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Préface

Marcel Frelin a été mon professeur au Conservatoire national des arts et métiers. Ayant obtenu
mon diplome d'ingénieur en spécialité "Machines", j'ai rejoint cette institution en 1986. En
charge de travaux de recherche a la chaire de turbomachines et moteurs, mon activité a porté
principalement sur les études et essais des moteurs a combustion interne et l'adaptation du
turbocompresseur au moteur. Dés lors M arcel Frelin m'a apporté un soutien effectif dans mes
travaux mais m'a aussi permis de collaborer a ses enseignements de thermodynamique et
d'¢lasticité.

Marcel avait a coeeur de publier sous forme numérique, un recueil des cours qu'il a enseignés
sous le titre général : "Mécanique des milieux continus et thermodynamique techniques :
Application aux turbomachines".

Ce recueil est constitué de quatre grandes parties constituées de cours et d'exercices.

Concepts généraux (Livre 1)

M écanique des milieux continus (Livre 2)

Thermodynamique (Livre 3)

Turbomachines (Livre 4)

J'ai repris ce recueil et apporté quelques corrections de présentation quant a la mise en forme
du texte.

Le livre 4 se termine au chapitre 25, M arcel n'ayant malheureusement pupoursuivre la rédaction
de cet ouvrage.

Je remercie chaleureusement Josette Frelin de m'avoir confié les travaux de son mari, en vue
de leur diffusion.

Pierre Podevin
Ingénieur de recherche a la chaire de turbomachines du Cnam.
Le 10 février 2025
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D'apres les historiens, la roue aurait été découverte en M ésopotamie environ trois mille cinq
ans avant notre ¢re. Elle est considérée comme la mécanique initiale pour toute civilisation,
sans cette piece il n'y a pas de mécanisme, pas de machine. De fagon triviale, on peut dire que
la roue est I'ancétre de toutes les machines tournantes.

Avant cette invention, la principale source d'énergie était le muscle humain. La roue a permis
d'utiliser la force animale pour transporter et faire tourner des moulins broyeurs de grains. La
technique était née.

La science est apparue avec les Grecques qui avaient hérité des connaissances scientifiques
égyptiennes. Ills sont considérés comme les fondateurs des mathématiques. Par exemple
Archimede est 'un des principaux scientifiques de I'Antiquité. Aujourd'hui on le qualifierait de
mécanicien. Parmi ses principaux domaines d'étude on peut citer I'hydrostatique, la mécanique
statique, le principe du levier et bien str la vis d'Archimede.

Jusqu'au 16°™¢ siécle les progrés techniques ont précédé les progrés scientifiques. La premiére
révolution industrielle se situe vers la fin du XVIII® avec l'extraction massive du charbon et
l'exploitation de la machine a vapeur. Il y alors, un rapprochement entre sciences et techniques.
Les scientifiques s'inspirent des progrés techniques pour mieux comprendre certains
phénomeénes naturels, la thermodynamique en est un bon exemple. Elle permet en effet de
comprendre le comportement des machines thermiques, qui sont au cceur de la révolution
industrielle.

Le premier ouvrage sur les moteurs thermiques a été écrit en 1824 par Sadi Carnot. Il s'intitulait
"Réflexions sur la puissance motrice du feu et sur les machines propres a développer cette
puissance”. La thermodynamique était née. M algré tout, ses fondements seront établis quelques
années plus tard en énoncant le premier principe de la thermodynamique. Ce fut ainsi la fin de
la théorie du calorique qui était per¢u comme un fluide sans masse capable de pénétrer les
solides et les liquides.

Vers la fin du 19°™¢ siécle, deux courants de pensée virent le jour. L'un respectant I'apparente
continuité des solides et des fluides et I'autre, au contraire, considérant la matiére discontinue
formé de particules extrémement petites en mouvements incessants et rapides. Aujourd'hui,
beaucoup d'historiens considérent méme que Démocrite est le "pére de la science moderne".

Cet ouvrage se limitera a I'aspect macroscopique de la matiere. Il se bornera a 1'étude de la
mécanique et de la thermodynamique des milieux continus orientée vers les applications
industrielles et plus précisément les turbomachines. Aujourd'hui, la plupart des civilisations
modernes ont placé I'énergétique au premier rang de leurs préoccupations. Il faut produire et
utiliser de I'énergie au moindre colit en respectant les contraintes environnementales.

