champ 

Soit 𝑉
→
(𝑀) le vecteur champ au point M et 𝑑𝑀⃗⃗⃗ un déplacement élémentaire quelconque de M. 

Par définition on appelle circulation élémentaire de 𝑉
→
(𝑀) l'expression suivante : 

    y 

      𝑉
→
(𝑀) 

 

   𝑒⃗2   M 
 

        0  𝑒⃗1        x 

                 𝑒⃗3  
   z 

Figure II. 01 Circulation 
élémentaire 

 

𝑑𝛤 = 𝑉⃗⃗(𝑀) 𝑑𝑀⃗⃗⃗ 

Puisque nous avons : 

 0𝑀
→  

= 𝑥𝑒⃗1 +𝑦𝑒⃗2 + 𝑧𝑒⃗3 

 𝑑𝑀⃗⃗⃗ = 𝑑𝑥𝑒⃗1 + 𝑑𝑦𝑒⃗2 + 𝑑𝑧𝑒⃗3 
L'expression de la circulation élémentaire en 
coordonnées cartésiennes est la suivante : 

𝑑𝛤 = 𝑉1(x, y, z) dx+  V2(x, y, z) dy + 𝑉3(x, y, z) dz 

Supposons que le point M se déplace de A à B sur une 

courbe "C" et que le vecteur champ 𝑉
→
(𝑀) soit défini 

en tous point de "C". 

On appellera alors circulation de 𝑉
→
(𝑀) sur la courbe 

(C) l'intégrale curviligne : 

  B 

        C             𝑉
→ 
(𝑀)  

   𝑑𝑀⃗⃗⃗ 

      M 

 

          A 

Figure II. 02 Circulation 

 

𝛤 = ∫ 𝑉⃗⃗(𝑀)
𝐶

 𝑑𝑀⃗⃗⃗                                               (II.04) 
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5 Définition du flux 

Soit un vecteur unitaire 𝑛⃗⃗ normal à un élément de surface dA. Considérons un champ de 

vecteurs 𝑉
→
(𝑀)défini dans un domaine contenant la surface A. 

   𝑉
→
(𝑀) 

 

         𝑛⃗⃗ 

 

         dA 
             M   

 

Figure II. 03 Flux élémentaire 

Le flux du vecteur 𝑉
→
(𝑀) à travers l'élément dA, orienté 

par 𝑛⃗⃗, est par définition : 

              𝑑𝛷 = 𝑉⃗⃗(𝑀) 𝑛⃗⃗𝑑𝐴 
𝑑𝛷 est un scalaire dont le signe dépend du choix fait 
pour le vecteur normal. 

 
 

     𝑉
→
(𝑀) 

 

     𝑛⃗⃗ 

 
   (A)         dA 
             M   

 
 
 

 

Figure II. 04 Flux à travers une surface 

Si 𝑉⃗⃗(𝑀)est continu sur A, on définit le flux du 
champ des vecteurs à travers la surface A de la 
façon suivante : 

𝛷 =∬𝑉⃗⃗(𝑀) 𝑛⃗⃗𝑑𝐴
𝐴

 

 

6 Gradient 

6-1 Définition 

Soit un repère orthonormé (𝑒) = (0,e⃗⃗1, 𝑒⃗2, 𝑒⃗3) et f(x, y, z) une fonction scalaire des trois 
variables x, y, z. La différentielle df de cette fonction représente sa variation élémentaire 

lorsqu'on passe du point M(x, y, z) au point infiniment voisin M'(x+dx, y+dy, z+dz). Le vecteur 

déplacement 𝑀𝑀′
→   

, que l'on note tout simplement 𝑀𝑀′
→   

= 𝑑𝑀
→  

 s'écrit : 

𝑑𝑀
→  

= 𝑑𝑥 e⃗⃗1 +  dy e⃗⃗2  + 𝑑𝑧 e⃗⃗3 

Et la différentielle df : 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 + 

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧  

Remarquons que si l'on pose : 

𝑔𝑟𝑎𝑑
→    

𝑓 =
𝜕𝑓

𝜕𝑥
𝑒⃗1+

𝜕𝑓

𝜕𝑦
𝑒⃗2 +

𝜕𝑓

𝜕𝑧
𝑒⃗3 

La différentielle df est le produit scalaire des vecteurs 𝑔𝑟𝑎𝑑
→    

𝑓 𝑒𝑡  dM
→  
  

𝑑𝑓 =   𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓 ∙ dM⃗⃗⃗⃗⃗⃗⃗ 

Le vecteur 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓 est appelé le gradient du scalaire f(x, y, z). 
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En coordonnées cylindriques, il s'écrit : 

𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓 = [
𝜕𝑓

𝜕𝑟
,
1

𝑟

𝜕𝑓

𝜕𝜃
,
𝜕𝑓

𝜕𝑧
] 

6-2 Champ de gradient 

Un champ de vecteur 𝑉
→

 est un champ de gradient s'il existe une fonction f(x, y, z) telle que l'on 

peut écrire 𝑉
→
= grad
→   

𝑓(𝑥, y,z) en tout point. 

Les surfaces d'équation f(x, y, z) = Constante sont dites "surfaces équipotentielles" (ou surfaces 

de niveau) du champ 𝑉
→

. Sur cette surface, pour tout déplacement élémentaire 𝑑𝑀
→  

, la variation 
de f(x, y, z) est donc nulle. Il s'ensuit que : 

𝑑𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓 ∙ 𝑑𝑀⃗⃗ ⃗⃗⃗⃗⃗   = 0. 

Le vecteur 𝑔𝑟𝑎𝑑
→    

𝑓 est donc normal aux surfaces équipotentielles. 

En mécanique des fluides, on s'intéressera aux écoulements où le vecteur vitesse 𝑉
→

 est un 

gradient 𝑉⃗⃗ = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓 

6-3 Potentiel scalaire 

On désigne par potentiel scalaire, dont dérive le champ de gradient 𝑉
→

, toute fonction scalaire 
U telle que : 

𝑉
→
 = - grad

→   
 U 

7 Divergence 

Soit un vecteur 𝑉⃗⃗ = 𝑉1(x, y, z) e⃗⃗1 +  V2(x, y, z) e⃗⃗2  + 𝑉3(x, y, z) e⃗⃗3. 

La divergence de ce vecteur est la somme de ses dérivées partielles prise par rapport à la 

coordonnée correspondante : 

𝑑𝑖𝑣 𝑉
→
=
𝜕𝑉1
𝜕𝑥

+
𝜕𝑉2
𝜕𝑦

+
𝜕𝑉3
𝜕𝑧

 

Ainsi on passe d'un vecteur 𝑉
→

 à un scalaire. On montre que ce scalaire est un invariant par 
rapport à tout changement de trièdre. 

Parfois on utilise l'opérateur "nabla"𝛻 pour définir la divergence 

𝛻 =
𝜕

𝜕𝑥
𝑒⃗1 +

𝜕

𝜕𝑦
𝑒⃗2 +

𝜕

𝜕𝑧
𝑒⃗3 

On écrit : 

𝑑𝑖𝑣𝑉⃗⃗ = 𝛻 ∙ 𝑉⃗  

Le résultat est bien un scalaire. 

En coordonnées cylindriques la divergence d'un vecteur 𝑉⃗⃗, s'écrit : 
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𝑑𝑖𝑣𝑉⃗⃗ =
1

𝑟
[
𝜕(𝑟𝑉𝑟)

𝜕𝑟
+
𝜕𝑉𝜃
𝜕𝜃

+
𝜕(𝑟𝑉𝑧)

𝜕𝑧
] 

8 Rotationnel 

Le rotationnel d'un vecteur 𝑉
→
= 𝑉1(x, y, z) e⃗⃗1 +  V2(x, y, z) e⃗⃗2  + 𝑉3 (x, y, z) e⃗⃗3 est le vecteur : 

rot
→  
 𝑉
→
 = (

𝜕𝑉3
𝜕𝑦

−
𝜕𝑉2
𝜕𝑧
) 𝑒⃗1 + (

𝜕𝑉1
𝜕𝑧

−
𝜕𝑉3
𝜕𝑥
) 𝑒⃗2+ (

𝜕𝑉2
𝜕𝑥

−
𝜕𝑉1
𝜕𝑦
) 𝑒⃗3 

Il est également intéressant d'utiliser l'opérateur nabla pour déterminer avec méthode le 
rotationnel : 

rot
→  
 𝑉
→
= 𝛻 ∧ 𝑉⃗ = (

𝜕

𝜕𝑥
𝑒⃗1 +

𝜕

𝜕𝑦
𝑒⃗2 +

𝜕

𝜕𝑧
𝑒⃗3) ∧ (𝑉1 e⃗⃗1 +  V2 e⃗⃗2  + 𝑉3  e⃗⃗3) 

rot
→  
 𝑉
→
= ||

𝑒⃗1 𝑒⃗2 𝑒⃗3
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑉1 𝑉2 𝑉3

|| 

Développons ce déterminant : 

rot
→  
 𝑉
→
= 𝑒⃗1 |

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑉2 𝑉3

| − 𝑒⃗2 |
𝜕

𝜕𝑥

𝜕

𝜕𝑧
𝑉1 𝑉3

| + 𝑒⃗3 |

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑉1 𝑉2

| 

Soit le résultat indiqué précédemment : 

rot
→  
 𝑉
→
 = (

𝜕𝑉3
𝜕𝑦

−
𝜕𝑉2
𝜕𝑧
) 𝑒⃗1 + (

𝜕𝑉1
𝜕𝑧

−
𝜕𝑉3
𝜕𝑥
) 𝑒⃗2+ (

𝜕𝑉2
𝜕𝑥

−
𝜕𝑉1
𝜕𝑦
) 𝑒⃗3 

En coordonnées cylindriques le rotationnel d'un vecteur 𝑉⃗⃗ , s'écrit : 

 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = [
1

𝑟
(
𝜕𝑉𝑧
𝜕𝜃
−
𝜕(𝑟𝑉𝜃)

𝜕𝑧
) ,
𝜕𝑉𝑟
𝜕𝑧
−
𝜕𝑉𝑧
𝜕𝑟
,
1

𝑟
(
𝜕(𝑟𝑉𝜃)

𝜕𝑟
−
𝜕𝑉𝑟
𝜕𝜃
)] 

9 Théorème d'Ostrogradski 

Dans un repère orthonormé (𝑒) = (0,e⃗⃗1, 𝑒⃗2, 𝑒⃗3) associé à un système de coordonnées 
cartésiennes, considérons quatre points de coordonnées : 

𝑀  |

𝑥
𝑦
𝑧

      𝑁  |
𝑥 + 𝑑𝑥
𝑦
𝑧

      𝑃  |

𝑥
𝑦 + 𝑑𝑦
𝑧

      𝑄 |

𝑥
𝑦

𝑧 + 𝑑𝑧
 

Construisons le parallélépipède rectangle dont les quatre sommets sont M, N, P et Q. Sur chaque 
face orientons le vecteur normal vers l'extérieur du parallélépipède rectangle. 

Désignons par : 
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𝑉⃗⃗(𝑀) = 𝑉⃗⃗(𝑥, 𝑦, 𝑧) = 𝑉1(x, y, z) e⃗⃗1 +  V2(x, y, z) e⃗⃗2  + 𝑉3 (x, y, z) e⃗⃗3 le vecteur champ au 
voisinage du point M . 

Le flux sortant par les faces d'abscisses x et x+dx 
est : 

𝑑𝛷1 = 𝑉
→
(𝑁) ∙ 𝑒⃗1𝑑𝑦𝑑𝑧 + 𝑉

→
(𝑀) ∙ (−𝑒⃗1)𝑑𝑦𝑑𝑧 

    = [𝑉1(𝑥 + 𝑑𝑥, 𝑦,𝑧) − 𝑉1(𝑥,𝑦, 𝑧)]𝑑𝑦𝑑𝑧 

Soit encore : 

𝑑𝛷1 =
𝜕𝑉1(𝑥,𝑦, 𝑧)

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 =

𝜕𝑉1(𝑥, 𝑦, 𝑧)

𝜕𝑥
𝑑𝑉 

 

 
 

            y                  P 
 
 

                 M       N 

 

        𝑒2     Q 
           O             x 

     𝑒3      𝑒1 
 
  z 

Figure II. 05 Flux élémentaire sortant 

Désignons par dV le volume élémentaire dxdydz. 

En procédant de la même façon pour les faces d'abscisses y, y+dy, z, z+dz nous obtenons  : 

𝑑𝛷2 =
𝜕𝑉2(𝑥, 𝑦, 𝑧)

𝜕𝑦
𝑑𝑉 

𝑑𝛷3 =
𝜕𝑉3(𝑥, 𝑦, 𝑧)

𝜕𝑧
𝑑𝑉 

Le flux de 𝑉⃗⃗(𝑥, 𝑦, 𝑧)sortant du volume dV est donc : 

𝑑𝛷 = 𝑑𝛷1 +𝑑𝛷2 + 𝑑𝛷3  

Soit encore : 

𝑑𝛷 = (
𝜕𝑉1(𝑥,𝑦,𝑧)

𝜕𝑥
+
𝜕𝑉2 (𝑥,𝑦, 𝑧)

𝜕𝑦
+
𝜕𝑉3(𝑥, 𝑦, 𝑧)

𝜕𝑧
) 𝑑𝑉 

𝑑𝛷 = 𝑑𝑖𝑣𝑉⃗⃗(𝑀)𝑑𝑉 

Supposons que le champ de vecteurs 𝑉
→
(𝑃) soit également défini en tout point de la surface A 

et du volume V. Désignons par 𝑛⃗⃗ le vecteur unitaire normal à l'élément de surface dA entourant 
le point P. 

Le flux traversant la surface A est donc : 

𝛷 =∬𝑉⃗⃗(𝑃) 𝑛⃗⃗𝑑𝐴
𝐴

 

Intéressons-nous à l'ensemble du volume V et décomposons-le en parallélépipèdes 

élémentaires, conformément à la figure II. 06. 

Pour deux parallélépipèdes en contact, le flux sortant de leur face commune est égal mais de 
signe contraire, leur somme est donc nulle. 
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Ce qui permet d'écrire : 

𝛷 = ∬ 𝑉
→
(𝑃) ∙ 𝑛⃗⃗𝑑𝐴

𝐴
= ∬ 𝑑𝑖𝑣𝑉⃗⃗(𝑀)𝑑𝑉

𝑉
           (II.05) 

Ce résultat constitue le théorème d'Ostrogradski qui s’énonce : 

Si un champ de vecteurs est défini sur un domaine D, le flux sortant de toute surface A dont 

l'intérieur est inclus dans D est égal à l'intégrale de la divergence du champ sur le volume V 
limité par la surface A. 

Soit m soit un scalaire et posons 𝑉⃗⃗ = 𝑚𝑒⃗1,   n⃗⃗ = 𝛼𝑒⃗1. De la relation ci-dessus on déduit : 

∬𝑚
𝐴

𝛼𝑑𝐴 = ∬
𝜕𝑚

𝜕𝑥𝑉

𝑑𝑉 

 

Si nous posons également 𝑉⃗⃗ = 𝑚𝑒⃗2,   n⃗⃗ = 𝛽𝑒⃗2  puis ensuite  𝑉⃗⃗ = 𝑚𝑒⃗3,   n⃗⃗ = 𝛾𝑒⃗3 nous 
obtenons de la même façon : 

∬𝑚
𝐴

𝛽𝑑𝐴 = ∬
𝜕𝑚

𝜕𝑦𝑉

𝑑𝑉 

∬𝑚
𝐴

𝛾𝑑𝐴 =∬
𝜕𝑚

𝜕𝑧𝑉

𝑑𝑉 

Ce qui s'écrit sous forme vectorielle : 

∬𝑚 𝑛⃗⃗ 𝑑𝐴 = ∬grad
→   

𝑉𝐴

𝑚 𝑑𝑉                                                 (II.06) 

10 Théorème de Green dans le plan 

Le théorème de Green dans le plan donne la relation entre une intégrale curviligne le long d'une 
courbe simple fermée C et l'intégrale double sur la région du plan D délimité par C. 

 

                      𝑛⃗⃗ 
 
       dA    P 
 
 

 
 
 

 
 
 Volume V et surface A 
 

 
    dV 
          M 
 

 
 
 

Figure II. 06 Flux élémentaire sortant du volume V 
 

Évidemment, il en est de même 
pour tous les parallélépipèdes 

élémentaires à l'intérieur du 
volume V. Seuls restent en compte 

les flux sur les faces des 
parallélépipèdes appartenant à la 
surface extérieure A. 

Compte tenu du résultat 
précédemment établi, on déduit : 

𝛷 =∭𝑑𝛷 =
𝑉

∭𝑑𝑖𝑣𝑉⃗⃗(𝑀)𝑑𝑉
𝑉
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∫𝑃𝑑𝑥 + 𝑄𝑑𝑦
𝐶

= ∬ (
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)

𝐷

 𝑑𝑥 𝑑𝑦 

P et Q sont des fonctions continues de x et y et ont des dérivées continues dans D. 

La courbe C, est parcourue dans le sens positif c'est-à-dire dans le sens trigonométrique. 

La courbe C possède la propriété suivante : toute 
droite parallèle aux axes de coordonnées rencontre, 

au plus, la courbe C en deux points. 
L'équation de la courbe ABC est y1=F1(x) et celle 
de la courbe ADC est y2=F2(x). 

 

 y 
        d  D 

   A 
       b    C 
   B 

     a           c    x 
 

Figure II. 07 Domaine D 

Calculons l′intégrale double ∶  ∬
𝜕𝑃

𝜕𝑦𝐷

 𝑑𝑦 

 

∬
𝜕𝑃

𝜕𝑦𝐷

 𝑑𝑦𝑑𝑥 = ∫ (∫
𝜕𝑃

𝜕𝑦

𝐹2 (𝑥)

𝐹1 (𝑥)

𝑑𝑦)
𝑥=𝑐

𝑥=𝑎

 𝑑𝑥 = ∫ (𝑃(𝑥, 𝐹2(𝑥))− 𝑃(𝑥, 𝐹1(𝑥)))
𝑥=𝑐

𝑥=𝑎

 𝑑𝑥  

 

∬
𝜕𝑃

𝜕𝑦𝐷

 𝑑𝑦𝑑𝑥 = −∫ 𝑃(𝑥, 𝐹1(𝑥)) 
𝑥=𝑐

𝑥=𝑎

𝑑𝑥 − ∫ 𝑃(𝑥, 𝐹2(𝑥))
𝑥=𝑎

𝑥=𝑐

 𝑑𝑥 = −∫𝑃𝑑𝑥
𝐶

 

 

 
Soit encore : 

∫𝑃𝑑𝑥
𝐶

= −∬
𝜕𝑃

𝜕𝑦𝐷

 𝑑𝑦𝑑𝑥                                                    (II.07) 

 

Tenons le même raisonnement que précédemment en exprimant, cette fois x en fonction de y. 
Posons x1=f1(y) pour la courbe BAD et pour celle de la courbe DCB x2=f2(y). 

 Donc de façon analogue,calculons l′intégrale double ∶  ∬
𝜕𝑄

𝜕𝑥𝐷

 𝑑𝑥 𝑑𝑦 

∬
𝜕𝑄

𝜕𝑥𝐷

 𝑑𝑦𝑑𝑥 = ∫ (∫
𝜕𝑄

𝜕𝑥
𝑑𝑥

𝑓2(𝑦)

𝑓1(𝑦)

)
𝑦=𝑑

𝑦=𝑏

 𝑑𝑦 = ∫ (𝑄(𝑦, 𝑓2(𝑦))− 𝑄(𝑦, 𝑓1(𝑦)))
𝑦=𝑑

𝑦=𝑏

 𝑑𝑦 

 

∬
𝜕𝑄

𝜕𝑥𝐷

 𝑑𝑦𝑑𝑥 = ∫ 𝑄(𝑦, 𝑓2(𝑦))
𝑦=𝑑

𝑦=𝑏

 𝑑𝑦 +∫ 𝑄(𝑦,𝑓1(𝑦))
𝑦=𝑏

𝑦=𝑑

 𝑑𝑦 = ∫𝑄𝑑𝑥
𝐶

 

Donc : 

∫𝑄𝑑𝑥
𝐶

=∬
𝜕𝑄

𝜕𝑥𝐷

 𝑑𝑦𝑑𝑥                                                      (II.08) 

En additionnant (II.07) plus (II.08) on obtient la relation de Green dans le plan : 

∫𝑃𝑑𝑥
𝐶

+ 𝑄𝑑𝑥 = ∬ (
𝜕𝑄

𝜕𝑥
−
𝜕𝑃

𝜕𝑦
)

𝐷

 𝑑𝑦𝑑𝑥                                   (II.09) 

D 
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11 Théorème de Stokes 

La circulation d'un vecteur 𝑉⃗⃗ le long d'un contour fermé C est égal au flux du rotationnel de ce 
vecteur à travers une surface A admettant C comme frontière. 

∫𝑉⃗⃗(𝑀)
𝐶

∙ 𝑑𝑀⃗⃗⃗   =∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

𝑉⃗⃗ ∙ 𝑛⃗⃗ 𝑑𝐴      

   z 

       𝑛⃗⃗    
 
 

 

          𝑒⃗3        dA 
      dA1=dxdy 

  O      𝑒⃗2       y 

    𝑒⃗1 
 
 

 
   x 
Figure II. 08 Projection de la surface A 

 

Considérons une surface A telle que ces projections 

sur les plans Oxy, Oyz et Oxz soient des courbes 
simples fermées, conformément à la figure (II.08). 

Admettons que la surface A est pour représentation 

z=f(x, y) ou x=g(y,z) ou encore y=h(x, z) où f(x, y), 
g(y,z), h(x, z) sont des fonctions continues, 

différenciables.  

Posons : 

𝑉⃗⃗=V1(𝑥,𝑦, 𝑧) e⃗⃗1 +  V2(𝑥, 𝑦, 𝑧) e⃗⃗2  + 𝑉3(𝑥,𝑦, 𝑧) e⃗⃗3 

Soit : 
 

  

∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

𝑉⃗⃗  𝑛⃗⃗ 𝑑𝐴 =∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉1(𝑥, 𝑦, 𝑧) e⃗⃗1 + 𝑉2(𝑥,𝑦, 𝑧) e⃗⃗2  + 𝑉3 (𝑥,𝑦, 𝑧) e⃗⃗3) 𝑛⃗⃗ 𝑑𝐴 

Intéressons-nous tout d'abord au terme : 

∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉1(𝑥, 𝑦, 𝑧) e⃗⃗1) 𝑛⃗⃗ 𝑑𝐴 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗(𝑉1(𝑥, 𝑦, 𝑧) e⃗⃗1) =

|

|

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧

∧ ||

𝑉1

0

0

=
𝜕𝑉1
𝜕𝑧
𝑒⃗2 −

𝜕𝑉1
𝜕𝑦
𝑒⃗3 

 

Et : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑉1(𝑥, 𝑦, 𝑧) e⃗1) 𝑛⃗⃗ 𝑑𝐴 =
𝜕𝑉1
𝜕𝑧
𝑒⃗2𝑛⃗⃗ 𝑑𝐴 −

𝜕𝑉1
𝜕𝑦
𝑒⃗3𝑛⃗⃗ 𝑑𝐴                     (II.10) 

   

En prenant z=f(x,y) comme équation de la surface A nous avons pour tout point N∈A : 

𝑂𝑁⃗⃗⃗⃗ ⃗⃗⃗ = 𝑥𝑒⃗1+ 𝑦𝑒⃗2 + 𝑓(𝑥, 𝑦)𝑒⃗3   ⇒   
𝜕𝑂𝑁⃗⃗⃗⃗ ⃗⃗⃗

𝜕𝑦
= 𝑒⃗2 +

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
𝑒⃗3 

A1 

A 
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On peut donc déduire que le vecteur 
𝜕𝑂𝑁⃗⃗ ⃗⃗⃗⃗ ⃗

𝜕𝑦
 est tangent à la surface A, il s'ensuit donc : 

𝜕𝑂𝑁⃗⃗⃗⃗ ⃗⃗⃗

𝜕𝑦
∙ 𝑛⃗⃗⃗⃗⃗ = 0  ⇒   𝑒⃗2 ∙ 𝑛⃗⃗ = −

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
   𝑒⃗3 ∙ 𝑛⃗⃗⃗⃗⃗ = −

𝜕𝑧

𝜕𝑦
𝑒⃗3𝑛⃗⃗ 

Et par suite : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑉1(𝑥,𝑦, 𝑧) e⃗1) ∙ 𝑛⃗⃗ 𝑑𝐴 = −(
𝜕𝑉1
𝜕𝑧

𝜕𝑧

𝜕𝑦
+
𝜕𝑉1
𝜕𝑦
) 𝑒⃗3 ∙ 𝑛⃗⃗ 𝑑𝐴                (II.11) 

Or sur la surface A, nous pouvons écrire : 

𝑉1(𝑥, 𝑦, 𝑧) = 𝑉1(𝑥, 𝑦, 𝑓(𝑥,𝑦)) = 𝑃(𝑥,𝑦)  

La relation (II.11) devient : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑉1(𝑥, 𝑦, 𝑧) e⃗1) ∙   𝑛⃗⃗ 𝑑𝐴 = −
𝑑𝑃

𝑑𝑥
𝑒⃗3 ∙ 𝑛⃗⃗⃗⃗⃗ 𝑑𝐴                                 (II.12) 

Désignons par A1 la projection de la surface A sur le plan au Oxy et par C1 la frontière de A1. 

∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉1(𝑥, 𝑦, 𝑧) e⃗1) ∙ 𝑛⃗⃗ 𝑑𝐴 = −∬
𝑑𝑃

𝑑𝑥
𝑑𝑥𝑑𝑦                       (II.13)

𝐴1

 

Puisque 𝑒⃗3 ∙ 𝑛⃗⃗ 𝑑𝐴 = 𝑑𝑥𝑑𝑦  

En vertu du théorème de Green nous avons : 

∫ 𝑃𝑑𝑥
𝐶1

= −∬
𝜕𝑃

𝜕𝑦𝐴1

 𝑑𝑥 𝑑𝑦 

Notons qu'en chaque point (x, y) de C1, la valeur de P est la même que celle de 𝑉1(𝑥, 𝑦, 𝑧) en 
tout point (x, y, z) de C. Comme dx est le même pour les deux courbes nous pouvons écrire : 

∫ 𝑃𝑑𝑥
𝐶1

= ∫𝑉1(𝑥, 𝑦, 𝑧)𝑑𝑥
𝐶

 

∬ 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉1(𝑥,𝑦,𝑧) e⃗⃗1) ∙ 𝑛⃗⃗ 𝑑𝐴 = ∫ 𝑉1(𝑥, 𝑦, 𝑧)𝑑𝑥𝐶
    (II.14) 

En tenant le même raisonnement pour les plans de projection Oyz et Oxz, on déduit : 

∬ 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉2(𝑥, 𝑦, 𝑧)∙e⃗⃗2) ∙  𝑛⃗⃗ 𝑑𝐴 = ∫ 𝑉2(𝑥, 𝑦, 𝑧)𝑑𝑦𝐶
   (II.15) 

∬ 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

(𝑉3(𝑥, 𝑦, 𝑧)∙e⃗⃗3) ∙  𝑛⃗⃗ 𝑑𝐴 = ∫ 𝑉3(𝑥, 𝑦, 𝑧)𝑑𝑧𝐶
   (II.16) 

 
En additionnant les relations (II.14), (II.15) et (II.16), on obtient la relation de Stockes : 

∫𝑉⃗⃗(𝑀)
𝐶

∙ 𝑑𝑀⃗⃗⃗   =∬𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗
𝐴

𝑉⃗⃗ ∙ 𝑛⃗⃗ 𝑑𝐴                                                         
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12 Relations générales 

𝑉⃗⃗ et W⃗⃗⃗⃗ sont des champs vectoriels et f et g sont des champs scalaires 

𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑓ℎ) = 𝑓𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℎ+ ℎ𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓    (II.18) 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑓𝑉⃗⃗) = 𝑓𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗(𝑉⃗⃗) − 𝑉⃗⃗ ∧ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓    (II.19) 

𝑑𝑖𝑣(𝑓𝑉⃗⃗) = 𝑓𝑑𝑖𝑣(𝑉⃗⃗) + 𝑉⃗⃗.𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑓    (II.20) 

𝑑𝑖𝑣(𝑉⃗⃗ ∧ 𝑊⃗⃗⃗⃗) = 𝑊⃗⃗⃗⃗.𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑉⃗⃗) − 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗(𝑊⃗⃗⃗⃗). 𝑉⃗⃗   (II.21) 
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Chapitre III 

Cinématique du solide 
 

La cinématique est l’étude des mouvements indépendamment des causes qui les provoquent. 

En mécanique, dite rationnelle, on considère le corps solide comme un système de points 
matériels qui restent fixes les uns par rapport aux autres. 

Cette notion du corps solide indéformable est théorique mais suffisante pour étudier son 
mouvement sous l'action d'un système de forces. Dans ces conditions on le désigne souvent par 
solide théorique. 

1 Référentiel et repère 

Pour étudier un solide, il faut se fixer un référentiel pour déterminer à tout instant sa situation. 

L'association d'un repère d'espace à trois dimensions (𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3) et du repère de temps à une 
dimension constitue un référentiel. 

Un repère d'espace différent (𝑂1, 𝐸⃗ 1, 𝐸⃗⃗2 , 𝐸⃗⃗3)et du repère de temps définit un autre référentiel. 

Habituellement, nous utiliserons un référentiel absolu ou Galiléen que nous noterons Rg. Dans 

la partie " dynamique du solide " il sera précisé qu’un repère Galiléen est défini par la première 
loi de Newton. 

Le repère de Copernic est une bonne approximation du référentiel galiléen. Son origine est le 
centre du soleil et ses trois axes sont définis par des étoiles fixes. 

Dans un repère d’espace, le système d'axes de coordonnées peut être quelconque mais par 

simplification nous n’utiliserons que des systèmes d'axes orthonormés directs. 

      y 

 
 
 

       𝑒⃗2 
 
       o 

          𝑒⃗1                x 

                  𝑒⃗3 
     z 

Figure III.01 Repère cartésien 

 

De surcroit, nous utiliserons un système de 
coordonnées cartésiennes oxyz comportant 

trois vecteurs unitaires 𝑒⃗1, 𝑒⃗2, 𝑒⃗3. Ces 
vecteurs sont de même direction et de même 

sens que les trois axes du repère 
conformément à la figure III.01. 
 

 
 

 

Dans ce repère, un vecteur unitaire 𝑛⃗⃗ de composantes 𝛼, 𝛽 et 𝛾 s'écrira : 
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𝑛⃗⃗ = 𝛼𝑒⃗1 + 𝛽𝑒⃗2 + 𝛾𝑒⃗3 

                                               avec (𝑛⃗⃗)2  = 𝛼2 +𝛽2 + 𝛾2 = 1 

Dans la partie spécifique aux turbomachines, il sera souvent utilisé un repère cylindrique où un 

point M aura comme coordonné : 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑟 𝑢⃗⃗(𝜃) + 𝑧 𝑒⃗3                                               (III.01) 

  
      y 
            M 

      𝑢⃗⃗ (
𝜋

2
)       r 

       𝑢⃗⃗(𝜃) 
    𝜃 
 

  O  𝑢⃗⃗(0)          x 

Figure III.02 Projection dans un repère 

cylindrique 

 
 
Avec : 

𝑟 𝑢⃗⃗(𝜃) = 𝑟 (𝑐𝑜𝑠 𝜃  𝑢⃗⃗(0)+ 𝑠𝑖𝑛 𝜃  𝑢⃗⃗ (
𝜋

2
)) 

En ayant posé : 

𝑒⃗1 = 𝑢⃗⃗(0)   et   e⃗⃗2 = 𝑢⃗⃗ (
𝜋

2
) 

 

2 Notions de torseur 

On appelle torseur [𝛤] l'ensemble des deux champs de vecteurs suivants : 

L'un est le vecteur libre que l'on appelle somme du torseur. 

𝑆 = ∑𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

= 𝐴1𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ + 𝐴2𝑀2⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ +⋯… .+𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + ⋯… . . +𝐴𝑛𝑀𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

L'autre est désigné par moment en O du torseur[𝛤]. 

𝑀⃗⃗ 𝑂 =∑𝑂𝐴𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  = 𝑂𝐴1⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗ ∧ 𝐴1𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗  +⋯+𝑂𝐴𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + ⋯+ 𝑂𝐴𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝐴𝑛𝑀𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

Ces deux vecteurs 𝑆 et M⃗⃗⃗⃗𝑂sont les éléments de réduction du torseur [𝛤] au point O. 

La théorie de l'algèbre des torseurs sort du cadre de cet ouvrage, mais néanmoins rappelons 
quelques-unes de leurs propriétés. 

La somme de deux torseurs ⌈𝛤1⌉ et ⌈𝛤2⌉ de résultantes 𝑆1 et 𝑆2 et de moments 𝑀⃗⃗⃗1 et M⃗⃗⃗⃗2 est le 

torseur [𝛤] de résultante 𝑆1 + 𝑆2 et de moment 𝑀⃗⃗⃗1 + 𝑀⃗⃗⃗2. 

Considérons un torseur ⌈𝛤⌉ de résultante 𝑆 et de moments 𝑀⃗⃗⃗𝑂  en un point O et un torseur [𝛤 ′] 

de résultante 𝑆 et de moment 𝑀⃗⃗⃗𝑃 en un point p. 
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𝑀⃗⃗ 𝑂 =∑𝑂𝐴𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  

𝑀⃗⃗ 𝑃 =∑𝑃𝐴𝑖⃗⃗⃗⃗ ⃗⃗⃗⃗

𝑖=𝑛

𝑖=1

∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  

De la relation de Chasles on déduit : 

𝑀⃗⃗⃗𝑃 = ∑(𝑃𝑂⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

+ 𝑂𝐴𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ) ∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = 𝑃𝑂⃗⃗ ⃗⃗ ⃗⃗ ∧∑𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

+∑𝑂𝐴𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

∧ 𝐴𝑖𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  

Soit en définitive : 

𝑀⃗⃗⃗𝑃 = 𝑀⃗⃗⃗𝑂 +𝑃𝑂⃗⃗⃗⃗ ⃗⃗ ∧ 𝑆     (III.02) 

Cette dernière relation est parfois désignée par formule du changement de l'origine des 

moments. 

La résultante 𝑆, constituant un champ de vecteurs uniforme, est un invariant. Le produit scalaire 
des éléments de réduction d'un torseur ne dépend pas du point où il est calculé. 

Pour le monter comparons alors les deux scalaires : 𝐼 = 𝑆 ∙ 𝑀⃗⃗⃗𝑂   et   𝐼
′ = 𝑆 ∙ 𝑀⃗⃗⃗𝑃 

𝐼 ′ = 𝑆 ∙ 𝑀⃗⃗⃗𝑃 = 𝑆 ∙ (𝑀⃗⃗⃗𝑂 +𝑃𝑂
→  

∧ 𝑆) = 𝑆 ∙ 𝑀⃗⃗⃗𝑂 + 𝑆 ∙ (𝑃𝑂
→  
∧ 𝑆)⏟        

0

= 𝐼 

𝐼 = 𝑆 ∙ 𝑀⃗⃗⃗𝑂       (III.03) 

L'expression (III.03) est donc indépendante du choix de O, c'est un deuxième invariant. 

L'utilisation des torseurs simplifie les mises en équations des systèmes mécaniques. En effet 

une égalité de torseurs remplace deux égalités vectorielles et six égalités scalaires. 

2-1 Torseur des efforts extérieurs 

Les efforts extérieurs s'exerçant sur un corps solide se décomposent en deux grandes familles 

- les forces de contact qui agissent sur sa surface extérieure. 

- les forces à distance qui s'exercent sur sa masse comme par exemple le poids ou les forces 

d'inertie. 

Soit ∑ 𝐹⃗𝑖𝑖  l’ensemble des efforts extérieurs exercés sur le solide (S) en leurs points d’application 
M i. La résultante est : 

𝑅⃗⃗ =∑𝐹⃗𝑖
𝑖

= 𝑅⃗⃗(forces → surface) + 𝑅⃗⃗(forces à distance → solide) 

Et le moment en un point quelconque P est : 
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𝑀⃗⃗⃗𝑃 =∑(𝑃𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝐹⃗𝑖)

𝑖

= 𝑀⃗⃗⃗𝑃(forces → surface)+ 𝑀⃗⃗⃗𝑃(forces à distance → solide) 

Ces deux vecteurs 𝑅⃗⃗ et M⃗⃗⃗⃗𝑃 sont les éléments de réduction du torseur des efforts extérieurs  

[𝛤𝑒𝑓𝑓𝑜𝑟𝑡𝑠 𝑒𝑥𝑡é𝑟𝑖𝑒𝑢𝑟𝑠] au point P. 

[𝛤𝑒𝑓𝑓𝑜𝑟𝑡𝑠 𝑒𝑥𝑡é𝑟𝑖𝑒𝑢𝑟𝑠] {
𝑅⃗⃗

𝑀⃗⃗⃗𝑃
                      (III.04) 

2-2 Principe fondamental de la statique du solide 

Pour qu'un solide soit en équilibre, il faut que le torseur des efforts extérieurs, en un point P 
quelconque, soit égal à un torseur nul. 

[𝛤𝑒𝑓𝑓𝑜𝑟𝑡𝑠 𝑒𝑥𝑡é𝑟𝑖𝑒𝑢𝑟𝑠] = [𝛤(0)]          (III.05) 

Et sous forme vectorielle, le principe fondamental de la statique du solide s'écrira : 

𝑅⃗ (𝑓𝑜𝑟𝑐𝑒𝑠 → 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) + 𝑅⃗⃗(forces à distance → solide) = 0⃗⃗ 

𝑀⃗⃗⃗𝑃(𝑓𝑜𝑟𝑐𝑒𝑠 → 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) + 𝑀⃗⃗⃗𝑃(forces à distance → solide) = 0⃗⃗ 

3 Vecteur rotation 

Dans un repère orthonormé R considérons deux points M et P d’un solide indéformable. Nous 
pouvons donc écrire : 

(𝑀𝑃
→  
)
2

=  constante 

En dérivant par rapport au temps t on a : 

2 𝑀𝑃
→  

 (
𝑑 𝑀𝑃
→  

𝑑𝑡
)

𝑅

= 0 

Et en utilisant la relation de Chasles, on obtient : 

𝑀𝑃
→  𝑑 𝑀𝑃

→  

𝑑𝑡
= 𝑀𝑃
→  

 (
𝑑

𝑑𝑡
(𝑀𝑂
→  

+ 𝑂𝑃
→  
)) = −𝑀𝑃

→  
∙   𝑉⃗⃗(𝑀/𝑅) + 𝑀𝑃

→  
∙   𝑉⃗⃗(𝑃/𝑅) = 0 

Soit en définitive : 

𝑀𝑃
→  

∙  𝑉⃗⃗(𝑀/𝑅) = 𝑀𝑃
→  

∙   𝑉⃗⃗(𝑉/𝑅)                                         (III.06) 

La relation (III.06) est à rapprocher des relations (III.03) et (III.02), elle caractérise un torseur. 

Ce qui nous permet d’écrire : 

𝑉⃗⃗(𝑃/𝑅) = 𝑉⃗⃗(𝑀/𝑅) + 𝑃𝑀
→  

∧ 𝜔 ⃗⃗⃗⃗⃗                                   (III.07) 

Le vecteur 𝜔⃗⃗⃗ est appelé vecteur rotation. 
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Remarque : 

Désignons par O l'origine du repère R et supposons que la vitesse 𝑉⃗⃗(𝑜/𝑅) soit nulle.  

La relation (III.07) s'écrit donc : 𝑉⃗⃗(𝑜/𝑅) = 𝑉⃗⃗(𝑀/𝑅) + 𝑂𝑀
→  

∧ 𝜔⃗⃗⃗ = 0⃗⃗. Il s'ensuit donc : 

𝑉⃗⃗(𝑀/𝑅) = 𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗  ⃗

Posons : 𝑉⃗⃗(𝑀/𝑅) = 𝑉1 𝑒⃗1 +𝑉2 𝑒⃗2 + 𝑉3 𝑒⃗3  𝑒𝑡  𝜔⃗⃗⃗ = 𝜔1 𝑒⃗1 +𝜔2 𝑒⃗2 + 𝜔3𝑒⃗3  

Sachant que dans le repère R, le point M a pour coordonnées x, y, z, nous pouvons écrire : 

𝑉1
𝑉2
𝑉3

= |

𝜔1
𝜔2
𝜔3
∧ |

𝑥
𝑦
𝑧
=

𝜔2𝑧 −𝜔3𝑦
𝜔3𝑥 − 𝜔1𝑧
𝜔1𝑦− 𝜔2𝑥

 

 

Or on peut remarquer que si nous faisons le calcul de 
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗𝑉⃗⃗(𝑀/𝑅) nous obtenons : 

1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗𝑉⃗⃗(𝑀/𝑅) =

1

2

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧

∧

𝜔2𝑧 −𝜔3𝑦

𝜔3𝑥 −𝜔1𝑧

𝜔1𝑦 − 𝜔2𝑥
)

 
 
 
 

=
1

2
(

𝜔1 − (−𝜔1)

𝜔2 − (−𝜔2)

𝜔3 − (−𝜔3)
) 

C’est-à-dire : 
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗𝑉⃗⃗(𝑀/𝑅) = 𝜔⃗⃗⃗                                                       (III.08) 

4 Torseur cinématique 

On appelle torseur cinématique, le torseur où la vitesse 𝑉⃗⃗ est le moment et 𝜔⃗⃗⃗ la résultante. Les 

éléments de réduction de ce torseur en P sont 𝜔⃗⃗⃗ et 𝑉⃗⃗(𝑃/𝑅) en M ils seraient 𝜔 ⃗⃗⃗⃗⃗et 𝑉⃗⃗⃗⃗ (𝑀/𝑅). 

[𝛤𝑐𝑖𝑛é𝑚𝑎𝑡𝑖𝑞𝑢𝑒] {
𝜔⃗⃗⃗

𝑉⃗⃗
 

5 Rotation d’un solide autour d’un axe fixe 

Considérons la rotation d’un solide (s) autour de l’axe OZ dans le repère R. 
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      Y 
   M 

       𝑒⃗2 
 

       O 

           𝑒⃗1      X 

                 𝑒⃗3 
    Z 

 

Figure III.03 Rotation autour de OZ 

Dans ce repère un point Mà (s) aura comme 

coordonnées : 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑋𝑒⃗1 + 𝑌𝑒⃗2 +𝑍𝑒⃗3 
Pour ce solide en rotation autour de OZ le 
vecteur rotation sera : 

𝜔⃗⃗⃗ = 𝜔𝑒⃗3 
Dans ces conditions la relation (III.07) peut 

s’écrire : 

𝑉⃗⃗(𝑂/𝑅) = 𝑉⃗⃗(𝑀/𝑅) +𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝜔⃗⃗⃗ 
 

La vitesse de tous les points appartenant à l’axe Oz est nulle donc 𝑉⃗⃗(𝑂/𝑅) = 0⃗⃗ 

Mais puisque  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝜔⃗⃗⃗ = 𝑌𝜔𝑒⃗1− 𝑋𝜔𝑒⃗2  

Il s′ensuit que 𝑉⃗⃗(𝑀/𝑅) = 𝜔⃗⃗⃗  ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = (−𝑌𝑒⃗1 + 𝑋𝑒⃗2) 𝜔  
 

Remarque : 

Ce résultat est immédiatement obtenu en travaillant avec le repère cylindrique représenté sur la 
figure III.02. Dérivons la relation (III.01) par rapport au temps t : 

𝑉
→

(𝑀/𝑅) = (
𝑑(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)

𝑑𝑡
)
𝑅

= 𝑟 
𝑑𝜃

𝑑𝑡
𝑢⃗⃗ (𝜃 +

𝜋

2
) 

Et puisque :  𝑢⃗⃗ (𝜃 +
𝜋

2
) = − 𝑠𝑖𝑛 𝜃  𝑒⃗1 + 𝑐𝑜𝑠 𝜃 𝑒⃗2      𝑋 = 𝑟 𝑐𝑜𝑠 𝜃             𝑌 = 𝑟 𝑠𝑖𝑛 𝜃 

Nous retrouvons le résultat de la relation précédente : 

𝑉⃗⃗(𝑀/𝑅) = 𝜔⃗⃗⃗  ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = (−𝑌𝑒⃗1 +𝑋𝑒⃗2) 𝜔 

Pour un solide tournant autour d’un axe fixe, nous pouvons écrire : 

 
𝑑𝜃

𝑑𝑡
= 𝜔                                                                      (III.09) 

On appelle 𝜔 la vitesse de rotation (ou vitesse angulaire) d’un système en rotation. Ce scalaire 
𝜔, désigne également la pulsation (ou fréquence angulaire) d’un phénomène périodique. 

Pour 𝜔, l’unité est le radian par seconde (rad/s). Dans le monde industriel, notamment dans 

celui des turbomachines, on exprimera 𝜔 en tours par minute (tr/min). 

 

6 Mouvement d’un repère 

Soit (R) un repère orthonormé 𝑂, 𝐸⃗⃗1, 𝐸⃗⃗2, 𝐸⃗⃗3en mouvement par rapport à un repère (g) fixe 

𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3 conformément à la figure III.04. 
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Pour une raison pédagogique posons 𝐸⃗⃗1 = 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ et utilisons la relation (III.07) 

𝑉⃗⃗(𝑂/𝑔) = 𝑉⃗⃗(𝑀/𝑔)+ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝜔⃗⃗⃗ 

Que l’on peut mettre sous la forme : 

𝑉⃗⃗(𝑀/𝑔) − 𝑉⃗⃗(𝑂/𝑔) +𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝜔⃗⃗⃗ = 0⃗⃗ 

(
𝑑(𝑜𝑀⃗⃗⃗⃗⃗⃗⃗)

𝑑𝑡
)
𝑔

−(
𝑑(𝑜𝑂⃗⃗⃗⃗⃗⃗ )

𝑑𝑡
)
𝑔⏟                

(
𝑑
𝑑𝑡
(−𝑀𝑜⃗⃗⃗⃗ ⃗⃗⃗−𝑜𝑂⃗⃗⃗⃗ ⃗⃗ ))

𝑔

=(
𝑑𝐸⃗⃗1
𝑑𝑡

)
𝑔

+ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝜔⃗⃗⃗⏟    

𝐸⃗⃗1∧𝜔⃗⃗⃗⃗

= 0⃗⃗ 

En tenant le même raisonnement sur𝐸⃗⃗2  et  𝐸⃗⃗3on obtient, en définitive, les résultats suivants : 
 
       y 

 

        𝐸⃗⃗2 
 

       𝑒⃗2            O 

       𝐸⃗⃗3          𝐸⃗⃗1 
            O                                        M 

          𝑒⃗1         x 
                  𝑒⃗3 
         z 

 

Figure III.04 Mouvement du repère (R) 

 

 
 

 

(
𝑑𝐸⃗⃗1
𝑑𝑡
)
𝑔

= 𝜔⃗⃗⃗ ∧ 𝐸⃗⃗1 

(
𝑑𝐸⃗⃗2
𝑑𝑡
)
𝑔

= 𝜔⃗⃗⃗ ∧ 𝐸⃗⃗2                                  (III. 10) 

(
𝑑𝐸⃗⃗3
𝑑𝑡
)
𝑔

= 𝜔⃗⃗⃗ ∧ 𝐸⃗⃗3  

 

7 Dérivation des vecteurs 

Supposons connues les composantes d’un vecteur 𝐿⃗⃗ dans les repères (g) et (R) définis 

précédemment. 

C’est à dire dans le repère (g) : 𝐿⃗⃗ = 𝑎𝑒⃗1 +𝑏𝑒⃗2 + 𝑐𝑒⃗3 

Et dans le repère (R) : 𝐿⃗⃗ = 𝐴𝐸⃗⃗1 + 𝐵𝐸⃗⃗2 +𝐶𝐸⃗⃗3  

Dérivons, par rapport au temps, 𝐿⃗⃗ dans les repères (g) et (R) 

(
𝑑𝐿
→

𝑑𝑡
)

𝑔

=
𝑑𝑎

𝑑𝑡
𝑒⃗1 +

𝑑𝑏

𝑑𝑡
𝑒⃗2 +

𝑑𝑐

𝑑𝑡
𝑒⃗3 

  (
𝑑𝐿
→

𝑑𝑡
)

𝑅

=
𝑑𝐴

𝑑𝑡
𝐸⃗⃗1 +

𝑑𝐵

𝑑𝑡
𝐸⃗⃗2 +

𝑑𝐶

𝑑𝑡
𝐸⃗⃗3 

Si 𝐸⃗⃗1, 𝐸⃗⃗2  et 𝐸⃗⃗3sont des fonctions du temps nous avons : 
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(
𝑑𝐿
→

𝑑𝑡
)

𝑔

=
𝑑𝐴

𝑑𝑡
𝐸⃗⃗1 +

𝑑𝐵

𝑑𝑡
𝐸⃗⃗2 +

𝑑𝐶

𝑑𝑡
𝐸⃗⃗3 + 𝐴

𝑑𝐸⃗⃗1
𝑑𝑡
+ 𝐵

𝑑𝐸⃗⃗2
𝑑𝑡
+ 𝐶

𝑑𝐸⃗⃗3
𝑑𝑡

 

Compte tenu des relations (III.10) nous avons : 

(
𝑑𝐿
→

𝑑𝑡
)

𝑔

= (
𝑑𝐿
→

𝑑𝑡
)

𝑅

+𝐴𝜔⃗⃗⃗ ∧ 𝐸⃗⃗1 + 𝐵𝜔⃗⃗⃗ ∧ 𝐸⃗⃗2 + 𝐶𝜔⃗⃗⃗ ∧ 𝐸⃗⃗3 = (
𝑑𝐿
→

𝑑𝑡
)

𝑅

+ 𝜔⃗⃗⃗ ∧ (𝐴𝐸⃗⃗1 +𝐵𝐸⃗⃗2 + 𝐶𝐸⃗⃗3) 

Soit en définitive : 

(
𝑑𝐿
→

𝑑𝑡
)

𝑔

= (
𝑑𝐿
→

𝑑𝑡
)

𝑅

+ 𝜔⃗⃗⃗ ∧ 𝐿⃗⃗                                          (III.11) 

8 Composition des vitesses 

Conservons les notations d’un paragraphe précédent, c’est à dire un repère (R) en mouvement  

par rapport à un repère (g) fixe conformément à la figure III.04. 
Dans le repère (g) un point M aura comme coordonnées : 

𝑜𝑀⃗⃗⃗⃗⃗⃗⃗ = 𝑥𝑒⃗1 +𝑦𝑒⃗2 + 𝑧𝑒⃗3 

Et dans le repère (R) : 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑋𝐸⃗⃗1 +𝑌𝐸⃗⃗2 + 𝑍𝐸⃗⃗3 

Le vecteur vitesse du point M, dans le repère (g) est : 

𝑉⃗⃗(𝑀/𝑔) = (
𝑑 𝑜𝑀⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
)
𝑔

=
𝑑𝑥

𝑑𝑡
𝑒⃗1 +

𝑑𝑦

𝑑𝑡
𝑒⃗2 +

𝑑𝑧

𝑑𝑡
𝑒⃗3 

Dans le repère (R) la vitesse de M est : 

𝑉⃗⃗(𝑀/𝑅) = (
𝑑 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
)
𝑅

=
𝑑𝑋

𝑑𝑡
𝐸⃗⃗1 +

𝑑𝑌

𝑑𝑡
𝐸⃗⃗2 +

𝑑𝑍

𝑑𝑡
𝐸⃗⃗3 

Mais : 

𝑉⃗⃗(𝑀/𝑔) = (
𝑑 𝑜𝑀⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
)
𝑔

= (
𝑑(𝑜𝑂⃗⃗⃗⃗⃗⃗ + 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)

𝑑𝑡
)
𝑅

 

𝑉⃗⃗(𝑀/𝑅) = (
𝑑𝑜𝑂⃗⃗⃗⃗⃗⃗

𝑑𝑡
)
𝑔

+ (
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
)
𝑔

 

𝑉⃗⃗(𝑀/𝑔) = 𝑉⃗⃗(𝑂/𝑔) + (
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
)
𝑔

 

Compte tenu de la relation (III.11), en posant 𝐿⃗⃗ = 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ on obtient 
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𝑉⃗⃗(𝑀/𝑔) = 𝑉⃗⃗(𝑂/𝑔) + (
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
)
𝑅

+ 𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗                  (III.12) 

Le vecteur 𝜔⃗⃗⃗ est la rotation d’entrainement de (R) par rapport à (g) que l’on notera 𝜔⃗⃗⃗(𝑅/𝑔). 

Le vecteur  𝑉⃗⃗𝑒(
𝑀

𝑔
) = 𝑉⃗⃗ (

𝑂

𝑔
) + 𝜔⃗⃗⃗ (

𝑅

𝑔
) ∧ 𝑂𝑀

→

 est appelé vitesse d’entrainement du point M 

Le vecteur 𝑉⃗⃗(𝑀/𝑅) = (
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
)
𝑅

 est la vitesse du point M par rapport à (R).  

On la désigne souvent par vitesse relative. 

𝑉⃗⃗(𝑀/𝑔) = 𝑉⃗⃗𝑒(𝑀/𝑔)+ 𝑉⃗⃗(𝑀/𝑅)                                          (III.13) 

9 Composition des accélérations 

Dans le repère (g) dérivons, par rapport au temps la relation (III.12) pour décomposer 

l’accélération de M dans le repère (g). 
 

𝛾⃗(𝑀/𝑔) = (
𝑑𝑉(𝑀/𝑔)

𝑑𝑡
)
𝑔
= (

𝑑𝑉⃗⃗⃗(𝑂/𝑔)

𝑑𝑡
)
𝑔⏟      

𝛾⃗⃗⃗(𝑂/𝑔)

+ (
𝑑

𝑑𝑡
(
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗

𝑑𝑡
)
𝑅
)
𝑔

+ (
𝑑𝜔⃗⃗⃗⃗

𝑑𝑡
)
𝑔
∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝜔⃗⃗⃗ ∧ (

𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗

𝑑𝑡
)
𝑔

            

Utilisons la relation (III.11) pour ces termes : 

(
𝑑

𝑑𝑡
(
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗⃗

𝑑𝑡
)

𝑅

)

𝑔

= (
𝑑𝑉⃗⃗(𝑀/𝑅)

𝑑𝑡
)
𝑔

= (
𝑑2𝑉⃗⃗(𝑀/𝑅)

𝑑𝑡2
)
𝑅

+ 𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅) 

                                = 𝛾⃗(𝑀/𝑅) + 𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅) 

Remarquons que : 

(
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑔

= (
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑅

+ 𝜔⃗⃗⃗ ∧ 𝜔⃗⃗⃗ = (
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑅

 

 

Et pour le dernier terme : 

𝜔⃗⃗⃗ ∧ (
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗⃗

𝑑𝑡
)

𝑔

= 𝜔⃗⃗⃗ ∧ ((
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗⃗

𝑑𝑡
)

𝑅

+ 𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗⃗) = 𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅) + 𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗⃗⃗) 

 

D’où l’expression du vecteur accélération : 

𝛾(𝑀/𝑔)  = 𝛾(𝑂/𝑔) + 𝛾(𝑀/𝑅)+ 𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅)+ (
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑔

∧ 𝑂𝑀⃗⃗ ⃗⃗⃗⃗ ⃗ + 𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅) + 𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗ ⃗⃗⃗⃗ ⃗) 
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Soit en ordonnant : 

𝛾⃗(𝑀/𝑔) = 𝛾⃗(𝑂/𝑔) + (
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑅

∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)
⏟                          

𝛾⃗⃗⃗𝑒(𝑀)

+ 2𝜔⃗⃗⃗ ∧ 𝑉⃗⃗(𝑀/𝑅)⏟        
𝛾⃗⃗⃗𝐶 (𝑀)

+ 𝛾⃗(𝑀/𝑅)  (III.14) 

𝛾⃗𝑒(𝑀) est par définition le vecteur accélération du point M. 

𝛾⃗𝐶 (𝑀) est le vecteur accélération de Coriolis. 

𝛾⃗(𝑀/𝑔) = 𝛾⃗𝑒(𝑀) + 𝛾⃗𝐶 (𝑀) + 𝛾⃗(𝑀/𝑅)                           (III.15) 

10 Coordonnées intrinsèques 

Soit (C) la trajectoire décrite par un point M animé d’une vitesse 𝑉⃗⃗(𝑀). Désignons par 
ds = MM 1 le déplacement élémentaire du point M pendant l’intervalle de temps dt. 

 
            O 
 

 
 

     Cercle osculateur  R 
       O 

                      𝑑𝛼 

       (C)            𝑢⃗⃗ (𝛼 +
𝜋

2
) 

(C) 

           M   ds   𝑢⃗⃗(𝛼)  𝑑𝛼 
 

       M M 1           𝑉⃗⃗(𝑀) 
 

Figure III.05 Plan osculateur 𝑀,  𝑢⃗⃗(𝛼), 𝑢⃗⃗ (𝛼 +
𝜋

2
) 

 

Posons :𝑂𝑀 = 𝑅  𝑒𝑡  𝑉⃗⃗(𝑀) = 𝑉 𝑢⃗⃗(𝛼) 

Par ailleurs nous avons ∶ 𝑑𝑠 = 𝑅 𝑑𝛼  𝑒𝑡  𝑉 =
𝑑𝑠

𝑑𝑡
 

L’accélération du point M dans ce repère est donc : 

𝛾⃗(𝑀) =
𝑑𝑉⃗⃗(𝑀)

𝑑𝑡
=
𝑑𝑉

𝑑𝑡
  𝑢⃗⃗(𝛼)+ 𝑉

𝑑𝛼

𝑑𝑡
𝑢⃗⃗ (𝛼 +

𝜋

2
) 

mais 
𝑑𝛼

𝑑𝑡
=
𝑑𝛼

𝑑𝑠

𝑑𝑠

𝑑𝑡
=
1

𝑅
𝑉 

D’où l’expression de l’accélération :  

 

𝛾⃗(𝑀) =    
𝑑𝑉

𝑑𝑡
  𝑢⃗⃗(𝛼)   +   

𝑉2

𝑅
𝑢⃗⃗ (𝛼 +

𝜋

2
)                           (III. 16) 

                                                  𝑎𝑐𝑐é𝑙é𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙𝑙𝑒              𝑎𝑐𝑐é𝑙é𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑒 
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Chapitre IV 

Cinétique et dynamique du solide 
 

La cinétique est l’étude du mouvement des corps en utilisant les notions de longueur, de temps 
et de masse. 

1 Notion de masse 

La masse d’un solide est un nombre plus grand que zéro vérifiant les axiomes suivants : 
- conservatrice dans le temps, c’est-à-dire constante. 
- grandeur mesurable 

La masse caractérise une quantité de matière. 

2 Centre de masse 

Le centre de masse d’un solide, est le point où l'on applique les effets d'inertie, on l’appelle 
donc également centre d'inertie. 

On définit le centre de masse G, ou centre d’inertie, par la relation suivante : 

∫ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

𝑑𝑚 = 0⃗⃗                                                             (IV.01) 

Où M désigne un point d’un solide (S) de masse m. 

Pour déterminer le centre de masse, considérons un point O quelconque (l’origine du repère par 
exemple) et appliquons la relation de Chasles. 

∫ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

𝑑𝑚 = ∫ 𝐺𝑂⃗⃗⃗⃗ ⃗⃗
𝑀∈𝑆

𝑑𝑚
⏟      

𝐺𝑂
→
∫ 𝑑𝑚=𝐺𝑂

→
𝑚𝑀∈𝑆

+ ∫ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗
𝑀∈𝑆

𝑑𝑚 = 0⃗⃗ 

Soit en définitive : 

𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ =
1

𝑚
∫ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗
𝑀∈𝑆

𝑑𝑚                                                   (IV.02) 

Le centre de masse d’un solide ne doit pas être confondu avec le centre de gravité d’un solide 

qui est le point d'application de la résultante des forces de pesanteur. 

Remarques : 

Dans un repère orthonormé (R) d’origine O, on obtient en dérivant, par rapport au temps, la 

relation (IV.02) : 

 

https://fr.wikipedia.org/wiki/Centre_d%27inertie
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- Pour la vitesse : 

 

- Pour l’accélération : 

𝑚𝑉⃗⃗(𝐺/𝑅) = ∫ 𝑉⃗⃗(𝑀/𝑅)
𝑀∈𝑆

𝑑𝑚                                            (IV.03)  

𝑚𝛾⃗(𝐺/𝑅) = ∫ 𝛾⃗(𝑀/𝑅)
𝑀∈𝑆

𝑑𝑚                                              (IV.04)  

 

 

3 Moment cinétique 

Le moment cinétique en un point A, d’un solide (S) dans son mouvement par rapport à un repère 
(R) est par définition : 

𝜎⃗(𝐴, 𝑆/𝑅) = ∫ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

∧ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚                                         (IV.05) 

4 Torseur cinétique 

Le torseur cinétique d’un solide (S) dans son mouvement par rapport à un espace (R) est défini 
par les relations (IV.03) et (IV.05). Soit : 

Résultante cinétique : 

𝑚𝑉⃗⃗(𝐺/𝑅) = ∫ 𝑉⃗⃗(𝑀/𝑅)
𝑀∈𝑆

𝑑𝑚 

Moment cinétique en A : 

𝜎⃗(𝐴, 𝑆/𝑅) = ∫ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

∧ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚 

[𝛤𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒] {
∫ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚
𝑀∈𝑆

𝜎⃗(𝐴, 𝑆/𝑅)

 

Remarque : 

En un autre point B, le moment cinétique s’écrirait : 

𝜎⃗(𝐵,𝑆/𝑅) = ∫ 𝐵𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

∧ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚 

Et de la relation (III.02) nous déduisons immédiatement : 

𝜎⃗(𝐴, 𝑆/𝑅) = 𝜎⃗(𝐵,𝑆/𝑅) + 𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝑚𝑉⃗⃗(𝐺/𝑅)                               (IV.06) 

5 Torseur dynamique 

La résultante dynamique est définie par a relation (IV.04) : 𝑚𝛾⃗(𝐺/𝑅) = ∫ 𝛾⃗(𝑀/𝑅)
𝑀∈𝑆

𝑑𝑚 

Le moment dynamique en un point A, d’un solide (S) dans son mouvement par rapport à un 
repère (R) est par définition : 

𝛿(𝐴, 𝑆/𝑅) = ∫ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

∧ 𝛾⃗(𝑀/𝑅)𝑑𝑚          (IV.07) 
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D’où l'expression du torseur dynamique : 

[𝛤dynamique ] {
𝑚𝛾⃗(𝐺/𝑅)

𝛿(𝐴, 𝑆/𝑅)
           (IV.08) 

6 Relation entre moment cinétique et moment dynamique 

Dérivons dans R le moment cinétique, relation (IV.05) 

𝑑

𝑑𝑡
𝜎⃗(𝐴, 𝑆/𝑅) = ∫

𝑑

𝑑𝑡
𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗

⏟  
𝑑
𝑑𝑡
(𝐴𝑂⃗⃗⃗⃗⃗⃗⃗+𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗)=−𝑉⃗⃗⃗(𝐴/𝑅)+𝑉⃗⃗⃗(𝑀/𝑅)

𝑀∈𝑆

∧ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚 +∫ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

∧ 𝛾⃗(𝑀/𝑅)𝑑𝑚
⏟              

𝛿⃗⃗⃗(𝐴,𝑆/𝑅)

 

En tenant compte de la relation (IV.03) on obtient l'importante égalité : 

𝛿(𝐴, 𝑆/𝑅) =
𝑑

𝑑𝑡
𝜎⃗(𝐴, 𝑆/𝑅) + 𝑚 𝑉⃗⃗(𝐴/𝑅) ∧ 𝑉⃗⃗(𝐺/𝑅)        (IV.09) 

Remarque : 

En considérant le centre de masse G et en appliquant la relation (III.02) on obtient les théorèmes 

de Kœnigs pour le moment cinétique et pour le moment dynamique. 

𝜎⃗(𝐴, 𝑆/𝑅) = 𝜎⃗(𝐺, 𝑆/𝑅) + 𝐴𝐺⃗⃗ ⃗⃗⃗⃗ ∧ 𝑚𝑉⃗⃗(𝐺/𝑅)  

𝛿(𝐴, 𝑆/𝑅) = 𝛿(𝐺, 𝑆/𝑅) + 𝐴𝐺⃗⃗ ⃗⃗⃗⃗ ∧ 𝑚𝛾⃗(𝐺/𝑅) 

7 Moment d’inertie 

Le moment d'inertie est une grandeur physique qui caractérise la géométrie des masses d’un 

solide. 

Considérons un solide (S) en rotation autour de O dans un repère orthonormé (R). Le moment 
cinétique en O, d’un solide (S) est (relation IV.05) : 

𝜎⃗(𝑂, 𝑆/𝑅) = ∫ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗
𝑀∈𝑆

∧ 𝑉⃗⃗(𝑀/𝑅)𝑑𝑚 

 

En utilisant la relation (III.08) nous pouvons écrire : 

𝜎⃗(𝑂, 𝑆/𝑅) = ∫ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗
𝑀∈𝑆

∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)𝑑𝑚           (IV.10) 

Dans ce repère posons : 

 
𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑒⃗1 +𝑦𝑒⃗2 + 𝑧𝑒⃗3 

𝜔
→
= 𝑎𝑒⃗1 + 𝑏𝑒⃗2 + 𝑐𝑒⃗3 

En effectuant le double produit vectoriel : 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗) 

On obtient : 

https://fr.wikipedia.org/wiki/Physique
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      z 

 
 

 
 
 

 
       

 
            x 
 
 

Figure IV.01 Rotation autour de O 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗) = {

𝑎(𝑦2 + 𝑧2)− 𝑏𝑥𝑦 − 𝑐𝑥𝑧

𝑏(𝑧2+ 𝑥2) − 𝑐𝑦𝑧 − 𝑎𝑥𝑦

𝑐(𝑥2 + 𝑦2) − 𝑎𝑥𝑧 − 𝑏𝑦𝑧

 

Et par suite la relation (IV.09) devient : 

𝜎⃗(𝑂,𝑆/𝑅) =

{
  
 

  
 𝑎∫(𝑦2 + 𝑧2)

𝑠

𝑑𝑚 − 𝑏∫𝑥𝑦𝑑𝑚
𝑠

− 𝑐∫𝑥𝑧𝑑𝑚
𝑠

𝑏 ∫(𝑧2 +𝑥2)
𝑠

𝑑𝑚 − 𝑐 ∫𝑦𝑧𝑑𝑚
𝑠

−𝑎∫𝑥𝑦𝑑𝑚
𝑠

𝑐 ∫(𝑥2+ 𝑦2)
𝑠

𝑑𝑚 − 𝑎∫𝑥𝑧𝑑𝑚
𝑠

−𝑏∫𝑦𝑧𝑑𝑚
𝑠

 

 

L’expression 𝐼𝑥𝑥 = ∫ (𝑦
2 + 𝑧2)

𝑠
𝑑𝑚  est appelée moment d’inertie par rapport à l’axe x. 

De même 𝐼𝑦𝑦 = ∫ (𝑧
2 + 𝑥2)

𝑠
 𝑑𝑚 et  𝐼𝑧𝑧 = ∫ (𝑥

2 + 𝑦2) 
𝑠

𝑑𝑚 sont respectivement les moments 

d’inertie par rapport aux axes y et z. 

Les termes∫ 𝑥𝑦𝑑𝑚
𝑠

, ∫ 𝑥𝑧𝑑𝑚, ∫ 𝑦𝑧𝑑𝑚
𝑠

 
𝑠

sont les produits d’inertie et respectivement notés 

Ixy, Ixz, Iyz. 

Compte tenu de ces notations le moment cinétique peut s’écrire : 

𝜎⃗(𝑂, 𝑆/𝑅) = {

𝑎𝐼𝑥𝑥 − 𝑏𝐼𝑥𝑦 − 𝑐𝐼𝑥𝑧
𝑏𝐼𝑦𝑦 − 𝑐𝐼𝑦𝑧 − 𝑎𝐼𝑥𝑦
𝑐𝐼𝑧𝑧 − 𝑎𝐼𝑥𝑧 − 𝑏𝐼𝑦𝑧

= {

 𝑎𝐼𝑥𝑥 −𝑏𝐼𝑥𝑦 − 𝑐𝐼𝑥𝑧
−𝑎𝐼𝑥𝑦 + 𝑏𝐼𝑦𝑦 − 𝑐𝐼𝑦𝑧
−𝑎𝐼𝑥𝑧 −𝑏𝐼𝑦𝑧 + 𝑐𝐼𝑧𝑧

 

Ou sous forme matricielle : 

𝜎⃗(𝑂,𝑆/𝑅) = [

 𝐼𝑥𝑥 − 𝐼𝑥𝑦 − 𝐼𝑥𝑧
−𝐼𝑥𝑦 + 𝐼𝑦𝑦 − 𝐼𝑦𝑧
−𝐼𝑥𝑧 − 𝐼𝑦𝑧 + 𝐼𝑧𝑧

] [

𝑎 
𝑏 
𝑐 

] 

La matrice 𝐽𝑜 = [

 𝐼𝑥𝑥 − 𝐼𝑥𝑦 − 𝐼𝑥𝑧
−𝐼𝑥𝑦 + 𝐼𝑦𝑦 − 𝐼𝑦𝑧
−𝐼𝑥𝑧 − 𝐼𝑦𝑧 + 𝐼𝑧𝑧

] est appelée matrice d’inertie en O du solide S. 

Soit en notation plus condensée : 

𝜎⃗(𝑂, 𝑆/𝑅) = 𝐽𝑜 𝜔⃗⃗⃗                                                            (IV.11) 

En vertu de la relation (IV.09) on peut écrire : 

𝛿 (𝑂, 𝑆/𝑅) = 𝐽𝑜  
𝑑𝜔⃗⃗⃗

𝑑𝑡
                                                        (IV.12) 

M  

𝑒⃗2 

O 

(S)   

𝑒⃗3 

𝑒⃗1 

y 
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8 Dynamique 

La dynamique est la partie de la mécanique qui s'occupe des relations entre les forces et les 
mouvements qu'elles provoquent. 

Pour cela, la dynamique introduit le distinguo entre les divers efforts qui s'exercent sur un corps 
solide. On est ainsi amené à marquer la différence entre les efforts extérieurs et les efforts 

intérieurs. 

Les forces extérieures s'exerçant sur un corps solide se décomposent également en deux grandes  
familles. D'une part, les forces qui s'appliquent sur la surface du corps et d'autre part les forces 

à distance qui s'exercent dans le volume du corps, comme par exemple le poids ou les forces 
d'inertie. 

Les efforts intérieurs, qu'il ne faut surtout pas confondre avec les forces à distance, proviennent 
des particules intérieures au système qui exercent des actions les unes sur les autres. Les forces 
intérieures sont égales et opposées deux à deux. Il s’ensuit que le torseur des efforts intérieurs 

est nul. Cette notion de forces intérieures sera développée dans un prochain paragraphe. 

Dans l'énoncé du principe fondamental de la mécanique, il n'y a que les efforts extérieurs qui 

interviennent. 

9 Principe fondamental de la mécanique 

Dans tout espace-temps galiléen (g) et pour tout système matériel le torseur dynamique (IV.08) 
est constamment égal au torseur des efforts extérieurs (III.04). 

 
 𝑅⃗⃗ = 𝑚𝛾⃗(𝐺/𝑔)

 𝑀⃗⃗⃗𝐴 = 𝛿(𝐴, 𝑆/𝑔) 
           (IV.13) 

Pour un point matériel et dans tout espace-temps galiléen (g) la relation (IV.13) devient : 

 𝑅⃗⃗ = 𝑚𝛾⃗(𝑀/𝑔)                                                           (IV.14) 

10 Travail et puissance d'une force qui s'exerce sur un point matériel 

Soit un point matériel M décrivant une courbe C dans un repère orthonormé 

 (𝑒) = (𝑂, e⃗⃗1, e⃗⃗2, e⃗⃗3 ) et une force F⃗⃗ appliquée en M. 

Par définition le travail élémentaire effectué par la force 𝐹⃗, lorsque son point d'application se 

déplace de 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ est égal au produit scalaire : 

𝑑𝑊 = 𝐹⃗ ∙ 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋 𝑑𝑥 + 𝑌 𝑑𝑦 + 𝑍 𝑑𝑧 

𝑑𝑊 = 𝐹⃗ ∙ 𝑉⃗⃗ 𝑑𝑡         (IV.15) 

Puisque la vitesse du point M dans le repère (e) est ∶ 𝑉
→

= (
𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

𝑑𝑡
) 
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                 z 
                                        C 

                        𝑀 |
𝑥
𝑦
𝑧

 

   

   𝑒⃗3   𝐹⃗ |
𝑋
𝑌
𝑍

 

     O      𝑒⃗2                 
             y 

      𝑒⃗1 
 
        x  

Figure IV.02 Travail d’une force 

 

 
 

La puissance développée par cette force est : 

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝐹⃗ ∙ 𝑉⃗⃗ 

Le travail et la puissance d'une force dépendent du 
repère dans lequel ils sont évalués. 

Pour aller d'un état initial "i" à un état final "f" la 

force F⃗⃗ peut se déplacer sur des courbes différentes. 
Le travail correspondant aura des valeurs 

différentes suivant le chemin emprunté. 
 

 

     z                                        
                                   * f  

 
 

 
 
 

            * i 
      O       y 

 
  x 
Figure IV.03 Chemins utilisés pour 

aller de i à f 

Si tel n'est pas le cas, on dira que la force F⃗⃗ dérive 
de la fonction de force Φ ou du potentiel V= - Φ. 
Nous aurons alors nécessairement : 

𝑋 =
𝜕𝛷

𝜕𝑥
;         𝑌 =

𝜕𝛷

𝜕𝑦
;         𝑧 =

𝜕𝛷

𝜕𝑧
;  

Soit : 

𝑑𝑊 =
𝜕𝐹

𝜕𝑥
𝑑𝑥 +

𝜕𝐹

𝜕𝑦
𝑑𝑦 +

𝜕𝐹

𝜕𝑧
𝑑𝑧 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐹 ∙ 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 

 

Le travail ainsi produit au cours d'un déplacement élémentaire sera une différentielle totale 
exacte. Dans ces conditions : 

𝑊 = ∫ 𝑑𝛷
𝑓

𝑖

= 𝛷𝑓 −𝛷𝑖 

Et ceci quel que soit le chemin parcouru. 

11 Travail et puissance d'une force qui s'exerce sur un solide 

Soit (R) un repère orthonormé 𝑂, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3 et un solide (S). Considérons un point M i de ce solide 

sur lequel est appliquée une force 𝐹⃗𝑖. 

Compte tenu de la relation (IV.15), le travail élémentaire de la force 𝐹⃗𝑖 pour un déplacement 

𝑑𝑂𝑀𝑖
→

 du point M i est : 

𝑑𝑊𝑖 = 𝐹⃗𝑖  ∙ 𝑑𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

Pour n forces appliquées à un solide : 
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𝑑𝑊 =∑𝐹⃗𝑖 ∙ 𝑑𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖=𝑛

𝑖=1

                                                  (IV.16) 

En un point P, quelconque, du solide la relation (III.07) permet d'écrire : 

𝑉⃗⃗(𝑀𝑖/𝑅) = 𝑉⃗⃗(𝑃/𝑅) + 𝑀𝑖𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝜔⃗⃗⃗ 

Pour un petit déplacement élémentaire : 

𝑑𝑂𝑀𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗⃗ = 𝑑𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑀𝑖𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝜔⃗⃗⃗ 𝑑𝑡 

En portant 𝑑𝑂𝑀𝑖⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗  ⃗dans la relation (IV.16) nous obtenons pour le solide : 

𝑑𝑊 =∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

𝑑𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ +∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

∙ (𝑀𝑖𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝜔⃗⃗⃗ 𝑑𝑡) 

Les propriétés du produit mixte permettent d'écrire : 

∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

∙ (𝑀𝑖𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝜔⃗⃗⃗ 𝑑𝑡) =∑ 𝜔⃗⃗⃗𝑑𝑡 ∙ (𝐹⃗𝑖 ∧ 𝑀𝑖𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

𝑖=𝑛

𝑖=1

 

Remarquons que le torseur des efforts extérieurs est : 

[𝛤𝑒𝑓𝑓𝑜𝑟𝑡𝑠 𝑒𝑥𝑡é𝑟𝑖𝑒𝑢𝑟𝑠 ]

{
 
 

 
 𝑅⃗⃗ = ∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

  

𝑀⃗⃗⃗𝑃 = ∑𝑃𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧ 𝐹⃗𝑖

𝑖=𝑛

𝑖=1

 

Le travail élémentaire peut donc s'écrire : 

𝑑𝑊 = 𝑅⃗⃗ ∙ 𝑑𝑂𝑃
→

+ 𝑀⃗⃗⃗𝑃 ∙ 𝜔⃗⃗⃗ 𝑑𝑡 

En divisant par dt on obtient l'expression de la puissance pour un corps solide. 

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝑅⃗⃗ ∙ 𝑉⃗⃗(𝑃/𝑅) + 𝑀⃗⃗⃗𝑃 ∙ 𝜔⃗⃗⃗ 

C’est-à-dire égal au produit scalaire du torseur cinématique par le torseur dynamique. 

12 Energie cinétique 

En désignant par G le centre de masse et par M un point d’un solide (S) de masse m, nous avons 
en utilisant la relation (III.07) : 

𝑉⃗⃗(𝑀/𝑅) = 𝑉⃗⃗(𝐺/𝑅) + 𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗ 

Par définition, l'énergie cinétique d'un solide (S) dans son mouvement par rapport à (R) est : 
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𝐸𝐶 =
1

2
∫ 𝑉⃗⃗2(𝑚/𝑅)
𝑀∈𝑆

 𝑑𝑚                                               (IV.17) 

Et par suite : 

𝑉⃗⃗2(𝑀/𝑅) = 𝑉⃗⃗2(𝐺/𝑅) + (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗) (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗) + 2𝑉⃗⃗(𝐺/𝑅) (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗) 

D'après les propriétés du produit mixte, le deuxième terme du second membre peut s'écrire : 

(𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗) ∙ (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗) = 𝜔⃗⃗⃗ ∙ (𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗)) 

Soit : 

2𝐸𝐶 = 𝑚𝑉
2(𝐺/𝑅) + 𝜔⃗⃗⃗∫ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗)𝑑𝑚

𝑀∈𝑆⏟                
𝜎⃗⃗⃗(𝐺/𝑅)=𝐽𝐺 𝜔⃗⃗⃗⃗

+ 2𝑉⃗⃗(𝐺/𝑅) (𝜔⃗⃗⃗ ∧ ∫ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗⃗
𝑀∈𝑆

𝑑𝑚
⏟        

0

) 

D’où la relation : 

2𝐸𝐶 = 𝑚𝑉
2(𝐺/𝑅) + 𝜔⃗⃗⃗𝐽𝐺 𝜔⃗⃗⃗                                            (IV.18) 

Remarque : 

Pour un solide tournant autour d'un axe, par exemple l'axe Oz, nous aurions : 𝜔⃗⃗⃗ = 𝜔 𝑒⃗3. Si de 

surcroit le centre de masse G est sur l'axe Oz nous aurons 𝑉(𝐺/𝑅) = 0. 

Dans ces conditions : 𝐸𝐶 =
1

2
𝐼𝑧𝑧 𝜔

2 

On désigne souvent par Io le moment d'inertie par rapport à un axe donc : 

𝐸𝐶 =
1

2
𝐼𝑜 𝜔

2                                                                 (IV.19) 

Parfois on appelle "r" le rayon de giration du solide autour de l'axe telle que : 𝐼𝑜 = 𝑚𝑟
2  

13 Théorème de Kœnigs 

Soit G le centre d'inertie d'un système matériel (S) de masse m et désignons par : 

          𝑒⃗3          𝐸⃗⃗3 
 

 

       𝐸⃗⃗2  

 
 

                      𝐸⃗⃗1 
           g            𝑒⃗2 
 

 𝑒⃗1 
Figure IV.04 Mouvement autour de G 

 
 

(g) = (g, e1⃗⃗ ⃗⃗ , e2⃗⃗ ⃗⃗ , e3⃗⃗ ⃗⃗ ) un repère d'espace. 

(R) = (G, E1⃗⃗⃗⃗⃗, E2⃗⃗⃗⃗ ⃗, E3⃗⃗⃗⃗ )⃗ le repère central en translation par 
rapport à (g). 
M un point quelconque de (S). 

Puisque R est en translation par rapport à g, la relation 
(III.12) devient : 

𝑉⃗⃗(𝑀/𝑔) = 𝑉⃗⃗(𝐺/𝑔) + (
𝑑𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑑𝑡
)
𝑅

= 𝑉⃗⃗(𝐺/𝑔) + 𝑉⃗⃗(𝑀/𝑅) 

 

En formant le carré scalaire des deux membres et en intégrant par rapport à la masse, on obtient  :  

(S) 

G 

M  
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2 𝐸𝐶 = 𝑚𝑉
2(𝐺/𝑔) +∫ 𝑉2(𝑀/𝑅)

𝑀∈𝑆

𝑑𝑚 + 2𝑉⃗⃗(𝐺/𝑔) ∫ 𝑉⃗⃗(𝑀/𝑅)
𝑀∈𝑆

𝑑𝑚
⏟          

0⃗⃗⃗

 

L'énergie cinétique d'un système matériel (S) est égale à la somme de l'énergie cinétique de son 
centre d'inertie G, affecté de la masse totale m de (S), et de l'énergie cinétique de (S) dans son 

mouvement autour de G. 

2 𝐸𝐶 = 𝑚𝑉
2(𝐺/𝑔) +∫ 𝑉2(𝑀/𝑅)

𝑀∈𝑆

𝑑𝑚                        (IV.20) 

14 Théorème de l'énergie cinétique pour un système de particules 

Le travail élémentaire d'une force qui s'exerce sur un point matériel est de la relation (IV.15) : 

𝑑𝑊 = 𝐹⃗ ∙ 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐹⃗ ∙ 𝑉⃗⃗ 𝑑𝑡  

Et pour un système de n particules de masse mi, cette relation devient : 

𝑑𝑊 =∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

∙ 𝑉⃗⃗𝑖𝑑𝑡                                                         (IV.21) 

𝐹⃗𝑖 est la force exercée sur la particule Pi par ses voisines et d'éventuelles actions extérieures. 

Pour l'ensemble du système de particules on distingue le travail provenant des forces extérieures  

avec celui consécutif à l'action des particules les unes sur les autres. 

Il est noté dWe et dWi et appelé respectivement travail des forces extérieures et travail des forces 

intérieures. 

Le travail des forces intérieures n'est pas nul puisque le déplacement élémentaire de chaque 
particule est, en principe, différent. Ce n'est pas le cas pour la résultante des forces intérieures  

qui s'annulent deux à deux. 

𝑑𝑊 = 𝑑𝑊𝑖 +𝑑𝑊𝑒  

Par ailleurs, en vertu de la relation (IV.14) et simplifiant les écritures nous avons : 

𝐹⃗𝑖 = 𝑚𝑖𝛾⃗𝑖 = 𝑚𝑖

𝑑𝑉⃗⃗𝑖
𝑑𝑡

 

Ce qui permet d'écrire : 

𝑑𝑊 = ∑𝑚𝑖

𝑖=𝑛

𝑖=1

𝑉⃗⃗𝑖 ∙ 𝑑𝑉⃗⃗𝑖 =∑𝑚𝑖

𝑖=𝑛

𝑖=1

𝑑𝑉𝑖
2

2
= 𝑑𝐸𝐶  

Au cours des déplacements élémentaires des particules pendant la durée dt, le travail de toutes 

les forces, intérieures et extérieures, est égal à la variation d'énergie cinétique du système. 
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𝑑𝐸𝐶 = 𝑑𝑊𝑖 + 𝑑𝑊𝑒                                                        (IV.22) 

Compte tenu des relations (IV.21) et (IV.22) nous pouvons encore écrire : 

𝑑𝐸𝐶 = ∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

∙ 𝑉⃗⃗𝑖𝑑𝑡 

Et entre deux instants t1 et t2 : 

𝐸𝐶 (𝑡2)− 𝐸𝐶 (𝑡1) = ∫ ∑𝐹⃗𝑖

𝑖=𝑛

𝑖=1

∙ 𝑉⃗⃗𝑖𝑑𝑡
𝑡2

𝑡1

 

Sous une forme plus abrégée : 

 𝛥𝐸𝐶  = 𝑊𝑖 + 𝑊𝑒                                                             (IV.23) 

La variation d'énergie cinétique d'un système de particules, entre les instants t1 et t2, est égal au 

travail de toutes les forces, intérieures et extérieures, appliquées au système pendant cette durée. 

Remarque : 
Rappelons qu'en mécanique, dite rationnelle, on considère le corps solide comme indéformable. 

Donc, dans un repère lié au solide, les déplacements de ses particules, sont nuls, il en est donc 
de même pour le travail des forces intérieures. 

𝛥𝐸𝐶 = 𝑊𝑒 

15 Energie cinétique dans le repère central 

Conservons les mêmes notations et ajoutons un indice astérisque * pour les grandeurs évaluées 
dans (R). Ainsi la relation (IV.20) s'écrira : 

𝐸𝐶 =
𝑚𝑉2(𝐺/𝑔)

2
+ 𝐸𝐶

∗ 

Le travail étant un produit scalaire, il est donc distributif par rapport à l'addition. Le travail des 

forces extérieures agissants sur le système peut donc se mettre sous la forme suivante : 

𝑊𝑒 = 𝑊𝐺 +𝑊𝑒
∗ 

Et de la relation (IV.23) :  

𝑊𝐺 +𝑊𝑒
∗⏟      

𝑊𝑒

+𝑊𝑖 = 𝑚
𝛥𝑉2(𝐺/𝑔)

2
+ 𝛥𝐸𝐶

∗

⏟            
𝛥𝐸𝐶

 

𝑂𝑟 𝑊𝐺 = 𝑚
𝛥𝑉2(𝐺/𝑔)

2
  et par conséquent la relation  ci-dessus devient 

𝑊𝑒
∗ + 𝑊𝑖 = 𝛥𝐸𝐶

∗                                                             (IV.24) 

Le travail des forces intérieures est indépendant du repère : 𝑊𝑖 =𝑊𝑖
∗ 
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Soit en définitive la même forme d'équation : 

𝑊∗ +𝑊𝑖
∗ =

𝑓
∆
𝑖
 𝐸𝐶
∗ 
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Chapitre V 

Contraintes 
 

Un solide se déforme lorsque des forces s'exercent sur lui. Dans un état de référence, désignons 

par 𝑙 la longueur d'une chaine de particules, prise au sein du solide. Sous l'action des efforts 

exercés, cette distance devient  𝑙 + 𝑑𝑙 mais la variation relative : 𝑑𝑙 𝑙 ⁄ reste petite devant l'unité. 

Ainsi on conçoit facilement que, pour transmettre des efforts d'un point à un autre, l'intérieur 
du solide doit être contraint. On désigne par solides réels de tels corps. 

On appelle milieu continu solide tout domaine de l'espace occupé par un solide réel dont ses 

propriétés physiques attachées à la distribution de matière (masse volumique, capacité 
thermique massique etc.) sont des fonctions continues et différentiables des coordonnées d'un 

point M appartenant au solide. 

Le but essentiel, de la théorie de l'élasticité, est de pouvoir déterminer les contraintes et les 
déformations en tous points d'un solide réel soumis à un chargement extérieur. 