Des ¢léments d'analyse vectorielle indispensable a la théorie de la mécanique seront rappelés.
Ce qui permettra d'évoquer les théoremes généraux de la mécanique rationnelle, de donner des
notions sur la théorie de I'élasticité et de fournir les éléments de mécanique des fluides
nécessaires a I'é¢tude des turbomachines.

Une partie importante de ce livre est consacrée a la thermodynamique classique, qu'on appelle
parfois la thermodynamique phénoménologique, par opposition a la thermodynamique
statistique. La thermodynamique passe, a juste titre, pour une science difficile. Sur le plan
pédagogique, l'entropie fait parfois l'objet de polémiques. Cette notion, délicate pour les
¢tudiants, est introduite, ici, en insistant sur les postulats de Clausius et de Thomson Kelvin.
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L'application pratique de ces notions fondamentales est consacrée a I'étude des turbomachines
que l'on rencontre dans de trés nombreux domaines industriels. On peut méme ajouter que
demain, rares seront les projets énergétiques qui ne comporteront pas de turbomachines.

Ces machines sont traversées par un fluide qui assure un échange d'énergie avec un rotor, muni
d'aubages (ou pales), qui est animé d'un mouvement de rotation a vitesse constante. Ainsi, on
mesure l'apport précieux que constitue la thermodynamique pour analyser le fonctionnement
de ces machines.

Ces machines se décomposent en deux grandes familles : les turbomachines hydrauliques et les
turbomachines thermiques.

Les turbomachines hydrauliques sont constituées par les pompes, les ventilateurs, les éoliennes
et les turbines hydrauliques. Les pompes et les ventilateurs recoivent de I'énergie alors que les
¢oliennes et les turbines en fournissent.

Les turbomachines thermiques se composent essentiellement des compresseurs, des turbines a
vapeur que l'on rencontre dans les centrales électriques, des turbines a gaz terrestres et des
turbines aéronautiques.

La théorie des petites turbines centripétes fait, également 1'objet d'un chapitre. Ces petites
turbines équipent les turbocompresseurs de suralimentation des moteurs a combustion interne.

Le contenu de ce livre a été dispensé au Conservatoire national des arts et métiers ainsi qu'a
'Ecole supérieure de mécanique et d'électricité pendant une vingtaine d'années.
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Chapitre I

Notions sur I’aspect microscopique

1 Remarques sur la structure de la matiére

1-1 Atome

La maticre est a structure discontinue et constituée d’atomes. Un atome est, étymologiquement
la plus petite parcelle d’un corps donné qui reste capable de présenter les propriétés chimiques
qui caractérise ce corps. L’atome lui aussi est a structure discontinue, il se compose d’un noyau
autour duquel gravitent les électrons. Le noyau, également a structure discontinue, est constitué
de particules ¢élémentaires appelées nucléons ; protons et neutrons, eux-mémes composés de
particules élémentaires appelées quarks.

Le diamétre des atomes est de ’ordre de 10”"mm, alors que celui dunoyaun’est que de10™' 'mm.
Il 'y a donc un vide relativement grand entre le noyau et les orbites des électrons. Le noyau
occupe, dans I’atome, moins de place que le soleil dans le systéme solaire. C’est ce qui fait dire
que la matiére est essentiellement constituée par du vide.

1-2 Molécule

On donne le nom de molécule a la plus petite partie de maticre existant a 1’état libre. Les
molécules sont des assemblages d’atomes.

Un corps composé constitue toujours une molécule.

Cette particularité de la molécule est traduite par la notion d’atomicité. L’hélium He, I’argon
Ar sont monoatomiques. L’oxygéne O:, ’azote N2, ’hydrogene H: sont diatomiques. Le gaz
carbonique COz2,’eau H20 sont triatomiques.

1-3 Corps purs

Lorsque ’assemblage d’une molécule est constitué¢ d’atomes identiques on dit que la matiére
est un corps pur simple. Si les atomes sont différents mais formant une seule structure on dit
que la matieére est un corps pur composé. Par exemple ’or, I’argent, I’hydrogene, I’oxygene
sont des corps purs simples alors que I’eau, I’acide chlorhydrique, I’oxyde de carbone sont des
COIps purs composés.