Ce chapitre se limitera à l'étude de solides réels isotropes, homogènes et à température uniforme 
et constante (équilibre thermique). 

1 Définition d'une contrainte 

Considérons un solide réel S en équilibre sous l'action 
de forces extérieures. 

Nous supposerons que l'action des forces extérieures  
s'effectue très lentement afin de pouvoir appliquer le 

principe fondamental de la statique, relation (III. 05). 

[𝐴, 𝐹⃗𝑒𝑥𝑡 → 𝑆}] = [0] 

En chaque point du solide il existe des forces 
intérieures. 

 

            𝐹⃗2             𝐹⃗3  
 

      𝐹⃗1     𝐹⃗4  
 

 

      𝐹⃗5  
           Figure V.01 Solide S 
 

Coupons fictivement le solide en deux parties, absolument quelconques, G (gauche) et D 

(droite) et désignons par 𝛺 la surface de séparation des deux parties G et D. 

La partie gauche, par exemple, pourra être considérée comme étant en équilibre sous l'action 

des forces extérieures (𝐹⃗1  𝑒𝑡 𝐹⃗2) qui s'exercent sur elle, et sous l'action des forces intérieures 

appliquées par la partie droite D sur la partie gauche G. 

Les forces intérieures appliquées, par la partie D sur la partie G, s'exercent en chacun des points 

de la surface 𝛺. Cette action de D sur G est une action de proche en proche, c’est-à-dire que 

chaque petit élément de la partie D, placé sur la surface 𝛺, exerce une action de proche en 
proche sur l'élément de G situé exactement en regard. 

Ces deux parties fictives G et D doivent rester en équilibre. 
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       𝛺   𝐹 3        𝐹 3  

        𝐹 2         𝐹 2   

                                         𝐹 4             𝐹 4   

𝐹 1       𝐹 1  

 

 

                       𝐹 5            𝐹 5  

Figure V.02 Coupure fictive d’un solide soumis à des forces  

                𝐹 2   

 

 

 

 𝐹 1  

 

 
 

Figure V.03 Équilibre de la partie G 

 

La partie G sera en équilibre sous l'action 
des efforts extérieurs que l'on peut 
décomposer en deux catégories : 

- ceux qui s'exercent sur sa surface fictive 

  et qui caractérisent l'action de D sur G. 
- ceux qui agissent sur la surface réelle de 

G, et sur son volume comme son poids, par 

exemple. Ils seront désignés par 
GF   

 

 

       𝑑𝑀⃗⃗⃗  
         𝑑𝛺 
         M  

          𝑑𝐹⃗ 
 

        𝛺 
 

Figure V.04 Facette 
 

 
Écrivons l'équilibre de la partie G en un point quelconque A : 

  GA,F G A,D G 0              (V.01) 

En résistance des matériaux, c'est à dire la théorie des poutres, 
cette relation est fondamentale. A est, alors, le centre 

géométrique d'une section droite. 
 

Intéressons-nous au terme {𝐴,𝐷 → 𝐺}. 

Pour cela considérons, sur la surface fictive 𝛺, une aire élémentaire 𝑑𝛺 contenant le point M. 

L'action exercée par l'élément infiniment petit, de la partie D, placé immédiatement en regard 

de 𝑑𝛺 se manifeste en M par une résultante 𝑑𝐹⃗ et un moment 𝑑𝑀⃗⃗⃗. 

Le moment 𝑑𝑀⃗⃗⃗ est du second ordre et est négligé devant 𝑑𝐹⃗. 

La force élémentaire 𝑑𝐹⃗ sera supposée proportionnelle à l'aire géométrique 𝑑𝛺, soit :  

Ω

Tapez une équation ici. 

Partie 𝐺 
Partie D 

Ω 
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𝑑𝐹⃗ = 𝑐 dΩ 

𝑐 est le vecteur contrainte en M, relatif à l'élément de surface 𝑑𝛺 . 

Le petit élément de surface 𝑑Ω est appelé facette. Une facette est définie par sa normale 
extérieure unitaire 𝑛⃗⃗. 

Le vecteur "contrainte" est projeté dans la direction de n⃗⃗⃗  ⃗et dans le plan de la facette. 

Vectoriellement, nous pouvons écrire : 

𝑐 = (𝑐 ∙ 𝑛⃗⃗)𝑛⃗⃗⏟    
𝜎⃗⃗⃗

+ 𝑛⃗⃗ ∧ (𝑐 ∧ 𝑛⃗⃗)⏟      
𝜏⃗⃗

         (V.02) 

La composante normale suivant n⃗⃗ est désignée par 𝜎 et on pose 𝜎⃗ = 𝜎𝑛⃗⃗ 

 

𝑐(𝑀,  𝑛⃗⃗) 
 

  𝜏 
 

 

     𝑛⃗⃗ 𝜎 

      𝑑𝛺 
 𝑀 

 

Figure V.05 Projection suivant 𝑛⃗⃗⃗⃗  

 
Si dans un solide nous avons : 

0   la contrainte normale est une traction ou une tension. 

0   la contrainte normale est une compression 

𝜎 = 0 et c⃗ ≠ 0 il y a cisaillement pur, puisque 𝜏 ∙ 𝑛⃗⃗ = 0 

Dans le plan de la facette la composante tangentielle est τ . 

La grandeur scalaire 𝜏, attachée au vecteur 𝜏, s'appelle la contrainte tangentielle ou encore 
cission et parfois contrainte de cisaillement. 

Dans un repère orthonormé (𝑒) = (0,e⃗⃗1, 𝑒⃗2, 𝑒⃗3) associé à un système de coordonnées 

cartésiennes Mxyz, le vecteur 𝜏 est projeté sur deux axes rectangulaires appartenant à la facette 

𝑑𝛺. 

Pour décomposer le vecteur contrainte, dans ce système de coordonnées, on adopte les notations 
suivantes : 

- Le premier indice caractérise la direction de la normale extérieure. 
- Le deuxième indice indique sur quel axe a été projeté le vecteur contrainte correspondant. 

 

La figure V.06 représente une facette passant par M et définie par 𝑛⃗⃗ = 𝑒⃗1. Pour cette facette le 
vecteur contrainte s'écrirait : 

𝑐 = 𝑐(𝑀, 𝑒⃗1) = 𝜎𝑥𝑥 𝑒⃗1 + 𝜏𝑥𝑦𝑒⃗2 + 𝜏𝑥𝑧𝑒⃗3 

Pour décomposer le vecteur contrainte, dans ce système de coordonnées, on adopte les notations 

suivantes : 
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- Le premier indice caractérise la direction de la 

normale extérieure. 

- Le deuxième indice indique sur quel axe a été 

projeté le vecteur contrainte correspondant. 

La figure V.06 représente une facette passant par M 

et définie par 𝑛⃗⃗ = 𝑒⃗1. Pour cette facette le vecteur 
contrainte s'écrirait : 

𝑐 = 𝑐(𝑀, 𝑒⃗1) = 𝜎𝑥𝑥 𝑒⃗1 + 𝜏𝑥𝑦𝑒⃗2 + 𝜏𝑥𝑧𝑒⃗3 

Pour la facette définie par 𝑛⃗⃗ = 𝑒⃗2 nous aurions : 

𝑐 = 𝑐(𝑀, 𝑒⃗2) = 𝜏𝑦𝑥 𝑒⃗1 + 𝜎𝑦𝑦𝑒⃗2 + 𝜏𝑦𝑧𝑒⃗3 

Et pour la facette définie par𝑛⃗⃗ = 𝑒⃗3nous aurions : 

𝑐 = 𝑐(𝑀, 𝑒⃗3) = 𝜏𝑧𝑥 𝑒⃗1 + 𝜏𝑧𝑦 𝑒⃗2 +𝜎𝑧𝑧 𝑒⃗3 

 

                  x 

              𝜎𝑥𝑥  
 
 

                           𝑐 
 

                       𝑒⃗1 
 

               M         𝑒⃗2     𝜏𝑥𝑦          y 

 

        𝑒⃗3 
  𝜏𝑥𝑧              𝜏 
z 

Figure V.06 Convention d'indices 

En un point M, il y a une infinité de facettes. Le vecteur contrainte varie en grandeur et direction 

lorsque 𝑛⃗⃗ tourne autour de M. 

Dans un souci de précision, on notera désormais pour le vecteur contrainte : 

𝑐(𝑀, 𝑛⃗⃗) 

Ce qui signifie que le vecteur contrainte agit en M sur une facette définie par 𝑛⃗⃗. 

On nomme faisceau de contraintes en un point d'un corps, l'ensemble des contraintes relatives 
à toutes les facettes passant par ce point. 

On appelle champ de contraintes dans un volume, l'ensemble des faisceaux de contraintes relatif 

à chaque point. 

2 Faisceau des contraintes 

Considérons l'élément de volume tétraédrique infiniment petit ABCD. Supposons connues les 

contraintes agissant sur les trois facettes définies par −𝑒⃗1,−𝑒⃗2 et − 𝑒⃗3. 

Nous nous proposons de déterminer les composantes du vecteur contrainte 𝑐(𝑀, 𝑛⃗⃗) en fonction 
des grandeurs connues. 

Soit 𝑛⃗⃗ le vecteur unitaire normal à la surface BCD et de composante 𝛼, 𝛽, 𝛾 dans le repère 
A,x,y,z. 
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   z 
  𝑐⃗⃗(𝑀2,−𝑒⃗⃗⃗2)  𝑐(𝑀1,−𝑒⃗⃗⃗1) 
 
 
             D 
 
 
     𝑐(𝑀, 𝑛⃗⃗⃗) 
           𝑒⃗ 3  

            M1 
 
    M 
        M2           C   y 
  𝑒⃗1  A      𝑒⃗⃗⃗2 
                 M3 
 
 
 
 B   
                                               𝑐(𝑀3,−𝑒⃗⃗⃗3) 
 
      x 

     Figure V.07 Faisceau des contraintes  

 

Désignons par : 

𝑐(𝑀1,−𝑒⃗1) le vecteur agissant en M 1 sur la 
surface ADC notée dSx. 

𝑐(𝑀2,−𝑒⃗2) le vecteur agissant en M 2 sur la 
surface ABD notée dSy. 

𝑐(𝑀3,−𝑒⃗3) le vecteur agissant en M 3 sur la 
surface ABC notée dSz. 

𝑐(𝑀, 𝑛⃗⃗) le vecteur agissant en M sur la 
surface BCD notée dS. 
 

En vertu de la loi de l'action et de la réaction nous avons : 

𝑐(𝑀1,−𝑒⃗1) = −𝑐(𝑀1, 𝑒⃗1) 

𝑐(𝑀2, −𝑒⃗2) = −𝑐(𝑀2, 𝑒⃗2) 

𝑐(𝑀3, −𝑒⃗3) = −𝑐(𝑀3, 𝑒⃗3) 

Appelons 𝜔⃗⃗⃗ dV les forces de volume agissant sur le tétraèdre ABCD. 

Pour ce petit élément de volume, appliquons le principe fondamental de la statique : 

−𝑐(𝑀1,−𝑒⃗1)𝑑𝑆𝑥 − 𝑐(𝑀2, 𝑒⃗2)𝑑𝑆𝑦 − 𝑐(𝑀3,−𝑒⃗3)𝑑𝑆𝑧 + 𝑐(𝑀, 𝑛⃗⃗) + 𝜔⃗⃗⃗𝑑𝑉 = 0⃗⃗ 

Du cours de géométrie analytique nous savons que : 

𝑑𝑆𝑥 = 𝛼𝑑𝑆 

𝑑𝑆𝑦 = 𝛽𝑑𝑆  

𝑑𝑆𝑧 = 𝛾𝑑𝑆   

Rappel : 

Soient les points M et M0 appartenant au plan BCD et posons : 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑥𝑒⃗1 +𝑦𝑒⃗2 + 𝑧𝑒⃗3 

𝑂𝑀𝑜⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ = 𝑥0𝑒⃗1 + 𝑦0𝑒⃗2 + 𝑧0𝑒⃗3 

L'équation du plan est : 𝑀𝑀0⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗ ∙ 𝑛⃗⃗ = 0 soit  (𝑥 − 𝑥0)𝛼 + (𝑦 − 𝑦0)𝛽 + (𝑧 − 𝑧0)𝛾 = 0 

Soit encore : 

𝑥𝛼 + 𝑦𝛽 + 𝑧𝛾 = 𝑐 (constante) d'où z = 
𝑐 − 𝑥𝛼 − 𝑦𝛽

𝛾
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           z 
        D     𝑛⃗⃗(𝛼, 𝛽, 𝛾)  
 
 
 
                                              dS 
         𝑒⃗3      M 
       M0 
             𝑒⃗2         C  y 
        A 
 
  𝑒⃗1        dx dy 
 
 
   B 
         x 
 

 

𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑥𝑒⃗1 +𝑦𝑒⃗2 +
𝑐 − 𝑥𝛼 − 𝑦𝛽

𝛾
𝑒⃗3 =  

= 𝐸⃗⃗(𝑥, 𝑦) 

𝑑𝑆 = [𝐸⃗⃗𝑥
′ ∧ 𝐸⃗⃗𝑦

′ ] 𝑑𝑥 𝑑𝑦 

avec    𝐸⃗⃗𝑥
′ = 𝑒⃗1−

𝛼

𝛾
𝑒⃗3     𝐸⃗⃗𝑦

′ = 𝑒⃗2 −
𝛽

𝛾
𝑒⃗3 

𝐸⃗⃗𝑥
′ ∧ 𝐸⃗⃗𝑦

′ =
𝛼

𝛾
𝑒⃗1 +

𝛽

𝛾
𝑒⃗2 + 𝑒⃗3 

(𝐸⃗⃗𝑥
′ ∧ 𝐸⃗⃗𝑦

′ )
2
=
𝛼2+ 𝛽2+𝛾2

𝛾2
=
1

𝛾2
 

 
 

Et par suite :𝑑𝑆 =
𝑑𝑥𝑑𝑦

𝛾
 ce qui nous autorise à écrire : 

𝑑𝑥 𝑑𝑦 = 𝑑𝑆𝑧= 𝛾 𝑑𝑆 

Si bien que la résultante des forces appliquées s'écrit en divisant par dS : 

−𝑐(𝑀1, 𝑒1)𝛼 − 𝑐(𝑀2, 𝑒2)𝛽 − 𝑐(𝑀3, 𝑒3)𝛾+ 𝑐(𝑀, 𝑛⃗⃗) + 𝜔⃗⃗⃗
𝑑𝑉

𝑑𝑆
= 0⃗⃗             (V.03) 

Faisons tendre B, D et C vers A tout en déplaçant le plan BCD parallèlement à lui-même. 

Dans ces conditions le terme 
𝑑𝑉

𝑑𝑆
→ 0 et les points M, M 1, M 2 et M 3 sont confondus. 

La relation (V.03) devient : 

𝑐(𝑀, 𝑛⃗⃗) = 𝑐(𝑀1, 𝑒⃗1)𝛼 + 𝑐(𝑀2, 𝑒⃗2)𝛽 + 𝑐(𝑀3, 𝑒⃗3)𝛾 

En posant 𝑐(𝑀, 𝑛⃗⃗) = 𝑋𝑒⃗1 +𝑌𝑒⃗2 + 𝑍𝑒⃗3il vient : 

𝑋 = 𝜎𝑥𝛼 + 𝜏𝑦𝑥𝛽 + 𝜏𝑧𝑥𝛾 
𝑌 = 𝜏𝑥𝑦𝛼+ 𝜎𝑦𝛽+ 𝜏𝑧𝑦𝛾 

𝑍 = 𝜏𝑥𝑧𝛼+ 𝜏𝑦𝑧𝛽+ 𝜎𝑧𝛾 

Ce sont les formules de CAUCHY, elles définissent les trois composantes X, Y, et Z du vecteur 

contrainte 𝑐(𝑀, 𝑛⃗⃗) connaissant la direction 𝑛⃗⃗(𝛼, 𝛽, 𝛾) . 

Sous forme matricielle cette relation d'équilibre s'écrit : 

[
𝑋
𝑌
𝑍
] = [

𝜎𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [

𝛼
𝛽
𝛾
]          (V.04) 

Soit encore sous forme abrégée : 

[𝑐(𝑀, 𝑛⃗⃗)] = [𝐿] [𝑛⃗⃗] 
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Il est tout à fait évident que le vecteur contrainte 𝑐(𝑀, 𝑛⃗⃗) ne dépend pas de l'orientation des 
axes x, y, z. Si l'on change l'orientation des axes, l'état de contrainte en un point reste invariable, 

il sera, évidemment, déterminé par d'autres valeurs de 𝜎𝑥 , 𝜏𝑦𝑥 , 𝜏𝑧𝑥 , etc ... et donc par une autre 

matrice[𝐿]. 

L'état de contrainte en un point varie seulement lorsque la charge extérieure s'exerçant sur le 
corps considéré est modifiée. 

Nous pouvons donc dire qu'en tout point M, nous associons un vecteur contrainte 𝑐(𝑀, 𝑛⃗⃗)  à une 
direction donnée 𝑛⃗⃗, et ceci quel que soit le repère dans lequel nous travaillons. 

𝑐(𝑀, 𝑛⃗⃗) = 𝐿(𝑛⃗⃗) 

"L" est un opérateur linéaire et les mathématiciens disent que l'être " L" a une structure 
tensorielle. 

3 Équations d'équilibre 

 

 

 

 

     dV 

  M 

          z             P   dS 

  V 

           S 

       𝑒⃗3 
             𝑒⃗2  𝑛⃗⃗     y 

        o 

 𝑒⃗1 
 x 

 

Figure V.08 Volume V 

 

A priori l'état de contrainte en un point est 
défini par les neuf grandeurs suivantes : 

zzyzxyzyyxxzxyx σ,τ,τ,τ,σ,τ,τ,τ,σ . 

En écrivant les équations de l'équilibre on 
montre qu'il suffit de six grandeurs pour 

caractériser l'état de contrainte en un point. 
Considérons un volume V contenu dans le 

volume du solide réel étudié. Ce volume V est 
délimité par une surface S pouvant être en 
partie fictive et en partie réelle, ou tout aussi 

bien purement fictive. 
 

Désignons par : 

- M un point quelconque à l'intérieur de V et dV le volume élémentaire contenant M. 

- P un point quelconque situé sur la face S et dS la surface élémentaire contenant P. 

- 𝑛⃗⃗ le vecteur unitaire normal et extérieur à l'élément de surface dS. 
- 𝜌 la masse volumique du solide. 

- 𝑋⃗⃗⃗⃗  la force par unité de masse et de composante 𝑋𝑥 ,𝑋𝑦,𝑋𝑧dans le repère 0,x, y, z. 

Les forces extérieures agissant sur le volume V sont de deux natures ; les forces de volume et 
les forces de surface. Pour le volume élémentaire nous aurons : 

𝑑𝐹
→ 

𝑉 = 𝜌𝑋⃗𝑑𝑉 

Les forces de surface, agissant en tous points de la surface S sont caractérisées par le vecteur 

contrainte 𝑐(𝑃, 𝑛⃗⃗). La force élémentaire agissant sur le petit élément de surface dS sera : 

𝑑𝐹
→ 

𝑆 = 𝑐(𝑃, 𝑛⃗⃗)𝑑𝑆 



Chapitre V Contraintes Mécanique des milieux continus 

 

29 
 

3-1 Résultante 

Écrivons que la somme de toutes les forces extérieures, agissant sur le volume V, doivent être 

nulles : 

∬ 𝜌𝑋⃗𝑑𝑉
𝑉

+ ∬ 𝑐(𝑃, 𝑛⃗⃗)
𝑆

𝑑𝑆 = 0⃗⃗          (V.05) 

Projetons cette relation sur l'axe des x : 

∬𝜌𝑋𝑥𝑑𝑉
𝑉

+∬(𝜎𝑥𝛼 + 𝜏𝑦𝑥𝛽 + 𝜏𝑧𝑥𝛾)
𝑆

𝑑𝑆 = 0 

Introduisons un champ vectoriel auxiliaire 𝑊⃗⃗⃗⃗, dans le repère 0, x, y; z tel que : 

𝑊⃗⃗⃗⃗ = 𝜎𝑥 𝑒⃗1 + 𝜏𝑦𝑥 𝑒⃗2 + 𝜏𝑧𝑥 𝑒⃗3 

Moyennant quoi : 

∬(𝜎𝑥𝛼 + 𝜏𝑦𝑥𝛽 + 𝜏𝑧𝑥𝛾)
𝑆

𝑑𝑆 =∬𝑊⃗⃗⃗⃗ ∙ 𝑛⃗⃗
𝑆

𝑑𝑆 

L'intégrale représente le flux du vecteur 𝑊⃗⃗⃗⃗sortant à travers la surface S. La formule 
d'Ostrogradsky, relation (II.05) permet d'écrire : 

∬𝑊⃗⃗⃗⃗ ∙ 𝑛⃗⃗
𝑆

𝑑𝑆 = ∬𝑑𝑖𝑣𝑊⃗⃗⃗⃗
𝑉

𝑑𝑉 =∬ (
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧
)

𝑉

𝑑𝑉 

La projection de la résultante sur l'axe des x devient donc : 

∬ (𝜌𝑋𝑥 +
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

)
𝑉

𝑑𝑉 = 0 

Cette relation doit être vérifiée quel que soit le volume pris à l'intérieur du solide réel. Ce qui 
signifie que la fonction figurant sous le signe intégral doit être nulle en tous les points du solide. 

En projetant également la relation (V.05) sur les axes y et z, nous obtenons les trois relations 
ci-dessous : 

𝜌𝑋𝑥 +
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

= 0 

𝜌𝑋𝑦 +
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

= 0 

𝜌𝑋𝑧 +
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧
𝜕𝑧

= 0 

         (V.06) 

Ces relations sont appelées équations différentielles de l'équilibre 
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3-2 Moment  

D'une façon analogue à la résultante, écrivons que la somme des moments des forces 
extérieures, agissant sur le volume V, doit être nulle : 

∬0𝑀
→  

∧ 𝜌𝑋⃗𝑑𝑉
𝑉

+∬0𝑀
→  

∧ 𝑐(𝑃, 𝑛⃗⃗)
𝑆

𝑑𝑆 = 0⃗⃗ 

Comme précédemment pour la résultante, en projetant sur l'axe des x on obtient tous calculs 
effectués : 

∬ ((𝜌𝑋𝑧 +
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧
𝜕𝑧
) 𝑦 − (𝜌𝑋𝑦 +

𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

= 0) 𝑧 + 𝜏𝑦𝑧 − 𝜏𝑧𝑦)
𝑉

 𝑑𝑉 = 0 

Cette relation doit être vérifiée quel que soit le volume pris à l'intérieur du solide réel. Ce qui 

signifie que la fonction figurant sous le signe intégral doit être nulle en tous les points du solide. 

En vertu des relations (V.06) il ne subsiste que : 

𝜏𝑦𝑧 − 𝜏𝑧𝑦 = 0  ⇒  𝜏𝑦𝑧 = 𝜏𝑧𝑦  

De même en projetant sur l'axe des y et z nous obtenons : 

𝜏𝑦𝑧 = 𝜏𝑧𝑦  

𝜏𝑥𝑦 = 𝜏𝑦𝑥  

Ceci constitue la loi de réciprocité des contraintes tangentielles. 

4 Tenseur des contraintes 

Compte tenu de la réciprocité des contraintes tangentielles, l'état de contrainte en un point est 
déterminé par six grandeurs scalaires : 

[𝐿] = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

]                                                   (𝑉. 07) 

Nous connaissons la notion de vecteur déterminé par trois nombres en tant que grandeur. L'état 

de contrainte se détermine par six nombres et constitue ce qu'on appelle un tenseur. 

L'interprétation physique du tenseur des contraintes est facile en considérant les trois facettes 

définies par : 𝑒⃗1, 𝑒⃗2 et 𝑒⃗3 . 
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z 

y 

x 

τxy 

τxz 

τyz 

σy 

σx 

σz 

 

Pour le vecteur contrainte défini par 𝑒⃗1 : 

𝑐(𝑀, 𝑒⃗1) = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
1
0
0
] = [

𝜎𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧
] 

De même : 

𝑐(𝑀, 𝑒⃗2) = 𝜏𝑥𝑦𝑒⃗1 + 𝜎𝑦𝑒⃗2 + 𝜏𝑦𝑧𝑒⃗3 

𝑐(𝑀, 𝑒⃗3) = 𝜏𝑥𝑧𝑒⃗1 + 𝜏𝑦𝑧 𝑒⃗2 + 𝜎𝑧𝑒⃗3 

 

 

 
 

 
 
  

 
                                M 

 
 
 

 

Figure V.09 Interprétation du tenseur des 

contraintes 
 

Exercice  

Conformément à la figure ci-dessous, une plaque d'épaisseur e, de longueur l et de hauteur h 

est encastrée à l'une de ses extrémités AB. A son autre extrémité A'B', elle est soumise à un 
chargement qui provoque une contrainte tangentielle constante, sur toute sa surface (S1). 

𝐾⃗⃗⃗ = −𝐾𝑒⃗2 
Elle supporte également sur sa partie supérieure AA' un chargement vertical qui se manifeste 
par une pression p, linéairement décroissante de p0 à 0, sur toute la longueur de sa surface 

(S2). Soit pour un petit élément de surface dS2 : 

𝑑𝐹
→

= −𝑝𝑑𝑆2𝑒⃗2  𝑎𝑣𝑒𝑐  𝑝 =
𝑝0
𝐿
(𝐿 − 𝑥) 

On négligera l'action de la pesanteur sur la plaque, et on précise que les surfaces (S3), (S4) et 
(S5) ne sont pas chargées. 

 
    y           y 
       p    (S2) 

 
 

             A              A' 
                                            K         h/2 

                             𝑒⃗2                                         𝑒⃗2 
      z   𝑒⃗3        o           o        𝑒⃗1        
 x 
             (S4)            (S3) 

     (S6)         (S1) 
       (S5)            h/2 

     
 

                
𝑒

2
                             

              
𝑒

2
     L 

 
 

1. Écrire les conditions aux limites, en contraintes, pour la surface (S1). 

2. Même question pour (S2). 

B B' 
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3. Même question pour (S3). 

4. Déterminer le torseur en o des forces de liaisons dûes à l'encastrement de la face AB. 

Corrigé 

1. 𝑃𝑜𝑢𝑟𝑀 ∈ (𝑆1) 𝑛𝑜𝑢𝑠 𝑎𝑣𝑜𝑛𝑠 ∶   𝑥 = 𝐿  𝑒𝑡  𝑐(𝑀, 𝑒⃗1) = −𝐾𝑒⃗2  

𝑐(𝑀, 𝑒⃗1) = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
1
0
0
]  ⇒

  𝜎𝑥 = 0
 𝜏𝑥𝑦 = −𝐾

𝜏𝑥𝑧 = 0
 

2. 𝑃𝑜𝑢𝑟𝑀 ∈ (𝑆2) 𝑛𝑜𝑢𝑠 𝑎𝑣𝑜𝑛𝑠 ∶   𝑦 =
ℎ

2
  𝑒𝑡  𝑐(𝑀, 𝑒⃗2) = −

𝑝0

𝐿
(𝐿 − 𝑥)𝑒⃗2 

𝑐(𝑀, 𝑒⃗2) = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
0
1
0

]  ⇒

𝜏𝑥𝑦 = 0

                      𝜎𝑦 = −
𝑝0
𝐿
(𝐿 − 𝑥) 

𝜏𝑦𝑧 = 0

 

3. 𝑃𝑜𝑢𝑟𝑀 ∈ (𝑆3) 𝑛𝑜𝑢𝑠 𝑎𝑣𝑜𝑛𝑠 ∶   𝑧 =
𝑒

2
  𝑒𝑡  𝑐(𝑀,−𝑒⃗3) = 0⃗⃗ 

𝑐(𝑀,−𝑒⃗3) = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
   0
   0
−1

] = 0⃗⃗  ⇒

𝜏𝑥𝑧 = 0
 𝜏𝑦𝑧 = 0 

  𝜎𝑧 = 0
 

4. Il faut écrire l'équilibre de la plaque. 

4 -1 Pour la résultante 𝑅⃗⃗ : 

0⃗⃗ = ∬ 𝑐(𝑀, 𝑒⃗1)𝑆1
𝑑𝑠1 +∬ 𝑐(𝑀, 𝑒⃗2)𝑆2

𝑑𝑠2 +∬ 𝑐(𝑀,−𝑒⃗1)𝑆6
𝑑𝑠6  

Avec: 

∬ 𝑐(𝑀, 𝑒⃗1)
𝑆1

𝑑𝑠1 = ∫ ∫ −𝐾𝑒⃗2

ℎ

2

−
ℎ

2

𝑒
2

−
𝑒
2

𝑑𝑦𝑑𝑧 = −𝐾𝑒ℎ𝑒⃗2 

∬ 𝑐(𝑀, 𝑒⃗2)
𝑆2

𝑑𝑠2 = ∫ ∫ −
𝑝𝑜
𝐿
(𝐿 − 𝑥)𝑒⃗2

𝐿

0

𝑒
2

−
𝑒
2

𝑑𝑥𝑑𝑧 = −
𝑝𝑜𝑒𝐿

2
𝑒⃗2 

D’où l'expression de la résultante 𝑅⃗⃗:  

𝑅⃗⃗ = ∬ 𝑐(𝑀,−𝑒⃗1)
𝑆6

𝑑𝑠6 = (𝐾𝑒ℎ +
𝑝𝑜𝑒𝐿

2
) 𝑒⃗2 

4 -2 Pour le moment 𝑀⃗⃗⃗𝑜 : 

0⃗⃗ = ∬ 𝑂𝑀1
→

∧ 𝑐(𝑀1, 𝑒⃗1) 𝑑𝑠1

 

𝑀1∈𝑆1

+ ∬ 𝑂𝑀2
→

∧ 𝑐(𝑀2, 𝑒⃗2) 𝑑𝑠2

 

𝑀2∈𝑆2

+ ∬ 𝑂𝑀6
→

∧ 𝑐(𝑀6,−𝑒⃗1) 𝑑𝑠6

 

𝑀6∈𝑆6

 

Avec : 𝑂𝑀1
→

∧ 𝑐(𝑀1, 𝑒⃗1) = |
𝐿
𝑦
𝑧

∧ |
0
−𝐾
0

= |
𝑧𝐾
0
−𝐿𝐾
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Il vient : 

∬ 𝑂𝑀1
→

∧ 𝑐(𝑀1, 𝑒⃗1) 𝑑𝑠1

 

𝑀1∈𝑆1

= ∫ ∫ (𝑧𝐾𝑒⃗1 − 𝐿𝐾𝑒⃗3)

ℎ

2

−
ℎ

2

𝑒
2

−
𝑒
2

𝑑𝑦𝑑𝑧 = −𝐾𝐿𝑒ℎ𝑒⃗3 

De même : 𝑂𝑀2
→

∧ 𝑐(𝑀2, 𝑒⃗2) = |

𝑥
ℎ

2
𝑧

∧ |

0

−
𝑝0

𝐿
(𝐿 − 𝑥)

0

= |

𝑝0

𝐿
(𝐿 − 𝑥)𝑧

0
−
𝑝0

𝐿
(𝐿 − 𝑥)𝑥

 

Il s'ensuit : 

∬ 𝑂𝑀2
→

∧ 𝑐(𝑀2, 𝑒⃗2) 𝑑𝑠2

 

𝑀2∈𝑆2

= ∫ ∫ 𝑧
𝑝0
𝐿
(𝐿 − 𝑥)

𝐿

0

𝑒
2

−
𝑒
2

𝑒⃗1𝑑𝑥𝑑𝑧 −∫ ∫
𝑝0
𝐿
(𝐿𝑥 − 𝑥2)𝑒⃗3

𝐿

0

𝑒
2

−
𝑒
2

𝑑𝑥𝑑𝑧 

∬ 𝑂𝑀2
→

∧ 𝑐(𝑀2, 𝑒⃗2) 𝑑𝑠2

 

𝑀2∈𝑆2

=
𝑝0𝐿

2𝑒

6
𝑒⃗3 

Et en définitive : 

𝑀⃗⃗⃗𝑜 = ∬ 𝑂𝑀6
→

∧ 𝑐(𝑀6,−𝑒⃗1) 𝑑𝑠6

 

𝑀6∈𝑆6

= 𝐿𝑒(𝐾ℎ +
𝑝𝐿

6
) 𝑒⃗3 
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Chapitre VI 

Tenseur des contraintes 
 

1 Contraintes principales et directions principales 

Le tenseur [𝐿] étant symétrique, il existe en chaque point M du solide un repère orthonormé 

MXYZ dans lequel la matrice |𝐿| est diagonale. 
Les valeurs propres de |𝐿| se nomment contraintes principales en M et sont notées :𝜎1 ,𝜎2 , 𝜎3. 
Elles s'obtiennent en résolvant l'équation : 

|

𝜎𝑥 −𝜎 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦 −𝜎 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 −𝜎

| = 0      (VI.01) 

Les directions propres MX, MY, MZ sont appelées directions principales, et les trois  facettes 
formées par ces trois directions sont les facettes principales. Par exemple. Pour la direction 

principale MX définie, dans le repère MXYZ, par le vecteur unité : 𝑛⃗⃗ = 𝛼1𝑒⃗1 + 𝛽1𝑒⃗2 + 𝛾1 𝑒⃗3  
Nous avons donc : 

[

𝜎𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [

𝛼1
𝛽1
𝛾1

] = 𝜎1 [

𝛼1
𝛽1
𝛾1

] 

Dans le repère principal MXYZ, le tenseur des contraintes s'écrit : 

[𝐿 ] = [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] 

En particulier, dans ce repère, le vecteur contrainte 𝑐(𝑀, 𝐸⃗⃗1) a pour expression : 

𝑐(𝑀, 𝐸⃗⃗1) = [
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] [
1
0
0

] = [
𝜎1
0
0
]  = 𝜎1𝐸⃗⃗1   

le vecteur 𝐸⃗⃗1 est porté par l'axe MX. 
Les vecteurs contraintes agissant sur les facettes principales sont perpendiculaires à ces facettes, 
et n'ont pas de contraintes tangentielles. 
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       Z 

          𝜎3 
 
 
 

 

         M   𝜎2  Y 
 
 

 
 

     𝜎1  
         X 

Figure VI.01 Contraintes principales 

 

2 Ellipsoïde des contraintes 

Le vecteur contrainte, en un point M dans une direction 𝑛⃗⃗(𝛼, 𝛽, 𝛾), s'écrit dans le repère 
principal : 

 
   Z  

                    𝜎3  
   Z1     E      

                    𝑐(𝑀, 𝑛⃗⃗) 
                     
 

         𝑛⃗⃗(𝛼, 𝛽, 𝛾)  
                       M          Y1        𝜎2  Y 
  

              𝜎1    X1 
  X 

Figure VI.02 Ellipsoïde des contraintes 

 

 

𝑐(𝑀, 𝑛⃗⃗) = [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] [

𝛼
𝛽
𝛾
] 

Désignons par X1, Y1, Z1 les composantes du vecteur contrainte, soit : 

𝑋1 = 𝜎1𝛼   𝑌1 = 𝜎2𝛽   𝑍1 = 𝜎3𝛾 

Et comme 𝛼2 + 𝛽2 + 𝛾2 = 1, il s'ensuit que : 

𝑋1
2

𝜎1
2
+
𝑌1
2

𝜎2
2
+
𝑍1
2

𝜎3
2
= 1                                                    (VI. 02) 

Le lieu de l'extrémité "E" du vecteur contrainte 𝑐(𝑀, 𝑛⃗⃗) décrit un ellipsoïde lorsque 𝑛⃗⃗ varie. 
C'est l'ellipsoïde de Lamé. 
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Exercice VI.1 

Dans un repère orthonormé 𝑒 = (𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3) la matrice du tenseur des contraintes en un point 
M d'un solide, a pour expression : 

𝐿 = [
40 −30√3 0

−30√3 −20 0
0 0 30

]Valeurs en N/mm2. 

           Z             30 
   

 
 

 

          𝑒⃗3                −30√3 
        y              

      𝑒⃗1          𝑒⃗2            −30√3       -20 
 

                  40 
   x         

  

4. Calculer dans ce repère les composants du vecteur contrainte défini par sa normale 
extérieure : 

𝑛⃗⃗ = −
√3

4
𝑒⃗1+

3

4
𝑒⃗2 +

1

2
𝑒⃗3 

2. Calculer les contraintes principales. 

3. Déterminer les directions principales. 
4. Indiquer l’équation de l’ellipsoïde des contraintes. 
 

Corrigé 

4. Le vecteur contrainte s’écrit : 

𝑐(𝑀, 𝑛⃗⃗) = [
40 −30√3 0

−30√3 −20 0
0 0 30

] [
−√3/4

3/4
1/2

] 

𝑐(𝑀, 𝑛⃗⃗) =
|

|
−40

√3

4
− 90

√3

4
−90

4
−
60

4
15
 

 =
|

|

−32,5√3
 
7,5
 
15
 

 

2. Pour calculer les contraintes principales nous devons satisfaire la relation suivante : 

[𝐿𝑐][𝑛⃗⃗𝑖] = 𝜎𝑖[𝑛⃗⃗𝑖] 
Donc : 
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  [𝐿𝑐][𝑛⃗⃗𝑖] − 𝜎𝑖[𝑛⃗⃗𝑖] = [0] 
 

|
40 − 𝜎 −30√3 0

−30√3 −20− 𝜎 0
0 0 30 − 𝜎

| = 0 

 
(30 − 𝜎)(𝜎2 −20𝜎 − 3500) = 0 

 

Les racines de cette équation sont les contraintes principales soit : 

𝜎1 = 70   𝜎2 = −50   𝜎3 = 30 

Remarquons que sans faire de calcul on s’aperçoit que l’axe z est une direction principale à 

laquelle on peut associer la contrainte principale : 

𝜎𝑧 = 𝜎3 = 30 

3. Cherchons la direction de X : 

[𝐿𝑐][𝑛⃗⃗1] = 𝜎1[𝑛⃗⃗1] 𝑎𝑣𝑒𝑐 𝜎1 = 70 𝑒𝑡 𝑛⃗⃗1 = 𝛼1𝑒⃗1 +𝛽1𝑒⃗2 +𝛾1 𝑒⃗3 

Soit : 

[
40 −30√3 0

−30√3 −20 0
0 0 30

] [

𝛼1
 

𝛽1
 

𝛾1
 
] =

 40𝛼1− 30√3𝛽1  = 70𝛼1

−30√3𝛼1− 20𝛽1 = 70𝛽1
      30𝛾1  = 70𝛾1

 

En résolvant ce système d'équation, on obtient : 

𝑛⃗⃗1 = ||

𝛼1 =
√3

2
= 𝑐𝑜𝑠(−30)

𝛽1 = −
1

2
= 𝑠𝑖𝑛(−30)

𝛾1 = 0      }
 

 

𝜃 = −300  

De même pour la direction de Y on a : 

[𝐿𝑐][𝑛⃗⃗2] = 𝜎2[𝑛⃗⃗2] 𝑎𝑣𝑒𝑐 𝜎2 = 50 𝑒𝑡 𝑛⃗⃗2 = 𝛼2𝑒⃗1 + 𝛽2𝑒⃗2 +𝛾2 𝑒⃗3 

D’où : 

40𝛼2 − 30√3𝛽2 = 50𝛼2

−30√3𝛼2 −20𝛽2 = 50𝛽2
     30𝛾2 = 50𝛾2

  et on déduit :       n⃗⃗2 |

𝛼2 = 𝑐𝑜𝑠60
𝛽2 = 𝑠𝑖𝑛60

𝛾2 = 0  
} 𝜃2 = 60

0 
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30√3 

30√3 

40 

20 

 

                      Y 
        y                        50 

              
 
 

                                             
              60° 

                                                    x 
                       -30° 
                                                      70 

                                        x 
 

 

 
 

Remarquons qu'il était inutile de calculer le 

vecteur propre correspondant à 2σ  puisque 

les directions principales sont orthogonales. 

 
 

 

4. Equation de l'ellipsoïde de Lamé : 

𝑋2

702
+
𝑌2

502
+
𝑍2

302
= 1 

3 Définition d’un état de contrainte 

3-1 Etat de contrainte triple 

Si les trois contraintes principales sont différentes de zéro, on dit que l’état de contrainte est 
triple. La contrainte sur n’importe quelle facette d’un point M est alors différente de zéro. 

3-2 État de contrainte double 

On dit que l’état de contrainte est double en un point lorsque que l’une des contraintes 
principales est nulle en ce point. L’ellipsoïde des contraintes dégénère alors en la surface d’une 

ellipse, tous les vecteurs contraintes ont alors leur origine et leur extrémité dans un même plan 
appelé plan de contrainte double ou, plus simplement, plan de contrainte. 

Lorsque sur trois facettes quelconques formant trièdre, les contraintes sont parallèles à un même 

plan (P), l’état de contrainte est double et admet ce plan comme plan (P) de contrainte. 

3-3 Etat de contrainte simple 

On dit qu'en un point l'état de contrainte est simple lorsque que deux des contraintes principales 
sont nulles en ce point. L'ellipsoïde des contraintes dégénère alors en un segment de droite. 
Toutes les contraintes sont alors parallèles à une même droite dite "direction des contraintes". 
Exemple : une poutre droite soumise à de la traction. 
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4 Invariants scalaires du tenseur des contraintes 

En développant les calculs de le relation (VI.01), c’est-à-dire : 

|

𝜎𝑥 − 𝜎 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦 − 𝜎 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎

| = 0 

On obtient : 

−𝜎3 + 𝜎2(𝜎𝑥 + 𝜎𝑦 +𝜎𝑧) − 𝜎(𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 +𝜎𝑧𝜎𝑥 − 𝜏𝑥𝑦
2 − 𝜏𝑥𝑧

2 − 𝜏𝑦𝑧
2 ) 

+ 𝜎𝑥𝜎𝑦𝜎𝑧 +2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜏𝑥𝑧
2 𝜎𝑦 − 𝜏𝑦𝑧

2 𝜎𝑥 − 𝜏𝑥𝑦
2 𝜎𝑧 = 0 

Soit à résoudre une équation de la forme : 

−𝜎3 + 𝐴𝜎2 −𝐵𝜎 + 𝐶 = 0 

Dont les racines 𝜎1, 𝜎2 , 𝜎3 sont les contraintes principales. 

Or l'état de contrainte en un point d'un corps ne dépend que du chargement auquel il est soumis. 

Lors d'un changement de repère cette équation reste invariable et il en est donc de même pour 

ses racines 𝜎1, 𝜎2, 𝜎3 . 

Par conséquent les quantités A, B et C sont constantes. Pour les calculer il est évidemment plus 
simple de les calculer dans le repère principal puisque les contraintes tangentielles sont nulles. 

𝐴 = 𝜎1 +𝜎2 + 𝜎3 

𝐵 = 𝜎1𝜎2 +𝜎2𝜎3 +𝜎3𝜎1 

𝐶 = 𝜎1𝜎2𝜎3              (VI.03) 

A, B et C sont appelés les invariants scalaires du tenseur des contraintes. 

On appelle contrainte moyenne 𝜎𝑚  la grandeur obtenue en divisant l'invariant scalaire A par 
trois. 

5 Déviateur des contraintes 

On décompose le tenseur des contraintes en deux tenseurs symétriques : 

[

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

]

⏞          

[𝐿]

= [

𝜎𝑥 − 𝜎𝑚 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 − 𝜎𝑚 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎𝑚

]

⏞                    

[𝐴1]

+ [

𝜎𝑚 0 0
0 𝜎𝑚 0
0 0 𝜎𝑚

]

⏞          

[𝐴2 ]

      (VI.04) 

[𝐴1]est le déviateur des contraintes, sa trace et nulle. Les directions principales sont les mêmes 

que celles de [𝐿] et ses valeurs propres sont : 

𝜎1 −𝜎𝑚  ,   𝜎2 − 𝜎𝑚 ,  𝜎3 −𝜎𝑚  
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[𝐴2] est le tenseur isotrope ou encore le tenseur sphérique et l'ellipsoïde devient une sphère. 
Dans un fluide au repos, une seule grandeur caractérise l'état de contrainte : la pression p. 

Soit : [𝐿] = [𝐴2] = [

−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

] 

6 Représentation plane de MOHR 

Nous avons vu que l'extrémité du vecteur contrainte en un point M décrivait un ellipsoïde 

lorsque 𝑛⃗⃗ variait. 

La représentation plane de MOHR concerne également le faisceau des contraintes, mais elle est 
obtenue en partant la projection du vecteur contrainte suivant la normale et dans le plan de la 

facette ; ce sont les grandeurs 𝜎 𝑒𝑡 𝜏que nous avions précédemment définies (relation (V.02)). 

𝑐(𝑀, 𝑛⃗⃗) = (𝑐(𝑀, 𝑛⃗⃗) ∙   𝑛⃗⃗)𝑛⃗⃗⏟        
𝜎⃗⃗⃗

+ 𝑛⃗⃗ ∧ (𝑐(𝑀, 𝑛⃗⃗) ∧ 𝑛⃗⃗)⏟          
𝜏⃗⃗

 

Considérons en M le repère principal et un axe 𝛥 issus de M et du vecteur unitaire 𝑛⃗⃗. 
 
Par construction portons : 

𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗1 = 𝜎1 𝑛⃗⃗ 

𝑀𝐴⃗⃗ ⃗⃗ ⃗⃗⃗2 = 𝜎2 𝑛⃗⃗ 

𝑀𝐴⃗⃗ ⃗⃗ ⃗⃗⃗3 = 𝜎3 𝑛⃗⃗ 
et supposons que : 

1 > 2 > 3  

En désignant par E l'extrémité du vecteur 
contrainte𝑐(𝑀, 𝑛⃗⃗) nous pouvons écrire : 

𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 1 = 𝐸𝑀⃗⃗⃗⃗ ⃗⃗⃗ +𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗1 = −𝑐(𝑀, 𝑛⃗⃗) +𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗1  

 

  Z 

    

          𝑐(𝑀, 𝑛⃗⃗)                                  𝛥 
 

                 A1 
              A2 

                   𝑛⃗⃗  A3 

              M       Y 
          

 
      X 

Figure VI.03 Construction de MOHR 
 

Soit : 

𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 1 = −[

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] [

𝛼
𝛽
𝛾
] + [

𝜎1𝛼

𝜎1𝛽
𝜎1𝛾
] = |

0
(𝜎1 − 𝜎2)𝛽
(𝜎1 −𝜎3)𝛾

 

En tenant le même raisonnement pour 𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 2 et 𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 3nous obtenons : 

𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 2 = |

(𝜎2 −𝜎1)𝛼
0

(𝜎2 −𝜎3)𝛾
   et    𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 3 = |

(𝜎3 −𝜎1)𝛼
(𝜎3 −𝜎2)𝛽

0

 

Formons les produits scalaires : 

𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 1 ∙  𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 2 = (𝜎1 − 𝜎3)(𝜎2 −𝜎3)𝛾
2 ≥ 0 

E 
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𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 2 ∙  𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 3 = (𝜎2 − 𝜎1)(𝜎3 − 𝜎1)𝛼
2 ≥ 0 

𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 3 ∙ 𝐸𝐴⃗⃗ ⃗⃗⃗⃗ 2 = (𝜎3 − 𝜎2)(𝜎1 − 𝜎2)𝛽
2 ≤ 0 

Remarquons que l'axe 𝛥 𝑒𝑡 𝑐(𝑀, 𝑛⃗⃗) définissent un plan (𝜋) pour une valeur donnée de 𝑛⃗⃗. 
Choisissons un plan fixe (𝜋0) défini par un repère orthonormé 𝑜𝜎 𝑒𝑡 𝑜𝜏. Superposons (𝜋) et 
(𝜋0)en amenant 𝛥 𝑠𝑢𝑟 𝑜𝜎,  𝑀 ≡ 𝑜. 

Le point E devient P et A1, A2, A3 deviennent respectivement P1, P2 et P3. 

Les inégalités ci-dessus s'écrivent : 

𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 1 ∙ 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2≥ 0 

𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2 ∙ 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 3≥ 0 

𝑃𝑃3⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ∙  𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2 ≤ 0 

Il va de soi que si nous avions 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 1 ∙ 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2 = 0 , le point P se trouverait sur un cercle de diamètre : 

∅=‖𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ = 𝜎1 − 𝜎2 

  𝜏  
 

    𝑃(𝜎, 𝜏)  
 

                                           𝑃1(𝜎1,0) 
     0 𝑃2(𝜎2, 0)              𝜎 
 
 

 
Figure VI.04 Cercle de MOHR 

 
Ce serait notamment le cas si : 

𝑛⃗⃗ = 𝛼𝐸⃗⃗1 +𝛽𝐸⃗⃗2 + 0𝐸⃗⃗3 

L'inégalité 𝑃𝑃⃗⃗⃗⃗⃗⃗1 ∙ 𝑃𝑃⃗⃗⃗⃗⃗⃗ 2>0 traduit le fait que 

l'angle 𝑃
∧

 doit être obtus donc le point se trouve 
à l'extérieur de ce cercle. 

Il en serait de même pour : 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2 ∙ 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 3> 0. 

 

Par contre l'inégalité 𝑃𝑃3⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ∙ 𝑃𝑃⃗⃗⃗⃗ ⃗⃗ 2 ≤ 0 signifie que le point p doit être à l'intérieur du cercle de 

diamètre : ∅=‖𝑃1𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ = 𝜎1 − 𝜎3, comme le montre la figure VI.05. 



Chapitre VI Tenseur des contraintes        Mécanique des milieux continus 

 

45 

 

 

    𝜏  
 
 
 

             𝑐(𝑀, 𝑛⃗⃗) 
 
 
 

   𝑃3(𝜎3,0)                𝑃2(𝜎2, 0)             𝑃1(𝜎1,0) 
     0              𝜎  
 

 

                  𝛾 = 0  
 

        𝛼 = 0  
 

        𝛽 = 0  
 

 
FigureVI.05 Tri cercle de MOHR 

Cas particulier important : 

Imposons à 𝑛⃗⃗ de rester constamment dans le plan principal MXY. Dans le repère principal nous 

aurions : 𝑛⃗⃗ = 𝛼𝐸⃗⃗1 + 𝛽𝐸⃗⃗2 + 0𝐸⃗⃗3 et en posant 𝛼 = 𝑐𝑜𝑠 𝜃  𝑒𝑡 𝛽 = 𝑠𝑖𝑛 𝜃 nous avons : 𝑛⃗⃗ = 𝑢⃗⃗(𝜃). 
Dans ces conditions : 

𝑐(𝑀, 𝑛⃗⃗) = 𝑐(𝑀, 𝑢⃗⃗(𝜃)) = [

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] [
𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜃
0
] = [

𝜎1 𝑐𝑜𝑠 𝜃
𝜎2 𝑠𝑖𝑛 𝜃
0

] 

Or de la relation (V.02) nous avons : 

𝑐(𝑀, 𝑢⃗⃗(𝜃)) = (𝑐(𝑀, 𝑢⃗⃗(𝜃))  ∙ 𝑢⃗⃗(𝜃)) 𝑢⃗⃗(𝜃)⏟                
𝜎⃗⃗⃗𝜃

+ 𝑢⃗⃗(𝜃) ∧ (𝑐(𝑀, 𝑢⃗⃗(𝜃)) ∧ 𝑢⃗⃗(𝜃))⏟                  
𝜏⃗⃗𝜃

 

Calculons tout d'abord 𝜎𝜃  

𝜎𝜃 = 𝜎1 𝑐𝑜𝑠
2(𝜃) + 𝜎2 𝑠𝑖𝑛

2(𝜃) =
𝜎1 + 𝜎2
2

+
𝜎1 − 𝜎2
2

𝑐𝑜𝑠 2 𝜃 

 

Pour 𝜏𝜃 nous avons : 

𝜏𝜃 =
𝜎1 − 𝜎2
2

𝑠𝑖𝑛 2 𝜃 
⏟          

𝜏𝜃

𝑢⃗⃗ (𝜃 −
𝜋

2
) 

Les composantes du vecteur 𝑐(𝑀, 𝑢⃗⃗(𝜃)) sont donc : 
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𝜎𝜃 =
𝜎1 +𝜎2
2

+
𝜎1 − 𝜎2
2

𝑐𝑜𝑠 2 𝜃 

𝜏𝜃 =
𝜎1 − 𝜎2
2

𝑠𝑖𝑛 2𝜃 

C’est-à-dire les équations paramétriques d'un cercle de centre  
𝜎1+𝜎2

2
 et de rayon  

𝜎1−𝜎2

2
  

      Y            𝜏 

              𝑢⃗⃗ (
𝜃+𝜋

2
) 

        𝜎𝜃+𝜋
2
     𝜎2  

        𝜏𝜃+𝜋
2
         𝜎𝜃          𝑢⃗⃗(𝜃)       𝜏𝜃 

                                            

                     M          𝜏𝜃      𝜎1       𝜎2        𝜃            2𝜃       𝜎1        𝜎 

      X      𝜎𝜃+𝜋
2
            𝜎𝜃    

        𝜏𝜃−𝜋
2
 

             𝜎𝜃 −𝜋
2
            𝜏𝜃+𝜋

2
 

 

FigureVI.06 Contraintes et cercle de MOHR 

Exercice VI.2 

Dans un repère orthonormé𝑒 = (𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3) le tenseur des contraintes en un point d'un solide 
a pour expression : 

𝐿 = [
−120 0 0
0 80 30
0 30 40

] 𝑣𝑎𝑙𝑒𝑢𝑟𝑠 𝑒𝑛 𝑁/𝑚𝑚2  

1. Calculer les contraintes principales. 
2. Déterminer les directions principales. 
3. Représenter sur un croquis l'état de contrainte donné ainsi que les contraintes et directions 

principales. 
4. Construire le tri-cercle de Mohr et retrouver les résultats précédemment établis. 

5. De la question précédente, déduire la valeur de la plus grande contrainte tangentielle. 
Préciser la facette correspondante en faisant un croquis. 
 

Corrigé 

1. 

0 = |
−120 − 𝜎 0 0

0 80 − 𝜎 30
0 30 40 − 𝜎

| = −(120 + 𝜎)((80 − 𝜎)(40 − 𝜎) − 900) 

Nous déduisons immédiatement de cette relation les contraintes principales : 
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𝜎1 = 120  𝜎2 = 96,055. . . . .  𝜎3 = 23,94. . . .. 

2. x=x1 est une direction principale puisque les contraintes tangentielles 𝜏𝑥𝑦  𝑒𝑡 𝜏𝑥𝑧  sont nulles. 

Ce qui permet d'écrire : 

[
−120 0 0
0 80 30
0 30 40

] [

𝛼2
𝛽2
𝛾2

] = 96,055 [

𝛼2
𝛽2
𝛾2

] 

𝛼2 = 0 𝑝𝑢𝑖𝑠𝑞𝑢𝑒 − 120𝛼2 = 96,055𝛼2, il s'ensuit donc : 

80𝛽2 +30𝛾2 = 96,055𝛽2 

30𝛽2 + 40𝛾2 = 96,055𝛾2  

En posant 𝛽2 = 𝑐𝑜𝑠𝜃2 𝑒𝑡 𝛾2 = 𝑠𝑖𝑛𝜃2 nous obtenons : 

𝜃2 = 28°155. .. 

Les autres directions sont orthogonales. 

3. Pour simplifier on arrondit 𝜎2 = 96 𝑒𝑡 𝜎3 = 24  

       z 
 

  Z         40 
          Y 
                    96 

       24      30 
 

 
 
          28°155 

             30 
 

    M           80          y 
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4.  

          𝜏  
 
 
 

 
 

        z 
 
         30 

 
        40   80      

 𝜎1 = −120     𝜎3 = 24    𝜎2 = 96  
 

        -30       y 
 

 

 
 

5. La plus grande contrainte tangentielle 
est évidemment obtenue pour : 

120 + 96

2
= 108 

C'est-à-dire pour une facette définie dans 

le repère principale par : 

𝑛⃗⃗1 =
√2

2
𝐸⃗⃗1 +

√2

2
𝐸⃗⃗2 + 0⃗⃗ 

      Y 
 

        96   x 
     y 
 

 12       12 
 

 108          108 
 
    45°  120       

         X 
     M 

 

Dans le repère M x y z, le tenseur des contraintes s'écrirait : 

𝐿 = [
−12 −108 0
−108 −12 0
0 0 24

] 
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Chapitre VII 

Petites déformations 

1 Déplacement et déformation 

Le concept de contrainte est en fait une abstraction, car on ne peut ni la voir ni la mesurer 
directement. Expérimentalement c'est la mesure des déformations du corps étudié qui permet 

de déterminer l'état de contrainte du solide. 

Sous l'action d'efforts les corps solides changent de forme. Cette variation résulte du 

déplacement de ses points. 

La distance entre les positions d'un point M avant et après changement de la forme du solide 
est appelée déplacement. 

On désignera par 𝑢⃗⃗(𝑀) le vecteur déplacement et dans un repère orthonormé 
 (𝑒) = (𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3) ce vecteur s'écrira : 𝑢⃗⃗(𝑀) = 𝑢𝑒⃗1 +𝑣𝑒⃗2+ 𝑤𝑒⃗3 

Comme 𝑂𝑀
→

= 𝑥𝑒⃗1 + 𝑦𝑒⃗2 + 𝑧𝑒⃗3 il s'ensuit que 𝑢⃗⃗(𝑀) = 𝑢(𝑥,𝑦, 𝑧)𝑒1 +𝑣(𝑥, 𝑦, 𝑧)𝑒2 +𝑤(𝑥,𝑦, 𝑧)𝑒3 
 

 
Considérons alors un point P infiniment voisin du 

point M tel que : 

𝑀𝑃⃗⃗⃗⃗ ⃗⃗⃗ = 𝑑𝑠⃗⃗⃗⃗⃗ = 𝑑𝑥𝑒⃗1 +𝑑𝑦𝑒⃗2 + 𝑑𝑧𝑒⃗3    

𝑀𝑃⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝑛⃗⃗𝑑𝑠 = (𝛼𝑒⃗1 +𝛽𝑒⃗2+ 𝛾𝑒⃗3)𝑑𝑠

𝑎𝑣𝑒𝑐 (𝑛⃗⃗)2 = 1                                       

} 

𝑑𝑥 =  𝛼𝑑𝑠
 𝑑𝑦 =  𝛽𝑑𝑠

𝑑𝑧 =  𝛾𝑑𝑠
 

 
Désignons par M' la position du point M après 

déformation, soit l'extrémité du vecteur 𝑢⃗⃗(𝑀). 
De même, désignons par P' la position du point P 
après déformation et posons : 

𝑑𝑠′⃗⃗ ⃗⃗⃗⃗ = 𝑀′𝑃′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗    et  ‖𝑑𝑠′⃗⃗ ⃗⃗⃗⃗ ‖ = 𝑑𝑠′ 

 
 

        z       𝑑𝑠′⃗⃗⃗⃗ ⃗⃗   P'
   M ' 

   
 

                        𝑢⃗⃗(𝑀)                     𝑢⃗⃗(𝑃) 
 

𝑑𝑠⃗⃗⃗⃗⃗ 
        𝑒3          P 
                       M                          

            O 
                     𝑒2             y 

    𝑒⃗1   
   

 x 
 

Figure VII.01 Déplacement et déformation 

  

Si quel que soit 𝑀 ∈  solide et pour une orientation 𝑛⃗⃗  absolument quelconque nous avons : 
𝑑𝑠 = 𝑑𝑠′ nous dirons que le solide a subi un déplacement d'ensemble sans déformation. Dans 

le cas contraire 𝑑𝑠 ≠ 𝑑𝑠′ il y aura déplacement avec déformation. 

2 Étude de la déformation 

Pour évaluer la déformation on a coutume de considérer le rapport : 
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𝑑𝑆′ − 𝑑𝑆

𝑑𝑆
 

C'est-à-dire la déformation relative-dans une direction donnée. 

Pour déterminer ce rapport écrivons (relations de Chasles) : 

𝑀′𝑃 ′
→

⏟
 

=  𝑀′𝑀
→

⏟
 

+𝑀𝑃
→

⏟
 

+ 𝑃𝑃 ′
→

⏟
 

 

 𝑑𝑆 ′
→

  = −𝑢⃗⃗(𝑀) +  𝑑𝑆
→

 + 𝑢⃗⃗(𝑃) 

Soit : 𝑢⃗⃗(𝑃) − 𝑢⃗⃗(𝑀) = 𝑑𝑆 ′⃗⃗⃗⃗⃗⃗⃗  −  𝑑𝑆⃗⃗⃗⃗ ⃗ 

Notons que : 𝑢⃗⃗(𝑃) − 𝑢⃗⃗(𝑀) = 𝑢⃗⃗(𝑥 + 𝑑𝑥,  𝑦 + 𝑑𝑦,  𝑧 + 𝑑𝑧) − 𝑢⃗⃗(𝑥,𝑦, 𝑧) = 𝑑𝑢⃗⃗⃗⃗⃗⃗(𝑀) 

Il s'ensuit que : 

𝑑𝑆⃗⃗⃗⃗ ⃗ + 𝑑𝑢⃗⃗⃗⃗⃗⃗ (𝑀) = 𝑑𝑆 ′⃗⃗⃗⃗⃗⃗⃗ 

(𝑑𝑆)2+ (𝑑𝑢⃗⃗⃗⃗⃗⃗ (𝑀))
2

+ 2 𝑑𝑆⃗⃗⃗⃗ ⃗ ∙  𝑑𝑢⃗⃗⃗⃗⃗⃗ (𝑀) = (𝑑𝑆 ′)
2
 

Dans l'hypothèse des petites déformations, nous considérons toujours que (𝑑𝑢⃗⃗⃗⃗⃗⃗(𝑀))
2

 est 

négligeable devant(𝑑𝑆)2. 

Nous écrirons donc : 

(𝑑𝑆 ′)2 = (𝑑𝑆)2 +2 𝑑𝑆⃗⃗ ⃗⃗⃗ ∙ 𝑑𝑢⃗⃗(𝑀)                  (VII.01) 

Effectuons le calcul de 𝑑(𝑢⃗⃗(𝑀)) : 

𝑑(𝑢⃗⃗⃗⃗⃗(𝑀))

|

|
𝑑𝑢 =

𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧

𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦+

𝜕𝑣

𝜕𝑧
𝑑𝑧

𝑑𝑤 =
𝜕𝑤

𝜕𝑥
𝑑𝑥 +

𝜕𝑤

𝜕𝑦
𝑑𝑦+

𝜕𝑤

𝜕𝑧
𝑑𝑧

 

 

En tenant compte que 𝑑𝑥 = 𝛼𝑑𝑆,  𝑑𝑦 = 𝛽𝑑𝑆,  𝑑𝑧 = 𝛾𝑑𝑠, nous pouvons écrire sous forme 
matricielle cette expression :  

[
 
 
 
 
𝑑𝑢

𝑑𝑣

𝑑𝑤]
 
 
 
 

=

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
 
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 
𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥
 
𝜕𝑤

𝜕𝑦
 
𝜕𝑤

𝜕𝑧]
 
 
 
 
 
 

[
 
 
 
 
𝛼

 

𝛽 

𝛾 ]
 
 
 
 

 𝑑𝑆                                             (VII.02) 

Sous forme abrégée :     [𝑑(𝑢⃗⃗(𝑀))] = [𝑀][𝑛⃗⃗][𝑑𝑆] 

En désignant :  
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[𝑀] =

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
 
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
 
𝜕𝑤

𝜕𝑦
 
𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

  

Il vient pour le produit scalaire : 

𝑑𝑆⃗⃗ ⃗⃗⃗. 𝑑𝑢⃗⃗(𝑀) = [𝑛⃗⃗][𝑀][𝑛⃗⃗]𝑑𝑆2 

Et pour simplifier les écritures, posons : 

𝜆 = [𝑛⃗⃗][𝑀][𝑛⃗⃗]           (VII.03) 

Si bien que de l'expression (VII. 01) devient : 

(𝑑𝑆 ′)2 = (1 + 2𝜆)(𝑑𝑆)2 ⇒  𝑑𝑆 ′ = √(1+ 2𝜆)𝑑𝑆 

L'hypothèse des petites déformations qui consiste à négliger (𝑑𝑢⃗⃗(𝑀))
2
 devant (𝑑𝑆)2 conduit 

également à dire que les neuf composantes de la matrice [𝑀] sont petites devant l'unité, il en 

est donc de même pour 𝜆.  

Nous sommes donc en droit d'écrire que : 

𝑑𝑆 ′ = (1 + 𝜆)𝑑𝑆 

Puisque : (1 + 𝜆)2 = 1+ 𝜆2 +2𝜆 ≅ 1 + 2𝜆  

Il s'ensuit que le rapport caractérisant la déformation relative du point M peut s'écrire : 

𝑑𝑆 ′ − 𝑑𝑆

𝑑𝑆
=
(1+ 𝜆)𝑑𝑆 − 𝑑𝑆

𝑑𝑆
= 𝜆                  (VII. 04) 

3 Calcul de la déformation relative 𝝀 

𝜆 = [𝑛⃗⃗][𝑀][𝑛⃗⃗] = [𝛼,   𝛽,   𝛾]

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
 
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥
 
𝜕𝑣

𝜕𝑦
 
𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥
 
𝜕𝑤

𝜕𝑦
 
𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

[
 
 
 
 
𝛼

𝛽

𝛾]
 
 
 
 

  

 

𝜆 =
𝜕𝑢

𝜕𝑥
𝛼2 +

𝜕𝑣

𝜕𝑦
𝛽2 +

𝜕𝑤

𝜕𝑧
𝛾2 + (

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 𝛼𝛽 + (

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) 𝛽𝛾 + (

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
)𝛾𝛼  

On pose généralement : 
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𝑒𝑥 =
𝜕𝑢

𝜕𝑥
    2𝑔𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝑒𝑦 =
𝜕𝑣

𝜕𝑦
    2𝑔𝑥𝑧 =

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
 

𝑒𝑧 =
𝜕𝑤

𝜕𝑧
    2𝑔𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

Si bien que 𝜆 s'écrit : 

𝜆 = 𝑒𝑥𝛼
2 + 𝑒𝑦𝛽

2 + 𝑒𝑧𝛾
2 +2𝑔𝑥𝑦𝛼𝛽 + 2𝑔𝑥𝑧𝛼𝛾 + 2𝑔𝑦𝑧𝛽𝛾 

En posant  [𝐿𝑑] = [

𝑒𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧

]    on remarquera que 𝜆 peut également s'écrire : 

𝜆 = [𝑛⃗⃗][𝐿𝑑][𝑛⃗⃗]     (VII.05) 

4 Tenseur des déformations  

Décomposons la matrice [𝑀] =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

 en une matrice symétrique [𝑀1] et une 

matrice anti symétrique[𝑀2] soit : 

[𝑀] = [𝑀1]+ [𝑀2] 

[
 
 
 
 
 
 
 
 𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧⏟        
[𝑀] ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

𝜕𝑤

𝜕𝑧⏟                            
[𝑀1] ]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 

0
1

2
(
𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)

−
1

2
(
𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
) 0

1

2
(
𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
)

−
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) −

1

2
(
𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
) 0

⏟                              
[𝑀2] ]

 
 
 
 
 
 
 
 

 

Nous remarquons que la matrice [𝑀1] est égale à la matrice [𝐿𝑑] : [𝑀1] =  [𝐿𝑑] 

Pour avoir une signification physique de la matrice [𝑀2] supposons que notre solide soit 
indéformable (solide théorique). 

Donc, en considérant un petit déplacement, nous avons : 

𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ =
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ (𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ 

De même : 

𝑃𝑃 ′⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗ (𝑃𝑃 ′⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∧ 𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗  
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Puisque O est un point fixe nous avons : 

𝜔⃗⃗⃗𝑑𝑡 =
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ (𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) =

1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ (𝑃𝑃 ′⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

Formons la différence : 

𝑃𝑃 ′⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ =
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗ (𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ) ∧ (𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ − 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗) 

Il s'ensuit que pour un solide indéformable : 

𝑑𝑢⃗⃗(𝑀)  =
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑢⃗⃗(𝑀)) ∧ 𝑀𝑃⃗⃗⃗⃗ ⃗⃗⃗ =

1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑢⃗⃗(𝑀)) ∧ 𝑛⃗⃗𝑑𝑆  

En développant les calculs, on obtient : 

[
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗(𝑢⃗⃗(𝑀)) ∧ 𝑛⃗⃗𝑑𝑆] = [𝑀2][𝑛⃗⃗][𝑑𝑆] 

La différence avec un solide déformable est donc : 

[𝐿𝑑][𝑛⃗⃗][𝑑𝑆] 

En résumé pour un solide quelconque, nous pouvons écrire : 

𝑑𝑢⃗⃗(𝑀) = [𝑀2][𝑛⃗⃗][𝑑𝑆]⏟        
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 élémentaire
n'altère pas le matériau.

+ [𝐿𝑑][𝑛⃗⃗][𝑑𝑆]⏟      
𝐷é𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

        (VII.06) 

On pose : 

𝑑⃗(𝑀, 𝑛⃗⃗) = [𝐿𝑑][𝑛⃗⃗][𝑑𝑆] 

C'est le vecteur déformation en M dans la direction de 𝑛⃗⃗. 

[𝐿𝑑] qui a une structure tensorielle est appelé le tenseur des déformations. 

[𝐿𝑑] = [

𝑒𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧

] 

Exercice VII.1 

Un corps élastique constitué par un matériau homogène et isotrope est soumis à des 

sollicitations extérieures qui provoquent, dans un repère orthonormé (𝑒) = (𝑜, 𝑒⃗1, 𝑒⃗2, 𝑒⃗3) le 
champ des déplacements suivants : 

𝑢 = 2𝑎𝑦𝑥                 𝑣 =
𝑎

2
𝑦2 −𝑏𝑥2                𝑤 = 0 

a et b étant deux constantes très petites. Déterminer le tenseur des déformations. 

Corrigé 

Nous avons : 

   𝑒𝑥 =
𝜕𝑢

𝜕𝑥
= 2𝑎𝑦       𝑒𝑦 =

𝜕𝑣

𝜕𝑦
= 𝑎𝑦      𝑒𝑧 =

𝜕𝑤

𝜕𝑧
= 0 
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𝑔𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) = (𝑎 − 𝑏)𝑥  𝑔𝑥𝑧 =

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) = 0  𝑔𝑦𝑧 =

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) = 0 

L'expression du tenseur des déformations est donc : 

[𝐿𝑑] = [
2𝑎𝑦 (𝑎 − 𝑏)𝑥 0

(𝑎 − 𝑏)𝑥 𝑎𝑦 0
0 0 0

] 

5 Interprétations des composantes du tenseur des déformations 

5.1 Dilatations linéiques 

Précédemment (relations (VII.04) et(VII.05)), nous avons vu que la grandeur 𝜆 caractérisait la 
déformation et avait pour expression : 

𝜆 =
𝑑𝑆 ′ − 𝑑𝑆

𝑑𝑆
= 𝜆 = [𝑛⃗⃗][𝐿𝑑][𝑛⃗⃗] 

Dans le cas particulier où 𝑒⃗1 = 𝑛⃗⃗ nous aurions : 

𝜆1 = [1 0 0] [

𝑒𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧

] [
1
0
0

] 

𝜆1 = 𝑒𝑥 

De même si : 

𝑒⃗2 = 𝑛⃗⃗  ⇒  𝜆2 = 𝑒𝑦 

𝑒⃗3 = 𝑛⃗⃗  ⇒  𝜆3 = 𝑒𝑧 

Nous voyons ainsi que 𝑒𝑥 , 𝑒𝑦 𝑒𝑡 𝑒𝑧 sont les dilatations linéiques suivant les axes du repère 

choisi. 

 

5.2 déformation angulaire 

L'interprétation faite ci-dessus exclut totalement les termes en 𝑔𝑖𝑗 . 
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      y 

                  𝑔𝑥𝑦𝑑𝑦          P" 

                         P2'' 

    𝑒𝑦𝑑𝑦      P2               P 

 

      𝑑𝑆⃗⃗ ⃗⃗⃗ = 𝑛⃗⃗𝑑𝑆 
      dy 
 
 

            𝜃            P1" 

         𝑀 ≡ 𝑀′   𝛼  P1  𝑔𝑥𝑦𝑑𝑥 
          dx            𝑒𝑥𝑑𝑥          x 

Figure VII.02 Déformation angulaire 

 

 
La figure VII.02 donne une 

signification physique à ces 
termes en considérant 
uniquement la déformation. 

Pour simplifier, raisonnons 
dans le plan Mxy en 

superposant les points M et 
M'. 

 

S'il n'y avait pas de déformation, nous aurions : 𝑃 ≡ 𝑃″ 

Tout d'abord calculons : 

𝑑⃗(𝑀, 𝑒⃗1) = [𝐿𝑑][𝑒⃗1]𝑑𝑥 = [
𝑒𝑥 𝑔𝑥𝑦
𝑔𝑥𝑦 𝑒𝑦

] [
1
0
]𝑑𝑥 = |

𝑒𝑥𝑑𝑥

𝑔𝑥𝑦𝑑𝑥
 

𝑑⃗(𝑀, 𝑒⃗2) = [𝐿𝑑][𝑒⃗2]𝑑𝑦 = [
𝑒𝑥 𝑔𝑥𝑦
𝑔𝑥𝑦 𝑒𝑦

] [
0
1
] 𝑑𝑦 = |

𝑔𝑥𝑦𝑑𝑦

𝑒𝑦𝑑𝑦
 

Après déformation le point P1 se trouve en P1
″et P2 en P2

″ . Il en sera de même pour le point P 

qui deviendra P″, mais pour connaître cette déformation il nous faut calculer : 𝑑⃗(𝑀, 𝑛⃗⃗). 

𝑑⃗(𝑀, 𝑛⃗⃗) = [𝐿𝑑][𝑛⃗⃗]𝑑𝑆 = [
𝑒𝑥 𝑔𝑥𝑦
𝑔𝑥𝑦 𝑒𝑦

] [
𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜃

]𝑑𝑆 = |
𝑒𝑥 𝑐𝑜𝑠 𝜃  𝑑𝑆 + 𝑔𝑥𝑦 𝑠𝑖𝑛 𝜃  𝑑𝑆

𝑔𝑥𝑦 𝑐𝑜𝑠 𝜃  𝑑𝑆 + 𝑒𝑦 𝑠𝑖𝑛 𝜃  𝑑𝑆
 

Et comme 𝑑𝑥 = 𝑐𝑜𝑠 𝜃  𝑑𝑆 𝑒𝑡 𝑑𝑦 = 𝑠𝑖𝑛 𝜃  𝑑𝑆 nous avons : 

𝑑⃗(𝑀, 𝑛⃗⃗) = |
𝑒𝑥𝑑𝑥

𝑔𝑥𝑦𝑑𝑥
+ |
𝑔𝑥𝑦𝑑𝑦

𝑒𝑦𝑑𝑦
= 𝑑⃗(𝑀, 𝑒⃗1)+ 𝑑⃗(𝑀, 𝑒⃗2) 

Désignons par 𝛼 l'angle P1
″MP1̂  qui a pour valeur : 𝑡𝑔𝛼 =

𝑔𝑥𝑦

1+𝑒𝑥
 

Comme il s'agit de petites déformations 𝑒⃗𝑥 𝑒𝑡 𝑔𝑥𝑦  sont très petits devant 1, il s'ensuit donc : 

𝑡𝑔𝛼 ≈ 𝑔𝑥𝑦 ≈ 𝛼  

Il en serait de même pour l'angle P2
″MP2
̂ . 

Ainsi la variation de l'angle droit P1MP2̂   s'écrit : 

𝜋

2
− P1

″MP2
″̂ =2𝑔𝑥𝑦  

Cette déformation angulaire que l'on note 𝛾𝑥𝑦 = 2𝑔𝑥𝑦 se nomme le glissement. 
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P" 

6 Dilatations principales et directions principales 

Il s'agit des directes actions propres et des valeurs propres de la matrice ‖𝐿𝑑‖. Comme cette 

matrice est symétrique il existe un repère orthonormé MXYZ qui la diagonalise. 
[𝐿𝑑] prend donc la forme suivante : 

[𝐿𝑑] = [
𝑎 0 0
0 𝑏 0
0 0 𝑐

] 

 

     y  
                        P2''               X 

             P2                 P  A" 
Y 

           A 
         adX 
          B" 

          dX 
bdy         B              P1" 
 

  dY      P1 

             𝑀 ≡ 𝑀 ′                   x 

Figure VII.03 Déformation dans repère principal 

a, b et c sont les dilatations principales et MX, MY, MZ sont les directions principales. 

Pour les directions principales, le glissement est nul et l'interprétation physique est très simple, 
comme le montre la figure VII.03. 

Un parallélépipède rectangle dont les faces sont parallèles aux plans principaux restent après 

déformation un parallélépipède rectangle. 

7 Ellipsoïde des déformations 

Le point M étant fixé, cherchons le lieu des points P, lorsque 𝑛⃗⃗ varie, c'est-à-dire l'extrémité du 

vecteur 𝑑⃗(𝑀, 𝑛⃗⃗). 

Pour une question de commodité, on préfère considérer une grandeur relative en cherchant le 
lieu de l'extrémité du vecteur : 

𝑑⃗(𝑀, 𝑛⃗⃗)

𝑑𝑆
= [𝐿𝑑][𝑛⃗⃗] 

Travaillons dans le repère principal MXYZ. 

𝑑⃗(𝑀, 𝑛⃗⃗)

𝑑𝑆
= [
𝑎 0 0
0 𝑏 0
0 0 𝑐

][

𝛼1
𝛽1
𝛾1

] = |

𝑎𝛼1
𝑏𝛽1
𝑐𝛾1

= |
𝑋1
𝑌1
𝑍1

 

Puisque 𝛼2 +𝛽2 + 𝛾2 = 1, il s'ensuit que : 
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𝑋1
2

𝑎2
+
𝑌1
2

𝑏2
+
𝑍1
2

𝑐2
= 1 

C'est l'équation de l'ellipsoïde de lamé de la déformation. Ces axes coïncident avec les directions 
principales de la déformation. 

8 Tri-cercle de Mohr des déformations 

Un raisonnement calqué sur le tri-cercle de Mohr des contraintes, nous conduit au tri-cercle des 
déformations. 

  𝑔𝜃 
 

    g    𝑑⃗(𝑀, 𝑛⃗⃗) 
 
 
 

           c  𝜆     b                    a    𝑒𝜃 
 

 
 

 

 

Figure VII.04 Tri-cercle des déformations 

 

La construction du tri-cercle de Mohr 
des déformations rend évidentes les 

propriétés suivantes : 
- Dans chaque plan principal, le plus 
grand glissement a lieu suivant la 

bissectrice des axes principaux et a pour 
valeur la demi-différence des deux 

dilatations principales correspondantes. 
- La plus grande valeur du glissement a 
lieu dans le plan défini par les dilatations 

principales extrêmes. 

 

Un cas particulier important est celui où 𝑛⃗⃗ peut prendre toutes les directions dans un plan 
principal. Par exemple supposons que 𝑛⃗⃗ = 𝑢⃗⃗(𝜃)  

Dans le repère principal MX, MY nous aurions : 

𝑑(𝑀, 𝑢⃗⃗(𝜃))

𝑑𝑆
= [
𝑎 0
0 𝑏

] [
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

] = |
𝑎 𝑐𝑜𝑠𝜃
𝑏 𝑠𝑖𝑛𝜃

 

Projetons ce vecteur suivant 𝑢⃗⃗(𝜃) et dans le plan perpendiculaire à 𝑢⃗⃗(𝜃): 

𝑑(𝑀,𝑢⃗⃗⃗(𝜃))

𝑑𝑆
= (

𝑑(𝑀,𝑢⃗⃗⃗(𝜃))

𝑑𝑆
  ∙ 𝑢⃗⃗(𝜃)) 𝑢⃗⃗(𝜃)

⏟              
𝜆𝜃 𝑢⃗⃗⃗(𝜃)

+ 𝑢⃗⃗(𝜃) ∧ (
𝑑(𝑀,𝑢⃗⃗⃗(𝜃))

𝑑𝑆
∧ 𝑢⃗⃗(𝜃))

⏟                

𝑔𝜃 𝑢⃗⃗⃗(𝜃−
𝜋

2
)

 

   (VII.07) 

Par analogie aux résultats obtenus pour les contraintes, nous poserons : 𝜆𝜃 = 𝑒𝜃 

Nous avons donc : 

𝑒𝜃 = 𝑎 𝑐𝑜𝑠
2(𝜃) + 𝑏𝑠𝑖𝑛2(𝜃) =

𝑎+𝑏

2
+
𝑎−𝑏

2
𝑐𝑜𝑠 2 𝜃

𝑔𝜃 = (𝑎 − 𝑏) 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 =
𝑎−𝑏

2
𝑠𝑖𝑛 2𝜃

}       (VII.08) 
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𝜃      
𝑑(𝑀,𝑢⃗⃗⃗(𝜃))

𝑑𝑆
 

C’est-à-dire les équations paramétriques d'un cercle de centre (
𝑎+𝑏

2
,  0) et de rayon 

𝑎−𝑏

2
 

 

        g 
         

                  𝑔𝜃  
         Y 

                       𝜃  2𝜃  
 

         0    a       𝑒𝜃 b      e 
 

           𝑒𝜃  

   𝑢⃗⃗ (𝜃 +
𝜋

2
)          𝑢⃗⃗(𝜃)      

 
         M                           X 
    

                                𝑔𝜃 
 

Figure VII.05 Cercle de Mohr des déformations 

9 Mesures extensométriques 

L'extensométrie a pour objet de mesurer à la surface des corps, les déformations longitudinales  
en certains points, au moyen d'appareils appelés extensomètres. 

Les plus utilisés sont les extensomètres à fils résistants, qui sont constitués par un fil en 

constantan de 0,015 à 0,020 mm de diamètre collé en zigzag entre deux bandes de papier ou sur 
un support très mince en résine époxyde. 
 

     L 
 

 

   Fils d'arrivée 
 

 

Figure VII.06 Extensomètre 

L'extensomètre, ou jauge à fils résistants, est 
collé sur la surface de la pièce à étudier de telle 

sorte que la direction des fils coïncide avec la 
direction de la dilatation que l'on souhaite 
mesurer. 

Nous savons qu'en un point de la surface où il n'y a pas de force directement appliquée, la 

contrainte sur le plan tangent à la surface est nulle et, par suite, il y a un état plan de contraintes 
en ce point. 

Pour déterminer les dilatations principales a et b il faut mesurer les déformations longitudinales 
suivant trois directions. 

Dans une direction donnée l'expérience montre que la variation relative de résistance 
𝛥𝑅

𝑅
 et 

l'allongement linéique 
𝛥𝑙

𝑙
 sont liés par la relation : 

𝛥𝑅

𝑅
= 𝐾

𝛥𝑙

𝑙
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w 

x 

Pour des déformations inférieures à 5/1000 le coefficient de jauge K est généralement égal à 2. 

Il existe dans le commerce des jauges électriques spéciales, dites rosettes dans lesquelles les 
directions des jauges sont bien déterminées. 

     v              y 
                    u 
 

 
 

 
         

            x 

                Rosette à 120°        Rosette à 90° 

Figure VII.07 Jauges extensométriques 

À titre d'exemple traitons le cas d'une rosette à 90°. Pour cela, désignons par 𝜃 l'angle formé 
par l'axe Mx avec la direction principale MX. Compte tenu de la relation (VII.08) exprimons 

les grandeurs mesurées 𝑒𝑥,   𝑒𝑢 𝑒𝑡 𝑒𝑦 par : 

 𝑒𝑥 = 𝑒𝜃 =
𝑎+𝑏

2
+
𝑎−𝑏

2
𝑐𝑜𝑠 2𝜃 

𝑒𝑢 = 𝑒𝜃+𝜋
4
=
𝑎 + 𝑏

2
+
𝑎 − 𝑏

2
𝑐𝑜𝑠 2 (𝜃 +

𝜋

4
) =

𝑎 + 𝑏

2
−
𝑎 − 𝑏

2
𝑠𝑖𝑛 2𝜃 

𝑒𝑦 = 𝑒𝜃+𝜋
2
=
𝑎 + 𝑏

2
+
𝑎 − 𝑏

2
𝑐𝑜𝑠 2 (𝜃 +

𝜋

2
) =

𝑎 + 𝑏

2
−
𝑎 − 𝑏

2
𝑐𝑜𝑠 2 𝜃 

et pour le glissement nous obtenons : 

𝑔𝜃 =
𝑎 − 𝑏

2
𝑠𝑖𝑛 2 𝜃 

𝑔
𝜃+
𝜋
4
=
𝑎 − 𝑏

2
𝑠𝑖𝑛 2(𝜃 +

𝜋

4
) =

𝑎 − 𝑏

2
𝑐𝑜𝑠 2 𝜃 

𝑔
𝜃+
𝜋
2
=
𝑎 − 𝑏

2
𝑠𝑖𝑛 2(𝜃 +

𝜋

2
) = −

𝑎 − 𝑏

2
𝑠𝑖𝑛 2 𝜃 

De ces relations nous déduisons : 

𝑒𝑥+ 𝑒𝑦
2

=
𝑎 + 𝑏

2
 

𝑒𝑥− 𝑒𝑦
2

=
𝑎 − 𝑏

2
𝑐𝑜𝑠 2𝜃 = 𝑔

𝜃+
𝜋
4

 

Soit les éléments qui nous permettent de construire le cercle de Mohr, puisque dans le repère 

(e, g) nous avons : 

-les coordonnées du centre du cercle : 𝑂𝑂′⃗⃗⃗⃗ ⃗⃗⃗⃗ = (
𝑎+𝑏

2
 ; 0) 

-les coordonnées d'un point P du cercle : 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ = (𝑒𝜃+𝜋
4
= 𝑒𝑢 ;  𝑔𝜃+𝜋

4
=
𝑒𝑥−𝑒𝑦

2
)  

M 

M 
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    u 

         Y 
        y          g 

 
 
      x               𝑔𝜃+𝜋

4
  

    𝜃   

          X   b  θ π 4e             𝜃 a  

                    𝑒𝜃+𝜋
2

      (a+b)/2          𝑒𝜃       e 

 
                                                                                                                                            𝑔𝜃+𝜋

2
 

 

Figure VII.08 Construction du cercle de Mohr 

Exercice VII.2 

En un point M d'une structure en acier, on a mesuré, à l'aide de jauges extensométriques les 
dilatations suivantes : 

𝑒𝑥 = 28,5.10
−5  𝑒𝑦 = 5,5.10

−5  𝑒𝑣 = 36,92.10
−5 

suivant trois directions Mx, Mv, My faisant entre elles des angles de 45° (rosette à 90°). 

 
Déterminer : 
1. Les dilatations principales. 

2. Les directions principales. 

 

 
     y        v 
     45° 

 
     45° 

 
         M             x 

Corrigé 

 
1. Nous avons : 

 
𝑎 + 𝑏

2
=
28,5 + 5,5

2
. 10−5 = 17.10−5  

𝑔
𝜃+
𝜋
4
=
28,5 − 5,5

2
. 10_−5 = 11,5.10−5 

Nous disposons ainsi de tous les éléments 
pour construire le cercle de Mohr. 

Nous lisons : 
a=40.10-5  et  b=-5,5.10-5 

 

 

         g 

 
 11,5.10-5 

 
 
               -5,5.10-5                  17.10-5 28,5.10-5              40 

         -30°            36,92.10-5         e  
 

 

 
 
 

 

M 
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2. Par lecture nous lisons :𝜃 = −30°  
          y 
         Y       Y 
       y            v 

           X 
 

         v        𝜃  
 

      M      X           M             x 

       −𝜃  
 
 

     x 
Interprétation dans le repère principal.       Interprétation dans le repère initial. 

 

10 Invariants scalaires du tenseur des déformations 

Les trois invariants scalaires du tenseur des déformations se définissent de façon analogue à 
ceux du tenseur des contraintes. 

L'équation caractéristique associée au tenseur L est évidemment indépendante de la base 
choisie, et s'écrit : 

|

𝑒𝑥 − 𝑒 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 − 𝑒 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧 − 𝑒

| = 0 

Soit à résoudre une équation de la forme : 

−𝑒3 + 𝐴𝑑 𝑒
2 − 𝐵𝑑 𝑒 + 𝐶𝑑 = 0 

Dont les racines a, b, et c sont les dilatations principales. 

Ad, Bd et Cd sont les invariants scalaires du tenseur des déformations. Dans le repère principal 

leurs expressions sont très simples, et s'écrivent : 

𝐴𝑑 = 𝑎 + 𝑏 + 𝑐 = 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧  

𝐵𝑑 = 𝑎. 𝑏 + 𝑏. 𝑐 + 𝑐.𝑎 
𝐶𝑑 = 𝑎. 𝑏. 𝑐            (VII.09) 

11 Coefficient de dilatation cubique 

Pour un point M appartenant au solide étudié, considérons dans le repère principal MXYZ un 
parallélépipède de volume dX dY dZ avant déformation. 

Après déformation le volume de ce parallélépipède devient : 

(dX+adX) (dY+bdY)+(dZ+cdZ) 
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  Z 
 

      cdZ 
 
 

 
 

 
          Y 
 

 
adX 

          X   bdY 

Figure VII.09 Dilatation cubique 

 

Bien que la figure (VII.09) puisse 
laisser supposer le contraire, il ne faut 

pas perdre de vue que : 

𝑎 ≪ 1  𝑏 ≪ 1  𝑐 ≪ 1 
si bien qu'en négligeant les termes à 
partir du second ordre, ce volume est 

équivalent à : 
(1+a+b+d) dX dY dZ 

D'où la variation relative de volume : 
𝑑𝑉

𝑉
= 𝑎 + 𝑏 + 𝑐 = 𝐴𝑑 

On pose souvent : 
𝑑𝑉

𝑉
= 3𝑒𝑚 = 𝐴𝑑 = 𝑒𝑥+ 𝑒𝑦 + 𝑒𝑧                                      (VII.10)  

𝑉 est le volume avant déformation. 

em représente une déformation linéique moyenne, puisque : 

𝑒𝑚 =
𝑎 + 𝑏 + 𝑐

3
=
𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧

3
 

3 em ou Ad est appelé le coefficient de dilatation volumique relative, ou coefficient de dilatation 
cubique. 

12 Déviateur des déformations 

D'une façon tout à fait analogue au tenseur des contraintes, nous décomposons le tenseur [𝐿𝑑] 
en deux tenseurs symétriques : 
 

[

𝑒𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧

]
⏟          

[𝐿𝑑]

= [

𝑒𝑥 − 𝑒𝑚 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 − 𝑒𝑚 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧 − 𝑒𝑚

]
⏟                    

[𝐵1 ]

+ [

𝑒𝑚 0 0
0 𝑒𝑚 0
0 0 𝑒𝑚

]

⏟          
[𝐵2 ]

       (VII.11) 

[𝐵1] est le déviateur de la déformation, de trace nulle, il y a comme valeurs propres : 

a-em, b-em, c-em, 

et mêmes directions principales que [𝐿𝑑] 

Remarquons que lorsque le déviateur [𝐵1] est égal au tenseur des déformations [𝐿𝑑] nous avons 

𝑒𝑚 = 0. Dans ces conditions, le coefficient de dilatation volumique relative et nulle : 
𝑑𝑉

𝑉
= 0. 

[𝐵2] est appelé le tenseur isotrope. 

dXdYdZ 
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13 Conditions de compatibilité entre déformations et déplacements 

Pour résoudre des problèmes d'élasticité on se fixe souvent, a priori, le champ des contraintes 
ou le champ des déformations. 

Comme nous le verrons dans le prochain chapitre, les contraintes et les déformations sont liées 
par des relations linéaires, ce qui n'est pas le cas pour les déplacements et déformations, puisque 

nous avons : 

𝑒𝑥 =
𝜕𝑢

𝜕𝑥
    2𝑔𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
 

𝑒𝑦 =
𝜕𝑣

𝜕𝑦
    2𝑔𝑥𝑧=

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
 

𝑒𝑧 =
𝜕𝑤

𝜕𝑧
    2𝑔𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
 

Il faut que le champ des déformations (ou des contraintes) satisfasse au champ des 

déplacements. Pour cela on montre qu'en éliminant dans les six relations ci-dessus u, v, w on 
marque nécessairement les conditions que doit satisfaire le champ des déformations. 

On obtient ainsi : 

𝜕2𝑒𝑥
𝜕𝑦𝜕𝑧

=
𝜕

𝜕𝑥
(
𝜕𝑔𝑥𝑦
𝜕𝑧

+
𝜕𝑔𝑥𝑧
𝜕𝑦

−
𝜕𝑔𝑦𝑧
𝜕𝑥

)     
𝜕2𝑒𝑥
𝜕𝑦2

+
𝜕2𝑒𝑦
𝜕𝑥2

= 2
𝜕2𝑔𝑥𝑦
𝜕𝑥𝜕𝑦

 

𝜕2𝑒𝑦
𝜕𝑥𝜕𝑧

=
𝜕

𝜕𝑦
(
𝜕𝑔𝑦𝑧
𝜕𝑥

+
𝜕𝑔𝑥𝑦
𝜕𝑧

−
𝜕𝑔𝑥𝑧
𝜕𝑦

)     
𝜕2𝑒𝑦
𝜕𝑧2

+
𝜕2𝑒𝑧
𝜕𝑦2

= 2
𝜕2𝑔𝑦𝑧
𝜕𝑦𝜕𝑧

 

𝜕2𝑒𝑧
𝜕𝑥𝜕𝑦

=
𝜕

𝜕𝑧
(
𝜕𝑔𝑥𝑧
𝜕𝑦

+
𝜕𝑔𝑦𝑧
𝜕𝑥

−
𝜕𝑔𝑥𝑦
𝜕𝑧

)     
𝜕2𝑒𝑧
𝜕𝑥2

+
𝜕2𝑒𝑥
𝜕𝑧2

= 2
𝜕2𝑔𝑥𝑧
𝜕𝑥𝜕𝑧

                      (VII.12) 
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Chapitre VIII 

Relations entre contraintes et déformations 
 

1 Généralités 

Compte tenu de l'expérience, nous nous proposons d'établir les relations qui existent en un point 
entre les composantes du tenseur des contraintes et les composantes du tenseur des 
déformations. 

D'une façon générale ces diverses composantes peuvent être fonction du temps et la température 

peut varier d'un point à un autre. 

Dans ces notions d'élasticité nous faisons un certain nombre d'hypothèses simplificatrices : 

- Température uniforme (équilibre thermodynamique). 

- Le temps n'intervient pas dans les équations. 

- Le matériau est homogène et isotrope. 

- Les déformations sont petites. 

- Relations linéaires entre les déformations et contraintes. 

Cette dernière hypothèse nous conduit à écrire sous forme matricielle. 

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧]
 
 
 
 
 

=

[
 
 
 
 
 
𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 𝑎26
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56
𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66]

 
 
 
 
 

[
 
 
 
 
 
𝑒𝑥
𝑒𝑦
𝑒𝑧
𝑔𝑥𝑦
𝑔𝑥𝑧
𝑔𝑦𝑧 ]
 
 
 
 
 

 

Considérons en un point du corps son état de contrainte caractérisé par son tenseur des 

contraintes et son ellipsoïde des contraintes ( C ). 

En ce même point, considérons le tenseur des déformations et l'ellipsoïde des 
déformations ( D ). 

Un plan principal de ( C ) constitue évidemment un plan de symétrie pour les contraintes. 

L'hypothèse d'isotropie du corps exige que ce plan soit également plan de symétrie pour la 

déformation. L'expérience le confirme. 

 
Donc en chaque point d'un corps homogène isotrope, l'ellipsoïde des contraintes et l'ellipsoïde 

des déformations ont mêmes axes. 
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D'où la propriété fondamentale suivante : 

Les deux tenseurs ont les mêmes plans de symétrie et par conséquent les mêmes directions  

principales. 

Dans le repère principal MXYZ nous avons : 

[

𝜎1
𝜎2
𝜎3
] = [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [

𝑎
𝑏
𝑐
]   ⇒   |

𝜎1 = 𝑏11𝑎 + 𝑏12𝑏 + 𝑏13𝑐
𝜎2 = 𝑏21𝑎 + 𝑏22𝑏 + 𝑏23𝑐
𝜎3 = 𝑏31𝑎 + 𝑏32𝑏 + 𝑏33𝑐

 

Notons que cette matrice caractérise une relation linéaire entre les contraintes et les 

déformations principales, mais elle n'est pas fonction du chargement. 

Considérons des chargements conformes à la figure VIII.01, définissant des états obtenus par 
diverses permutation. 

 Z    Z       Z 

 

 

             𝜎3                 𝜎2        𝜎2  

 

𝜎2     𝜎1            𝜎3 

        Y          Y              Y 

      𝜎1              𝜎3                  𝜎1  

 

 

      X          X               X 
      Etat 1 (référence).    Etat 2.    Etat 3. 

Figure VIII.01 Chargements 

Les lois des contraintes en fonction des déformations n'ont pas changé sur les axes ; on peut 

donc écrire : 

Etat 2 

[

𝜎3
𝜎1
𝜎2

] = [
𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [
𝑐
𝑎
𝑏
]   ⇒   |

𝜎3 = 𝑏11𝑐 + 𝑏12𝑎 + 𝑏13𝑏
𝜎1 = 𝑏21𝑐 + 𝑏22𝑎 + 𝑏23𝑏

𝜎2 = 𝑏31𝑐 + 𝑏32𝑎 + 𝑏33𝑏
 

Etat 3 

[

𝜎1
𝜎3
𝜎2

] = [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [

𝑎
𝑐
𝑏
]   ⇒   |

𝜎1 = 𝑏11𝑎 + 𝑏12𝑐 + 𝑏13𝑏
𝜎3 = 𝑏21𝑎 + 𝑏22𝑐 + 𝑏23𝑏

𝜎2 = 𝑏31𝑎 + 𝑏32𝑐 + 𝑏33𝑏
 

En identifiant pour ces trois états les termes en𝜎1, 𝜎2 𝑒𝑡 𝜎3nous obtenons les résultats : 

𝑏11 = 𝑏22 = 𝑏33  
𝑏12 = 𝑏13 = 𝑏21 = 𝑏23 = 𝑏31 = 𝑏32  

Soit en remplaçant : 
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[

𝜎1
𝜎2
𝜎3
] = [

𝑏11 𝑏12 𝑏12
𝑏12 𝑏11 𝑏12
𝑏12 𝑏12 𝑏11

] [

𝑎
𝑏
𝑐
]   ⇒   |

𝜎1 = 𝑏11𝑎 + 𝑏12(𝑏 + 𝑐)

𝜎2 = 𝑏11𝑏 + 𝑏12(𝑎 + 𝑐)

𝜎3 = 𝑏11𝑐 + 𝑏12(𝑎 + 𝑏)
 

Que l'on peut écrire de la façon suivante : 

𝜎1 = (𝑏11 −𝑏12)𝑎 + 𝑏12(𝑎 + 𝑏 + 𝑐)

𝜎2 = (𝑏11 − 𝑏12)𝑏 + 𝑏12(𝑎 + 𝑏 + 𝑐)

𝜎3 = (𝑏11 − 𝑏12)𝑐 + 𝑏12(𝑎 + 𝑏 + 𝑐)
 

On pose : 

𝑏11 − 𝑏12 = 2𝐺  𝑒𝑡  𝑏12 = 𝜆 

Nous avons donc : 

𝜎1 = 2𝐺𝑎 + 𝜆(𝑎 + 𝑏 + 𝑐)

𝜎2 = 2𝐺𝑏 + 𝜆(𝑎 + 𝑏 + 𝑐)

𝜎3 = 2𝐺𝑐 + 𝜆(𝑎 + 𝑏 + 𝑐)
           (VIII. 01) 

𝐺 𝑒𝑡 𝜆 sont les coefficients d'élasticité de Lamé, ils ont la dimension d'une contrainte. 

G est encore appelé le module de Coulomb ou module de glissement ou module de torsion et 
souvent module d'élasticité transversal. 

En résolvant ce système par rapport aux dilatations principales a, b et c, on obtient : 

 

𝑎 =
𝜆 + 𝐺

𝐺(3𝜆 + 2𝐺)
(𝜎1 −

𝜆

2(𝜆 + 𝐺)
(𝜎2 +𝜎3))                                         

𝑏 =
𝜆 + 𝐺

𝐺(3𝜆+ 2𝐺)
(𝜎2 −

𝜆

2(𝜆 + 𝐺)
(𝜎1 + 𝜎3))        (VIII. 02)

𝑐 =
𝜆 + 𝐺

𝐺(3𝜆+ 2𝐺)
(𝜎3 −

𝜆

2(𝜆 + 𝐺)
(𝜎1 + 𝜎2))                                          

 

2 Relations entre contraintes et déformations dans un repère quelconque 

Ajoutons membre à membre les termes de la relation (VIII.01) 

𝜎1 + 𝜎2 +𝜎3 = 3𝜎𝑚 = 2𝐺(𝑎+ 𝑏 + 𝑐) + 3𝜆(𝑎 + 𝑏 + 𝑐) 
𝜎𝑚 = (2𝐺+ 3𝜆)𝑒𝑚     (VIII.03) 

Des relations (VIII.01) et (VIII.03) nous déduisons : 

𝜎1 −𝜎𝑚 = 2𝐺(𝑎 − 𝑒𝑚) 
𝜎2 −𝜎𝑚 = 2𝐺(𝑏 − 𝑒𝑚) 
𝜎3 −𝜎𝑚 = 2𝐺(𝑐 − 𝑒𝑚) 

Compte tenu du déviateur des contraintes (VI.04) et du déviateur des déformations (VII.11), 

tous deux, écrits dans le repère principal, nous avons :  
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[𝐴1] = 2𝐺[𝐵1]        (VIII.04) 

Cette relation matricielle est indépendante du repère choisi. Dans un repère quelconque nous 

avons : 

[

𝜎𝑥 −𝜎𝑚 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 − 𝜎𝑚 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎𝑚

] = 2𝐺 [

𝑒𝑥 − 𝑒𝑚 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑥𝑦 𝑒𝑦 − 𝑒𝑚 𝑔𝑦𝑧
𝑔𝑥𝑧 𝑔𝑦𝑧 𝑒𝑧 − 𝑒𝑚

]   (VIII.05) 

Des relations (VII.10), (VIII.03), (VIII.05) on déduit facilement : 

                                     𝜎𝑥 = 2𝐺𝑒𝑥+ 𝜆(𝑒𝑥+ 𝑒𝑦 + 𝑒𝑧)   𝜏𝑥𝑦 = 2𝐺𝑔𝑥𝑦  

                                     𝜎𝑦 = 2𝐺𝑒𝑦 + 𝜆(𝑒𝑥+ 𝑒𝑦 + 𝑒𝑧)   𝜏𝑥𝑧 = 2𝐺𝑔𝑥𝑧  

                                     𝜎𝑧 = 2𝐺𝑒𝑧 + 𝜆(𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧)   𝜏𝑦𝑧 = 2𝐺𝑔𝑦𝑧                        (VIII. 06) 

En résolvant (VIII.06) par rapport 𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧 on obtient : 

𝑒𝑥 =
𝜆 +𝐺

𝐺(3𝜆 + 2𝐺)
(𝜎𝑥 −

𝜆

2(𝜆 + 𝐺)
(𝜎𝑦 +𝜎𝑧)) 

𝑒𝑦 =
𝜆 + 𝐺

𝐺(3𝜆+ 2𝐺)
(𝜎𝑦 −

𝜆

2(𝜆 + 𝐺)
(𝜎𝑥 + 𝜎𝑧)) 

𝑒𝑧 =
𝜆 +𝐺

𝐺(3𝜆+ 2𝐺)
(𝜎𝑧 −

𝜆

2(𝜆+ 𝐺)
(𝜎𝑦 + 𝜎𝑥)) 

On pose : 

𝐸 =
𝐺(3𝜆 + 2𝐺)

𝜆 + 𝐺
   𝑒𝑡 ⋮   𝜈 =

𝜆

2(𝜆 + 𝐺)
 

E est le module d'élasticité longitudinal ou encore module de Young. 

𝜈 est le coefficient de Poisson. 

Les relations ci-dessus deviennent : 

𝑒𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈(𝜎𝑦 +𝜎𝑧 ))

𝑒𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧))

𝑒𝑧 =
1

𝐸
(𝜎𝑧 − 𝜈(𝜎𝑦 +𝜎𝑥))}

 
 

 
 

et dans le repère principal 

{
 
 

 
 𝑎 =

1

𝐸
(𝜎1 − 𝜈(𝜎2 +𝜎3))

𝑏 =
1

𝐸
(𝜎2 − 𝜈(𝜎1 +𝜎3))

𝑐 =
1

𝐸
(𝜎3 − 𝜈(𝜎2 + 𝜎1))

  VIII.07) 

Prenons l'exemple simple d'une poutre cylindrique, de longueur L et de diamètre D, soumise à 
de la traction. L'équilibre de la poutre, relation (III.05), exige : 

𝐹⃗𝐺 + 𝐹⃗𝐷 = 0⃗⃗ 

Conformément aux conventions de la résistance des matériaux (relation VI.01), l'équilibre de 
la partie gauche G de la poutre, s'écrit : 

𝑅⃗⃗(𝐹𝐺 → 𝐺) + 𝑅⃗⃗(𝐷 → 𝐺) = 0⃗⃗ 
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Soit tout simplement : −𝐹𝐺 +𝜎1𝛺 = 0 puisque : 𝑐(𝑀 ∈ 𝛺, 𝐸⃗⃗1) = 𝜎1𝐸⃗⃗1. 

Section droite 𝛺             Y   ∅ = 𝐷  
 

 𝐹⃗𝐺  G        g      𝜎1𝐸⃗⃗1    D        𝐹⃗𝐷         X 
 

       Z 
      L 

Figure VIII.02 Poutre droite 

 

 
Dans le repère principal gXYZ , le 
tenseur des contraintes s'écrit : 

 
1σ 0 0

0 0 0

0 0 0

 
 


 
  

L  

 

 

Compte tenu de la relation VII.07 le tenseur des déformations devient : 

[𝐿𝑑] = [
𝑎 0 0
0 𝑏 0
0 0 𝑐

] =

[
 
 
 
𝜎1

𝐸
0 0

0 −𝜈
𝜎1

𝐸
0

0 0 −𝜈
𝜎1

𝐸 ]
 
 
 

    (VIII.08) 

Or 𝜎1 =
𝐹

𝛺
 ,  𝑎 =

𝛥𝐿

𝐿
 ,  𝑏 = 𝑐 =

𝛥𝐷

𝐷
 si bien que de la relation (VII.08)on déduit ∶ 

𝐹

𝛺
= 𝐸

𝛥𝐿

𝐿
 ,  𝜈

𝐹

𝛺
= −𝐸

𝛥𝐷

𝐷
 

La force F provoque dans la barre un allongement 
𝛥𝐿

𝐿
 et une contraction transversale 

𝛥𝐷

𝐷
. Ce qui 

permet de déduire expérimentalement E et 𝜈. 

Ainsi on peut obtenir : 

𝐺 =
𝐸

2(𝜈 + 1)
 𝑒𝑡 𝜆 =

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

Valeurs de 𝜆,  𝐸, 𝑒𝑡 𝐺 exprimées en daN/mm2 

Désignation 𝜆.10-3 E.10-3 G.10-3 𝜈  

Acier 9-13 20-22 7,9-8,4 0,27-0,31 

Laiton 8,5 11 4,1 0,33 

Cuivre 9-14 13 4,8 0,33-0,38 

Plomb 3,5 1,6 0,56 0,43 

Verre 2,7-3 6 2,38 0,26 

Tableau VIII.1 Constantes pour quelques matériaux usuels 
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3 Problèmes d'élasticité 

L'étude du comportement d'un solide nous conduit à considérer quinze fonctions inconnues : 

- Déplacement : u, v, w 

- Composantes du tenseur des déformations : 𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧 , 𝑔𝑥𝑦 ,  𝑔𝑥𝑧 , 𝑔𝑦𝑧  

- Composantes du tenseur des contraintes : 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧  

On dispose pour résoudre ce problème de quinze équations. 

- Six équations géométriques : 

𝑒𝑥 =
𝜕𝑢

𝜕𝑥
    𝑔𝑥𝑦 =

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 

𝑒𝑦 =
𝜕𝑣

𝜕𝑦
    𝑔𝑥𝑧 =

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) 

𝑒𝑧 =
𝜕𝑤

𝜕𝑧
    𝑔𝑦𝑧 =

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) 

 

- Six relations entre les contraintes et les déformations : 

𝜎𝑥 = 2𝐺𝑒𝑥 + 3𝜆𝑒    𝜏𝑥𝑦 = 2𝐺𝑔𝑥𝑦  

𝜎𝑦 = 2𝐺𝑒𝑦 + 3𝜆𝑒    𝜏𝑥𝑧 = 2𝐺𝑔𝑥𝑧  

𝜎𝑧 = 2𝐺𝑒𝑧 +3𝜆𝑒    𝜏𝑦𝑧 = 2𝐺𝑔𝑦𝑧  

- Trois équations différentielles de l'équilibre : 

𝜌𝑋𝑥 +
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

= 0 

𝜌𝑋𝑦 +
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

= 0 

𝜌𝑋𝑧 +
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧
𝜕𝑧

= 0 

La résolution d'un problème d'élasticité exige d'intégrer ce système d'équation aux dérivées 

partielles, en tenant compte des conditions aux limites (chargements, déplacement).  

La solution exacte "mathématique" n'est connue que dans des cas particuliers, mais des 
méthodes de calcul telles que les éléments finis permettent de résoudre numériquement les 

problèmes d'élasticité. 

Pour résoudre analytiquement, on peut utiliser une méthode dite semi inverse qui consiste à se 

fixer a priori les composantes du déplacement u, v, w ou à se donner le champ des contraintes 
ou des déformations. 
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Dans ce dernier cas, par exemple, il faudrait que les six fonctions données 

(𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧 , 𝑔𝑥𝑦 , 𝑔𝑥𝑧 , 𝑔𝑦𝑧) soient continues et admettent des dérivées partielles du premier 

ordre et qu'elles satisfassent aux équations d'équilibre ainsi qu'aux conditions de compatibilité 
entre déplacements et déformations. 

Exercice VIII.1 

Sachant que dans son utilisation courante la pièce représentée ci-dessous, doit être 

parfaitement cylindrique lorsqu'elle est soustraite au champ de pesanteur terrestre 𝑔⃗. 
 
       z 

 
      (S2)        g2 

 
 
                         (S3) 

 

                               𝑒⃗3 
                     (S1)   g1         𝑒⃗2  
           y 

       𝑒⃗1  
        x 
 

 
Comment doit-on l'usiner sur terre et 

contrôler ses cotes lorsqu'elle est posée 
verticalement sur une table horizontale 

suivant  1S . 

Le cylindre a un rayon r et est limité par deux 

sections droites (S1) et (S2) de centre 1 2g et g

et distantes de : 

ℎ = |𝑔1𝑔2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |. 
On précise que seule la pesanteur exerce une 
action sur ce cylindre. 

La surface latérale sera désignée par (S3). 
 

1. Écrire les conditions aux limites sur la face (𝑆1). 
2. Conditions aux limites sur la face (𝑆2). 
3. Conditions aux limites sur la face (𝑆3). 
4. Déduire des questions précédentes une forme très simple du champ des contraintes. Il faudra 
s'assurer que ce champ vérifie bien les équations de l'équilibre et les équations de compatibilité.  

5. Déterminer le tenseur des déformations. 

6. Exprimer le champ des déplacements 𝑢(𝑥,𝑦, 𝑧),  𝑣(𝑥, 𝑦, 𝑧),  𝑤(𝑥, 𝑦, 𝑧) en fonction des 
constantes d'intégration. 
7. En précisant les conditions aux limites, déterminer les constantes d'intégration de la question 

précédente. Déduire le champ des déplacements. 

Corrigé 

1. Le plan exerce une action sur le cylindre égal au poids 𝜌𝑔ℎ𝜋𝑟2ℎ. Ce qui nous autorise à 

dire que le plan exerce une pression 𝑝 = 𝜌𝑔ℎ sur la surface(S1) du cylindre. Soit pour𝑀1 ∈
(𝑆1) : 
𝑐(𝑀1,−𝑒⃗3) = 𝜌𝑔ℎ 𝑒⃗3. 

Comme ; 𝑐(𝑀1,−𝑒⃗3) = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
0
0
−1

] nous avons donc pour la face (S1) : 

−𝜏𝑥𝑧 = 0   − 𝜏𝑦𝑧 = 0   − 𝜎𝑧 = 𝜌𝑔ℎ 

2. Sur la face (S2) nous avons pour 𝑀2 ∈ (𝑆2) : 

𝑐(𝑀2, 𝑒⃗3) = 0⃗⃗. 
ce qui se traduit par : 

𝜏𝑥𝑧 = 0   𝜏𝑦𝑧 = 0   𝜎𝑧 = 0. 
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3. Sur la face (S3) nous avons pour 𝑀3 ∈ (𝑆3) : 
 

 
 

𝑐(𝑀3, 𝑢⃗⃗(𝜃)) = 0⃗⃗ = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] [
𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜃
0

] 

               y 
                                  M3 
                              

                            𝑢⃗⃗(𝜃)  

                        θ   
     

                                             x 

 
 

  

𝜎𝑥 𝑐𝑜𝑠 𝜃 + 𝜏𝑥𝑦 𝑠𝑖𝑛 𝜃 = 0 

𝜏𝑥𝑦 𝑐𝑜𝑠 𝜃 + 𝜎𝑦 𝑠𝑖𝑛 𝜃 = 0 

𝜏𝑥𝑧 𝑐𝑜𝑠 𝜃 + 𝜏𝑦𝑧 𝑠𝑖𝑛 𝜃 = 0 

Ces relations doivent être vérifiées quel que soit 𝜃 ce qui implique que 𝜎𝑥 ,𝜏𝑥𝑦 ,𝜎𝑦 , 𝜏𝑥𝑧 ,𝜏𝑦𝑧 soient 

nulles. 

4. L'ensemble des précédentes conditions aux limites admet comme solution : 

𝜎𝑥 = 𝜏𝑥𝑦 = 𝜎𝑦 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 𝑒𝑡 𝜎𝑧 ≠ 0𝑠𝑢𝑟 (𝑆1). 

Le tenseur ci-dessous satisfait les conditions aux limites pour les contraintes et vérifie bien les 

équations de l'équilibre. 

[𝐿] = [

0 0 0
0 0 0
0 0 −𝜌𝑔(ℎ− 𝑧)

]. 

Puisque : 

𝜌𝑋𝑧 +
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧
𝜕𝑧

= 0 

−𝜌𝑔 +   0 +   0 + 𝜌𝑔   = 0 

Pour les équations de compatibilités écrivons les relations entre contraintes et déformations . 

𝑒𝑥 = 𝑎 =
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)   𝑔𝑥𝑦 = 0 

𝑒𝑦 = 𝑏 =
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)   𝑔𝑥𝑧 = 0 

𝑒𝑧 = 𝑐 = −
𝜌𝑔

𝐸
(ℎ− 𝑧)   𝑔𝑦𝑧 = 0. 

Nous avons bien : 

𝜕2𝑒𝑥
𝜕𝑦𝜕𝑧

= 0     
𝜕2𝑒𝑥
𝜕𝑦2

= 0     
𝜕2𝑒𝑦
𝜕𝑥2

= 0 

𝜕2𝑒𝑦
𝜕𝑥𝜕𝑧

= 0     
𝜕2𝑒𝑦
𝜕𝑧2

= 0     
𝜕2𝑒𝑧
𝜕𝑦2

= 0 

𝜕2𝑒𝑧
𝜕𝑥𝜕𝑦

= 0     
𝜕2𝑒𝑧
𝜕𝑥2

= 0     
𝜕2𝑒𝑥
𝜕𝑧2

= 0 

5. 
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De la question précédente on déduit immédiatement : 

[𝐿𝑑] =
𝜌𝑔

𝐸
[
𝜈(ℎ− 𝑧) 0 0
0 𝜈(ℎ− 𝑧) 0

0 0 −(ℎ− 𝑧)
] 

6. Des relations entre déplacement et déformation nous déduisons : 

𝜕𝑢

𝜕𝑥
=
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)   ⇒   𝑢 =

𝜈

𝐸
𝜌𝑔(ℎ − 𝑧)𝑥 + 𝑓1(𝑦, 𝑧) 

𝜕𝑣

𝜕𝑦
=
𝜈

𝐸
𝜌𝑔(ℎ − 𝑧)   ⇒   𝑣 =

𝜈

𝐸
𝜌𝑔(ℎ − 𝑧)𝑦+ 𝑓2(𝑥, 𝑧) 

𝜕𝑤

𝜕𝑧
= −

𝜌𝑔

𝐸
(ℎ− 𝑧)   ⇒   𝑤 = −

𝜈

𝐸
𝜌𝑔(ℎ −

𝑧

2
)𝑧 + 𝑓3(𝑥,𝑦) 

2𝑔𝑥𝑦=
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= 0 =

𝜕𝑓1(𝑦, 𝑧)

𝜕𝑦
+
𝜕𝑓2(𝑥, 𝑧)

𝜕𝑥
          (1) 

2𝑔𝑥𝑧=
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
= 0 = −

𝜈

𝐸
𝜌𝑔𝑥 +

𝜕𝑓1(𝑦, 𝑧)

𝜕𝑧
+
𝜕𝑓3(𝑥, 𝑦)

𝜕𝑥
     (2) 

2𝑔𝑦𝑧 =
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
= 0 = −

𝜈

𝐸
𝜌𝑔𝑦 +

𝜕𝑓2(𝑥, 𝑧)

𝜕𝑧
+
𝜕𝑓3(𝑥,𝑦)

𝜕𝑦
     (3) 

Dérivons (1) par rapport à y : 

𝜕2𝑓1(𝑦, 𝑧)

𝜕𝑦2
= 0 ⇒  

𝜕𝑓1(𝑦, 𝑧)

𝜕𝑦
= 𝑎(𝑧) + 𝑏 ⇒  𝑓1(𝑦, 𝑧) = 𝑎(𝑧)𝑦 + 𝑏𝑦 + 𝑐(𝑧) + 𝑑 

Dérivons (2) par rapport à z : 

𝜕2𝑓1(𝑦, 𝑧)

𝜕𝑧2
= 0 ⇒  𝑓1(𝑦, 𝑧) = 𝑎1(𝑦)𝑧 + 𝑏1𝑧 + 𝑐1(𝑦) + 𝑑1 

Ces deux valeurs de 𝑓1(𝑦,𝑧) doivent être égales si bien que nous avons : 

𝑎(𝑧)𝑦 = 𝑎1(𝑦)𝑧 = 𝐴𝑦𝑧  𝑏𝑦 = 𝑐1(𝑦)  𝑐(𝑧) = 𝑏1𝑧  𝑑1 = 𝑑 

Donc l'expression de la fonction 𝑓1(𝑦, 𝑧) est : 

𝑓1(𝑦, 𝑧) = 𝐴𝑦𝑧+ 𝑏𝑦 + 𝑏1𝑧 + 𝑑      (4) 

Dérivons (2) par rapport à x et (3) par rapport à z puis procédons de même en dérivant (3) par 

rapport à y puis (2) par rapport à x on obtient sans difficulté les expressions des fonctions  

𝑓2(𝑥,𝑧) 𝑒𝑡 𝑓3(𝑥,𝑦) : 

𝑓2(𝑥,𝑧) = 𝐵𝑥𝑧+ 𝑏2𝑥 + 𝑏3𝑧 + 𝑑2      (5) 

𝑓3(𝑥,𝑦) =
𝜈

2𝐸
𝜌𝑔(𝑥2 +𝑦2) + 𝑏4𝑥 + 𝐶𝑥𝑦+ 𝑏5𝑦 + 𝑑4   (6) 

Mais il va de soi que les relations (4), (5), (6) doivent satisfaire les relations (1), (2), (3) : 

𝐴𝑧 + 𝑏 + 𝑏𝑧 + 𝑏2 = 0 

−
𝜈

𝐸
𝜌𝑔𝑥 +𝐴𝑦 ++𝑏1 +

𝜈

𝐸
𝜌𝑔𝑥 + 𝑏4 +𝐶𝑦 = 0 

−
𝜈

𝐸
𝜌𝑔𝑦 +𝐵𝑥 + 𝑏3 +

𝜈

𝐸
𝜌𝑔𝑦+ 𝐶𝑥 + 𝑏5 = 0 
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Ces relations doivent être vérifiées quelles que soient x, y et z donc : 

     𝐴 = 𝐵 = 𝐶 = 0 
𝑏 = −𝑏2    𝑏3 = −𝑏5   𝑏1 = −𝑏4  

D'où les composantes du vecteur déplacement 𝑢⃗⃗(𝑀) : 

𝑢 =
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)𝑥 + 𝑏𝑦 + 𝑏1𝑧 + 𝑑      (7) 

𝑣 =
𝜈

𝐸
𝜌𝑔(ℎ − 𝑧)𝑦 − 𝑏𝑥 + 𝑏3𝑧 + 𝑑2        (8) 

𝑤 = −
𝜈

𝐸
𝜌𝑔 (ℎ−

𝑧

2
)𝑧 +

𝜈

2𝐸
𝜌𝑔(𝑥2 +𝑦2) − 𝑏1𝑥 − 𝑏3𝑦 + 𝑑4      (9) 

7. Écrivons tout d'abord que le centre 𝑔1 dois être fixe, c'est-à-dire :𝑢⃗⃗(𝑔1) = 0⃗⃗. Ce qui revient 
à dire que pour ; x=0, y=0, z=0 nous avons : u=0, v=0, w=0. Cette condition aux limites sur 

les déplacements implique forcément que : d=0, d2=0, d4=0. 

Du fait de la symétrie les déplacements doivent être 

radiaux :  

𝑢⃗⃗(𝑀) = 𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ = 𝜀1𝑢⃗⃗(𝜃) + 𝜀2𝑒⃗3  

En particulier si M est l'axe des x, c’est-à-dire si θ 0  : 

𝑀𝑀′⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ = 𝜀1𝑢⃗⃗(0) + 𝜀2𝑒⃗3 
x et z  nous avons pour y=0 la composante v qui est 

nulle et de la relation (8), nous déduisons : 
b = 0 et b3 = 0 

 

               y 

                                  𝑢⃗⃗(𝜃) 
                              

                    M    M'     

                        θ   
     

                                             x 
 

 

En tenant le même raisonnement sur l'axe des y :𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝜀1𝑢⃗⃗ (
𝜋

2
) + 𝜀2𝑒⃗3  

∀ 𝑦𝑒𝑡 𝑧 nous avons pour x=0 la composante u qui est nulle. 
De la relation (7), nous déduisons : 

b = 0 et b1 = 0 

En définitive le champ des déplacements s'écrit : 

𝑢 =
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)𝑥 

𝑣 =
𝜈

𝐸
𝜌𝑔(ℎ− 𝑧)𝑦 

𝑤 = −
𝜈

𝐸
𝜌𝑔 (ℎ−

𝑧

2
) 𝑧 +

𝜈

2𝐸
𝜌𝑔(𝑥2 +𝑦2) 

Les problèmes de la théorie de l'élasticité sont simplifiés, dans une large mesure, lorsque l'on 

rencontre l'un des deux cas particuliers importants : 
- L'état plan de contrainte (état de contrainte double). 
- L'état plan de déformation. 
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4 Etat plan de contrainte 

Il existe un très grand nombre de problèmes industriels dans lesquels la répartition des 

contraintes se trouve dans un même plan. C'est notamment le cas d'une plaque mince soumise 
à l'action de forces réparties appliquées sur toute son épaisseur. 

 

   y          y  

 
 
 

 
 

 
 
 

        x       z 

Figure VIII.03 Etat plan de contrainte  

Dans le repère ci-dessus les composantes du tenseur des contraintes 𝜎𝑧 ,  𝜏𝑥𝑧 , 𝜏𝑦𝑧sont nulles sur 

les deux faces latérales de la plaque. Si la plaque est mince on peut dire qu'il en est de même à 

l'intérieur de celle-ci sans erreur appréciable. 

On peut également admettre que les autres composantes du tenseur des contraintes 𝜎𝑥 ,  𝜎𝑦 , 𝜏𝑥𝑦 

ne sont pas des fonctions de z. C'est-à-dire qu'elles restent constantes en tous les points de 
l'épaisseur de la plaque. Le tenseur des contraintes s'écrit donc : 

[𝐿] = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 0

]       (VIII.09) 

Les relations entre contraintes et déformations deviennent : 

𝑒𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦)      𝑔𝑥𝑦 =

𝜏𝑥𝑦
2𝐺
                                     

𝑒𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥)      𝑔𝑥𝑧 = 0                      (VIII.10) 

𝑒𝑧 =
1

𝐸
(0 − 𝜈(𝜎𝑦 +𝜎𝑥))   𝑔𝑦𝑧 = 0                                         

Elles nous permettent d'écrire le tenseur des déformations : 

[𝐿𝑑] = [

𝑒𝑥 𝑔𝑥𝑦 0

𝑔𝑥𝑦 𝑒𝑦 0

0 0 𝑒𝑧

]                    (VIII.11) 

Il suffit donc de déterminer 𝜎𝑥 ,  𝜎𝑦 , 𝜏𝑥𝑦 pour en déduire 𝑒𝑥 , 𝑒𝑦 , 𝑒𝑥𝑧 , 𝑔𝑥𝑦 , puis les 

composantes du vecteur déplacement u, v, w. 
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Pour cela nous disposons : 

- Des équations d'équilibre : 

𝜌𝑋𝑥 +
𝜕𝜎𝑥
𝜕𝑥
+
𝜕𝜏𝑦𝑥
𝜕𝑦

= 0                                                      

𝜌𝑋𝑦 +
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

= 0                                   (VIII.12) 

𝜌𝑋𝑧 = 0                                                                                 

Ces relations expriment que les forces volumiques sont contenues dans un plan parallèle à oxy. 

Dans (VIII.12) dérivons la première relation par rapport à x, la seconde par rapport à y et la 
troisième par rapport à z. Ajoutons les résultats ainsi obtenus : 

𝜌
𝜕𝑋𝑥
𝜕𝑥

+
𝜕2𝜎𝑥
𝜕𝑥2

+
𝜕2𝜏𝑦𝑥
𝜕𝑥𝜕𝑦

+ 𝜌
𝜕𝑋𝑦
𝜕𝑦

+
𝜕2𝜏𝑥𝑦
𝜕𝑥𝜕𝑦

+
𝜕2𝜎𝑦
𝜕𝑦2

+ 𝜌
𝜕𝑋𝑧
𝜕𝑧

= 0 

Soit sous forme plus condensée : 

𝜕2𝜎𝑥
𝜕𝑥2

+ 2
𝜕2𝜏𝑦𝑥
𝜕𝑥𝜕𝑦

+
𝜕2𝜎𝑦
𝜕𝑦2

+𝜌𝑑𝑖𝑣𝑋⃗ = 0                             (VIII.13) 

- Des équations de compatibilité : 

Les équations de compatibilité entre les déformations et déplacements deviennent : 

𝜕2𝑒𝑥
𝜕𝑦𝜕𝑧

= 0     
𝜕2𝑒𝑥
𝜕𝑦2

+
𝜕2𝑒𝑦
𝜕𝑥2

= 2
𝜕2𝑔𝑥𝑦
𝜕𝑥𝜕𝑦

                                      

𝜕2𝑒𝑦
𝜕𝑥𝜕𝑧

= 0     
𝜕2𝑒𝑦
𝜕𝑧2

+
𝜕2𝑒𝑧
𝜕𝑦2

= 0                                 (VIII.14) 

𝜕2𝑒𝑧
𝜕𝑥𝜕𝑦

= 0     
𝜕2𝑒𝑧
𝜕𝑥2

+
𝜕2𝑒𝑥
𝜕𝑧2

= 0                                                    

Or, compte tenu des relations contraintes déformations, la relation (VIII.14) s'écrit : 

1

𝐸

𝜕2(𝜎𝑥 − 𝜈𝜎𝑦)

𝜕𝑦2
+
1

𝐸

𝜕2(𝜎𝑦 − 𝜈𝜎𝑥)

𝜕𝑥2
=
1

𝐺

𝜕2𝜏𝑥𝑦
𝜕𝑥𝜕𝑦

  

Des relations (VIII.13) et 𝐺 =
𝐸

2(𝜈+1)
 nous obtenons tous calculs effectués : 

𝜕2(𝜎𝑥 +𝜎𝑦)

𝜕𝑥2
+
𝜕2(𝜎𝑥 + 𝜎𝑦)

𝜕𝑦2
+ (1 + 𝜈)𝜌𝑑𝑖𝑣𝑋⃗ = 0                (VIII.15)   
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5 Etat plan de déformation 

On arrive à une simplification similaire lorsque la dimension suivant l'axe z est très grande, et 
surtout si les extrémités de la pièce considérée sont maintenues entre deux plans fixes  

parfaitement lisses et rigides, de telle sorte que tout déplacement axial soit évité.  

Il existe beaucoup de problèmes importants de cette espèce ; un barrage de retenue, un tube 

cylindrique soumis à une pression interne etc … 

Dans un état plan de déformation les composantes du vecteur déplacement 𝑢⃗⃗(𝑀) sont : 
u=u(x,y), v=v(x,y), w=0 ou égale à une constante. 

Le tenseur des déformations s'écrit dans ces conditions : 

[𝐿𝑑] = [

𝑒𝑥 𝑔𝑥𝑦 0

𝑔𝑥𝑦 𝑒𝑦 0

0 0 0

]        (VIII.16) 

Puisque : 

𝑒𝑥 =
𝜕𝑢

𝜕𝑥
                  𝑒𝑦 =

𝜕𝑣

𝜕𝑦
                          𝑒𝑧 =

𝜕𝑤

𝜕𝑧
= 0  

𝑔𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)                   𝑔𝑥𝑧 =

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) = 0    𝑔𝑦𝑧 = 0 

Les relations entre contraintes et déformations s'écrivent : 

𝜎𝑥 = 2𝐺𝑒𝑥+ 𝜆(𝑒𝑥+ 𝑒𝑦)   𝜏𝑥𝑦 = 2𝐺𝑔𝑥𝑦  

𝜎𝑦 = 2𝐺𝑒𝑦 + 𝜆(𝑒𝑥+ 𝑒𝑦)   𝜏𝑥𝑧 = 0 

𝜎𝑧 = 𝜆(𝑒𝑥 + 𝑒𝑦)                   𝜏𝑦𝑧 = 0 

D'où l'expression du tenseur des contraintes : 

[𝐿] = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 𝜎𝑧

]      (VIII.17) 

Remarquons que :𝑒𝑧 =
1

𝐸
(𝜎𝑧 − 𝜈(𝜎𝑦 +𝜎𝑥)) = 0    ⇒     𝜎𝑧 = 𝜈(𝜎𝑦 +𝜎𝑥)  

Par conséquent, il s'ensuit : 

𝑒𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈 (𝜎𝑦 + 𝜈(𝜎𝑦 +𝜎𝑥))) =

1 + 𝜈

𝐸
((1 − 𝜈)𝜎𝑥 − 𝜈𝜎𝑦)                      

(VIII.18) 

                     𝑒𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈 (𝜎𝑥 + 𝜈(𝜎𝑦 + 𝜎𝑥))) =

1+ 𝜈

𝐸
((1 − 𝜈)𝜎𝑦 − 𝜈𝜎𝑥)           

Comme 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 ,  𝜏𝑥𝑦 ne sont des fonctions que de x et y, l'équation d'équilibre (V.06) 

s'écrit : 
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𝜌𝑋𝑥+
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

= 0 

𝜌𝑋𝑦 +
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

= 0 

𝜌𝑋𝑧 = 0 

Donc, comme pour l'état plan de contrainte, la relation (VIII.13) est inchangée et il en est de 
même pour les équations de compatibilité qui se résument à la relation (VIII.14). 

Reportons la relation (VIII.18) dans la relation (VIII.14) : 

1 + 𝜈

𝐸

𝜕2 ((1 − 𝜈)𝜎𝑥 − 𝜈𝜎𝑦)

𝜕𝑦2
+
1 + 𝜈

𝐸

𝜕2 ((1 − 𝜈)𝜎𝑦 − 𝜈𝜎𝑥)

𝜕𝑥2
=
1

𝐺

𝜕2𝜏𝑥𝑦
𝜕𝑥𝜕𝑦

 

Et compte tenu de (VIII.13) il vient en définitive : 

(1 − 𝜈) (
𝜕2(𝜎𝑥 + 𝜎𝑦)

𝜕𝑥2
+
𝜕2(𝜎𝑥 +𝜎𝑦)

𝜕𝑦2
)+ 𝜌𝑑𝑖𝑣𝑋⃗ = 0 

6 Fonction d'Airy 

Dans le cas particulier fréquent où le champ des forces volumiques 𝜌𝑋⃗ est tel que : 

𝑑𝑖𝑣𝑋⃗ = 0 

Les états plans de contraintes et les états plans de déformations se réduisent à l'équation : 

∆(𝜎𝑥 +𝜎𝑦) =
𝜕2(𝜎𝑥 + 𝜎𝑦)

𝜕𝑥2
+
𝜕2(𝜎𝑥 +𝜎𝑦)

𝜕𝑦2
+
𝜕2(𝜎𝑥 + 𝜎𝑦)

𝜕𝑧2
= 0 

Ces problèmes d'élasticité plane ont une solution générale qui a été donnée par Airy. 

Envisagions les deux cas suivants : 𝑋⃗ = 0⃗⃗ 𝑜𝑢 𝑋⃗ ≠ 0⃗⃗ 

6-1 𝑿⃗⃗⃗ = 𝟎⃗⃗⃗  

Supposons qu'il existe deux fonctions 𝜙 𝑒𝑡 𝜓 telles que : 

𝜎𝑥 =
𝜕𝜙

𝜕𝑦
;   𝜎𝑦 =

𝜕𝜓

𝜕𝑥
;  𝜏𝑥𝑦 = −

𝜕𝜙

𝜕𝑥
= −

𝜕𝜓

𝜕𝑦
 

Posons alors : 𝜙 =
𝜕𝐹

𝜕𝑦
 𝑒𝑡 𝜓 =

𝜕𝐹

𝜕𝑥
 . Il s'ensuit : 

𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
;  𝜎𝑦 =

𝜕2𝐹

𝜕𝑥2
;  𝜏𝑥𝑦 = −

𝜕2𝐹

𝜕𝑥𝜕𝑦
 

Dans ces conditions : 
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𝛥(𝜎𝑥 + 𝜎𝑦) = 𝛥 (
𝜕2𝐹

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑦2
) =

𝜕4𝐹

𝜕𝑥4
+
𝜕4𝐹

𝜕𝑦4
+2

𝜕4𝐹

𝜕𝑥2𝜕2𝑦
= 0 

                                                   = 𝛥(𝛥𝐹) 

Le Laplacien du Laplacien de F est nul, F est une fonction bi-harmonique. C'est la fonction 
d'AIRY. 

6-2 𝑿⃗⃗⃗ dérive d'une fonction de force U 

Soit, par exemple : 𝜌𝑋𝑥 =
𝜕𝑈

𝜕𝑥
 𝑒𝑡 𝜌𝑋𝑦 =

𝜕𝑈

𝜕𝑦
  

Les équations de l'équilibre (VI.06) deviennent : 

𝜕𝑈

𝜕𝑥
+
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

=
𝜕(𝑈 + 𝜎𝑥)

𝜕𝑥
+
𝜕𝜏𝑦𝑥
𝜕𝑦

= 0 

𝜕𝑈

𝜕𝑦
+
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

=
𝜕𝜏𝑦𝑥
𝜕𝑥

+
𝜕(𝑈+ 𝜎𝑦)

𝜕𝑦
= 0 

Ces équations sont satisfaites si on pose : 

𝜎𝑥 + 𝑈 =
𝜕2𝐹

𝜕𝑦2
;  𝜎𝑦 +𝑈 =

𝜕2𝐹

𝜕𝑥2
;   𝜏𝑥𝑦 = −

𝜕2𝐹

𝜕𝑥𝜕𝑦
 

Exercice VIII.2 

Pour barrer une vallée de grande largeur dans la direction 𝑒⃗3 (par exemple dans le but de 
constituer une retenue d'eau) on construit un massif prismatique en béton schématisé ci-après. 

Ce barrage de section triangulaire OAB repose simplement sur le sol par son côté AB et retient 

une certaine hauteur d'eau sur son côté eau OA. Nous étudierons le cas où le barrage est plein. 

Le béton qui constitue ce barrage est supposé homogène, isotrope et élastique, et on désignera 

par 𝜌 sa masse volumique et par 𝜌1 la masse volumique de l'eau.  

La pesanteur est évidemment dirigée suivant 𝑒⃗1. 

         O      𝑒⃗2         y              O       𝑒⃗3         z 
           
 

             𝜃   
  (P1)         (P2) 

 
           A      B 
 

      x               x 

𝑒⃗1 
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1. Sachant que l'on a affaire à un cas de déformation plane, on peut déterminer le champ des 

contraintes en considérant un polynôme du troisième degré comme fonction d'Airy : 

𝐹(𝑥, 𝑦) =
𝐴

6
𝑥3 +

𝐵

6
𝑦3 +

𝐶

2
𝑦2𝑥 +

𝐷

2
𝑦𝑥2 

Exprimer 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 en fonction des constantes A, B, C et D (il est recommandé de bien vérifier 

que les équations de l'équilibre sont satisfaites). 

2. Exprimer les conditions aux limites sur le plan vertical (𝑃1) défini par y=0 (on se rappellera 
que par définition des états de référence, il ne faut comptabiliser que les pressions effectives : 
(𝑝 − 𝑝𝑎𝑡𝑚) 

3. Exprimer les conditions aux limites sur le plan (𝑃2) défini par 𝑦 − 𝛽𝑥 𝑎𝑣𝑒𝑐 𝛽 = 𝑡𝑔𝜃. On 
remarquera que ce plan n'est pas chargé puisqu'il n'est soumis qu'à la pression atmosphérique 
𝑝𝑎𝑡𝑚 . 

4. Calculer en fonction de 𝛽, 𝜌, 𝜌1, 𝑔, 𝑥 𝑒𝑡 𝑦  l'expression des contraintes :𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦. 

Corrigé 
1. Nous avons : 

𝜎𝑥 +𝑈 =
𝜕2𝐹

𝜕𝑦2
=
𝜕

𝜕𝑦
(
𝐵

2
𝑦2 + 𝐶𝑦𝑥 +

𝐷

2
𝑥2) 

𝜎𝑦 + 𝑈 =
𝜕2𝐹

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝐴

2
𝑥2 +

𝐶

2
𝑦2 +𝐷𝑦𝑥) 

𝜏𝑥𝑦 = −
𝜕2𝐹

𝜕𝑥𝜕𝑦
= −

𝜕

𝜕𝑥
(
𝐵

2
𝑦2 +𝐶𝑦𝑥 +

𝐷

2
𝑥2) 

Puisque la pesanteur est dirigée suivant 𝑒⃗1 nous avons 𝑈 = 𝜌𝑔𝑥, il s'ensuit que l'expression 
des contraintes est : 

𝜎𝑥 = 𝐵𝑦+𝐶𝑥 − 𝜌𝑔𝑥 
𝜎𝑦 = 𝐴𝑥 +𝐷𝑦 − 𝜌𝑔𝑥 

𝜏𝑥𝑦 = −𝐶𝑦−𝐷𝑥 

Nous avons bien : 

𝜌𝑋𝑥 +
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

= 𝜌𝑔+ 𝐶 − 𝜌𝑔 − 𝐶 = 0 

𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

= −𝐷 +𝐷 = 0 

2. En vertu de l'équation fondamentale de l'hydrostatique nous avons dans notre repère : 

𝑝

𝜌1𝑔
=
𝑝𝑎𝑡𝑚
𝜌1𝑔

+ 𝑥  ⇒   𝑝 − 𝑝𝑎𝑡𝑚 = 𝜌1𝑔𝑥 

Nous avons pour la facette définie par −𝑒⃗2 au point 

 1 1M P  : 

𝑐(𝑀1,−𝑒⃗2) = (𝑝 − 𝑝𝑎𝑡𝑚)𝑒⃗2 = 𝜌1𝑔𝑥𝑒⃗2 
Comme il s'agit d'un état plan de déformation cette 
relation s'écrit : 

 

                    0 
 

 

   −𝑒⃗2           1M   

 
 
                 x 
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𝑐(𝑀1,−𝑒⃗2) = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 𝜎𝑧

] [
0
−1
0
] = [

0
𝜌1𝑔𝑥
0
] 

Soit : 

−𝜏𝑥𝑦 = 𝐶𝑦+𝐷𝑥 = 0 

−𝜎𝑦 = 𝜌1𝑔𝑥 = −𝐴𝑥 − 𝐷𝑦 + 𝜌𝑔𝑥  

Or sur ce plan (𝑃1) 𝑦 = 0 ⇒ 𝐴 = (𝜌 − 𝜌1)𝑔 𝑒𝑡 𝐷 = 0. 

3. Au point 𝑀2 ∈ (𝑃2) sur la facette définie par 𝑢⃗⃗ (𝜃 +
𝜋

2
) nous avons : 𝑐 (𝑀2, 𝑢⃗⃗ (𝜃 +

𝜋

2
)) = 0⃗⃗ 

  A 

        𝑒⃗1               

           𝑢⃗⃗ (𝜃 +
𝜋

2
)  

                 

                            𝑀2 
           
                                  B 

Puisque le plan  2P  n'est pas chargé. 

𝑐 (𝑀2, 𝑢⃗⃗ (𝜃 +
𝜋

2
)) = [

𝜎𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦 0

0 0 𝜎𝑧

] [
−𝑠𝑖𝑛 𝜃
𝑐𝑜𝑠 𝜃
0

] = 0⃗⃗  

 

Il s'ensuit donc : 

−𝜎𝑥 𝑠𝑖𝑛 𝜃 + 𝜏𝑥𝑦 𝑐𝑜𝑠 𝜃 = 0 

−𝜏𝑥𝑦 𝑠𝑖𝑛 𝜃 + 𝜎𝑦 𝑐𝑜𝑠 𝜃 = 0 

Compte tenu de l'expression des contraintes en fonction des constantes A, B, C, D, ces deux 
relations s'écrivent : 

−(𝐵𝑦+ 𝐶𝑥 − 𝜌𝑔𝑥) 𝑠𝑖𝑛 𝜃 − (𝐶𝑦+ 𝐷𝑥) 𝑐𝑜𝑠 𝜃 = 0 
  (𝐶𝑦+𝐷𝑥) 𝑠𝑖𝑛 𝜃 + (𝐴𝑥 + 𝐷𝑦− 𝜌𝑔𝑥) 𝑐𝑜𝑠 𝜃 = 0 

 

Puisque 𝑦 = 𝛽𝑥 𝑎𝑣𝑒𝑐 𝛽 = 𝑡𝑔𝜃 nous avons : 

−(𝐵𝛽 + 𝐶 − 𝜌𝑔)𝛽𝑥 − (𝐶𝛽 + 𝐷)𝑥 = 0 ⇒  −𝐵𝛽2 + (𝜌𝑔− 2𝐶)𝛽 −𝐷 = 0 
  (𝐶𝛽 +𝐷)𝛽𝑥 + (𝐴 +𝐷𝛽 − 𝜌𝑔)𝑥 = 0 ⇒    𝐶𝛽2 +2𝐷𝛽 +𝐴 − 𝜌𝑔 = 0 

Puisque nous avons𝐴 = (𝜌 − 𝜌1)𝑔 𝑒𝑡 𝐷 = 0 les valeurs des constantes C et B sont : 

𝐶 =
𝜌1𝑔

𝛽2
 𝑒𝑡 𝐵 =

𝜌𝑔

𝛽
−
2𝜌1𝑔

𝛽3
 

4. Les valeurs des constantes A, B, C, D permettent d'exprimer les contraintes 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 en 

fonction de 𝛽, 𝜌, 𝜌1, 𝑔, 𝑥 𝑒𝑡 𝑦. Soit : 

𝜎𝑥 = (
𝜌𝑔

𝛽
−
2𝜌1𝑔

𝛽3
) 𝑦 +

𝜌1𝑔

𝛽2
𝑥 − 𝜌𝑔𝑥 = ((𝜌−

2𝜌1
𝛽2
)
𝑦

𝛽
+ (

𝜌1
𝛽2
−𝜌) 𝑥) 𝑔 

𝜎𝑦 = (𝜌 − 𝜌1)𝑔𝑥 − 𝜌𝑔𝑥 

𝜏𝑥𝑦 = −
𝜌1𝑔

𝛽2
𝑦 
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Chapitre IX 

Aspect macroscopique de l’état fluide 
 

1 Pression 

Pour aborder la notion de fluide sous l'aspect macroscopique, il est commode d'utiliser la notion 
de contrainte dans les corps solides. 

Une contrainte normale dirigée vers l'intérieur est appelée compression ou pression. Dans un 
fluide il n'y a que des pressions. Bien que dans certains états métastables, sortant du cadre de 

cet ouvrage, on puisse observer des tensions dans les liquides. 

Il faut six grandeurs pour définir en un point l'état de contrainte d'un solide et il en est de même 

pour un fluide. 

Les liquides sont caractérisés par une masse volumique relativement importante et sont 
pratiquement incompressibles, ce qui est le contraire pour les gaz. 

On distingue des corps intermédiaires entre les fluides et les solides tels que l’argile, le verre 
en fusion, les métaux lorsqu’on les forge, le béton avant coulée etc…. 

L’étude entre les déformations et les contraintes appliquées à ces corps s’appelle la rhéologie. 

2 Fluide parfait 

Les notions de fluide parfait et de gaz parfait sont souvent des sources de confusions. 

Tout d'abord, intéressons-nous au fluide parfait. Le gaz parfait a été précédemment défini sous 

l'aspect microscopique. Il sera évoqué en fin de chapitre sous l'aspect macroscopique. 

La théorie de l'élasticité montre que dans un solide isotrope les contraintes sont liées aux 

déformations par des relations linéaires, ce qui n'est pas le cas pour les fluides. 

Dans les gaz et les liquides, les contraintes tangentielles dépendent de la vitesse à laquelle la 
déformation s'est effectuée. 

Dans un fluide au repos la vitesse est égale à zéro, il s'ensuit que les contraintes tangentielles 
sont nulles. 

Lorsqu'en tout point M d'un fluide en mouvement les contraintes tangentielles sont nulles, quel 
que soit la facette, nous dirons que le fluide est parfait. 

Les fluides réels ne répondent généralement pas à cette condition. 
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La notion de fluide parfait constitue une fiction qu'il est cependant utile d'étudier pour avoir un 

terme de comparaison commode. Les fluides réels apparaissent alors comme s'en rapprochant 
plus ou moins. 

Quand les phénomènes de viscosité restent faibles, on pourra en première approximation 
admettre dans les calculs que le fluide réel se comporte comme un fluide parfait. 

En désignant par p la pression d'un fluide parfait en mouvement ou d'un fluide réel au repos le 

vecteur "contrainte" devient : 

𝐶(𝑀,  𝑛⃗⃗) = −𝑝𝑛⃗⃗ 

Puisqu'il ne subsiste que des contraintes normales. 

Cette pression est donc indépendante de son orientation, c'est le principe de Pascal. 

3 Principe zéro de la thermodynamique 

Un corps nous paraît plus ou moins chaud (ou froid) suivant la sensation que nous avons en le 
touchant. La comparaison de ces constatations tactiles ne peut pas, évidemment, conduire à des 

résultats très satisfaisants. 

Par contre, l'étude de certains phénomènes physiques nous a permis d'établir sans ambiguïté un 
classement d'après leur ordre d'intensité. Notamment, depuis fort longtemps, on a remarqué que 

la dilatation des corps suit celle de nos impressions sensorielles. 

Lorsqu'on met en contact un corps chaud et un corps froid, on constate que le corps chaud se 
refroidit en se contractant et le corps froid s'échauffe en se dilatant. Ces variations de volume 

se ralentissent et lorsqu'elles ont cessé nous disons que les corps sont en équilibre thermique. 

Deux corps mis en contact prolongé se mettent en équilibre thermique. Deux corps en équilibre 

thermique avec un troisième sont aussi en équilibre thermique entre eux. 

Cet énoncé constitue le principe zéro de la thermodynamique. 

La température caractérisant l'état thermique d'un corps peut être mesurée grâce à ce principe. 

Un "thermomètre" repère non seulement sa propre température mais également celle du milieu 
dans lequel il se trouve. 

4 Température 

Les premiers thermoscopes, ballon surmonté d'une tige mince, cylindrique et contenant un 
liquide dont on observe la dilatation remontent à environ deux siècles avant notre ère. Il a fallu 

attendre le début du dix-septième siècle pour repérer des points fixes et ainsi réaliser un 
thermomètre. 
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4-1 Température centésimale 

On prend arbitrairement deux états d'équilibre thermique 0 et 1 différents et reproductibles. A 
ces deux états bien définis correspondent, pour un thermoscope donné, deux longueurs de 

liquide l0 et l1 auxquelles on associe les grandeurs t0 et t1 appelées température. 

Très longtemps en France, ces états d'équilibre ont été obtenus en utilisant les propriétés de 
l'eau pure. Sous la pression atmosphérique normale de 101325 Pa la température t0 = 0° est 

choisie pour la fusion de la glace et t1 = 100° pour l'ébullition de l'eau. 

L'intervalle 0-100 de la tige cylindrique est divisé en 100 parties égales et la graduation est 

prolongée de part et d'autre. La température est déterminée par la loi d'interpolation linéaire : 

𝑡 − 𝑡0
𝑡1 − 𝑡0

=
𝑡 − 0

100 − 0
=
𝑙 − 𝑙0
𝑙1 − 𝑙0

 

Un tel appareil est appelé un thermomètre, la lecture est l et la température t correspondante est 
dite centésimale. 

Pour des liquides thermométriques différents, les valeurs des températures correspondent à 0° 

et 100° mais divergent plus ou moins aux autres températures. 

Il est important de noter qu'au sens strict du terme, la température définie avec cette échelle 

centésimale n'est pas une grandeur mesurable. 

Le rapport de deux températures n'a pas de sens physique. 

4-2 Température Kelvin 

Dans ce qui précède nous avons utilisé une grandeur thermométrique constituée par la longueur 
d'une colonne de liquide, ce qui est usuel. Mais la grandeur thermométrique peut être tout autre 
comme la dilatation d'un solide (bilame), la résistance d'un fil de platine, la force électromotrice 

d'un thermocouple ou bien la pression d'un gaz à volume constant. 

Sous l'action de la température les gaz se dilatent beaucoup plus que les liquides ou les solides. 
Il s'ensuit que l'utilisation de thermomètres à gaz basés sur la variation de volume à pression 

constante, ou sur la variation de pression à volume constant, apporte plus de rigueur à la 
définition de la température. 

Prenons l'exemple du thermomètre à gaz à variation de volume V sous la pression 
atmosphérique normale de 101325 Pa. En utilisant les états d'équilibre précédemment définis, 
nous pouvons écrire : 

𝑡 − 𝑡0
𝑡1 − 𝑡0

=
𝑡 − 0

100 − 0
=
𝑉 −𝑉0
𝑉1 −𝑉0

 

Soit encore : 

𝑉

𝑉0
= 𝛼𝑡 + 1 𝑎𝑣𝑒𝑐 𝛼 = (

𝑉1
𝑉0
− 1)

1

100
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De même avec un thermomètre à gaz à variation de pression sous volume constant nous aurions  

𝑝

𝑝0
= 𝛽𝑡 + 1   avec    𝛽 = (

𝑝1
𝑝0
−1)

1

100
 

Le tableau ci-dessous donne, pour quelques gaz, les valeurs de 𝛼 et 𝛽 obtenues dans des 
conditions proches des normales de pression et de température. 

 Hélium Hydrogène Azote Oxygène CO2 

𝛼 
1

273,4
 

1

273,3
 

1

272,4
 

1

272,4
 

1

269,5
 

𝛽 
1

273,2
 

1

273,1
 

1

272,4
 

1

273,4
 

1

271,1
 

Si nous faisons tendre la pression vers zéro, nous trouvons pour tous les gaz : 

𝛼0 = 𝛽0 =
1

273,15
 

Les coefficients 𝛼 et 𝛽 sont affectés de l'indice "0" pour bien marquer la différence avec les 
résultats précédemment obtenus. 

Lorsque cette égalité est satisfaite en dehors de cette condition restrictive (pression qui tend 

vers zéro), le gaz est dit parfait. 

Pour un thermomètre utilisant un gaz parfait et fonctionnant à pression constante le rapport des 
volumes devient : 

𝑉

𝑉0
= 𝛼0𝑡 + 1 

Cette relation, appelée loi de Gay-Lussac, devient en posant 𝑇 = 𝑡 + 273.15 : 

𝑉

𝑉0
=

𝑇

273,15
 

Le même raisonnement pour le thermomètre à gaz, à variation de pression sous volume 
constant, conduit à un résultat analogue, que l'on désigne parfois par loi de Charles. 

𝑝

𝑝0
=

𝑇

273,15
  

T est l'unité légale de température, elle fut d'abord appelée degré Kelvin (°k) pour être 
maintenant désignée par Kelvin (symbole K). 

À pression constante l'expression 𝑉/𝑉0 = 𝑇/273,15  montre que la température T ne peut 
jamais être négative. Ce qui justifie le qualificatif donné à T de température absolue du gaz 

parfait. L'origine est qualifiée de zéro absolu. 
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La température absolue d'un gaz parfait est une grandeur mesurable. Elle est directement liée à 

une propriété de ce gaz. 

Par contre, la température absolue d'un corps quelconque, mesurée par comparaison avec un 

gaz parfait, n'a pas les caractères d'une grandeur mesurable. Mais nous verrons que la 
température absolue s'identifie à la température thermodynamique, qui apparaît comme 
mesurable vis-à-vis d'un corps quelconque. C'est ce qui justifie le choix préférentiel de cette 

échelle de température. 

4-3 Température Celsius 

Pour des questions de commodité, le comité international des poids et mesures permet l'usage 
de température Celsius définie par la relation : 

𝑡 = 𝑇 − 273.15 

L'unité de mesure est le degré Celsius, symbole °C. Une différence de température s'exprime 
en °C par le même nombre qu'en Kelvin. 

Le symbole de la température Celsius est t ou 𝜃. Lorsque t prête à confusion, notamment avec 

le temps t, on utilise alors 𝜃. 

Exercice IX.1 

Le but de cet exercice est de comparer deux thermomètres différents et ceci dans l'intervalle de 

température compris entre 0°C et 100°C. 

L'un utilise une grandeur thermométrique satisfaisant la relation :𝑋(𝑡) = 𝑎 + 𝑏𝑡+ 𝑐𝑡2ou t est 
la température Celsius et a, b et c sont des constantes. 

L'autre thermomètre fonctionne suivant une échelle centésimale dont la grandeur 

thermométrique est 𝑋(𝜃) = 𝐴𝜃 + 𝐵 Le terme θ  est la température centésimale. 

Sachant que ces deux thermomètres doivent parfaitement correspondre à 0° et 100° déterminer 

à quelle température t l'écart 𝑡 − 𝜃 passe par une valeur maximale. 

Corrigé 

Puisque ces deux thermomètres doivent correspondre aux états d'équilibre de 0° et 100° nous 

pouvons écrire : 

X(0)=a=B 

X(100)=a+100b+10000c=100A+B 

Il s'ensuit   A=b+100c 

Pour obtenir l'écart maximal il faut déjà que les températures lues sur les deux thermomètres 

soient égales : 𝑋(𝑡) = 𝑋(𝜃) 

Soit encore : 
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a+bt+ct2 = (b+100c) 𝜃 +a 

D'où la valeur de 𝜃 et de t- 𝜃 

𝜃 =
𝑏𝑡 + 𝑐𝑡2

𝑏 + 100𝑐
 

𝑡 − 𝜃 =
100𝑐𝑡 − 𝑐𝑡2

𝑏 + 100𝑐
 

Cet écart sera maximal pour t=50°C, puisque : 

𝑑(𝑡− 𝜃)

𝑑𝑡
=
100𝑐 − 2𝑐𝑡

𝑏 + 100𝑐
= 0 

5 Chaleur 

5-1 Équation calorimétrique 

Mettons en contact prolongé deux corps de même nature et de même masse à des températures 
différentes t1 et t2. Ces deux corps se mettent en équilibre thermique, conformément au principe 
zéro de la thermodynamique. Nous savons que cette température finale sera sensiblement égale 
à la moyenne arithmétique des températures initiales t1 et t2. 

𝑡𝑓 =
𝑡1 + 𝑡2
2

 ou encore (𝑡𝑓 − 𝑡1) + (𝑡𝑓 − 𝑡2) = 0  

Si les deux corps sont de même nature mais de masse différente cette relation devient : 

𝑡𝑓 =
𝑚1𝑡1 +𝑚2𝑡2
𝑚1 + 𝑚2

 ou bien ∶   𝑚1(𝑡𝑓 − 𝑡1) + 𝑚2(𝑡𝑓 − 𝑡2)  

Exercice IX.2 

Pour remplir une baignoire de 140 dm3 on dispose d'eau à 80°C. Quelle devra être la quantité 

d'eau froide à 10°C à mélanger pour obtenir une eau à 37°C. La masse volumique de l'eau est 
de 1000 Kg/m3. 

Corrigé 

m1 (tf – t1) + m2 (tf – t2) = m1 (37 – 80) + m2 (80 – 10) =0 

m1 + m2 = 0,140 x 1000 =140 Kg 

Nous avons deux équations et deux inconnues d’où: m1 = 54 Kg et m2 = 86 Kg. 

Si les deux corps sont différents, nature et masse, la température finale est donnée par une 
relation de la forme : 

m1 c1 (tf – t1) + m2 c2 (tf – t2) = 0 
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Cette relation se généralise pour n corps en contact thermique, sans action chimique les uns sur 

les autres. 

∑𝑚𝑖𝑐𝑖(𝑡𝑓 − 𝑡𝑖) = 0

𝑖=𝑛

𝑖=1

 

Le produit mici=Ci qui caractérise un corps donné de masse mi est appelé capacité thermique. 

Le coefficient ci qui dépend de la nature du corps considéré est la capacité thermique massique. 

Remarquons que cette relation est valable aussi bien pour des températures exprimées en Kelvin 

qu'en degré Celsius puisqu'elles n'interviennent que par leurs différences. 

La quantité Qi = 𝑚𝑖𝑐𝑖(𝑡𝑓 − 𝑡𝑖) est appelée quantité de chaleur échangée par le corps "i" avec 

les autres corps. 

Lorsque n corps sont mis en contact prolongé et se mettent mutuellement en équilibre 
thermique, la somme algébrique des quantités de chaleur échangées par chaque corps avec les 
autres est nulle. 

∑𝑄𝑖 = 0

𝑖=𝑛

𝑖=1

 

Cette relation est appelée ; équation calorimétrique. 

5-2 Quantité de chaleur 

L'équation calorimétrique montre qu'entre deux corps en contact la quantité de chaleur gagnée 
par l'un est égale à la quantité de chaleur perdue par l'autre. 

Les physiciens du XVIIIème siècle avaient établi expérimentalement cette propriété. Ils 
pensaient que la quantité de chaleur jouait le rôle d'une grandeur indestructible analogue à la 
masse en mécanique du solide. Pour eux la chaleur apparaissait comme une substance 

constituée par un fluide immatériel imprégnant les corps en quantité totale invariable dans la 
nature et susceptible de passer d'un corps à un autre. 

Ils désignaient à l'époque "phlogistique" cette substance pour l'appeler, ensuite, au milieu du 
XIXème siècle le "calorique". 

Cette propriété de conservation n'est valable que dans les phénomènes purement calorifiques. 

Si l'énergie mécanique intervient, la quantité de chaleur ne reste pas constante, d’où la nécessité 
d'utiliser la thermodynamique. Malgré tout, nous avons conservé le langage de l'époque du 

"calorique" en parlant de "chaleur" présente dans un corps. Elle est apportée, cédée, dégagée, 
absorbée, perdue, reçue, gagnée, emportée un peu comme si la chaleur était une substance. 

La chaleur, dans le langage commun, est souvent confondue avec la notion de température. 

Cette confusion est entretenue, en bonne partie, par la définition précédente : Qi = 𝑚𝑖𝑐𝑖(𝑡𝑓 − 𝑡𝑖) 
où la chaleur reçue entraîne forcément une augmentation de température et inversement. 
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En fait un système peut recevoir ou céder de la chaleur sans qu'il y ait variation de température. 

C'est le cas d'un changement d'état physique comme par exemple la fusion de la glace ou 
l'ébullition de l'eau à pression constante. 

De même, la température d'un système peut se trouver modifiée sans observer de transfert de 
chaleur. L'évolution du fluide contenu à l'intérieur d'une turbomachine s'effectue, la plupart du 
temps, sans transfert de chaleur. Pourtant la température du fluide, entre la bride d'entrée et la 

bride de sortie, augmente ou diminue suivant qu'il s'agit d'une machine de compression ou de 
détente. Il y a eu échange d'énergie mécanique. 

Il est très important de noter qu'une quantité de chaleur ne se perçoit qu'à son transfert d'un 
corps à un autre. 

Le développement de la thermodynamique statistique a permis de définir la chaleur comme un 

transfert de l'agitation thermique des particules. 

Prenons un exemple simple. Au gré des chocs aléatoires qui se produisent à l'échelle 

microscopique, les molécules d'un gaz chaud, plus agitées, frappent les molécules d'un gaz  froid 
en leur cédant de façon désordonnée une partie de leur énergie, jusqu'à ce que l'équilibre 
thermique soit atteint. 

À l'équilibre thermique, la température absolue d'un gaz mesure le degré d'agitation des 
molécules. Un gaz dont les particules sont plus agitées présentera une température d'équilibre 

plus élevée et inversement. 

En résumé la température est une grandeur servant à décrire l'état d'équilibre d'un système alors 
que la quantité de chaleur est un transfert d'agitation thermique assimilable à une quantité 

d'énergie. 

Il faut donc absolument éviter de confondre température et quantité de chaleur. Une quantité de 
chaleur fournie par une "source" à la température T 1 n'est pas équivalente à la même quantité 

de chaleur cédée à la température T 2 plus faible. La première est susceptible d'effets dont la 
seconde est incapable (cuisson d'un œuf par exemple). 

La chaleur étant une forme d'énergie, les quantités de chaleur se mesurent avec les mêmes unités 
que le travail, donc en Joules. Bien que ce soit déconseillé par le Comité International des Poids 
et Mesures, la calorie est encore parfois utilisée. 

La calorie (symbole cal) est la quantité de chaleur nécessaire pour élever la température de 1 g 
d'eau de 14,5°C à 15,5°C sous la pression normale de 101325 Pa. 

La calorie désignée parfois par "petite calorie" est : 1cal = 4,1855J. 

La kilocalorie, appelée "grande calorie est :  1kcal = 4,1855kJ 

La thermie est:     1thermie = 106 cal 

Dans les industries frigorifiques il est courant d'exprimer les quantités de chaleur enlevées en 

frigories (fg). La frigorie est une kcal négative : 1fg = − 1kcal 

http://fr.wikipedia.org/wiki/Changement_d%27%C3%A9tat
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Citons à titre d'information :  1kwh = 3600 kJ = Kcal
1855,4

3600  = 860kcal 

La tonne équivalente de pétrole (tep)  

 1 tep = 4,1855 1010J. 

 

5-3 Capacité thermique massique 

Pour un corps donné la valeur de la capacité thermique massique n'est pas une constante. Elle 
varie essentiellement avec la température. Dans l'intervalle de température t1, t2 et pour une 

masse unité, l'expression : 𝑐 =
𝛿𝑄

𝑑𝑡
 est appelée capacité thermique massique vraie. 

Alors que : 𝑐 =
𝑄

𝑡1−𝑡2
 est la capacité thermique massique moyenne. 

Expérimentalement, les capacités thermiques massiques vraies sont déterminées à pression 
constantes ou à volume constant. Elles sont notées respectivement cp et cv. 

cp est la capacité thermique massique à pression constante. 

cv est la capacité thermique massique à volume constant. 

Remarques : 

- La valeur de la capacité thermique massique moyenne ne dépend pas du sens de l'évolution. 
En d'autres termes, la quantité de chaleur reçue par un corps qui s'échauffe de ti à tf  est égale à 
celle qu’il céderait en se refroidissant de tf à ti. 

- La valeur de la capacité thermique massique d'un corps en contact avec un autre corps ne 
dépend pas de la nature du partenaire. 

- Pour les liquides et les solides, les tables donnent en principe les capacités thermiques 
massiques à pression constante. Il est difficile de maintenir un liquide ou un solide à volume 
constant pendant son échauffement. Il faudrait, pour cela, maintenir le corps dans une enveloppe 

absolument indilatable. 

Exercice IX.3 

Le calorimètre dit de Berthelot permet de déterminer la capacité thermique massique d'un 
corps. Très schématiquement il est constitué d'un réservoir conformément à la figure IX.01. 

On suppose avoir pris les précautions nécessaires pour que les échanges de chaleur entre 

l'enceinte calorimétrique et le milieu extérieur soient négligeables. 

Ce calorimètre contient 0,1kg d'eau à 16°C et la capacité thermique du vase et de ses 

accessoires est de 75J/K. La capacité thermique massique à pression constante de l'eau est 
cp=4185J/kg K. 
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On plonge dans l’eau un corps métallique pesant 0,03kg et ayant une température de 84°C.A 

l'équilibre thermique la température finale est de 17,6°C. 

Calculer la capacité thermique massique à pression constante de cet échantillon métallique. 

Corrigé 

Pour l'ensemble du système contenu à l'intérieur de l'enceinte il n'y a ni travail, ni chaleur 
échangée avec le milieu extérieur. 

                                    Thermomètre     
 

 
  Parois isolantes 
 

 
     Enceinte 

 calorimétrique 

 

 

Support isolants 

Figure IX.01 Calorimètre dit de Berthelot 

Corrigé 

Il faut donc appliquer l'équation calorimétrique : 

∑𝑄𝑖 = 0

𝑖=𝑛

𝑖=1

 

Soit : 
     0,1  4185,5  17,6 16   75  17,6 16  0,03  c  17,6 84   0p           

Une équation, une inconnue d’où : 

cp = 396 J/kg K 

 

5-4 Source de chaleur 

Une source de chaleur est un milieu à température uniforme dans lequel la capacité thermique 
est très grande par rapport à celle du système étudié. Si bien qu'une source de chaleur peut 
recevoir ou céder des quantités de chaleur quelconques, en gardant invariablement la même 

température, grandeur qui la caractérise. 

6 Gaz parfait 

La notion de gaz parfait (qu'il ne faut pas confondre avec celle de fluide parfait) est une assez 
bonne approximation lorsque les conditions de pression du gaz se trouvent éloignées de la zone 

de liquéfaction. 

L'hypothèse du gaz parfait présente un intérêt pratique dans les applications industrielles. 

6-1 Équation d'état des gaz parfaits 

Les premières études concernant les relations entre le volume et la pression d'une masse de gaz 
ont abouti à la loi de Mariotte, attribuée aussi à Boyle: 

"Les volumes occupés par une masse déterminée de gaz, maintenue à température constante, 
sont inversement proportionnels aux pressions qu'ils supportent". 

L'évolution isotherme d'un gaz parfait traduit cette loi par la relation pV = constante. 
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D'une façon générale, il faut distinguer trois variables pour caractériser l'état d'un gaz, sa 

pression p, sa température T et son volume V. Dans le cas d'un gaz parfait la combinaison, de 
la loi de Mariotte avec celle de Gay-Lussac (ou de Charles), permet d'obtenir facilement son 

équation d'état. 

Pour le montrer considérons une évolution isotherme pV=Cte suivie d'une évolution isobare : 

𝑉

𝑉0
=

𝑇

273,15
 

Représentons ces évolutions sur un diagramme, dit de Clapeyron, obtenu en portant p en 
ordonnée et V en abscisse. Soit une masse quelconque de gaz parfait dans un état initial i 

caractérisé par pi, Vi et Ti. 

Supposons qu'on l'emmène dans un état final f défini par pf, Vf et Tf en passant par un état 
intermédiaire 1 où il règne pf, V1 et Ti. 

Nous pouvons écrire piVi=pfV1 pour l'évolution isotherme de i à 1. 

  p  

          1      f 
pf  
 

         p=constante 
 

 
    T=constante 
 

 
  pi     i 

 
          V1       Vf         Vi      V 

Figure IX.02 Diagramme de Clapeyron 

 

 
Pour l'évolution isobare de 1 à f, nous avons : 

𝑉1
𝑉0
=

𝑇𝑖
273,15

 𝑒𝑡 
𝑉𝑓
𝑉0
=

𝑇𝑓
273,15

 

Soit : 𝑉1 =
𝑇𝑖

𝑇𝑓
𝑉𝑓 = 

𝑝𝑖

𝑝𝑓
𝑉𝑖 

Ou encore : 
𝑝𝑓𝑉𝑓

𝑇𝑓
=  

𝑝𝑖𝑉𝑖

𝑇𝑖
=
𝑝𝑉

𝑇
= constante 

Puisque l'état initial i et l'état final f ont été 
choisis de façon arbitraire. 

 

 
Pour une mole de gaz parfait, ce résultat s'écrit : 

𝑝𝑉𝑚
𝑇
= 𝑅 

C'est-à-dire l'équation d'état des gaz parfaits, déjà obtenue au chapitre consacré aux notions sur 
l'aspect microscopique de l'état fluide. 

Utilisons les conditions normales pour calculer la constante universelle R des gaz parfaits : 

𝑅 =
𝑝0⏞

101325  𝑃𝑎

   𝑉𝑚0
⏞

0,02241383 𝑚3/𝑚𝑜𝑙

𝑇0⏟
273,15  𝐾

= 8,3144. . .
𝐽

𝑚𝑜𝑙. 𝐾
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Cette expression, établie pour une mole de gaz parfait, revêt d'autres formes qui sont très 

utilisées dans les applications pratiques de la thermodynamique. À cet effet multiplions les deux 
membres de l'équation d'état des gaz parfaits par le nombre de moles n. 

De la définition du volume molaire, il vient immédiatement p V = n R T 

Il est commode de poser : r = R/M. Cette fois r est une constante qui dépend de la nature du gaz 
parfait considéré, ce qui n'est pas le cas pour R. 

Cette constante r s'exprime en Joule par kilogramme Kelvin (J/kg K). 

De la définition de la masse molaire nous déduisons : 

𝑝𝑉 = 𝑛𝑀𝑟𝑇 = 𝑚𝑟𝑇 

Et de la définition du volume massique : 𝑝
𝑉

𝑚
= 𝑝𝑣 = 𝑟𝑇 

Moyennant quoi, pour plus de clartés, récapitulons ci-dessous les diverses écritures de 

l'équation d'état des gaz parfaits : 

pVm = RT 

pV = nRT 

pV = mrT 

pv = rT 

Exercice IX.4 

Sachant que dans les conditions normales de pression et de température la masse volumique 

de l'air est 
3

0 1,293kg/mρ   calculer sa constante r en supposant qu'il se comporte comme un 

gaz parfait. 

Corrigé 

Écrivons l'équation d'état dans les conditions normales : 

𝑝0𝑣0 = 𝑝0
1

𝜌0
= 𝑟𝑇0 

Soit : 

287J/kg.K
273,15x1,293

101325
r   

Exercice IX.5 

Les pneus d'une automobile sont gonflés à 2 bar lorsque la température ambiante est de -8°C. 

Quelle sera la pression de l'air à l'intérieur des pneus si l'automobile se retrouve dans un 
endroit où la température est de 18°C ? 
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Pour simplifier, on supposera invariable le volume intérieur des pneus. 

Corrigé 

Affectons de l'indice "1" les caractéristiques de l'air à 2 bar et -8°C et par l'indice "2" lorsque 

la température est de 18°C. 

De l'équation d'état des gaz parfaits nous déduisons : 

p1V1=mrT1 

p2V2=mrT2 

Puisque par hypothèse V1=V2 il vient immédiatement : 

𝑝2 =
𝑇2
𝑇1
𝑝1 =

273,15 + 18

273,15 − 8
2 

 p2=2,196 bar 

6-2 Mélange de gaz parfaits 

Considérons un mélange constitué d'un gaz G1 de masse m2, d'un gaz G2 de masse m2, ….. Gi 
de masse mi……etc.…et désignons par N le nombre de ses constituants. 

La masse totale du mélange sera ∶ 𝑚 =∑𝑚𝑄𝑖

𝑖=𝑁

𝑖=1

 

La composition d'un mélange est définie par les fractions massiques et molaires de ses 
constituants. 

La fraction massique d'un constituant de masse mi est le rapport de sa masse mi à la masse totale 
du mélange. Son symbole est wi. 

𝑤𝑖 =
𝑚𝑖

𝑚
 

La fraction molaire d'un constituant de masse mi est le rapport du nombre de moles ni de ce 

constituant au nombre total n de moles du mélange. Son symbole est xi. 

𝑥𝑖 =
𝑛𝑖
𝑛

 

La masse molaire d'un mélange s'écrit tout simplement : 

𝑀 =
𝑚

𝑛
=
∑ 𝑚𝑖
𝑖=𝑁
𝑖=1

𝑛
=
∑ 𝑀𝑖𝑛𝑖
𝑖=𝑁
𝑖=1

𝑛
=∑𝑀𝑖

𝑖=𝑁

𝑖=1

𝑛𝑖
𝑛
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𝑀 =∑𝑀𝑖

𝑖=𝑁

𝑖=1

𝑥𝑖 

De même la constante r d'un mélange de gaz parfait s'écrit : 

𝑟 =
𝑅

𝑀
=
𝑅𝑛

𝑚
= ∑

𝑅𝑛𝑖
𝑚

𝑖=𝑁

𝑖=1

= ∑
𝑟𝑖𝑚𝑖
𝑚

𝑖=𝑁

𝑖=1

 

𝑟 = ∑𝑟𝑖

𝑖=𝑁

𝑖=1

𝑤𝑖 

Exercice IX.6 

Si l'on considère que l'air est un mélange dans la proportion de 79 moles d'azote pour 21 moles 
d'oxygène, calculer la masse molaire de l'air. 

(La masse molaire de l'azote est de 0,028 kg/mol et de 0,032 pour kg/mol l'oxygène). 

Corrigé 

mol/kg02884,0
2179

21
032,0

2179

79
028,0M 





  

En fait la masse molaire est de 0,02896 kg/mol en tenant compte des autres constituants de 

l'air. 