1-4 M élange

Lorsque I’assemblage est constitué¢ d’atomes différents mais formant plusieurs structures on dit
que la matiére est un mélange homogeéne ou hétérogene.

Par exemple I’eau et le vin est un mélange homogene alors que I’eau et I’huile forment un
mélange hétérogene
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2 Moles et nombre d’Avogadro

Jusqu’en 1961, les chimistes avaient institué un systéme de proportions relatives de la masse
des atomes en donnant arbitrairement a I’atome d’oxygeéne la valeur 16.

Les autres atomes €taient caractérisés par des nombres qui forment avec 16 un rapport de la
masse réelle de ces atomes avec la masse réelle de ’atome d’oxygene.

En 1961, I'union internationale de chimie a fait adopter une base commune pour les chimistes
et les physiciens, et conventionnellement, on a affecté a I’isotope le plus abondant du carbone
la valeur 12.

On appelle "isotope d’un méme €lément" des atomes qui le différencient entre eux que par le
nombre de neutrons dans le noyau. Le nombre de protons et d’électrons restent le méme d’un
atome a I’autre.

La mole est définie comme étant la quantité de matiére d’un systéme contenant autant de
particules ¢lémentaires (atomes, molécules, ions, électrons ou autres particules) que 0,012 kg
de carbone 12.

Cette constante, appelée nombre d’Avogadro, est désigné par Na ou L. Sa valeur est
approximativement :

Na=6,0221415 10%3

La loi d’Avogadro précise que dans les mémes conditions de pression et de température, un
méme volume de gaz parfait quelconque contient le méme nombre de molécules. Par exemple
c’est le nombre de molécules contenues dans une mole de gaz.

La mole, de symbole mol, est I'unité de quantité de matiére du Systéme International.
3 Masses et volumes

3-1 Volume molaire

Le volume molaire de symbole Vi s’exprime en métre cube par mole (m’/mol). C’est le
quotient du volume V parle nombre de moles n.

V. =

|4
™
Dans les conditions normales de température et de pression (T=273,15 K et pat = 101 325 Pa)
le volume molaire d’un gaz parfait est :

3

V.=20,02241383 m
mo — mol

A titre de comparaison le tableau ci-dessous montre les écarts avec quelques gaz réels dans les
conditions normales de température et de pression.
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s . ) Gaz
Gaz. Hélium. | Hydrogeéne. | Azote. Oxygene. carbonique.
Volume molaire |, 45 22,428 22,404 22,39 22,228
en dm

Tableau I.1 gaz réel

3-2 Masse molaire

La masse molaire est le quotient de la masse m par le nombre de moles n. On peut également
dire que la masse molaire d’un gaz est lamasse qui occupe le volume molaire. Son symbole est
M et s’exprime en kilogramme par mole (kg/mol).

m
M=—
n

3-3 Volume massique

Le volume massique est le quotient du volume V par la masse m. On le désigne par v et il
s’exprime en métre cube parkilogramme (m?/kg).

VoV,

m M
Exercice I.1.

En supposant que le propane C3Hs se comporte comme un gaz parfait, calculer son volume
massique dans les conditions normales de pression et de température.

Rappel :
La masse molaire du carbone est de 0,012 kg/mol.
La masse molaire de I’hydrogene est de 0,001 kg/mol.

Corrigé.

La masse molaire du propane est donc :
M=3x%0,012+8%0,001=0,044kg/mol.

D ou le volume massique dans les conditions normales :

Vo 002241383 _ o
V=M T T oo04a  C 00094m/kg

3-4 Masse volumique

Le quotient de la masse m par le volume V est appelé la masse volumique. Son symbole est p
et s’exprime en kilogramme par métre cube (kg/m?).

_M_l
p_V .

_m
i~ |4
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4 Notions sur la théorie cinétique des gaz

4-1 Libre parcours moyen

Lorsque la matiere se trouve a 1’état solide, les molécules occupent une place bien déterminée
en se contentant d’exécuter des oscillations autour de leur position moyenne. L’attraction des
molécules entre elles est considérable.

Dans un liquide, les molécules sont également trés rapprochées mais, par contre, elles sont
libres de se déplacer.