6-3 Loi de Dalton 

Un mélange de gaz parfaits se comporte comme un gaz parfait. Par conséquent en désignant 
par p, V, T, et n la pression, le volume, la température et le nombre de moles du mélange, 
l'équation d'état du mélange s'écrit : 

pV = n R T 

Si bien que nous avons : 

𝑛 =
𝑝𝑉

𝑅𝑇
=∑𝑛𝑖

𝑖=𝑁

𝑖=1

=∑
𝑝𝑖𝑉𝑖
𝑅𝑇𝑖

𝑖=𝑁

𝑖=1

 

Or pour calculer le nombre de moles ni gaz Gi nous pouvons supposer qu’il occupe seul le 

volume total 𝑉 à la température T du mélange et sous une pression 𝑝𝑖
′, soit : 

𝑛𝑖 =
𝑝𝑖𝑉𝑖
𝑅𝑇𝑖

=
𝑝𝑖

′𝑉

𝑅𝑇
 

En tenant le même raisonnement pour les autres constituants, nous aurions : 



Chapitre IX Aspect macroscopique de l’état fluide                 Mécanique des milieux continus 

 

95 
 

𝑛 =
𝑝𝑉

𝑅𝑇
=∑

𝑝𝑖
′𝑉

𝑅𝑇

𝑖=𝑁

𝑖=1

=
𝑉

𝑅𝑇
∑𝑝𝑖

′

𝑖=𝑁

𝑖=1

 

Ou encore : 

𝑝 = 𝑝1
′ + 𝑝2

′ +𝑝3
′ +. . . 𝑝𝑖

′+. . . 𝑝𝑁
′ = ∑𝑝𝑖

′

𝑖=𝑁

𝑖=1

 

Les pressions ainsi définies s'appellent pressions partielles. La pression 𝑝𝑖
′ est la pression 

partielle du gaz Gi. 

La pression totale d’un mélange de gaz parfaits est égale à la somme des pressions partielles 

des différents gaz constituants, considérés chacun comme occupant le volume total du mélange 
à la température de celui-ci. 

Ceci constitue la loi de Dalton. 

 

Exercice IX.7 

Un mélange d'air et gaz carbonique (CO2) considéré comme un gaz parfait a une masse 
m=1,4.10-3kg et occupe un volume V =10-3m3 lorsque la température t = 20°C et la pression 

p = 98655Pa. 

Dans les conditions normales de pression et de température (t0 = 0°C et p0 = 101325Pa) 
calculer les volumes d'air V1 et de gaz carbonique V2 qu'il faut mélanger pour obtenir le mixage 

défini ci-dessus. Rappelons que dans les conditions normales : 

𝜌𝑎𝑖𝑟 = 1,293𝑘𝑔/𝑚
3 et 𝜌𝐶𝑂2 = 1,977𝑘𝑔/𝑚

3 

Corrigé 

En désignant par m1 et m2 les masses d'air et de gaz carbonique, nous avons : 

𝑚 = 𝑚1+ 𝑚2 = 𝜌𝑎𝑖𝑟𝑉1 + 𝜌𝐶𝑂2𝑉2  

Soit en passant à l'application numérique : 1,4.10-3 = 1,293 V1+1,977 V2 

D'autre part nous pouvons écrire : 

 
𝑝𝑉

𝑇
=
𝑝0𝑉1
𝑇0

+
𝑝0𝑉2
𝑇0

=
𝑝0
𝑇0
(𝑉1 +𝑉2) 

98655 × 10−3

293,15
=
101325

273,15
(𝑉1 +𝑉2) 
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Nous avons ainsi deux équations et deux inconnues, ce qui permet d'obtenir : 

V1= 0,575 10-3 m3    et     V2 = 0,332 10-3 m3 

Exercice IX.8 

Déterminer la pression d'un mélange d'air et de gaz carbonique occupant un volume V=4m3 à 
la température T=300K. Le mélange contient 3,5Kg d'air et 2Kg de CO2. 

Pour l'air la constante r est de 287 J/kg K et pour le gaz carbonique de 189 J/kg K. 

Corrigé 

En vertu de la loi de Dalton la pression totale du mélange est égale à la somme des pressions 

partielles de l'air et du CO2, considérés chacun comme occupant le volume V à la température 
T. 

𝑝 = 𝑝𝑎𝑖𝑟
′
⏟

𝑚𝑎𝑖𝑟 𝑟𝑎𝑖𝑟𝑇

𝑉

+ 𝑝𝐶𝑂2
′
⏟

𝑚𝑐𝑜2  𝑟𝑐𝑜2 𝑇

𝑉

= (𝑚𝑎𝑖𝑟𝑟𝑎𝑖𝑟 +𝑚𝐶𝑂2
 𝑟𝐶 𝑂2)

𝑇

𝑉
 

  Pa103687
4

300
18922875,3p   
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Chapitre X 

Cinématique des fluides 
 

1 Généralités 

La mécanique des fluides est une science très vaste qui interfère, dans de nombreux domaines, 
avec la thermodynamique. Il va de soi que la mécanique des fluides compressibles ne peut pas 

se concevoir sans faire appel à la thermodynamique et inversement. 

La mécanique des fluides fait appel à des notions différentes de celles exposées en mécanique 
du solide. Dans un écoulement il y a déformation du fluide. Pour étudier son mouvement on 

décompose fictivement le fluide en volumes élémentaires continus que l'on appelle particules. 

La cinématique des fluides, comme son nom l'indique, permet de décrire les mouvements des 

fluides sans se préoccuper de ses causes afin d'étudier le champ des vitesses. 

1-1 Particule fluide 

La particule fluide est une portion de fluide, de dimensions arbitrairement choisies, à laquelle 
correspondent, pendant un intervalle de temps dt entourant l'instant t, une vitesse, une pression, 

une température, une masse volumique, etc… Par convention nous dirons que ce sont les 
valeurs de ces grandeurs à l'instant t au centre d'inertie de la particule. 

Par définition de la particule fluide tous ses points matériels M ont une vitesse, au deuxième 
ordre près, égale à la vitesse du centre d'inertie de la particule. Ce qui permet d'écrire tout 
simplement : 

EC = m 
𝑉𝐺
2

2
= m 

𝑉

2
 

Chaque particule d'un fluide est soumise à des forces de volumes comme le poids ou les forces 

d'inerties et à des forces de contact transmises à la surface de la particule par les éléments 
environnants. 

Ainsi, un fluide apparaît pareillement à un corps homogène et continu dont les diverses 

particules peuvent se déplacer ou se déformer sous l'action d'une force très faible. 
En mécanique des fluides deux approches différentes peuvent être utilisées. Elles diffèrent par 

le choix des variables utilisées, soit Lagrange ou Euler. 

Dans la description lagrangienne on suit une particule fluide dans son mouvement. Comme par 
exemple, un petit morceau de bois emporté par le courant d'une rivière. Les variables de 

Lagrange sont surtout réservées à l'étude des solides. 

Dans la description eulérienne on se place en un point M (x, y, z) du fluide et on étudie les 

variations des grandeurs physiques à des instants différents. Comme par exemple examiner dans 
une rivière les tourbillons qui se forment derrière un obstacle. 
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Pour étudier le mouvement d'un fluide, il est plus commode d'utiliser les variables d'Euler. Elles  

permettent de définir le champ des vitesses à chaque instant t et en tout point M du fluide. 

1-2 Variables de Lagrange 

Dans un repère orthonormé 𝑒⃗1, 𝑒⃗2, 𝑒⃗3, les coordonnées d'une particule fluide sont x0, y0, z0, à la 
date t = t0. A l'instant t, elles deviennent : 

𝑥 = 𝑥(𝑥0,𝑦0 , 𝑧0, 𝑡) , 𝑦 = 𝑦(𝑥0,𝑦0 , 𝑧0, 𝑡) , 𝑧 = 𝑧(𝑥0,𝑦0 , 𝑧0, 𝑡) 

Ces coordonnées sont appelées variables de Lagrange. Le mouvement d'une particule fluide est 

connu en exprimant x, y et z en fonction de 𝑥0, 𝑦0, 𝑧0 et de 𝑡 . 

Désignons par 𝑉1(𝑥,𝑦,𝑧, 𝑡), 𝑉2(𝑥, 𝑦, 𝑧, 𝑡),  𝑉3(𝑥,𝑦, 𝑧, 𝑡) les composantes de la vitesse 𝑉⃗⃗ d'une 

particule, en un point M et à une date 𝑡. Par définition de la vitesse nous avons : 

𝑑𝑥 = 𝑉1(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡  𝑑𝑦 = 𝑉2(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡  𝑑𝑧 = 𝑉3(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑡  

Soit encore : 
dx

𝑉1(x, y, z,t)
=

𝑑𝑦

𝑉2(x, y, z,t)
=

𝑑𝑧

𝑉3(x, y, z,t)
= 𝑑𝑡 

On définit alors la trajectoire comme étant le chemin que suit une particule fluide. Comme par 
exemple, le petit morceau de bois emporté par le courant d'une rivière que l'on suit en traçant 
son trajet. 

Les trajectoires issues d’un même point à différents instants seront différentes (sauf si 
l’écoulement est permanent). En pratique les particules ne conservent pas longtemps leur 

individualité et il est difficile de déterminer leur trajectoire. 

Dans l'étude des écoulements il n'est pas important de connaître la marche individuelle de 
chaque particule, si bien que ce mode de calcul n'est donc pas très employé en mécanique des 

fluides. 

1-3 Variables d'Euler 

Supposons qu'au contraire on porte attention à l'ensemble de tous les vecteurs vitesses des 
particules au même instant. L’utilisation, de ce qu'on appelle les variables d’Euler, sera alors 
mieux adaptée pour résoudre les problèmes de mécanique des fluides. Les  variables d’Euler 
sont les composantes V1, V2, V3, de la vitesse à un instant t0. 

Admettons que l'on connaisse, à une date t0, les vecteurs vitesses en différents points. Dans ces 
conditions il sera alors possible de tracer les lignes tangentes à ces vecteurs vitesses en chacun 

de leurs points. Ces lignes, appelées lignes de courant à l'instant t0, sont définies par les relations 
différentielles : 

dx

𝑉1(x, y, z, t0)
=

𝑑𝑦

𝑉2(x, y, z,t0)
=

𝑑𝑧

𝑉3(x, y, z,t0)
 

L’utilisation des variables d’Euler est plus commode, en mécanique des fluides, que celles de 

Lagrange pour les raisons suivantes : 
- les vecteurs vitesses de l'écoulement forment un champ de vecteurs auquel on peut appliquer 
les propriétés des champs de vecteurs. 
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- pour les écoulements permanents, la projection des vitesses dans le repère ne dépend pas du 

temps. 

Toutes les lignes de courant qui s'appuient sur une courbe fermée constituent un tube de courant. 

On définit un filet de courant lorsque la section du tube de courant devient infiniment petite. 

1-4 Écoulement permanent 

Si en chaque point d'un écoulement, le champ des vitesses, la pression et la température ne 

dépendent pas du temps, on dit que l'écoulement est permanent (ou stationnaire). Les 

composantes u, v et w du vecteur vitesse 𝑉⃗⃗ sont alors fonction que du point, c'est-à-dire de x, y 
et z. 

Dans un écoulement permanent les trajectoires coïncident alors avec les lignes de courant. 

Dans un écoulement permanent un tube de courant est fixe dans le temps et tout se passe comme 

si le fluide s'écoulait à l'intérieur de parois rigides. On assimilera souvent l'écoulement dans les 
tuyauteries à un tube de courant. Ce sera fréquemment le cas dans les canalisations utilisées par 
les turbomachines. 

2 Dérivées particulaires 

Les principes de la thermodynamique et les relations fondamentales de la mécanique 
s'appliquent à des systèmes que l'on suit dans leurs mouvements. Lorsqu'on veut utiliser les 

variables d'Euler, pour traiter un problème de mécanique ou de thermodynamique, on introduit 
la notion de dérivées particulaires. 

2-1 Dérivée particulaire d'une fonction scalaire 

Considérons une particule fluide M de vitesse 𝑉
→
= 𝑉1 e⃗⃗1 +  V2 e⃗⃗2  + 𝑉3  e⃗⃗3 et une fonction 

scalaire f'(x, y, z, t). La différentielle de cette fonction est : 

𝑑𝑓 =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 

En divisant par dt, on définit la dérivée particulaire de la fonction f'(x, y, z, t) : 

𝐷𝑓

𝐷𝑡
=
𝜕𝑓

𝜕𝑡
+
𝜕𝑓

𝜕𝑥
𝑉1 +

𝜕𝑓

𝜕𝑦
𝑉2 +

𝜕𝑓

𝜕𝑧
𝑉3  

Soit encore :  
𝐷𝑓

𝐷𝑡
=
𝜕𝑓

𝜕𝑡
+ 𝑉⃗⃗ ∙ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑓                                                               (X.01) 

Compte tenu de ces résultats nous pouvons écrire que l'accélération 𝛾⃗ de la particule M a pour 
composantes : 
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𝛾⃗  

|

|

𝐷𝑉1
𝐷𝑡

=
𝜕𝑉1
𝜕𝑡
+ 𝑉1

𝜕𝑉1
𝜕𝑥
+ 𝑉2

𝜕𝑉1
𝜕𝑦

+ 𝑉3
𝜕𝑉1
𝜕𝑧

𝐷𝑉2
𝐷𝑡

=
𝜕𝑉2
𝜕𝑡
+ 𝑉1

𝜕𝑉2
𝜕𝑥

+ 𝑉2
𝜕𝑉2
𝜕𝑦

+ 𝑉3
𝜕𝑉2
𝜕𝑧

𝐷𝑉1
𝐷𝑡

=
𝜕𝑉3
𝜕𝑡
+ 𝑉1

𝜕𝑉3
𝜕𝑥

+ 𝑉2
𝜕𝑉3
𝜕𝑦

+ 𝑉3
𝜕𝑉3
𝜕𝑧

 

En remarquant que (𝑉⃗⃗)
2
= 𝑉2 = 𝑉1

2 +𝑉2
2 + 𝑉3

2 le lecteur vérifiera facilement, à titre 

d'exercice, que cette relation peut se mettre sous la forme : 

𝛾⃗ =
𝐷𝑉⃗⃗

𝐷𝑡
=
𝜕𝑉⃗⃗

𝜕𝑡
+
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 + 𝑟𝑜𝑡

→  
𝑉⃗ ∧ 𝑉⃗                                 (X.02) 

Ou encore, de la relation (III.08), on déduit : 

𝛾⃗ =
𝐷𝑉⃗⃗

𝐷𝑡
=
𝜕𝑉⃗⃗

𝜕𝑡
+
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 +2𝜔⃗⃗⃗ ∧ 𝑉⃗  

2-2 Dérivée particulaire d'une intégrale de volume 

Considérons un écoulement fluide occupant à l'instant t un domaine 𝐷 de volume (V) et limité 
par une surface fermée (A). 

Désignons par F(M,t) une fonction de la position de la particule M et du temps t ainsi que par 
I l'intégrale de volume : 

𝐼 =∭ 𝐹(𝑀, 𝑡) 
𝑉

𝑑𝑉     (X.03) 

Pendant l'intervalle de temps dt le domaine 𝐷 est venu en 𝐷1. 

Dans la partie constituée par l'inclusion de 𝐷 et D1 (partie commune à 𝐷 et 𝐷1) :la variation de 

l'intégrale de volume est : ∭
𝜕𝐹(𝑀,𝑡)

𝜕𝑡
 

𝑉
𝑑𝑡 𝑑𝑉  

 
Le volume V occupé par le fluide à l'instant 
t dans D est devenu V1 dans D1 son 

évolution a été de :  

𝑑𝑉 = ∬(𝑉⃗⃗ ∙ 𝑛⃗⃗)
𝐴

 𝑑𝑡 𝑑𝐴 

 

 

    𝑛⃗⃗              𝑛⃗⃗  

          𝑉⃗⃗  

                                                              𝑉⃗⃗  

          𝐷              𝐷1  
           
 
Figure X.01 Transformation de D en D1 

Ce qui provoque une variation de l'intégrale de volume : 
 

∬ 𝐹(𝑀, 𝑡) (𝑉⃗⃗ ∙ 𝑛⃗⃗)
𝐴

 𝑑𝑡 𝑑𝐴  

Au total la variation de l'intégrale de volume I est : 
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𝑑𝐼 =∭
𝜕𝐹(𝑀, 𝑡)

𝜕𝑡
 

𝑉

𝑑𝑡 𝑑𝑉 +∬𝐹(𝑀,𝑡) (𝑉⃗⃗ ∙   𝑛⃗⃗)
𝐴

 𝑑𝑡 𝑑𝐴 

Que l'on peut mettre sous une autre forme en divisant par dt et en simplifiant les écritures : 

 

𝑑𝐼

𝑑𝑡
=               ∭

𝜕𝐹(𝑀, 𝑡)

𝜕𝑡
 

𝑉

𝑑𝑉     +      ∬𝐹(𝑀, 𝑡) (𝑉⃗⃗ ∙ 𝑛⃗⃗)
𝐴

 𝑑𝐴                     (X.04) 

        Dérivée particulaire⏞            
                  

  Dérivée locale⏞        
  

            Dérivée convective⏞             

                                        

                 
 

3 Équation de continuité 

L'équation de continuité traduit le principe de la conservation de la masse.  

Première démonstration. 

Soit 𝜌 la masse volumique et dV le volume d'une particule fluide. Considérons une portion de 
fluide de masse m que l'on suit dans son mouvement : 

𝑚 = ∭ 𝜌 𝑑𝑉
𝑉

. 

Cette masse restant constante sa dérivée particulaire est nulle. En vertu de la relation (X.04) 

nous avons donc : 

𝑑𝑚

𝑑𝑡
=∭

𝜕𝜌

𝜕𝑡
 

𝑉

𝑑𝑉 +∬𝜌 (𝑉⃗⃗ ∙ 𝑛⃗⃗)
𝐴

  𝑑𝐴 = 0 

Du théorème d'Ostrogradski (II.05) : 

∬𝜌𝑉⃗⃗ ∙   𝑛⃗⃗ 
𝐴

 𝑑𝐴 =∭𝑑𝑖𝑣(𝜌𝑉⃗⃗)𝑑𝑉
𝑉

 

Il s'ensuit donc : 

∭ (
𝜕𝜌

𝜕𝑡
 + 𝑑𝑖𝑣(𝜌𝑉⃗⃗))

𝑉

𝑑𝑉 = 0 

Cette relation doit être vérifiée quel que soit l'élément de volume V donc : 

𝜕𝜌

𝜕𝑡
 + 𝑑𝑖𝑣(𝜌𝑉⃗⃗) = 0                                                (X.05) 

Deuxième démonstration. 

Considérons un fluide en écoulement et délimitons une surface fermée (A) limitant un volume 

(V) dans ce fluide. 

L'augmentation de masse contenue dans ce volume V, pendant un certain temps, doit être égale 
à la somme des masses du fluide qui entrent diminuées de celles qui en sortent. 
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      𝑉⃗ (𝑀) 
 
 
 

 
 

 
 
 

Figure X.02 Volume fictif V dans un écoulement 
fluide 

Désignons par M un point appartenant 

à la surface A où la vitesse du fluide 

est 𝑉⃗⃗(𝑀). 

Pendant le temps dt, la masse de 
fluide qui traverse la surface 

élémentaire dA est : 

𝜌𝑉⃗⃗(𝑀) 𝑛⃗⃗𝑑𝐴𝑑𝑡 

𝑛⃗⃗ est le vecteur unitaire 
perpendiculaire à dA et dirigé vers 

l'extérieur de V. 

 

Pour le volume V la masse dm qui traversera la surface A pendant le temps dt sera : 

𝑑𝑚 = (∬𝜌𝑉⃗⃗(𝑀) ∙ 𝑛⃗⃗𝑑𝐴
𝐴

) 𝑑𝑡 

Et en vertu de la formule d'Ostrogradski nous pouvons écrire : 

𝑑𝑚 = (∬𝜌𝑉⃗⃗(𝑀) ∙   𝑛⃗⃗𝑑𝐴
𝐴

) 𝑑𝑡 = (∭ 𝑑𝑖𝑣 (𝜌𝑉⃗⃗(𝑃))𝑑𝑉
𝑉

)𝑑𝑡 

Pendant ce même temps, la masse contenue à l'intérieur du volume élémentaire dV est : 
𝜕𝜌

𝜕𝑡
𝑑𝑡𝑑𝑉 

Et pour le volume V : 

𝑑𝑚𝑖 = (∭
𝜕𝜌

𝜕𝑡
𝑑𝑉

 

𝑉

)𝑑𝑡 

Si l'écoulement est conservatif, l'augmentation de masse dmi à l'intérieure du volume V doit être 
égale à la masse dm qui est entrée en traversant la surface A pendant le même intervalle de 

temps dt (une diminution de masse dmi serait, évidement, égale à celle qui sort). 

Ce qui se traduit par la relation : 

(∭
𝜕𝜌

𝜕𝑡
𝑑𝑉

 

𝑉

) 𝑑𝑡 + (∭ 𝑑𝑖𝑣 (𝜌𝑉⃗⃗(𝑃))𝑑𝑉
 

𝑉

) 𝑑𝑡 = 0 

Ou encore : 

∭[
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 (𝜌𝑉⃗⃗(𝑃))]𝑑𝑉

 

𝑉

= 0 

Cette relation doit être vérifiée quel que soit le point P considéré et bien sûr le volume 

élémentaire dV, soit la relation (X.05) : 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑉⃗⃗) = 0 

M 

𝑛⃗⃗ 

Volume V 

dV 

Surface A 

dA 
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4 Différents types d’écoulements 

Écoulements non conservatifs 

Si l'écoulement n'est pas conservatif, c'est-à-dire s'il y a apparition ou dissipation de fluide dans 

le champ de l'écoulement, il faudra tenir compte des débits massiques qui entrent (sources) ou 
qui sortent (puits). La relation (X.05) deviendra : 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑉⃗⃗) = ∑𝜌𝑞𝑣 

Écoulements permanents 

Si l'écoulement est permanent nous avons  
𝜕𝜌

𝜕𝑡
= 0 et la relation (X.05) devient : 

𝑑𝑖𝑣(𝜌𝑉⃗⃗) = 0        (X.06) 

Écoulements isovolumes 

Compte tenu de (II.20) la relation (X.06) peut également s'écrire : 

𝑑𝑖𝑣(𝜌𝑉⃗⃗) = 𝜌𝑑𝑖𝑣𝑉⃗⃗ + 𝑉⃗⃗𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜌 

Si bien que pour l’écoulement d’un fluide incompressible (isovolume ρ = constante) les 
relations (X.05) et (X.07) prennent la même forme : 

𝑑𝑖𝑣𝑉⃗⃗ = 0     (X.07) 

Pour un écoulement isovolume l'équation de conservation de la masse est donc la même que le 

régime soit permanent ou variable. 

Cas particulier 

On remarquera que pour un écoulement permanent la relation (X.07) est également satisfaite si 

𝑉⃗⃗𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜌 = 0, c'est-à-dire si les variations de masse volumique sont orthogonales, en tous 
points, au vecteur vitesse. Ce cas peut se rencontrer dans des écoulements stratifiés par salinité 
ou température (courants marins). 

Écoulements unidimensionnels 

Considérons un écoulement permanent d’un fluide dans une canalisation, ou dans un simple 

tube de courant, et admettons également que cet écoulement soit unidimensionnel. C’est-à-dire 
qu'en tous points d’une section droite, la pression, la vitesse et la masse volumique conservent 
la même valeur et ne dépendent uniquement que de l’abscisse "s". 

C’est une hypothèse souvent admise dans les applications industrielles. De la relation (X.06) 
on en déduit que : 

 𝑑𝑖𝑣(𝜌𝑉⃗⃗) =
𝜕(𝜌𝑉)

𝜕𝑠
 

Prenons comme volume de contrôle V la portion de fluide comprise entre les sections droites 
de surface A1 et A2 représentées sur la figure X.03. 
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En intégrant ∭ [
𝜕(𝜌𝑉)

𝜕𝑠
] 𝑑𝑉

𝑉
 on obtient : 

𝜌2𝑉2𝐴2 −𝜌1𝑉1𝐴1 = 0. 

Que l'on écrit : 

𝑞𝑚 = 𝜌𝑉𝐴        (X.08) 

qm est le débit masse. 

           A1 
   V1 

 
           A2 
 

         V2 
          s 

 

Figure X.03 Ecoulement unidimensionnel 

Si la masse volumique ρ est constante (cas des liquides) la relation (X.08) se réduit à : 

𝑞𝑣 = 𝐴𝑉     (X.09) 

qv est le débit volume. 

5 Répartition des vitesses 

Soit un élément de fluide en mouvement entourant un point A où la vitesse est 𝑉⃗⃗𝐴 de 
composantes VA1, VA2, VA3. Considérons un point M, proche de A, de coordonnés x, y, z dont 

l'origine est le point A et désignons par 𝑉1,  𝑉2 , 𝑉3  les composantes de la vitesse 𝑉⃗⃗𝑀  du point M. 

La formule des accroissements finis permet de déterminer les composantes de la vitesse 𝑉⃗⃗𝑀  en 
supposant que M est suffisamment voisin de A pour négliger les termes de second ordre. 

𝑉1 = 𝑉𝐴1 + 𝑥
𝜕𝑉1
𝜕𝑥

+ 𝑦
𝜕𝑉1
𝜕𝑦

+ 𝑧
𝜕𝑉1
𝜕𝑧

 

Et pour les trois composantes écrites sous forme matricielle : 

[𝑉⃗⃗𝑀] = [𝑉⃗⃗𝐴 ] +

[
 
 
 
 
 
 
𝜕𝑉1
𝜕𝑥

𝜕𝑉1
𝜕𝑦

𝜕𝑉1
𝜕𝑧

𝜕𝑉2
𝜕𝑥

𝜕𝑉2
𝜕𝑦

𝜕𝑉2
𝜕𝑧

𝜕𝑉3
𝜕𝑥

𝜕𝑉3
𝜕𝑦

𝜕𝑉3
𝜕𝑧 ]
 
 
 
 
 
 

[𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗] = [𝑉⃗⃗𝐴 ] + [𝑀][𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗] 

D'une façon analogue au chapitre VII (concernant le tenseur des déformations), décomposons 

la matrice [𝑀] en une matrice symétrique [𝑀1] et une matrice anti symétrique [𝑀2] soit : 

[𝑀] = [𝑀1]+ [𝑀2] 

[
 
 
 
 
 
 
𝜕𝑉1
𝜕𝑥

𝜕𝑉1
𝜕𝑦

𝜕𝑉1
𝜕𝑧

𝜕𝑉2
𝜕𝑥

𝜕𝑉2
𝜕𝑦

𝜕𝑉2
𝜕𝑧

𝜕𝑉3
𝜕𝑥

𝜕𝑉3
𝜕𝑦

𝜕𝑉3
𝜕𝑧 ]
 
 
 
 
 
 

⏟          
[𝑀]

= 
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[
 
 
 
 

𝜕𝑉1

𝜕𝑥

1

2
(
𝜕𝑉1

𝜕𝑦
+
𝜕𝑉2

𝜕𝑥
)

1

2
(
𝜕𝑉1

𝜕𝑧
+
𝜕𝑉3

𝜕𝑥
)

1

2
(
𝜕𝑉1

𝜕𝑦
+
𝜕𝑉2

𝜕𝑥
)

𝜕𝑉2

𝜕𝑦

1

2
(
𝜕𝑉2

𝜕𝑧
+
𝜕𝑉3

𝜕𝑦
)

1

2
(
𝜕𝑉1

𝜕𝑧
+
𝜕𝑉3

𝜕𝑥
)

1

2
(
𝜕𝑉2

𝜕𝑧
+
𝜕𝑉3

𝜕𝑦
)

𝜕𝑉3

𝜕𝑧 ]
 
 
 
 

⏟                            
[𝑀1]

 +

[
 
 
 
 0

1

2
(
𝜕𝑉1

𝜕𝑦
−
𝜕𝑉2

𝜕𝑥
)

1

2
(
𝜕𝑉1

𝜕𝑧
−
𝜕𝑉3

𝜕𝑥
)

−
1

2
(
𝜕𝑉1

𝜕𝑦
−
𝜕𝑉2

𝜕𝑥
) 0

1

2
(
𝜕𝑉2

𝜕𝑧
−
𝜕𝑉3

𝜕𝑦
)

−
1

2
(
𝜕𝑉1

𝜕𝑧
−
𝜕𝑉3

𝜕𝑥
) −

1

2
(
𝜕𝑉2

𝜕𝑧
−
𝜕𝑉3

𝜕𝑦
) 0 ]

 
 
 
 

⏟                              
[𝑀2]

  

 

Nous pouvons écrire : 

     𝑉⃗⃗𝑀 =        𝑉⃗⃗𝐴    +        [𝑀2][𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗]  +     [𝑀1][𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗]                

𝑉⃗⃗𝑀 = 𝑉⃗⃗𝐴⏟
𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

+
1

2
𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗𝑀 ∧ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗⏟        
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

+    [𝑀1][𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗]⏟      
𝐷é𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

     (X.10) 

 
    Translation       Rotation          Déformation 

 

Le mouvement d'une particule fluide apparaît ainsi comme l'accumulation d'une translation, 
d'une rotation et d'une déformation. 

6 Écoulements irrotationnels ou à potentiel des vitesses 

Un écoulement est irrotationnel lorsque que les particules fluides ne subissent aucune rotation, 
en d'autres termes : 

2𝜔⃗⃗⃗ = 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗𝑉⃗⃗ (
𝑀

𝑅
) = 0⃗⃗     (X.11) 

Appliquons le théorème de Stockes : la circulation d'un vecteur 𝑉⃗⃗ le long d'un contour fermé C 

est égal au flux du rotationnel de ce vecteur à travers une surface A admettant C comme 
frontière. 

Par conséquent, pour un écoulement irrotationnel nous aurons : 

∫ 𝑉⃗⃗(𝑀)
𝐶

∙ 𝑑𝑀⃗⃗⃗   = ∬ 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗
𝐴

𝑉⃗⃗   ∙ 𝑛⃗⃗ 𝑑𝐴 = 0    (X.12) 

Et ceci quel que soit la courbe C dans le fluide. 
 

Considérons 2 points A et B de la courbe C. 
La circulation entre ces 2 points est indépendante 

du chemin suivi pour aller de A à B.  

La vitesse V dérive donc d'un potentiel 𝜑 .   

𝛤 = ∫ 𝑉⃗⃗(𝑀)
𝐴𝐵

∙ 𝑑𝑀⃗⃗⃗ = 𝜑𝐵 −𝜑𝐴  

 

  courbe C 

 
        B    

          V 
 
      M 

            A   
 

Figure X.04 Circulation 

On remarquera  
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𝑉⃗⃗(𝑀) 

-a) que 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗(𝑔𝑟𝑎𝑑𝜑⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 0⃗⃗, puisque 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗ ⃗𝑉 = 0⃗⃗ on peut écrire : 𝑉⃗⃗ = 𝑔𝑟𝑎𝑑𝜑⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  

-b) que sur une ligne équipotentielle nous avons : 

∫ 𝑉⃗⃗(𝑀) ∙
𝐴𝐵

𝑑𝑀⃗⃗⃗ = ∫ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝐴𝐵

𝜑 ∙ 𝑑𝑀⃗⃗⃗ = 𝜑𝐵 −𝜑𝐴 = 0. 

Ce qui montre que le vecteur vitesse en un point M est normal à la ligne équipotentielle qui 
passe par ce point. Les lignes de courant sont orthogonales aux équipotentielles. 

Exercice X.1 

Rappelons qu'en coordonnées cylindriques l'expression de la vitesse est en un point M : 

𝑉⃗⃗(𝑀) = 𝑉𝑟 𝑢⃗⃗(𝜃) + 𝑉𝜃 𝑢⃗⃗ (𝜃 +
𝜋

2
) + 𝑉𝑧𝑒⃗3 

Et conformément au chapitre II, paragraphe 8, en coordonnées cylindriques le rotationnel de 
la vitesse est : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = [
1

𝑟
(
𝜕𝑉𝑧
𝜕𝜃
−
𝜕(𝑟𝑉𝜃)

𝜕𝑧
) ,
𝜕𝑉𝑟
𝜕𝑧
−
𝜕𝑉𝑧
𝜕𝑟
,
1

𝑟
(
𝜕(𝑟𝑉𝜃)

𝜕𝑟
−
𝜕𝑉𝑟
𝜕𝜃
)] 

    y 
    
 

 

        M 

       
 O      x 
 
 

 
 

 
 
Déterminer le rotationnel de la vitesse d'un écoulement dont 

les lignes de courant sont des cercles concentriques de 
centre O. 

On précise que la vitesse d'un point M ne dépend que de la 
distance r, c'est-à-dire : 

|𝑉⃗⃗(𝑀)| = 𝑓(𝑟) = 𝑉𝜃 

𝑉𝑟 = 0   et     𝑉𝑧 = 0 . 
 

 
On examinera les deux cas suivants : 

 
k

f r
r

  et  f r kr   

Corrigé 

Il s'ensuit que le rotationnel de 𝑉⃗⃗(𝑀) s'écrit : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ =
1

𝑟

𝜕(𝑟𝑉𝜃)

𝜕𝑟
𝑒⃗3 = (

𝑓(𝑟)

𝑟
+
𝜕𝑓(𝑟)

𝜕𝑟
)𝑒⃗3 
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1 . Pour le cas "a" nous avons : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = (
𝑓(𝑟)

𝑟
+
𝜕𝑓(𝑟)

𝜕𝑟
)𝑒⃗3 = (

𝑘

𝑟2
−
𝑘

𝑟2
) 𝑒⃗3                𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = 0⃗⃗ 

L'écoulement est donc irrotationnel. 
Considérons une particule fluide de forme carrée occupant 

la position A à la date t. 

Elle occupera, à la date t+∆t, la position B. 
Son côté "a1a2" plus près du centre du cercle se déplacera 
plus vite que son côté opposé "a3a4". 

 

La particule s'est déplacée en se déformant mais sans tourner sur elle-même. Le vecteur 𝜔⃗⃗⃗ est 
nul en tous points sauf au centre O. 

2 . Pour le cas "b" nous avons : 

𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = (
𝑓(𝑟)

𝑟
+
𝜕𝑓(𝑟)

𝜕𝑟
) 𝑒⃗3 = (

𝑘𝑟

𝑟
+ 𝑘) 𝑒⃗3 

                                             𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗𝑉⃗⃗ = 2𝑘𝑒⃗3 = 2𝜔𝑒⃗3 ≠ 0⃗⃗ 

L'écoulement est rotationnel 

Donnons une signification physique simple aux résultats de l'exercice X.1. 

 

 
 

 
 
 

 

       𝜔⃗⃗⃗ = 0⃗⃗         𝜔⃗⃗⃗ ≠ 0⃗⃗  
 
 

 
 
 

 
 

 
 

7 Écoulements rotationnels 

Lorsque le vecteur tourbillon est différent de zéro, ≠ 0, l'écoulement est rotationnel. On 
l'étudie en associant au chant des vitesses habituelles le champ des vecteurs tourbillon et on 
appelle : 

- Ligne tourbillon, une ligne tangente en chaque point au vecteur tourbillon en ce point. 

 

a1 
a2 

a3 

a4 

A 

B 
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- Surface tourbillon, une surface tangente en chaque point au vecteur tourbillon. 

- Filet tourbillon, l'ensemble des lignes tourbillon s'appuyant sur une courbe fermée infiniment  
petite. 

- Intensités d'un tube tourbillon, le flux du rotationnel du vecteur vitesse à travers une section 
quelconque de ce tube. 

8 Écoulements laminaire et turbulent 

Les écoulements laminaires et turbulents ont été mis en évidence pour la première fois par 
Reynolds. 

L'expérience consistait à observer le mouvement d'un fluide à l'intérieur d'un tube de verre dans 

lequel on introduisait un liquide coloré. 

Dans cette expérience, souvent répétée, on constatait qu'aux faibles vitesses le filet coloré reste 

stable sur toute la longueur du tube. L'écoulement est dit laminaire. Les lignes de courant sont 
bien parallèles et il n'y a pas d'échange de particules. 

Lorsque la vitesse du fluide augmente, à une certaine distance de l'entrée du tube, le filet coloré 

se mélange avec le fluide initial. L'écoulement devient instable ; il est dit turbulent. 
 

 

 

                                        Liquide coloré 

 

 

 
 
          Eau 

 
 

 
 

Figure X.05 Expérience de Reynolds 

 

La prise en compte des forces de viscosité fait apparaître un groupement sans dimensions qu'on 

appelle le nombre de Reynolds (Re). Il a été mis en évidence, en 1883, par Osborne Reynolds. 
Il caractérise la nature du régime d'écoulement d'un fluide (laminaire, transitoire, turbulent). 

𝑅𝑒 =
𝜌𝑉𝐿

𝜇
=
𝑉𝐿

𝜈
                                                  (X.13) 

        V est la vitesse du fluide. 

                      L est une longueur caractéristique. 

Si l'écoulement est laminaire le nombre de Reynolds est plus petit que 2000 il y a une forte 
viscosité. 

Si le Reynolds est compris entre 2000 et 3000 le régime est dit intermédiaire transitoire. 
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Lorsque le Reynolds devient supérieur à 3000 le régime est dit turbulent. Lorsque le régime 

devient turbulent on dit que ce nombre est le Reynolds critique. 

Exercice X.2 

Calculer le nombre de Reynolds d'un écoulement d'air dans une tuyauterie cylindrique ayant 
un diamètre de 0,09 m. La vitesse de l'air dans cette tuyauterie est de 15m/s et sa température 
est de 20oC sous une pression de 2 bar. 

Corrigé 

Dans ces conditions de pression et de température la masse volumique de l'air est : 

𝜌 =
𝑃

𝑟𝑇
=

2.105

287.293,15
= 2,377𝐾𝑔/𝑚3 

D'où le nombre de Reynolds (relation X.13) : 

𝑅𝑒 =
2,377 ∙ 15 ∙ 0,09

18,1.10−6
= 177290 

Ce calcul montre que le régime est turbulent et que nous sommes loin du Reynolds critique. Ce 

n'est pas un cas particulier. Les écoulements laminaires ne s'observent qu'assez rarement dans 
le domaine des turbomachines et des moteurs. On les rencontre dans les paliers et glissières et 
parfois pour des fluides très visqueux s'écoulant lentement dans des canalisations. 

9 Viscosité 

L’expérience montre que, lors d’un écoulement d’un fluide, la pression (force normale) ne suffit 
pas à expliquer les phénomènes et qu’il convient d’introduire des forces tangentielles qui 

s’opposent au mouvement du fluide. Ces forces, de type frottement, dues aux interactions entre 
molécules du fluide, sont appelées forces de viscosité. 

De la même façon qu'au chapitre VI on décompose le tenseur des contraintes. Dans la relation 

(VI.04) en posant 𝜎𝑚 = −𝑝 

Soit : 

[

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

]

⏞          

[𝐿]

= [
−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

]

⏞          

Tenseur isotrope

+ [

𝜎𝑥 + 𝑝 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 +𝑝 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 + 𝑝

]

⏞                
Tenseur de viscosité

       (X.14) 

Le tenseur de viscosité est nul lorsque les contraintes tangentielles le sont également et que : 

𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = −𝑝. 

Il ne subsiste alors que le tenseur isotrope et on dit, comme on l'a vu précédemment, que le 

fluide est parfait. Disons, peut-être plus simplement que, en un point M d'un fluide parfait, il ne 
subsiste que la pression p, et ceci quelle que soit la direction de la facette considérée. 
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Notons que, dans un fluide réel au repos, les forces de frottement sont également nulles. 

Lorsque les contraintes tangentielles ne sont pas nulles on dit que le fluide est visqueux. 

Dans un écoulement par filets horizontaux, la contrainte tangentielle en un point donné est 

proportionnelle au gradient de vitesse perpendiculaire au plan de glissement. 

On peut également dire, qu'entre deux couches fluides planes glissant l'une sur l'autre, s'exerce 
par unité de surface la force de frottement visqueux : 

𝜏 = 𝜇
𝜕𝑉

𝜕𝑦
                                                         (X.15) 

  y 
     V 
                           

 
 

Figure X.06 Viscosité 

 
μ est le coefficient de viscosité dynamique qui 
s'exprime en Pascal.seconde (Pa.s). Ce coefficient, 

dans l'ancien système CGS était le poise (P) ; 
1P=0,1Pa.s. 

 

On associe souvent la masse volumique au coefficient de viscosité dynamique sous la forme : 

𝜈 =
𝜇

𝜌
                                                                   (X. 16)  

𝜈 est appelé le coefficient de viscosité cinématique, il s'exprime dans le système SI en mètres 
carrés par seconde (m2/s). Dans le système CGS, il s'exprimait en stockes (St) ; 1St=10-4m2/s. 

Exercice X.3 

Un espace de 2 cm entre deux larges surfaces planes et parallèles est rempli d'huile ayant un 

coefficient de viscosité dynamique : 0,4 Poise  . 

Quelle force horizontale faut-il appliquer à une plaque très mince de 20 cm² de surface, situé 
à égale distance des deux parois pour la déplacer à une vitesse de 10 m/s. On supposera le 

gradient de vitesse constant. 

Corrigé 

         y 
         2 
 

        1     F 
 

        0 

 

𝑂𝑛 𝑎 ∶
𝜕𝑉

𝜕𝑦
=
10

0,01
= 1000 

𝜇 = 0,4 Poise = 0,04 Pa.s  
 

Pour déterminer la force F il faut comptabiliser les 
deux surfaces de la plaque soit : 40 cm² au total. 

D'où : 𝐹 = 𝜇 ∗
𝜕𝑉

𝜕𝑦
∗ 𝑆 = 4. 10−2 ∗ 1.103 ∗ 40. 10−4 

          F= 0,16 N 
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La viscosité dynamique des liquides et des gaz varie différemment avec la température et la 

pression. Pour les liquides la viscosité dynamique diminue avec la température et elle est peu 
sensible à la pression. Pour les gaz c'est le contraire, la viscosité dynamique augmente avec la 

pression et la température. 

Pour quelques liquides et gaz usuels le tableau X.1 donne le coefficient de viscosité dynamique 
en fonction de la température. 

 
Températures 

Désignation -10 0 20 50 100 250 500 

Air 16,67  17,2 18,1 19,1 21,77 27,77 35,62 

Azote 16,18 16,7 17,6 18,9 20,99 26,25 33,96 

Ammoniaque  9,2   12,8   

Dioxyde de carbone 13,44 13,9 14,9 16,4 18 83 24,42 32,91 

Dioxyde de soufre  11,7   16,2   

Eau  1800 1000 660 280   

Vapeur d'eau  8 8,8  10,0 12,6 18,22 28,40 

Éthylène  9,3   12,4   

Hydrogène 8,14 8,3 8,7 9,4 10,30 12,97 16,69 

Méthane  10,3   13,6   

Monoxyde d'azote  17,8   22,7   

Monoxyde de carbone 16,18 16,7 17,6 18,9 20,99 26 04  

Oxydes d'azote  13,6   18,2   

Oxygène 18,53 19,10 20,30 22 24,42 30,95 40,11 

Sulfure d'hydrogène  11,6   15,9   

Tableau X.1. Coefficient de viscosité dynamique en 10-6 Pa.S 
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Chapitre XI 

Dynamique des fluides 

 

Pour déterminer le comportement d'un fluide monophasique, il est nécessaire de connaître, en 

chaque point, le vecteur vitesse 𝑉⃗⃗ et ses trois composantes V1, V2 et V3, la masse volumique 𝜌, 
la température T et la pression p. Soit au total 6 grandeurs scalaires qui sont toutes fonction du 

point considéré M (x, y, z) et du temps t. Ces six grandeurs sont liées entre-elles par six relations 
que nous enseigne la physique. Elles sont généralement mesurables et parfois fonction du 
temps t. 

La thermodynamique donne une relation entre la masse volumique 𝜌, la température T et la 
pression p. Comme nous le savons maintenant, ces trois grandeurs sont liées par une équation 
d'état (pv = rT pour un gaz parfait), ou soit encore par l'utilisation des diagrammes ou des tables 
numériques. L'étude de la mécanique des fluides conduit à établir les cinq autres relations. Il 

est bon de noter qu'il faudra ajouter à ces six équations les conditions aux limites, encore 
nommées conditions aux frontières, pour résoudre un problème. 

1. Equations d'Euler 

 
 

 
 

 
 
 

 
 

 
 
 

Figure XI.01 Domaine fictif D 

Considérons l'écoulement à potentiel d'un 

fluide parfait et désignons un domaine 𝐷 de 
volume (V) limité par une surface fermée (A) 

fixe. 
En l'absence de viscosité les efforts exercés sur 
toute la surface (A) par la pression p sont : 

−∬𝑝 𝑛⃗⃗
𝐴

𝑑𝐴 

De la relation (II.06) nous avons l'égalité 
suivante : 

−∬ 𝑝 𝑛⃗⃗
𝐴

𝑑𝐴 = −∭ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 𝑑𝑉
𝑉

. 

 

Soit 𝐹⃗ la force de volume, rapportée à l'unité de masse, agissant sur le fluide contenu dans le 

volume V. La résultante des forces de volume est donc : 

∭𝐹⃗ 𝜌 𝑑𝑉
𝑉

 

Et par suite la résultante de toutes les forces agissant sur le volume 𝑉 est : 

𝑅⃗⃗ =∭𝐹⃗ 𝜌 𝑑𝑉
𝑉

−∭𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 𝑑𝑉
𝑉

 

𝑛⃗⃗ 

Volume V 

dV 

Surface A 

p 

dA 

𝐹⃗ 
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Du principe fondamental de la mécanique (IV.14) nous avons : 

𝑅⃗⃗ = ∭𝜌 𝛾⃗
𝑉

 𝑑𝑉 =∭ 𝜌 
𝑑𝑉⃗⃗

𝑑𝑡𝑉

 𝑑𝑉 

D’où : 

∭𝜌 
𝑑𝑉⃗⃗

𝑑𝑡𝑉

 𝑑𝑉 =∭𝐹⃗ 𝜌 𝑑𝑉
𝑉

−∭𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 𝑑𝑉
𝑉

 

Ou encore : 

∭ (𝜌 
𝑑𝑉⃗⃗

𝑑𝑡
− 𝐹⃗ 𝜌 + 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝)

𝑉

 𝑑𝑉 = 0⃗⃗ 

Cette relation doit être vérifiée quel que soit le volume pris à l'intérieur du fluide. Ce qui signifie 

que la fonction figurant sous le signe intégral doit être nulle en toutes les particules élémentaires  
du fluide. 

Il s'ensuit que : 

𝜌 
𝑑𝑉⃗⃗

𝑑𝑡
− 𝐹⃗ 𝜌 + 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 = 0⃗⃗ 

Et en divisant par   on obtient les équations d'Euler 

𝑑𝑉⃗⃗

𝑑𝑡
= 𝐹⃗  −

1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 

La notion de dérivée particulaire permet d'écrire : 

𝜕𝑉⃗⃗

𝜕𝑡
+
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 + 2𝜔⃗⃗⃗ ∧ 𝑉⃗ − 𝐹⃗  +

1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 = 0⃗⃗                           (XI.01) 

Rappelons que les équations d'Euler s'appliquent à des fluides dénués de viscosité. Les 
équations d'Euler s'appliquent aussi bien pour des fluides compressibles qu'incompressibles. 

2. Equations de Navier Stokes 

Les équations de Navier Stockes sont obtenues en ajoutant aux équations d'Euler la viscosité. 

Ce sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des 

fluides. La résolution de ces équations ne peut être intégrée que dans quelques cas particuliers. 
Cependant elles permettent parfois une résolution approchée en proposant une modélisation 

pour certaines applications pratiques. 

Utilisons une approche différente pour établir les équations de Navier stockes que celle utilisée 
précédemment pour les équations d'Euler. Écrivons le principe fondamental de la mécanique 

de la façon suivante : 

𝜌 
𝑑𝑉⃗⃗

𝑑𝑡
= 𝐹⃗ 𝜌 + 𝑑𝑖𝑣⃗⃗ ⃗⃗⃗⃗⃗[𝐿] 

De la relation (X.14) rappelée ci-après : 



Chapitre XI Dynamique des fluides                         Mécanique des milieux continus 

 

114 
 

[

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

]

⏞          

[𝐿]

= [
−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

]

⏞          

Tenseur isotrope

+ [

𝜎𝑥 + 𝑝 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦 +𝑝 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 +𝑝

]

⏞                

Tenseur de viscosité=[𝐿𝑉 ]

 

Nous obtenons l'équation générale de la dynamique des fluides visqueux en divisant par 𝜌 : 

𝑑𝑉⃗⃗

𝑑𝑡
= 𝐹⃗  −

1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 +

1

𝜌
𝑑𝑖𝑣
⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗

[𝐿𝑉] 

Et, comme précédemment, en utilisant la notion de dérivée particulaire : 

𝜕𝑉⃗⃗

𝜕𝑡
+
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 + 2𝜔⃗⃗⃗ ∧ 𝑉⃗ − 𝐹⃗  +

1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 −

1

𝜌
𝑑𝑖𝑣⃗⃗ ⃗⃗⃗⃗⃗[𝐿𝑉] = 0⃗⃗       (XI.02) 

3. Equations de Bernoulli 

Dans l'équation d'Euler, considérons le cas particulier d'un fluide incompressible 
(ρ = constante). Dans ces conditions nous pouvons écrire : 

1

𝜌
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑝

𝜌
 

Multiplions la relation (XI.01) par la vitesse 𝑉⃗⃗ .  

𝑉 ∙⃗⃗ ⃗⃗⃗
𝜕𝑉⃗⃗

𝜕𝑡
+ 𝑉⃗⃗ ∙ (2𝜔⃗⃗⃗ ∧ 𝑉⃗ )⏟        

0

+ 𝑉⃗⃗ ∙ (
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 − 𝐹⃗  + 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑝

𝜌
) = 0 

Dans le cas des liquides, la force 𝐹⃗ est généralement due à l'apesanteur. Dans ces conditions F 
dérive d'une fonction de force et nous pouvons écrire : 

𝐹⃗ = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑔ℎ. 

Où h mesure l'altitude. 

Par ailleurs si l'écoulement est permanent nous aurons : 

𝜕𝑉⃗⃗

𝜕𝑡
= 0⃗⃗ 

Dans ces conditions il ne subsistera que : 

𝑉⃗⃗ ∙ (
1

2
𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑉2 +𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑔ℎ  + 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑝

𝜌
) = 0 

𝑉⃗⃗ ∙ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (
𝑉2

2
+ 𝑔ℎ  +

𝑝

𝜌
) = 0 
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Posons : 

𝐻 =
𝑉2

2𝑔
+ ℎ  +

𝑝

𝜌𝑔
 

H est la charge du fluide, comptée en mètre de fluide en mouvement. En vertu de la relation 
(X.01) on peut écrire : 

𝐷𝐻

𝐷𝑡
= 0 

C'est le théorème de Bernoulli ; la charge du fluide reste constante sur une ligne de courant. 

𝑉2

2𝑔
+ ℎ  +

𝑝

𝜌𝑔
= Constante                                       (XI.03) 

Lorsque dans l'équation de Bernoulli les vitesses sont nulles, la relation obtenue est dite 

"équation fondamentale de l'hydrostatique". 

𝑝

ρg
+ 𝑧 = constante                                                     (XI.04) 

Remarque 

Il est facile de retrouver la relation (XI.04). Pour cela considérons à l'intérieur d'un liquide au 
repos, un cylindre vertical fictif de diamètre d et de hauteur z1–z2. Écrivons son équilibre 

vertical, il est soumis, d'une part à son propre poids et, d'autre part, aux forces de pression p1 et 
p2 qui agissent sur ses extrémités. 

         z  

 
         p1 

      z1 

           ∅ = 𝑑 
 

      z2 
          p2 

       0 

Figure XI.02 Pression dans un 
liquide 

 

En désignant par 𝜌 la masse volumique du liquide il 
vient : 

−𝑝1𝜋
𝑑2

4
+ 𝑝2𝜋

𝑑2

4
− 𝜌𝑔𝜋

𝑑2

4
(𝑧1 − 𝑧2) = 0 

On obtient en simplifiant par 
4

d
π

2

: 

𝑝1 + ρgz1 = 𝑝2 + ρgz2 = 𝑝+ ρgz = constante 

On retrouve bien le résultat 
𝑝

ρg
+ 𝑧 = constante 

 

 

Exercice XI.01 

En supposant la pression atmosphérique égale à 101 325 Pa, déterminer la pression qui règne 

sur l'extérieur d'un sous-marin, assimilé à un point, enfoncé et immobile à 100 m de profondeur. 
 

La masse volumique de l'eau sera prise égale à 1000 kg/m3. 
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Corrigé 

Affectons de l'indice "1" le niveau d'eau et par "2" la profondeur du sous-marin. 
De la loi fondamentale de l'hydrostatique, nous avons 

 
   z     
   z1    

 
 

 
   z2 
 

 

𝑝2
𝜌𝑔
=
𝑝1
𝜌𝑔
+ 𝑧1 − 𝑧2 

Soit : 

𝑝2
𝜌𝑔
=

101325

1000 × 9,81
+ 100 = 110,32𝑚 

𝑝2 = 110,32 × 1000 ×9,81 = 1 O82 239 Pa 
𝑝2 = 10,82 bars  

 

Exercice XI.02 

Soit un liquide contenu dans un récipient A et s'écoulant par un orifice percé B à sa base. 

 z 
 

    zA   A    pat 
 
 

       1,5 m 
 

   zB         B   pat 
 
 

L'ouverture B est située à 1,5 m au-
dessous du niveau libre A. La surface 

libre est à la pression atmosphérique 
pat de 101325 Pa. 

Calculer la vitesse du liquide à la sortie 

de l'orifice B. 

 

Corrigé 

Appliquons le théorème de Bernoulli aux filets fluides compris entre A et B. 

𝑧𝐴 +
𝑉𝐴
2

2𝑔
+
𝑝𝐴

𝜌𝑔
= 𝑧𝐵 +

𝑉𝐵
2

2𝑔
+
𝑝𝐵

𝜌𝑔
  

Ici nous avons : 

𝑧𝐴 − 𝑧𝐵 = 1,3  𝑝𝐴 = 𝑝𝐵 = 𝑝𝑎𝑡  

Si la surface libre A est grande vis-à-vis de la surface de l'orifice B on peut négliger le terme 

𝑉𝐴
2

2𝑔
. L'équation de Bernoulli devient : 

𝑧𝐴 = 𝑧𝐵+
𝑉𝐵
2

2𝑔
  ⇒   𝑉𝐵 = √2𝑔(𝑧𝐴 − 𝑧𝐵)  

Soit : 

𝑉𝐵 = √2× 9,81 × 1,3 = 5.05 𝑚/𝑠 

En désignant par ℎ = 𝑧𝐴 − 𝑧𝐵  la relation 𝑉 = √2𝑔ℎ constitue la loi de Torricelli.  
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Exercice XI.03 

L'entrée E d'un tuyau se trouve à 10 m sous la surface libre d'un réservoir d'eau R de grande 
dimension. La sortie est à 30 m au-dessous de cette même surface libre. Le tuyau a un diamètre 

de 8 cm et se termine par une courte tuyère T d'un diamètre de 4 cm. 

     z 
   A 

 
             10 m   

 
 
 

          E 
 

 
       30m 
 

 
         Diamètre de la tuyauterie= 8cm   

 
          Diamètre de la section S = 4cm  

                T 
 

           AT 

3) Déterminer dans le tuyau la valeur de la pression en E ainsi que dans une section AT située 
juste en amont de la tuyère T de sortie. 

Corrigé 

1. Considérons un filet fluide allant de A à T et écrivons l'équation de Bernoulli : 

𝑉𝐴
2

2𝑔
+ 𝑧𝐴  +

𝑝𝐴
𝜌𝑔
=
𝑉𝑇
2

2𝑔
+ 𝑧𝑇  +

𝑝𝑇
𝜌𝑔

 

Or nous avons :
2

AV
= 0

2g
. Le réservoir est grand et le niveau d'eau reste constant. 

D'autre part PA= PT= pression atmosphérique. Il s'ensuit donc : 

𝑧𝐴 − 𝑧𝑇   =
𝑉𝑇
2

2𝑔
  ⇒  𝑉𝑇 = √2𝑔(𝑧𝐴− 𝑧𝑇) 

𝑉𝑇 = √2× 9,81 × 30 = 24,26 𝑚/𝑠 

2. Le calcul du débit volume est immédiat : 

𝑞𝑣 = 𝐴𝑇𝑉𝑇 =
𝜋 × 0,042

4
× 24,26 

𝑞𝑣 = 0,0305 𝑚
3/𝑠 

La pression atmosphérique est égale à 
1 bar et la masse volumique de l'eau est 

𝜌 = 1000 kg/m3. 

On négligera toutes les pertes de charges. 

1) Quelle est la valeur de la vitesse de 
l'eau à la sortie de la tuyère. 

2) Quel est le débit volume d'eau qui 

s'écoule. 

R 
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3. Écrivons l'équation de Bernoulli de A à E 

𝑧𝐴  +
𝑝𝐴
𝜌𝑔
=
𝑉𝐸
2

2𝑔
+ 𝑧𝐸  +

𝑝𝐸
𝜌𝑔

 

Pour déterminer la pression 
Ep  il faut tout d'abord calculer la vitesse VE. 

𝑉𝐸 =
𝑞𝑣
𝐴𝐸
=

0,0305

𝜋 ×  0,082

4

= 6,07𝑚/𝑠 

Et par suite : 

𝑝𝐸
𝜌𝑔
= 𝑧𝐴 − 𝑧𝐸  +

𝑝𝐴
𝜌𝑔
−
𝑉𝐸
2

2𝑔
= 10+

1.105

1000 × 9,81
−

6,072

2 × 9,91𝑔
= 18,32𝑚 

𝑝𝐸 = 18,32 𝜌𝑔 = 18,32 × 1000 × 9,81 = 179719 𝑃𝑎 
𝑝𝐸 ≈ 1,8 𝑏𝑎𝑟. 

Écrivons Bernoulli entre A et AT à l'amont de la tuyère de sortie.  

𝑧𝐴  +
𝑝𝐴
𝜌𝑔
=
𝑉𝐴𝑇
2

2𝑔
+ 𝑧𝑇  +

𝑝𝐴𝑇
𝜌𝑔

 

Sachant que 𝑉𝐴𝑇 = 𝑉𝐸  nous déduisons la pression 𝑝𝐴𝑇  : 

𝑝𝐴𝑇
𝜌𝑔

= 𝑧𝐴 − 𝑧𝑇 +
𝑝𝐴
𝜌𝑔
−
𝑉𝐴𝑇
2

2𝑔
= 30+

1.105

1000 × 9,81
−

6,072

2 × 9,81
= 38,32𝑚 

𝑝𝐴𝑇 = 375919 𝑃𝑎 

𝑝𝐴𝑇 ≈ 3,76 𝑏𝑎𝑟 

Exercice XI.04 

De l'eau s'écoule, en régime permanent, dans une tuyauterie horizontale et cylindrique. Elle 

comporte un Venturi dont le col a un diamètre de 8 cm. À l'amont du Venturi le diamètre de la 
tuyauterie est de 22 cm et à l'aval il est de 11 cm 

Conformément aux croquis ci-dessous un tube en U relié au col et à la section de sortie du 

Venturi indique une différence de pression de 8 cm de mercure. 

Calculer la vitesse d'écoulement au col et le débit d'eau. 

Nous supposerons que l'écoulement est réversible. 

On précise que la masse volumique de l'eau est de 1000 kg/m3 et que la masse volumique du 
mercure est de deux 13 600 kg/m3. 
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     z  ∅= 22 cm  

           ∅= 11 cm 

       ∅= 8 cm 
 
 

 
 
 

 
              h=8 cm 

 
 
     4 

         5 
 

 
 

 

Corrigé 

En désignant par 𝜌 le volume massique de l'eau, le débit masse s'écrit : 

𝑞𝑚 = 𝜌𝐴1 𝑉1 = 𝜌𝐴2 𝑉2 = 𝜌𝐴3 𝑉3  

Ce qui permet d'écrire : 

𝜋𝑑2
2

4
𝑉2 =

𝜋𝑑3
2

4
𝑉3   ⇒   𝑉3 = (

𝑑2
𝑑3
)
2

𝑉2  

La tuyauterie étant horizontale, l'équation de Bernoulli prise entre2 et 3 s écrit : 

𝑝2
𝜌𝑔
+
𝑉2
2

2𝑔
=
𝑝3
𝜌𝑔
+
𝑉3
2

2𝑔
  ⇒   𝑝3 −𝑝2 = (

𝑉2
2 −𝑉3

2

2
) 𝜌 = (1 − (

𝑑2
𝑑3
)
4

)
𝜌𝑉2

2

2
 

Du principe fondamental de la statique des fluides nous pouvons écrire entre 2 et 4 ainsi 
qu'entre 3 et 5: 

𝑝2
𝜌𝑔
+ 𝑧2 =

𝑝4
𝜌𝑔
+ 𝑧4

𝑝3
𝜌𝑔
+ 𝑧3 =

𝑝5
𝜌𝑔
+ 𝑧5

} ⇒ 𝑝3 −𝑝2 = 𝑝5 −𝑝4 + (𝑧5 − 𝑧4 − (𝑧3 − 𝑧2)⏟      
0

)𝜌𝑔 = 𝑝5 −𝑝4 − 𝜌𝑔ℎ 

En désignant par Hg   le volume massique du mercure, nous pouvons écrire : 

𝑝4
𝜌𝐻𝑔𝑔

+ 𝑧4 =
𝑝5
𝜌𝐻𝑔𝑔

+ 𝑧5   ⇒   𝑝5 − 𝑝4 = (𝑧4 − 𝑧5)𝜌𝐻𝑔𝑔 = 𝜌𝐻𝑔𝑔ℎ 

De ces trois dernières relations on déduit : 

3 1 2 
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𝑝3 −𝑝2 = 𝑝5 −𝑝4 − 𝜌𝑔ℎ = (𝜌𝐻𝑔 −𝜌)𝑔ℎ 

Il s'ensuit donc la vitesse au col de la tuyère : 

𝑝3 −𝑝2 = (1− (
𝑑2
𝑑3
)
4

)
𝜌𝑉2

2

2
= (𝜌𝐻𝑔 −𝜌)𝑔ℎ 

𝑉2 = √

2(
𝜌𝐻𝑔
𝜌 − 1) 𝑔

(1 − (
𝑑2
𝑑3
)
4

)

ℎ  

L'application numérique conduit à V2=5,2 m/s et 𝑞𝑚 = 𝜌𝐴2 𝑉2 = 26,3 𝑘𝑔/𝑠  

Exercice XI.05 

Une maquette d'aile d'avion est essayée en soufflerie avec une vitesse d'air de 38 m/s. 

En un point E de l'extrados de l'air, une prise de pression statique indique une dépression 
h=290 mm d'eau. 

Quelle est la vitesse de l'air au point E ? 

On précise que dans la soufflerie la pression atmosphérique est de 101325 Pa et la masse 

volumique de l'air est de 1,205 kg/m3. 

             E 
           A 

 
 38 m/s 

              h 
 

Corrigé 

Par définition la pression totale au point A est : 

𝑝𝑇𝑜𝑡𝑎𝑙𝑒 𝐴 = 𝑝𝐴 +
𝜌𝑎𝑖𝑟 𝑉𝐴

2

2
= 101325 +

1,205 × 382

2
 

𝑝𝑇𝑜𝑡𝑎𝑙𝑒 𝐴 = 102195𝑃𝑎 

La pression statique au point E est : 

𝑝𝐸 = 𝑝𝑎𝑡𝑚𝑜𝑠𝑝ℎé𝑟𝑖𝑞𝑢𝑒 − ℎ 𝜌𝑒𝑎𝑢 𝑔 = 101325− 0,29 × 1000 × 9.81 

𝑝𝐸 = 98480𝑃𝑎 
 

Pour les filets fluides s'écoulant autour de l'aile, écrivons Bernoulli de A à E  

   
𝑝𝐴
𝜌𝑎𝑖𝑟𝑔

+
𝑉𝐴
2

2𝑔
+ 𝑧𝐴 =

𝑝𝐸
𝜌𝑎𝑖𝑟𝑔

+
𝑉𝐸
2

2𝑔
+ 𝑧𝐸 
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𝑝𝐴 +
𝜌𝑎𝑖𝑟𝑉𝐴

2

2
+ 𝑔𝜌𝑎𝑖𝑟𝑧𝐴 = 𝑝𝐸 +

𝜌𝑎𝑖𝑟𝑉𝐸
2

2
+ 𝑔𝜌𝑎𝑖𝑟𝑧𝐸𝑝𝐸 

L'écart entre A Ez et z  est minime si bien qu'on peut écrire : A Ez z   

𝑝𝐴 +
𝜌𝑎𝑖𝑟𝑉𝐴

2

2
= 𝑝𝐸 +

𝜌𝑎𝑖𝑟𝑉𝐸
2

2
= 𝑝𝑇𝑜𝑡𝑎𝑙𝑒 𝐴  

Il s'ensuit donc : 

𝑉𝐸 = √2 
𝑝𝑇𝑜𝑡𝑎𝑙𝑒 𝐴 − 𝑝𝐸

𝜌𝑎𝑖𝑟
= √2

102195 − 98480

1,205
 

𝑉𝐸 = 78,5𝑚/𝑠 

4. Théorème des quantités de mouvement 

La quantité de mouvement, variables beaucoup utilisées en mécanique des fluides, est le produit 

de la masse par le vecteur vitesse d'une particule fluide. Pour le volume élémentaire dV, on 

définit une grandeur vectorielle par : 𝑉⃗⃗𝜌𝑑𝑉. 

En mécanique des fluides, l'équation de bilan de la quantité de mouvement découle du principe 
fondamental de la dynamique du solide appliqué un fluide. 

4.1 Résultante 

La résultante des forces extérieures est égale à la dérivée par rapport au temps de la résultante 
des quantités de mouvement. 

𝐹⃗𝑒𝑥𝑡 =
𝐷

𝐷𝑡
∭𝑉⃗⃗𝜌𝑑𝑉

𝑉

                                                          (XI.05) 

Des relations (X.04) et (XI.05) nous déduisons : 

𝐹⃗𝑒𝑥𝑡 =∭
𝜕

𝜕𝑡
(𝑉⃗⃗𝜌)𝑑𝑉

𝑉

+∬𝑉⃗⃗𝜌
𝐴

(𝑉⃗⃗ ∙ 𝑛⃗⃗⃗⃗⃗)𝑑𝐴 

Dans le cas d'un écoulement permanent cette relation devient : 

𝐹⃗𝑒𝑥𝑡 =∬𝑉⃗⃗𝜌
𝐴

(𝑉 ∙⃗⃗ ⃗⃗⃗ 𝑛⃗⃗)𝑑𝐴                                                           (XI.06) 

Il n'a été fait aucune hypothèse sur le fluide, ce théorème est applicable indifféremment au 
fluide parfait et au fluide réel. Seul change le bilan des forces extérieures. 

Considérons l'écoulement permanent d'un fluide à l’intérieur d’un morceau de tuyauterie 
représentée sur la figure XI.03. 

Désignons par 𝑛⃗⃗1 et𝑛⃗⃗2 les normales aux surfaces A1 et A2 et dirigés suivant l’abscisse curviligne 

« s ». La surface latérale est A3 et on désigne par 𝑛⃗⃗3 sa normale extérieure. 
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En supposant que les frottements soient négligeables, on décomposera la relation (XI.06) de la 

façon suivante : 

∬𝑉⃗⃗𝜌
𝐴

(𝑉 ∙⃗⃗ ⃗⃗⃗ 𝑛⃗⃗)𝑑𝐴 = ∬ 𝑉⃗⃗𝜌
𝐴2

(𝑉 ∙⃗⃗ ⃗⃗⃗ 𝑛⃗⃗)𝑑𝐴2 −∬ 𝑉⃗⃗𝜌
𝐴1

(𝑉 ∙⃗⃗ ⃗⃗⃗ 𝑛⃗⃗)𝑑𝐴1  

Si en outre, on admet que la pression, la masse volumique, la vitesse ont les mêmes valeurs en 
tous les points d'une section droite et ne dépendent que de l'abscisse curviligne « s » on peut 

écrire : 

∬𝑉⃗⃗𝜌
𝐴

(𝑉⃗⃗ ∙ 𝑛⃗⃗⃗⃗⃗)𝑑𝐴 = 𝑉⃗⃗2𝜌2(𝑉⃗⃗2 ∙ 𝑛⃗⃗2)𝐴2 − 𝑉⃗⃗1𝜌1(𝑉⃗⃗1 ∙ 𝑛⃗⃗⃗⃗⃗1)𝐴1 

       s 

      𝑛⃗⃗2  
             A2 
 

 
     A1 

                                    A3  

                            𝑛⃗⃗1 
        𝑛⃗⃗3  

        Figure XI.03 Tuyauterie 
 

Mais nous avons : 

𝜌2(𝑉⃗⃗2∙ 𝑛⃗⃗2)𝐴2 = 𝜌1(𝑉⃗⃗1∙ 𝑛⃗⃗1)𝐴1 = 𝑞𝑚  

C’est-à-dire égal au débit masse qm. 

Avec toutes ces hypothèses l'intégration 

de la relation (XI.06) conduit au théorème 
des quantités de mouvements : 

 

∬𝑉⃗⃗𝜌
𝐴

(𝑉⃗⃗ ∙ 𝑛⃗⃗⃗⃗⃗)𝑑𝐴 = (𝑉⃗⃗2  − 𝑉⃗⃗1  )𝑞𝑚 = 𝐹⃗𝑒𝑥𝑡                     (XI.07) 

Nous pouvons décomposer la force 𝐹⃗𝑒𝑥𝑡  de la façon suivante : 

- Les forces 𝑝1𝐴1𝑛⃗⃗1 − 𝑝2𝐴2𝑛⃗⃗2  exercées par le fluide à l'amont et à l'aval du système considéré. 

  Les vecteurs unitaires 𝑛⃗⃗1et n⃗⃗2 sont dirigés dans le sens des vitesses 𝑉⃗⃗1  et 𝑉⃗⃗2   

- L'action 𝑅⃗⃗ exercée par les parois sur le fluide. 

- L'action de la pesanteur 𝑃⃗⃗ exercée sur le fluide 

Reportons ces forces dans la relation (XI.07) 

𝐹⃗𝑒𝑥𝑡 = 𝑝1𝐴1𝑛⃗⃗1 −𝑝2𝐴2𝑛⃗⃗2 + 𝑃⃗⃗ + 𝑅⃗⃗ = (𝑉⃗⃗2  − 𝑉⃗⃗1  )𝑞𝑚 

𝑝1𝐴1𝑛⃗⃗1 −𝑝2𝐴2𝑛⃗⃗2 + 𝑃⃗⃗ + 𝑅⃗⃗ = (𝑉⃗⃗2  − 𝑉⃗⃗1  )𝑞𝑚  

4.2 Moment 

Le moment résultant par rapport à un point fixe M des forces extérieures est égal à la dérivée 
par rapport au temps des moments des quantités de mouvement. 

𝑀⃗⃗⃗𝑜𝐹𝑒𝑥𝑡 =
𝐷

𝐷𝑡
∭(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗)𝜌𝑑𝑉

𝑉

                                         (XI.08) 
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Comme précédemment nous pouvons écrire : 

𝑀⃗⃗⃗𝑜𝐹𝑒𝑥𝑡 =∭
𝜕

𝜕𝑡
(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗𝜌)𝑑𝑉

𝑉

+∬(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗)
𝐴

 𝜌(𝑉⃗⃗ ∙ 𝑛⃗⃗)𝑑𝐴 

5. Etude dynamique d'une particule fluide en écoulement permanent 

           ds2 

         D* 
          ds1        D          p+dp       s 
 

        A* 
         A              C* 

       C 
 p 
              B B* 

           A1 dV1           A2       dV2 

Figure XI.05 Pression sur une particule 

fluide 

 

Tout d'abord supposons que le fluide soit 
parfait et considérons la trajectoire que suit la 
particule. Dans un écoulement permanent les 

trajectoires et les lignes de courant sont 
confondues. 

A la date t la particule fluide occupe dans le 
tube de courant le contour ABCD et à la date 
t+dt la position infiniment voisine 

A*B*C*D*. 
AB se déplace de ds1 et CD de ds2. 

Désignons par p et A1 les valeurs moyennes de la pression et de la surface de la section droite 
du tube de courant en AB. De même notons p+dp et A2 les grandeurs moyennes de CD pendant 

ce déplacement. 

Le fluide étant supposé parfait, les forces de contact sont toutes normales à la surface de la 

particule. Dans l'évaluation de leur travail au cours du déplacement ne subsisteront que les 
forces de pression agissant sur les surfaces A1 et A2. Soit : 

δW = p A1 ds1 – (p+dp) A2 ds2 

Puisque l'écoulement est permanent, la masse contenue dans le contour ABB*A* est identique 
à celle qui est contenue dans CDD*C*. Il s'ensuit : 

𝑑𝑉1 = 𝐴1 𝑑𝑠1 = 𝑣𝑑𝑚  et  dV2 = 𝐴2  𝑑𝑠2 = (𝑣 + 𝑑𝑣)𝑑𝑚 

v étant le volume massique du fluide. 

Remplaçons dV1 et dV2 dans l'expression de ce travail : 

𝛿𝑊 = [𝑝𝑣 − (𝑝 + 𝑑𝑝)(𝑣 + 𝑑𝑣)]𝑑𝑚 
   = −𝑑(𝑝𝑣)𝑑𝑚 

Et rapporté à l'unité de masse : 

𝛿𝑤 = −𝑑(𝑝𝑣) 

Dans ce cas particulier, nous aurions pu noter dw au lieu de wδ  puisque le travail est ici une 
différentielle totale exacte. 

Dans un fluide réel, le vecteur contrainte agissant sur un élément de surface a une composante 
tangentielle due au frottement. En régime laminaire, les efforts tangentiels sont provoqués par 

la viscosité. En régime turbulent, elles résultent d'un apport de quantité de mouvement lié aux 
fluctuations de la vitesse. 
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En chaque point d'un fluide en écoulement permanent, ces efforts sont constants quelle que soit 

la date t. Tout tube de courant voisin, plus rapide que la particule, lui transmet un travail moteur. 
C'est l'inverse s'il est plus lent. 

Pour le déplacement élémentaire de la particule fluide, le travail de frottement rapporté à l'unité 
de masse sera noté δwf. Le signe de δwf est, à priori, absolument quelconque. 

Pour un écoulement permanent le travail des forces de contact sur une particule fluide aura 

l'expression suivante : 

𝛿𝑤 = −𝑑(𝑝𝑣) + 𝛿𝑤𝑓          (XI.09) 

Si le fluide est parfait 𝛿𝑤𝑓 = 0 

6 Travail des forces de contact dans un fluide quasiment au repos 

Pour déterminer le travail, des forces de contact s'exerçant sur un fluide quasiment au repos, il 
est plus simple de considérer un gaz emprisonné dans un cylindre surmonté d'un piston. Les 

résultats obtenus sont évidemment valables pour une particule fluide. 

Sous l'action des poids dont la résultante est la force 𝐹⃗ le piston se déplace de dx. Dans le repère 

ci-contre, ce travail est donc : δW = - 𝐹⃗ dx.𝑒1⃗⃗⃗⃗   = - F dx 

Pour que le fluide reste quasiment au repos, il faut que le piston se déplace infiniment lentement. 
C'est une succession d'états d'équilibres. 

A chaque état d'équilibre il doit régner une pression uniforme dans toute la masse de gaz. 

En désignant par p la pression qui règne dans le gaz et par A la surface du piston, l'équilibre du 

piston n'impose que F=A p. 

 

      x             𝐹⃗ 
 
 

 
 dx          Piston 

    dV 
 

          Gaz 

 

     e1⃗⃗ ⃗⃗  
 
     0 
Figure XI.06 Déplacement d’un piston 

 

Le travail correspondant est donc : 

𝛿𝑊 = −𝐴𝑝𝑑𝑥 = −𝑝𝑑𝑉   
 puisque  Adx = 𝑑𝑉 

Par unité de masse, le travail des forces de 
contact s'exerçant sur un fluide quasiment au 
repos s'exprime donc par : 

𝛿𝑤 = −𝑝𝑑𝑣   (XI.10) 
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7 Travail des forces intérieures agissant sur une particule fluide 

Puisque le travail des forces intérieures est indépendant du repère choisi pour l'évaluer, il est 
commode de choisir le repère central. Pour une particule fluide, la relation (IV.24) permet de 

déduire immédiatement : 

−𝛿𝑊∗ = 𝛿𝑊𝑖 
 

Puisque  𝑑𝐸𝐶
∗  est nul par définition. 

Dans ce repère, le travail de la force de pesanteur est également nul. Il ne subsistera que le 

travail des forces de contact caractérisant la déformation de la particule. 

- Si les forces de contact sont normales à la surface de la particule, le résultat est très simple : 

𝛿𝑊𝑖 = −(−𝑝𝑑𝑉) = 𝑝𝑑𝑉  

- Si les forces de contact ne sont pas normales à la surface de la particule, le travail dû aux 
contraintes tangentielles de frottement, entraînera une dissipation d'énergie souvent notée –δF. 

Ce terme est par nature résistant donc toujours négatif. Il est parfois appelé travail dégradé ou 
encore travail non compensé. 

En conclusion, le travail des forces intérieures agissant sur une particule fluide, absolument 
quelconque, sera : 

𝛿𝑊𝑖 = 𝑝𝑑𝑉 − 𝛿𝐹 
Et par unité de masse : 

𝛿𝑤𝑖 = 𝑝𝑑𝑣 − 𝛿𝑓         (XI.11) 

8 Équation fondamentale d'un écoulement permanent unidimensionnel 

Le théorème de l'énergie cinétique (IV.22) permet d'établir très facilement l'équation de 
mouvement d'un écoulement unidimensionnel. 

𝑑𝐸𝐶 = 𝑑𝑊𝑖 +𝑑𝑊𝑒 

Pour cela considérons une particule fluide à l'intérieur d'un tube de courant. 

L'écoulement étant permanent, le travail des forces de contact est 𝛿𝑤 = −𝑑(𝑝𝑣) + 𝛿𝑤𝑓 (Voir 

relation (XI.09)). 

         z       s 
 
 

 
 

           G 
 

     e3⃗⃗ ⃗⃗  

  -g dm 𝑒3⃗⃗ ⃗⃗   

Figure XI.07 Écoulement d'une particule 
fluide 

 

 
L'action de la pesanteur sur la particule est 
par unité de masse : -g dz. 

Le travail des forces intérieures est : pdv-δf 
(relation (XI.11)). 
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Des termes se simplifient :−𝑑(𝑝𝑣) + 𝑝 𝑑𝑣 = −𝑣 𝑑𝑝 − 𝑝 𝑑𝑣 + 𝑝 𝑑𝑣 = −𝑣 𝑑𝑝 

En mécanique des fluides et dans le domaine des turbomachines il est d'usage d'utiliser la masse 

volumique au lieu du volume massique. 

𝑣𝑑𝑝 =
𝑑𝑝

𝜌
 

Cela, par ailleurs, évite les confusions entre la vitesse V et le volume massique v. 

En posant : 𝛿𝜉 = − (𝛿𝑤𝑓 −𝛿𝑓) la relation (IV.22) devient : 

𝑑 (
𝑉2

2
) +

𝑑𝑝

𝜌
+ 𝑔𝑑𝑧 + 𝛿𝜉 = 0                                        (XI.12) 

C'est-à-dire la relation de Bernoulli à laquelle les pertes ont été ajoutées. 

Remarque importante. 

Le terme mesurant le travail des forces tangentielles de frottement δwf disparaît lorsqu'on 

considère l'ensemble d’une tranche fluide s'écoulant à l'intérieur d'une tuyauterie. 

 

 

 
Figure XI.08 Répartition 

des vitesses 

La vitesse du fluide s'annule le long des parois de la 
canalisation et il en est de même pour les contraintes 

tangentielles. 

Pour une tranche de fluide la quantité 𝛿𝜉 = 𝛿𝑓 caractérise donc 
une dégradation énergétique. 

𝛿𝜉 est souvent appelée "perte de charge". 

En ne s'intéressant qu'aux valeurs moyennes de l'écoulement, nous aurons en intégrant la 
relation (XI.12) : 

𝑉2
2 −𝑉1

2

2
+∫

𝑑𝑝

𝜌

2

1

+ 𝑔(𝑧2 − 𝑧1) + 𝜉1→2 = 0                          (XI.13) 

Cette relation, fréquemment utilisée, est souvent désignée par "équation fondamentale d'un 

écoulement permanent unidimensionnel". 

Pour intégrer le terme∫
𝑑𝑝

𝜌

2

1
, il faut connaître la nature des évolutions, afin de déterminer les 

relations liant la pression p à la masse volumique ρ. En d'autres termes, utiliser les relations de 
la thermodynamique. 

Lorsqu'on néglige la perte de charge et la pesanteur, la relation (XI.13) est désignée par équation 
de Barré de Saint Venant. 

𝑉2
2 − 𝑉1

2

2
+ ∫

𝑑𝑝

𝜌

2

1

= 0                                             (XI.14) 
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9 Perte de pression 

Aussi bien en régime laminaire qu’en régime turbulent, la perte de pression 𝛥𝑝 d’une tuyauterie 

se représente par la relation : 

𝛥𝑝

𝜌
= 𝜆

𝐿

𝐷

𝑉𝑚
2

2
                                                           (XI.15) 

  qui n’a pas de dimension est appelé le coefficient de perte de charge. 

Vm est la vitesse moyenne du fluide dans la tuyauterie exprimée en m/s 

L est la longueur de la tuyauterie. 

D est le diamètre de la tuyauterie. Parfois on comptabilise le diamètre hydraulique Dh défini par 

𝐷ℎ =
4𝐴

𝑃𝑚
 où A est la surface de la section droite tuyau et Pm le périmètre mouillé. 

En régime laminaire, c’est-à-dire lorsque le Reynolds est inférieur à 2000, le coefficient   ne 
dépend que du nombre de Reynolds. Il est donné par la relation suivante : 

𝜆 =
64

𝑅𝑒
 

Si on construit la courbe en utilisant une échelle logarithmique on obtient une droite de pente 

négative, dite droite de Poiseuille. 

Lorsque le Reynolds est compris entre 2000 et 4000 la zone est critique. Le coefficient   ne 
dépend que du Reynolds mais sa valeur est mal définie. 

En régime turbulent lisse que l’on définit dans l’intervalle de la turbulence naturelle pour la 
limite inférieure et la rugosité des parois pour la limite supérieure. Dans cette région on définit  

approximativement la loi de Blasius : 

𝜆 = 0,316𝑅𝑒
−
1
4 

En coordonnées logarithmiques cette relation se traduit par une droite inclinée de pente -1/4, 
appelée droite de Blasius. 

Les travaux expérimentaux effectués par Darcy puis par Nikuradse ont montré que   est en fait 
fonction du nombre de Reynolds et d’un coefficient de rugosité caractérisant l’état de surface 

de la paroi intérieure de la tuyauterie. 

Dans ses essais Nikuradse avait rendu les conduites rugueuses artificiellement en collant des 

grains de sable. Ce qui permettait, ainsi, de définir un coefficient de rugosité relative égal à 
D


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Figure XI.09 Courbes de Nikuradse et Woody d’après R Ouziaux et J. Perrier  

10 Pertes de pression singulières des conduites 

Indépendamment des pertes par frottement dans la partie droite d’une tuyauterie, l’estimation 
de la résistance d’une conduite doit tenir compte des pertes singulières qui peuvent s’y produire. 

Les pertes singulières proviennent des changements de direction, des changements de section 
ou de forme, de clapets, de vannes etc. etc. 

La relation (XI.165) représente la perte de pression 𝛥𝑝 d’une tuyauterie droite. En introduisant 
un coefficient K, on exprime les pertes de pression singulières d’une façon analogue : 

𝛥𝑝

𝜌
= 𝐾

𝑉𝑚
2

2
                                                               (XI.16) 

Le coefficient K est déterminé pour chaque type de singularité et la vitesse moyenne 𝑉𝑚 est 
calculée à son amont. 

10. 1. Élargissement brusque 

Calculons la perte de pression 𝛥𝑝, entre deux sections droites A1 et A2, provoquée par un 
élargissement brusque, soit : 

𝛥𝑝

𝜌
= (

𝑝1
𝜌
+
𝑉1
2

2
) − (

𝑝2
𝜌
+
𝑉2
2

2
) =

𝑝1 −𝑝2
𝜌

+
𝑉1
2

2
−
𝑉2
2

2
 

Pour cela considérons deux conduites de diamètre différent et raccordées l’une à l’autre. Elles  
sont parcourues par un fluide en écoulement permanent. 

Au passage de la première conduite, de surface droite A1, à la deuxième, de surface droite A2, il 
se produit un élargissement brusque représenté sur la figure (XI.10). 

Droite de Poiseuille. 

 
 
Droite de Blasius 
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     Pression p1     A2 

 
       A1 

 
 
 

 
 

 

Figure XI.10 Elargissement brusque 

Pour déterminer le coefficient K appliquons le théorème des quantités mouvement. En 

supposant les tuyauteries horizontales et en négligeant l’action de la pesanteur sur le fluide la 
relation (XI.07) devient : 

𝑝1𝐴1 −𝑝2𝐴2 +𝑅 = (𝑉2   − 𝑉1  )𝑞𝑚     (XI.17) 

Le terme 𝑅 caractérise l’action exercée par les parois sur le fluide. Plus précisément les 
tourbillons exercent sur la surface annulaire A2-A1.une pression p où l’expérience montre 

qu’elle est sensiblement égale à p1. 
Tout le calcul repose sur cette hypothèse. On a donc : 

𝑅 = (𝐴2 −𝐴1)𝑝1 

Dans les sections 1 et 2 le débit masse s’écrit : 

𝑞𝑚 = 𝜌𝐴1𝑉1 = 𝜌𝐴2𝑉2  

En tenant compte de R et de mq  la relation (XI.17) devient : 

(𝑝1 − 𝑝2)𝐴2 = 𝜌𝐴2𝑉2
2 − 𝜌𝐴1𝑉1

2  

𝑝1 − 𝑝2
𝜌

= 𝑉2
2 −

𝐴1
𝐴2
𝑉1
2 

Et en tenant compte que : 
𝐴1

𝐴2
𝑉1 = 𝑉2  cette dernière relation devient : 

𝑝1 −𝑝2
𝜌

= ((
𝐴1
𝐴2
) − 1)

𝐴1
𝐴2
𝑉1
2 

En reportant 
𝑝1−𝑝2

𝜌
 dans l’expression de la perte de pression 

𝛥𝑝

𝜌
 nous obtenons : 

𝛥𝑝

𝜌
= ((

𝐴1
𝐴2
) − 1)

𝐴1
𝐴2
𝑉1
2 +

𝑉1
2

2
− (
𝐴1
𝐴2
)
2 𝑉1

2

2
 

𝛥𝑝

𝜌
= ((

𝐴1
𝐴2
)
2

−2
𝐴1
𝐴2
+1)

𝑉1
2

2
= (1−

𝐴1
𝐴2
)
2 𝑉1

2

2
 

  

p1 , V1 
p2 

V2 
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D’où l’expression du coefficient K pour un élargissement brusque : 

𝐾 = (1−
𝐴1
𝐴2
)
2

                                                       (XI.18) 

On remarquera que lorsque la section 𝐴2 ≫ 𝐴1, c’est-à-dire lorsque la tuyauterie de section A1  
débouche dans un réservoir de très grande dimension on a K=1. La perte de pression 

devient : 
𝛥𝑝

𝜌
=
𝑉1
2

2
. Cette perte correspond à la dégradation complète de l’énergie cinétique. 