Lorsque la matiére se trouve a 1’état gazeux, les molécules sont dans un état d’agitation
continuelle et se déplacent librement. Leurs vitesses sont de I’ordre de quelques centaines de
metres par seconde. Au cours de leur mouvement, les molécules se heurtent mutuellement.

Entre deux chocs successifs une molécule décrit une trajectoire en ligne droite et la distance
correspondante est appelée ; libre parcours moyen.

Désignons par o le diamétre obtenu en tragant autour du centre de chaque molécule une sphere,
bien que les molécules soient loin d’étre sphériques. Cette sphéere, appelée sphere de protection,
ne peut jamais contenir le centre d’aucune autre molécule.

Dans les conditions normales de pression et de température, indiquons pour trois gaz la valeur
du diametre o, du libre parcours moyen et du nombre de chocs.

Gaz Libre parcours moyen 5 on mm Nom?re de chocs d’une
en mm molécule parseconde
H> 1123.1077 2,70.10°7 15,0.10°
02 647.1077 2,90.10°7 6,6.10°
CO2 397.107 3,24.107 9,1.10°

Tableau 1.2 Caracteristiques particules
Dans les conditions normales de pression et de température 1mm?® de gaz parfait contient :

N, _ 6,0221415.10%
V. 0,02241383.10°

mo

= 2,687.10'° molécules

Lorsque la pression diminue ces nombres se modifient assez rapidement.

Pour des pressions de 1’ordre de 10”7mm de mercure, le nombre de molécule par centimétre
cube est encore considérable, de I’ordre de trois milliards, et le libre parcours moyen devient
de I’ordre de plusieurs centaines de metres.
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4-2 Mode¢le du gaz parfait

En utilisant des hypotheses simplificatrices, la théorie cinétique des gaz explique le
comportement macroscopique d’un gaz a partir d’interprétations microscopiques. Notamment
elle donne une interprétation facile de la température et de la pression.

La théorie cinétique renonce a préciser les grandeurs physiques attachées a chaque molécule,
elle s’intéresse uniquement aux valeurs moyennes. Il faut alors faire les hy potheses suivantes :
- en un point d’une masse de gaz, le sens et la grandeur de la vitesse des molécules sont
distribués au hasard. T outes les directions sont également probables ; ¢’est I’hypothése du chaos
moléculaire.

- la distribution des vitesses autour de la valeur moyenne est la méme pour toutes les parties du
gaz.

- I’action qu’exercent les molécules les unes sur les autres n’est importante qu’au moment des
chocs. L’action des forces a distance reste faible devant les forces de choc. Cette hypothése
caractérise 1’état gazeux.

- les lois de la mécanique classique des systémes macroscopiques s ’appliquent aux molécules
individuelles.

En plus des précédentes hypothéses, un gaz parfait doit avoir les propriétés suivantes :

- les dimensions des molécules sont tres petites par rapport aux distances qui les séparent, si
bien qu’elles sont supposées ponctuelles. Aumoment d’un choc, les forces qui s’exercent entre
les molécules peuvent étre considérées comme appliquées en leur centre d’inertie.

- en dehors des chocs, les molécules se déplacent librement et n’exercent aucune force les unes
sur les autres. Les forces d’interaction a distance entre molécules sont donc négligées.

4-3 Equilibre statistique

L’équilibre d’un gaz ne peut pas se définir a partir des lois de la mécanique classique qui
exigerait 'immobilité des molécules dans un référentiel fixe.

La théorie cinétique s’intéresse aux valeurs moyennes des molécules. Un gaz est en équilibre
statistique si toutes les grandeurs physiques ont une valeur moyenne au cours du temps, et si
cette valeur est indépendante du temps.

Moyennes temporelles

Supposons suivre le mouvement d’une molécule et mesurer les vitesses qu’elle prend au cours

- - - -

du temps. Par exemple en désignant par V,, V,, ..., V;, ....., Vi nous pourrions définir le vecteur

de vitesse moyen’u d'une molécule au cours du temps :
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Dans un réservoir, % est nul si le gaz est en équilibre statistique.
Moyennes statistiques

Autour d'un point M d'une masse de gaz, considérons un volume élémentaire dV a une date t.
Bien que ce volume soit petit, il contient un nombre ¢élevé N de molécules qui a la date t, ont

- - -

chacune une vitesseV,,V,, ....,V,, ..., Vy.

En équilibre statistique ces vitesses observées simultanément, a un instant quelconque pour les
diverses molécules du volume dV, sont celles que prend une molécule au cours du temps.

La moyenne de ces vitesses, faite dans le volume dV, est appelée moyenne statistique. Pour un
gaz isolé et en équilibre statistique, la moyenne statistique est égale a la moyenne temporelle.

Pout un gaz en équilibre statistique, le vecteur vitesse moyen : U = %Zilf 171 est donc nul.

Vitesse quadratique moyenne

La vitesse quadratique moyenne u? est définie par la relation :
i=N

w =2 (1)

i=1

Remarques

- I ne faut pas confondre la vitesse quadratique moyenne et la vitesse moléculaire moyenne :

1 i=N
v=3 27l
i=1

- Si le gaz est en €quilibre statistique, la moyenne temporelle est égale a la vitesse quadratique
moyenne. Elle est indépendante de la molécule choisie, du temps et du lieu. C'est une constante
pour un état d'équilibre donné.

4-4 Pression dans un gaz parfait

Au cours de leurs mouvements, les molécules rencontrent les parois du récipient qui contient le
gaz. Etant donné le grand nombre de molécules, les chocs contre la paroi se succédent tres
rapidement sous des incidences et des vitesses tres variées.

La pression est la force moyenne exercée sur l'unité de surface de la paroi par les molécules en
train de la heurter.

Considérons un réservoir contenant une masse m d'un gaz parfait. Désignons par O l'origine
d'un repere galiléen pris a l'intérieur de ce récipient. Soit M le centre d'inertie d'une molécule
de masse m; et de vitesse:
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- 2
Calculons la dérivée seconde de (OMl-) .

Soit :
- 2 -
F( M) =2 o | 20M— = 22 + 20My,

Puisque, par hypothése les lois de la mécanique classique s'appliquent aux molécules
individuelles, nous pouvons écrire :

N

m;y; = F

La force F; étant l'action exercée sur la molécule a l'instant considéré. Multiplions la relation

. m; - ’ .
ci-dessus par j, remplagons m;y; par ﬁi et sommons sur les N molécules constituant Le gaz.

i=N 72 , =N V2 i=N O_M
m; - _ m;V; in
TW(OMi) = Z—Z +) 5 F
i=1 i=1 i=1
i=N 2 2
L . i d -
Supposons le gaz en équilibre statistique donc : TS (OMi) =0

D'autre part de la définition de la vitesse quadratique moyenne nous avons :

i=N i=N

m;V{? N e le-uz _ mu?
2 2 ¢ ¢ 2 2
i=1 =1
1l s'ensuit donc :

i=N

mu? oM; -

= — —F,
2 2

=

i=

Comme il s'agit d'un gaz parfait, les forces F; sont uniquement dues aux chocs des molécules.
Notons que lorsque la molécule "a" heurte la molécule "b", nous avons :

- -

Puisque les molécules sont supposées ponctuelles. D'autre part F, = —F, en vertu de la
loi de I'action et de la réaction, et par suite :

OM,-F,+ OM,-F, =0

Pour I'ensemble des molécules contenues dans le volume de gaz, il ne subsiste donc que les
forces de pression exercées par la paroi sur le gaz.
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Pour évaluer ces forces considérons un petit élément
dA de la surface intérieure du récipient de volume V.
Soit T le vecteur unitaire perpendiculaire a dA et
dirig¢ vers l'extérieur du volume V. La force de
pression exercée par cet élément dA surle gaz est:

n
dA

dF = —pdAn

Figurel.01 Pression

Compte tenu de ces remarques, la vitesse quadratique moyenne, s'écrit :

mu? oM .
|| G Cmaai
MEA 2

2

Comme par hypothese la pression p conserve la méme valeur en tous points de lamasse de gaz,
nous avons en utilisant le théoréme d'Ostrogradski:

mu?=pff OMndA=plff . div (OM) dv =3pV
La pression varie donc proportionnellement avec la vitesse quadratique moyenne.