10. 2. Rétrécissement brusque 

Dans un rétrécissement brusque la part importante de la perte de pression est à l’aval de la 
contraction. Sébastien Candel, dans son cours de mécanique des fluides, donne les valeurs 

suivantes de K en fonction du rapport des surfaces𝐴2/𝐴1 . 
       A1 

 
 
              A2 

 
 
 

 
 

 

Figure XI.11 Rétrécissement brusque 
 

𝐴2

𝐴1
  0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

K 0,37 0,35 0,32 0,27 0,22 0,17 0,10 0,06 0,02 0 

Tableau XI. 01 Coefficient K pour un rétrécissement brusque 

La perte de pression varie avec la géométrie du rétrécissement. Si la contraction est profilée 
l’écoulement sera moins perturbé et la perte de charge se trouvera diminuée. 

Par exemple, pour la géométrie de la section d’entrée de conduite représentée sur la figure 
X1.12, le coefficient K de perte de charge sera relativement faible. 

 
 
 

 
 

 
 
 

 
 

Figure XI.12 Entrée de conduite profilée 
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Chapitre XII 

Premier principe de thermodynamique 
 
 

1 Spécificités de la thermodynamique 

Les thermodynamiciens utilisent une terminologie et des notations qui leur sont spécifiques. 
Citons par exemple les termes suivants : source de chaleur, transformation irréversible, 
évolution isentropique, transformation cyclique, transformation ditherme, variables d'états, 

évolution polytropique. Certaines de ces expressions ne peuvent pas être précisées dans ce 
chapitre. Il faut que le niveau de connaissance acquis soit suffisant pour bien comprendre leur 

signification. 

1-1 Systèmes thermodynamiques 

Définir un système thermodynamique c'est délimiter la région de l'espace où se trouve la 
matière dont on veut étudier les propriétés. Pour distinguer cette région du reste de l'univers, on 

la limite par une surface fermée qui peut être réelle ou imaginaire. 

Ce qui n'est pas le système est appelé le milieu extérieur. 

Un système thermodynamique peut échanger de l'énergie avec le milieu extérieur sous diverses 
formes (mécanique, calorifique, électrique). Il peut être composé d'un ensemble de corps de 
composition variable ou non. Par exemple, il peut s'agir d'une certaine quantité d'essence et d'air 

qui se transforme chimiquement en gaz brûlés ou bien de l'eau qui se vaporise partiellement ou 
totalement. 

Un système est dit ouvert s'il échange de la matière et de l'énergie avec le milieu extérieur. Un 
exemple simple à prendre est celui de la fusée. 

Un système est dit fermé s'il n'échange que de l'énergie avec le milieu extérieur sans transfert 

de matières. Étudier un système fermé, c'est centrer son analyse sur une quantité donnée de 
matière tel un gaz emprisonné dans un cylindre surmonté d'un piston. 

Un système est dit isolé s'il n'échange ni matière ni énergie avec son milieu extérieur. 

Un système est dit homogène si ses propriétés (pression, température, composition etc…) ont 
la même valeur en tous ses points. Le système est nécessairement en phase unique. 

Un système est hétérogène ou discontinu s'il est constitué de plusieurs sous -ensembles 
individuellement homogènes mais différents les uns des autres. Par exemple, un système 

constitué de plusieurs phases (liquide-vapeur). 

Un système est dit continu si ses propriétés sont des fonctions continues du point considéré 
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1-2 Variables d’états 

La thermodynamique macroscopique ne se préoccupe que des propriétés directement 
observables et mesurables. L'état dans lequel se trouve un système, à une date donnée, est 

caractérisé par des grandeurs appelées variables d'états ou coordonnées thermodynamiques. 
Elles se décomposent en coordonnées externes (vitesse, position, etc.) et en variables d'états 

internes extensives ou intensives. 

Les variables extensives sont des grandeurs quantitatives, c'est-à-dire directement 
proportionnelles à la "taille" du système comme la masse, le volume, … 

Les variables intensives sont des grandeurs qualitatives, elles définissent la qualité d'un système 
comme par exemple la pression, la température ou la masse volumique. 

Pour distinguer les variables extensives des variables intensives, il faut supposer que l'on ajoute 
deux systèmes thermodynamiques identiques. Dans ces conditions les variables d'états 
extensives doubleraient ce qui serait le cas de leur masse ou de leur volume. Par contre les 

variables d'états intensives resteraient constantes comme la pression, la température ou la masse 
volumique.  

Si les variables intensives ne dépendent pas du temps, le système se trouve soit dans un état 
d'équilibre soit dans un état stationnaire. Un état stationnaire s'établit sous l'effet de causes 
extérieures, par contre un état d'équilibre est déterminé par des conditions qui sont internes au 

système. 

Pour un système quelconque, l'équilibre thermique sera réalisé si la température est uniforme. 

Dans le cas d'un gaz il y aura équilibre mécanique si c'est la pression qui est uniforme. 

L'expérience montre que tout système isolé tend vers un état d'équilibre qu'il ne peut désormais 
plus quitter sans intervention extérieure. 

C'est de cette constatation qu'est née la thermodynamique classique qui ne concerne que les 
états d'équilibres des systèmes. 

En fait, on traite les évolutions des systèmes par le biais d'une succession d'états d'équilibre, et 

on définit à ce propos la notion idéaliste d'évolutions réversibles. 

1-3 Transformations et évolutions thermodynamiques 

Le passage d'un système d'état initial (i) à un état final (f) est appelé transformation. 

Si ces deux états sont infiniment voisins, la transformation est dite élémentaire. 

Si le système se retrouve à l'état final dans le même état qu'initialement, la transformation est 

dite cyclique. 

Pour qu'un système subisse une transformation au cours du temps, il est nécessaire que les 
conditions d'équilibre ne soient pas satisfaites. Par exemple : 
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- Lorsque la résultante des forces s'exerçant sur un système n'est pas nulle il se produit un 

mouvement et il y a un échange de travail entre le système et le milieu extérieur. 

- Si deux réservoirs contenant un même gaz à des pressions différentes sont réunis, il se produit 

alors un écoulement du gaz d'un réservoir dans l'autre. 

- Lorsqu'un système est séparé du milieu extérieur par des parois perméables à la chaleur (parois 
conductrices ou diathermanes) et qu'il existe une différence de température entre le système et 

son milieu extérieur, il se produit un échange de chaleur. Ce qui a pour effet d'atténuer l'écart 
de température en entraînant des changements d'état au sein du système. 

Il est possible de passer d'un état initial (i) à un état final (f) en utilisant des chemins différents. 
Le terme d'évolution est souvent préféré à celui de transformation lorsqu'il est précisé la nature 
du "chemin" que suit le système pour passer de (i) à (f). 

Un système subit une évolution adiabatique lorsqu'il est thermiquement isolé de son milieu 
extérieur empêchant ainsi tout échange de chaleur. 

Lorsqu'un système est entouré de parois rigides indéformables, il ne peut subir que des 
évolutions à volume constant. Une évolution à volume constant est appelée isochore. 

Une évolution au cours de laquelle la température du système reste constante est appelée 

évolution isotherme. 

Une évolution au cours de laquelle la pression du système reste constante est appelée évolution 

Pour les variations élémentaires de variables caractérisant l'état d'un système 
thermodynamique, ou pour des différentielles totales exactes, nous emploierons comme il est 

d'usage le symbole "d" (dT, dp, dv, dρ). Le symbole "δ" sera réservé dans le cas contraire 
(𝛿𝑊,  𝛿𝑄. . . . . . . ). 

1-4 Transformations réversibles et irréversibles 

Une transformation d'un système sera dite réversible si à chaque instant de son évolution, le 
système peut être défini par des variables d'état possédant la même valeur en tous les points 

d'une phase homogène. 

La transformation progressive du système peut être considérée comme une succession continue 

d'états d'équilibre infiniment voisins. Dans ces conditions, les variables d'état possèdent à tout 
instant des valeurs bien déterminées. Ce qui permet de représenter les variations des propriétés 
thermodynamiques par des relations mathématiques. 

Il suffit d'actions extérieures très faibles, théoriquement aussi petites que l'on veut, pour 
provoquer la transformation dans le sens désiré. Ainsi il est possible de revenir à l'état initial en 

repassant successivement, mais dans l'ordre inverse, par tous les états antérieurs. Cela suppose 
l'absence de forces de frottement ou plus précisément de phénomène de dissipation. 

Une évolution réversible est une transformation dont les effets peuvent être entièrement effacés. 

Il n'est pas nécessaire que le fluide soit pratiquement au repos pour que les évolutions soient 
réversibles. Cette notion de transformation réversible s'applique également dans un fluide en 

mouvement. 
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Par exemple, considérons l'écoulement d'un fluide parfait et plus particulièrement d'une 

particule fluide. Dans son mouvement la particule fluide peut augmenter sa pression en 
diminuant sa vitesse dans un diffuseur ou faire l'opération inverse. 

 

 

Figure XII.01 Divergent réversible 

La particule fluide étant à chaque instant dans 
un état très voisin d'un état d'équilibre par 
rapport à des axes liés au mouvement. 

 
À l'opposé de l'exemple précédent, la détente 

d'un gaz au moyen d'un volet, diaphragme ou 
robinet est une opération irréversible. 

 

 

Figure XII.02 Diaphragme 

En fait les transformations réelles sont irréversibles mais il se trouve que la schématisation par 
des évolutions réversibles, constitue très souvent dans la physique que nous faisons, une 

approximation suffisante des phénomènes réels. 

Les principales causes d'irréversibilités sont le frottement, la viscosité, la déformation 

permanente d'un solide, voire la rupture, les réactions chimiques, les ondes de choc, … 

Toute évolution irréversible laisse une trace dans l'univers. Cette trace indélébile apparaît 
comme une sorte de perte d'énergie qui sera précisée ultérieurement. 

1-5 Représentation graphique 

La transformation d'un système passant d'un état initial (i) à un état final (f) peut être représentée 

sur un diagramme thermodynamique à condition que les évolutions correspondantes soient 
réversibles. 

Pour les transformations irréversibles il sera défini, lors de l'étude des turbomachines, la notion 

d'évolution polytropique pour tourner cette difficulté. 

2 Énergie interne 

Considérons un système fermé constitué de corps quelconques et limité par une surface réelle 
ou fictive.  

Supposons qu'une transformation amène ce système d’un état initial (i) à un état final (f) en 

recevant ou cédant un travail W et une quantité de chaleur Q tout en subissant une variation de 
son énergie cinétique : 

𝑖
Δ

𝑓
𝐸𝐶   

Ces grandeurs, précédemment définies sont mesurables. 

Ceci étant dit, formons la somme : 

𝑊+ 𝑄 −

𝑖
Δ

𝑓
𝐸𝐶  
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   Q 

Figure XII.03 Système fermé 

 

Les calculs montrent que cette somme ne dépend 
toujours que de l’état initial et de l’état final. 

En d'autres termes, on peut dire que cette somme ne 
change pas en utilisant des évolutions différentes 
pour passer du même état initial au même état final. 

Le résultat est tout à fait remarquable. 

Ces faits expérimentaux étant indéfiniment reproductibles et contrôlables conduisent à ériger 
en principe que cette somme représente la variation d’une fonction des seules variables d'état. 

Cette fonction d'état, désignée par la lettre U, est appelée énergie interne. L'énergie interne 
massique est notée "u". Cette énergie est constituée par l'énergie cinétique des molécules. Dans 

chaque état défini, une masse donnée d'un corps renferme une quantité bien déterminée qui est 
son énergie interne. 

3 Expression du premier principe 

Le résultat précédent, valable pour tous les systèmes fermés, constitue le premier principe de la 
thermodynamique. Il se traduit par l'égalité fondamentale : 

𝑊+ 𝑄 =

𝑖
Δ

𝑓
𝑈 +

𝑖
Δ

𝑓
𝐸𝐶           (XII.01) 

Par unité de masse il s'écrira : 

𝑤 +𝑄 =
𝑖
Δ

𝑓
𝑢 +

𝑖
Δ

𝑓
𝑒𝑐         (XII.02) 

L’énergie ne se perd pas et ne se crée pas, elle ne fait que passer d’une forme à une autre  

dans les diverses transformations physiques et chimiques. 

L’énoncé sous cette forme, est désigné par loi de la conservation et de la transformation de 

l’énergie. 

Sous forme différentielle le premier principe de la thermodynamique s'écrit  : 

  𝛿𝑊 + 𝛿𝑄 = 𝑑𝑈 + 𝑑𝐸𝐶  

𝛿𝑤 + 𝛿𝑄 = 𝑑𝑢 + 𝑑𝑒𝑐          (XII.03) 

À l'origine de la thermodynamique, le terme 

𝑖
Δ

𝑓
𝐸𝐶 n'apparaissait pas, on se préoccupait 

essentiellement de l'étude de systèmes quasi-immobiles et à variations lentes telles les 
capsulismes. 

Aujourd'hui le mouvement et ses variations sont souvent des facteurs importants des 
transformations qu'il faut étudier, l'énoncé ci-dessus doit être le seul retenu. 
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Exercice XII.1 

Une voiture d’une masse m = 1350 kg descend une route dont la pente correspond à un angle

 3α . 

 Le conducteur doit freiner pour immobiliser son véhicule sur une distance de 75 m. 

Avant freinage, la voiture avait une vitesse initiale V = 87 km/h. 

 
 

 
 

 
 
 

 
         mg 

Figure XII.04 Pente inclinée 

Calculer la chaleur dégagée lors du 
freinage, sachant que :  

- l'action de l’air agissant sur la voiture 
est négligé. 

- le glissement des roues sur la route est 
supposé nul. 

- l’énergie interne de la voiture ne 

varie pas. 

Corrigé 

Du premier principe de la thermodynamique nous avons :𝛿𝑊 + 𝛿𝑄 = 𝑑𝐸𝐶  puisque par 
hypothèse dU=0 

𝑄  =

𝑖
Δ

𝑓
𝐸𝐶 −𝑊 

La variation d'énergie cinétique est : 
𝑖
Δ

𝑓
𝐸𝐶 = 𝑚

𝑖
 Δ
𝑓

𝑉2

2  

= 1 350  [0 −
1

2
(
87 000

3 600
)
2

]   = −394 219 𝐽 

Le travail des forces extérieures est : 

𝑊 = 𝐹 ∙⃗⃗ ⃗⃗⃗ 𝑑𝑂𝑀
→

= 𝑚𝑔  𝑠𝑖𝑛 𝛼  𝑑𝑥 

                                                         𝑊 = 1350 × 9,81 × 𝑠𝑖𝑛 3° × 75 = 51 983 𝐽 

Ce qui permet de déduire la chaleur dégagée lors du freinage : 

J20244698351219394Q   

4 Transformation cyclique 

Par définition d'une transformation cyclique, le système se retrouve à l'état final dans le même 
état qu'initialement.  

Puisque dU et dEC sont des différentielles totales exactes, nous avons : 

α 

x 
m 

O 
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𝑖
Δ

𝑓
𝑈 = 0                         

𝑖
Δ

𝑓
𝐸𝐶 = 0 

Dans ces conditions le premier principe de la thermodynamique devient : 

W + Q = 0         (XII.04) 

Il existe de nombreux systèmes où le fluide décrit une transformation cyclique, parfois appelé 

circuit fermé ou tout simplement cycle. 

 
 

 
 

Turbine 
 

Condenseur 

Générateur 
de vapeur 

Pompe 

Figure XII.05 Production d’énergie 

Par exemple, c'est le cas des centrales 
thermiques ou nucléaires où l'eau se trouve 

successivement sous forme de liquide et de 
vapeur. 

Cette transformation cyclique, représentée 
sur la figure XII.05, se compose, 
essentiellement, d'un condenseur, d'une 

pompe alimentaire, d'un générateur de vapeur 
et d'une turbine. 

 

5 Équation thermodynamique générale 

En tenant compte du théorème de l’énergie cinétique (IV.23) le premier principe s'écrit : 

𝛿𝑊 + 𝛿𝑄 = 𝑑𝑈 + 𝑑𝐸𝐶⏟
𝛿𝑊+𝛿𝑊𝑖

= 𝑑𝑈 + 𝛿𝑊+ 𝛿𝑊𝑖 

Il s'ensuit donc : 

𝛿𝑄 = 𝑑𝑈 + 𝛿𝑊𝑖  

Pour une particule fluide, le travail des forces intérieures massique est 𝛿𝑊𝑖 = 𝑝𝑑𝑉 − 𝛿𝐹, ce 
qui permet d'obtenir une autre expression du premier principe de la thermodynamique : 

                                                                     𝛿𝑄 + 𝛿𝐹 = 𝑑𝑈 + 𝑝𝑑𝑉

Et par unité de masse                              𝛿𝑄 + 𝛿𝑓 = 𝑑𝑢 + 𝑝𝑑𝑣
}           (XII.05) 

Expression appelée parfois "deuxième équation fondamentale" ou encore "équation 

thermodynamique générale". 

6 Expression simplifiée 

Si la transformation élémentaire est réversible, le terme caractérisant la dissipation d'énergie est 
nul, il ne subsiste que : 

𝛿𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉 
𝛿𝑄 = 𝑑𝑢 + 𝑝𝑑𝑣

}          (XII.06) 

Cette relation est parfois appelée "expression simplifiée" du premier principe de la 

thermodynamique. 
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Pour une transformation réversible amenant le système d'un état initial " i" à un état final "f", on 

a, en intégrant cette relation : 

𝑄 = 𝑢𝑓− 𝑢𝑖 +∫ 𝑝 𝑑𝑣
𝑣𝑓

𝑣𝑖

 

Exercice XII.2 

Au cours d'une évolution isobare réversible, po = 5 bar, le volume d'une masse de gaz parfait 
passe de 5.10-2 m3 à 1.10-1 m3. 
Pendant cette évolution l'énergie interne du gaz augmente de 18 kcal. 

Déterminer la quantité de chaleur transférée en précisant si elle est reçue ou cédée par le gaz. 

Corrigé 

De l'expression simplifiée du premier principe de la thermodynamique, nous déduisons pour 
cette évolution réversible: 

𝑄 = 𝑈𝑓 − 𝑈𝑖 + ∫ 𝑝𝑑𝑉
𝑉𝑓

𝑉𝑖

 

Avec: 

𝑈𝑓 −𝑈𝑖 = 18.10
3 × 4,1855 = 75339 𝐽 

Et puisque l'évolution est isobare : 

∫ 𝑝𝑑𝑉
𝑉𝑓

𝑉𝑖

= 𝑝0(𝑉𝑓 − 𝑉𝑖) = 5.10
5 × (1.10−1 −5.10−2) = 25000 𝐽 

Il vient donc en définitive : 

Q = 75339 + 25000 =100339 J = 24 kcal 

La quantité Q est positive, le gaz a donc reçu de la chaleur. 

7 Système ouvert 

Dans l'étude d'un système thermodynamique le travail, échangé avec le milieu extérieur, est 
décomposé afin de faire apparaître, le cas échéant, sa partie utile. 

Il est facile de concevoir que dans certaines applications une fraction du travail soit directement 
échangée avec l'atmosphère. Sa connaissance ne présente pas, à priori, un intérêt considérable 

bien qu'il soit à comptabiliser dans le bilan énergétique. Par contre, industriellement, le travail 
fourni ou absorbé par une machine constituera un élément important de l'étude. Ce travail, noté 
WI, est désigné par travail interne. 

Dans le cas des turbomachines, il est la conséquence du transfert d'énergie entre le fluide et les 
aubes de la machine. 

Pour plus de généralités, considérons un système en régime instationnaire échangeant de 
l'énergie et de la matière avec son milieu extérieur. Ce serait, par exemple, le cas d'une 
turbomachine en phase d'accélération ou de décélération. 
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Ramenons artificiellement l'étude d'un système ouvert à celui d'un système fermé afin de 

pouvoir appliquer le premier principe de la thermodynamique. Pour cela définissons un système 
formé d'une quantité constante de matière et suivons son évolution entre les instants t et t+dt. 

 
 
 

   E              S          E          S 
 

 
 
    dmE, vE, pE, uE, VE             dmS, vS, pS, uS, VS 

Figure XII.06 Système fermé à la date t         Figure XII.07 Système fermé à la date t+dt 

Désignons par : 

      dmE = masse élémentaire qui entre à la date t. 
mt = masse du système ouvert à la date t. 

       mt+dt = masse du système ouvert à la date t+dt. 

          dmS = masse élémentaire qui sort à la date t+dt. 

Par construction l'égalité des masses doit être satisfaite : 

m = dmE + mt = mt+dt + dmS 

Pour ce système artificiellement fermé, de masse m, explicitons chacun des termes du premier 
principe de la thermodynamique (XII.03), entre les instants t et t+dt. Soit : 

𝛿𝑊 = 𝛿𝑊𝐼 + 𝑝𝐸𝑣𝐸𝑑𝑚𝐸 −𝑝𝑆𝑣𝑆𝑑𝑚𝑆− 𝑑𝐸𝑃 

𝛿𝑊𝐼 , est ici le travail interne d'une machine, qu'il ne faut pas confondre avec le travail des forces 
intérieures noté Wi. 

𝑑𝐸𝑝, est l'énergie potentielle du système de masse m qui se décompose également de la façon 

suivante : 𝑑𝐸𝑃 = 𝑑𝐸𝑃
∗ +𝑔𝑧𝑆𝑑𝑚𝑆 −𝑔𝑧𝐸𝑑𝑚𝐸. Le terme 𝑑𝐸𝑃

∗  est l'énergie potentielle du système 
ouvert pendant l'intervalle de temps dt.

 

𝛿𝑄, est la quantité de chaleur échangée, par le système de masse m, avec son milieu extérieur 
pendant l'intervalle de temps dt. 

𝑑𝑈 = 𝑑𝑈∗ +𝑢𝑆𝑑𝑚𝑆 −𝑢𝐸𝑑𝑚𝐸 

𝑑𝑈∗ est l'énergie interne du système ouvert pendant l'intervalle de temps  dt. 

Les termes uS et uE représentent respectivement l'énergie interne massique de la masse 

élémentaire qui sort et de celle qui entre. 

𝑑𝐸𝐶 = 𝑑𝐸𝐶
∗ +
𝑉𝑆
2

2
𝑑𝑚𝑆 −

𝑉𝐸
2

2
𝑑𝑚𝐸 

𝑑𝐸𝐶
∗ est la variation d'énergie cinétique du système ouvert. 

VS et VE sont les vitesses moyennes dans les brides de sortie "S" et d'entrée "E". 

Système ouvert 

    à l'instant t 

mt 

Système ouvert 
  à l'instant t+dt 

mt+dt 
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Reportons ces expressions dans (XII.03) en regroupant les termes de même nature, on obtient 

l'équation (XII.07) : 

𝛿𝑊𝐼 +𝛿𝑄 = 𝑑(𝑈
∗+𝐸𝐶

∗ +𝐸𝑃
∗)+ (𝑢𝑆+𝑝𝑆𝑣𝑆+𝑔𝑧𝑆 +

𝑉𝑆
2

2
)𝑑𝑚𝑆−(𝑢𝐸+ 𝑝𝐸𝑣𝐸+𝑔𝑧𝐸 +

𝑉𝐸
2

2
)𝑑𝑚𝐸   

Divisons celle-ci par l'intervalle de temps dt et posons : 

𝑃𝐼    =
𝛿𝑊𝐼

𝑑𝑡
=Puissance fournie ou absorbée par une machine. 

𝑃𝑡ℎ    = 
𝛿𝑄

𝑑𝑡
=Puissance thermique. 

𝑞𝑚𝑆 =
𝑑𝑚𝑆

𝑑𝑡
=Débit massique à la sortie de la machine. 

𝑞𝑚𝐸 =
𝑑𝑚𝐸

𝑑𝑡
=Débit massique à l'entrée de la machine. 

On obtient, l'expression du premier principe de la thermodynamique pour un système en régime 
instationnaire sous forme de puissance. 

𝑃𝐼 +𝑃𝑡ℎ =
𝑑

𝑑𝑡
(𝑈∗ +𝐸𝐶

∗ + 𝐸𝑃
∗)+ (𝑢𝑆+𝑝𝑆𝑣𝑆+𝑔𝑧𝑆+

𝑉𝑆
2

2
)𝑞𝑚𝑆 −(𝑢𝐸+𝑝𝐸𝑣𝐸 +𝑔𝑧𝐸 +

𝑉𝐸
2

2
)𝑞𝑚𝐸 

Si le système est ouvert et en régime stationnaire (régime permanent) cette expression se 
simplifie : 

𝑑

𝑑𝑡
(𝑈∗ +𝐸𝐶

∗ + 𝐸𝑃
∗) = 0 

Les débits se conservent qmS = qmE = qm = constante. 

Dans ces conditions, cette relation s'écrit : 

𝑃𝐼 + 𝑃𝑡ℎ =
𝑆
Δ

𝐸

(𝑢 + 𝑝𝑣 +𝑔𝑧 +
𝑉2

2
)𝑞𝑚        (XII.08) 

Et en divisant par le débit massique qm : 

𝑤𝐼 + 𝑄 =
𝑆
Δ

𝐸

(𝑢 + 𝑝𝑣 + 𝑔𝑧 +
𝑉2

2
)        (XII.09) 

 

8 Enthalpie 

En posant : 
h = u + pv              (XII.10) 

La relation (XII.09) devient : 
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𝑤𝐼 + 𝑄 =
𝑆
Δ

𝐸

(ℎ +𝑔𝑧 +
𝑉2

2
)    (XII.11) 

Et sous forme différentielle : 

𝛿𝑤𝐼 + 𝛿𝑄 = 𝑑ℎ +𝑔𝑑𝑧 + 𝑑 (
𝑉2

2
)    (XII.12) 

h est une fonction d'état, appelée enthalpie. Ici, plus précisément, elle est désignée par 
enthalpie massique et s'exprime en J/Kg. 

L'enthalpie rapportée à la masse du fluide, s'écrit : 

H = U + pV. 

9 Autre forme de l'équation thermodynamique générale 

Cette fonction d’état n’est pas restrictive à l’étude des machines et des moteurs. 

On rencontre l'enthalpie dans de très nombreux domaines de la thermodynamique, mais il se 

trouve qu’elle s’introduit tout naturellement lorsqu’il s’agit d’un système ouvert en écoulement 
permanent. 

Il est commode et fort utile d'introduire l'enthalpie dans l'équation de thermodynamique 

générale. En effet, de la définition même de l'enthalpie h, nous pouvons écrire : 

𝑑ℎ = 𝑑(𝑢 + 𝑝𝑣) = 𝑑𝑢 + 𝑝𝑑𝑣 + 𝑣𝑑𝑝 

𝑑𝑢 + 𝑝𝑑𝑣 = 𝑑ℎ −𝑣𝑑𝑝 = 𝑑ℎ −
𝑑𝑝

𝜌
 

L'équation de thermodynamique générale (XII.05), peut donc s'écrire : 

𝛿𝑄 + 𝛿𝑓 = 𝑑ℎ −
𝑑𝑝

𝜌
                                                       (XII. 13) 

D'autre part en remplaçant dans (XII.12) l'enthalpie élémentaire dh déduite de (XII.13), il vient : 

𝛿𝑤𝐼 +𝛿𝑄 = 𝛿𝑄 + 𝛿𝑓 +
𝑑𝑝

𝜌
+ 𝑔𝑑𝑧 + 𝑑(

𝑉2

2
) 

Soit: 

𝛿𝑤𝐼 =
𝑑𝑝

𝜌
+ 𝑔𝑑𝑧 + 𝑑 (

𝑉2

2
) + 𝛿𝑓                                 (XII.14) 

Dans cette dernière relation la quantité de chaleur Q disparaît. Toutefois il serait hasardeux d'en 
déduire que la relation (XII.14) est réservée uniquement aux évolutions adiabatiques. 

La nature des transformations sera marquée par l' intégration de 
𝑑𝑝
𝜌
. 

La relation (XII.14) est constamment utilisée dans l'étude des turbomachines. 
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Remarquons que si le travail interne wI est nul, nous retrouvons l'équation (XI.12), pour une 

tranche de fluide s'écoulant à l'intérieur d'une tuyauterie. 

10 Enthalpie d'arrêt 

En mécanique des fluides et dans le domaine des turbomachines, il est souvent posé : 

ℎ𝑖 = ℎ +
𝑉2

2
        (XII.15) 

La quantité hi est alors désignée par enthalpie d'arrêt (ou enthalpie totale et parfois enthalpie 

d'impact). 

Avec cette notation, pour un système ouvert en régime permanent, le premier principe de la 

thermodynamique peut s'écrire : 

𝑤𝐼 + 𝑄 =
𝑆
Δ

𝐸

(ℎ𝑖 +𝑔𝑧) 

Dans le cas de fluide compressible (gaz), le terme gz est généralement négligeable, le premier 
principe devient : 

𝑤𝐼 + 𝑄 =
𝑆
Δ

𝐸

  ℎ𝑖       (XII.16) 

L'enthalpie d'arrêt jouit de propriétés remarquables, éminemment pratiques. Prenons quelques 
exemples en se plaçant toujours dans le cas de fluides compressibles. 

a) Écoulement adiabatique d'un fluide compressible 

 

 

  VE            VS 

      E          S 

Figure XII.08 Écoulement d’un fluide 

 

Le travail interne wI est nul, puisqu'il n'y a 
pas de machines. L'écoulement est 
adiabatique donc Q = 0, il s'ensuit : 

hiS - hiE = 0 

L'évolution du fluide est à enthalpie d'arrêt 

constante. 
 

 

b) Échangeur 

 

 

            E      S 
Figure XII.09 Transfert de chaleur 

Dans un échangeur, le travail interne est 

évidemment nul. 

La quantité de chaleur transférée est donc: 

Q = hiS - hiE 
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c) Turbomachines 

 

 

 

 

  E    S 

Figure XII.10 Turbomachines adiabatiques 

 

Compte tenu de leur faible surface extérieure 
et de leur puissance, les turbomachines 
n'échangent pratiquement pas de chaleur 

avec leur milieu extérieur (Q = 0). 

WI = hiS - hiE 

 

Cette hypothèse d'adiabaticité n'est mise en défaut que dans quelques cas particuliers. 
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Chapitre XIII 

Etude thermodynamique des gaz parfaits 
 
 

1 Expérience de Joule 

Conformément au schéma ci-dessous deux réservoirs A et B, à parois conductrices de la 
chaleur, sont plongés dans l'eau d'un calorimètre. A l'état initial le réservoir A contient un gaz 

sous pression et est relié à B, initialement vide, par une tuyauterie munie d'un robinet. Ouvrons 
le robinet, une partie du gaz du réservoir A se transvase, irréversiblement, dans le réservoir B. 

A l'état final les deux réservoirs sont en équilibre thermique. 

Durant cette transformation, l'expérience montre que la température de l'eau du calorimètre est 
restée constante ; Tf

 = Ti. 

        Ti       Tf = Ti 
 

 
 
 

 
 
 

 
  État initial.     État final 

Figure XIII.01 Système isolé 

Lors de la transformation 𝑖 → 𝑓, appliquons le premier principe de la thermodynamique au 
système constitué par le gaz. Ce système est délimité par les surfaces des réservoirs et de la 
tuyauterie les reliant. 

𝑊 +𝑄 =
𝑓
Δ 
𝑖

𝑈 +
𝑓
Δ

𝑖

 𝐸𝐶 

Explicitons chacun de ces termes. 

W = 0, puisque aucun travail n'a été échangé avec le milieu extérieur. 

Q = 0, les échanges entre les bouteilles et l'eau du calorimètre sont uniquement d'ordre 

calorimétrique. Or la température de l'eau n'a pas varié, il s'ensuit que le transfert de chaleur est 

nul, l'évolution 𝑖 → 𝑓 est donc adiabatique. 

𝑓
Δ

𝑖

 𝐸𝐶 = 0, la variation d'énergie cinétique est nulle puisque le gaz est au repos à l'état initial et 

à l'état final. 

A B A B 
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Ces trois termes étant nuls, il s'ensuit que la variation d'énergie cinétique est également nulle. 
𝑓
Δ

𝑖
 𝑈 = 0 ⇒ 𝑈𝑓 = 𝑈𝑖 = 𝑈 = constante. 

Par contre, durant cette détente adiabatique, le volume et la pression du gaz ont obligatoirement 
varié. La température étant restée constante, Joule a déduit que l'énergie interne ne pouvait être 

fonction que de la température. 

Cette expérience de Joule était en réalité peu précise. Des expérimentations plus récentes sur 
un certain nombre de gaz, à température constante, ont montré que leur énergie interne était 

légèrement fonction de leur volume ou de leur pression. 

Dorénavant nous considérerons qu'un gaz parfait est un gaz hypothétique dont l'équation d'état 

est 𝑝𝑣 = 𝑟𝑇 et qui, en outre obéit à l'équation de Joule. 

2 Expression de l'énergie interne d'un gaz parfait 

Si nous considérons une évolution réversible et isochore (dv = 0), l'expression simplifiée du 
premier principe de la thermodynamique (XII.06) permet d'écrire : 

𝛿𝑄 = 𝑑𝑢  

Cette quantité de chaleur, transférée à volume constant, est : cv dt et par conséquent : 

du = cv dt            (XIII.01) 

L'énergie interne est une fonction d'état et ne dépend que de l'état final et de l'état initial 
d'équilibre. Cette relation est donc valable quelle que soit la nature des évolutions. 

Cette notion de fonction d'état est très importante en thermodynamique. 

À titre d'exemple, pour le lecteur pas encore familiarisé avec les fonctions d'état, nous allons 
montrer d'une autre façon que la relation (XIII.01) n'est pas restrictive aux évolutions isochores. 

Puisque nous pouvons utiliser n'importe quel chemin pour effectuer une transformation 
amenant un gaz parfait d'un état initial (i) à un état final (f), utilisons les évolutions particulières 

suivantes : 

- évolution isochore pour aller de 𝑖 → 𝐴 

- évolution isotherme pour aller de 𝐴 → 𝑓 

Pour l'évolution isochore, nous avons : 

𝑢𝐴 − 𝑢𝑖 = ∫  
𝑇𝐴=𝑇𝑓

𝑇𝑖

𝑐𝑣 𝑑𝑇 

     p  TA=T f = constante 
       A  

 
 

                           f 
            i 
                                           v 

Figure XIII.02 Représentations des évolutions 

Pour l'évolution isotherme uA =  uf , puisque l'énergie interne ne dépend que de la température. 

On conclue que l'expression : 

𝑢𝑓− 𝑢𝑖 = ∫  
𝑇𝑓

𝑇𝑖

𝑐𝑣  𝑑𝑇 

est valable quelles que soient les transformations d'un gaz parfait pour aller de 𝑖 → 𝑓. 
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Exercice XIII.1 

Deux moles d'un gaz parfait occupent à l'état initial un volume V1 = 2 m3 à la température 
t1 = 0 °C. 

Ces deux moles décrivent la transformation cyclique réversible suivante : 

1 → 2 Évolution isochore jusqu'à la température t2 = 30 °C . 

2 → 3 Évolution isotherme jusqu'au volume V3 = 0,5 m3. 
3 → 4 Évolution isochore jusqu'à la température t4 = t1 =0 °C. 

4 → 1 Évolution isotherme jusqu'au volume V1 = 2 m3. 

Calculer : 

1- Les quantités de chaleur échangées avec le milieu extérieur pour chacune de ces évolutions. 

2- La variation d'énergie interne au cours du cycle. 
3- Le travail échangé avec le milieu extérieur durant cette transformation cyclique. 

Il est précisé que la capacité thermique molaire à volume constant est : cv=20,786 J/mol.K. 
Il est rappelé que la constante universelle des gaz parfaits est R = 8,3144 J/mol K. 

Corrigé 

1- Tout d'abord, représentons cette transformation cyclique sur un diagramme de Clapeyron. 
Les évolutions étant réversibles, nous pouvons écrire : 

 
      p 

           3 
 
 
 
 
        4 
             2 
 

         1 
           V 

 

Figure XIII.03 Transformation cyclique 

par unité de masse:    𝛿𝑄 = 𝑑𝑢 + 𝑝𝑑𝑣  

pour la masse totale:  𝛿𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉 
Pour chacune de ces évolutions, calculons les 

transferts de chaleur. 

1 → 2 𝛿𝑄 = 𝑑𝑢 
puisque l'évolution est isochore; dV = 0. Il 
s'ensuit : 

Q = n cv (t2-t1) = 2×20,786× (30-0) = 1 247 J 

2 → 3 𝛿𝑄 = 𝑝𝑑𝑉 pour une évolution isotherme 
dU =0. 

Remplaçons la pression p déduite de l'équation d'état 𝑝 =
𝑛𝑅𝑇

𝑉
 et intégrons cette relation. 

La chaleur transférée durant cette évolution est donc : 

𝑄 = 𝑅𝑇2∫
𝑑𝑉

𝑉

𝑉3

𝑉2

= 𝑛𝑅𝑇2ln
𝑉3
𝑉2
= 2 ×8,3144 × (273,15+ 30) × ln

0,5

2
= − 6988 𝐽 

3 → 4 Évolution isochore jusqu'à la température t4=t1=0°C. 

Q = n cv (t4-t3) = n cv (t1-t2) = − 1 247 J 

Puisque t4 = t1 et t3 = t2 
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4 → 1 Comme précédemment U1 - U4 = 0 et par suite : 

𝑄 = 𝑅𝑇1∫
𝑑𝑉

𝑉

𝑉1

𝑉4

= 𝑛𝑅𝑇1ln
𝑉1
𝑉4
= 2× 8,3144 × 273,15 × ln

2

0,5
= 6297 𝐽 

2- La variation d'énergie interne est nulle pour une transformation cyclique. L'état final est 

confondu avec l'état initial. 

3- Durant cette transformation cyclique la quantité de chaleur échangée avec le milieu 

extérieur est : 

Q = 1247-6988-1247-691= −691 J 

Le premier principe de la thermodynamique pour une transformation cyclique (XII.04) permet 
de déduire le travail échangé avec le milieu extérieur : 

W = −Q = 691 J 

Le travail est positif, il est reçu par le système. 

3 Expression de l'enthalpie 

Un raisonnement calqué sur celui de l'énergie interne permet d'obtenir immédiatement 
l'expression de l'enthalpie d'un gaz parfait. La relation (XII.13) devient pour une évolution 

réversible et isobare. 

𝛿𝑄 = 𝑑ℎ 

Cette quantité de chaleur transférée à pression constante est : cp dt et par suite : 

dh = cp dt       (XIII.02) 

L'enthalpie, comme l'énergie interne, est une fonction d'état et ne dépend, donc, que de l'état 
initial et de l'état final. 

4 Relation de Mayer 

En partant, directement, de la définition de l'enthalpie on obtient: 

  𝑑ℎ ⏟
𝑐𝑝𝑑𝑡

  =   𝑑𝑢  ⏟  
𝑐𝑣𝑑𝑡

 + 𝑑(𝑝𝑣)⏟  
𝑟𝑑𝑡

 

Soit la relation, dite de Mayer, pour un gaz parfait. 

𝑟 = 𝑐𝑝 − 𝑐𝑣     (XIII.03) 

5 Détentes et compressions adiabatiques réversibles d'un gaz parfait 

L'expression simplifiée du premier principe (XII.06) pour une évolution adiabatique s'écrit : 

0 = du + p dv = cv dT + p dv 
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Écrivons, l'équation d'état des gaz parfaits, sous forme différentielle : 

𝑑𝑇 =
1

𝑟
(𝑣 𝑑𝑝 + 𝑝 𝑑𝑣)  

et reportons cette expression de dT dans la relation précédente : 
 

𝑐𝑣
𝑟
𝑣 𝑑𝑝 + (

𝑐𝑣
𝑟
+ 1)  𝑝 𝑑𝑣 = 0 

Multiplions par 
𝑟

𝑝𝑣
 et en tenons compte de la relation de Mayer : 

𝑐𝑣
𝑑𝑝

𝑝
+ 𝑐𝑝

𝑑𝑣

𝑣
= 0 

En posant :  

𝛾 =
𝑐𝑝
𝑐𝑣
                                                              (XIII. 04) 

Intégrons cette dernière relation : 

𝑝 𝑣𝛾 = constante                                                  (XIII.05) 

Pour une évolution adiabatique réversible entre un état initial (i) et un état final (f) la relation 

(XIII.05) peut s'écrire : 

𝑝𝑓
𝑝𝑖
= (

𝑣𝑖
𝑣𝑓
)

𝛾

= (
𝜌𝑓
𝜌𝑖
)
𝛾

                                              (XIII. 06) 

Par combinaison avec l'équation d'état des gaz parfaits, nous obtenons également : 

𝑇𝑓
𝑇𝑖
= (
𝑝𝑓
𝑝𝑖
)
(
𝛾−1
𝛾
)

= (
𝜌𝑓
𝜌𝑖
)
(𝛾−1)

= (
𝑣𝑖
𝑣𝑓
)

(𝛾−1)

                    (XIII. 07) 

Remarques : 

a) Lorsque les capacités thermiques cp et cv sont constantes, le gaz est dit parfois "idéal parfait". 

b) En utilisant les relations (XIII.03) et (XIII.05) il est facile d'exprimer cp et cv en fonction de 

r et de 𝛾. 

𝑐𝑝 =
𝛾 𝑟

𝛾 − 1
              𝑐𝑣 =

𝑟

𝛾 − 1
 

Exercice XIII.2 

Une turbo soufflante de haut fourneau comprime adiabatiquement et réversiblement 

39000 kg/h d'un mélange de gaz considéré comme parfait dont les caractéristiques sont : 
cp = 1050,6 J/kg.K  cv = 761,8 J /kg.K 

Pour simplifier, le rendement de cette machine sera supposé égal à 1. 
À l'entrée de la turbomachine, nous avons les valeurs suivantes pour le fluide : 
Pression:   pE = 1,025 bar. 

Température:  tE  = 24 °C. 
Vitesse:  VE = 15 m/s. 
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À la sortie les caractéristiques du fluide sont devenues : 
Pression:  pS = 1,81 bar 
Vitesse:  VS = 20 m/s. 

 
Calculer : 
1) La température à la sortie de la turbo soufflante. 

2) La puissance interne de la machine, sachant qu'elle est égale au débit masse multiplié par 
le travail interne. 

Corrigé 

1) La température à la sortie est :  

𝑇𝑆 = 𝑇𝐸 (
𝑝𝑆
𝑝𝐸
)
(
𝛾−1
𝛾
)

𝑎𝑣𝑒𝑐 𝛾 =
𝑐𝑝
𝑐𝑣

1050,6

761,8
= 1,379 

par suite : 

𝑇𝑆 = (273,15+ 24) × (
1,81

1,025
)
(
1,379−1
1,379

)

= 347,41 𝐾 

𝑡𝑆 = 74,26 °𝐶 

2) La relation (XII.16), pour cette évolution adiabatique, s'écrit : 

𝑤𝐼 = ℎ𝑖𝑆 − ℎ𝑖𝐸 = ℎ𝑆 − ℎ𝐸 +
𝑉𝑆
2 − 𝑉𝐸

2

2
 

𝑤𝐼 = 1050,6 × (347,15 − (273,15 + 24))+
202 − 152

2
 

𝑤𝐼 = 52890 𝐽/𝑘𝑔 

La puissance interne est donc : 

𝑃𝐼 =
39000

3600
× 52890 = 572975 𝑊
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Exercice XIII.3 

Conformément au croquis ci-dessous, un réservoir comporte deux parties A et B. Le piston de 
séparation, non pesant, peut se déplacer sans frottement. 

 
 
 
 
 
 
 
 
 
 
        État initial (i).             État final (f). 

   Figure XIII.04 Etat initial (i)      Figure XIII.05 Etat final (f) 

Les deux parties, A et B, contiennent la même masse de gaz parfait caractérisé par sa constante 

r et par son 𝛾. 
A l'état initial, il règne une pression p et une température T dans les deux enceintes. 

La partie A reçoit une quantité de chaleur QA tandis que la partie B subit une évolution 
adiabatique réversible. 

Déterminer l'état final du système (pA, pB, TA, TB, VA, VB,) en fonction de QA, pi, Ti, Vi, r et 𝛾. 

Corrigé 

Tout d'abord, considérons le système composé du piston et des deux réservoirs A et B. Le 
système n'échange que de la chaleur avec le milieu extérieur, le travail des forces extérieures 
est nul. Le système est au repos à l'état initial et à l'état final, la variation d'énergie cinétique 

est également nulle. Le premier principe de la thermodynamique devient : 

𝑄𝐴 = 𝑈𝑓 − 𝑈𝑖 = 𝑚𝑐𝑣(𝑇𝐴 −𝑇𝑖) + 𝑚𝑐𝑣(𝑇𝐵 −𝑇𝑖) 

𝑄𝐴 = 𝑚𝑐𝑣(𝑇𝐴 + 𝑇𝐵 −2𝑇𝑖) = 𝑚
𝑟

𝛾 − 1
(𝑇𝐴 +𝑇𝐵 − 2𝑇𝑖) 

Pour satisfaire l'équilibre du piston il faut que : pA = pB. 

Remarquons également que : VA + VB = 2Vi 

Écrivons l'équation d'état, pour les gaz parfaits contenus dans les réservoirs A et B à l'état 
final : 

𝑝𝐴𝑉𝐴 = 𝑃𝐵𝑉𝐴 = 𝑚𝑟𝑇𝐴  

𝑃𝐵𝑉𝐵 = 𝑚𝑟𝑇𝐵 

Ajoutons ces deux dernières relations : 

𝑚𝑟(𝑇𝐴 +𝑇𝐵) = 𝑝𝐵(𝑉𝐴 +𝑉𝐵 ) = 2𝑝𝐵𝑉𝑖 
  

 pi 
Vi 
Ti 
m 

 

 pi 

Vi 
Ti 

m 

A B 

  𝑝𝐵 

 𝑉𝐵 
  𝑇𝐵  
 𝑚 

A B 

  𝑝𝐴  

 𝑉𝐴 
  𝑇𝐴  

 𝑚 
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Reportons la somme des températures dans l'expression de QA : 

𝑄𝐴 =
2

𝛾 − 1
(𝑝𝐵𝑉𝑖 −𝑚𝑟𝑇𝑖) 

Une équation, une inconnue pB. 

𝑝𝐵 =
1

𝑉𝑖
(
𝛾 − 1

2
𝑄𝐴 + 𝑚𝑟𝑇𝑖) =

𝛾 − 1

2𝑉𝑖
+𝑝𝑖 

La pression pB étant connue il est facile de déduire les autres résultats. 

𝑉𝐵 = (
𝑝𝑖
𝑝𝐵
)

1
𝛾
𝑉𝑖 

𝑇𝐵 = (
𝑝𝐵
𝑝𝑖
)
(
𝛾−1
𝛾
)

𝑇𝑖 

𝑉𝐴 = 2𝑉𝑖 − 𝑉𝐵  

𝑇𝐴 =
𝑝𝐴 𝑉𝐴
𝑚𝑟

 

Exercice XIII.4 

Un gaz parfait, défini par r et 𝛾, est emprisonné dans un cylindre surmonté d'un piston qui 
coulisse sans frottement. 

À l'état initial, le gaz occupe un volume Vi sous une température Ti et une pression pi. 

Ce gaz est comprimé adiabatiquement jusqu'à la pression finale pf et il est envisagé les deux 
cas suivants : 

Cas A - L'évolution est supposée réversible. 

Pour concevoir une telle évolution, il faudrait supposer, placer progressivement, une infinité 
de petits poids sur le piston. Ainsi à chaque étape, la pression, la température et la masse 

volumique seraient homogènes dans toute la masse de gaz. 

Calculer le volume VA et la température TA en fonction de 𝛾, Vi, Ti, pi et pf. 

 
 

 
 
 

 
pf, VA, TA. 

Figure XIII.06 Évolution réversible 

Cas B - L'évolution est supposée irréversible 

Conformément à la figure XIII.07, l'index est retiré brutalement et le gaz est comprimé jusqu'à 

la pression pf. 

Calculer la température TB et le volume VB en fonction de 𝛾, Vi, Ti, pi et pf. 

pi 
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     Index 

      x                   x 
      xi 

 
          xf 

 

      0                    0 

       pf, VB, TB 

Figure XIII.07 Évolution irréversible 

 

Corrigé 

Cas A. 

Le résultat s'obtient immédiatement à partir des relations (XIII.06) et (XIII.07). 

𝑉𝐴 = 𝑉𝑖 (
𝑝𝑖
𝑝𝑓
) 

𝑇𝐴 = 𝑇𝑖 (
𝑝𝑓
𝑝𝑖
)
(
𝛾−1
𝛾
)

 

 
Cas B 

Explicitons tous les termes du premier principe de la thermodynamique, relation (XII.03). 

Le travail des forces extérieures est constitué par l'action du piston sur le gaz :𝛿𝑊 = −𝐹 𝑑𝑥. 

Pendant toute l'évolution, la force 𝐹⃗ reste constante dans le cas B. En désignant par A la surface 
du piston, cette force est égale à pf A. Il vient donc : 

𝑊 = − 𝐹 ∫  𝑑𝑥
𝑥𝑓

𝑥𝑖

= 𝑝𝑓𝐴(𝑥𝑖 − 𝑥𝑓)= 𝑝𝑓(𝐴 𝑥𝑖 −𝐴 𝑥𝑓) 

𝑊 = 𝑝𝑓(𝑉𝑖 −𝑉𝐵 ) 

Nous avons le droit d'écrire l'équation d'état des gaz parfaits à l'état initial et à l'état final. Ce 

serait complètement faux dans les états intermédiaires, la masse de gaz ne serait pas homogène 
vis-à-vis des pressions et des températures. 

𝑝𝑖𝑉𝑖 = 𝑚𝑟𝑇𝑖 

𝑝𝑓𝑉𝐵 = 𝑚𝑟𝑇𝐵 

Il s'ensuit donc : 

𝑊 = 𝑝𝑓 (𝑚𝑟
𝑇𝑖
𝑝𝑖
−𝑚𝑟

𝑇𝐵
𝑝𝑓
) = 𝑚𝑟 (𝑇𝑖

𝑝𝑓
𝑝𝑖
−𝑇𝐵) 

Par hypothèse l'évolution est adiabatique : 𝛿𝑄 = 0 

    

pi 
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La variation d'énergie interne est : 

𝑈𝐵 −𝑈𝑖 = 𝑚𝑐𝑣(𝑇𝐵 −𝑇𝑖) = 𝑚
𝑟

𝛾 − 1
(𝑇𝐵− 𝑇𝑖) 

En définitive, il ne reste dans le premier principe que 𝛿𝑊 = dU soit : 

𝑚𝑟 (𝑇𝑖
𝑝𝑓
𝑝𝑖
−𝑇𝐵) = 𝑚

𝑟

𝛾 − 1
(𝑇𝐵 − 𝑇𝑖) 

Une équation, une inconnue TB. 

𝑇𝐵 = 
𝑇𝑖
𝛾
[(𝛾 − 1)

𝑝𝑓
𝑝𝑖
+ 1] 

Connaissant TB, le volume VB s'obtient à partir de l'équation d'état : 

𝑉𝐵 =
𝑉𝑖
𝛾
(𝛾 − 1+

𝑝𝑖
𝑝𝑓
)

 

 

Exercice XIII.5 

À l'état initial, une bouteille munie d'un robinet de remplissage est vide. 
On ouvre le robinet, une masse d'air pénètre adiabatiquement, et irréversiblement, dans la 
bouteille. 

 
 

 
 
 

 
 

 
 
 

       État initial (i)    État final (f) 

Figure XIII.08 Remplissage d’une bouteille vide 

 
Calculer la température régnant dans 

la bouteille, juste au moment où la 
pression dans la bouteille devient 
égale à la pression atmosphérique. 

Il est précisé : 

Pression atmosphérique : 

patm = 101325 Pa 

Température ambiante : ti = 18 °C 

 r 287 J / kg. K et 1,4   

 

Corrigé 

Il s'agit d'un système ouvert donc la relation (XII.07), rappelée ci-dessous, est tout à fait 
appropriée pour résoudre ce problème. 

𝛿𝑊𝐼 +𝛿𝑄 = 𝑑(𝑈+ 𝐸𝐶+𝐸𝑃)+ (𝑢𝑆+𝑝𝑆𝑣𝑆+𝑔𝑧𝑆 +
𝑉𝑆
2

2
)𝑑𝑚𝑆− (𝑢𝐸 +𝑝𝐸𝑣𝐸+𝑔𝑧𝐸 +

𝑉𝐸
2

2
)𝑑𝑚𝐸 

Le système étudié est l'air qui entre dans la bouteille. 

patm 

   tf 

patm 

ti 
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L'air qui pénètre dans la bouteille ne provoque pas de travail interne 𝛿𝑊𝐼 = 0 

L'évolution est suffisamment rapide pour justifier l'hypothèse d'adiabaticité 𝛿𝑄 = 0 

L'air entre dans la bouteille mais ne sort pas dmS = 0. 

L'énergie potentielle (action de la pesanteur) est négligeable. 

A l'état initial et à l'état final, l'air est au repos dEC =0. 

Compte tenu de ces remarques la relation (XII.07) se simplifie et devient : 

0 = 𝑑𝑈 − (𝑢𝐸 + 𝑝𝐸𝑣𝐸) 𝑑𝑚𝐸 = 𝑑𝑈 − ℎ𝐸𝑑𝑚𝐸 
Soit : 

𝑈𝑓 − 𝑈𝑖 = ∫ ℎ𝐸

𝑚𝐸

0

𝑑𝑚𝐸 

À l'état initial, il n'y a pas d'air dans la bouteille donc 𝑈𝑖 = 0 ⇒  𝑈𝑓 − 𝑈𝑖 = 𝑚𝐸𝑐𝑣𝑇𝑓 

D'autre part, en admettant que l'air se comporte comme un gaz idéal parfait, il vient : 

∫ ℎ𝐸

𝑚𝐸

0

𝑑𝑚𝐸 = ℎ𝐸 ∫ 𝑑𝑚𝐸 = 𝑐𝑝𝑇𝑖

𝑚𝐸

0

𝑚𝐸 

Par conséquent, il s'ensuit : 

𝑐𝑣𝑇𝑓 = 𝑐𝑝𝑇𝑖  

𝑇𝑓 =
𝑐𝑝
𝑐𝑣
 𝑇𝑖 = 𝛾 𝑇𝑖 

𝑇𝑓 = 1,4 × (273,15+ 18) = 407,61𝐾  soit : 𝑡𝑓 = 134,46°𝐶  

L’air contenu dans la bouteille s’est réchauffé de 116,46°C. 
 

 



Chapitre XIV Thermodynamique              Deuxième principe de la thermodynamique 

25 
 

 

Chapitre XIV 

Deuxième principe de la thermodynamique 
 
 

1 Postulat de Clausius 

Le premier principe de la thermodynamique établit entre les diverses formes de l’énergie une 
équivalence quantitative. 

Il s’oppose ainsi au mouvement perpétuel dit de première espèce, basé sur l’idée de production 
illimitée de travail sans recevoir, sous aucune forme, d’énergie. Mais il ne donne pas une 

description complète des phénomènes naturels, plus précisément, il ne se préoccupe pas  de 
savoir si telle ou telle autre transformation est réalisable. 

Par exemple, on peut arrêter un train en marche par le frottement des patins de freins contre les 

roues qui s'échauffent. Le premier principe montre que l'énergie cinétique du train s'est 
transformée en chaleur. Ce principe ne serait pas mis en défaut si, en chauffant les patins de 

freins, le train repartait en retrouvant sa vitesse initiale. Ce qui est impossible, comme nous le 
savons. 

Un autre exemple, qui est d'ailleurs important en thermodynamique, est celui du corps chaud 

que nous mettons en présence d'un corps froid. Si dans une enceinte adiabatique, nous 
mélangeons 1 kg d'eau à ti1 = 60°C avec 1 kg d'eau à ti2 = 20°C, nous obtenons 2 kg d'eau à 
tf = 40°C. 

𝑐𝑝(𝑡𝑓 − 𝑡𝑖1) + 𝑐𝑝(𝑡𝑓 − 𝑡𝑖2) = 0 

(−𝑄)⏞  
4,18×(40−60)  +   

(+𝑄)⏞  
4,18×(40−20)   =  0

  

Le corps froid s'est réchauffé et le corps chaud s'est refroidi. Une quantité de chaleur a été 

transférée du corps chaud vers le corps froid. Cependant si dans ce mélange, nous  avions obtenu 
à l'état final 1 kg d'eau à t1f = 70°C et 1 kg d'eau à t2f = 10°C au lieu des 2 kg d'eau à tf = 40°C, 

le résultat n'aurait pas été contraire au premier principe de la thermodynamique. 

𝑐𝑝(𝑡1𝑓 − 𝑡𝑖1)+ 𝑐𝑝(𝑡2𝑓 − 𝑡𝑖2) = 0 

(𝑄)⏞
  4,18×(70−60)  +   

(−𝑄)⏞  

4,18×(10−20)     =  0

  

Si cela avait été possible, le corps froid se serait encore refroidi alors que le corps chaud se 

réchaufferait. Ainsi une quantité de chaleur aurait été transférée du corps froid vers le corps 
chaud. 

Une telle transformation n'a jamais été observée. 
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L'expérience montre que les échanges purement calorifiques s'effectuent toujours dans le même 

sens ; du corps chaud vers le corps froid. Ceci n'est autre que le postulat de Clausius et constitue 
l'un des énoncés classiques du second principe de la thermodynamique. 

Une quantité de chaleur ne peut jamais être transférée, sans dépense d’énergie, d’un corps  

froid à un corps chaud. 

Le second principe introduit une distinction fondamentale entre les transformations réversibles 

et les transformations irréversibles. Rappelons qu'une transformation est réversible si, après 
avoir été accomplie, elle peut retourner à son état initial, en empruntant le chemin inverse, en 

retrouvant les mêmes valeurs du travail et de la quantité de chaleur changées de signes. 

Du postulat de Clausius, nous retiendrons que tout transfert de chaleur entre deux corps à des 
températures différentes est irréversible. Pour que le transfert de chaleur soit réversible, il faut 

que les évolutions soient isothermes. 

2 Postulat de Thomson-Kelvin 

Pour mettre en évidence le postulat de Thomson-Kelvin, prenons l'exemple de la propulsion 
d'un navire et raisonnons par l'absurde. Si le postulat de Clausius était faux, nous pourrions 
transférer de la chaleur, de l'eau à la température t2, à un corps ayant une température t1 plus 

élevée. Puis nous utiliserions cette source chaude pour produire de la vapeur afin d'entraîner 
une turbine. 

Ainsi ce navire se déplacerait en empruntant uniquement de la chaleur à l'eau de la mer. 

Une telle installation, contraire au postulat de Clausius réaliserait un mouvement perpétuel de 
seconde espèce. 

 
 
 

 
 

Chaudière 
 
 

 
 

Température de l'eau = t2 

Q1         Q2 

Figure XIV.01 Transformation cyclique monotherme 

C'est le second principe de la thermodynamique qui affirme le caractère utopique de telles 
réalisations, d'où l'énoncé du postulat de Thomson (lord Kelvin) : 

À l’aide d’un système qui décrit une transformation cyclique et qui n’est en contact 

qu’avec une seule source de chaleur, il est impossible de recueillir du travail. 

Ou, sous une forme différente mais équivalente : 

t1 
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Lorsqu’un système matériel est revenu à son état initial après n’avoir échangé de chaleur 

qu’avec une seule source, il a obligatoirement reçu du travail et cédé de la chaleur. 

La conformité au postulat de Thomson Kelvin peut se traduire par le schéma ci-après : 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

Figure XIV.02 Conformité au postulat de Thomson Kelvin 

Le postulat de Thomson-Kelvin est équivalent à celui de Clausius. Pour le montrer, raisonnons 
de façon analogue à l'exemple du bateau ci-dessus. 

Supposons donc que le postulat de Thomson-Kelvin soit faux. Nous pourrions alors prélever à 

la source froide S2 une quantité de chaleur Q que nous transformerions ensuite en travail W 
puisque W + Q = 0. 

 
 
 

 
 

         W     Q 
 
 

Q 
 

 
 
 

 
 

 
Figure XIV.03 Transformation impossible à réaliser 

 

Ce travail pourrait être retransformé en chaleur par frottement à une température 𝑇1  >  𝑇2, puis 
cédé à une source de chaleur S1 où régnerait la même température T1. Ainsi la quantité de 
chaleur Q aurait été transférée de la source froide S2 à la source chaude S1 sans aucune 
contribution du milieu extérieur. 

Source de chaleur S 

à la température T 

Q quantité de chaleur 
cédée par le système 

à la source S 

W travail 

fourni au 

système 

Système décrivant une 
transformation cyclique 

Source de chaleur S1  

à la température T1

 

Source de chaleur S2 

à la température T2 

Système décrivant une 
transformation cyclique 
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Cette opération est impossible en vertu du postulat de Clausius. Le postulat de Thomson-Kelvin 

est équivalent à celui de Clausius. 

Dans une transformation cyclique réversible d'un système n'échangeant de la chaleur qu'avec 

une seule source, le travail W mis en jeu, et corrélativement la quantité de chaleur Q, sont nuls. 

En effet, d'après le postulat de Thomson-Kelvin, le travail doit être positif, mais l'hypothèse de 
réversibilité implique que le travail puisse devenir négatif. La seule solution possible est W = 0. 

Or du premier principe de la thermodynamique, nous avons: W + Q = 0, donc Q = 0. 

Avec une transformation non cyclique, il est possible de produire du travail en n'échangeant de 

la chaleur qu'avec une seule source. Dans ces conditions, il faut toujours avoir présent à l'esprit 
que l'état final du système doit être, nécessairement, différent de l'état initial. 

3 Transformation cyclique ditherme 

Une transformation cyclique est dite monotherme si les transferts de chaleur ne s'effectuent 
qu'avec une seule source de chaleur. C'est le cas des schémas du paragraphe précédent. Par 
contre, si les transferts de chaleur s'effectuent à partir de deux sources de chaleur, la 

transformation cyclique est dite ditherme. 
 

 

 

 
  Q1 

 

                   T*  W 

 
 

     Q2 
 

 
 
 

Figure XIV.04 Principe de fonctionnement 
des pompes à chaleur et machines 

frigorifiques 

 

Il est possible de transférer de la chaleur d'un 
corps froid à un corps chaud, en utilisant un 
système qui décrit une transformation 

cyclique ditherme. 
Pour le montrer utilisons tout d'abord le 

postulat de Thomson-Kelvin. 

Si la transformation cyclique était 
monotherme le système pourrait recevoir un 

travail W, et céder une quantité de chaleur Q1 
à une source chaude caractérisée par sa 

température T1. 

Il est alors facile de concevoir qu'une telle 
transformation cyclique peut comporter une 

partie où la température T* devienne 
inférieure à T1. 

Ce qui permet cette fois, conformément au postulat de Clausius, de prélever une quantité de 

chaleur Q2 à une autre source dite froide, et définie par sa température 𝑇2 ≥ 𝑇 ∗. La 
transformation cyclique devient ainsi ditherme. 

Appliquons le premier principe de la thermodynamique à cette transformation cyclique 

ditherme : 

𝑊+ 𝑄1 + 𝑄2 = 0 𝑎𝑣𝑒𝑐 𝑊 > 0  𝑄1 < 0  𝑄2 > 0  

Puisque le signe est positif lorsque le travail ou la quantité de chaleur sont reçus par le système. 
C'est l'inverse dans le cas contraire. Ce qui permet d'écrire cette expression sous la forme 
suivante : 

S2, T2 

S1, T1 
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|𝑄1| = 𝑊 +𝑄2  

Ainsi on renvoie à la source chaude plus de chaleur qu'on en a extraite de la source froide .  

C'est sur ce principe que fonctionnent les pompes à chaleur et les machines frigorifiques. 

Dans les pompes à chaleur la source froide sera, par exemple, l'atmosphère à l'extérieur d'une 
maison, et l'air chaud à l'intérieur, constituera la source chaude. 

La source froide d'un réfrigérateur domestique est l'intérieur de l'armoire, alors que la source 
chaude est l'air ambiant de la pièce dans laquelle il se trouve. Si la porte du réfrigérateur reste 

ouverte, la transformation cyclique devient monotherme, et en vertu du postulat de 
Thomson-Kelvin, il se transforme en radiateur. 

Le problème, de la conversion d'énergie thermique en énergie mécanique, est résolu en 

inversant le sens de la transformation cyclique, précédemment décrit. 
 

 
 

 
  Q1 

 

                   T*  W 

 
 

     Q2 
 

 
 
 

 
Figure XIV.05 Production d’énergie 

 

Mais cette fois : 

𝑊+ 𝑄1 +𝑄2 = 0  avec :   
𝑊 <  0 𝑄1 >  0 𝑄2 <  0 
 
Il s'ensuit que : 

|𝑊| = 𝑄1 − |𝑄2 | 

Ainsi inévitablement, pour produire le travail W, une 

quantité de chaleur 𝑄2  doit être rejetée à la source 
froide S2.  

Il est donc impossible de transformer intégralement 
de la chaleur en travail, alors qu'il est possible de 
faire l'inverse (travail en chaleur). 

Le second principe établit, en quelque sorte, que la chaleur est une énergie de qualité 

inférieure. 

4 Rendement thermique 

En 1824, Sadi Carnot désignait par puissance motrice du feu ce qu’on appelle aujourd’hui le 
rendement d’une machine. 

Le rendement thermique, d'une transformation cyclique ditherme, est le rapport de l'énergie 
mécanique recueillie à l'énergie thermique qu'il faut emprunter à la source chaude. 

𝜂 =
−𝑊

𝑄1
=
𝑄1 + 𝑄2
𝑄1

= 1 +
𝑄2
𝑄1
= 1 −

|𝑄2 |

𝑄1
                             (XIV.01) 

5 Théorème de Carnot 

Toutes les transformations cycliques dithermes réversibles, qui fonctionnent entre deux 
températures données T1 et T2, ont le même rendement. 

S2, T2 

S1, T1 
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Pour le montrer, considérons deux transformations cycliques C et C0, produisant respectivement 

le travail W et W0, et qui ont la particularité de fonctionner entre les mêmes sources de chaleur 
S1 et S2. 

Supposons également que ces installations sont calculées pour que les quantités de chaleurs Q1 

et 𝑄1
∘ prélevées à la source chaude S1 soient égales. 

Par définition, les rendements de ces transformations cycliques sont : 

Pour C           η  =
−𝑊

𝑄1
        ⇒         |𝑊|  = η Q1 

et pour C𝑜      η𝑜 =
−𝑊0

𝑄1
0
      ⇒         |𝑊|  = 𝜂0  𝑄1

0  = 𝜂0𝑄1 

Si la transformation cyclique C est réversible nous pouvons emprunter le chemin inverse. Le 
travail et les quantités de chaleur changent donc de signe. 

 

 

 
 

 

 
 

       Q1            𝑄1
0 = 𝑄1             

−𝑄1                   𝑄1
0 = 𝑄1  

 

 W      W0    −𝑊            W0 

 
 

      Q2          𝑄2
0               −𝑄1     𝑄2

0    W* 
 
 

 
 
 

Figure XIV.06 Transformation ditherme      Figure XIV.07 Transformation monotherme 

Avec cette hypothèse, accouplons C avec C0. Ainsi, la source S1 reçoit la même quantité de 

chaleur qu'elle cède. Le système, C et C0 est donc devenu monotherme. Il n'échange de la 
chaleur qu'avec la source S2. 
En vertu du postulat de Thomson-Kelvin, le travail W* échangé avec le milieu extérieur ne peut 

être que positif ou nul. 

Nous devons satisfaire l'égalité suivante : 

|𝑊| = 𝑊 ∗+|𝑊0 | 

De l'expression des rendements cette expression devient : 

S2, T2 

 

C0 C 

S2, T2 

 

C0 C 

 
S1, T1 

S1, T1 
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η 𝑄1 = 𝑊
∗ +𝜂0𝑄1 

Soit encore : 

𝑊∗

𝑄1
= 𝜂 − 𝜂0

 

Envisageons les deux cas évoqués. 

a) C° est irréversible donc 𝑊∗  >  0 ⇒  𝜂  >  𝜂0  

Ce qui semble en soi assez normal. Le rendement d'une machine parfaite est supérieur au 
rendement d'une machine imparfaite. 

b) C° est également réversible 𝑊∗  =  0 ⇒  𝜂  =  𝜂𝑜  

C'est-à-dire le théorème de Carnot. 

Ce résultat est tout à fait extraordinaire, car on obtient le même résultat quel que soit l'agent  
moteur (eau, fluide frigorigène, etc…) ou quelles que soient les machines réversibles utilisées 
(turbomachines, moteurs à pistons, etc..). 

Le rendement est uniquement fonction des deux sources définies par leur propre température. 

𝜂 = 𝜂(𝑇1,𝑇2) 

Dans son ouvrage célèbre, en 1824, Sadi Carnot avait énoncé un principe fondamental : 

La puissance motrice de toute machine thermique parfaite est indépendante de l’agent de 

transformation et ne dépend que des températures extrêmes entre lesquelles  se fait le 

transport de calorie. 

6 Température thermodynamique 

Pour des transformations cycliques réversibles le théorème de Carnot s'écrit : 

𝜂 =
𝑄1 +𝑄2
𝑄1

= 𝜂(𝑇1, 𝑇2) = 1 −
|𝑄2 |

𝑄1
 

Ce qui permet d'exprimer le rapport des quantités de chaleur sous la forme suivante : 

𝑄1
|𝑄2 |

= 𝑓(𝑇1,𝑇2) 

Nous allons montrer que ce rapport définit, en fait, une échelle de température. 

Pour cela, considérons trois sources S1, S2, S0, ayant respectivement des températures T1, T2 et 

TO, qui satisfont l'inégalité : 

𝑇1 > 𝑇2  > 𝑇0 

Conformément à la Figure XIV.08, intercalons deux transformations cycliques réversibles C 
et C*. 
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C 

Q0 

C entre S1 et S2. 

C* entre S2 et S0. 

Admettons que C* absorbe en provenance de S2 la même quantité de chaleur que celle cédée 

par C. C'est-à-dire : 

𝑄1
∗ = |𝑄2| 

Pour la transformation cyclique réversible C* nous avons : 

|𝑄2|

|𝑄0|
= 𝑓(𝑇2,𝑇0) 

L'ensemble C et C* constitue un système de transformations cycliques réversibles n'échangeant  
de la chaleur qu'avec les sources S1 et S0, donc : 

 

 
 

Q1 

 
W 

 
Q2 

 
 

 
𝑄1
∗ = |𝑄2 | 

W* 

 C*  
 

 
 

 

Figure XIV.08 Transformations en série 
ditherme 

Q1
|Q0|

= f(T1, T0) 

Formons le rapport de ces deux dernières  
relations : 

𝑄1
|𝑄2 |

=
𝑓(𝑇1, 𝑇0)

𝑓(𝑇2, 𝑇0)
 

Or, en considérant uniquement le cyclique C, 

nous aurions obtenu : 

𝑄1
|𝑄2|

= 𝑓(𝑇1, 𝑇2) 

Soit : 

𝑓(𝑇1, 𝑇2) =
𝑓(𝑇1,𝑇0)

𝑓(𝑇2, 𝑇0)
 

 

Les températures T1 et T2 peuvent être considérées comme des variables. La température T0 est 

fixe et constitue, en quelque sorte un repère. Si bien que : 

𝑄1
|𝑄2|

=
𝑓(𝑇1,𝑇0)

𝑓(𝑇2, 𝑇0)
=
𝜃(𝑇1)

𝜃(𝑇2)
 

Prenons pour la fonction 𝜃(𝑇) la forme la plus simple en posant 𝜃 = 𝜃(𝑇) 
Il vient alors : 

𝑄1
|𝑄2 |

=
𝜃1
𝜃2
                                                             (XIV.02) 

Cette relation exprime, que le rapport des températures dans l'échelle 𝜃 est égal au rapport des 

quantités de chaleur transférées lors d'une transformation cyclique réversible. La température 𝜃 

S2, T2 

S0, T0 

S1, T1 
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devient une grandeur mesurable, et définit ainsi une échelle de température dite 

thermodynamique. 

7 Cycle de Carnot 

Conformément au postulat de Clausius, une transformation cyclique ditherme sera réversible si 
déjà les transferts de chaleur s'effectuent à la température des sources. En plus, ces deux 
évolutions isothermes doivent être intercalées avec d'autres transformations réversibles, pour 

obtenir un cycle. 

Si ces intermédiaires sont deux évolutions adiabatiques réversibles, la transformation cyclique 
est appelée cycle de Carnot. 

Calculons le rendement d'un cycle de Carnot parcouru par une masse m d'un gaz idéal parfait.  

Pour cela utilisons l'expression simplifiée du premier principe de la thermodynamique, 

relation (XII.06) : 

𝛿𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉. 

Tout d'abord, déterminons l'expression des transferts de chaleur Q1 et Q2 échangés avec les 
sources S1 et S2. 

 
   P 
      C 

 
 

 
   Q1 
        T1 

         B 
    T2     D 

        A 
      V 
           Q2 

 
 

 
 

Figure XIV.09 Représentation d’un cycle de 

Carnot 

 
Dans ces deux évolutions isothermes la 
variation d'énergie interne est nulle. 

Puisqu'en vertu de l'expérience de Joule, 
l'énergie interne pour un gaz parfait n'est 

fonction que de la température. 
La relation (XII.06) se simplifie : 

𝛿𝑄 = 𝑝𝑑𝑉 

Pour intégrer, il faut exprimer la pression 
p en fonction du volume V. L'équation 

d'état des gaz parfaits satisfait cette 
exigence : 

𝑝𝑉 = 𝑚𝑟𝑇 

 

Soit pour l'évolution 𝐴 → 𝐵 : 𝑄2 = 𝑚𝑟𝑇2∫  
𝑑𝑉

𝑉

𝑉𝐵
𝑉𝐴

= 𝑚𝑟𝑇2   𝑙𝑛
𝑉𝐵

𝑉𝐴
 

Et pour l'évolution     𝐶 → 𝐷: 𝑄1 = 𝑚𝑟𝑇1 ∫  
𝑑𝑉

𝑉

𝑉𝐷
𝑉𝐶

= 𝑚𝑟𝑇1   𝑙𝑛
𝑉𝐷

𝑉𝐶
 

D’où l'expression du rendement :  

S1, T1 

S2, T2 
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𝜂 = 1+
𝑄2
𝑄1
= 1 +

𝑚𝑟𝑇2   𝑙𝑛
𝑉𝐵
𝑉𝐴

𝑚𝑟𝑇1  𝑙𝑛
𝑉𝐷
𝑉𝐶

 

La relation (XIII.07) permet de simplifier, puisque : 

(
𝑇1
𝑇2
)
(
1
𝛾−1

)

=
𝑉𝐵
𝑉𝐶
=
𝑉𝐴
𝑉𝐷

 ⇒  
𝑉𝐵
𝑉𝐴
=
𝑉𝐶
𝑉𝐷

 

D’où : 

 𝑙𝑛
𝑉𝐵
𝑉𝐴

 𝑙𝑛
𝑉𝐷
𝑉𝐶

= −1 

En définitive, le rendement d'un cycle de Carnot s'écrit : 

𝜂 = 1+
𝑄2
𝑄1
= 1−

𝑇2 

𝑇1 
                                          (XIV.03) 

Remarque : 

De la température thermodynamique, précédemment définie, et du rendement d'un cycle de 

Carnot, nous obtenons : 
|𝑄2|

𝑄1
=
𝑇2 

𝑇1 
=
𝜃2
𝜃1

 

La température thermodynamique est proportionnelle à la température absolue définie à partir 

des propriétés des gaz parfaits. Pour ces deux échelles, le kelvin est choisi comme unité. Ces 
deux températures sont égales.

 𝑇 = 𝜃 

Exercice XIV.1 

De l'eau reçoit d'une chaudière Q1 = 230 kWh à une température t1 = 460°C. Cette eau décrit 
un cycle de Carnot. 
Sachant que la source froide est à la température t2 = 20°C, déterminer la quantité de chaleur 

Q2 rejetée à cette source. 

Corrigé 

𝑄2 = −
𝑇2
𝑇1
𝑄1 = −

273,15 + 20

273,15 + 460
× 230 = −91,965 𝑘𝑊ℎ 

 

 

 

 

 
 



Chapitre XV Thermodynamique            L'entropie 

35 
 

 

Chapitre XV 

L'entropie 
 
 

1 Transformations cycliques dithermes 

Comme précédemment, considérons tout d'abord un cycle de Carnot et raisonnons par unité de 
masse, pour simplifier les écritures. Son rendement (XIV.03) permet d'écrire : 

𝑄2
𝑄1
= −

𝑇2
𝑇1

 

Ou encore : 
𝑄1
𝑇1
+
𝑄2
𝑇2
= 0 

Puisque les deux transferts de chaleur s'effectuent à la température des sources, nous pouvons 
écrire sous forme abrégée : 

∫  
δQ

𝑇cycle

= 0 

Par contre, s'il y a irréversibilité dans une transformation cyclique, il est intéressant d'effectuer 

une comparaison avec un cycle de Carnot fonctionnant entre les mêmes sources de chaleur.  

Désignons par 𝜂0 le rendement du cycle de Carnot et par 𝜂 celui de la transformation cyclique 
ditherme irréversible. Comme nous le savons, le rendement d'une machine imparfaite est 

inférieur au rendement d'une machine parfaite. 

 Soit 𝜂  < 𝜂0 , ce qui permet d'écrire : 

𝜂 = 1 +
𝑄2
𝑄1
  <  1 −

𝑇2 

𝑇1 
 

Ou encore : 
𝑄1
𝑇1
+
𝑄2
𝑇2
  <  0 

Il est important de préciser que les irréversibilités peuvent être de natures différentes. Il faut 
distinguer les irréversibilités thermiques des irréversibilités internes. Elles peuvent se produire 

simultanément ou séparément. 

Les irréversibilités thermiques sont extérieures au cycle et proviennent de la différence de 
température qui existe entre la source de chaleur et le fluide qui évolue. Les transferts de chaleur 

ne s'effectuent donc pas isothermiquement. 

Les irréversibilités internes aux transformations sont essentiellement dues aux frottements. 
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2 Transformations cycliques échangeant de la chaleur avec une infinité de 

sources 

Pour qu'une transformation cyclique absolument quelconque soit réversible, il faut, qu'en plus 
de la réversibilité mécanique, les transferts de chaleur soient isothermes. 

Pour satisfaire cette dernière condition, il faut disposer d'un très grand nombre de sources de 
chaleur, voire d'une infinité, la température du système variant de façon continue d'un point à 
un autre. 

   p 

 C 

 

 

 

     𝛾 

 

   Cycles élémentaires de Carnot  

 

 

         Ti2    Ti1 

   𝛿  

     Tmaxi 

       Cycle (i)        D 

 

       B 

   𝛽              𝛼 

     Tmini 

                A 

                   v 

Figure XV.01 Cycle de rendement maximum 

Considérons alors un cycle de 
Carnot ABCD, fonctionnant 

entre les températures 
extrémales Tmaxi et Tmini d'une 

transformation cyclique 𝛼𝛽𝛾𝛿, 
de configuration quelconque. 

Décomposons alors la 

transformation cyclique 𝛼𝛽𝛾𝛿 
en un ensemble cycles 
élémentaires de Carnot. 

Chacun de ces cycles 

élémentaires a un rendement 
inférieur à celui de ABCD. 

Par exemple pour le cycle (i) 
nous aurions : 

𝜂𝑖 = 1 −
𝑇𝑖2
𝑇𝑖1
 <  1 −

𝑇mini
𝑇maxi

 

Il en serait de même pour tous ces cycles élémentaires de Carnot ainsi que pour la 

transformation 𝛼𝛽𝛾𝛿. 

Son rendement est, en quelque sorte, une moyenne de ces cycles élémentaires. 

Compte tenu des résultats précédemment obtenus, nous pouvons écrire pour chacun de ces 

cycles élémentaires : 

𝛿𝑄i1
𝑇i1

+
𝛿𝑄i2 

𝑇i2 
= 0 

En faisant la somme des n cycles élémentaires constituant le cycle étudié nous obtenons : 

∑
𝛿𝑄i1
𝑇i1

𝑖=𝑛

𝑖=1

+∑
𝛿𝑄i2 

𝑇i2 

𝑖=𝑛

𝑖=1

= 0 

Si n tend vers l'infini (cycles infiniment petits) et en désignant par C le cycle αβγδ, cette expression 

devient : 
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∫
δQ

𝑇𝐶

= 0                                                              (XV.01) 

La quantité ∫
δQ

𝑇𝐶
 s'appelle l'intégrale de Clausius et l'équation ci-dessus montre qu'elle est nulle 

pour toute transformation cyclique réversible. 

Si la transformation cyclique comporte des irréversibilités la relation (XV.01) devient : 

∫
δQ

𝑇𝐶

< 0                                                              (XV.02) 

Exercice XV.1 

Un gaz parfait, décrit réversiblement un cycle de Beau de Rochas. C'est-à-dire, une 

transformation cyclique composée de deux isochores et de deux adiabatiques conformément au 

croquis ci-dessous. 

C'est le cycle théorique des moteurs à combustion interne à allumage commandé en excluant 

les phases d'aspiration et d'échappement. 

      𝑝 

 
  3 

 

 
 

 
  2 

 
      4 

 
       1 

                                                                            𝑉 
        𝑉𝐻⏟

𝑃𝑜𝑖𝑛𝑡 𝑚𝑜𝑟𝑡 ℎ𝑎𝑢𝑡

         𝑉𝐵⏟
𝑃𝑜𝑖𝑛𝑡 𝑚𝑜𝑟𝑡 𝑏𝑎𝑠

 

 

Figure XV.02 Cycle de Beau de Rochas                 Figure XV.03 Moteur à allumage commandé 

1) Calculer le rendement thermique de ce cycle en fonction du taux de compression 

     𝜇 =
𝑉𝐵
𝑉𝐻

  et du  γ 

2) Montrer que l'intégrale de Clausius est nulle pour cette transformation cyclique. 

Corrigé. 

1) Tout d'abord, suivons chacune de ces évolutions. 

- Évolution adiabatique (compression) 1 → 2 
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De la relation (VIII.07) nous déduisons : 

𝑇2
𝑇1
= (

𝑉𝐵
𝑉𝐻
)
(𝛾−1)

= 𝜇(𝛾−1)  

- Évolution isochore (combustion) 2 → 3 

De l'expression simplifiée du premier principe (XII.06) et de la relation (XIII.01) nous avons : 

𝛿𝑄 = 𝑑𝑈 = 𝑚𝑐𝑉𝑑𝑇 

Soit en intégrant :                             𝑄
2→3

= 𝑚𝑐𝑉 (𝑇3 − 𝑇2) 

- Évolution adiabatique (détente) 3 → 4 

𝑇4
𝑇3
= (
𝑉𝐻
𝑉𝐵
)
(𝛾−1)

= (
1

𝜇
)
(𝛾−1)

  𝑜𝑢    
𝑇3
𝑇4
= 𝜇(𝛾−1)   𝑒𝑡 𝑝𝑎𝑟 𝑠𝑢𝑖𝑡𝑒  

𝑇3
𝑇4
=
𝑇2
𝑇1

 

- Évolution isochore 4 → 1 

𝑄
4→1

= 𝑚𝑐𝑉 (𝑇1− 𝑇4) 

Du premier principe pour une transformation cyclique, relation (VIII.04), nous déduisons le 

travail échangé avec le milieu extérieur : 

−𝑊 = 𝑄 = 𝑄
2→3

+ 𝑄
4→1

 

Pour déterminer la quantité de chaleur fournie au cycle, il est intéressant de remarquer que 

𝑇3   > 𝑇2  𝑒𝑡  𝑇4   > 𝑇1. Ce qui veut dire que 𝑄
2→3

>  0   𝑒𝑡   𝑄
4→1

<  0 et par conséquent 𝑄
2→3

est 

la quantité de chaleur reçue par le cycle. 

De la définition du rendement thermique (XIV.01) nous déduisons : 

𝜂 =
−𝑊

𝑄1
=
𝑄
2→3

+ 𝑄
4→1

𝑄
2→3

= 1−
𝑇4 − 𝑇1
𝑇3 − 𝑇2

= 1−
𝑇4 (1 −

𝑇1
𝑇4
)

𝑇3 (1 −
𝑇2
𝑇3
)
= 1−

𝑇4
𝑇3
   

𝑝𝑢𝑖𝑠𝑞𝑢𝑒  
𝑇3
𝑇4
=
𝑇2
𝑇1
 ⇒ 

𝑇1
𝑇4
=
𝑇2
𝑇3

 

D’où l'expression du rendement thermique d'un cycle théorique de Beau de Rochas : 

𝜂 = 1 −
1

𝜇(𝛾−1)
 

Nous voyons ainsi que le rendement augmentera avec le taux de compression. 
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Remarque : 

Les calculs montrent que le travail et la chaleur sont positifs lorsqu'ils entrent dans le système 

étudié. Par contre, ils sont négatifs lorsqu'ils en sortent. Un moyen mnémotechnique un peu 

trivial, consiste à penser à son porte monnaies, ce qui rentre est positif et négatif dans le cas 

contraire. 

2) Calculons l'intégrale de Clausius pour ce cycle. 

∫
𝛿𝑄

𝑇𝐶𝑦𝑐𝑙𝑒

= ∫
𝛿𝑄

𝑇1→2

+∫
𝛿𝑄

𝑇2→3

+∫
𝛿𝑄

𝑇3→4

+ ∫
𝛿𝑄

𝑇4→1

 

∫
𝛿𝑄

𝑇𝐶𝑦𝑐𝑙𝑒

= 0  +      ∫
𝑚𝑐𝑣𝑑𝑇

𝑇

𝑇3

𝑇2

+      0   + ∫
𝑚𝑐𝑣𝑑𝑇

𝑇

𝑇1

𝑇4

 

∫
𝛿𝑄

𝑇𝐶𝑦𝑐𝑙𝑒

= 𝑚𝑐𝑣 (𝑙𝑛
𝑇3
𝑇2
+ 𝑙𝑛

𝑇1
𝑇4
) = 𝑚𝑐𝑣 𝑙𝑛

𝑇3𝑇1
𝑇2𝑇4

 

or 
𝑇1𝑇3
𝑇2𝑇4

= 1, 𝑖𝑙 𝑠′𝑒𝑛𝑠𝑢𝑖𝑡 𝑑𝑜𝑛𝑐 ∶

 ∫
𝛿𝑄

𝑇𝐶𝑦𝑐𝑙𝑒

= 0 

3 Transformations non cycliques 

Soit une transformation non cyclique amenant un système d'un état initial (i) à un état final (f). 
Deux cas sont à envisager suivant que la transformation est réversible ou irréversible. 

3-1 Transformations réversibles 

Pour faire subir à un système une transformation réversible, utilisons le chemin "a" pour passer 

de l'état initial (i) à l'état final (f). Puis revenons, réversiblement, à l'état initial (i) mais, cette 

fois, en utilisant le chemin "b", conformément à la figure XV.04. 

Remarquons que 𝑖 →⏟
𝑎

𝑓→⏟
𝑏

𝑖 devient ainsi une transformation cyclique réversible. 