Pour une mole de gaz nous aurions :

4-5 Température dans un gaz parfait

Dans la théorie cinétique des gaz, la température absolue d'un gaz est définie comme étant
directement proportionnelle a I'énergie cinétique d'une molécule :

i
=_—K.T
2 2B

K3 est une constante universelle, dite constante de Boltzmann.
K5=1,3806503...1023 J/K

Le coefficient 3/2 est introduit pour simplifier, ultérieurement, les relations.

Multiplions cette expression par le nombre d'Avogadro Na.

m;N,u*> Mu* 3
= == N,Kg
2 2 2

De la relation obtenue ci-dessus pour une mole de gaz, nous déduisons :

Mu? _ 3N,KT

z T = NaKT

PV =

En posant NaAKp=R il vient :
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p Vm=RT

Cette équation fournit une relation entre la pression, le volume molaire et la température. Cette
relation est appelée équation d'état des gaz parfaits.

R est la constante universelle de proportionnalité dans la loi des gaz parfaits. Elle s'exprime en
Joule par mole Kelvin (J/mol.K).

R=6,0221415.10>* x 1,3806503.102 = 8,3144. J/mol. K

De méme, avec ce changement de variables, nous avons également :

3RT
Mu? = 3RT ouencore u = R

T est la température absolue du gaz et mesure en fait le degré d'agitation des molécules.

Dans les conditions habituelles, les vitesses u sont de I'ordre de quelques centaines de metres
par seconde.
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Chapitre 11

Analyse vectorielle

1 Vecteurs

Un vecteur est un étre mathématique défini par sa norme, sa direction et son sens comme par
exemple une force ou une vitesse. On peut dire également qu'un vecteur est un segment de
droite orienté sur lequel on a choisi un sens. A et B étant les extrémités du segment on désigne

—
un vecteur par la notation AB. La droite indéfinie passant par A et B est appelée support du
vecteur.

ﬁ
Dans cet ouvrage un vecteur sera représenté par une seule lettre et on écrira par exemple Vpour
une vitesse.

_)
La norme d'un vecteur est un scalaire. Par exemple |V |est lanorme deV mais nous écrirons tout
simplement V.

Un scalaire est une grandeur entiérement définie par un nombre réel et une unité comme par
exemple la masse ou la température.

Deux vecteurs sont dits égaux, s'ils ont méme norme, méme direction et méme sens. Deux
vecteurs sont dits opposés, s'ils ont méme norme, méme direction mais des sens contraires.

Un vecteur libre est une grandeur géométrique ayant une norme, une direction et un sens mais
dont l'origine est arbitraire dans I'espace.

Un vecteur lié est un vecteur libre dont I'origine O est bien déterminée dans l'espace.

Un vecteur glissant est un vecteur libre ayant son support bien défini dans I'espace sans que son
origine O le soit.

Rappelons quelques propriétés des vecteurs

- Commutativité de l'addition :

<<y

+
- Associativité de 1'addition : + (U + W) = (V + U) + W
Si m et n sont des scalaires nous avons :
. . o e,y - - -
- Distributivité : (m+n)V=mV+nV
- - - -
m(V+U)=mV+mU
. . . . . . ﬁ _)
- Commutativité de la multiplication parun scalaire : mV =V m
%

%
-Associativité de la multiplication : m (n V) =(mn) V

10
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2 Produit scalaire et produit vectoriel

- -
Désignons par Vun vecteur de composantes Vi, V2, V3 et Uun vecteur de composantes Ui, Uz,
Us.

- -
Le produit scalaire des deux vecteurs V et U estun scalaire.

V-U=vV,U, +V,U,+ VU,

- -
Le produit scalaire de deux vecteurs V et U se définit également comme étant le produit des

- -
modules deV et U par le cosinus de I'angle a qu'ils forment entre eux.
V-U=VUcosa avec 0<a<m
. . - - —
Le produit vectoriel des deux vecteurs V et U estun vecteur W de composantes :

Vv A U = w

V1 U1 V2U3 _V3U2
V3 U3 V1U2 _V2U1
ﬁ

— -
Le vecteur West perpendiculaire au plan formé par les deux vecteurs V et U.

ﬁ
La norme W du vecteur West égale a l'aire du parallélogramme formé par les deux vecteurs

- - . , - -
V et U.En désignant par a I'angle formé par V et U, nous avons donc :

W=V U sina (IL.OT)

Si V A 5) = 6) et si I_/) et l_]) sont des vecteurs non nuls ; alors V et ﬁsont parall¢les.