L'intégrale de Clausius est donc nulle. 

∫
δQ

𝑇Cycle

= ∫
δQ

𝑇𝑖→𝑓⏟
𝑎

+∫
δQ

𝑇𝑓→𝑖⏟
𝑏

= 0

 
Pour aller de (i) à (f) nous aurions pu utiliser un autre chemin réversible, par exemple, le 
parcours "c" et revenir, comme précédemment, par le chemin "b". 

http://fr.wikipedia.org/wiki/Travail_d%27une_force
http://fr.wikipedia.org/wiki/Transfert_thermique


Chapitre XV Thermodynamique            L'entropie 

40 
 

   p 

   b 
c        f 

 
 
           i 

         a 
           V 

Figure XV.04 Divers chemins 

Un raisonnement calqué sur le précédent 

conduit à écrire : 

∫
δQ

𝑇𝑖→𝑓⏟
𝑐

+ ∫
δQ

𝑇𝑓→𝑖⏟
𝑏

= 0

 Ce qui permet de déduire : 

∫
δQ

𝑇𝑖→𝑓⏟
𝑎

= ∫
δQ

𝑇𝑖→𝑓⏟
𝑐

 

Quelle que soit la transformation réversible, pour aller du point (i) au point (f), l'intégrale de 
Clausius conserve la même valeur. Elle ne dépend donc que de l'état initial (i) et de l'état final 

(f) du système. 

Ce qui peut s'exprimer par : 

∫
𝛿𝑄

𝑇𝑖→𝑓

= 𝑠𝑓 − 𝑠𝑖                                                  (XV.03) 

Cette fonction d'état s, ainsi définie, est appelée "entropie", plus précisément ici, entropie 
massique (J.kg-1K-1). Comme u et h, elle n'est définie, a priori, qu'à une constante près. 

Lorsque l'entropie n'est pas massique (J.K-1), elle est notée S. 

Pour toute transformation élémentaire réversible, nous avons : 

ds =
δQ

𝑇
 ou 𝑇 ds = δQ                                                  (XV.04) 

ds est une différentielle totale exacte, ce qui n'est pas le cas de δQ. 

Une évolution adiabatique réversible a lieu à entropie constante, ds  = 0. Elle est dite 

isentropique. 

L'entropie n'est pas accessible à nos sens, comme d'ailleurs l'énergie interne, l'enthalpie ou 
l'énergie cinétique. 

Il est intéressant de remarquer que toute énergie est le produit d'une variable intensive par une 
variable extensive. 

Par exemple : 

Dans le champ de pesanteur :       𝛿𝑊 = − 𝑚⏟
extensive

 𝑔  dz⏟
intensive

 

Pour la compression d'un gaz dans un capsulisme : 𝛿𝑊 = − 𝑝⏟
intensive

 𝑑𝑉⏟
extensive

 

Pour une énergie thermique :        𝛿𝑄 = 𝑇⏟
intensive

   dS⏟
extensive
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L'entropie est une variable extensive. L'entropie d'un système est la somme des entropies de ses 

constituants. Par exemple, l'entropie d'un système composé d'air et d'eau sera la somme de 
l'entropie de l'air et de l'entropie de l'eau. 

3-2 Transformations irréversibles 

Cette fois, pour aller de l'état initial (i) à l'état final (f) en utilisant le chemin "a", faisons subir 
au système une transformation irréversible. Puis revenons, réversiblement, à l'état initial (i) en 

empruntant le chemin "b", conformément à la figure XI.05. 

Cette transformation cyclique 𝑖 →⏟
𝑎

𝑓→⏟
𝑏

𝑖 est donc irréversible et en vertu de la relation (XV.02) 

nous avons : 

∫
𝛿𝑄

𝑇𝑖→⏟
𝑎

𝑓→𝑖⏟
𝑏

  <  0 

Or cette intégrale peut se décomposer de 
la façon suivante : 

∫
δQ

𝑇𝑖→𝑓

+ ∫
δQ

𝑇𝑓→𝑖⏟    
𝑆𝑖−𝑆𝑓

 < 0 

 

  p 
                            Chemin réversible 

b 

  f 

 

 

         i                   Chemin irréversible 

a 

          V 

Figure XV.05 Transformation cyclique irréversible 

Il s'ensuit donc : 

∫
δQ

𝑇𝑖→𝑓

  <  𝑠𝑓 − 𝑠𝑖                                                             (XV.05)

 

et sous forme différentielle : 

δQ

𝑇
<  ds  ou  δQ  <  𝑇 ds                              (XV.06) 

Ces résultats peuvent également s'obtenir en comparant une transformation irréversible avec 

une transformation réversible en faisant passer, dans ces deux cas, un fluide du même état initial 
au même état final. 

Raisonnons sur une transformation élémentaire et appliquons le premier principe de la 
thermodynamique (XII.03). Utilisons l'indice "r" pour la transformation réversible et "ir" pour 
la transformation irréversible. 

δw𝑟 + δQ𝑟 = δwir + δQir = du+ de𝑐 

Du fait des irréversibilités 𝛿𝑤𝑖𝑟 −𝛿𝑤𝑟 = 𝛿𝑓 > 0, cette différence est toujours positive quel 

que soit le signe du travail 𝛿𝑤. 

- Si 𝛿𝑤  >  0 le travail est reçu par le fluide, par exemple ; les pompes, les ventilateurs et les 
compresseurs. Pour obtenir le même résultat, une machine imparfaite consommera plus 

d'énergie que la machine parfaite, 𝛿𝑤𝑖𝑟   > 𝛿𝑤𝑟 donc 𝛿𝑓  >  0. 
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- Si 𝛿𝑤  <  0 le travail est fourni par le fluide comme par exemple les moteurs ou les turbines. 
Une machine imparfaite produira moins d'énergie que la machine parfaite pour obtenir le même 

résultat : 

|𝛿𝑤𝑖𝑟|  <  |𝛿𝑤𝑟| et par conséquent 𝛿𝑤𝑖𝑟− 𝛿𝑤𝑟 = −|𝛿𝑤𝑖𝑟| − (− |𝛿𝑤𝑟|) = 𝛿𝑓  >  0. 

Il s'ensuit : 

δwir −  δw𝑟 = δQ𝑟 −  δQir =  δf  >  0 

Avec ces notations la relation (XV.04) permet d'écrire : 𝛿𝑄𝑟 = 𝑇𝑑𝑠 

Soit : 𝑇ds = δQir + δf 

Dorénavant on écrira : 

𝑇ds = δQ + δf         (XV.07) 

En posant tout simplement : δQ =  δQir 

Notons que l'on retrouve très facilement les résultats précédemment établis. 

- Si l'évolution est réversible : 𝛿𝑓 = 0 et 𝑇ds = δQ 

- Si l'évolution est irréversible, δf ≠ 0     et 𝑇 ds = δQ + δf  
                                 ou encore δQ  <  𝑇ds puisque 𝛿𝑓  >  0 

Ainsi les relations (XII.05) et (XII.06) revêtent une forme beaucoup plus simple. 

𝑇𝑑𝑠 = 𝑑𝑢 + 𝑝𝑑𝑣 = 𝑑ℎ − 𝑣𝑑𝑝     𝑜𝑢      𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑V = dH-Vdp  (XV.08) 

Cette équation reste valable aussi bien pour une évolution réversible que pour une évolution 

irréversible. 

Exercice XV.2 

Un gaz idéal parfait, de masse m et de constantes r et 𝛾, subit des transformations qui l'amènent 
d'un état initial (i), caractérisé par pi et Ti, à un état final (f) où règne une pression pf et une 

température Tf. 

Calculer la variation d'entropie en fonction des données. 

Corrigé. 

La variation d'entropie s'obtient à partir de la relation (XV.08) : 

𝑑𝑆 =
𝑑𝐻

𝑇
−
𝑉 𝑑𝑝

𝑇
 

La variation élémentaire de l'enthalpie s'obtient à partir de la relation (XIII.02), en tenant 

compte de l'expression de la capacité thermique massique en fonction des constantes r et 𝛾. 
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𝑑𝐻 = 𝑚 𝑐𝑝 𝑑𝑇 = 𝑚
𝛾𝑟

𝛾 − 1
𝑑𝑇 

L'équation d'état des gaz parfaits permet d'écrire : 

𝑉

𝑇
=
𝑚𝑟

𝑝
 

Si bien que nous avons : 

𝑑𝑆 = 𝑚𝑟  (
𝛾

𝛾 − 1

𝑑𝑇

𝑇
−
 𝑑𝑝

𝑝
) 

D'où la variation d'entropie en intégrant cette dernière relation : 

𝑆𝑓 − 𝑆𝑖 = 𝑚𝑟  (
𝛾

𝛾 − 1
𝑙𝑛
𝑇𝑓
𝑇𝑖
− 𝑙𝑛

 𝑝𝑓
𝑝𝑖
) 

𝑆𝑓 − 𝑆𝑖  = 𝑚𝑟 𝑙𝑛 [(
𝑇𝑓
𝑇𝑖
)

(
𝛾
𝛾−1

) 𝑝𝑖
𝑝𝑓
] 

Remarque : 

Si l'évolution était isentropique 𝑆𝑓 = 𝑆𝑖 , [(
𝑇𝑓

𝑇𝑖
)
(
𝛾

𝛾−1
)
𝑝𝑖

𝑝𝑓
] = 1 on retrouve la relation (XIII.07) 

pour une évolution adiabatique réversible. 

4 Extension du second principe aux irréversibilités thermiques 

La relation (XV.07) est l'égalité de Jouguet limitée aux irréversibilités internes. En effet nous 
nous sommes uniquement intéressés à la transformation d'un fluide sans nous préoccuper de la 

réversibilité ou non des transferts de chaleur. 

Le postulat de Clausius montre que les irréversibilités d'ordre thermique proviennent des 
différences de température entre la source et le système évoluant. Il est difficile, dans la 

pratique, d'annuler cet écart de température. 

Il est important de bien différentier les pertes thermiques, extérieures au système qui évolue, et 

les pertes internes comme le frottement par exemple. 

Pour bien distinguer ces pertes, comparons, comme précédemment, des transformations 
réversible et irréversible, qui font passer le système, dans les deux cas, du même état initial (i) 

au même état final (f) infiniment voisin. 

Supposons qu'au cours de sa transformation élémentaire, avec transfert de chaleur, le système 

se trouve à une température Tsystème alors que la température 𝜃 règne dans la source. 
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Pour aller réversiblement de l'état initial (i) à l'état final (f), le transfert de chaleur est 

obligatoirement isotherme à la température 𝜃 de la source. Les autres évolutions sont 
nécessairement isentropiques. 

Représentons ces évolutions sur un diagramme T, s. Ce diagramme, très utile à l'étude des 
turbomachines, sera traité lors d'un prochain chapitre. 

De la même façon que précédemment, utilisons l'indice "r" pour la transformation réversible et 
"ir" pour la transformation irréversible. 

Pour aller réversiblement de i à f nous avons : 

𝛿𝑄𝑟 = 𝜃 𝑑𝑠 

Par comparaison avec la transformation irréversible : 𝛿𝑄𝑟 = 𝛿𝑄𝑖𝑟 +𝛿𝑓𝑡𝑜𝑡𝑎𝑙𝑒𝑠 

        T 
       Évolutions réversibles 

        𝜃 
 
    f 
         Tsystème 

i 
       Transformation irréversible 
   ds 
 
  si           sf     s 

Figure XV.06 Transformations élémentaires 

Le terme𝛿𝑓𝑡𝑜𝑡𝑎𝑙𝑒𝑠 représente ici les pertes 
totales d'énergie. 

Ces pertes comptabilisent les irréversibilités 
thermiques plus les irréversibilités internes. 

Pour faire apparaître les pertes internes de la 

transformation irréversible 𝑖 → 𝑓, utilisons la 
relation (XV.07) : 

𝑇𝑑𝑠 = 𝛿𝑄𝑖𝑟+𝛿𝑓 

   

Cette fois δf représente, comme nous le savons, la perte énergétique interne. 

Afin d'exprimer la perte totale, on élimine dans ces trois dernières relations les transferts de 

chaleur δQir et 𝛿𝑄𝑟. Soit : 

𝛿𝑓𝑡𝑜𝑡𝑎𝑙𝑒𝑠 = (𝜃 − 𝑇)𝑑𝑠⏟      
𝑝𝑒𝑟𝑡𝑒𝑠 𝑡ℎ𝑒𝑟𝑚𝑖𝑞𝑢𝑒𝑠

+ 𝛿𝑓⏟
𝑝𝑒𝑟𝑡𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑠

        (XV.09) 

En quelque sorte (𝜃 − 𝑇)𝑑𝑠 mesure le travail produit par une transformation cyclique réversible 

fonctionnant entre la source chaude à la température 𝜃 et la source froide à la température T. 

Cette perte, par irréversibilité thermique (𝜃 − 𝑇)𝑑𝑠, revêt un caractère idéal. Elle constitue le 

supplément de travail que l'on tirerait de l'équilibre thermique du système avec la source. Par 

contre, la perte interne 𝛿𝑓appartient bien au phénomène réel. 

C'est l'exergie qui développe ces notions de pertes thermiques et internes. L'exergie, fonction 

d'état, est utile dans l'étude des cycles, un peu moins dans le domaine spécifique aux 

turbomachines. 

  



Chapitre XV Thermodynamique            L'entropie 

45 
 

Exercice XV.3 

Un corps solide de capacité thermique constante "mcp" se trouvant à la température Ti est mis 

en contact, à pression constante, avec une source de chaleur à la température 𝜃 > 𝑇𝑖. Ce corps 

se met en équilibre thermique à la température 𝑇𝑓 = 𝜃. 

Calculer la variation d'entropie du système constitué par la source et le corps. 

Corrigé 

Aussi bien pour le corps que pour la source, l'évolution est purement thermique. 

La variation d'entropie du système est la somme de celles qui sont obtenues par la source et le 

corps. 

- Pour la source le transfert de chaleur est réversible puisqu'il s'effectue à la température 

constante 𝜃. La quantité de chaleur cédée par la source est opposée à celle qui est reçue par le 

corps. 

𝛿𝑄𝑐𝑜𝑟𝑝𝑠 = 𝑚𝑐𝑝 𝑑𝑇 = −𝛿𝑄𝑠𝑜𝑢𝑟𝑐𝑒 

𝑄𝑐𝑜𝑟𝑝𝑠 = 𝑚𝑐𝑝(𝜃 − 𝑇𝑖) = −𝑄𝑠𝑜𝑢𝑟𝑐𝑒  

(le travail et la chaleur sont positifs lorsqu'ils entrent dans le système étudié et négatifs dans le 

cas contraire) 

La variation d'entropie de la source est donc : 

𝛥𝑠𝑠𝑜𝑢𝑟𝑐𝑒 = −
𝑚𝑐𝑝(𝜃 − 𝑇𝑖)

𝜃
 

- Pour le corps solide, nous avons à priori : 𝑇𝑑𝑠 = 𝛿𝑄 + 𝛿𝑓 mais comme l'évolution est 

uniquement calorifique, (par exemple, une barre métallique introduite dans un four) le terme 

caractérisant les irréversibilités internes est supposé nul. 𝛿𝑓 = 0 

Par suite la variation d'entropie du corps est : 

𝑑𝑠𝑐𝑜𝑟𝑝𝑠 = 𝑚𝑐𝑝  
𝑑𝑇

𝑇
 

𝛥𝑠𝑐𝑜𝑟𝑝𝑠 = 𝑚𝑐𝑝 𝑙𝑛
𝜃

𝑇𝑖
 

La variation d'entropie du système constitué par la source et le corps est donc : 

𝑠𝑓 − 𝑠𝑖 = 𝑚𝑐𝑝  (𝑙𝑛
𝜃

𝑇𝑖
− 1+

𝑇𝑖
𝜃
) 

http://fr.wikipedia.org/wiki/Travail_d%27une_force
http://fr.wikipedia.org/wiki/Transfert_thermique
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5 Variation d'entropie 

Tout changement d'état d'un système s'accompagne d'une variation d'entropie que nous pouvons 
écrire sous la forme : 

𝑑𝑠 =
𝛿𝑄

𝑇⏟
𝑑𝑠𝑒

+
𝛿𝑓

𝑇⏟
𝑑𝑠𝑖

 

La première contribution dse résulte des interactions entre le système et son environnement. S'il 

s'agit d'une évolution adiabatique, réversible ou irréversible, dse est nulle. En quelque sorte c'est 
l'entropie transférée de l'extérieur et dse peut être négative, nulle ou positive suivant la 

transformation considérée. 

La deuxième contribution dsi provient de l'entropie crée dans le système au cours de sa 
transformation. Elle représente la dégradation énergétique produite par des processus internes 

au système. Elle ne peut pas être négative. 

𝑑𝑠𝑖 = 0 𝑝𝑜𝑢𝑟 une transformation réversible 

𝑑𝑠𝑖   >  0 𝑝𝑜𝑢𝑟 une transformation irréversible 

6 Entropie des systèmes isolés 

Considérons une transformation réelle, donc irréversible, d'un système isolé. En vertu de la 
relation (XV.02) nous avons : 

∫
δQ

𝑇𝑖→𝑓

 <  𝑠𝑓 − 𝑠𝑖 

Puisque le système est isolé, il ne peut pas y avoir de transfert de chaleur avec son milieu 

extérieur, donc :δQ = 0  et 𝑝𝑎𝑟 suite  𝑠𝑖   < 𝑠𝑓  

Si un système isolé évolue, l'entropie du système croît en général. Ce n'est que dans le cas idéal 
où toutes les transformations seraient réversibles que l'entropie demeurerait stationnaire. 

Ce théorème est attribué à Clausius. 

Clausius, considérant l'univers comme un système isolé, avait conclu que l'entropie de l'univers 
tend vers un maximum. L'augmentation d'entropie d'un système isolé est liée à une dégradation 

énergétique qui se convertit en chaleur. Ce qui conduit à penser que l'évolution du monde ne 
pourra tendre que vers l'égalisation des températures. Le monde serait alors dans un vaste état 
d'équilibre thermodynamique dans lequel aucun évènement ne pourrait plus se produire. 

Cette proposition entraîne que l'univers ne passe jamais deux fois par le même état. Il convient 
d'accueillir avec prudence ces théories scientifico-philosophiques, car rien ne nous permet 

d'assurer que le concept d'entropie est valable dans toutes les régions de l'univers. En particulier, 
là où il règne des températures se chiffrant par des centaines de milliards de degrés. 
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Chapitre XVI 

Relations thermodynamiques 
 

1 Généralités 

Des méthodes purement mathématiques permettent d'obtenir des relations utilisant les  
propriétés thermodynamiques des fluides. L'équation d'état, d'un corps pur à l'état de fluide 
homogène, est caractérisée par une équation de la forme : 

𝐹(𝑝, 𝑣, 𝑇) = 0 

Cette relation peut également se mettre sous les formes suivantes : 

𝑣 = 𝑣(𝑝, 𝑇) 

𝑝 = 𝑝(𝑣, 𝑇) 

𝑇 = 𝑇(𝑝, 𝑣) 

Dont les différentielles sont : 

𝜕𝐹

𝜕𝑝
𝑑𝑝+

𝜕𝐹

𝜕𝑣
𝑑𝑣 +

𝜕𝐹

𝜕𝑇
𝑑𝑇 = 0 

Ou avec une autre écriture : 

 F𝑝
′ 𝑑𝑝+ 𝐹𝑣

′𝑑𝑣 + 𝐹𝑇
′ 𝑑𝑇 = 0     (XVI.01) 

𝑑𝑣 = (
𝜕𝑣

𝜕𝑝
)
𝑇
𝑑𝑝 + (

𝜕𝑣

𝜕𝑇
)
𝑝
𝑑𝑇      (XVI.02) 

𝑑𝑝 = (
𝜕𝑝

𝜕𝑣
)
𝑇
𝑑𝑣 + (

𝜕𝑝

𝜕𝑇
)
𝑣
𝑑𝑇     (XVI.03) 

𝑑𝑇 = (
𝜕𝑇

𝜕𝑝
)
𝑣
𝑑𝑝 + (

𝜕𝑇

𝜕𝑣
)
𝑝
𝑑𝑣      (XVI.04) 

Ces notations sont utilisées par les thermodynamiciens. 

Elles rappellent, tout simplement, que la dérivée s'est effectuée en considérant comme constante 

la variable portée en indice. 

Dans les relations ci-dessus, ces notations peuvent paraître superflues. Par contre, si la situation 

d'un fluide est caractérisée par des fonctions d'état comme par exemple : 𝐹(ℎ, 𝑠, 𝑝) = 0, nous 
verrons apparaître des termes de la forme : 
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(
𝜕ℎ

𝜕𝑝
)
𝑠

  ,  (
𝜕ℎ

𝜕𝑠
)
𝑝

  etc... 

D'où la nécessité d'utiliser ces notations pour lever toute ambiguïté. 

Travaillons sur les expressions précédemment obtenues. Portons (XVI.02) dans (XVI.01) et 

groupons les termes en dp et dT. 

[𝐹𝑝
′ +𝐹𝑣

′ (
𝜕𝑣

𝜕𝑝
)
𝑇

]  𝑑𝑝 + [𝐹𝑇
′ + 𝐹𝑣

′ (
𝜕𝑣

𝜕𝑇
)
𝑝

]  𝑑𝑝 = 0 

Les termes entre les "crochets" sont nuls, et par suite : 

 (
𝜕𝑣

𝜕𝑝
)
𝑇

= −
𝐹𝑝

′

𝐹𝑣
′
    et    (

𝜕𝑣

𝜕𝑇
)
𝑝

= −
𝐹𝑇

′

𝐹𝑣
′
 

Faisons une permutation circulaire ou portons (XVI.03) et (XVI.04) dans (XVI.01) : 

(
𝜕𝑇

𝜕𝑣
)
𝑝

= −
𝐹𝑣

′

𝐹𝑇
′
    et    (

𝜕𝑇

𝜕𝑝
)
𝑣

= −
𝐹𝑝

′

𝐹𝑇
′
 

(
𝜕𝑝

𝜕𝑇
)
𝑣

= −
𝐹𝑇

′

𝐹𝑝
′
    et     (

𝜕𝑝

𝜕𝑣
)
𝑇

= −
𝐹𝑣

′

𝐹𝑇
′
 

Le lecteur vérifiera que les relations ci-dessous sont également satisfaites : 

(
𝜕𝑝

𝜕𝑣
)
𝑇

 (
𝜕𝑣

𝜕𝑝
)
𝑇

= 1 

(
𝜕𝑣

𝜕𝑇
)
𝑝

 (
𝜕𝑇

𝜕𝑣
)
𝑝

= 1 

(
𝜕𝑇

𝜕𝑝
)
𝑣

 (
𝜕𝑝

𝜕𝑇
)
𝑣

= 1 

(
𝜕𝑝

𝜕𝑣
)
𝑇

 (
𝜕𝑣

𝜕𝑇
)
𝑝

 (
𝜕𝑇

𝜕𝑝
)
𝑣

= −1 

(
𝜕𝑝

𝜕𝑇
)
𝑣
  (
𝜕𝑣

𝜕𝑝
)
𝑇

 (
𝜕𝑇

𝜕𝑣
)
𝑝
= −1 

 

2 Coefficients de dilatation et de compressibilité 

Les dérivées partielles figurant dans les relations précédentes permettent de définir les 
coefficients suivants : 
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- Coefficient de dilatation isobare : 

𝛼 =
1

𝑣
 (
𝜕𝑣

𝜕𝑇
)
𝑝

      (XVI.05) 

- Coefficient de compression isochore : 

𝛽 =
1

𝑝
 (
𝜕𝑝

𝜕𝑇
)
𝑣

      (XVI.06) 

- Coefficient de compressibilité isotherme : 

𝜒𝑇 = −
1

𝑣
 (
𝜕𝑣

𝜕𝑝
)
𝑇
      XVI.07) 

Pour un accroissement de pression, nous avons une diminution de volume, d'où la nécessité de 

mettre un signe moins devant cette expression. 

Ces trois coefficients ne sont pas indépendants, ils sont liés par une relation facile à établir : 

𝜒𝑇 =
𝛼

𝑝𝛽
                                                                (XVI.08) 

- Coefficient de compressibilité isentropique : 

𝜒𝑠 = −
1

𝑣
 (
𝜕𝑣

𝜕𝑝
)
𝑠

                                                 (XVI.09) 

Exercice XVI.1 

Les coefficients de dilatation isobare 𝛼 et compressibilité isotherme 𝜒𝑇  d'un certain gaz peuvent 
être représentés par les relations empiriques suivantes : 

𝛼 =
𝑟

𝑝𝑣
    𝑒𝑡    𝜒𝑇 =

1

𝑝
+
𝑎

𝑣
 

Où r est la constante de ce gaz, "a" une constante. 

Déterminer l'équation d'état de ce gaz sachant que pour v fixé, nous avons p qui tend vers zéro 

si T tend également vers zéro. 

Corrigé 

Par définition de ces coefficients, nous avons : 

𝛼 =
1

𝑣
 (
𝜕𝑣

𝜕𝑇
)
𝑝

=
𝑟

𝑝𝑣
        𝑒𝑡      𝜒𝑇  = −

1

𝑣
 (
𝜕𝑣

𝜕𝑝
)
𝑇

=
1

𝑝
+
𝑎

𝑣
 

Cela s'intègre facilement en considérant que la température T est une fonction de p et de v. 

Soit : 
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𝑑𝑇 = (
𝜕𝑇

𝜕𝑝
)
𝑣

𝑑𝑝 + (
𝜕𝑇

𝜕𝑣
)
𝑝

𝑑𝑣 =
1

(
𝜕𝑝
𝜕𝑇)

𝑣

 𝑑𝑝 +
1

(
𝜕𝑣
𝜕𝑇)𝑝

 𝑑𝑣  

Or: 

(
𝜕𝑝

𝜕𝑇
)
𝑣

= 𝛽𝑝 =
𝛼

𝜒𝑇
=
𝑟

𝑝𝑣
 
1

1
𝑝 +

𝑎
𝑣

=
𝑟

𝑣 + 𝑎𝑝
 

(
𝜕𝑣

𝜕𝑇
)
𝑝

= 𝛼𝑣 =
𝑟

𝑝
 

Donc : 

𝑑𝑇 = (
𝜕𝑇

𝜕𝑝
)
𝑣

𝑑𝑝 + (
𝜕𝑇

𝜕𝑣
)
𝑝

𝑑𝑣 = (
𝑣

𝑟
+
𝑎𝑝

𝑟
)  𝑑𝑝 +

𝑝

𝑟
 𝑑𝑣  

Il s'ensuit : 

(
𝜕𝑇

𝜕𝑝
)
𝑣

= (
𝑣

𝑟
+
𝑎𝑝

𝑟
)   ⇒  𝑇 =

𝑝𝑣

𝑟
+
𝑎𝑝2

2𝑟
+ 𝑓(𝑣) 

(
𝜕𝑇

𝜕𝑣
)
𝑝

=
𝑝

𝑟
 +
𝑑𝑓(𝑣)

𝑑𝑟
=
𝑝

𝑟
 ⇒  

𝑑𝑓(𝑣)

𝑑𝑟
= 0 ⇒  𝑓(𝑣) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

𝑇 =
𝑝𝑣

𝑟
+
𝑎𝑝2

2𝑟
+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

Puisque pour v fixé, nous avons p et T qui tendent vers zéro, cela implique que la constante est 
nulle. L'équation d'état de ce gaz s'écrit donc : 

𝑝𝑣 +
𝑎𝑝2

2
= 𝑟𝑇 

3 Coefficients calorimétriques 

Faisons subir une transformation élémentaire et réversible à un fluide homogène quelconque. 

Pour une évolution réversible (𝛿𝑓 = 0) et pour une masse unité, la relation (XV.08) s'écrit : 

𝑇 𝑑𝑠 = 𝛿𝑄 = 𝑑𝑢 + 𝑝 𝑑𝑣 = 𝑑ℎ− 𝑣 𝑑𝑝 

L'énergie interne u et l'enthalpie h peuvent s'exprimer en fonction des couples (p,v), (p,T) ou 
encore (v,T). Il en est donc de même pour la quantité de chaleur transférée Q. 

Soit à choisir, pour 𝛿𝑄, parmi l'une des trois relations suivantes : 

𝛿𝑄 = 𝑐𝑣𝑑𝑇 + 𝑙𝑇𝑑𝑣       (XVI.10) 

où  c𝑣 et  l𝑇  sont des fonctions de T et v 

𝛿𝑄 = 𝑐𝑝𝑑𝑇 + ℎ𝑇𝑑𝑝       (XVI.11) 

 où  cp  et  h𝑇  sont des fonctions de T et p 
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𝛿𝑄 = 𝜆𝑣𝑑𝑝+ 𝜇𝑝𝑑𝑣       (XVI.12) 

où  𝜆𝑣 et  𝜇𝑝  sont des fonctions de p et v 

La quantité de chaleur 𝛿𝑄, transférée par le système avec son milieu extérieur, peut toujours 

être exprimée en fonction de deux des six coefficients 𝑐𝑣,  𝑙𝑇 , 𝑐𝑝 ,  ℎ𝑇 ,  𝜆𝑣,  𝑒𝑡 𝜇𝑝. Ces 

coefficients ne sont pas indépendants les uns des autres. Il existe entre eux quatre relations. 

Les coefficients 𝑙𝑇 , ℎ𝑇 , 𝜆𝑣,  𝑒𝑡 𝜇𝑝 sont exprimés en fonction des capacités thermiques 

massiques cv et cp qui sont facilement accessibles à l'expérience. A titre d'exemple exprimons 
lT et hT. 

Des relations (XVI.10), (XVI.02) et (XVI.11), nous déduisons : 

𝛿𝑄 = 𝑐𝑣𝑑𝑇 + 𝑙𝑇𝑑𝑣 = 𝑐𝑣𝑑𝑇 + 𝑙𝑇 [(
𝜕𝑣

𝜕𝑝
)
𝑇

𝑑𝑝 + (
𝜕𝑣

𝜕𝑇
)
𝑝

𝑑𝑇] = 𝑐𝑝𝑑𝑇 + ℎ𝑇𝑑𝑝 

Groupons les termes en dT et dp : 

[𝑐𝑣 + 𝑙𝑇 (
𝜕𝑣

𝜕𝑇
)
𝑝

− 𝑐𝑝] 𝑑𝑇 + [𝑙𝑇 (
𝜕𝑣

𝜕𝑝
)
𝑇

− ℎ𝑇] 𝑑𝑝 = 0 

Soit encore : 

𝑙𝑇 =
𝑐𝑝 − 𝑐𝑣

(
𝜕𝑣
𝜕𝑇)𝑝

  

ℎ𝑇 = 𝑙𝑇 (
𝜕𝑣

𝜕𝑝
)
𝑇

=
𝑐𝑝 − 𝑐𝑣

(
𝜕𝑣
𝜕𝑇
)
𝑝

 (
𝜕𝑣

𝜕𝑝
)
𝑇

= (𝑐𝑝 − 𝑐𝑣) (
𝜕𝑣

𝜕𝑝
)
𝑇

(
𝜕𝑇

𝜕𝑣
)
𝑝

= −
𝑐𝑝 − 𝑐𝑣

(
𝜕𝑝
𝜕𝑇
)
𝑣

 

On trouverait de même : 

𝜇𝑝 =
𝑐𝑝

(
𝜕𝑣
𝜕𝑇
)
𝑝

    et    𝜆𝑣 =
𝑐𝑣

(
𝜕𝑝
𝜕𝑇
)
𝑣

 

Remarquons, qu’expérimentalement, il faut attacher un soin tout particulier à la détermination 

numérique du cv et du cp car les évolutions ne sont jamais rigoureusement réversibles. 

4 Formules de Reech 

Pour une évolution isentropique, la relation (XVI.12) permet d’écrire : 

0 = 𝜆𝑣𝑑𝑝 + 𝜇𝑝𝑑𝑣  ⇒   
𝑑𝑣

𝑑𝑝
= −

𝜆𝑣
𝜇𝑝

 

Cette relation est restrictive aux évolutions isentropiques si bien qu'il est préférable d'écrire 

(
𝜕𝑣

𝜕𝑝
)
𝑠
au lieu de 

𝑑𝑣

𝑑𝑝
. Remplaçons 𝜆𝑣 et 𝜇𝑝 par leur valeur trouvée précédemment : 
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(
𝜕𝑣

𝜕𝑝
)
𝑠

= −
𝑐𝑣 (

𝜕𝑣
𝜕𝑇)𝑝

𝑐𝑝 (
𝜕𝑝
𝜕𝑇)

𝑣

=
1

𝛾
(
𝜕𝑣

𝜕𝑝
)
𝑇

 

Puisque 

(
𝜕𝑣
𝜕𝑇)𝑝

(
𝜕𝑝
𝜕𝑇)

𝑣

= (
𝜕𝑣

𝜕𝑇
)
𝑝

(
𝜕𝑇

𝜕𝑃
)
𝑣

= −
1

(
𝜕𝑝
𝜕𝑣)

𝑇

= −(
𝜕𝑣

𝜕𝑝
)
𝑇

 

Il vient en définitive la relation connue sous le nom de formule de Reech. 

𝛾 =

(
𝜕𝑣
𝜕𝑝)

𝑇

(
𝜕𝑣
𝜕𝑝)

𝑠

                                                           (XVI.13) 

5 Formules de Clapeyron 

Comme précédemment, faisons subir une transformation élémentaire réversible à un fluide. 
Tout d’abord, considérons que l’énergie interne u et l’entropie s sont fonction des deux 

variables indépendantes T et v. 

𝑑𝑢 = (
𝜕𝑢

𝜕𝑣
)
𝑇

𝑑𝑣 + (
𝜕𝑢

𝜕𝑇
)
𝑣

𝑑𝑇                                         (XVI.14) 

𝑑𝑠 = (
𝜕𝑠

𝜕𝑣
)
𝑇

𝑑𝑣 + (
𝜕𝑠

𝜕𝑇
)
𝑣

𝑑𝑇                                          (XVI.15) 

On déduit des relations (XVI.10), (XVI.14) et (XVI.04) : 

𝛿𝑄 = 𝑐𝑣𝑑𝑇 + 𝑙𝑇𝑑𝑣 = 𝑑𝑢 + 𝑝𝑑𝑣 = 𝑇𝑑𝑠 

𝛿𝑄 =  [(
𝜕𝑢

𝜕𝑣
)
𝑇

+ 𝑝] 𝑑𝑣 + (
𝜕𝑢

𝜕𝑇
)
𝑣

𝑑𝑇 

Regroupons les termes en dv et dT. 

0 = [(
𝜕𝑢

𝜕𝑣
)
𝑇

+ 𝑝− 𝑙𝑇]𝑑𝑣 + [(
𝜕𝑢

𝜕𝑇
)
𝑣

− 𝑐𝑣] 𝑑𝑇 

On déduit alors : 

(
𝜕𝑢

𝜕𝑣
)
𝑇

= 𝑙𝑇 −𝑝     et      (
𝜕𝑢

𝜕𝑇
)
𝑣

= 𝑐𝑣                              (XVI.16) 

La relation et (XVI.15) permet d’écrire : 
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𝑑𝑠 =
𝛿𝑄

𝑇
=
𝑐𝑣
𝑇
𝑑𝑇 +

𝑙𝑇
𝑇
𝑑𝑣 

𝑑𝑠 = (
𝜕𝑠

𝜕𝑣
)
𝑇

𝑑𝑣 + (
𝜕𝑠

𝜕𝑇
)
𝑣

𝑑𝑇 

Soit: 

(
𝜕𝑠

𝜕𝑣
)
𝑇

=
𝑙𝑇
𝑇
     et      (

𝜕𝑠

𝜕𝑇
)
𝑣

=
𝑐𝑣
𝑇

 

En écrivant que : 

𝜕2𝑢

𝜕𝑣𝜕𝑇
=
𝜕2𝑢

𝜕𝑇𝜕𝑣
      et      

𝜕2𝑠

𝜕𝑣𝜕𝑇
=
𝜕2𝑠

𝜕𝑇𝜕𝑣
 

On obtient : 

(
𝜕𝑐𝑣
𝜕𝑣
)
𝑇

= (
𝜕𝑙𝑇
𝜕𝑇
)
𝑣

− (
𝜕𝑝

𝜕𝑇
)
𝑣

= (
𝜕𝑙𝑇
𝜕𝑇
)
𝑣

−
𝑙𝑇
𝑇

 

Ce qui permet d’écrire la première formule de Clapeyron : 

𝑙𝑇 = 𝑇 (
𝜕𝑝

𝜕𝑇
)
𝑣

                                                      (XVI.17) 

En choisissant T et p comme variables indépendantes on obtient la deuxième formule de 
Clapeyron : 

ℎ𝑇 = −𝑇(
𝜕𝑣

𝜕𝑇
)
𝑝

                                                 (XVI.18) 

 

Exercice XVI.2 

Montrer que nous avons la relation :  (
𝜕𝑐𝑣
𝜕𝑣
)
𝑇
= 𝑇(

𝜕2𝑝

𝜕𝑇2
)
𝑣

 

Corrigé 

Précédemment nous avons montré que : 

(
𝜕𝑐𝑣
𝜕𝑣
)
𝑇

= (
𝜕𝑙𝑇
𝜕𝑇
)
𝑣

− (
𝜕𝑝

𝜕𝑇
)
𝑣

 

De la première formule de Clapeyron nous obtenons : 

(
𝜕𝑙𝑇
𝜕𝑇
)
𝑣

=
𝜕

𝜕𝑇
[𝑇(

𝜕𝑝

𝜕𝑇
)
𝑣

]
𝑣

= (
𝜕𝑝

𝜕𝑇
)
𝑣

+ 𝑇(
𝜕2𝑝

𝜕𝑇2
)
𝑣

 

D’où le résultat demandé :   (
𝜕𝑐𝑣
𝜕𝑣
)
𝑇

= 𝑇(
𝜕2𝑝

𝜕𝑇2
)
𝑣
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6 Formule de Mayer généralisée 

De la première formule de Clapeyron et de l’expression de lT en fonction de cp et de cv on obtient 
immédiatement : 

 

𝑐𝑝 − 𝑐𝑣 = 𝑇(
𝜕𝑣

𝜕𝑇
)
𝑝

(
𝜕𝑝

𝜕𝑇
)
𝑣

                                                 (XVI.19) 

Evidemment on obtiendrait le même résultat en travaillant avec la deuxième formule de 
Clapeyron. 

7 Formules de Maxwell 

Pour établir les formules de Maxwell on considère les quatre couples de variables  
indépendantes, sv, sp, Tv, Tp, pour décrire une transformation. A chacun de ces couples, on 
associe une fonction caractérisant l’état du système. 

7-1 Première relation de Maxwell 

La relation (XV.08) permet d’associer l’énergie interne au couple de valeurs indépendantes s,v. 
Soit : 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣 = (
𝜕𝑢

𝜕𝑠
)
𝑇

𝑑𝑠 + (
𝜕𝑢

𝜕𝑣
)
𝑠

𝑑𝑣  

Il s’ensuit que : 

(
𝜕𝑢

𝜕𝑠
)
𝑇

= 𝑇      et       (
𝜕𝑢

𝜕𝑣
)
𝑠

= −𝑝 

La première relat ion de Maxwell s’obtient immédiatement en écrivant :   
𝜕2𝑢

 𝜕𝑠𝜕𝑣
=
𝜕2𝑢

𝜕𝑣𝜕𝑠
 

(
𝜕𝑇

𝜕𝑣
)
𝑠

= − (
𝜕𝑝

𝜕𝑠
)
𝑣

                                                (XVI.20) 

On procède de façon analogue pour obtenir les autres relations de Maxwell. 

7-2 Deuxième relation de Maxwell 

Au couple de valeurs s et p on associe l’enthalpie  𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 et on obtient : 

(
𝜕𝑇

𝜕𝑝
)
𝑠

= − (
𝜕𝑣

𝜕𝑠
)
𝑝

                                                (XVI.21) 

7-3 Troisième relation de Maxwell 

Il faut définir la fonction d’état F = u - Ts, appelée énergie libre ou fonction de Helmholtz, pour 
le couple de valeurs T et v. 

On a donc : 
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𝑑𝐹 = 𝑑𝑢 − 𝑇 ds − s dT = du − (𝑑𝑢 + 𝑝𝑑𝑣) − 𝑠𝑑𝑇  

𝑑𝐹 = 𝑝𝑑𝑣 − 𝑠𝑑𝑇 = (
𝜕𝐹

𝜕𝑣
)
𝑇

𝑑𝑣 + (
𝜕𝐹

𝜕𝑇
)
𝑣

𝑑𝑇 

Ce qui permet de déduire la troisième relation de Maxwell : 

(
𝜕𝑝

𝜕𝑇
)
𝑣

= − (
𝜕𝑠

𝜕𝑣
)
𝑇

                                                (XVI.22) 

7-4 Quatrième relation de Maxwell 

Au couple T et p on associe une fonction d’état G que l’on désigne par enthalpie libre ou 
fonction de Gibbs : G = h - Ts. 

𝑑𝐺 = 𝑑ℎ − 𝑇 ds− s dT = dh − (𝑑ℎ− 𝑣𝑑𝑝) − 𝑠𝑑𝑇  

𝑑𝐺 = 𝑣𝑑𝑝 − 𝑠𝑑𝑇 = (
𝜕𝐺

𝜕𝑝
)
𝑇

𝑑𝑝 + (
𝜕𝐺

𝜕𝑇
)
𝑝

𝑑𝑇 

D’où la quatrième relation de Maxwell : 

(
𝜕𝑣

𝜕𝑇
)
𝑝

= − (
𝜕𝑠

𝜕𝑝
)
𝑇

                                                (XVI.23) 

 

Exercice XVI.3 

On comprime isentropiquement, de 1 à 10 bar, un liquide ayant une température initiale 
ti=26°C. 

Calculer la température finale tf sachant que 𝜌, 𝑐𝑝  et 𝛼 sont constants et ont pour valeurs : 

𝜌 = 700𝑘𝑔/𝑚3   𝑐𝑝 = 25000𝐽/𝑘𝑔.𝐾   𝛼 = 1,3.103𝐾−1 

Corrigé 

La deuxième relation de Maxwell est bien appropriée pour résoudre ce genre de problème. 

(
𝜕𝑇

𝜕𝑝
)
𝑠

= (
𝜕𝑣

𝜕𝑠
)
𝑝

 

Or le deuxième membre de cette relation peut s’écrire, compte tenu de (XVI.05) : 

(
𝜕𝑣

𝜕𝑠
)
𝑝

= (
𝜕𝑣

𝜕𝑇
)
𝑝

(
𝜕𝑇

𝜕𝑠
)
𝑝

=  𝛼𝑣(
𝜕𝑇

𝜕𝑠
)
𝑝

 

De (XVI.11) on déduit : 
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𝑑𝑠 =
𝛿𝑄

𝑇
=
𝑐𝑝
𝑇
𝑑𝑇 +

ℎ𝑇

𝑇
𝑑𝑝 = (

𝜕𝑠

𝜕𝑇
)
𝑝

𝑑𝑇 + (
𝜕𝑠

𝜕𝑝
)
𝑇

𝑑𝑝 

Il s’ensuit que : 

𝑐𝑝
𝑇
= (

𝜕𝑠

𝜕𝑇
)
𝑝

=
1

(
𝜕𝑇
𝜕𝑠)𝑝

=
𝛼𝑣

(
𝜕𝑣
𝜕𝑠)𝑝

 

𝑐𝑝
𝑇
=

𝛼𝑣

(
𝜕𝑇
𝜕𝑝)

𝑠

 

Soit : 

(
𝜕𝑇

𝜕𝑝
)
𝑠

=
𝛼𝑣𝑇

𝑐𝑝
=
𝛼𝑇

𝜌𝑐𝑝
 

Puisque l’évolution est isentropique, nous pouvons remplacer les "𝜕" par des "d". Soit : 

𝑑𝑇

𝑇
=
𝛼

𝜌𝑐𝑝
𝑑𝑝  ⇒   𝑇𝑓 = 𝑇𝑖𝑒

𝛼
𝜌𝑐𝑝

(𝑝𝑓−𝑝𝑖)
 

Passons à l'application numérique : 

𝑇𝑓 = (273,15 + 26) 𝑒
1,3.10−3

700×25000
(10−1).105

 

 

𝑇𝑓 = 299,17𝐾 
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Chapitre XVII 

Gaz réels 
 
 
Le chapitre précédent est l'outil indispensable aux traitements analytiques des gaz réels. 

1 Validité de l'équation d'état des gaz parfaits 

Pour mettre en évidence les écarts entre les gaz parfaits et les gaz réels on utilise souvent le 
facteur de compressibilité : 

𝑍 =
𝑝𝑉𝑚
𝑅𝑇

=
𝑝𝑣

𝑟𝑇
                                                    (XVII.01) 

Par exemple pour une température de 0°C le tableau XVII.1 donne les valeurs de Z pour 
différents gaz à diverses pressions. 
 

Gaz 
Pression en bar 

0,1 1 51 

H 1,0000 1,0001 1,0253 

H2 1,0002 1,0007 1,0316 

N2 0,9999 0,9995 0,9841 

O2 1,0000 0,9992 0,9565 

CO2 0,9993 0,9932 0,104 

Tableau XVII.1 Facteur de compressibilité 

 
Pression en bar 

Figure XVII.01 Facteur de compressibilité de la vapeur d'eau 
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Souvent ces variations sont représentées graphiquement en portant Z en ordonnée et la pression 

p en abscisse. Pour les gaz parfaits et pour les gaz réels aux très faibles pressions, le facteur de 
compressibilité Z est égal à l'unité. 

2 Equations d'état sous forme du viriel 

Avec une excellente approximation, on obtient l'expression d'une isotherme en considérant la 

relation empirique : 

𝑍 = 1+ 𝐵𝑝+𝐶𝑝2 +𝐷𝑝3 +⋯         (XVII.02) 

Dans ce développement en série nous avons bien Z = 1 pour p = 0. 

Puisqu'en première approximation Vm varie comme 
1

p
 , il est aisé d'exprimer, à température 

constante, Z en fonction du volume Vm : 

𝑍 = 1+
𝐵∗

𝑉𝑚
+
𝐶 ∗

𝑉𝑚
2 +

𝐷∗

𝑉𝑚
3 +⋯                                       (XVII.03) 

Ces deux développements en série sont appelés "équations d'état sous forme du viriel". Les 
coefficients B, C, D…. ou B*, C*, D*….sont des fonctions de la température et s'appellent 
deuxième, troisième, quatrième, etc… coefficient du viriel. 

Exercice XVII.1 

Montrer que les coefficients du viriel sont liés par les relations : 

𝐵 =
𝐵∗

𝑅𝑇
  ;   𝐶 =

𝐶∗ −𝐵∗

(𝑅𝑇)2
  ;   𝐷 =

𝐷∗ +2𝐵∗3 − 3𝐵∗𝐶∗

(𝑅𝑇)3
  ;   𝑒𝑡𝑐. . .. 

Corrigé 

Tirons, des relations (XVII.01) et (XVII.03), la valeur de la pression p. 

𝑝 = 𝑅𝑇 (1+
𝐵∗

𝑉𝑚
+
𝐶∗

𝑉𝑚
2
+
𝐷∗

𝑉𝑚
3
+⋯ ) 

D’où les expressions de p2 et P3 en conservant que les premiers termes. 

𝑝2 = (
𝑅𝑇

𝑉
)
2

(1 +
2𝐵∗

𝑉
+
1

𝑉2
(2𝐶∗ +𝐵∗2) +

1

𝑉3
(2𝐶∗𝐵∗ + 𝐷∗) +⋯ ) 

𝑝3 = (
𝑅𝑇

𝑉
)
3

(1 +
3𝐵∗

𝑉
+
1

𝑉2
(3𝐶∗ +3𝐵∗2) +⋯ ) 

Portons ces valeurs dans la relation (XVII.02). En regroupant les termes on obtient : 

𝑍 = 1 +
𝐵𝑅𝑇

𝑉
+
1

𝑉2
(𝐵𝐵∗𝑅𝑇 +𝐶𝑅2𝑇2)+

1

𝑉3
(𝐵𝐶∗𝑅𝑇 + 2𝐵∗𝐶𝑅2𝑇2 + 𝐷𝑅3𝑇3) +⋯  

Par identification avec la relation (XVII.03) on obtient le résultat cherché : 
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𝐵∗ = 𝐵𝑅𝑇                ⇒       B =
𝐵∗

𝑅𝑇
 

𝐶∗ = 𝐵𝐵∗𝑅𝑇 + 𝐶𝑅2𝑇2         ⇒       C =
𝐶∗ −𝐵∗

(𝑅𝑇)2
 

𝐷∗ = 𝐵𝐶∗𝑅𝑇 + 2𝐵∗𝐶𝑅2𝑇2 + 𝐷𝑅3𝑇3        ⇒       𝐷 =
𝐷∗ + 2𝐵∗3 −3𝐵∗𝐶∗

(𝑅𝑇)3
 

3 Pression interne et covolume 

Pour un gaz parfait les forces d'interactions à distance entre molécules sont nulles et par 

conséquent les forces de pression sont uniquement dues à l'action exercée par les parois du 
récipient qui les contient. 

Dans le cas d'un gaz réel il en est tout autrement. La pression p exercée par un gaz réel, sur la 

paroi du récipient qui le contient, sera moins grande que celle d'un gaz parfait qui occuperait le 
même volume dans des conditions de température identiques. 

On pose alors : 

pression du gaz parfait =  p + 𝜋  

La quantité 𝜋 est appelée pression interne. 

Dans le modèle du gaz parfait, il est admis que les molécules peuvent être considérées comme 

ponctuelles. En réalité, ce n'est pas le cas. Pour se déplacer, les molécules ne disposent pas du 
volume du récipient qui les contient mais d'un volume inférieur. 

Le volume à comptabiliser est celui qui est compris entre les molécules. On considère donc le 
volume : 

𝑉 − 𝑏 

𝑉 est le volume du récipient. 

b est appelé le covolume. Il correspond au volume minimal que puisse occuper la matière. On 
montre que b est égal à quatre fois le volume propre des molécules. 

Ces remarques, concernant les notions de pression interne et de covolume, incitent à remplacer 
l'équation d'état des gaz parfaits par la relation : 

(𝑝 + 𝜋)(𝑉𝑚 − 𝑏) = 𝑅𝑇        (XVII.04) 

La relation (XVII.04) n'est guère utilisée sauf pour des pressions très élevées. Dans ces 

conditions, la pression interne 𝜋 devient négligeable devant p. 

Exercice XIII.2 

Montrer que pour un gaz d'équation d'état 𝑝(𝑣 − 𝑏) = 𝑟𝑇 : 

1 – L'énergie interne ne dépend que de T. 
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2 – Les équations des isentropiques sont de la forme : 𝑝(𝑣 − 𝑏)𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  

Corrigé 

1 – Choisissons T et v comme variables indépendantes. 

Des relations (XVI.16) et (XVI.17) nous déduisons que : 

(
𝜕𝑢

𝜕𝑣
)
𝑇

= 𝑙𝑇− 𝑝 = 𝑇(
𝜕𝑝

𝜕𝑇
)
𝑣

−𝑝 

Par ailleurs l'équation d'état  𝑝 =
𝑟𝑇

𝑣−𝑏
  permet d'écrire (

𝜕𝑝

𝜕𝑇
)
𝑣
=

𝑟

𝑣−𝑏
=
𝑝

𝑇
 

Il s'ensuit que (
𝜕𝑢

𝜕𝑣
)
𝑇
= 0 ⇒  𝑢 ≠ 𝑓(𝑣). L'énergie interne n’est donc fonction que de la 

température puisque T et v avaient été choisis, à priori, comme variables indépendantes. 

2 – Travaillons avec la formule de Reech (XVI.13) 

𝛾 =

(
𝜕𝑣
𝜕𝑝)

𝑇

(
𝜕𝑣
𝜕𝑝
)
𝑠

 

De l'équation d'état 𝑣 − 𝑏 =
𝑟𝑇

𝑝
 nous déduisons que : 

(
𝜕𝑣

𝜕𝑝
)
𝑇

= −
𝑟𝑇

𝑝2
= −

𝑣 − 𝑏

𝑝
 

Et par suite : 

(
𝜕𝑣

𝜕𝑝
)
𝑠

= −
1

𝛾

𝑣 − 𝑏

𝑝
 

Cette dernière relation n'est vraie que si l'évolution est isentropique donc écrivons que : 

(
𝜕𝑣

𝜕𝑝
)
𝑠

=
𝑑𝑣

𝑑𝑝
 

Il s'ensuit alors que : 

𝛾
𝑑𝑣

𝑣 − 𝑏
+
𝑑𝑝

𝑝
= 0  

Soit en intégrant : 

𝛾𝑙𝑛(𝑣 − 𝑏) + 𝑙𝑛𝑝 = 𝑐 

 𝑝(𝑣 − 𝑏)𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  
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4 Equations d'état des gaz réels 

Un grand nombre d'équations d'état ont été proposées, parmi lesquelles la plus connue est celle 

de Van Der Waals. Des considérations théoriques, ont conduit Van Der Waals à admettre que 
la pression interne était indépendante de la température et inversement proportionnelle au carré 
du volume. 

𝜋 =
𝑎

𝑉𝑚
2
 

L'équation de Van Der Waals s'écrit donc: 

(𝑝 +
𝑎

𝑉𝑚
2
)(𝑉𝑚 − 𝑏) = 𝑅𝑇                                       (XVII.05) 

Dans le prochain chapitre consacré aux changements d'états des corps purs il sera utilisé, à titre 

d'exercice, une méthode visant à déterminer les constantes a et b. 

Exercice XVII.3 

Une compression isotherme amène un gaz réel d'un état initial i à un état final f. 

Sachant que ce gaz obéit à l'équation de Van Der Waals et que le covolume b est petit devant v, 
calculer : 

−∫ 𝑝
𝑣𝑓

𝑣𝑖

𝑑𝑣  

Corrigé 

De l'équation de Van Der Waals nous tirons la valeur de p pour intégrer : 

−∫ 𝑝
𝑣𝑓

𝑣𝑖

𝑑𝑣 = −∫ (
𝑟𝑇

𝑣 − 𝑏
−
𝑎

𝑣2
)

𝑣𝑓

𝑣𝑖

𝑑𝑣 = −𝑟𝑇𝑙𝑛 (
𝑣𝑓 − 𝑏

𝑣𝑖 −𝑏
) − (

𝑎

𝑣𝑓
−
𝑎

𝑣𝑖
) 

                                          = 𝑟𝑇𝑙𝑛(
𝑣𝑖
𝑣𝑓

1 −
𝑏
𝑣𝑖

1 −
𝑏
𝑣𝑓

)+ 𝑎 (
1

𝑣𝑖
−
1

𝑣𝑓
) 

Puisque le covolume b est petit devant le volume v nous pouvons écrire : 

1 −
𝑏
𝑣𝑖

1 −
𝑏
𝑣𝑓

≈ 1− 𝑏 (
1

𝑣𝑖
−
1

𝑣𝑓
)                 ⇒               𝑙𝑛(

𝑣𝑖
𝑣𝑓

1 −
𝑏
𝑣𝑖

1 −
𝑏
𝑣𝑓

)= −𝑏(
1

𝑣𝑖
−
1

𝑣𝑓
) 

Il vient en définitive : 

−∫ 𝑝
𝑣𝑓

𝑣𝑖

𝑑𝑣 = 𝑟𝑇 𝑙𝑛
𝑣𝑖
𝑣𝑓
+ (𝑎− 𝑟𝑇𝑏)(

1

𝑣𝑖
−
1

𝑣𝑓
) 

Si le gaz était parfait les constantes a et b seraient, évidemment nulles. 
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Clausius a cherché à améliorer l'équation de Van Der Waals en supposant que la p ression 

interne dépendait également de la température. 

𝜋 =
𝑎∗

𝑇(𝑉𝑚 + 𝛽)
2
        a et 𝛽 étant des constantes 

D’où l'équation de Clausius : 

(𝑝 +
𝑎∗

𝑇(𝑉𝑚 +𝛽)
2
 ) (𝑉𝑚 −𝑏) = 𝑅𝑇                           (XVII.06)

 

L'équation de Daniel Berthelot est très souvent utilisée : 

(𝑝 +
𝑎∗∗

𝑇𝑉𝑚
2
 ) (𝑉𝑚 −𝑏) = 𝑅𝑇                                        (XVII.07) 

Ces équations empiriques sont nombreuses et c'est la quantité des constantes qui augmentent. 
Citons, par exemple l'équation de Redlich-Kwong à 3 constantes : 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎

√𝑇𝑉𝑚(𝑉𝑚 + 𝑏)
 

Ainsi que l'équation de Wohl à 4 constantes : 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎

𝑇𝑉𝑚(𝑉𝑚 −𝑏)
+

𝑐

𝑇2𝑉𝑚
2
 

5 Capacité thermiques massiques des gaz réels 

Lorsque les capacités thermiques massiques sont constantes on dit souvent que le gaz est idéal 
parfait. 

Lorsque les capacités thermiques massiques ne dépendent que de la température (loi de Joule), 

le gaz est dit parfait. Pour décrire leurs variations en fonction de la température on utilise des 
relations empiriques.  

𝐶𝑝 = 𝑎 + bT + cT
2      avec  C𝑝  en J/mol.K 

Le tableau XVII.2 donne les valeurs des constantes a, b, c pour différents gaz à la pression 

atmosphérique et pour des températures comprises entre 273 K et 1500 K. 
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Gaz a b c 

H2 29,09 8.37 10-4 2,01 10-6 

O2 25,74 1,30 10-2 3,86 10-6 

N2 27,29 5,23 10-3 - 4,02 10-9 

CO 26,87 6,99 10-3     -8,20 10-7 

H2O 30,39 9,63 10-3   1,18 10-6 

CO2 25,99 4,35 10-3  -1,48 10-5 

Tableau XVII.2 valeurs des constantes a, b, c. 

Pour un gaz réel les capacités thermiques massiques dépendent également de la deuxième 
variable qui définit l'état du gaz, pression ou volume. 

Le chapitre XVI, consacré aux relations thermodynamiques, montre que pour un fluide réel et 
homogène, il existe des relations entre les capacités thermiques et certaines grandeurs  

thermodynamiques. Par exemple rappelons : 

 (
𝜕𝑢

𝜕𝑇
)
𝑣

= 𝑐𝑣  

(
𝜕𝑐𝑣
𝜕𝑣
)
𝑇

= 𝑇 (
𝜕2𝑝

𝜕𝑇2
)
𝑣

 

𝑐𝑝 − 𝑐𝑣 = 𝑇 (
𝜕𝑣

𝜕𝑇
)
𝑝

(
𝜕𝑝

𝜕𝑇
)
𝑣

 

Exercice XVII.4 

Exprimer, en fonction des variables d'états T et Vm, la capacité thermique molaire à volume 

constant d'un gaz obéissant à l'équation de Daniel Berthelot. 

Corrigé 

Pour une mole de gaz nous avons : 

(
𝜕𝐶𝑣
𝜕𝑉𝑚

)
𝑇

= 𝑇(
𝜕2𝑝

𝜕𝑇2
)
𝑉𝑚

 

De l'équation XVII.07 nous tirons l'expression de la pression p : 

𝑝 =
𝑅𝑇

𝑉𝑚 −𝑏
−
𝑎∗∗

𝑇𝑉𝑚
2
              ⇒      (

𝜕2𝑝

𝜕𝑇2
)
𝑉𝑚

  = −
2𝑎∗∗

𝑇3𝑉𝑚
2
      

Que nous portons dans la relation précédente : 



Chapitre XVII. Thermodynamique             Gaz réels 

 

64 
 

(
𝜕𝐶𝑣
𝜕𝑉𝑚

)
𝑇

= −
2𝑎∗∗

𝑇2𝑉𝑚
2

 

Par intégration nous obtenons le résultat cherché : 

𝐶𝑣 =
2𝑎∗∗

𝑇2𝑉𝑚
+ 𝐶𝑣𝑜 

La constante 𝐶𝑣𝑜  est la capacité thermique molaire à volume constant lorsque Vm tend vers 
l'infini. 
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Chapitre XVIII 

Transition de phase 
 
 

1 Changement d'état 

Les conséquences analytiques du premier et second principe permettent d'établir un certain 
nombre de relations thermodynamiques entre les variables intensives d'un corps pur, lorsqu'il 
se trouve à l'état de fluide homogène. 

Ce chapitre a pour but d'étudier le comportement des corps purs lorsqu'il change d'état. Il se 
limite au cas où il n'existerait qu'une seule variété solide (cristallin). 

Les changements d'état sont désignés par : 
Fusion et solidification. 
Vaporisation (évaporation) et liquéfaction (condensation). 

Sublimation et condensation. 

        Solidification     Evaporation 

          ou vaporisation 
          Fusion    Condensation 
                ou liquéfaction 

 
 

 
 
 

 
 

 
 
     Sublimation 

 
 

        Condensation 

Figure XVIII.01 Changements d'état 

Le terme de vapeur est fréquemment utilisé pour désigner l'état gazeux d'un corps pur que l'on 

connaît habituellement sous forme de liquide ou de solide, dans les conditions normales de 
pression et de température, comme l'eau par exemple. 

C'est le changement d'état liquide-gaz (ou l'inverse) que rencontrent souvent les turbomachines, 
dans leurs utilisations. Citons par exemple les centrales thermiques ou nucléaires. 

Etat gazeux 

Etat liquide 

Etat solide 
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2 Vapeur saturante 

Pour montrer les propriétés de condensation et d'évaporation d'une masse donnée de fluide 
utilisons l'expérience classique représentée sur la figure XVIII.02. 

     Z 
          Ether 

        Vide 
     zA 
     zB 

    Tube A   Tube B 
 

 
 
 

 
 

        Mercure 
 
 

 
 

 

Figure XVIII.02 Description 

 
Cet appareil se compose de deux tubes A et B 

retournés sur une cuve remplie de mercure. 
A est un tube barométrique, il règne le vide 
dans sa partie supérieure. A constitue, en 

quelque sorte, un repère pour le tube B. 

B est un tube qui peut coulisser verticalement 

dans la cuve à mercure. Sa partie supérieure est 
remplie d'éther qui se trouve dans sa phase 
gazeuse. 

La différence des niveaux de mercure de ces 
deux tubes mesure la pression au haut du tube 

B puisque : 
𝑝𝐴
𝜌𝑔
+ 𝑧𝐴 =

𝑝𝐵
𝜌𝑔
+ 𝑧𝐵 

Or PA= 0 puisqu'il règne le vide au-dessus du niveau de mercure du tube A, donc : 

𝑃𝐵 = 𝜌𝑔(𝑧𝐴 − 𝑧𝐵) = 𝜌𝑔ℎ 

            V1       V2                    V3    V4    V5  V6  V7   V8  V9  V10    V11 
Référence 
 

       h1       h2        h3       h4           h10       h11 
Tube A 

 
 
 

 
  1   2    3    4     5    6    7    8    9  10      11 

Figure XVIII.03 Déplacement du tube B 

Afin de faire subir à la masse d'éther une évolution isotherme, le tube B est enfoncé très 
lentement dans le mercure. Ainsi la masse d'éther va successivement occuper les volumes 

caractérisés par les positions 1, 2, 3,…10, 11 précisées sur la figure XVIII.03. 

Supposons que l'état initial corresponde à la position 1 où l'éther est entièrement vaporisé en 
occupant le grand volume V1. 
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En enfonçant le tube B on constate que l'éther reste sous forme gazeuse jusqu'au volume V4 en 

suivant approximativement l'équation d'état des gaz parfaits : 

pV = mrT 

Immédiatement après le volume V4, on voit apparaître une trace de liquide au-dessus du niveau 
du mercure. Il y a condensation de la vapeur d'éther. 

En continuant d'enfoncer le tube, on voit augmenter la masse d'éther sous forme de liquide. Par 

contre la pression, caractérisée par la grandeur h, reste constante. La vapeur est alors en 
équilibre avec le liquide, elle est dite saturante. La pression correspondante, que l'on note pv, 

est appelée pression de vapeur saturante. 

Le mélange constitué par le liquide et la vapeur est souvent désigné par vapeur humide. En 
toute rigueur cette appellation concernerait plutôt un mélange de vapeur et de gouttelettes en 

suspension. 

On constate, en poursuivant notre expérience jusqu'au volume V9, que toute la masse d'éther se 

trouve sous forme liquide. 

En continuant d'enfoncer le tube, on remarque que le volume varie très peu alors que la pression 
augmente considérablement. 

On retrouverait les mêmes résultats en recommençant en sens inverse cette évolution isotherme. 

3 Point critique 

Transcrivons les résultats de l'expérience précédente en portant p en ordonnée et V en abscisse 
(diagramme de Clapeyron). Cette évolution isotherme se compose de trois parties : 

        p  Point 11 

 
 
  Point 9  Point 4 

 
 

     Point 1 
 

 
 V11≈V9   V4          V1      V  

Figure XVIII.04 Résultats expérimentaux 

 

41  Pour les faibles pressions, la 
courbe se rapproche plus ou moins 
d'une hyperbole équilatère. L'éther 
est sous forme gazeuse. 

119  Pour les fortes pressions, la 
courbe est presque verticale. L'éther 
est liquide. 

94  Entre ces courbes un palier 
horizontal correspondant à l'état 
liquide-vapeur. 

Il est intéressant de noter : 

- que pour le palier 4 → 9 l'isotherme et l'isobare sont confondues. 
- qu'aux valeurs numériques près, on observerait la même allure de courbe pour un quelconque 

corps pur. 

Recommençons cette expérience avec une température plus élevée. On constate alors que le 

volume massique du liquide 𝑣 ′augmente et que le volume massique de la vapeur saturante 

𝑣″diminue. 
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La figure XVIII.05 montre que le palier horizontal raccourcit lorsque la température s'accroit. 

Ce palier s'annule en un point c que l'on appelle le point critique. 
 

      p 
 
 

      pc              c 
            Tc 

 
 
 

 
      A           B 

 
 
 

    𝑣 ′   vc           𝑣″        v 
Figure XVIII.05 Isothermes d'Andrews 

 

 
Au point critique, la température, la 
pression et le volume sont désignés 

par : 
- température critique Tc 

- pression critique pc 
- volume critique vc 

En c le palier disparaît. 

L'isotherme Tc présente donc en c un 
point d'inflexion à tangente 

horizontale. 
 

Ce qui se traduit dans ce diagramme par : 

(
𝜕𝑝

𝜕𝑣
)
𝑇

= 0     et     (
𝜕2𝑝

𝜕𝑣2
)
𝑇

= 0 

Pour des températures supérieures à la température critique T c, les isothermes ne présentent 
plus de palier de liquéfaction et nous avons : 

(
𝜕𝑝

𝜕𝑣
)
𝑇

<  0 

Pour chaque gaz, il existe une température critique au-dessus de laquelle il est impossible 
d'observer une liquéfaction. 

Pour les températures inférieures à la température critique Tc, on donne souvent le nom de 
vapeur sèche à l'état gazeux en l'absence de liquide. Ainsi que nous l'avons précédemment 

évoqué, la vapeur en équilibre avec le liquide est souvent désignée par vapeur saturante ou 
vapeur humide. 

Le lieu des extrémités des paliers horizontaux AB formé de deux branches est appelé courbe de 

saturation. 

La branche Ac donnant les variations de 𝑣 ′est la courbe d'ébullition. 

La partie Bc, relative à 𝑣″, est désignée par courbe de rosée. 
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Exercice XVIII.1 

Connaissant la température critique Tc et le volume molaire critique Vmc d'un gaz obéissant à 
l'équation de Van der Waals : 

(𝑝 +
𝑎

𝑉𝑚
2
) (𝑉𝑚 −𝑏) = 𝑅𝑇 

Calculer les constantes a et b. 

Corrigé 

L'équation de Van der Waals peut s'écrire : 

𝑝 =
𝑅𝑇

𝑉𝑚 − 𝑏
−
𝑎

𝑉𝑚
2

 

En utilisant les propriétés du point critique on obtient deux équations : 

(
𝜕𝑝

𝜕𝑣
)
𝑇

= −
𝑅𝑇

(𝑉𝑚𝑐 −𝑏)
2
+
2𝑎

𝑉𝑚𝑐
3
= 0 

(
𝜕2𝑝

𝜕𝑉𝑚
2
)
𝑇

=
2𝑅𝑇

(𝑉𝑚𝑐 − 𝑏)
3
−
6𝑎

𝑉𝑚𝑐
4
= 0 

Ce qui permet de déduire les valeurs de a et b : 

𝑎 =
9

8
𝑅𝑇𝑉𝑚𝑐            𝑒𝑡             𝑏 =

𝑉𝑚𝑐
3

 

Remarque : 

Si nous reportons dans l'équation de Van Der Waals les valeurs de a et b, nous pouvons obtenir 

la valeur de la pression critique pc. 

𝑝𝑐 =
𝑅𝑇𝑐

𝑉𝑚𝑐 − 𝑏
−
𝑎

𝑉𝑚𝑐
2
=

𝑅𝑇𝑐

𝑉𝑚𝑐 −
𝑉𝑚𝑐
3

−
9𝑅𝑇𝑐𝑉𝑚𝑐
8𝑉𝑚𝑐

2
=
3𝑅𝑇𝑐
8𝑉𝑚𝑐

 

De la définition du facteur de compressibilité Z, nous pourrions déduire que pour tous les gaz 

nous aurions au point critique : 𝑍𝑐 =
𝑝𝑐𝑉𝑚𝑐

𝑅𝑇𝑐
=
3

8
= 0,375. Ce qui est inexact puisque Z varie 

d'une substance à une autre et qu'il se situe entre 0,23 et 0,29. 

A titre indicatif, le tableau XVIII.1 donne les constantes de quelques corps purs à leur point 
critique. 
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 Symbole Tc en K Pc en bar vc en m3/kg 

Mercure Hg 1733,9 1066 0,0002 

Oxygène O2 154,7 50,4 0,002326 

Argon A 150,8 48,6 0,001883 

Azote N2 126 33,9 0,003215 

Hydrogène H2 33,5 12,96 0,03223 

Hélium He 5,2 2,29 0,01443 

Eau H2O 647,3 221,2 0,00317 

Benzène C6H6  562 48,34 0,00333 

Propane C3H8  369,9 42,56 0,004425 

Ethylène C2H4 263,9 51,17 0,004545 

Méthane CH4  190,6 46,29 0,006172 

Alcool C2H5OH 516 63,84 0,003629 

Ether (C2H5)2O 467 35,99 0,003787 

Fréon 12 CCl2F2 385 41,15 0,00179 

Ammoniac NH3 405 112,97 0,004255 

Gaz carbonique CO2 304,2 73,76 0,00216 

Tableau XVIII.1 Exemple de points critiques 

 

4 Titre 

La notion de titre a pour but de connaître, dans un mélange liquide-vapeur, la part respective de 
liquide et de vapeur. 

Le titre, désigné par x, est égal au rapport de la masse de vapeur 𝑚″à la masse totale m : 

𝑥 =
𝑚″

𝑚
                                                         (XVIII. 01) 

Le titre x représente, en quelque sorte, la masse de vapeur contenue dans l'unité de masse du 

mélange. La masse de liquide contenue dans le mélange est désignée par 𝑚′ . Sa teneur dans le 
mélange est : 

1 − 𝑥 =
𝑚′

𝑚
                                                 (XVIII. 02) 

Évidemment, la relation 𝑚 = 𝑚′ + 𝑚″doit être satisfaite. 

Le volume V occupé par le mélange s'écrit : 

𝑉 = 𝑚′𝑣 ′ +𝑚″𝑣″ = 𝑚𝑣    (XVIII.03) 

𝑣 ′ et v″ sont respectivement le volume massique du liquide et de la vapeur aux points A et B 
du palier de vaporisation représenté sur la figure XVIII.06. 



Chapitre XVIII Thermodynamique       Transition de phase 

71 
 

x = 1 

x = 0 

     p 

 
 

 
 
   A  M      B 

 
 

 
 

     𝑣 ′   v     𝑣″                       v 

Figure XVIII.06 Palier de vaporisation 

En désignant par v le volume massique 

du mélange, nous pouvons écrire : 

𝑣 =
𝑚′

𝑚
𝑣 ′ +

𝑚″

𝑚
𝑣″ 

Et compte tenu de la définition du titre : 

𝑣 = (1 − 𝑥)𝑣 ′ + 𝑥𝑣″   
Nous déduisons une autre expression du 
titre : 

𝑥 =
𝑣 − 𝑣′

𝑣′′−𝑣′
=
𝐴𝑀

𝐴𝐵
    (XVIII. 04) 

 

Le point M d'abscisse v, partage le palier AB en deux segments dont le rapport est égal à celui 

des masses des deux phases en présence : 

𝐴𝑀

𝑀𝐵
=

𝑥

1− 𝑥
=
𝑚″

𝑚′
 

Les courbes à titre constant (isotitre) sont obtenues en joignant les points qui partagent tous les 
paliers de vaporisation dans le même rapport : 

𝑥 =
𝐴1𝑀1
𝐴1𝐵1

=
𝐴2𝑀2
𝐴2𝐵2

=
𝐴3𝑀3
𝐴3𝐵3

=
𝐴4𝑀4
𝐴4𝐵4

=
𝐴5𝑀5
𝐴5𝐵5

 

Toutes ces courbes à titre constant partent du point critique c. 

 

     p          c 
 
 

     A5   M5     B5 

 
   A4       M4    B4 

 
 A3           M3               B3 
 
                 A2                  M2              B2 

 
                A1           M1                   B1  
 
 

       v 
Figure XVIII.07 Isotitres 

 

Sur la courbe d'ébullition (lieu des 
points A) on a x = 0. 

Sur la courbe de rosée (lieu des 
points B) on a x = 1. 
Puisque l'énergie interne, 

l'enthalpie et l'entropie sont des 
grandeurs extensives, donc 

additives, nous pouvons les 
exprimer d'une façon analogue au 
raisonnement tenu pour le volume 

V. 

Donc, compte tenu de la relation (XVIII.04), l'énergie interne massique, l'enthalpie massique et 

l'entropie massique peuvent s'écrire : 
 

𝑢 = (1 − 𝑥)𝑢′ + 𝑥𝑢″         (XVIII.05) 

ℎ = (1− 𝑥)ℎ′ + 𝑥ℎ″           (XVIII.06) 

𝑠 = (1 − 𝑥)𝑠′ + 𝑥𝑠″         (XVIII.07) 

Ou encore : 

𝑥 =
𝑢 − 𝑢′

𝑢″ − 𝑢′
=

ℎ− ℎ′

ℎ″ − ℎ′
=
𝑠 − 𝑠′

𝑠″ − 𝑠′
                                        (XVIII. 08) 
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Exercice XVIII.2 

Sous une pression de 1 bar, un réservoir contient 50 kg de vapeur d'eau au titre de 0,8. 
Sachant qu'à cette pression de 1bar nous avons : 

𝑣 ′ = 0,0010434 𝑚3 𝑘𝑔⁄            𝑣″ = 1,694 𝑚3 𝑘𝑔⁄  

  

ℎ′ = 417,51 𝑘𝐽 𝑘𝑔⁄                       ℎ″ = 2675,4  𝑘𝐽 𝑘𝑔⁄   

Calculer : 

 1) Les masses respectives de liquide et de vapeur contenues dans le réservoir. 

 2) Le volume du réservoir. 
 3) L'enthalpie massique de la vapeur humide. 

Corrigé 

1) Par définition du titre, relation (XVIII.01), et de la connaissance de la masse m il vient 
immédiatement : 

𝑃𝑜𝑢𝑟 𝑙𝑎 𝑣𝑎𝑝𝑒𝑢𝑟     𝑚″ = 𝑥 𝑚 = 0,8 × 50 = 40 𝑘𝑔  
𝑃𝑜𝑢𝑟 𝑙𝑒 𝑙𝑖𝑞𝑢𝑖𝑑𝑒  𝑚′ = 𝑚− 𝑚″ = 50− 40 = 10 𝑘𝑔 

2) Le volume du réservoir est donné par la relation (XVIII.03) : 

𝑉 = 𝑚′𝑣 ′ + 𝑚″𝑣″ = 10× 0,0010434 + 40 × 1,694 

𝑉 = 67,77 𝑚3                                                                       

3) De la relation (XVIII.06) on déduit la valeur de l'enthalpie massique. 

ℎ = (1− 𝑥)ℎ′ + 𝑥ℎ″ = (1− 0,8) × 417,51 + 0,8 × 7,3598 

ℎ = 2223,8 𝑘𝐽 𝑘𝑔                                                                           ⁄  

5 Courbe de vaporisation 

Un liquide en présence de sa vapeur est caractérisé par sa pression de vapeur saturante pv et par 
sa température. La connaissance de T impose celle de la pression de vapeur saturante pv. On 

peut dire que la pression et la température sont liées par une relation de la forme : pv = f(T). 
D’où l'existence d'une courbe d'équilibre liquide-vapeur, en coordonnée (p, T), qui s'arrête au 
point critique "c". En ce point, la pente de la tangente n'est ni nulle ni infinie. 

Pour l'eau ; à titre d'exemple la loi pv=f (T) est donnée dans le tableau XVIII.2 et représentée 
sur la figure XVIII.08 
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             pv 

 
        c 

 
 
  Liquide 

 

  • 𝑀1  •𝑀2  
 
          Vapeur 

 
      T 

Figure XVIII.08 Courbe de vaporisation 

t en °C pv en bar  

    0,01     0,0061  

    5     0,0087  

  10     0,01227  

  20     0,02337  

  50     0,12335  

100     1,01325  

200   15,549  

300   85,927  

     374,15       221,2  

 

Tableau XVIII.2 

Vaporisation de l'eau 

 

 

   

La température peut être considérée comme le seul paramètre indépendant puisque pv = f(T). 
On dit que le système est dit monovariant. 

La variance d'un système apparaît comme le nombre de paramètres que l'on peut faire varier 
arbitrairement sans modifier sa nature. 

Si on place le système en dehors de cette courbe, pv=f (T), tel que le point figuratif M 1 (ou M2), 

représenté sur la figure XVIII.08, l'une des phases liquide ou vapeur disparaît. L'équation d'état 
redevient f(p, v, T) = 0. Le système est dit divariant ; il faut deux paramètres pour définir son 

état. 

6 Continuité de l'état gazeux et de l'état liquide 

Les isothermes d'Andrews, figure XVIII.05, montrent que la condensation (ou liquéfaction) ne 
peut pas se produire si la température du gaz est supérieure à la température critique. 

Par exemple pour l'évolution isotherme 𝑖 → 𝐵 → 𝐴 → 𝑓 où la température 𝑇 <  𝑇𝑐, la 
condensation apparaît dans la partie 𝐵 → 𝐴 représentée sur la figure XVIII.09. Mais il est 
possible de contourner le point critique sans voir apparaitre de condensation. Pour cela 

considérons, cette fois, la transformation amenant le fluide de l'état initial gazeux " i" à l'état 
final liquide "f" en utilisant le chemin suivant : 

- Evolution  isobare i → 1 jusqu'à une température T1>Tc 
- Evolution isotherme 1 → 2 jusqu'à une pression p

2
>p

c
 

- Evolution isobare 2 → 3 jusqu'à  température Ti=Tf 

- Evolution isotherme 3 → f 
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     p             p 

   3      2         3  2 
    pc             c            c 

 
 

   f •                    𝑓 • 
           Liquide       Vapeur 

       A             B         A  B 
 
  Liquide + vapeur             i             1                                 i                      1 

 

            vc       v      Tc  T 
Figure XVIII.09 Continuité de l'état gazeux et de l'état liquide 

 

Les différents points i, 1, 2, 3 ; f de ce chemin correspondent à des états homogènes du fluide. 
On est passé de l'état gazeux à l'état liquide sans avoir aperçu la moindre discontinuité. Dans 

cette transformation il y a continuité lors du passage de l'état gazeux à l'état liquide. 

Évidemment l'inverse (passage de l'état liquide à l'état gazeux) serait également vrai. 

7 Point triple 

Dans le domaine de coexistence des deux phases liquide et gaz la courbe de vaporisation, 
pv = f(T), s'arrête au point critique "c". 

     p 
 
        c 

 
 

     Liquide      Gaz 
 
 

 

 T • 
 
             T 

Figure XVIII.10 Point triple T 

Dans le sens des pressions décroissantes, 
cette courbe se prolonge jusqu'à un certain 
point T. 

En ce point elle rencontre une courbe 
analogue qui est celle de l'équilibre du 

liquide et du solide (courbe de fusion). 

En T il y a équilibre entre liquide-gaz et 
liquide-solide. 

Nous en déduisons qu'il y a, également, 
équilibre entre le gaz et le solide. 

Le point triple T appartient donc aussi à la courbe de sublimation. 

Les trois courbes, sublimation, fusion et vaporisation, se coupent en ce même point T appelé 
point triple. 

Dans l'état actuel de nos connaissances la courbe de fusion s'étend apparemment sans limite 

vers les hautes pressions. 

On ne saurait réaliser ni même concevoir le passage continu de l'état liquide à l'état solide. 

Liquide 

évaporation 

fusion 

sublimation 

Solide 
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Le tableau XVIII.3 donne à titre d'exemple les coordonnées de quelques points triples. 

 

Désignation T en K P en bar 

Azote   63 0,126 

Ammoniac 195,5 0,061 

Gaz carbonique 216,5 5,34 

Eau 273,16 0,0061 

Naphtalène 353 0,012 

Tableau XVIII.3 Points triples 

8 Surface caractéristique 

 
   P 
 
     T 

 
 

 
 
              V 
 

Figure XVIII.11 Surface pv=RT 

A des fins pédagogiques, la partie dessinée en 

vert clair sur la figure XVIII.11, représente la 
surface caractéristique de l'équation d'état des 
gaz parfaits ; pv=RT. 

La figure XVIII.12 représente la surface 
caractéristique d'un corps pur dans le domaine 

des températures où les diverses phases sont 
susceptibles de coexister. 

 

Les courbes précédemment obtenues sur les diagrammes "p v" et "p T" sont évidemment les 

projections de la surface caractéristique. 

          p 

 
 
 

            c 
 

 
                     Liquide + gaz 

 

        p        p      
 
 

   c 
 

     T            T 
 
 

 
 

           T 
 
                v 

Figure XVIII.12 Surface caractéristique d'un corps pur 

Isochore 

Isobare Isothermes 

Solide - liquide 

évaporation 

fusion 

sublimation 

Solide 

Solide + gaz v 

Solide+liquide 

Solide 

Liquide + vapeur 

Solide  + vapeur 

Liquide 

Vapeur 

Gaz supercritique 
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9 Chaleur latente 

La chaleur latente de vaporisation d'un corps pur est la variation d'enthalpie de l'unité de masse 

de ce corps ; lorsqu'il passe de l'état liquide à l'état gazeux, sous pression constante à la 
température T. On pose : 

𝐿𝑣 = ℎ″ − ℎ′       (XVIII.09) 

On définit de même une chaleur latente de fusion et une chaleur latente de sublimation que 
l'on note respectivement Lf et Ls. 

 

La figure XVIII.07 et la relation XVIII.08, permettent 
de déduire que la chaleur de vaporisation diminue 

quand la température augmente. Elle s'annule au point 
critique. 

Lorsque T → 𝑇𝑐  nous avons 
dL𝑣
dT

→ ∞ 

 

 

    Lv 
 

 
 
 

       Tc T 
Figure XVIII.13 Lv en fonction de T 

Empiriquement à 0,2% près, on donne pour l'eau entre 0°C et 180°C : 
Lv = 597,5-0,592 t          avec Lv en kcal/kg et t en °C. 

10 Formule de Clapeyron 

Dans la phase liquide-vapeur d'un corps pur considérons, conformément à la figure XVIII.14, 
un cycle élémentaire de Carnot ABCD. Pour ce cycle, l'expression du rendement s'écrit : 

𝜂 =
−𝛿𝑊

𝛿𝑄1
= 1−

𝑇

𝑇 + 𝑑𝑇
=
𝑑𝑇

𝑇
 

Or l'aire du cycle représente le travail fourni−𝛿𝑊. A un infiniment petit près ce travail est égal 
à : dpv dV. 

 
         P 

 
 

 

      𝛿𝑄1  
pv+dpv  A B        T+dT 

 

       Pv                           D             C             T 

            𝛿𝑄2 
 
         V     V+dV      V 

  Figure XVIII.14 Cycle élémentaire de Carnot 

La quantité de chaleur 𝛿𝑄1 fournie par 
la source chaude est : 

𝛿𝑄1 = 𝐿𝑣𝑑𝑚
″  

La quantité 𝑑𝑚″est la masse vaporisée 
pendant la transformation isotherme 
AB. 

Il s'ensuit : 

−𝛿𝑊

𝛿𝑄1
=
𝑑𝑝𝑣𝑑𝑉

𝐿𝑣𝑑𝑚
″
=
𝑑𝑇

𝑇
 

De la définition du titre et de la relation 
XVIII.04, on obtient : 

 
 

𝑥 =
𝑚″

𝑚
=
𝑣− 𝑣 ′

𝑣″− 𝑣 ′
   ⇒    

dm″

𝑚
=

𝑑𝑣

𝑣″ −𝑣 ′
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Soit: 

(𝑣″− 𝑣 ′)𝑑𝑝𝑣𝑑𝑉

𝐿𝑣𝑚𝑑𝑣
=
𝑑𝑇

𝑇
 et en remarquant  que 

𝑑𝑉

𝑚𝑑𝑣
= 1  

On obtient la formule de Clapeyron : 

𝐿𝑣 = 𝑇(𝑣
″− 𝑣 ′)

𝑑𝑝𝑣
𝑑𝑇
                                           (XVIII. 10) 

 
Exercice XVIII.3 

Montrer qu'en négligeant le volume massique du liquide devant celui de la vapeur, assimilé à 
un gaz parfait, on peut déduire une loi approximative de la pression de vapeur saturante en 
fonction de la température pv=f(T). 

Corrigé 

Compte tenu de cette hypothèse, l'équation d'état des gaz parfaits s'écrit : 

𝑝𝑣𝑣
″ = 𝑟𝑇 

Portons cette valeur de 𝑣″dans l'équation de Clapeyron sans oublier que 𝑣 ′ est petit devant v″. 

𝐿𝑣 = 𝑇𝑣
″
𝑑𝑝𝑣
𝑑𝑇

= 𝑇
𝑟𝑇

𝑝𝑣

𝑑𝑝𝑣
𝑑𝑇

 

Soit en séparant les variables : 
𝑑𝑝𝑣
𝑝𝑣

= 𝑑(𝑙𝑛𝑝𝑣) =
𝐿𝑣
𝑟

𝑑𝑇

𝑇2
 

Intégrons cette expression dans un intervalle de température suffisamment réduit pour que l'on 

puisse supposer Lv constant, sans erreur appréciable. 

𝑝𝑣 = 𝐾𝑒
−
𝐿𝑣
𝑟𝑇  

Pour déterminer la constante K supposons qu'à la température T0, il règne la pression pv0 et 

que le volume massique de la vapeur soit𝑣0
″. Avec𝑝𝑣0 𝑣0

″ = 𝑟𝑇𝑂l'expression ci-dessus devient : 

𝑝𝑣 = 𝑝𝑣0𝑒

𝐿𝑣
𝑝𝑣0𝑣0

″
(1−

𝑇0
𝑇
)

 

Faisons une application numérique, pour de la vapeur d'eau, à la température T0 = 100°C. 
A cette température la pression partielle est pv0 = 1,0133 bar, le volume massique est  

 𝑣0
″ = 1,673  𝑚3 𝑘𝑔⁄  et la chaleur latente de vaporisation Lv = 2256,9 kJ/kg. 

Pour des températures comprises entre 80°C et 120°C on obtient des résultats satisfaisants, 

comme le montre le tableau XVIII.4. 
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t en °C T en K 
pv en bar 

calculée 

pv en bar 

lue dans les tables. 

80 353,15 0,4768 0,4736 

85 358,15 0,5802 0,5780 

90 363,15 0,7023 0,7011 

95 368,15 0,8457 0,8453 

105 378,15 1,2083 1,2080 

110 383,15 1,4343 1,4327 

115 388;15 1,6950 1,6906 

120 393,15 1,9946 1,9854 

Tableau XVIII.4 Comparaisons 

11 Troisième principe de la thermodynamique 

Lors d'une transformation infinitésimale réversible, d'un corps pur homogène, la variation 
d'entropie peut s'écrire (relations XV.04 et XVI.11) : 

𝑑𝑠 =
𝛿𝑄

𝑇
= 𝑐𝑝

𝑑𝑇

𝑇
+ ℎ𝑇

𝑑𝑝

𝑇
 

Pour une évolution isobare, cette relation devient : 

𝑑𝑠 = 𝑐𝑝
𝑑𝑇

𝑇
 

Pour cette évolution isobare, une difficulté apparaît lorsque la température T tend vers le zéro 

absolu. En effet, si la capacité thermique massique à pression constante cp était différente de 
zéro, le rapport cp/T deviendrait infini. 

Dans ces conditions la variation d'entropie allant de la température T = 0 à la température T ne 

pourrait pas être finie : 𝑠 − 𝑠0 = ∫ 𝑐𝑝
𝑇

0

𝑑𝑇

𝑇
. 

Évidemment on peut répéter le même raisonnement à volume constant. Si la capacité thermique 
massique à volume constant cv n'est pas nulle la variation d'entropie, pour une évolution 

isochore, ne pourrait pas être finie : 𝑠 − 𝑠0 = ∫ 𝑐𝑣
𝑇

0

𝑑𝑇

𝑇
. 

Ces indéterminations ont été levées par Nernst, physicien et chimiste allemand. Il a eu le mérite 

d'énoncer une hypothèse qui a été ensuite confirmée par l'expérience. Cette hypothèse 
complétée par Planck a été érigée en postulat. Compte tenu de son importance le terme de 
troisième principe de la thermodynamique est maintenant utilisé. Il s'énonce ainsi : 

Au zéro de la température absolue, l'entropie de tout corps cristallisé, chimique ment 

homogène, possède la valeur zéro. 

Les expériences qui ont été effectuées aux très basses températures montrent qu'en se 
rapprochant du zéro absolu : 

- les capacités thermiques massiques cp et cv tendent vers zéro. 

- les coefficients de dilatations isobare et isochore 𝛼 et 𝛽tendent également vers zéro. 
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- le volume massique v reste fini. 

- Le coefficient de compressibilité isotherme 𝜒𝑇  reste fini. 

La connaissance de ces coefficients en fonction des variables d'états permet de calculer 
l'entropie. Lorsque le corps étudié subit des changements d'états, il y a lieu d'ajouter les 
variations d'entropie, liés à ces changements de phase. Supposons, par exemple, connaître à la 

pression atmosphérique la capacité thermique cp, en fonction de la température T d'un corps pur 
simple. A partir de l'état cristallisé au zéro absolu, il est facile de calculer l'entropie. 

𝑠𝑝=1,𝑇 = ∫ 𝑐𝑝

𝑇

0

𝑑𝑇

𝑇
 

Lorsqu'on atteint la température de fusion Tf, le changement d'état nécessite de fournir la chaleur 
latente de fusion Lf à la température Tf. La variation d'entropie de ce changement d'état 
est : Lf/T f. Juste au début de l'état liquide l'entropie est : 

𝑠𝑝=1,𝑇𝑓 = ∫ 𝑐𝑝

𝑇𝑓

0

𝑑𝑇

𝑇
+
𝐿𝑓
𝑇𝑓

 

Pour une vapeur à la pression atmosphérique et à la température T, l'entropie a comme 
expression : 

𝑠𝑝=1,𝑇 = ∫ 𝑐𝑝

𝑇𝑓

0

𝑑𝑇

𝑇
+
𝐿𝑓
𝑇𝑓
+∫ 𝑐𝑝

′
𝑇𝑣

𝑇𝑓

𝑑𝑇

𝑇
+
𝐿𝑣
𝑇𝑣
+∫ 𝑐𝑝

″
𝑇

𝑇𝑣

𝑑𝑇

𝑇
           (XVIII. 11) 

Remarque : 

Il est important de noter, qu'en thermodynamique technique on s'intéresse plus aux variations 
d'entropie qu'à sa valeur propre. On choisit arbitrairement un état de référence pour l'entropie. 

En principe l'entropie est prise nulle dans l'état choisi pour zéro de l'enthalpie ou de l'énergie 
interne. Ainsi, par exemple, pour l'eau l'entropie est prise nulle à son point triple. 
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Chapitre XIX 

Diagrammes 
 
 

1 Généralités 

Pour traduire les caractéristiques d'un fluide dans toutes ses phases, il serait intéressant de 
disposer d'une équation d'état, valable quelles que soient la température et la pression du corps 
étudié. Hélas, c'est impossible, les chapitres précédents montrent qu'il est déjà difficile d'obtenir 

une équation d'état dans une phase unique. Pour définir l'état d'un fluide, on a recours aux 
résultats expérimentaux que l'on utilise sous forme de tables numériques, de logiciels ou de 

diagrammes. 

Les diagrammes thermodynamiques ne se limitent pas à traduire les propriétés des corps. Ils 
représentent graphiquement les transformations que subit une masse de fluide, ce qui est un 

atout considérable sur le plan pédagogique. 

L'équilibre d'une masse de fluide, chimiquement invariable, est défini au moyen de deux 

variables. Il est possible de les choisir parmi la pression, la température, le volume massique ou 
encore parmi les fonctions d'état s u, h, s, G, F. 

Pour construire un diagramme, on se fixe comme axe de coordonnées, deux quelconques des 

variables énumérées ci-dessus. Les autres peuvent être, suivant la nécessité, utilisées comme 
courbes paramétriques ; isobares, isochores, isothermes, isentropes, etc. Tous les diagrammes  

ainsi construits pour un même fluide expriment évidemment les mêmes propriétés. Leur 
commodité d'emploi est plus ou moins bien adaptée à tel ou tel autre problème. 

Sur le plan pédagogique le diagramme de Clapeyron "p, v" est intéressant. 

Dans le domaine des turbomachines le diagramme entropique "T, s" et le diagramme 
enthalpique (ou de Mollier pour la vapeur d'eau) "h, s" sont fréquemment employés. 

Les diagrammes "h, p", "ln p, h" et "h, v" sont beaucoup utilisés dans l'étude des machines 
frigorifiques. 

Si les transformations sont réversibles, les courbes représentatives tracées sur les diagrammes  

possèdent de propriétés particulières. 

Si les transformations sont irréversibles, le fluide en évolution ne se trouve pas dans un état 

thermodynamique uniforme. Il en résulte des différences locales de pression, de température, 
d'énergie interne, d'entropie, etc. Malgré tout, ces transformations sont représentées, sur les 
diagrammes thermodynamiques, en faisant l'hypothèse qu'à chaque instant de l'évolution 

considérée, l'état correspondant du fluide est rendu uniforme par mélange. 
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Ultérieurement, il sera évoqué la notion d'évolution polytropique qui résulte de cette dernière 

remarque. Les courbes tracées, pour ces évolutions irréversibles, ne possèdent pas les propriétés 
des transformations réversibles. Elles sont souvent représentées en pointillé pour bien marquer 

la différence avec les transformations réversibles. 

2 Diagramme de Clapeyron (p, v) 

Ce diagramme est très intéressant car ses variables, la pression et le volume massique, sont 
deux grandeurs qui parlent bien à l'imagination. 

Dans ce diagramme, l'aire correspondant à une transformation cyclique réversible représente le 
travail échangé avec le milieu extérieur. En effet, les relations XV.07 et XV.08 s'écrivent : 

𝑇𝑑𝑠 = 𝛿𝑄 + 𝛿𝑓 = 𝑑𝑢 + 𝑝𝑑𝑣 = 𝑑ℎ − 𝑣𝑑𝑝 

Pour une transformation cyclique on a : 𝑢𝑓=𝑖 − 𝑢𝑖 = 0    et de même  ℎ𝑓=𝑖 − ℎ𝑖 = 0  puisque 

l'état final "f" est le même que l'état initial. Il s'ensuit que : 

𝑄 +∫ 𝛿𝑓
𝑐𝑦𝑐𝑙𝑒

= ∫ 𝑝𝑑𝑣
𝑐𝑦𝑐𝑙𝑒

= −∫ 𝑣𝑑𝑝
𝑐𝑦𝑐𝑙𝑒

 

La somme ∫ 𝛿𝑓
𝑐𝑦𝑐𝑙𝑒

 représente la dégradation énergétique produite par les processus internes 

lors de cette transformation cyclique. Or du premier principe de la thermodynamique, 

Q + w= 0, ce qui permet de déduire : 

𝑤 = −𝑄 = −∫ 𝑝𝑑𝑣 +∫ 𝛿𝑓
𝑐𝑦𝑐𝑙𝑒𝑐𝑦𝑐𝑙𝑒

= ∫ 𝑣𝑑𝑝
𝑐𝑦𝑐𝑙𝑒

+∫ 𝛿𝑓
𝑐𝑦𝑐𝑙𝑒

 

 

    p 

          aire = |𝑤| 
 

 
 
 

       v 
Figure XIX.01 Propriété de l'aire 

Si la transformation cyclique est réversible nous 

avons :  

cycle

0fδ  

D’où le résultat : 

airevdppdvw

cyclecycle

   

Pour une évolution irréversible cette aire ne 
représente plus le travail 

Ce diagramme peut servir au calcul des machines à pistons dans la mesure où les rapports de 

compression ne sont pas trop élevés. Si ce n'est pas le cas, il prend rapidement des dimensions 
considérables. C'est d'ailleurs la raison pour laquelle ce diagramme est peu utilisé, dans la 

pratique, pour les calculs graphiques. 

Les isothermes et les isentropiques représentés sur un diagramme de Clapeyron se coupent sous 

un angle relativement faible égal à 𝛾. 

En effet de la formule de Reech (relation XVI.13), nous avons : 
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𝛾 =

(
𝜕𝑣
𝜕𝑝)

𝑇

(
𝜕𝑣
𝜕𝑝)

𝑠

=

(
𝜕𝑝
𝜕𝑣)

𝑠

(
𝜕𝑝
𝜕𝑣)

𝑇

 

La valeur très faible de cet angle est nuisible à la détermination précise du point d'intersection. 

3 Diagramme entropique (T, s) 

Dans un diagramme entropique, l'entropie est portée en abscisse et la température T en 
ordonnée. 

Sur le plan didactique ce diagramme est très intéressant car il possède un grand nombre de 
propriétés. 

1. Les évolutions isothermes sont représentées 

par des parallèles à l'axe des "s" et les isentropes 
parallèles à l'axe des "T". 

Si bien que pour n'importe quel fluide un cycle 
de Carnot sera toujours représenté par un 
rectangle. Ce qui n'est pas le cas pour un 

diagramme de Clapeyron. 

 

      T 

 Tmaxi 

 
 Tmini 
 

            s 
Figure XIX.02 Cycle de Carnot 

2. Les évolutions adiabatiques irréversibles sont représentées par des courbes (en pointillé) 

inclinées vers les valeurs croissantes de l'entropie puisque : 

𝑑𝑠 =
𝛿𝑓

𝑇
> 0 

 

      T             f    T        i 
 

        i          f 
 
 

 
          si          sf          s     si sf    s 

Figure XIX.03 Compression et détente adiabatique irréversible 

 
3. L'aire sous-tendue par une courbe, représentant 
une transformation réversible, mesure la chaleur 

transférée avec le milieu extérieur puisque 

TdsQδ  et par suite : 

𝑄 = ∫ 𝑇𝑑𝑠
𝑓

𝑖

 = aire en jaune 

 
    T             f 
     

      i 
 

 
 
 

  ds  s 
Figure XIX.04 Quantité de chaleur 

Compression  

 
Détente  
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4. La variation d'enthalpie, d'une évolution 

isobare, est mesurée par l'aire sous tendue de la 
courbe représentée sur la figure XIX.05. 

En effet, pour une évolution isobare la relation 
(XV.08) devient Tds = dh. Il s'ensuit donc : 

ℎ𝑓 − ℎ𝑖 = ∫ 𝑇𝑑𝑠
𝑓

𝑖

 = aire en jaune 

 T 

 
                              f 

 
               i 
 

 
       s 

Figure XIX.05 variation d'enthalpie 
 
Si l'évolution était isochore la relation (XV.08) permettrait d'écrire que Tds= du. L'aire en jaune 

représenterait alors la variation d'énergie interne. 

Pour la mesure de ces surfaces, il faut toujours considérer l'axe correspondant au zéro absolu. 

La température T doit être nécessairement exprimée en Kelvin. 

5. Les aires du diagramme entropique et du 
diagramme de Clapeyron représentent des 

énergies. Dans le cas d'une transformation cyclique 
réversible elles sont équivalentes puisque : 

𝑄 = ∫ 𝑇𝑑𝑠
𝑐𝑦𝑐𝑙𝑒

= ∫ 𝑝𝑑𝑣
𝑐𝑦𝑐𝑙𝑒

= −∫ 𝑣𝑑𝑝
𝑐𝑦𝑐𝑙𝑒

= −𝑤 

 

  
     T 

 

    aire = |𝑤| 
 
 

 
    s 
 

Figure XIX.06 Travail 

6. La sous-tangente en un point M d'une courbe représentative d'une transformation réversible 

mesure la capacité thermique massique en ce point pour l'évolution considérée. 

Pour une évolution isobare 𝑖 → 𝑓, nous pouvons écrire que : 

𝛿𝑄 = 𝑐𝑝𝑑𝑇 = 𝑇𝑑𝑠 

Si bien qu'au point M nous avons : 

𝑡𝑔𝛼 =
𝑇

𝑎𝑏
=
𝑐𝑝𝑑𝑇

𝑑𝑠

1

𝑎𝑏
=
𝑑𝑇

𝑑𝑠
 

D'où le résultat : 

𝑐𝑝 = 𝑎𝑏 = 𝑇 (
𝜕𝑠

𝜕𝑇
)
𝑝

 

De même pour une évolution isochore nous aurions : 

𝑐𝑣 = 𝑎′𝑏′= 𝑇 (
𝜕𝑠

𝜕𝑇
)
𝑣
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 T       T 

 
           M           M 

         P= constante              v=constant 
 
 

   𝛼          𝛼′  
    a    b       s        a'          b'  s 

    cp         cv 
Figure XIX.07 Représentation graphique des capacités thermiques massiques cp et cv 

On remarquera qu'en un même point M, d'un fluide homogène, la pente des isochores est plus 

grande que celle des isobares puisque le cv est plus petit que le cp. 

7. Les isobares et les isochores d'un fluide homogène, ayant des capacités thermiques massiques 

constantes, sont des exponentielles. 

Pour une transformation élémentaire réversible les relations (XV.04), (XVI.10) et (XVI.11) 
permettent d'écrire : 

𝑇𝑑𝑠 = 𝛿𝑄 = 𝑐𝑝𝑑𝑇 + ℎ𝑇𝑑𝑝 = 𝑐𝑣𝑑𝑇 + 𝑙𝑇𝑑𝑣 

Pour une évolution isobare, cette expression devient 𝑇𝑑𝑠 = 𝛿𝑄 = 𝑐𝑝𝑑𝑇 soit : 

𝑑𝑠 = 𝑐𝑝
𝑑𝑇

𝑇
 

Si la capacité thermique massique cp est constante, on obtient par intégration : 

𝑠 − 𝑠0 = 𝑐𝑝 𝑙𝑛 (
𝑇

𝑇0
)  ⇒  𝑇 = 𝑇0𝑒

𝑠−𝑠0
𝑐𝑝  

Soit l'expression d'une exponentielle 𝑇 = Ke
𝑠

𝑐𝑝 

Pour une évolution isochore, on obtiendrait de même 𝑇 = K'e
𝑠

𝑐𝑣 

En toute rigueur nous ne pouvons pas dire que les isochores et les isobares d'un fluide homogène 

sont des exponentielles. Toutefois la forme réelle de ces courbes s'en éloigne assez peu. 

Les variations des capacités thermiques massiques sont relativement lentes avec la température. 

8. Dans un gaz idéal parfait, les isobares se déduisent les unes des autres par des translations 

parallèles à l'axe des s. Il en est de même pour les évolutions isochores. 

De l'expression (XV.08) appliquée à un gaz parfait et pour une transformation allant de i à f, 

𝑇𝑑𝑠 = 𝑐𝑝𝑑𝑇 − 𝑣𝑑𝑝, nous déduisons que la variation d'un gaz idéal parfait est : 

𝑠𝑓 − 𝑠𝑖 = 𝑐𝑝 𝑙𝑛
𝑇𝑓

𝑇𝑖
− 𝑟 𝑙𝑛

𝑝𝑓

𝑝𝑖
                                                  (XIX.01) 
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Conformément à la figure XIX.08, considérons maintenant deux isobares p1 et p2 ainsi qu'une 

parallèle quelconque à l'axe des "s". Cette isotherme coupe les deux isobares en A et B. 
Puisque TA = TB, la relation (XIX.01) devient : 

𝑠𝐵 − 𝑠𝐴 = −𝑟 𝑙𝑛
𝑝𝐵
𝑝𝐴
= −𝑟

𝑝2
𝑝1

 

Traçons une autre isotherme qui coupe, cette fois, les isobares en Cet D. 

Pour les mêmes raisons que précédemment, TC = TD, donc : 

𝑠𝐷 − 𝑠𝐶 = −𝑟 𝑙𝑛
𝑝𝐷
𝑝𝐶
= −𝑟

𝑝2
𝑝1

 

Il s'ensuit que : 

𝑠𝐵 − 𝑠𝐴 = 𝑠𝐷 − 𝑠𝐶      (XIX.02) 
 
        T    p1        p2         T            p1      p2 
   A         B                A        B 

 

 
         C             D 

 
 

𝛼 
                                                                                   𝛽 

                                 𝑠𝐶   𝑠𝐴        𝑠𝐷    𝑠𝐵       s              A'       B'   s 
   Figure XIX.08 Translation des isobares  Figure XIX.09 Egalite des surfaces 

Ceci est vrai pour n'importe quelle isotherme délimitée par les deux isobares p1 et p2. 

Ainsi l'aire 𝛼𝐴𝐵𝛽est finie et égale à l'aire du rectangle A'ABB'. 

Exercice XIX.1 

Une mole de gaz parfait décrit réversiblement un cycle défini par les évolutions suivantes : 

Compression isotherme  1 → 2 

Chauffage isochore        2 → 3 

Chauffage isobare          3 → 4 

Détente isentropique      4 → 1 

Représenter schématiquement cette transformation cyclique sur un diagramme entropique et 
sur un diagramme de Clapeyron. 
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Corrigé 

     T       p       3         4 

      4 
 
                2 

             3 
 

 
         2          1 
               1 

 
     s              v 

 

4. Diagramme entropique des corps purs 

Le but est de construire dans le diagramme entropique les caractéristiques d'un corps pur. 

A titre d'exemple construisons celui de l'eau. Pour des questions pratiques, on prend nulles 
l'entropie et l'énergie interne au point triple. 

Pour la construction, l'enthalpie est également prise nulle puisqu'au point triple le produit pv est 

très petit (p = 0,0061 bar). 

1. Construction des isobares 

Pour construire une isobare donnée, il faut être en mesure de déterminer avec précision un point 
de départ D. 

En partant du point triple (s = 0), considérons une évolution isentropique amenant l'eau liquide 

jusqu'à la pression désirée. 

La connaissance des capacités thermiques massiques, permet de déterminer la variation de 
température en utilisant les conséquences analytiques du premier et second principe de la 

thermodynamique. 

Conformément à la Figure XIX.10, la branche DA correspond à l'échauffement isobare de l'eau 

liquide, de la température TD à la température TA de vaporisation. En tous points de cette courbe, 
la valeur de l'entropie est obtenue par intégration de : 

∫ 𝑐𝑝
′

𝑇

𝑇𝐷

𝑑𝑇

𝑇
 

La capacité thermique massique 𝑐𝑝
′  de l'eau est presque une constante dans le domaine des 

températures et des pressions modérées. Cette courbe aura donc l'allure d'une exponentielle. 

Dans la phase liquide-vapeur les isothermes et les isobares sont confondues. Il s'ensuit que le 

palier horizontal AB représentera ce changement de phase. 
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L'entropie du point B sera : 

𝑠𝐵 = ∫ 𝑐𝑝
′

𝑇𝐴

𝑇𝐷

𝑑𝑇

𝑇
+
𝐿𝑣
𝑇𝐴

 

 
          T 

 

 

       A    B 

          D 

273,16 

 

             s 

Figure XIX.10 Construction des isobares 

 

 

Lv étant la chaleur latente de vaporisation à la 

température TA. 

Dans la région de la vapeur surchauffée, le 

long d'une isobare, nous aurons : 

𝑠 − 𝑠𝐵 = ∫ 𝑐𝑝
″

𝑇

𝑇𝐵=𝑇𝐴

𝑑𝑇

𝑇
 

 

Comme pour l'eau liquide, cette courbe ressemblera à une exponentielle. 

2. Courbe de saturation 

Les courbes de titre constant (isotitres) sont obtenues en divisant, tout d'abord, en parties égales 
les paliers de vaporisation AB, puis en reliant les points homologues. 

          T              T 

 

         x=0         x=1    x=0         x=1 

 

 

 

 

             s        s 

Figure XIX.11 Construction des isotitres 

La plupart du temps les fluides ont une courbe de rosée (x = 1) de pente négative 
𝑑𝑇

𝑑𝑠
< 0. Mais 

il peut en être tout autrement. Avec les hydrocarbures, une partie de la courbe x = 1 a une pente 

positive 
𝑑𝑇

𝑑𝑠
> 0. 

3. Construction des isochores 

Supposons construit le réseau des isothermes dans le diagramme p,v (voir figure XVIII.05).  
Dans ce diagramme, en tout point d'une verticale (v = constante), nous pouvons relever les 
valeurs de la pression et de la température correspondantes. 
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      p       T         8 
     8                7 

     7                6 

     6 

     5           5 

     4 

     3          4 

     2 

     1        2       3 

         1 

 

          v              s 

Figure XIX.12 Construction des isochores 

Si dans le diagramme T,s le réseau des isobares est tracé, nous pouvons reporter tous les points 

précédemment relevés. En les joignant, nous traçons une courbe à volume constant. En répétant 

cette opération, nous obtenons le réseau des isochores dans le diagramme entropique. 

4. Construction des isenthalpes 

Il serait possible de déterminer les courbes à enthalpie constante à partir de la mesure des aires 
sous-tendues par les isobares. Mais on préfère, compte tenu des grandeurs relevées 
expérimentalement, calculer directement l'enthalpie. Notons que ces valeurs sont données dans 

les tables et leur simple report permet de construire les isenthalpes dans le diagramme 
entropique. 

 
Les isenthalpes sont fortement descendantes 
dans la zone de vaporisation et relativement 

peu à droite de la courbe de rosée. 

Pour la vapeur surchauffée, qui tend à se 
comporter comme un gaz parfait, les 

isenthalpes se rapprochent de l'horizontale 
puisque, dans ces conditions, nous avons : 

𝛥ℎ = 𝑐𝑝𝛥𝑇 

 

     T 

 

 

 

 

 

 

 

 

 

              S 

Figure XIX.13 Construction des isenthalpes 

5 Diagramme de Mollier (h,s) 

Conformément à la relation XII.16, le premier principe de la thermodynamique appliqué à un 
système ouvert en régime permanent s'écrit : 

𝑤𝐼 + 𝑄 =
𝑆
Δ
𝐸
  ℎ𝑖 
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Dans les applications industrielles, notamment dans le domaine des machines, les variations de 

l'enthalpie d'arrêt sont prépondérantes. Il est donc commode d'utiliser un diagramme sur lequel 
l'enthalpie est portée en ordonnées et l'entropie en abscisse. Ce diagramme est particulièrement 

intéressant dans l'étude des turbomachines qui sont considérées comme adiabatiques. Ainsi les 
abscisses seront représentatives de la qualité thermodynamique de l'appareil. La différence 
d'ordonnée mesurera directement, suivant le sens de l'échange, le travail interne reçu ou cédé 

par la turbomachine. 

5-1. Propriété du diagramme (h,s) 

Les évolutions isenthalpiques sont représentées par des parallèles à l'axe des entropies et les 
isentropes par des parallèles à l'axe des isenthalpes. 

Les évolutions isobares sont des courbes ayant un coefficient angulaire égal à la température 

absolue du point considéré. En effet pour une évolution isobare, la relation XV.08 permet de 
déduire : 

(
𝜕ℎ

𝜕𝑠
)
𝑝

= 𝑇 

Dans la phase liquide, les isobares sont pratiquement confondues avec la courbe d'ébullition. 

Dans la zone d'équilibre des deux phases liquide-vapeur, les isobares, confondues avec les 
isothermes, sont des droites ayant un coefficient angulaire égal à la température absolue. 

Dans la zone vapeur les isobares sont des courbes croissantes qui seraient des exponentielles si 

le gaz était idéal parfait. 

5-2 Gaz parfait 

Dans le cas particulier où le fluide en évolution est idéal parfait, le diagramme h,s s'identifie au 
diagramme entropique T,s (à un changement de l'échelle des ordonnées près). En effet nous 
avons : 

ℎ𝑓 − ℎ𝑖 = 𝑐𝑝(𝑇𝑓 −𝑇𝑖) 

Si le gaz est parfait les capacités thermiques massiques ne sont fonction que de la température. 
Les isothermes sont donc encore des parallèles à l'axe des s, mais leur écartement croît avec la 

température puisque cp augmente avec T. 

5-3 Diagramme (h,s) d'un corps pur 

Le diagramme h,s d'une vapeur s'obtient par la transformation du diagramme T,s. Les abscisses 

étant les mêmes, il suffit de placer le diagramme h,s au-dessous du T,s et de porter en ordonnée, 
à la verticale de chaque points, la valeur de l'enthalpie correspondante. 

La figure XIX.14 montre qu'il est facile de construire, dans le diagramme h,s, la courbe de 
saturation en partant du diagramme entropique T,s. Évidemment, cette construction peut 
s'effectuer en partant directement d'une table de vapeur. 

La courbe de saturation est obtenue en reportant les valeurs de h', s' et celles de h" , s" . En 
joignant par des droites, les points correspondants, on obtient les isobares dans la phase liquide -

vapeur. Ces droites, de coefficient angulaire à T, sont également représentatives des isothermes, 
puisque dans la phase liquide-vapeur, elles sont confondues avec les isobares. 
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Les courbes de titre constant s'obtiennent, 

comme pour le diagramme T,s, en divisant 
en partie égales les paliers de vaporisation 

et en reliant entre eux les points 
homologues. 

Dans la région de la vapeur surchauffée, 

les isobares et les isothermes se raccordent 
aux paliers de vaporisation. Lorsqu'on 

s'éloigne de la courbe de saturation, pour 
se rapprocher du gaz parfait, les isobares 
ont une allure exponentielle et les 

isothermes tendent vers des horizontales. 

La figure XIX.16 est directement 

représentative des diagrammes de Mollier, 
de la vapeur d'eau, que l'on trouve dans le 
commerce. Ils sont tracés dans la zone qui 

contient le domaine d'emploi industriel. 
Ces diagrammes sont particulièrement 

utiles dans l'étude et la conception des 
turbines à vapeur. 
 

    e 

    T      c      p 

 

     f 

       a  i    b       d        t 

          h1  

       h0                     h2      h3      h4   

 

 

 0°C        j           g     s 
 

       p 
              t 
     h4               f     d 

     h3            b 
     h2               e            g 

     h1                   c     i 
      j 
 

     h0          a 
 

 
        0           s 
Figure XIX.14 Construction du diagramme h,s 

 
 h 
 

 
      Isobare 

 
 
     Isochore 

 
 

 
                    Isotherme 
 

         Courbe de saturation 
 

Les isobares et les isothermes 
sont confondues dans la phase 
liquide-vapeur. 

 
       Isotitre 

 
 
 

             s 
Figure XIX.15 Schématisation du diagramme h,s 
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Figure XIX.16 Diagramme de Mollier de la vapeur d'eau 

Exercice XV.2 

Un cylindre fermé par un piston contient, à l'état initial, un volume Vi = 45 dm3 de vapeur d'eau 

à une température de ti = 123°C sous une pression de pi = 1 bar. On laisse se déplacer très 
lentement le piston jusqu'au volume final de Vf = 20dm3. On admet que l'évolution est isotherme. 

En disposant d'un diagramme de Mollier déterminer la pression où a lieu le début de 
liquéfaction ainsi que le titre de la vapeur à l'état final. 

Corrigé 

À l'état initial "i", avant déplacement du piston, on lit, approximativement à l'intersection de 
l'isobare pi = 1bar et de l'isotherme ti = 123°C, un volume massique v i = 1,8m3/kg. 

La masse de vapeur d'eau contenue dans le cylindre est : 

𝑚 =
𝑉𝑖
𝑣𝑖
=
0,045

1,8
= 25.10−3𝑘𝑔  

Soit M le point où débute la liquéfaction, on lit à l'intersection de l'isotherme ti = 123°C et de 
la courbe x = 1, une pression pM = 2,1bar. 
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    h             vf=0,8m3/kg      vi=1,8m3/kg 
 
 

 pM = pf = 2,1bar          p i=1bar 
 
 
             ti=123°C 
               M      i 
      f   100°C 

         x=1 
         x=0,96 
 
 
               s 

 

Pour placer le point final "f" 
caractérisant l'état final, il faut 

calculer le volume massique du 
mélange eau-vapeur. 
 

𝑣𝑓 =
𝑉𝑓

𝑚
=
0,020

25.10−3
 

𝑣𝑓 = 0,8 𝑚
3/𝑘𝑔 

L'isochore v f=0;8 m3/kg coupe 
l'isobare 2,1 bar au point "f" où 
nous lisons un titre x=0,96. 

6 Diagrammes des frigoristes 

6-1 Diagramme pression-enthalpie (p,h) 

Pour une question de commodité, liée à la représentation des systèmes cycliques des 
installations frigorifiques, les spécialistes préfèrent utiliser des diagrammes obtenus en portant 
l'enthalpie h en abscisse et la pression p en ordonnée. Les diagrammes p,h des fluides 

frigorigènes sont généralement construits en prenant arbitrairement l'enthalpie et l'entropie 
nulles pour la température t = 0°C. 

1. Isobares et isenthalpes 

Dans ce diagramme les isobares sont représentées par des parallèles à l'axe des enthalpies h et 
les isenthalpes par des parallèles à l'axe des isobares p. 

2. Isothermes 

Évidemment dans le domaine de coexistence des phases liquide et vapeur, les isothermes sont 
confondues avec les isobares. 

Dans le domaine où le fluide se rapproche d'un gaz parfait, les isothermes deviennent des 
parallèles à l'axe p. Dans la phase liquide, où le volume massique est quasiment constant, elles 

sont également verticales. 

3. Isentropes 

De la relation T ds = dh – v dp on déduit : 

𝑑𝑝 =
𝑑ℎ

𝑣
−
𝑇

𝑣
𝑑𝑠 = (

𝜕𝑝

𝜕ℎ
)
𝑠

𝑑ℎ + (
𝜕𝑝

𝜕𝑠
)

ℎ

𝑑𝑠 

Et par suite : 

(
𝜕𝑝

𝜕ℎ
)
𝑠

=
1

𝑣
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Ainsi le coefficient angulaire des isentropes est, en tout point, inversement proportionnel au 

volume massique. 
 

Les isentropes sont des courbes à 
coefficient angulaire positif croissant 
puisque, lorsque la pression croit, le 

volume massique décroit. 

4. Isotitres 

De façon analogue aux diagrammes T,s ou 
h,s, on obtient les courbes de titre constant 
en divisant les paliers de vaporisation en 

parties égales et en reliant entre eux les 
points homologues. 

 

 
     p        Isentrope 
    Isotherme 

 
 

 
 
       x = 0   x = 1 

 
 

 
 
      h 

Figure XIX.17 Diagramme pression-enthalpie 
 

6-2 Diagramme ln (p,h) 

Ce diagramme dérive du p,h. L'abscisse porte l'enthalpie et sur l'ordonnée il y a les pressions 
graduées en une échelle logarithmique. Cette représentation permet de réduire l'encombrement 

en hauteur du graphique. 

Notons que la pente des isentropes est changée puisque : 

(
𝜕

𝜕ℎ
(𝑙𝑛 𝑝))

𝑠

=
1

𝑝
(
𝜕𝑝

𝜕ℎ
)
𝑠

 

Et  comme (
𝜕𝑝

𝜕ℎ
)
𝑠

=
1

𝑣
    il s'ensuit que : 

(
𝜕

𝜕ℎ
(𝑙𝑛 𝑝))

𝑠

=
1

𝑝𝑣
 

Dans la région où le fluide tend vers un gaz parfait, il vient : 

(
𝜕

𝜕ℎ
(𝑙𝑛 𝑝))

𝑠

=
1

𝑟𝑇
 

La pente des isentropes est inversement proportionnelle à la température T. 
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Chapitre XX 

Anergie et exergie 
 
 

1 Généralités 

L'utilisation du premier et second principe de la thermodynamique permet d'analyser les 
échanges d'énergie dans une installation industrielle. 

Le second principe introduit une hiérarchie entre les diverses sources d'énergie et il offre la 

possibilité d'apprécier l'aptitude d'un système à produire du travail. 

Par contre, la notion d'entropie présente l'inconvénient de ne pas avoir de signification physique 

concrète et de s'exprimer en joules par kelvin (J/K). 

L'intérêt majeur de l'exergie est de permettre de substituer à l'entropie un outil plus clair tout en 
étant homogène à une énergie. 

La théorie de l'exergie s'applique à des systèmes absolument quelconques, qu'ils  soient fermés 
ou ouverts. Devant leur importance industrielle nous ne traiterons ici que les systèmes ouverts 

en régime permanent. Une démarche similaire permettrait de traiter le cas des autres types de 
systèmes. 

2 Expression de l'exergie 

Une façon de procéder pour conduire à la notion d'exergie est de définir un mode de 
compatibilité des échanges d'énergie en tenant bien compte de la différence de nature entre le 
travail et la chaleur. Ceci dans le but de calculer le travail utile maximal susceptible d'être 

récupéré à partir d'un état déterminé. 

D'où la notion de travail équivalent, ou d'énergie noble, liée à un échange d'énergie. 

Dans un système ouvert en écoulement permanent le travail utile est celui qui est récupéré ou 

fourni par l'arbre de la machine. 

Il s'ensuit que le travail équivalent sera le travail 𝛿𝑤𝐼 lui-même. 

Le travail équivalent à un échange de chaleur δQ est celui qui serait mis en œuvre dans un cycle 
idéal. 

Pour un cycle de Carnot la source chaude, à température T, fournirait la quantité de chaleur δQ 
tandis que la source froide serait constituée par le milieu ambiant. Dans ce cas la source froide 
serait dite gratuite. 

Dans ces conditions nous savons que : 
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𝛿𝑄 = 𝑇𝑑𝑆    𝛿𝑄∗ = −𝑇𝑜𝑑𝑆    |𝛿𝑤| = 𝛿𝑄+ 𝛿𝑄∗ 

Il s'ensuit donc que l'énergie noble équivalente à δQ est : 

(1 −
𝑇𝑜
𝑇
)𝛿𝑄 

 

 
  

 
  δQ 

 

     δW 
 

 
 δQ* 

 

 
 

 
 
 

Figure XX.01 Production d’énergie 

Pour l'évolution élémentaire d'un système ouvert en 
écoulement permanent l'énergie noble, telle que nous 

l'avons définie, s'écrit : 

𝛿𝑤𝐼 + (1 −
𝑇𝑜
𝑇
) 𝛿𝑄 

En combinant cette expression avec le premier et le 

second principe de la thermodynamique nous 
obtenons : 

𝛿𝑤𝐼 + (1−
𝑇𝑜
𝑇
)𝛿𝑄 

= 𝑑ℎ + 𝑑
𝑉2

2
+ 𝑔𝑑𝑧 − 𝑇𝑜𝑑𝑠 + 𝑇𝑜𝑑𝑠𝑖 

Puisque du premier principe : 

𝛿𝑤𝐼 +𝛿𝑄 = 𝑑ℎ +𝑑
𝑉2

2
+ 𝑔𝑑𝑧 

Et  du second principe en posant  𝛿𝑠𝑖 =
𝛿𝑓

𝑇
  (chap itre 15 paragraphes 5)  

𝑑𝑠 =
𝛿𝑄

𝑇
+ 𝑑𝑠𝑖 

De la définition de l'enthalp ie d'arrêt     ℎ𝑖 = ℎ+
𝑉2

2
 , et en négligeant l'action de la pesanteur, 

l'expression de l'énergie noble devient : 

𝛿𝑤𝐼 + (1−
𝑇𝑜
𝑇
)𝛿𝑄 = 𝑑ℎ𝑖 −𝑇𝑜𝑑𝑠 + 𝑇𝑜𝑑𝑠𝑖 

Dans cette dernière expression posons : 

𝑒𝑥 = ℎ𝑖 −𝑇𝑜𝑠           et           𝛿𝑃𝑒𝑥 = 𝑇𝑜𝑑𝑠𝑖 

Nous aboutissons à ce que l'on désigne habituellement par bilan énergétique : 

𝛿𝑤𝐼 + (1 −
𝑇𝑜
𝑇
) 𝛿𝑄 = 𝑑(𝑒𝑥) + 𝛿𝑃𝑒𝑥 

La fonction "ex" est appelée exergie massique. Comme la fonction de Gibbs 𝐺 = ℎ −𝑇𝑠 , 
l'exergie est une fonction d'état mais par contre, elle fait intervenir la température ambiante To 
qui est une variable extérieure au système. 

Source chaude à 

 la température T 

Source froide à 
 la température To' 
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Le terme 𝑃𝑒𝑥 = 𝑇𝑜 ∫𝛿𝑠𝑖 est appelé la perte exergétique. Comme nous le savons, 𝛿𝑠𝑖 
caractérise la dégradation énergétique, il est toujours positif sauf dans le cas particulier 

d'évolution réversible ou il serait nul. 

Echange d'énergie noble = variation d'exergie + perte exergétique 

3 Rendement exergétique 

Le rendement exergétique 𝜂𝑒𝑥  sera défini comme le rapport de l'exergie (considérée comme 
utile) produite par le système à l'exergie consommée. 

À titre d'exemple, considérons la compression adiabatique irréversible depuis un état 1 jusqu'à 
un état 2. Pour plus de généralité nous admettrons que l'état 1 est différent de l'état ambiant 
(𝑇𝑜 𝑒𝑡 𝑝𝑜). 

𝜂𝑒𝑥=

2
𝛥
1
𝑒𝑥

𝑊𝐼
=

ℎ𝑖2 − ℎ𝑖1 −𝑇𝑜(𝑠2 − 𝑠1)

ℎ𝑖2 − ℎ𝑖1
 

 

Représentons sur un diagrammes T,s cette évolution et comparons le rendement exergétique au 
rendement isentropique ainsi qu’au rendement polytropique. 

Le rendement isentropique est égal au 
rapport des aires suivantes : 

𝜂𝑖𝑠 =
𝐴

𝐴 + 𝐵 + 𝐶 +𝐷
 

Le rendement polytropique aux aires 

𝜂𝑝 =
𝐴 +𝐵

𝐴 +𝐵 +𝐶 + 𝐷
 

et le rendement exergétique 

𝜂𝑒𝑥 =
𝐴 + 𝐵 + 𝐶

𝐴 +𝐵 +𝐶 + 𝐷
 

 

     T                           Aire B    i2 

           i2s 
 

         Aire A   Aire C 

 
 

  pi2 
    To 

      Aire D 

       s 
Figure XX.02 Comparaison des rendements 

Le rendement isentropique caractérise l'ensemble des pertes ((B+C+D). Il est séduisant par sa 
simplicité mais, en fait, d'un intérêt limité car il dépend de la qualité technologique du 
compresseur et de son rapport de compression. 

Le rendement polytropique tient uniquement compte des pertes par frottement et par choc qui  

correspondent aux aires ∶    𝐶 + 𝐷 = ∫ 𝑇𝑑𝑠
2

1

 

Le rendement polytropique est très représentatif de la qualité technologique du compresseur et 
par conséquent du plus grand intérêt pour le constructeur. C’est la raison pour laquelle il sera 

développé dans l’étude des turbomachines. 

i1 

pi1 
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Le rendement exergétique considère uniquement comme perte le terme 𝑇𝑜(𝑠2 − 𝑠1) que l'on 
nomme parfois l'anergie. Il présente un intérêt dans l'analyse des cycles où l'aire C peut être 

récupérée. Dans la construction des turbomachines il est très peu utilisé. 

Exercice XX.1 

Un compresseur adiabatique aspire de l'air dans un état ambiant à Tio=288K et 

𝑝𝑖𝑜 = 101325 𝑃𝑎 pour le refouler à Tio = 523K et 𝑝𝑖1 = 6 𝑏𝑎𝑟. 

Calculer le rendement exergétique sachant que l'air se comporte comme un gaz idéal parfait 
de caractéristiques : 

r = 287 J/kg.K 𝛾 = 1,4  cp =1004,5 J/kg.K 

Corrigé. 

La variation d'exergie est : 
1
𝛥
0
𝑒𝑥 = ℎ𝑖1 − ℎ𝑖0 − 𝑇0(𝑠1 − 𝑠0) 

Avec : 

ℎ𝑖1 − ℎ𝑖0 = 𝑐𝑝(𝑇𝑖1 −𝑇𝑖0) = 101325 (523− 288) 

ℎ𝑖1 − ℎ𝑖0 = 236057,5 𝐽/𝑘𝑔 
et : 

𝑇0(𝑠1 − 𝑠0) = 𝑇0 (𝑐𝑝 𝑙𝑛
𝑇1
𝑇0
− 𝑟 𝑙𝑛

𝑝1
𝑝0
) = 288(1004,5 𝑙𝑛

523

288
− 287 𝑙𝑛

6.105

101325
) 

𝑇0(𝑠1 − 𝑠0) = 25588.4 𝐽/𝑘𝑔 

Il vient : 
1
𝛥
0
𝑒𝑥 = 210469,1 𝐽/𝑘𝑔  

Le travail absorbé par le compresseur adiabatique est : 

𝑤𝐼 = ℎ𝑖1 − ℎ𝑖0 = 236057,5 𝐽/𝑘𝑔 

Il s'ensuit que le rendement exergétique est : 

𝜂𝑒𝑥 =
210469.1

236057.5
= 0,892 

Le calcul conduirait à un rendement isentropique de 0,812 et à rendement polytropique de 
0,852. 

La notion de rendement exergétique n'est pas restrictive aux transformations non cycliques. Ce 

rendement est tout à fait adapté pour caractériser le degré de perfection d'une installation au 
sens de l'énergétique thermodynamique. 

Par exemple pour une transformation cyclique ditherme, productrice d'énergie le rendement 
énergétique serait : 
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Figure XX.03 Cycle ditherme 

𝜂𝑒𝑥 =
|𝑤|

𝑄1 (1 −
𝑇2
𝑇1
)

 

Alors que le rendement thermique est : 

𝜂 =
|𝑤|

𝑄1
 

Et celui d'un cycle de Carnot : 

𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = (1−
𝑇2
𝑇1
) 

Ainsi pour une transformation cyclique 

réversible le rendement exégétique est égal 
à 1. 

Il est d'autant inférieur à 1 que le procédé est 

irréversible. Il vaut sensiblement 0,6 pour 
l'ensemble des centrales électriques. 

4 Bilan exergétique 

Le choix du système thermodynamique à étudier est très important pour l'établissement des 
bilans enthalpiques et exergétiques. Lors des transferts de chaleur deux démarches sont 
possibles : 

- On peut définir un système dans lequel les transferts de chaleur s'effectuent avec le milieu 

extérieur aux températures du fluide qui évolue. En d'autres termes cela signifie qu'on 
s'intéresse uniquement à la transformation sans se préoccuper des transferts de chaleur avec les 

sources. 

- On peut définir un système plus large dans lequel les transferts de chaleur s'effectuent aux 
températures des sources. Ainsi on pourra prendre en compte les irréversibilités liées aux 

transferts thermiques entre les sources de chaleur et le fluide qui évolue. 

Exercice XX.2 

Dans une centrale nucléaire le transfert de chaleur entre le dioxyde de carbone en provenance, 
du réacteur, de la vapeur d'eau alimentant la turbine, s'effectue dans les conditions suivantes : 

- L'écoulement du CO est permanent ainsi que celui du H2O. 

- L'échangeur est parfaitement calorifugé. 

- L'état atmosphérique est po= 101 325 Pa et T= 300 K. 

Pour le CO2 on a : 

-en (1) à l'entrée de l'échangeur on a. : p1= 26 bar et t1= 413°C. 

-en (2) à la sortie on a :p2= 25,5 bar et t2= 230°C. 

Source froide à 
 la température T2' 

Source chaude 

à la température T1 
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On admettra que le dioxyde de carbone se 
comporte comme un gaz parfait ayant, dans 

cet intervalle de température, les 
caractéristiques suivantes : 

𝑟 =  187𝐽/𝑘𝑔.𝐾 

  pc  800,8+ 0,4807 T  

𝑎𝑣𝑒𝑐 𝑇 𝑒𝑛 𝐾 𝑒𝑡 𝑐𝑝𝑒𝑛 𝐽/𝑘𝑔.𝐾 

Le débit masse est : 𝑞𝑚𝐶𝑂2 = 9000𝑘𝑔 𝑠⁄  

 

 
      Vapeur 

 CO2 gaz          H2O 
 (1)         (4) 
 

 
 

 
 
 CO2 gaz     Eau 

 (2)  
         (3) 

 

Pour le H2O on donne : les caractéristiques sous la forme du tableau suivant : 

Désignation p en bar t en °C h en kJ/kg s en kJ/kg.K 

Point 3 36 100 421,7 1,3041 

Point 4 34 400 3225.9 6,8595 

En négligeant les variations d'énergie cinétique calculer : 

1.- la perte exergétique du CO2. 

2.- la perte exergétique globale. 
3.- le rendement exergétique de l'échangeur. 

Corrigé. 

1.- Pour le dioxyde de carbone le bilan exergétique s'écrit : 

(1 −
𝑇𝑜

𝑇
)𝛿𝑄 = 𝑑(𝑒𝑥) + 𝛿𝑃𝑒𝑥  puisque WI = 0 dans un échangeur. 

Calculons chacun de ces termes. 

1.1.-Terme en (1 −
𝑇𝑜

𝑇
)𝛿𝑄 

Pour un système ouvert en écoulement permanent le premier principe de la thermodynamique 
nous permet d'écrire : 

𝛿𝑄 = 𝑑ℎ 
Et par suite : 

∫ (1−
𝑇𝑜
𝑇
)𝛿𝑄

2

1

= ℎ2 − ℎ1 −𝑇𝑜∫
𝑑ℎ

𝑇

2

1

 

 
De l'hypothèse du gaz parfait : 

𝛿𝑄 = 𝑐𝑝𝑇  

Donc : 

∫ (1 −
𝑇𝑜
𝑇
) 𝛿𝑄

2

1

= ∫ 𝑐𝑝 

𝑇2

𝑇1

𝑑𝑇 − 𝑇0∫ 𝑐𝑝 

𝑇2

𝑇1

𝑑𝑇

𝑇
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Avec : 

∫ 𝑐𝑝 

𝑇2

𝑇1

𝑑𝑇 = ∫ (808,8 + 0.4807 𝑇)
503 ,15

686,15

 𝑑𝑇 = −200320 𝐽/𝑘𝑔 

∫ 𝑐𝑝 

𝑇2

𝑇1

𝑑𝑇

𝑇
= 808,8 𝑙𝑛

503,15

686,15
+ 0,4807(230 − 413) = −338,9 𝐽/𝑘𝑔. 𝐾 

  

On obtient : 

∫ (1−
𝑇𝑜
𝑇
)𝛿𝑄

2

1

− 200320 − 300 × (−338,9) 

∫ (1 −
𝑇𝑜
𝑇
) 𝛿𝑄

2

1

= −98650  𝐽/𝑘𝑔 

 

1.2.-Variation d'exergie : 
2
𝛥
1
𝑒𝑥 = ℎ2 − ℎ1 − 𝑇𝑜(𝑠2 − 𝑠1) 

On a : 

ℎ2 − ℎ1 = −200320 𝐽/𝐾𝑔 

𝑠2 − 𝑠1 = ∫ 𝑐𝑝 

𝑇2

𝑇1

𝑑𝑇

𝑇
− ∫ 𝑟

𝑇2

𝑇1

𝑑𝑝

𝑝
 

𝑠2 − 𝑠1 = −338,9 − 187 𝑙𝑛
25,5

26
= −335,3 𝐽/𝑘𝑔. 𝐾 

Et : 
2
𝛥
1
𝑒𝑥 = −200320− 300 × (−335,3) = −99730𝐽/𝑘𝑔 

1.3.- Pertes exégétiques 

De l'équation de bilan nous déduisons la perte exergétique du CO2 : 

𝑃𝑒𝑥
1→2

= −98650 − (−99730) = −1080 𝐽/𝑘𝑔 

La puissance correspondant à cette perte est : 

𝑃
•

𝑒𝑥
1→2

= 9000 × 1,080 = 9720 𝑘𝑊 

2.- Pour l'ensemble de l'échangeur le bilan exergétique s'écrit sous forme de puissance : 

𝑃
•

𝑒𝑥 = −𝑞𝑚𝐶𝑂2

2
𝛥
1
𝑒𝑥 − 𝑞𝑚𝐻2𝑂

4
𝛥
3
𝑒𝑥  

2.1.- Calcul du débit masse d'eau 
Nous devons satisfaire la relation : 

𝑞𝑚𝐶𝑂2 (ℎ2 − ℎ1) + 𝑞𝑚𝐻2𝑂(ℎ4 − ℎ3) = 0  
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Soit : 

𝑞𝑚𝐻2𝑂 =
9000 × 200320

(3225,9 − 421,7)103
= 642.9 𝑘𝑔/𝑠 

2.2.- Variation de l'exergie de l'eau : 
4
𝛥
3
𝑒𝑥 = ℎ4 − ℎ3 − 𝑇𝑜(𝑠4 − 𝑠3) 

4
𝛥
3
𝑒𝑥 = 3225,9 − 421,7 − 300 × (6,8595 − 1,3041) 

4
𝛥
3
𝑒𝑥 = 1137,58 𝑘𝐽/𝑘𝑔  

D'où la perte exergétique : 

𝑃
•

= (−9000 × (−99730)− 642,9 × 11137580)10−3 

𝑃
•

= 166220 𝑘𝑊  

3.- Rendements exergétiques. 

Le rendement exergétique de cet échangeur est : 

𝜂𝑒𝑥 =

𝑞𝑚𝐻2𝑂
4
𝛥
3
𝑒𝑥

𝑞𝑚𝐶𝑂2

2
𝛥
1
𝑒𝑥

= 0,815 
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Chapitre XXI 

Application de la thermodynamique à la 

mécanique des fluides 
 

 

1 Etude thermodynamique des écoulements stationnaires 

Le premier principe peut s’écrire (relation XII.12). 

𝛿𝑤𝐼 + 𝛿𝑄 = 𝑑ℎ+ 𝑔𝑑𝑧 + 𝑑 (
𝑉2

2
) 

Rappelons que 𝛿𝑤𝐼  est le travail interne d'une machine, qu'il ne faut pas confondre avec le 

travail des forces intérieures noté 𝑤𝑖. 

Des relations (XV. 07 et XV. 08) le second principe de la thermodynamique s’écrit. 

𝑇 𝑑𝑠 = 𝛿𝑄+ 𝛿𝑓 = 𝑑ℎ − 𝑣 𝑑𝑝 = 𝑑ℎ −
𝑑𝑝

𝜌
 

En procédant par substitution, on déduit de ces deux relations : 

𝛿𝑤𝐼 =
𝑑𝑝

𝜌
+ 𝑑 (

𝑉2

2
) + 𝑔𝑑𝑧 + 𝛿𝑓                                  (XXI.01) 

En négligeant l’action de la pesanteur, si nous considérons un écoulement réversible d’un fluide 
dans une canalisation nous retrouvons la relation (XI.14) parfois appelée Barré de Saint-Venant. 

𝑑𝑝

𝜌
+ 𝑑(

𝑉2

2
) = 0 

En raison de la faible conductivité thermique des gaz et bien souvent de la rapidité des 
écoulements, on peut assimiler cette transformation à des évolutions adiabatiques. 

Pour déterminer les grandeurs caractéristiques de ces écoulements nous disposons des relations 
suivantes : 

- du premier principe :   ℎ1+
𝑉1
2

2
= ℎ2 +

𝑉2
2

2
   (évolution à enthalpie d'arrêt constante) 

- du second principe :      ℎ2 − ℎ1 = ∫
𝑑𝑝

𝜌

𝑝2

𝑝1

+ 𝜁1→2   (relation (XV.08)) 

-de la conservation du débit masse :  𝑞𝑚 = 𝜌1𝐴1𝑉1 = 𝜌2𝐴2𝑉2   

  



Chapitre XXI Turbomachines  Application de la thermodynamique à la mécanique des fluides 

2 

Exercice XXI.01 

Un gaz supposé idéal parfait, de caractéristiques 𝛾 = 1,312 𝑒𝑡 𝑟 = 487,8 𝐽/𝑘𝑔.𝐾 s’écoule en 
régime permanent dans une tuyauterie divergente et horizontale conformément au croquis 
suivant. On supposera que l’écoulement est adiabatique et réversible, c’est-à-dire isentropique. 

∅ = 𝑑1  
 

 
 
 

   V1 p1 t1 
              V2 

On donne les valeurs suivantes : 

- à l’amont en 1 : 

Vitesse moyenne   V1=250 m/s 

Température statique   t1= 20 °C 
Pression statique  p1= 5 bar 

Diamètre de la tuyauterie d1= 0,06 m 

- à l’aval en 2 

Vitesse moyenne   V2=100 m/s 

Calculer : 

1) la température statique   t2 

2) le diamètre de la tuyauterie d2 
3) la pression statique  p2 

4) les pressions d’arrêt   pi1 et pi2 

5) la masse volumique  𝜌2   

Corrigé 

1) Du premier principe de la thermodynamique nous avons pour un écoulement permanent : 

ℎ𝑖1 = ℎ𝑖2 = ℎ1 +
𝑉1
2

2
= ℎ𝑖2 +

𝑉2
2

2
 

Soit pour un gaz est idéal parfait : 

𝑐𝑝𝑇1 +
𝑉1
2

2
= 𝑐𝑝𝑇2 +

𝑉2
2

2
 

D’où la température statique    𝑇2 = 𝑇1 +
𝑉1
2 − 𝑉2

2

2𝑐𝑝
= 𝑇1 +

𝑉1
2 −𝑉2

2

2𝛾𝑟
(𝛾 − 1) 

𝑇2 = 293+
(250)2 − (100)2

2 × 1,312 × 487,8
(1.312− 1) = 305,8𝐾  𝑡2 = 32,7°𝐶  

1 2 
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2) La continuité du débit exige : 

𝑞𝑚 = 𝜌1𝐴1𝑉1 = 𝜌2𝐴2𝑉2      ⇒     𝐴2 =
𝜋𝑑1

2

4
 
𝜌1𝑉1
𝜌2𝑉2

=
𝜋𝑑2

2

4
 

D'où    𝑑2 = 𝑑1 √
𝜌1𝑉1
𝜌2𝑉2

 

Puisque l’évolution est isentropique on a ;  
𝜌1

𝜌2
= (

𝑇1

𝑇2
)
(
1

𝛾−1
)

 et par suite : 

𝑑2 =
√(

293

305,8
)

1
0,312 250

100
 × 0,06 = 0,0886 𝑚 

3) Le calcul de la pression statique p2 est immédiat : 

 𝑝2 = 𝑝1 (
𝑇2
𝑇1
)
(
𝛾
𝛾−1

)

= 5× (
305,8

293
)

1.312
0,312

= 5,98 𝑏𝑎𝑟 

4) L’évolution étant isentropique et le gaz parfait nous avons :𝑝𝑖1 = 𝑝𝑖2 

𝑝𝑖1 = 𝑝1 (
𝑇𝑖1
𝑇1
)
(
𝛾
𝛾−1

)

 𝑒𝑡 𝑎𝑣𝑒𝑐 𝑇𝑖1 = 𝑇1 +
𝑉1
2

2𝑐𝑝
= 293+

2502 × 0,312

2 × 1,312 × 487,8
= 308,23𝐾 

D’où les pressions d’arrêt : 

𝑝𝑖1 = 𝑝𝑖2 = 5× (
308,23

293
)

1,312
0,312

= 6,19 𝑏𝑎𝑟 

5) la masse volumique 𝜌2  est : 

𝜌2 =
𝑝2
𝑟𝑇2

=
5,98.105

487,8 × 305,8
= 4 𝑘𝑔/𝑚3  
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Exercice XXI.02. 

De la vapeur d’eau s’écoule en régime permanent dans un dispositif horizontal comportant une 
soupape conformément à la figure ci-dessous. 

 
 
 

   1 
 

 
 
 

   2 
 

 
En 1 à l’amont de la soupape, la vapeur a les 
caractéristiques suivantes : 

 Température statique t1 = 200 °C 
Pression statique p1 = 5.105 Pa 

Surface A1 = 0,05 m² 

On précise que le débit masse de la vapeur 
est qm=1,2 kg/s. 

En 2 à l’aval de la soupape la pression 
statique p2=105 Pa. 

 
1) En utilisant un diagramme de Mollier déterminer le volume massique de la vapeur d’eau 
en 1 à l’amont de la soupape. 

2) Calculer la vitesse V1 moyenne dans la section A1. 

3) Sachant que : 

a) les parois de cet appareil sont adiabatiques. 
b) la vitesse moyenne de la vapeur en 2 est V2=200m/s. 
Calculer l’enthalpie dans la section A2. 

4) Représenter sur un diagramme de Mollier l’évolution de la vapeur de 1 à 2. En déduire la 
température t2. 

5) Calculer la surface A2. 

6) Quelle est la variation d’entropie de la vapeur durant cette évolution. 

Corrigé 

 
1) Sur un diagramme de Mollier nous lisons 

à l'intersection de l'isotherme 200 °C et de 
l'isobare cinq bars les valeurs suivantes : 

h1 = 2854 kJ/kg et 𝜈1 = 0,43 m³/kg 

2) De l'équation de débit : 

𝑞𝑚 = 𝜌1𝐴1𝑉1 =
𝐴1𝑉1

𝜈1
t 

    h 

   𝑣1  
     200°C 

  h1        1  
 

    5 bar 
 
             s 

 

    Nous déduisons :V1 =
𝑞𝑚 𝜈1
𝐴1

=
1,2 × 0,43

0,05
= 1,32 𝑚/𝑠 

3) Du premier principe de la thermodynamique, pour un système ouvert en régime permanent, 

nous déduisons : 
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ℎ2 = ℎ1 +
𝑉1
2 − 𝑉2

2

2
= 2854 +

10,322 −2002

2
× 10−3 

ℎ2 = 2834 𝑘𝐽/𝑘𝑔  

4) Nous avons :  

h    
𝑉1
2

2
  

hi1        i1        i2 
h1        1            t1 

        
𝑉2
2

2
  

h2             2        t2 
      p1           p2 

     v2 
 
 

 
 

 
           s1       s2          s 

ℎ𝑖1 = ℎ1 +
𝑉1
2

2
= 2854 +

10,322

2
× 10−3 

ℎ𝑖1 = 2854,05 𝑘𝐽/𝑘𝑔 

Les points 1 et i1 sont quasiment confondus. 

Malgré tout, nous les distinguons sur le 
diagramme ci-contre pour une question de 
pédagogie. 

Par lecture nous lisons à l’intersection de 
h2=2834 kJ/kg et de l’isobare p2 =1 bar les 

valeurs suivantes : 

t2 =180 °C et v2 = 2,1 m³/kg 

5) De l’équation de débit nous déduisons : 

𝐴2 =
𝑞𝑚𝑣2
𝑉2

=
1,2 × 2,1

200
= 0,0126 𝑚2  

6)  Par lecture sur le diagramme de Mollier nous lisons les valeurs de l’entropie en 1et 2. D’où 
la variation : 

𝑠2 − 𝑠1 = 7,74 − 7,05 = 0,69 𝑘𝐽/𝑘𝑔.𝐾 

2 Célérité du son 

Pour déterminer la célérité du son, notée a, considérons tout d’abord l’écoulement permanent 
d’un liquide parfait contenu à l’intérieur une canalisation rectiligne. Nous supposerons en outre 
que cette canalisation est rigoureusement indéformable et de section constante A.  

Si nous provoquons alors un ébranlement, il y aura au passage de l’onde une discontinuité de 

la pression p, de la masse volumique 𝜌 , de la température T et également de la vitesse V. 

Pendant le temps dt, la masse de fluide concernée par le parcours de cette onde est 𝜌𝐴𝑎𝑑𝑡 et  

elle subit une accélération  
𝑑𝑉

𝑑𝑡
 . 

Pour cette masse de fluide l’équation de la dynamique s’écrit : 

𝐴(𝑝+ 𝑑𝑝) − 𝐴𝑝 = 𝜌𝐴𝑎𝑑𝑡
𝑑𝑉

𝑑𝑡
 

Soit : 

𝑑𝑝 = 𝜌𝑎𝑑𝑉      (XXI.02) 

À la date 𝑡 = 𝑡1, cette onde élémentaire se trouve à une abscisse 𝑥 = 𝑥1 dans la canalisation. 

À la date 𝑡2 = 𝑡1 + 𝑑𝑡 l’onde se trouvera à l’abscisse 𝑥2 = 𝑥1+ 𝑎𝑑𝑡. 
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Au temps t1, toutes les particules du fluide comprises entre les sections 𝐴1 𝑒𝑡 𝐴2 ont 

évidemment conservé leur masse volumique 𝜌 et leur vitesse V. 

Au temps t2 la section A1 se trouve en A3 et la masse volumique et vitesse des particules fluides 
comprises entre A3 et A2 sont devenues respectivement 𝜌 + 𝑑𝜌 𝑒𝑡 𝑉 + 𝑑𝑉. 

 
 

 
 
 

 
            x1     x2             x 

 
 
             a 

 
 

      dVdt 
          adt 
 

Figure XXI.01 Conservation de la masse 

Ainsi que nous l’avions précédemment indiqué, avant le passage de l’onde, la masse de fluide 

comprise entre A1 et A2 s’écrit : 

𝜌𝐴𝑎𝑑𝑡 

Après le passage de l’onde, cette même masse de fluide compris entre les sections A3 et A2 

s’écrit : 

(𝜌 + 𝑑𝜌)𝐴(𝑎𝑑𝑡 − 𝑑𝑉𝑑𝑡)  

En égalant ces expressions et en négligeant les termes du second ordre on a : 

𝑎𝑑𝜌 = 𝜌𝑑𝑉     (XXI.03) 

Des relations (XXI.02) et (XXI.03) nous déduisons l’expression de la célérité du son a : 

𝑎2 =
𝑑𝑝

𝑑𝜌
 

On admet généralement que la propagation d’une onde plane s’effectue adiabatiquement et 
puisque l’on néglige le frottement, l’évolution est isentropique. 

En utilisant les notations de la thermodynamique, la célérité d’une onde de pression dans un 

milieu fluide indéterminé s’écrit : 
 

𝑎2 = (
𝜕𝑝

𝜕𝜌
)
𝑠

                                                    (XXI.04) 

  

a 
A2 A1 

A2 A3 

V, ρ 

V+dV, ρ+dρ 
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Exercice XXI.03 

Calculer la célérité du son de l’air dans les conditions suivantes : 

Pression atmosphérique : patm = 101325 Pa 

Température ambiante :               tamb = 18 °C 

on suppose que l’air se comporte comme un gaz parfait de caractéristiques : 

𝑟 = 287 𝐽/𝑘𝑔.𝐾 𝑒𝑡 𝛾 = 1,4 

Corrigé 

Puisque l’évolution est supposée isentropique la relation (XIII.06) conduit à : 

𝑝 = 𝑐𝜌𝛾      avec c = constante 

dp = c𝛾𝜌(𝛾−1)𝑑𝜌 =
𝑝𝛾

𝜌
        𝑎𝑣𝑒𝑐 

𝑝

𝜌
= 𝑟𝑇 

Il vient en définitive : 

(
𝜕𝑝

𝜕𝜌
)
𝑠

= 𝛾𝑟𝑇 = 𝑎2 

𝑎 = √𝛾𝑟𝑇 = √1,4 × 287 × (273,15 + 18) =  342,03 𝑚/𝑠 

3 Théorème du Capitaine Hugoniot 

Les tuyères convergentes divergentes permettent de transformer en énergie cinétique la pression 
d’un fluide compressible en écoulement permanent. 

Dans une détente la vitesse croit au fur et à mesure de la baisse de pression. La section, qui doit 
être réalisée à l’endroit où la vitesse est V, doit satisfaire l’équation de débit : 

𝑞𝑚 = 𝜌𝐴𝑉 

Pour un liquide la masse volumique est constante et il en est donc de même pour le produit AV. 

La section de la tuyère décroît, elle est simplement convergente. 

Il en est tout autrement dans un fluide compressible comme on peut le voir à partir des équations 

de débit et de Barré de Saint Venant soit : 

0 =
𝑑𝜌

𝜌
+
𝑑𝐴

𝐴
+
𝑑𝑉

𝑉
  𝑒𝑡   

𝑑𝑝

𝜌
+ 𝑑(

𝑉2

2
) =

𝑑𝑝

𝜌
+ 𝑉𝑑𝑉 = 0 

D’où : 
𝑑𝐴

𝐴
= −

𝑑𝜌

𝜌
−
𝑑𝑉

𝑉
= −

𝑑𝜌

𝜌
+
𝑑𝑝

𝜌𝑉2
 

Cette écriture suppose évidemment que l’écoulement est isentropique et par conséquent : 
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𝑎2 = (
𝜕𝑝

𝜕𝜌
)
𝑠

 

En désignant  par  𝑀 =
𝑉

𝑎
  le nombre de Mach il vient  en définitive :  

𝑑𝐴

𝐴
= −

𝑑𝜌

𝜌
(
1

𝑀2
−1) 

 

D’où le tableau des variations. 

𝑀      𝑀 < 1      𝑀 = 1      𝑀 > 1 
 𝑉       𝑉 < 𝑎       𝑉 = 𝑎       𝑉 > 𝑎 
𝜕𝜌

𝜌
       −         −         − 

1

𝑀2
− 1       +         0         − 

𝑑𝐴

𝐴
           −         0             + 

 

  A 

 

 

Tableau XXI.1 Représentation des variations 

 
D’où le théorème d’Hugoniot. 
 

 
 

 
 
 

 
Figure XXI.02 Tuyère 

Convergente-divergente 

 
Au col tuyères de détente la vitesse du 

fluide est égale à la valeur de la vitesse du 
son dans un fluide homogène dont les 
caractéristiques seraient celles du fluide 

considéré au col. 
 

Les caractéristiques d’un gaz parfait au col d’une tuyère convergente divergente se déterminent 
facilement à partir du théorème d’Hugoniot et du premier principe de la thermodynamique. 

Soit : 

ℎ𝑐𝑜𝑙 − ℎ0 +
𝑎2 − 𝑉0

2

2
= 0 

Le gaz étant supposé idéal parfait : 

ℎ𝑐𝑜𝑙 − ℎ0 = 𝑐𝑝(𝑇𝑐𝑜𝑙 −𝑇0) =
𝛾𝑟

𝛾 − 1
(𝑇𝑐𝑜𝑙 −𝑇0) 

 

V=a 
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Comme : V0
2  ≪ a2   nous avons :  

(𝑇𝑐𝑜𝑙 − 𝑇0)

𝛾 − 1
+
𝑇𝑐𝑜𝑙
2
= 0 

Et par conséquent : 

𝑇𝑐𝑜𝑙
𝑇0
=

2

𝛾 + 1
= (
𝑝𝑐𝑜𝑙
𝑃0
)

𝛾−1
𝛾

 

Ce rapport est constant et ne dépend que des caractéristiques thermodynamiques du gaz. 

4 Calcul du débit d’un gaz parfait au col d’une tuyère 

   convergente-divergente 

Nous avons : 𝑞𝑚 = 𝜌𝐴𝑉 = 𝜌𝑐𝑜𝑙𝐴𝑐𝑜𝑙𝑎    avec   𝜌𝑐𝑜𝑙 = 𝜌0 (
2

𝛾+1
)

1

𝛾−1
 

Soit : 𝑞𝑚 =  𝜌0 (
2

𝛾+1
)

1

𝛾−1𝐴𝑐𝑜𝑙√𝛾𝑟𝑇𝑐𝑜𝑙    mais  T𝑐𝑜𝑙 =
2𝑇0

𝛾+1
  

Il s’ensuit que : 

𝑞𝑚 =
√ (

2

𝛾 + 1
)

𝛾+1
𝛾−1 𝛾

𝑟
 
𝑝0

√𝑇0
𝐴𝑐𝑜𝑙 = constante ×

𝑝0

√𝑇0
𝐴𝑐𝑜𝑙 

Le débit masse ne dépend pas des conditions de l’aval. 

Exercice XXI.04. 

Une tuyère convergente divergente est alimentée par de la vapeur d’eau. Les conditions à 

l’amont sont : 

p0 = 100 bar      t0 = 500°C   V0 = 0 m/s 

La pression à l’aval est p1 = 30 bar et le débit masse alimentant cette tuyère est qm = 10 kg/s. 

L’évolution est supposée isentropique. 

Déterminer la section du col dans les deux cas suivants : 

Cas 1 : On suppose que la vapeur se comporte comme un gaz idéal parfait de caractéristique : 

𝛾 = 1,3        et        r = 461,9 J/kg.K 

Cas 2 : Déterminer la section approximative en utilisant un diagramme de Mollier. 

Corrigé 

Nous avons : 

𝑇𝑐𝑜𝑙 =
2𝑇0
𝛾 + 1

=
2(273,15 + 500)

1,3 + 1
= 672,30𝐾       soit :       t𝑐𝑜𝑙 = 399,15°𝐶 

𝑝𝑐𝑜𝑙 = 𝑝0 (
2

𝛾 + 1
)

𝛾
𝛾−1

= 100 × (
2

1,3 + 1
)

1,3
1,3−1

= 54,57𝑏𝑎𝑟 
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La section au col de la tuyère est : 

𝐴𝑐𝑜𝑙 =
𝑞𝑚√𝑇0

𝑝0
√ (

2
𝛾 + 1)

𝛾+1
𝛾−1 𝛾
𝑟

=
10 × √273,15 + 500

100 × 105 × √(
2

1,3 + 1)

1,3+1
1,3−1 1,3

461,9

= 8,956 × 10−4𝑚2  

𝐴𝑐𝑜𝑙 = 895,6𝑚𝑚
2  

Cas 2 : 

Sur le diagramme de Mollier nous lisons les valeurs de l’enthalpie h et du volume massique v. 

Nous avons : 

ℎ0 = ℎ𝑖0 = ℎ +
𝑉2

2
,                 V=√2(ℎ𝑖0 − ℎ),                    A=

𝑞𝑚𝑣

𝑉
 

Ce qui nous permet de construire le tableau : 
 
h 

    isochore v 
 

      500°C 
         0 

 

      100bar 
                                          400°C 

   60bar 
 
         55bar        50bar 

 
            313°C 

         1 

           30bar 
 

     S 
 

P en 
bar 

h en 
kJ/kg 

v en 
m3/kg 

V en 
m/s 

A en 
mm2 

 100  3377  0,0 32 ≈ 0  

 60  3216 0,0493  567  869 

 55  3190 0,0529  612  864 

 50  3165 0,0565  651  867 

 

Le col se situera vers la pression de 55 bar et la section sera de l’ordre de 864 mm². 

Par lecture la température au col est : tcol = 400 °C. 

Par rapport au gaz est idéal parfait (cas 1) l’erreur sur la pression et la température n’est pas 

considérable, elle l’est davantage sur la surface du col. 
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Chapitre XXII 

Généralités sur les turbomachines 
 
 

1 Définition 

On appelle turbomachine une machine tournante dont le rôle est d'assurer un échange d'énergie 
mécanique entre un fluide en écoulement, quasi-permanent dans son stator, et un rotor, muni 

d'aubages (ou pales), animé d'un mouvement de rotation à vitesse constante autour d'un axe. 

Selon le sens de l'échange d'énergie la turbomachine sera dite réceptrice (ou de détente) 

lorsqu'elle reçoit de l'énergie du fluide et génératrice (ou de compression) quand elle lui en 
communique. 

Puisqu'elle consomme ou recueille de l'énergie sur son arbre, elle doit être, nécessairement, 

accouplée à une autre machine. Par exemple : 
-dans le premier cas ; avec un alternateur ou une turbomachine génératrice. 

-dans le second cas ; entraînée par un moteur électrique, un moteur à combustion interne ou une 
turbomachine réceptrice. 

Une turbomachine peut extraire et rejeter un fluide dans un même milieu mais elle est souvent 

interposée entre deux ou plusieurs enceintes contenant le même fluide à des niveaux de 
pressions et de températures différentes. 

Le corps, ou stator, se raccorde à la tuyauterie d'amenée par sa bride d'entrée et à celle du 

refoulement par sa bride de sortie. 

2 Classification 

On différencie les turbomachines suivant : 
- le sens de l'échange d'énergie 
- que le fluide véhiculé est incompressible ou compressible. 

- la nature de l'écoulement interne dans la roue conformément à la figure XXII.01. 

 

Figure XXII.01 Les différents types d'écoulements internes dans les roues  
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Le tableau XXII.1 représente les principales familles de turbomachines classées suivant ces 

trois critères. Cette classification n'est pas exhaustive, en particulier le spécialiste est souvent 
tenu d'apporter des informations complémentaires sur certains types de machines. Par exemple 

en précisant si la turbomachine est monocellulaire ou multicellulaire et en distinguant les 
aubages à action des aubages à réaction. 

Turbomachines Fluide Nature de l'écoulement 

Désignation Génératrice Réceptrice Incompressible Compressible Axial Radial Hélico radial Tangentiel 

Compresseurs 
Soufflantes *   * * * *  
Ventilateurs *  *  * * *  

Pompes *  *  * * *  
Hélices 
marines 

 
*  *  *    

Hélices 
aériennes *   * *    
Éoliennes  * *  * *   
Turbines 

Francis  * *   * *  
Turbines 

hélice, Kaplan 
et groupes 

bulbes 

 * *  *    

Turbines 
Pelton  * *     * 

Turbines à 
vapeur  *  * * * *  

Turbines à gaz  *  * * * *  

   Tableau XXII.1 Classification des turbomachines 

Sur ce tableau, il peut sembler curieux que les ventilateurs et les éoliennes figurent dans la 
même colonne que les turbomachines hydrauliques, alors qu'ils véhiculent des gaz. Le taux de 

compression de ces appareils est relativement faible si bien que la pression et la température 
restent quasiment constantes pendant l'échange d'énergie. Ce qui permet de négliger les petites 
variations de masse volumique et de considérer le fluide comme incompressible. 

Lorsque le fluide véhiculé dans les turbines est un liquide, généralement de l'eau, on dit qu'on 
a affaire à des turbines hydrauliques. 

3 Principe de fonctionnement d’une pompe centrifuge 

La machine se raccorde en E et S à deux tuyauteries cylindriques. 
- La première, dite conduite d'aspiration, sert à amener le fluide à l'entrée de la pompe. 
- La seconde est appelée conduite de refoulement. 

La partie active de la machine est constituée par la roue (rotor) qui porte les aubages  mobiles 
(aubes, pales, ailettes). Les aubes sont toutes identiques. En désignant par n le nombre d'aubes, 

leur écart angulaire est égal à 2𝜋/𝑛. 

L'espace compris entre deux aubes mobiles est appelé canal mobile. 
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Le fluide guidé par la tuyauterie d'aspiration arrive à la bride d'entrée et l'ouïe de la pompe où 

il se répartit également entre les différents canaux inter-aubes. 

L'espace compris entre la bride d'entrée et le bord d'attaque des aubages est le siège d'un 

écoulement permanent par rapport à un repère fixe, généralement Galiléen. Cette capacité est 
souvent appelée fond d'aspiration de la pompe. 

                 S (sortie) 

 
 

 Corps        Diffuseur 
 
 

    E (entrée) 
           Roue 

                F 
       Aubes mobiles 
                +  - 

 Ouïe 
 

 
 

Figure XXII.02 Schéma d'une pompe centrifuge 

Du fait du mouvement d'entraînement à vitesse angulaire constante, transmis par le rotor suivant 
par la flèche F, les aubages exercent des efforts de pression sur le fluide qui se traduisent par 

l'existence d'une surpression côté intrados et d'une dépression sur l'intrados. 

À l'intérieur d'un canal mobile, où a lieu le transfert énergétique, l'écoulement est considéré 
comme permanent par rapport au repère lié à la roue. 

La machine est qualifiée de pompe centrifuge parce qu'à la traversée du rotor, le fluide s'éloigne 
de l'axe de rotation pour s'écouler, à la sortie de la roue, dans une direction sensiblement 

perpendiculaire à cet axe. 
Le corps de la pompe, encore appelé stator ou enveloppe, porte une couronne d'aubages fixes  
nommée diffuseur. 

L'espace compris entre deux aubages fixes constitue un canal fixe. Ces canaux fixes sont 
parcourus par un écoulement considéré comme permanent par rapport à un repère fixe. 

L'énergie reçue par le fluide au cours de sa traversée dans les canaux mobiles se manifeste par 
un accroissement de sa pression et de son énergie cinétique. 
En ralentissant le fluide, le diffuseur provoque une nouvelle augmentation de la pression. Il 

assure au sein du fluide une conversion de l'énergie cinétique en énergie piézométrique. 

À la sortie du diffuseur, le fluide doit être collecté et conduit vers la bride de refoulement. La 

partie du corps remplissant cette fonction est appelée volute du fait de sa forme. 

La volute contribue également à la conversion de l'énergie cinétique du fluide en énergie 
piézométrique. 
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4 Principe d’une turbine centripète 

Pour décrire le fonctionnement d’une turbine centripète on prendra l’exemple d'un 
turbocompresseur de suralimentation équipant un moteur d’automobile. 

Conformément à la figure XXII.03, une turbine centripète comporte, en suivant le sens de 
l’écoulement des gaz : 

- une bride d’admission (E) 
- une volute (V) 
- un distributeur (D) 

- une roue mobile en rotation (R) 
- un diffuseur (F) 

- une bride d’échappement (S) 

Le rôle de la volute est d'accélérer le 
fluide et de transformer son 

écoulement rectiligne en un flux 
axisymétrique afin d'alimenter le plus 

correctement possible l'entrée du 
distributeur. Figure XXII.03 Schéma d’une turbine centripète 

D'un point de vue technologique, la volute est souvent réalisée en fonte réfractaire à graphite 

sphéroïdal. 

Le distributeur se substitue à la volute pour continuer l'accélération du fluide. Dans les petites 

turbines, il est souvent lisse (sans aubages) et de dimension très limitée pour des raisons 
d'encombrement. 

Le distributeur peut posséder des aubages fixes ou à calage variable et être à géométrie variable.  

Dans le cas d'un distributeur à aubes on ménage, malgré tout, un petit espace à l'amont de la 
roue pour éviter les vibrations dues à l'interaction aérodynamique rotor stator. Les différentes 
techniques de géométrie variable du distributeur et de la volute sont décrites dans les 

paragraphes qui suivent. 

Dans les applications aux moteurs d'automobiles diesel ou essence, la roue est en alliage de 

nickel chrome molybdène afin de résister à l'oxydation à chaud et aux contraintes mécaniques 
et thermiques provoquées par des vitesses de rotation supérieures à 200 000 tr/min et par des 
températures pouvant atteindre 1000°C à l'entrée de la turbine. 

La roue est centripète ou hélico-centripète mais toujours ouverte afin de diminuer sa masse et 
son moment d'inertie. Elle doit être calculée pour qu'au point d'adaptation le fluide sorte 

axialement afin d'entrer convenablement dans le diffuseur dont la mission est de convertir 
l'énergie cinétique du fluide en pression. 

Dans ces petites turbines de suralimentation, dont la régulation s'effectue par by-pass, la 

présence du conduit de retour de la soupape ou du clapet de décharge a un effet particulièrement 
néfaste sur les performances du diffuseur. 

L'ensemble constitué par la bride d'entrée, la volute, le distributeur, le diffuseur et la bride de 
sortie est désigné par corps de la turbine. 
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5 Turbine à vapeur mono étage 

La vapeur entre dans la turbine par une conduite de section circulaire qui débouche dans une 
capacité qui présente une symétrie de révolution par rapport à l'axe de rotation de la roue. De 

ce fait, cette capacité porte le nom de tore d'admission. 
Son rôle est d'alimenter de façon axisymétrique une couronne d'aubages fixes, appelés aubages 

distributeurs. 
Ces aubages répartissent le fluide vers la roue mobile selon l'angle voulu. Le tracé de ces 
aubages distributeurs est tel que le fluide subit un accroissement important de sa vitesse. Il y a 

dans ce cas conversion de l'énergie piézométrique de la vapeur en énergie cinétique. Comme il 
s'agit d'un écoulement de détente, on utilise également le terme de tuyères pour désigner les 

distributeurs. 

 
Figure XXII.04 Schéma d'une turbine axiale 

La roue mobile porte une couronne d'aubages. Aussi bien dans les distributeurs que dans la roue 

les trajectoires des particules fluides restent sensiblement sur un cylindre de révolution. Ce qui 
classe cette turbine dans la catégorie des turbomachines axiales. 

En sortant des distributeurs, le fluide vient pousser les aubes mobiles en exerçant un effort 
provoquant la rotation du rotor. Il y a ainsi l'existence d'une surpression sur l'intrados et d'une 
dépression sur l'extrados. Ces efforts aérodynamiques produisent un travail moteur, recueilli 

sur l'arbre de la turbine. Il y a un emprunt d'énergie mécanique au fluide. 
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À la sortie de la roue, la vapeur détendue est collectée dans une capacité appelée fond 

d'échappement et conduite au condenseur. 

Remarques 

On peut imaginer de disposer, sur un même arbre, plusieurs étages en série afin de cumuler les 
effets de compression ou de détente intéressant un même débit de fluide. Selon que ces 
machines comporteront un seul ou plusieurs étages, elles seront dites mono ou multicellulaires. 

En résumé, on retiendra qu'un étage (ou cellule) de turbomachine comprend d'une manière 
générale : 

- une roue animée d'un mouvement de rotation angulaire à vitesse constante et qui porte une 
couronne d'aubages mobiles créant l'échange d'énergie mécanique entre le fluide et le rotor. 

- un stator qui porte une couronne d'aubages fixes située en aval de la roue dans une 

turbomachine génératrice et en amont dans une turbomachine réceptrice. Ces aubages fixes sont 
le siège d'une transformation entre les deux formes piézométrique et cinétique de l'énergie du 

fluide. 

6 Représentation de l'écoulement 

Une turbomachine ayant une vitesse de rotation constante et des débits masses égaux à la bride 
d’entrée et à la bride de sortie génère, malgré tout, des écoulements internes instationnaires. 
Ceci est dû à la présence des aubages mobiles. Cette instationnarité est parfaitement exacte pour 
une particule fluide. Par contre, pour l’ensemble d’une masse de fluide contenue à l’intérieur 

d’une roue, l’écoulement peut être considéré comme stationnaire en moyenne. 

Dans l'étude classique des turbomachines nous considérons, en première approximation, que 

l'écoulement du fluide est permanent dans le stator en prenant un repère (g) lié au corps. Il est 
également supposé stationnaire dans les canaux mobiles en choisissant un repère (R) lié à la 
roue. 

En d'autres termes, aussi bien pour les aubes fixes que mobiles nous admettrons que 
l'écoulement est stationnaire. Mais à condition de prendre un repère solidaire aux aubages fixes 

et un autre repère pour les aubages mobiles. 

Pour passer du repère fixe (g) au repère mobile (R) (ou l'inverse) nous utiliserons la règle de la 
composition des vitesses, soit la relation (III.13) 

𝑉⃗⃗(𝑀/𝑔) = 𝑉⃗⃗𝑒(𝑀/𝑔) + 𝑉⃗⃗(𝑀/𝑅) 

Pour simplifier les écritures nous poserons, tout simplement, pour la vitesse d'entrainement : 

𝑈⃗⃗⃗ = 𝑉⃗⃗𝑒(𝑀/𝑔) = 𝑉⃗⃗(𝑂/𝑔)+ 𝜔⃗⃗⃗(𝑅/𝑔) ∧ 𝑂𝑀
→

 

Dans l’étude les turbomachines on considère que le vecteur 𝑉⃗⃗(𝑂/𝑔)est nulle. 

De même pour la vitesse relative nous écrirons ∶ 𝑊⃗⃗⃗⃗ = 𝑉⃗⃗(𝑀/𝑅) = (
𝑑𝑂𝑀

→

𝑑𝑡
)

𝑅
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        V       W 

    𝛼   𝛽 
 

         U 
     Figure XXI.05 Triangle des vitesses 

Si bien que dans le domaine des 

turbomachines, la composition des 
vitesses s'écrira : 

𝑉⃗⃗ = 𝑊⃗⃗⃗⃗ + 𝑈⃗⃗⃗  (XXII.01) 
 

Ne pas confondre la vitesse relative W et le travail W notés de la même façon pour respecter 
les usages. 

Les indices E et S seront utilisés pour désigner, respectivement, l'entrée et la sortie d'une 

turbomachine. 

Par coutume on prend l'indice "1" pour l'entrée d'une roue et "2" pour la sortie. 

 
                          W2 
   V2                                                                              V2                       U2 

             U2              W2 
  W1 

 V1    
  U1          U1 

 

       V1      W1 
           O 

 
 
 

 
 

 
 

Figure XXII.06 Aubages et triangles des vitesses 
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Chapitre XXIII 

Analyse des échanges d'énergie 
 

Les théorèmes généraux qui régissent le fonctionnement des turbomachines proviennent des 
principes fondamentaux de la mécanique du solide, mécanique des fluides et de la 

thermodynamique. 

Nous admettrons que les écoulements internes sont unidimensionnels. L’étude en 2D ou en 3D 

sort du cadre de cet ouvrage. 

1 Application du premier principe de la thermodynamique 

Pour un système ouvert (chapitre XII) le premier principe de la thermodynamique s’écrit : 

𝑃𝐼 +𝑃𝑡ℎ =
𝑑

𝑑𝑡
(𝑈∗+𝐸𝐶

∗ +𝐸𝑃
∗)+ (𝑢𝑆+𝑝𝑆𝑣𝑆+𝑔𝑧𝑆 +

𝑉𝑆
2

2
)𝑞𝑚𝑆 −(𝑢𝐸+𝑝𝐸𝑣𝐸 +𝑔𝑧𝐸 +

𝑉𝐸
2

2
)𝑞𝑚𝐸 

E désigne l’entrée de la turbomachine et S sa sortie. 

Dans cet ouvrage on supposera toujours que le débit masse qui entre dans la turbomachine est 

égal à celui qui sort et  on admettra que l’écoulement est permanent. 

𝑑

𝑑𝑡
(𝑈∗ +𝐸𝐶

∗ +𝐸𝑃
∗) = 0                  q𝑚 = 𝑞𝑚𝑆 = 𝑞𝑚𝐸 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  

Ainsi le premier principe devient : 

𝑃𝐼 + 𝑃𝑡ℎ =
𝑆
∆
𝐸
(ℎ +𝑔𝑧 +

𝑉2

2
) 𝑞𝑚   (XXIII.01) 

𝑃𝐼 est la puissance interne échangée entre la roue (ou les roues) et le fluide à l'intérieur de la 

turbomachine. Si on désigne par C le couple transmis par le fluide et par Pfd la puissance 

dissipée par frottement de disque on obtient une autre expression de la puissance interne : 

𝑃𝐼 = 𝜔𝐶+𝑃fd   (ou    |𝑃𝐼| = 𝜔|𝐶|− 𝑃fd)     (XXIII.02) 

𝑃𝑡ℎ est la puissance thermique correspondant aux transferts de chaleur dus à la non adiabaticité 

de l'écoulement. Pour la plupart des turbomachines les écoulements sont supposés adiabatiques. 

On rencontre des écoulements non adiabatiques dans les petites turbines de suralimentation des 

moteurs à combustion interne. 

L'enthalpie h et la vitesse V sont les valeurs moyennes dans les brides d'entrée et de sortie de la 

turbomachine. 
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La puissance d'une turbine, c'est-à-dire la puissance nécessaire à transmettre à l'accouplement 

d'une autre machine tel qu'un alternateur ou une turbomachine génératrice, est : 

𝑃 = 𝑃𝐼 + 𝑃méc      (XXIII.03) 

Où la puissance 𝑃méc représente les dissipations externes qui sont, évidemment, toujours 

positives. Ces dégradations d'énergie sont dues aux résistances passives externes à l'écoulement 

et provoquées par les paliers, butées et joints. Comme il s'agit de pertes d'origine purement 

mécanique, on les désigne habituellement par "pertes mécaniques". 

On définit également le travail interne en divisant la puissance interne par le débit masse 

traversant la turbomachine : 

𝑤𝐼 =
𝑃𝐼
𝑞𝑚
                                                                 (XXIII.04) 

Soit : 

𝑤𝐼 + 𝑄 =
𝑆
∆
𝐸
(ℎ +𝑔𝑧 +

𝑉2

2
)    (XXIII.05) 

Rappelons que 𝑤𝐼  est le travail interne d'une machine, qu'il ne faut pas confondre avec le travail 
des forces intérieures noté Wi. 

L'énergie d'un fluide diminue lors de son passage dans une turbine. Il s'ensuit que les valeurs 

de la puissance et du travail sont négatives vis à vis de la thermodynamique. Or le langage usuel 

ne retient que les valeurs positives de ces grandeurs, ce qui nous conduira souvent à ne 

considérer que la valeur absolue de la puissance et du travail. Par exemple, pour la puissance et 

le travail interne, on écrira : 

|𝑃| = |𝑃𝑖|− 𝑃méc   et  |𝑤𝐼|=
|𝑃𝐼|

𝑞𝑚
 

2 Application du second principe 

Pour un système fermé ou un système ouvert en écoulement permanent l'égalité de Jouguet, 

limitée aux irréversibilités internes, constitue une forme pratique d'application du second 

principe de la thermodynamique à l'étude des turbomachines. 

Des relations (XV.07) et (XV.08) le second principe de la thermodynamique s’écrit  : 

𝑇 𝑑𝑠 = 𝛿𝑄+ 𝛿𝑓 = 𝑑ℎ−𝑣 𝑑𝑝= 𝑑ℎ−
𝑑𝑝

𝜌
 

Intégrons entre l'entrée "E" et la sortie "S" de la machine : 

Soit en posant  ∫ 𝛿𝑓
𝑆

𝐸

= 𝜉𝐸→𝑆 

𝑄⏟
𝐸→𝑆

= ℎ𝑆 − ℎ𝐸 − ∫
𝑑𝑝

𝜌

𝑆

𝐸
− 𝜉𝐸→𝑆            (XXIII.06) 

Le terme 𝜉𝐸→𝑆 représente la dégradation énergétique dans la turbomachine. 
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En reportant cette valeur de 𝑄⏟
𝐸→𝑆

 dans la relation (XXIII.05) on obtient : 

𝑤𝐼 = ∫
𝑑𝑝

𝜌

𝑆

𝐸

+
𝑉𝑆
2 −𝑉𝐸

2

2
+ 𝑔(𝑧𝑆 − 𝑧𝐸) + 𝜉𝐸→𝑆                   (XXIII.07) 

Remarques : 

- La disparition de la quantité de chaleur 𝑄⏟
𝐸→𝑆

dans cette expression ne signifie pas que les 

évolutions sont adiabatiques puisqu'on a procédé par substitution. 

- Il va de soi que l'intégration de ∫
dp

ρ

S

E
 conduira à des expressions différentes suivant la nature 

des évolutions à l'intérieur de la machine. 

- Le débit masse véhiculé par la turbomachine est : 𝑞𝑚. Du fait de la présence des fuites internes 

le débit masse passant dans la roue 𝑞𝑟 sera : 

𝑞𝑟 > 𝑞𝑚  pour une turbomachine génératrice 
𝑞𝑟 <  𝑞𝑚  pour une turbomachine réceptrice 

Pour ce débit 𝑞𝑟 on peut écrire la relation (XXIII.07) entre l’entrée (1) et la sortie (2) de la roue. 
Soit en négligeant la variation d’énergie potentielle : 

𝑤𝑎 = ∫
𝑑𝑝

𝜌

2

1

+
𝑉2
2 − 𝑉1

2

2
+ 𝜉1→2                                           (XXIII.08) 

Le travail 𝑤𝑎 correspond à l’échange d’énergie entre le fluide et l’arbre de la turbomachine et 

𝜉1→2 comptabilise les pertes dans la roue (ou les roues pour une machine multicellulaire). 

3 Écoulement dans une roue de turbomachine 

Du théorème de l’énergie cinétique relation (IV.24) 

𝑊𝑒
∗ + 𝑊𝑖 =

2
∆
1
𝐸𝐶
∗  

Il nous faut expliciter chacun de ces termes. 

Désignons par (g) le repère galiléen et par (R) le repère lié à la roue. Sous forme différentielle 

l’énergie cinétique dans le repère lié à la roue s’écrit en un point M : 

𝑑𝐸𝐶
∗ = 𝛾⃗(𝑀/𝑔) ∙   𝑉⃗⃗(𝑀/𝑅) = 𝛾⃗(𝑀/𝑔) ∙  𝑊⃗⃗⃗⃗  

De la composition des accélérations ; relation (III.14) : 

𝛾⃗(𝑀/𝑔)  = 𝛾⃗(𝑂/𝑔) + (
𝑑𝜔⃗⃗⃗

𝑑𝑡
)
𝑟

∧ 𝑂𝑀
→

+ 𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀
→

) + 2𝜔⃗⃗⃗ ∧ 𝑊⃗⃗⃗⃗ + 𝛾⃗(𝑀/𝑅)  

𝛾⃗(𝑂/𝑔) = 0⃗⃗ puisqu’on considère que dans les turbomachines que le point O est fixe. 
Nous avons donc : 

𝑑𝐸𝐶
∗ = [

𝑑𝜔⃗⃗⃗

𝑑𝑡
∧ 𝑂𝑀

→

+ 𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀
→

) + 2𝜔⃗⃗⃗ ∧ 𝑊⃗⃗⃗⃗ + 𝛾⃗(𝑀/𝑅)] ∙ 𝑊⃗⃗⃗⃗ ⃗⃗⃗𝑑𝑡 
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Dans l’étude des turbomachines nous supposons toujours que la vitesse de rotation est 

constante, il s’ensuit que : 

𝑑𝜔⃗⃗⃗

𝑑𝑡
= 0⃗⃗ 

Donc : 

𝑑𝐸𝐶
∗ = [𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)] ∙ 𝑊⃗⃗⃗⃗𝑑𝑡⏟

𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗

+ [2𝜔⃗⃗⃗ ∧ 𝑊⃗⃗⃗⃗] ∙ 𝑊⃗⃗⃗⃗𝑑𝑡⏟          
0

+
𝑑𝑊⃗⃗⃗⃗

𝑑𝑡
∙ 𝑊⃗⃗⃗⃗ ⃗⃗⃗𝑑𝑡⏟      

𝑊⃗⃗⃗⃗∙𝑑𝑊⃗⃗⃗⃗

  

Mais : 

 𝑈⃗⃗⃗ = 𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ 

[𝜔⃗⃗⃗ ∧ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)] ∙ 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗   = (𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗  ∧ 𝜔⃗⃗⃗) ∙ (𝜔⃗⃗⃗ ∧ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗) = −𝑈⃗⃗⃗ ∙ 𝑑𝑈⃗⃗⃗ = −
𝑑𝑈2

2
 

Il s’ensuit : 

𝑑𝐸𝐶
∗ = −

𝑑𝑈2

2
+
𝑑𝑊2

2
= 𝑑 (

𝑊2 − 𝑈2

2
) 

Le travail des forces extérieures et intérieures, conserve dans le mouvement relatif la même 
forme que celle établie pour le mouvement galiléen. C’est-à-dire : 

𝛿𝑊𝑒
∗ + 𝛿𝑊𝑖 = −

𝑑𝑝

𝜌
− 𝑔𝑑𝑧 − 𝛿𝜉 

Pour un canal mobile, en négligeant la variation d’énergie potentielle est en considérant les 

vitesses moyennes à l’entrée et à la sortie de la roue on obtient : 

2
∆
1
(
𝑊2 −𝑈2

2
) +∫

𝑑𝑝

𝜌

2

1

+ 𝜉1→2 = 0                                   (XXIII.09) 

On désigne souvent cette expression par théorème de Barré de Saint Venant (ou de Bernoulli) 

généralisé au mouvement relatif. 

4 Travail sur l’arbre de la roue 

Des relations (XXIII.08) et (XXIII.09) nous obtenons une expression du travail Wa en fonction 

de la composition des vitesses à l’entrée et à la sortie de la roue. 

𝑤𝑎 =
𝑉2
2 − 𝑉1

2

2
+
𝑈2
2 −𝑈1

2

2
−
𝑊2
2 −𝑊1

2

2
              (XXIII.10) 

Mis sous cette forme le travail sur l’arbre, en fonction de la composition des vitesses à l’entrée 

et à la sortie de la roue, revêt une forme pédagogique. 

Elle permet de voir immédiatement qu’une machine radiale bénéficiera du terme en  
𝑈2
2−𝑈1

2

2
 ce 

qui ne sera pas le cas dans une machine axiale puisque 𝑈2 = 𝑈1. 
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2 2 

1 

Dans un repère lié à la roue, le terme −𝑊2
2−𝑊1

2

2
 montre que dans une machine génératrice, il 

faudra ralentir le fluide en cours de compression. Ce sera l’inverse dans une machine de 

détente. 

La figure XXIII.01 représente les triangles de vitesse pour des turbomachines de compression 

et de détente. 

 V2    W2                   𝛽1 
          U2  U1 

       W1   V1        𝛼1  

         

               r1 

V1  𝛼1           W1                     𝛽2  

    U1        U2        𝛼2   

           W2                     V2 

     r1  r2                 

 

 

                    r2 
 

 
 
 

 
Compression        Détente 

Figure XXIII.01 Triangle des vitesses des roues de turbomachines  

5 Théorème d'Euler 

5.1 Première démonstration 

Les angles 𝛼 et 𝛽doivent satisfaire les relations : 

𝑈⃗⃗⃗ ∙ 𝑉⃗⃗ = 𝑈𝑉 𝑐𝑜𝑠 𝛼 

𝑈⃗⃗⃗ ∙ 𝑊⃗⃗⃗⃗ = 𝑈𝑊 𝑐𝑜𝑠(𝜋 − 𝛽) 

Des considérations purement géométriques permettent d’écrire : 

𝑊⃗⃗⃗⃗ = 𝑉⃗⃗ − 𝑈⃗⃗⃗ 

En élevant au carré on obtient : 

𝑊2 = 𝑉2 +𝑈2 −2𝑈 ∙⃗⃗⃗⃗⃗⃗ 𝑉⃗⃗ 

Écrivons cette relation à l’entrée et à la sortie de la roue. 
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𝑊1
2 = 𝑉1

2 +𝑈1
2 −2𝑈1𝑉1  𝑐𝑜𝑠𝛼1

𝑊2
2 = 𝑉2

2 +𝑈2
2 −2𝑈2𝑉2  𝑐𝑜𝑠𝛼2

}
𝑊2
2 −𝑊1

2

2
=
𝑉2
2 −𝑉1

2

2
+
𝑈2
2 −𝑈1

2

2
−𝑈2𝑉2  𝑐𝑜𝑠𝛼2 +𝑈1𝑉1  𝑐𝑜𝑠𝛼1 

Ainsi la relation (XXIII.10) peut s’écrire : 

𝑤𝑎 = 𝑈2𝑉2  𝑐𝑜𝑠 𝛼2 −𝑈1𝑉1  𝑐𝑜𝑠 𝛼1    (XXIII.11) 

Cette relation est souvent désignée par équation d’Euler. 

En négligeant les frottements de disques, la puissance fournie ou reçue par une roue de 
turbomachines peut s’écrire : 

𝑃𝑎 = 𝑞𝑟𝑤𝑎 = 𝑞𝑟(𝑈2𝑉2  𝑐𝑜𝑠 𝛼2 −𝑈1𝑉1  𝑐𝑜𝑠 𝛼1) 

                      = 𝑞𝑟𝜔(𝑟2𝑉2  𝑐𝑜𝑠 𝛼2 − 𝑟1𝑉1  𝑐𝑜𝑠 𝛼1) 

Ce qui permet de déduire l’expression du couple C : 

𝐶 =
𝑃𝑎
𝜔
= 𝑞𝑟(𝑟2𝑉2  𝑐𝑜𝑠 𝛼2 − 𝑟1𝑉1  𝑐𝑜𝑠 𝛼1)                         (XXIII.12) 

5.2 Deuxième démonstration 

Pour évaluer le couple exercé par le fluide sur la roue, on applique le théorème des moments 
des quantités de mouvements. D’après ce théorème, le moment résultant des forces extérieures 

par rapport à l’axe de rotation de la roue est égal à la dérivée par rapport au temps des moments 
des quantités de mouvement. 

Tout d’abord pour le moment des forces extérieures, considérons un tube de courant dans un 

aubage mobile. Les efforts exercés sur ce tube de courant, provoque un couple 𝑑𝐶, et se 
décompose en : 

- des forces de pression s’exerçant sur les extrémités du tube de courant constitué par les 
surfaces de révolution dA1 et dA2. Les lignes d’action de ces forces passent par l’axe de rotation 

et par conséquent le moment est nul. 

- des forces de pression exercées par le milieu extérieur sur le tube de courant. 

Pour l’ensemble du fluide contenu dans la roue il est évident que le couple C s’identifie au 

couple que les aubages exercent sur le fluide. En effet, pour deux tubes de courant accolés les 
forces latérales s’annulent puisqu’elles sont égales et opposées. Seuls subsistent les efforts 

latéraux exercés par les parois des aubages sur le fluide. 

Pour déterminer la dérivée par rapport au temps du moment des quantités de mouvement 
utilisons la relation (XI.08) : 

𝑀⃗⃗⃗𝑜𝐹𝑒𝑥𝑡 = 𝐶 =
𝐷

𝐷𝑡
∭(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗)𝜌𝑑𝑉

𝑉
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  s      V2           V2 
             𝛼2 
             𝑛⃗⃗2  
           dA2                M2 

 
              r2         r1           𝛼1 
 

                  V1 
 

     dA1 
              M1 

         𝑛⃗⃗1  
            V1 

Figure XXIII.02 Tube de courant dans un aubage mobile 

Et de la même façon qu’au chapitre (XI) paragraphe 4, nous pouvons écrire : 

𝐶 =∭
𝜕

𝜕𝑡
(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗𝜌)𝑑𝑉

𝑉
+ ∬ (𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗)

𝐴
 𝜌(𝑉 ∙⃗⃗ ⃗⃗⃗ 𝑛⃗⃗)𝑑𝐴. 

Par hypothèse, l’écoulement est permanent dans la roue, la relation (XI.08) devient : 

𝐶 =∬(𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ ∧ 𝑉⃗⃗)
𝐴

 𝜌(𝑉⃗⃗ ∙ 𝑛⃗⃗)𝑑𝐴 

Désignons par : 

 A1 la surface intérieure de la roue correspondant au petit rayon r1 et par A2 celle au rayon 

extérieur r2  

 𝑛⃗⃗1 et 𝑛⃗⃗2 les normales aux surfaces A1 et A2 dirigées suivant l’abscisse curviligne « s ». 

𝐶 = ∬ (𝑂𝑀2⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ ∧ 𝑉⃗⃗2)
𝐴2

 𝜌(𝑉⃗⃗2 ∙ 𝑛⃗⃗⃗⃗⃗2)𝑑𝐴2 −∬ (𝑂𝑀1⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ∧ 𝑉⃗⃗1)
𝐴1

 𝜌1(𝑉⃗⃗1 ∙ 𝑛⃗⃗⃗⃗⃗1)𝑑𝐴1 

Puisque l’écoulement est permanent, et que le débit qui passe dans la roue est qr nous avons :  

𝜌2(𝑉⃗⃗2 ∙ 𝑛⃗⃗2)𝑑𝐴2 = 𝜌1(𝑉⃗⃗1 ∙ 𝑛⃗⃗⃗⃗⃗1)𝑑𝐴1 = 𝑑𝑞𝑟 

Il s’ensuit : 

𝐶 = ∬ (𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗2 ∧ 𝑉⃗⃗2) 𝐴2
𝑑𝑞𝑟 −∬ (𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗1 ∧ 𝑉⃗⃗1)𝑑𝑞𝑟𝐴1

  (XXIII.13) 

Désignons par 𝑒⃗3 un vecteur unitaire porté par l’axe de la roue et multiplions scalairement la 

relation (XXIII.13) par 𝑒⃗3. Nous avons ainsi : 

𝐶  ∙ 𝑒⃗3   = 𝐶          (𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗2∧ 𝑉⃗⃗2 )  ∙ 𝑒⃗3 = 𝑟2𝑉2 𝑐𝑜𝑠 𝛼2             (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ 1⃗ ∧ 𝑉⃗⃗1) ∙ 𝑒⃗3 = 𝑟1𝑉1 𝑐𝑜𝑠 𝛼1 

La relation (XXIII.13) devient : 

𝐶 = ∬ 𝑟2𝑉2 𝑐𝑜𝑠 𝛼2 
𝐴2

𝑑𝑞𝑟 −∬ 𝑟1𝑉1 𝑐𝑜𝑠 𝛼1𝑑𝑞𝑟
𝐴1
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Dans le cas hypothétique où tous les filets fluides seraient identiques (ou tout simplement en 

considérant les valeurs moyennes) on retrouve la relation (XXIII.12) 

𝐶 = (𝑟2𝑉2  𝑐𝑜𝑠 𝛼2 − 𝑟1𝑉1  𝑐𝑜𝑠 𝛼1) 𝑞𝑟  

Remarques. 

- Pour une turbomachine comportant n cellules sur le même arbre nous aurions évidemment : 

   𝐶 = ∑𝐶𝑗          avec       C𝑗 =∬ 𝑟2𝑗𝑉2𝑗 𝑐𝑜𝑠 𝛼2𝑗  
𝐴2𝑗

𝑑𝑞𝑟𝑗 −∬ 𝑟1𝑗𝑉1𝑗 𝑐𝑜𝑠 𝛼1𝑗 𝑑𝑞𝑟𝑗
𝐴1𝑗

 

𝑗=𝑛

𝑗=1

 

- Extérieurement aux canaux mobiles, la roue comporte des surfaces inactives. Ces  surfaces 
sont soumises aux frottements du fluide et sont responsables d’une dégradation énergétique que 
l’on désigne, dans la profession, par perte par frottements de disques. 

6 Evolutions polytropiques 

Les diverses évolutions que nous considérons, relativement élémentairement, sont des 

transformations idéales qu’il est difficile à réaliser pratiquement. C’est le cas notamment pour 

les évolutions isothermes et isentropiques. 

Conformément à la relation (XXIII.07), pour déterminer le travail reçu ou cédé par une 

turbomachine il est nécessaire d’évaluer : 

∫
𝑑𝑝

𝜌

𝑆

𝐸

 

 

Cette intégrale doit être, comme on le sait, déterminée en suivant les états physiques réels du 

fluide dans la traversée de la machine. Mais nous sommes dans l’impossibilité de connaître 

l’équation représentative de la véritable évolution 𝑝 = 𝑓(𝜌). Si bien qu’on remplace, 

arbitrairement, la loi réelle par une courbe partant de E pour aboutir en S de façon à satisfaire 

la relation : 

𝑝𝐸

𝜌𝐸
𝑘
=
𝑝𝑠

𝜌𝑆
𝑘
 

 

Cette courbe 
𝑝

𝜌𝑘
 = constante est appelée une polytrope. L’exposant k est désigné par coefficient 

polytropique. La loi réelle coïncide donc avec la polytrope à l’entrée E et à la sortie S de la 

turbomachine.  

On remplace ainsi la loi réelle par une approximation. 

Les évolutions isobares, isochores, isothermes et isentropiques constituent des cas particuliers 

des évolutions polytropique suivant la valeur de l’exposant polytropique K. En effet pour : 

k= 0 on a une isobare. 

     k= 1 on a une isotherme. 

         k= γ on a une isentropique. 

     k= ∞  on a une isochore. 
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L’expression 
𝑝

𝜌𝑘
= 𝑝𝑣𝑘 = constante fournit des relations de formes analogues à celles 

obtenues pour les évolutions isentropiques, relation (XIII.07) : 

𝑇𝑓
𝑇𝑖
= (

𝑝𝑓
𝑝𝑖
)
(
𝑘−1
𝑘
)

= (
𝜌𝑓
𝜌𝑖
)
(𝑘−1)

= (
𝑣𝑖
𝑣𝑓
)

(𝑘−1)

 

7 Travail polytropique 

Si dans la relation (XXIII.07) nous retranchant les pertes 𝜉𝐸→𝑆  à la valeur du travail interne, on 

obtient le travail polytropique. 

𝑤𝑝 = 𝑤𝐼 − 𝜉𝐸→𝑆 = ∫
𝑑𝑝

𝜌

𝑆

𝐸

+
𝑉𝑆
2 −𝑉𝐸

2

2
+ 𝑔(𝑧𝑆 − 𝑧𝐸)              (XXIII.14) 

Ainsi présenté le travail polytropique mesure l'énergie reçue ou fournie dans une turbomachine 

qui fonctionnerait sans dégradation énergétique. La puissance correspondante est donc le 
produit du travail polytropique par le débit masse traversant la machine, soit : 

𝑃𝑃 = 𝑤𝑝 𝑞𝑚 

 
Notons également que les relations (XV.07) et (XXIII.05) permettent de donner une autre 

expression du travail polytropique : 

𝑤𝑃 = −∫ Tds
𝑠𝑆

𝑠𝐸

+ ℎ𝑆− ℎ𝐸 +
𝑉𝑆
2 −𝑉𝐸

2

2
+𝑔(𝑧𝑆− 𝑧𝐸) 

Dans les applications usuelles usuelle des turbomachines les expressions du travail interne et 

du travail polytropiques se simplifient. La variation d’énergie cinétique et la variation d’énergie 

potentielle, entre l’entrée E et la sortie S de la machine sont très souvent négligeables. Et on 

écrit : 

𝑤𝐼 = ∫
𝑑𝑝

𝜌

𝑆

𝐸
+ 𝜉𝐸→𝑆 

𝑤𝑝 = ∫
𝑑𝑝

𝜌

𝑆

𝐸
 

On définit le travail isentropique 𝑤𝑖𝑠𝑒𝑛 en appliquant 𝑘 = 𝛾 dans l’évaluation de : ∫
𝑑𝑝

𝜌

𝑆𝑖𝑠𝑒𝑛

𝐸
 

8 Représentation graphique 

Dans un diagramme entropique, la figure XXIII.03 représentent les aires 

caractérisant 𝑤𝑖𝑠𝑒𝑛, 𝑤𝐼, 𝑤𝑃  𝑒𝑡 𝜉𝐸→𝑆 pour une turbomachine génératrice. 
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L'aire A (jaune) représente le travail 

isentropique 𝑤𝑖𝑠𝑒𝑛. 

L'aire B (bleu) plus l'aire A (jaune) 
constituent le travail polytropique wp. 

L'aire C (rouge) constitue les pertes 𝜉𝐸→𝑆 . 

La somme de l’aire A + l’aire B + l’aire C 
représente le travail interne wI. 

 

                                           pS 

   T                          Aire B     S 
 

        Sisen    pE 

         Aire A        Aire C 
 

  
 

 
  
                s 

Figure XXIII.03 𝑤𝑖𝑠𝑒𝑛, 𝑤𝐼 , 𝑤𝑃  𝑒𝑡 𝜉𝐸→𝑆 

Pour une turbomachine réceptrice la représentation sur le diagramme entropique est plus 
délicate (Figure XXIII.03). Dans la comptabilisation des travaux et des pertes, l’aire C peut être 
soit négative ou soit positive. 

L'aire A (jaune) représente le travail isentropique 𝑤𝑖𝑠𝑒𝑛. 

L'aire B (bleu) plus l'aire A (jaune) constituent le travail polytropique wp. 

L'aire C (rouge) plus l'aire B (bleu) constitue les pertes  𝜉𝐸→𝑆 . 

L’aire A (jaune) moins l’aire C (rouge) représente le travail interne wI. 

  

        T                  pE        T            pE 
         Aire B 
         E  pS        E 

        Aire A       pS 
                     S         S Aire C 

 
 
 

 
        s       s 

Figure XXIII.03 Représentations de 𝑤𝑖𝑠𝑒𝑛, 𝑤𝐼, 𝑤𝑃  𝑒𝑡 𝜉𝐸→𝑆 
pour une turbomachine réceptrice 

9 Rendements 

9-1 Rendement global 

Dans une turbomachine génératrice la puissance fournie (puissance à l’accouplement) est 

supérieure à la puissance disponible. 

𝜂𝑔 =
𝑃𝑃
𝑃

 

C’est l’inverse pour une machine réceptrice : 

𝜂𝑔 =
𝑃

𝑃𝑃
 

E 

Sisen 
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9-2 Rendement mécanique 

Pour une turbo machine génératrice le rendement mécanique est le rapport entre la puissance 

interne et la puissance à l’accouplement. 

𝜂méc =
𝑃𝐼
𝑃

 

C’est l’inverse pour une machine réceptrice : 

𝜂méc =
𝑃

𝑃𝐼
 

9-3 Rendement volumétrique 

Le rendement volumétrique 𝜂𝑣  compare le débit véhiculé par la machine 𝑞𝑚 au débit passant 

réellement dans les aubages mobiles. Ainsi défini ce rendement comptabilise les débits de fuites 

internes 𝑞𝑓 et néglige les fuites externes qui peuvent s’échapper de la machine. 

Pour une turbomachine génératrice le rendement volumétrique est : 

𝜂𝑣 =
𝑞𝑚

𝑞𝑚 +𝑞𝑓
 

Et pour une machine réceptrice : 

𝜂𝑣 =
𝑞𝑚 −𝑞𝑓
𝑞𝑚

 

9-4 Rendement isentropique 

Ainsi que nous l’avons déjà précisé les écoulements dans les turbomachines sont généralement 

adiabatiques. Dans ces conditions il peut être intéressant de comparer la machine réelle à une 

turbomachine idéale qui serait le siège d’une évolution isentropique. 

Les transferts de chaleur avec le milieu extérieur étant nuls, la relation (XXIII.05) devient en 

négligeant les variations d’énergie cinétique entre l’entrée et la sortie de la turbo machine : : 

𝑤𝐼 = ℎ𝑖𝑆 − ℎ𝑖𝐸 

 
Le rendement isentropique peut être évalué à 

l'aide d'un diagramme de Mollier. 

𝜂𝑠 =
ℎiS𝑠 − ℎiE

ℎiS − ℎiE
 

Dans l'éventualité d'un gaz est idéal parfait 
ce rendement deviendrait : 

𝜂𝑠 =
𝑇iS𝑠 − 𝑇𝑖𝐸
𝑇iS − 𝑇iE

 

 

    h 

    iS 

                                 iSs 

        Evolution irréversible. 

  p iS 

Evolution isentropique 

 

     piE          iE 

       s 

 

Figure XXIII.04 Evolutions adiabatiques 
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Soit encore : 

𝜂𝑠 =
1− (

𝑝𝑠
𝑝𝐸
)

𝛾−1
𝛾

1 −
𝑇𝑆
𝑇𝐸

 

9-5 Rendement polytropique 

Le rendement polytropique a pour rôle de rendre compte de la non adiabaticité de l'écoulement 

et de l'ensemble des pertes internes. Par conséquent en supprimant la perte mécanique dans 

l'expression du rendement global on obtient l'expression du rendement polytropique. 

Pour une turbo machine génératrice : 

𝜂𝑃 =
𝑤𝑃
𝑤𝐼
=

𝑤𝑝
𝑤𝑝 + 𝜁𝐸→𝑆

=
𝑃𝑃
𝑃𝐼

 

Pour une turbomachine réceptrice : 

𝜂𝑃 =
𝑤𝐼
𝑤𝑃
=
|𝑤𝑝| − 𝜁𝐸→𝑆

|𝑤𝑝|
=
𝑃𝐼
𝑃𝑃

 

Remarquons également que le rendement global est le produit du rendement mécanique par le 

rendement polytropique 𝜂𝑔 = 𝜂méc ∙ 𝜂𝑃 . 

Le rendement polytropique possède des propriétés qui le font physiquement préférer au 

rendement isentropique. Il rend compte directement des pertes internes réelles, au sens du 

second principe de la thermodynamique. 

En associant en série plusieurs étages de même rendement polytropique, la machine 

multicellulaire ainsi constituée aura pour rendement polytropique celui des étages individuels. 

On peut résumer ces diverses qualités en disant que le rendement polytropique est un critère de 

la qualité technique d’un type de machine. Pour un compresseur il est indépendant du taux de 

compression. 
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Chapitre XXIV 

Pompes centrifuges 
 

 

La description sommaire d’une pompe centrifuge a été effectuée au Chapitre XXII consacré 

aux généralités sur les turbomachines. 

1. Notations 

 Pour repérer une particule fluide, s’écoulant à l’intérieur d’une pompe centrifuge, nous 
utiliserons les notations ci-dessous notées sur la figure XXIV.01. 

 
E Entrée pompe 

1 Entrée roue 

2 Sortie roue et entrée diffuseur. 

3 Sortie diffuseur et entrée volute 

S Sortie pompe 
 

           
 

 
  
 

 
  

  
                 
  

                
  

 
 
 

Figure XXIV.01 Notations 

2. Hauteur manométrique 

Lors de l’établissement de la formule de Bernoulli, au chapitre XXI, il a été défini la charge du 

fluide 𝐻 =
𝑉2

2𝑔
+ ℎ +

𝑝

𝜌𝑔
 qui est exprimée en mètres de fluide (on dit parfois colonne de 

fluide). 

Dans les stations de pompage et dans de nombreux domaines de l’hydraulique, on préfère 

utiliser cette unité pour une question de commodité. 

2 
E 

S 

1 

3 
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Ainsi on définit la hauteur manométrique H d’une pompe comme étant le travail polytropique 

exprimée en mètres de fluide. Le volume massique étant constant la relation (XXIII.14) devient 
pour une pompe : 

𝐻 =
𝑤𝑃
𝑔
=
𝑝𝑆 − 𝑝𝐸
𝜌𝑔

+
𝑉𝑆
2 − 𝑉𝐸

2

2𝑔
+𝑔(𝑧𝑆− 𝑧𝐸)                    (XXIV.01)  

3 Hauteur théorique 

On définit également la hauteur théorique Hth comme étant le travail sur l’arbre wa exprimé en 
mètres de fluide. Soit : 

𝐻𝑡ℎ =
𝑤𝑎
𝑔
                                                                                   (XXIV.02) 

4 Rendement hydraulique 

Le rendement hydraulique d’une pompe est égal au rapport : 

𝜂ℎ =
𝐻

𝐻𝑡ℎ
 

5 Répartition des pressions et de l’énergie cinétique 

La connaissance des caractéristiques du fluide aux différents endroits de la pompe nous permet 
de déduire l’évolution de la pression et de l’énergie cinétique. En négligeant les termes de 
pesanteur, comme il est d’usage dans les turbomachines, la relation de Bernoulli entre l’entrée 

de la pompe E et l’entrée de la roue 1 s’écrit : 

𝑉𝐸
2

2𝑔
 +
𝑝𝐸
𝜌𝑔
=
𝑉1
2

2𝑔
+
𝑝1
𝜌𝑔
+ 𝜉𝐸→1 

 

Bien que n’ayant pas changé les notations, il est évident que la perte de charge   𝜉 est exprimée 
ici en mètres de fluide. 

De la relation (XXIII.08) on déduit : 

𝑤𝑎
𝑔
+
𝑉1
2

2𝑔
+
𝑝1
𝜌𝑔
=
𝑉2
2

2𝑔
+
𝑝2
𝜌𝑔
+ 𝜉1→2 

Appliquons la relation de Bernoulli successivement de 2 → 3,  𝑒𝑡 3 → 𝑆 

Soit : 

𝑉2
2

2𝑔
 +

𝑝2
𝜌𝑔
=
𝑉3
2

2𝑔
+
𝑝3
𝜌𝑔
+ 𝜉2→3 

𝑉3
2

2𝑔
 +

𝑝3
𝜌𝑔
=
𝑉𝑆
2

2𝑔
+
𝑝𝑆
𝜌𝑔
+ 𝜉3→𝑆  
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𝑉𝐸
2

2𝑔
  

Ces relations nous permettent de donner l’allure des diverses énergies en fonction des points 

caractéristiques que nous avons précisées ci-dessus. 
 

         𝜉1→2       iS 

               𝜉2→3 
             𝜉3→𝑆    

               
𝑉3
2

2𝑔
                  

𝑉𝑆
2

2𝑔
  

       

        𝐻𝑡ℎ =
𝑤𝑎

𝑔
         

𝑉2
2

2𝑔
 

 
 

 
 

 
 

             𝜉𝐸→1   

                      
𝑝2

𝜌𝑔
           

𝑝3

𝜌𝑔
    

𝑝𝑆

𝜌𝑔
 

 
 

    
𝑝𝐸

𝜌𝑔
                      

𝑝1

𝜌𝑔
 

 
 
 

 
 

  E          1    2        3    S 
Figure XXIV.02 Evolution de la pression et de l’énergie cinétique 

6 Relations entre la hauteur théorique Hth et le débit volume qv 

   d’une pompe 

Dans le but d’établir les relations entre la hauteur théorique et le débit volume, examinons la 
déformation des triangles des vitesses lorsque le débit varie en maintenant constante la vitesse 

de rotation de la roue. 

 

 
       W2               V2 

          𝛽2        𝛼2  
  U2 

 
 
  W1         V1 

      𝛽1    𝛼1  
     U1 

Figure XXIV.03 

Variation débit 

 
Supposons que le débit croisse, dans ces conditions la 
vitesse V1 augmente. La direction de W1 est modifiée d’où 

les pertes par choc à l’entrée de la roue. 

A la sortie, la direction du fluide est imposée par l’angle𝛽2 
des aubages. La direction de la vitesse relative W2 ne 
change pas et sa norme augmente avec le débit. Par contre 

la direction de la vitesse absolue V2 est modifiée et il 
s’ensuit des pertes par choc à l’entrée du diffuseur ou de la 

volute. 
 

iE
eE

E 

𝑉1
2

2𝑔
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D’une façon tout à fait analogue à l’exercice XXIV.01, traité à la fin de ce chapitre, appliquons 

l’équation d’Euler en considérant le débit de la roue. Ainsi nous avons : 

𝐻𝑡ℎ =
𝑈2
𝑔
[𝑈2 −

𝑞𝑣
2𝜂𝑣𝜋𝑟2 𝑙2𝑡𝑔𝛽2

] 

 
 
 Hth  

                   𝛽2 >
𝜋

2
  

𝑈2
2

𝑔
    𝛽2 =

𝜋

2
  

 

  𝛽2 <
𝜋

2
 

 

    𝑞𝑟  
Figure XXIV.04 Hth en fonction de 𝛽2  

 
Soit une relation de la forme : 

𝐻𝑡ℎ = 𝐴𝜔
2 +𝐵𝜔𝑞𝑟          (XXIV.03) 

A vitesse de rotation constante, la hauteur 
théorique varie linéairement avec le débit. La 
pente de la droite sera positive ou négative 

suivant le signe de 𝑡𝑎𝑛 𝛽2. 
 

 

     𝛽2     𝛽2               𝛽2  
 
 

 
 

 
 
 

      𝛽2 <
𝜋

2
     𝛽2 =

𝜋

2
          𝛽2 >  

𝜋

2
  

Figure XXIV.05 Forme des roues de pompe en fonction de l'angle 𝛽2 

Pour des raisons de stabilité de fonctionnement et de rendement, les roues des pompes 
centrifuges ont des aubes couchées en arrière. Sauf dans quelques cas particuliers d'utilisation. 

7 Courbes caractéristiques 

En enlevant de la droite 𝐻𝑡ℎ = 𝑓(𝑞𝑟) les pertes aérodynamiques 𝜉𝑎é𝑟𝑜  , c'est-à-dire la somme 

𝜉𝐸→1 + 𝜉1→2 + 𝜉2→3 + 𝜉3→𝑆 , on déduit la hauteur manométrique H puisque : 

𝐻 = 𝐻𝑡ℎ− 𝜉𝑎é𝑟𝑜  

Le terme 𝜉𝑎é𝑟𝑜  peut également se décomposer en pertes par frottement et en pertes par 
incidence. 

Pertes par frottement : 

Pertes par incidence : 

     𝜉 
             𝜉𝑎é𝑟𝑜         
 
 
 

           qvr 

Figure XXIV.06 Pertes dans la roue 

u débit d'adaptation le fluide pénètre dans la 

roue avec un angle très proche de celui des 
aubages. Les pertes par incidence sont alors 
minimales mais en dehors de ce régime elles  

croissent de part et d'autre suivant une courbe 
d'allure parabolique. 

Les pertes par frottement varient sensiblement 
comme le carré du débit. 
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On a ainsi tous les éléments pour construire la courbe de la hauteur manométrique H en  fonction 

du débit qvr qui passe dans la roue. 

La relation (XXIV.03) montre, qu'à vitesse constante la hauteur théorique 𝐻𝑡ℎ  en fonction du 
débit dans la roue est une droite. En déduisant de la hauteur théorique les pertes aérodynamiques 
on obtient la hauteur manométrique. 

 H 
  Hauteur manométrique H 

   Hauteur théorique Hth 

 
 

       𝜉𝑎é𝑟𝑜 
 
 
 

        qvr 

Figure XXIV.07 Hauteur manométrique 

Remarquons que qvr est le débit volume qui traverse la roue et non celui qui est fourni par la 
pompe qv. Pour obtenir la courbe utile H en fonction de qv, il faut translater la courbe H (qvr) en 
comptabilisant le débit de fuite. 

Le rendement global (XXIII. 16) permet d'écrire pour une pompe : 

𝜂𝑔 =
𝜌𝑔𝑞𝑣𝐻

𝑃
                                                                             (XXIV.04)  

P est la puissance à l'accouplement (XXIII. 03). 

   𝜂𝑔  

 
        H 

 
 

 
 
 

 
     qv 

Figure XXIV.08 

Courbe constructeur 

 

Ce rendement est nul pour  𝑞𝑣 = 0 et H=0. 

Il est maximum au point d'adaptation pour 
lequel les incidences sur les aubages sont 

faibles (inférieures à±5°). 

Pour utiliser correctement une pompe 
(centrifuge ou non) il est indispensable de 

disposer des courbes caractéristiques du 
constructeur Figure XXIV.08. 

 

 

Il faudra en outre disposer des caractéristiques de la pompe vis-à-vis de la cavitation qui sera 
évoquée lors d'un prochain chapitre. 
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8 Déviation, influence du nombre des aubes 

Jusqu'à présent, nous avons supposé que le fluide sortait de la roue avec l'angle𝛽2𝑎𝑢𝑏𝑎𝑔𝑒𝑠  des 

aubages. 

Ceci serait exact si le nombre d'aubes était infini. On a évidemment intérêt à limiter le nombre 
d'aubes pour ne pas augmenter la puissance dissipée par frottement dans les canaux mobiles. 

   𝜒𝑈2 
 

             𝑊2𝑎          V2 

𝛽2𝑎𝑢𝑏𝑎𝑔𝑒𝑠    W2        V2a 

 

    𝛽2        𝛼2 
   U2  

Figure XXIV.09 Déviation 

 
On accepte un écart entre l'angle moyen de 

sortie des filets fluides et l'angle 𝛽2𝑎𝑢𝑏𝑎𝑔𝑒𝑠  

conformément à la figure XXIV.09. 

Cette différence est appelée la déviation 
angulaire.  

Elle dépend du nombre d'aubes, de l'angle 𝛽2𝑎𝑢𝑏𝑎𝑔𝑒𝑠  et plus généralement de la forme des 

aubages.  

La grandeur 𝜒𝑈2  est représentative de la perte d'énergie fournie au fluide. 

Il existe des relations empiriques pour calculer la déviation. La plus connue est celle de Stodola 

qui donne la valeur du 𝜒. 

𝜒 =
𝜋

𝑍
𝑠𝑖𝑛 𝛽2𝑎𝑢𝑏𝑎𝑔𝑒𝑠  

Z étant le nombre d'aubes. 
 

 

9 Diffuseurs 

Ainsi qu'il a été déjà évoqué, les diffuseurs, en ralentissant le fluide, provoquent une nouvelle 
augmentation de la pression. Ils assurent au sein du fluide une conversion de l'énergie cinétique 
en énergie piézométrique. 

Les diffuseurs peuvent comporter des aubes ou être lisse, c'est-à-dire sans aubes. 

Si la largeur d'un diffuseur est constante, l'équation de débit conduit à la relation suivante : 

𝑟2𝑉2 𝑠𝑖𝑛 𝛼2 = 𝑟3𝑉3 𝑠𝑖𝑛 𝛼3        (XXIV.05) 

10 Diffuseurs lisses 

Puisqu’il n’y a pas d’aubes, l’action du fluide est nul en négligeant le frottement sur les parois 
lisses du diffuseur. En vertu du théorème d’Euler (relationXXIII.12) : 

𝑟2𝑉2  𝑐𝑜𝑠 𝛼2 = 𝑟3𝑉3  𝑐𝑜𝑠 𝛼3. 

Et de la relation (XXIV.05) nous déduisons que : 
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𝑡𝑎𝑛 𝛼3 = 𝑡𝑎𝑛 𝛼2  = constante. 
Et par suite : 

 r2𝑉2 = 𝑟3𝑉3 = 𝑟𝑉 =  constante    (XXIV.06) 

Les trajectoires, dans un diffuseur lisse de largeur constante, sont des spirales logarithmiques. 

Pour le montrer considérons un point M défini dans le repère ci-dessous par :𝑂𝑀⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝑟 𝑢⃗⃗(𝜃) 

 y  V 

 

       𝑢⃗⃗ (𝜃 +
𝜋

2
)  

     α 
 

     𝑢⃗⃗ (
𝜋

2
)      r      M 

 

      𝑢⃗⃗(𝜃)  
 

 𝜃  

  O       𝑢⃗⃗(0)          x 

Figure XXIV.10 

Définition du repère 

 

Il s’ensuit que : 

𝑉⃗⃗ =
𝑑 (𝑟𝑢⃗⃗(𝜃))

𝑑𝑡
=
𝑑𝑟

𝑑𝑡
𝑢⃗⃗(𝜃) + 𝑟

𝑑𝜃

𝑑𝑡
𝑢⃗⃗ (𝜃 +

𝜋

2
) 

Remarquons que dans le repère 𝑢⃗⃗(𝜃), 𝑢⃗⃗ (𝜃 +
𝜋

2
) nous 

pouvons exprimer la vitesse de la façon suivante : 

𝑉⃗⃗ = 𝑉 𝑠𝑖𝑛 𝛼 𝑢⃗⃗(𝜃) + 𝑉 𝑐𝑜𝑠 𝛼 𝑢⃗⃗ (𝜃 +
𝜋

2
) 

De ces deux dernières relations nous déduisons : 

𝑑𝑟

𝑑𝑡
= 𝑉 𝑠𝑖𝑛 𝛼 

𝑟
𝑑𝜃

𝑑𝑡
= 𝑉 𝑐𝑜𝑠 𝛼  

Soit encore : 
𝑑𝑟

𝑟
= 𝑎𝑑𝜃 puisque tan𝛼 = constante 

Et en intégrant on obtient le résultat recherché : 

𝑟 = 𝐾𝑒𝑎𝜃 
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Figure XXIV.11 Diffuseurs lisses 

11 Diffuseurs à aubes 

Dans un diffuseur à aubes il y a, évidemment, un couple qui s’exerce sur les aubages : 

𝐶 = 𝑞𝑚(𝑟3𝑉3 𝑠𝑖𝑛 𝛼3 − 𝑟2𝑉2 𝑠𝑖𝑛 𝛼2) ≠ 0 

Si la largeur du diffuseur est constante la relation (XXIV.05) s’écrit : 

𝑟2𝑉2 𝑠𝑖𝑛 𝛼2 = 𝑟3𝑉3 𝑠𝑖𝑛 𝛼3 

Pour ralentir davantage le fluide il faut donc que : 

𝛼3 avec aubages > 𝛼3sans aubage   pour que  𝑉3 avec aubages < 𝑉3 sans aubage . 

           
 

 
  

 
 

  

  
                 

  
                 

  

 
 

 
Figure XXIV.12 Diffuseurs à aubes 
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Exercice XXIV.01 

Soit un débit d’eau qv= 2500 m³/h et une hauteur manométrique H= 148 m le point de régime 
nominal d’une pompe centrifuge de caractéristiques : 

- Vitesse de rotation N=1480 tr/min 
- Rayon extérieure de la roue r2 = 324 mm 
- Largeur à la sortie de la roue l2 =43 mm 

- Angle de sortie 𝛽2 =28° 18’ 

1 - Sachant que la vitesse V1 est dirigée radialement (1=90°), que le rendement volumétrique 

𝜂𝑣 =0,95 , calculer le rendement hydraulique de la pompe. 

2 - A la sortie de la roue le fluide pénètre dans un diffuseur, il en sort au rayon r3 avec la vitesse 

V3 sous l’angle 3. Quelle est la variation de son énergie cinétique dans les cas suivants : 

A) diffuseur lisse. 

B) diffuseur à aubes.  

On donne : 
r3= 450 mm et l3= l2. 

Pour le diffuseur à aubes3=16°. 

3 - On suppose que le diffuseur à aubes est responsable de 30 % des pertes hydrauliques à ce 

régime nominal. On précise que la masse volumique de l’eau est : 𝜌 = 1000 𝑘𝑔/𝑚3 . Calculer 
l’augmentation de pression qu’il permet de réaliser. 

Corrigé 

1 - De la relation (XXIII.11) nous avons : 

𝑤𝑎 = 𝑈2𝑉2  𝑐𝑜𝑠 𝛼2 −𝑈1𝑉1  𝑐𝑜𝑠 𝛼1 = 𝑈2𝑉2  𝑐𝑜𝑠 𝛼2, puisque𝛼1 = 90°. 

Au rayon r2 la vitesse périphérique est : 

𝑈2 =
2𝜋𝑟2𝑁

60
=
𝜋 × 0,324 × 1480

30
= 50,2 𝑚/𝑠  

       W2      V2 

                     𝛽2    𝛼2  
             U2       W1      V1 

        𝛽1  𝛼1      r2 

         U1 

 
             r1 
 

 
 

 
 

Le débit volume qvr de la roue doit satisfaire la 
relation : 

𝑞𝑣𝑟 = 2𝜋𝑟2 𝑙2𝑉2 𝑠𝑖𝑛 𝛼2 = 2𝜋𝑟2 𝑙2𝑊2 𝑠𝑖𝑛 𝛽2 

Par ailleurs nous avons : 

𝑈2 −𝑊2 𝑐𝑜𝑠 𝛽2 = 𝑉2 𝑐𝑜𝑠 𝛼2 = 𝑈2 −
𝑞𝑣𝑟

2𝜋𝑟2 𝑙2𝑡𝑔𝛽2
 

Il s’ensuit : 

𝑤𝑎 = 𝑈2 [𝑈2 −
𝑞𝑣𝑟

2𝜋𝑟2 𝑙2𝑡𝑔𝛽2
] 
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Compte tenu du rendement volumétrique et de la relation (XXIV.02) nous déduisons : 

𝐻𝑡ℎ =
𝑈2
𝑔
[𝑈2 −

𝑞𝑣
2𝜂𝑣𝜋𝑟2 𝑙2𝑡𝑔𝛽2

] 

 

𝐻𝑡ℎ =
50,2

9,81
(50,2−

2500
3600

2× 0,95× 3,14 ×0,324× 0,043 ×𝑡𝑔(28°18)
) 

Hth=177,65 m 

D’où le rendement hydraulique : 

𝜂ℎ =
𝐻

𝐻𝑡ℎ
=

148

177,65
= 0,83 

2 - Il faut déterminer les caractéristiques du fluide à la sortie de la roue, c’est-à-dire à l’entrée 
du diffuseur. 

 

𝑊2 𝑠𝑖𝑛 𝛽2 =
𝑞𝑣

2𝜋𝜂𝑣𝑟2 𝑙2
= 𝑉2 𝑠𝑖𝑛 𝛼2

            
𝑔𝐻𝑡ℎ
𝑈2

= 𝑉2 𝑐𝑜𝑠 𝛼2}
 

 
⇒ 𝑡𝑎𝑛 𝛼2 =

𝑈2𝑞𝑣
2𝜋𝜂𝑣𝑟2 𝑙2𝑔𝐻𝑡ℎ

 

 𝑡𝑎𝑛 𝛼2 =
50,2 ×

2500
3600

2 × 0,95 × 3,14 × 0,324 × 0,043 × 9.81 × 177,65
= 0.2406 ⇒ 𝛼2 = 13°32′ 

Et par suite : 

 𝑉2 =
𝑔𝐻𝑡ℎ

𝑈2 𝑐𝑜𝑠 𝛼2
=

9.81 × 177.65

50,2 × 𝑐𝑜𝑠 13°32′
= 35,7 𝑚/𝑠 

A) L’équation de débit s écrit : 

𝑞𝑣 = 2𝜋𝑟3 𝑙3𝑉3 𝑠𝑖𝑛 𝛼3 = 2𝜋𝑟2 𝑙2𝑉2 𝑠𝑖𝑛 𝛼2 = 2𝜋𝑟2 𝑙3𝑉2 𝑠𝑖𝑛 𝛼2  ⇒  𝑟3𝑉3 𝑠𝑖𝑛 𝛼3 = 𝑟2𝑉2 𝑠𝑖𝑛 𝛼2. 

Et de la relation (XXIV.06) on déduit : 

𝑉3 =
𝑟2𝑉2
𝑟3

=
0,324 × 35,7

0,450
= 25,7 𝑚/𝑠 

La variation d’énergie cinétique dans le diffuseur lisse est donc : 

𝑉3
2 −𝑉2

2

2
=
25, 72 − 35, 72

2
= −307 𝐽/𝑘𝑔 

B) L’équation de débit pour le diffuseur à aubes permet de déduire la vitesse 𝑉3∗  : 
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𝑉3∗ =
𝑟2𝑉2 𝑠𝑖𝑛 𝛼2
𝑟3 𝑠𝑖𝑛 𝛼3

=
0,324 × 35,7 × 𝑠𝑖𝑛 13°32′

0,450 × 𝑠𝑖𝑛 1 6°
= 21,8 𝑚/𝑠 

La variation d’énergie cinétique dans le diffuseur à aubes est : 

𝑉3∗
2 −𝑉2

2

2
=
21, 82 − 35, 72

2
= −399 𝐽/𝑘𝑔 

3 - La perte hydraulique du diffuseur est donc : 

𝜉2→3∗ = 0,3 × (177,65− 148) = 8,9 𝑚 

Appliquons l’équation de Bernoulli entre 2 et 3 : 

 
𝑃2
𝜌𝑔
+
𝑉2
2

2𝑔
= 
𝑃3∗

𝜌𝑔
+
𝑉3∗
2

2𝑔
+ 𝜉2→3∗ 

Et par suite : 

 
𝑃3∗ − 𝑃2
𝜌𝑔

=
𝑉2
2 −𝑉3∗

2

2𝑔
− 𝜉2→3∗ =

35,72 − 21,82

2𝑔
− 8,9 

 
𝑃3∗ −𝑃2
𝜌𝑔

= 31,84𝑚 ⇒  𝑃3∗ − 𝑃2 = 31,84 × 1000 × 9,81 = 312350 𝑃𝑎 
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Chapitre XXV 

Pompes hélices 
 

 

Une pompe hélice mono étage comporte : 

    Redresseur 

 
   1  2    3 

           V1       V3 

 
   Roue 

            ri      re 

Figure XXV.01 Pompe hélice 

 

- un canal d’admission.  
- une roue munie d’un nombre réduit de 

pales (5 à 10). 
- un redresseur fixe et muni d’un nombre 
de pales plus élevées que ceux de la roue 

(10 à 20). 
- un canal de sortie. 

 

Dans ce type de turbomachine, il est nécessaire d’étudier les conditions d’équilibre radial des 
différents filets fluides. Dans les pompes centrifuges les conditions d’équilibre sont 

automatiquement réalisées. 

1 Triangle des vitesses 

Les calculs sont conduits pour que tous les filets fluides, 
compris entre le rayon intérieur ri et le rayon extérieur re, 
reçoivent la même énergie au point d’adaptation. Cela 

implique que le travail massique wa reste constant ∀𝑟 ∍
]𝑟𝑖 , 𝑟𝑒 [. En d’autres termes il ne faut pas que wa soit fonction 
de r. 

Sachant que l’angle 𝛼1 =
𝜋

2
  la relation (XXIII.11) devient : 

𝑤𝑎 = 𝑈2𝑉2  𝑐𝑜𝑠 𝛼2 =  constante 

La répartition des pressions à l’intérieur d’une pompe hélice 
est tout à fait similaire à celle d’une pompe centrifuge. Par 

contre, pour obtenir l’accroissement de pression dans la roue, 
on ne bénéficie pas du terme caractérisant la force centrifuge 
puisque : U1 = U2. 

𝑤𝑎 = ∫
𝑑𝑝

𝜌

2

1

+
𝑉2
2 −𝑉1

2

2
+ 𝜉1→2  

  =
𝑉2
2 − 𝑉1

2

2
+  0 ⏟  
𝑈2
2−𝑈1

2

2

−
𝑊2
2 −𝑊1

2

2
  

                 
              
             Filet fluide 

 
 

 
 
  U1     W1      U2       W2 

 
                         

                                    V2 
         V1 
                                         V3 

 
 

 
 
 

 
Figure XXV.02 Filet fluide 



Chapitre XXV Turbomachines              Pompes hélices 

 

42 

 

On obtient une augmentation de pression uniquement par ralentissement des vitesses relatives. 
Les pompes hélices comportent relativement peu d’aubes et il s’ensuit que les filets fluides sont 

mal guidés. Cette particularité rend délicat le tracé des machines de compression axiale. 
Sur la figure XXV.03 on a superposé le triangle des vitesses à l'entrée des aubages avec celui 
de la sortie. 

 
 

      W2                    W1        V2  V1 

        𝛽1        𝛽2 
 

U1=U2 

         Figure XXV.03 Triangle des vitesses 

Les risques de décollements sont 
favorisés par des ralentissements 

des vitesses trop brusques et par 
des changements de direction des 
fluides trop importantes. Il faut 

donc que la différence des angles 

𝛽2 − 𝛽1 soit faible. 
 

Pour surmonter cette difficulté que on fait appel à une généralisation de la théorie de l’aile 

d’avion appliquée aux aubes considérées comme des surfaces portantes placées dans un 
courant. 

2 Action du fluide sur les aubes 

2-1 Théorème des quantités mouvement 

Dans ce but, considérons une grille d’aubes et appliquons le théorème des quantités de 
mouvements un canal fluide entourant un petit élément d’aubes, d’épaisseur dr. 

𝑢⃗⃗(0)  
 

    V1 
  1 

 
 
  2 

       V2 
        Pas t 

𝑢⃗⃗ (
𝜋

2
) 

Figure XXV.04 Grille d’aubes 

Conformément à la figure XXV.04, ce canal est limité par deux lignes de courant distantes d’un 
pas t et par les plans d’entrée et de sortie respectivement notée 1 et 2.  
Soit : 

(𝑉2
→

−𝑉1
→

)  dq𝑚 = (𝑝1 −𝑝2) tdr 𝑢
→
(
𝜋

2
) + dR

→

 {aube  →  fluide}   (XXV.01) 

Remarquons que nous pouvons écrire : 
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𝑉2
→

− 𝑉1
→

= 𝑈
→

+𝑊2
→

− (𝑈
→

+𝑊1
→

) = 𝑊2
→

−𝑊1
→

 

𝑉2
→

−𝑉1
→

= 𝑊2𝑢
→
(𝛽2) −𝑊1𝑢

→
(𝛽1) 

 

Et par suite la relation (XXV.01) devient : 

(𝑊2𝑢
→
(𝛽2) +𝑊1𝑢

→
(𝛽1))𝑑𝑞𝑚 = (𝑝1 −𝑝2)tdr 𝑢

→
(
𝜋

2
) + dR

→

 {aube  →  fluide}          (XXV.02) 

Que nous pouvons mettre sous une autre forme en tenant de compte du théorème de Bernoulli 
en mouvement relatif pour une pompe hélice (XXIII.09) : 

𝑊2
2 − 𝑊1

2

2
+
𝑝2 −𝑝1
𝜌

+ 𝜉1→2 = 0 

La relation (XXV.02) devient : 

dR
→

 {fluide → aube} = (
𝑊2
2−𝑊1

2

2
+ 𝜉1→2)ρtdr 𝑢

→
(
𝜋

2
) − (𝑊2𝑢

→
(𝛽2) −𝑊1𝑢

→
(𝛽1)) 𝑑𝑞𝑚    (XXV.03) 

Puisque qu’en vertu de la loi de l’action et réaction nous avons : 

dR
→

 {aube  →  fluide} = −dR
→

 {𝑓𝑙𝑢𝑖𝑑𝑒  →  aube} 

2-2 Propriété des triangles quelconques 

Les propriétés de la médiane, dans les triangles quelconques, seront utiles pour transformer plus 
simplement la relation (XXV.03). 

Pour cela, considérons out d'abord un petit élément fluide d’épaisseur dr entourant une aube 
(figure XXV.04) et exprimons le débit : 

𝑑𝑞𝑚 = 𝜌𝑡𝑊1 𝑠𝑖𝑛 𝛽1 𝑑𝑟 = 𝜌𝑡𝑊2 𝑠𝑖𝑛 𝛽2𝑑𝑟 = 𝜌𝑡𝑊∞ 𝑠𝑖𝑛 ∞𝑑𝑟.     (XXV.04) 

Ce qui permet de déduire que :  𝑊1 𝑠𝑖𝑛 𝛽1 = 𝑊2 𝑠𝑖𝑛 𝛽2 = 𝑊∞ 𝑠𝑖𝑛 𝛽∞        (XXV.05) 

 

   𝑢⃗⃗ (
𝜋

2
)      𝜆       𝜆  

 

            W∞ 
               W1 

      W2 

        𝛽1     ∞      𝛽2 
 

      𝑢⃗⃗(0) 
Figure XXV.05 Médiane𝑊∞ 

 
 

Ainsi nous pouvons écrire : 

𝑊1𝑢⃗⃗(𝛽1) = 𝑊∞ 𝑢⃗⃗(∞)+ 𝜆𝑢⃗⃗(0) 
𝑊2 𝑢⃗⃗(𝛽2) = 𝑊∞ 𝑢⃗⃗(∞) − 𝜆𝑢⃗⃗(0) 
𝑊1
2 = 𝑊∞

2 + 𝜆2 + 2𝑊∞𝜆𝑐𝑜𝑠∞ 
𝑊2
2 = 𝑊∞

2 + 𝜆2 − 2𝑊∞𝜆𝑐𝑜𝑠∞ 
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Retranchons ces deux premières relations : 

𝑊1 𝑢⃗⃗(𝛽1) −𝑊2 𝑢⃗⃗(𝛽2) = 2𝜆𝑢⃗⃗(0)               (XXV.06) 

Ajoutons la troisième et quatrième de ces relations : 

𝑊2
2 − 𝑊1

2

2
= −2 𝑊∞ 𝜆𝑐𝑜𝑠∞                                        (XXV.07)  

On désigne souvent ces résultats par théorème de la médiane. 

2-3 Efforts sur les aubes 

Utilisons les relations (XXV.04), (XXV.06) et (XXV.07) dans l’expression de l’action de l’aube 
sur le fluide (XXV.03) : 

dR 
→
{fluide → aube} = (−2𝑊∞𝜆𝑐𝑜𝑠∞+ 𝜉1→2) 𝜌tdr 𝑢

→
(
𝜋

2
) + 2𝜆 𝑢⃗⃗(0)𝜌𝑡𝑊∞ 𝑠𝑖𝑛∞𝑑𝑟 

En négligeant la perte 𝜉1→2 cette expression devient : 

dR 
→
{fluide → aube} = −2𝑊∞ 𝜆𝜌t (− 𝑠𝑖𝑛∞ 𝑢⃗⃗(0) + 𝑐𝑜𝑠∞𝑢

→
(
𝜋

2
)) dr = −2𝑊∞ 𝜆𝜌t 𝑢

→
(∞+

𝜋

2
)𝑑𝑟  

Nous pouvons mettre cette relation d’une autre forme en multipliant la relation (XXV.06) par 

𝑢⃗⃗(0)nous avons : −2𝜆 = 𝑊2 𝑐𝑜𝑠 𝛽2 −𝑊1 𝑐𝑜𝑠 𝛽1 , soit : 

dR
→

 {fluide → aube} = 𝑊∞(𝑊2𝑐𝑜𝑠 𝛽2 −𝑊1 𝑐𝑜𝑠𝛽1)𝜌t 𝑢
→
(∞+

𝜋

2
)𝑑𝑟 = 𝑑𝑅𝑢

→
(∞+

𝜋

2
)          (XXV.08) 

 

 
Ainsi, pour une tranche de fluide 
d’épaisseur dr, l’action du fluide sur l’aube 

est perpendiculaire à la vitesse 𝑊⃗⃗⃗⃗∞. 
 

dR 
→
{fluide → aube} 

 

                                𝑊⃗⃗⃗⃗∞  
 

 
 

 
Figure XXV.06 Action du fluide sur une aube 

3 Théorie sommaire de l'aile d'avion 

Toujours en négligeant 𝜉1→2 , l’analyse dimensionnelle permet d’exprimer dR de la façon 
suivante : 

dR =
1

2
ρW∞

 2𝐶𝑧dA                (XXV.09) 

Cz est appelé coefficient de portance ou encore coefficient de sustentation. 

A est une surface arbitraire qu’on appelle surface de référence. 

Dans notre cas on prendra : dA=ldr 
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  l 

 
 

 i     𝑊∞  
 

Figure XXV.07 Corde l et incidence i 

l est la corde de l'aile  

dr est toujours l'épaisseur d’un petit élément 
fluide entourant l'aile. 

On définit également l’angle d’incidence "i" 

formé par la direction de 𝑊∞ et de la corde l  

Dans le domaine des turbomachines, on a coutume de poser :𝑊 𝑐𝑜𝑠𝛽 = 𝑊𝑢 et pour 

𝑊2 cos𝛽2 −𝑊1 cos𝛽1 ont écrit tout simplement 𝛥𝑊𝑢 au lieu de 
2
∆
1
𝑊𝑢 .Ainsi la relation 

(XXV.08) permet d’écrire : 

𝑑𝑅 = 𝑊∞  𝛥𝑊𝑢 𝜌 t 𝑑𝑟           (XXV.10) 

Des relations (XXV.9) et (XXV.10) nous déduisons : 

1

2
ρW∞

 2𝐶𝑧  𝑙 𝑑𝑟 = 𝑊∞  𝛥𝑊𝑢 𝜌t 𝑑𝑟 

D’où la relation fondamentale : 

𝐶𝑧
𝑙

𝑡
= 2

𝛥𝑊𝑢
𝑊∞

                                                                 (XXV.11)  

Si on ne néglige pas les pertes 𝜉1→2 la force élémentaire 𝑑𝑅⃗⃗⃗⃗⃗⃗ n’est plus perpendiculaire à 

𝑊∞ 𝑢⃗⃗(∞) car il y a une composante tangentielle RX due au frottement. On définit également un 
coefficient de traînée que l’on désigne par Cx. 

Ainsi nous avons : 

 
         dRz          dR 
 

 
 

                         dRx 
   

         i 

                                                    𝑊∞  
Figure XXV.08 Portance et traînée 

 

dR𝑧 =
1

2
ρW∞

 2𝐶𝑧l dr 

dR𝑥 =
1

2
ρW∞

 2𝐶𝑥𝑙𝑑𝑟 

Rz est la portance. 

Rx est la traînée. 

 

A l’aide d’une balance aérodynamique, on mesure les composantes Rz et Rx pour diverses 
incidences "i". Ce qui permet de déduire expérimentalement Cz et Cx en fonction de l’incidence 

"i". La figure XXV.09 représente l’allure de ces courbes. 
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Cz 

Cx 
1 

 
0,8 
 

0,6 
 

0,4 
 
0,2 

 
      0      4       8       12     16      20     i 
 

Figure XXV.09 Cx et C z en fonction de i 

Cz 

  
1 

 
0,8 
 

0,6 
 

0,4 
 
0,2 

 
      0             0,1           0,2           0,3    Cx 
 

Figure XXV.10 Finesse 

La finesse d’une aile est le rapport 
𝐶𝑧

𝐶𝑥
, la traînée est faible lorsque la finesse est grande.  

Les avions de ligne ont des finesses comprises entre 16 et 18. Une aile de planeur a souvent une 
finesse comprise entre 27 et 32 ce qui est excellent, mais certains planeurs récents peuvent 

atteindre 60. 

On ne peut pas prendre n’importe quelle valeur du Cz. L’apparition des premiers décollements 
importants sur l’aube ce situe vers 1,2 et on ne dépasse guère cette valeur. D’autre part il existe 

une valeur optimale du Cx voisines de 0,8 , qui correspond à la finesse maximale. 
On remarquera que le minimum du Cx se trouve au voisinage de l’incidence de sustentation, 

ce qui semble assez normal. 

L’application de la théorie des ailes d’avion, au calcul des roues de turbomachines hélices, 
consiste essentiellement à assimiler en première approximation, la polaire d’un profil disposé 

en grille à celle du même profil placé dans un courant plan. 
L’étude des différences entre le comportement du profil en grille est celui du même profil 

disposé dans un courant plan constitue le problème délicat des interactions. 

4 Tracé au rayon r 

Lorsqu’on connaît le triangle des vitesses à un rayon donné on peut déterminer l’aubage de la 

façon suivante : 

A - Choix d’un profil. 

B - On prend le Cz optimal ou légèrement inférieur. L’incidence est alors lue sur la polaire et 

on peut caler le profil sous cet angle par rapport à la direction de W∞. 

C - La détermination du serrage des pales est obtenue par la relation XXV.11 : 

𝐶𝑧
𝑙

𝑡
= 2

𝛥𝑊𝑢
𝑊∞
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  𝑢⃗⃗ (
𝜋

2
)                          i 

      W∞ 
                         W1 
          W2 

 

        𝛽1    ∞    𝛽2 
 

      𝑢⃗⃗(0)  
Figure XXV.11 Calage de l’aube au rayon r 

5 Équilibre des différents filets 

Recherchons les conditions d’équilibre des différents filets d’une machine axiale. Spécialement 
celles qui correspondent au maintien d’un même filet sur un cylindre concentrique à l’axe au 

rayon r. Pour cela considérons une roue comprise entre deux cylindres de rayon intérieur ri et 
de rayon extérieur re conformément à la figure XXV.12.  

 
           V2r 
           1    2       V2m  

  V1m 

       V2 

 
            ri         re            V2u 
 

 

Figure XXV.12 Étude d’un filet fluide 

Supposons qu’à l’amont de la roue les filets soient tous sur des cylindres concentriques à l’axe 
de rotation. Les filets fluides qui étaient à l’amont sur un cylindre de rayon r pourront être à 
l’aval sur un cylindre de rayon différent. Au voisinage de la roue, les filets ne resteront pas sur 

un cylindre. Les vitesses auront une composante radiale. Par exemple la vitesse V2 pourra avoir 
trois composantes V2m , V2u et V2r. 

En raison de la proximité des parois la composante radiale V2r ne pourra jamais prendre de 

valeur importante. Nous pouvons donc la négliger dans l’équation de mouvement. 

De la relation (III.16) et du principe fondamental de la mécanique (IV.13) on déduit l’équation 

de mouvement suivant le rayon r : 

1

𝜌

𝜕𝑝

𝜕𝑟
=
𝑉𝑢
2

𝑟
                                                                        (XXV.12) 
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Cette équation exprime les différences de pression qu’il existe entre les filets fluides afin 

d’équilibrer l’action des forces centrifuges consécutives au mouvement giratoire. 

Pour simplifier, nous supposerons qu’en amont de la roue tous les filets fluides ont la même 

énergie, la même pression p1 et la même vitesse V1. Nous admettrons également que : 
- la vitesse V1 est axiale. 
- le travail wa n’est fonctions que de r. 

- 
𝑑𝜉1→2

𝑑𝑟
= 0. 

Nous disposons des trois relations ci-dessous pour résoudre le problème de la répartition des 
filets fluides en aval de la roue. 

a) La relation (XXIII.08) appliquée à une pompe permet d’écrire : 

𝑤𝑎 =
𝑝2 −𝑝1
𝜌

+
𝑉2
2 − 𝑉1

2

2
+ 𝜉1→2 

En écrivant que : 𝑉2
2 = 𝑉2𝑢

2 +𝑉2𝑚
2  (puisqu’on néglige 𝑉2𝑟) cette relation peut s’écrire : 

𝑝2
𝜌
+
𝑉2𝑢
2 + 𝑉2𝑚

2

2
= 𝑤𝑎 +

𝑝1
𝜌
+
𝑉1
2

2
− 𝜉1→2                  (XXV.13) 

b) Dans une pompe hélice, lorsque la vitesse V1 est axiale (𝛼1 =
𝜋

2
 ), l’équation d’Euler devient : 

𝑤𝑎 = 𝑈2𝑉2  𝑐𝑜𝑠 𝛼2 = 𝑈2𝑉2𝑢               (XXV.14) 

c) En 2 la relation (XXV.12) devient : 

1

𝜌

𝜕𝑝2
𝜕𝑟

=
𝑉2𝑢
2

𝑟
                                                                     (XXV.15) 

En tenant compte des hypothèses, dérivons la relation (XXV.13) : 

1

𝜌

𝜕𝑝2
𝜕𝑟
+ 𝑉2𝑢

𝜕𝑉2𝑢
𝜕𝑟

+ 𝑉2𝑚
𝜕𝑉2𝑚
𝜕𝑟

=
𝑑𝑤𝑎
𝑑𝑟

 

Compte tenu de (XXV.15), cette relation devient : 

𝑉2𝑢
2

𝑟
+ 𝑉2𝑢

𝜕𝑉2𝑢
𝜕𝑟

+ 𝑉2𝑚
𝜕𝑉2𝑚
𝜕𝑟

=
𝑑𝑤𝑎
𝑑𝑟

 

Remarquons que V2u  est fonction du rayon r, puisque :  𝑉2𝑢 =
𝑤𝑎
𝑈2
= 𝐹1(𝑟) 

il s’ensuit que : 𝑉2𝑚
𝜕𝑉2𝑚

𝜕𝑟
= 𝐹2(𝑟) , ce qui permet de déterminer V2m à une constante près. On 

peut calculer cette constante avec l’équation du débit volume qv : 

𝑞𝑣 = ∫ 2𝜋𝑟𝑉2𝑚𝑑𝑟
𝑟2

𝑟1
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Nous avons ainsi tous les éléments pour construire le triangle des vitesses à chaque rayon. 

Exercice XXV.01. 

Déterminer la vitesse V2m dans les deux cas hypothétiques suivants : 

a) wa = égale à une constante quelle que soit le rayon r 
       b) wa = Kr 

Corrigé 

a) Puisque wa = K nous avons : 

𝑉2𝑢 =
𝑤𝑎
𝑈2
=
𝐾

𝑟
 

il s'ensuit donc : 

𝜕𝑉2𝑢
𝜕𝑟

= −
𝐾

𝑟2
 

De la relation (XXV.16) on déduit : 

𝐾2

𝑟3
−
𝐾2

𝑟3
+𝑉2𝑚

𝜕𝑉2𝑚
𝜕𝑟

= 0  ⇒  𝑉2𝑚 = constante  

Ainsi si wa = K, la vitesse débitante est constante et ceci quelle que soit r. 

b) wa = Kr. On procède d'une façon analogue au cas précédent. 

𝑉2𝑢 =
𝑤𝑎
𝑈2
=
𝐾𝑟

𝜔𝑟
= 𝐾1 

De la relation (XXV.16) avec 
𝜕𝑤𝑎

𝜕𝑟
= 𝐾 on déduit : 

𝑉2𝑚
𝜕𝑉2𝑚
𝜕𝑟

= 𝐾 −
𝐾1
2

𝑟
 

Si wa = Kr, la vitesse débitante serait : 

𝑉2𝑚
2

2
= 𝐾𝑟 −𝐾1

2𝑙𝑛 𝑟 +𝐾2 

6 Tracé des aubages 

Le choix des aubages est le même que celui développé au paragraphe 4 (tracé au rayon r). 

A – Choix d’un profil. 

B – On prend le Cz optimal ou légèrement inférieur. L’incidence est alors lue sur la 

polaire et on peut caler le profil sous cet angle par rapport à la direction de W∞ . 
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C – La détermination du serrage des pales est obtenue par la relation : 

𝐶𝑧
𝑙

𝑡
= 2

𝛥𝑊𝑢
𝑊∞

 

 

 
           1     2 

 
 
     ri     re 

Figure XXV.13 Rayon de la roue 

 

Traçons, pour le profil choisi, le triangle des vitesses 
au rayon intérieur ri et au rayon extérieur re . 

Choisissons une loi simple : 

𝑤𝑎 = 𝑈2𝑉2𝑢  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝐾 

 

Cette loi implique, comme nous l’avons vu, que la vitesse débitante reste également constante 

quelle que soit le rayon r. 

𝐶𝑧
𝑙

𝑡
= 2

𝛥𝑊𝑢
𝑊∞

= 2
𝛥𝑉𝑢
𝑊∞

= 2
𝑉2𝑢
𝑊∞

 

𝑡 =
2𝜋𝑟

𝑍
 

Z étant le nombre d’aubes. Ces deux relations permettent de déterminer la corde l : 

𝑙 = 4
𝜋𝑟

𝑍𝐶𝑧

𝑉2𝑢
𝑊∞

 

Avec ces hypothèses réalistes la corde est de la forme : 

𝑙 =
Constante

𝑊∞

 

On voit ainsi que lorsque le rayon augmente, la corde diminue. 
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 𝑊𝑖∞ 
 
                 i 

   𝑊𝑒∞  

           We2       𝑊𝑒∞  We1     Wi2  𝑊𝑖∞  Wi1 
 

               Ve1=Vi1        Vi1 

 

 

   Ue        Ui 

Figure XXV.14 Calage des aubes de la roue au rayon r i et au rayon re 
 

7 Courbes caractéristiques 

De la relation XXV.11, on déduit le coefficient de portance, soit : 

𝐶𝑧 = 2
𝑡

𝑙

𝛥𝑊𝑢
𝑊∞

 

Au-dessous de CZ = 0,8 la portance est trop faible et les pertes par frottement relativement 

importantes. 
Au-delà de CZ = 1,2 la portance est exagérée et il y a des risques de décrochage. 

 

   𝜂  
 
 

  H 
 
 

 
 

 
 
 

 
 

 
        qv 

Figure XXV.15 

Courbes caractéristiques 

 
On voit donc que, connaissant le triangle des 

vitesses, cette loi va nous permettre de 
déterminer le pas optimum t. C’est-à-dire en 

définitive, le nombre des aubages qui sont 
nécessaires. 
Lorsque le débit se réduit, la hauteur fournit  

par chaque filet fluide augmente et le 
coefficient de portance se met à croître. Il 

arrive un moment où des décollements  
apparaissent sur l’extrados des profils 
d’aubes. 

La courbe H présente alors un maximum en 
général assez aigu, à gauche duquel 

apparaissent des fonctionnements instables. 
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Parfois, on loge à l’intérieur du moyeu un mécanisme commandé de l’extérieur afin de faire 

pivoter l’aube autour de son axe radial. Le but étant d’obtenir des caractéristiques de 
fonctionnement permettant de conserver un rendement acceptable sur une large plage. 

Exercice XXV.02 

(On appelle ventilateurs des turbomachines génératrices à fluide compressible donnant des 

rapports de compression inférieurs à 1,2. Tous les calculs de construction et de 

fonctionnement peuvent être conduits comme s’il s’agissait d’un fluide incompressible, c’est -

à-dire comme une pompe). 

Un ventilateur axial (hélice) a une roue comportant 10 aubes, dont le CZ en fonction de l’angle 
d’incidence i est donné par la courbe ci-dessous. 
 

     Cz  
1,0 

         0.85 
0.8 
 

0,6      
 

0,4 
 
0,2 

      

     0    4     10          16   i 

 

 

 
 

 
 
 

          W1            V1 
 
 

 
 

  U1 

Le point de fonctionnement normal a été déterminé à partir des données suivantes : 
Vitesse de rotation N=270 tr/min. 

Débit d’air traversant la roue qvr=250 m³/s 

Masse volumique de l’air𝜌𝑎𝑖𝑟=1,293 kg/m3. 

Masse volumique de l’eau 𝜌𝐻2𝑂=1000 kg/m3 

i = 10° sur toute la largeur des aubages. 
Vitesse d’entrée de l’air V1=50 m/s. Cette vitesse est axiale et constante sur toute 

la hauteur des aubages. 

Rendement hydraulique de la roue 𝜂ℎ=0,92 sur toute la hauteur des aubages. 
Hauteur manométrique fournie par la roue H = 368 mm  𝑑𝑒 𝑐𝑜𝑙𝑜𝑛𝑛𝑒 𝑑’𝑒𝑎𝑢  quel 
que soit le rayon r. 

1 - Sachant que le rayon intérieur du rotor est r i=1m, calculer pour le point de fonctionnement 
normal en négligeant l’épaisseur des aubes : 

  1-1. Le rayon extérieur re. 
  1-2. La puissance. 
  1-3. La corde des aubes aux rayons ri, et re. 

2 - On fait varier le débit de manière à avoir V1=35 m/s puis V1=65 m/s. 
2-1. Calculer pour ces deux valeurs du débit, les nouveaux angles d’incidence 

aux rayons ri, et re. 
2-2. Montrer qu’en modifiant de manière adéquate le calage des pales, on peut 
pour ces deux valeurs du débit, conserver un Cz pratiquement constant et 
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sensiblement égale à 0,85. Donner la valeur des angles de calage lorsque 

V1=35 m/s puis à 65 m/s 

3 - Les modifications de calage précédentes étant réalisées, calculer pour ri, rm et re et pour les 

vitesses V1= 35 m/s et 65 m/s, les hauteurs théoriques fournies par le ventilateur. 

Corrigé. 

1 

1-1. Puisque la vitesse V1 n’est pas fonction du rayon, nous avons : 

𝑞𝑣𝑟 = 𝜋(𝑟𝑒
2 − 𝑟𝑖

2)𝑉1  soit : 

𝑟𝑒 = √
𝑞𝑣𝑟
𝜋𝑉1

+ 𝑟𝑖
2 = √

250

𝜋 ∙ 50
+ 12 = 1,61 𝑚 

1-2. Puissance 

Remarquons que le Totalep  fourni par le ventilateur doit satisfaire la relation : 

𝛥𝑝𝑇𝑜𝑡𝑎𝑙𝑒 = 𝜌𝑎𝑖𝑟𝑔𝐻𝑎𝑖𝑟 = 𝜌𝐻2𝑂𝑔𝐻𝐻2𝑂  

𝐻 = 𝐻𝑎𝑖𝑟 =
𝜌𝐻2𝑂𝐻𝐻2𝑂

𝜌𝑎𝑖𝑟
=
1000 × 0,368

1,293
= 284,61 𝑚𝑎𝑖𝑟  

De la relation XXIV.04 nous déduisons : 

𝑃 =
𝜌𝑔𝑞𝑣𝐻

𝜂ℎ

=
1,293 × 9,81 × 250 × 284,61

0,92
= 981000 𝑊 

1-3. La corde 

La relation XV.11 permet de déterminer la corde : 

𝑙 = 2
𝑡

𝐶𝑧

𝛥𝑊𝑢
𝑊∞

 

Dans notre cas l’entrée est axiale, si bien que cette relation devient : 

𝑙 = 2
𝑡

𝐶𝑧

𝑉2𝑢
𝑊∞

 

Avec : 

𝐻 = 284,61 𝑚𝑎𝑖𝑟    𝑤𝑎 =
𝑔𝐻

𝜂ℎ

= 3034,8   𝑡 =
2𝜋𝑟

10
= 0,628𝑟 

𝑈 =
2𝜋𝑟𝑁

60
= 101,58 𝑟   𝑉2𝑢 =

𝑤𝑎
𝑈2
=
29,876

𝑟
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𝑊∞ = (𝑉1
2 + (𝑈 −

𝑉2𝑈
2
)
2

)

1
2

= (502 + (101,58 𝑟 −
29,876

2𝑟
)
2

)

1
2

 

Nous avons tous les éléments pour déterminer la corde en fonction du rayon r, soit tous calculs 

effectués : 

𝑙 = (1,2815 + (2,299 𝑟−
0,338

𝑟
)
2

)

−
1
2

 

Au rayon ri = 1 m, la corde l = 0,442 m 
Au rayon re = 1,61 m, la corde l = 0,272 m 

2 

2-1. Conformément à la figure ci-dessous, désignons par 𝜃 l’angle formé par 𝑖 + 𝛽1  

 
      i 

     W1 

             V1  𝛽1      𝜃  
 
  U1 

Le calage des aubes étant fixe il s’ensuit que l’angle 𝜃 = 𝛽1 + 𝑖 est constant pour un rayon r 

donné. Tout d’abord, calculons l’angle 𝜃 au régime normal de fonctionnement au rayon r i et re 

en sachant que : 

𝛽1 = 𝐴𝑟𝑐 𝑡 𝑔 (
𝑉1
𝑈
) = 𝐴𝑟𝑐 𝑡 𝑔 (

𝑉1
101,58𝑟

) 

 

r 1 m 1,61 m 

Incidence i 10° 10° 

𝛽1 26° 17° 

𝜃 = 𝛽1 + 𝑖 36 27 

 
Nous avons tous les éléments pour calculer l’incidence aux vitesses V1= 35 m/s et V2=65 m/s. 

 

V1 35 m/s 65 m/s 

r 1 m 1,61 m 1 m 1,61 m 

𝜃 36° 27° 36° 27° 

𝛽1 = 𝐴𝑟𝑐 𝑡 𝑔 (
𝑉1

101,58𝑟
) 19° 12° 32,6° 21,7° 

Incidence 𝑖 = 𝜃 − 𝛽1 17,2° 14,9° 3,6° 5,3° 
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2-2. Sur la courbe donnée dans l’énoncé, nous voyons que les variations du Cz sont très faibles 

autour de l’angle d’incidence i=10°. 

Pour V1= 35 m/s, on peut réduire l’angle de calage des pales de 6°. Et pour V1= 65 m/s on peut 

augmenter cet angle de calage de 5,5° 

 

V1 35 m/s 65 m/s 

r 1 m 1,61 m 1 m 1,61 m 

𝜃 30° 21° 41,5° 32,5° 

𝛽1 = 𝐴𝑟𝑐 𝑡 𝑔 (
𝑉1

101,58𝑟
) 19° 12° 32,6° 21,7° 

Incidence 𝑖 = 𝜃 − 𝛽1 11° 9° 8,96° 10,8° 

A ces angles d’incidence i correspondent des valeurs des Cz voisines de 0,85. 

3 

Nous avons : 𝑤𝑎 = 𝑈𝑉2𝑈    avec    U=101,58 r 

Il faut expliciter le terme V2U. Pour cela nous disposons des deux relations suivantes : 

𝑊∞ =
2𝑡𝑉2𝑢
𝐶𝑧𝑙

                            𝑊∞ = (𝑉1
2 + (𝑈 −

𝑉2𝑈
2
)
2

)

1
2

  

En regroupant ces deux termes élevés au carré nous obtenons : 

4𝑡2

𝐶𝑧
2𝑙2
𝑉2𝑈
2 = 𝑉1

2 + (𝑈 −
𝑉2𝑈
2
)
2

 

C’est-à-dire une équation du second degré en 𝑉2𝑈  : 

(
4𝑡2

𝐶𝑧
2𝑙2
−
1

4
)𝑉2𝑈

2 + 𝑈𝑉2𝑈 − (𝑉1
2 + 𝑈2) = 0 

Pour simplifier les écritures posons : 

𝐴 = (
4𝑡2

𝐶𝑧
2𝑙2
−
1

4
)   et   𝐶 = (𝑉1

2 + 𝑈2) 

Soit : 𝐴𝑉2𝑈
2 +𝑈𝑉2𝑈 −𝐶 = 0  qui admet comme racines  𝑉2𝑢 =

−𝑈±√𝑈2+4𝐴𝐶

2𝐴
 . Seule la racine 

positive à une signification compatible avec le problème. 
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V1 35 m/s 65 m/s 

r 1 m 1,61 m 1 m 1,61 m 

t = 0,628 r 0,628 0,272 0,628 0,272 

𝐴 = (
4𝑡2

𝐶𝑧
2𝑙2
−
1

4
) 10,94 76,33 10,94 76,33 

U=101,58 r 101,58 163,54 101,58 163,54 

  𝐶 = (𝑉1
2 + 𝑈2)  11543,5 27970,3 11543,5 27970,3 

𝑉2𝑢 =
−𝑈+√𝑈2+4𝐴𝐶

2𝐴
  28,2 18 32,1 19,1 

𝑤𝑎 = 𝑈𝑉2𝑈   2864,5 2943.7 3260.7 3123.6 

Hth en m d’air 292 300 332,4 318,4 
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