Le produit scalaire est commutatif mais ce n'est pas le cas pour le produit vectoriel.
v-u=0-V VAO=—-0TAV

La combinaison des produits scalaires et vectoriels donne les résultats suivants :

(V-0)w =V (U-W)
V-(UAW)=W-(VAT)=U.(WAT)

Vl VZ V3
V-(UAW)=|U, U, U,

ARTARA
ﬁ

Voa (UaW)=(V AT)AW
VA@AW)y=FV-W)U-(V-0)W
VADANW=F-W)T-(T- W)V (IL02)

11
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Le produit V - (U A W) s'appelle le produit mixte.
Le produit V. A (U A W) s'appelle le double produit vectoriel.

3 Champ de vecteurs

Nous dirons, tout simplement, qu'un champ de vecteurs (ou champ vectoriel) est une fonction
qui associeun vecteur a chaque point M del'espace euclidien. Si nous travaillions dans le repére
défini par la figure (I1.01) nous aurions :

q
V=Vixyze+ VLxyzé, +V;(xy2) ¢

Les lignes de champ sont les courbes telles qu'en tout point de I'une d'elles le vecteur champ,
en ce point, lui soit tangent. En mécanique des fluides nous les appellerons ligne de courant a
l'instant to.

Analytiquement les lignes de champ sont définies par les relations différentielles :

dx _dy _ dz
Vxyz) VWExyz V&xyz)

(11.03)

4 Circulation du vecteur champ

ﬁ
Soit V (M) le vecteur champ au point M et d M un déplacement élémentaire quelconque de M.

ﬁ
Par définition on appelle circulation élémentaire de V (M) I'expression suivante :

y/\
V(M) dr = V(M) dM
EA M Puisque nous axgl)s :
> > OM = xé, + yé, + zé,
0 € X dM = dxé, + dyé, + dzé,
€3 L'expression de la circulation ¢élémentaire en
z coordonnées cartésiennes est la suivante :
Figure II. 01 Circulation ar = V1 (X, y, Z) dx + VZ (XI y, Z) dy + V3 (X, y, Z) dz
élémentaire
Supposons que le point M se déplace de A a B sur une B
EN —
courbe "C" et que le vecteur champ V (M) soit défini c v ()
en tous point de "C". dg

On appellera alors circulation de v (M) sur la courbe
(C) l'intégrale curviligne : A
FigureIl. 02 Circulation

r=[vM)dM (1.04)

12
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5 Définition du flux

Soit un vecteur unitaire 7 normal a un élément de surface dA. Considérons un champ de
ﬁ
vecteurs V (M)défini dans un domaine contenant la surface A.

- -
V (M) Le flux du vecteur V (M) atravers 'élément dA, orienté
par 7, est par définition :

" dd = V(M) #dA
dA d® est un scalaire dont le signe dépend du choix fait
J pour le vecteur normal.

FigureIl. 03 Flux élementaire
Si V' (M)est continu sur A, on définit le flux du

(M) champ des vecteurs a travers la surface A de la
fagon suivante :

(A) % ¢ = HAV(M) ndA

Si

FigureIl. 04 Flux a travers une surface

6 Gradient

6-1 Définition

Soit un repére orthonormé (e) = (0,€,,€,,€,) et f(x, y, z) une fonction scalaire des trois
variables x, y, z. La différentielle df de cette fonction représente sa variation élémentaire

lorsqu'on passedu point M (X, y, z) au point infiniment voisin M '(x+dx, y+dy,z+dz). Le vecteur
—

I— . ' - .
déplacement MM'’, que l'on note tout simplement MM = dM s'écrit :

—_ R N N
dM =dx e, + dye, +dze,
Et la différentielle df :
of of of

df =—d —dy +—d
/ 0x x+6y y+6z z

Remarquons que sil'on pose:

of , of ,  Of

—_—
gradf = a‘ﬁ"‘@ez"‘g%

. . . . % H
La différentielle df'est le produit scalaire des vecteurs grad f et dM
df = gradf-dM

Le vecteur grad f est appelé le gradient du scalaire f(x, y, z).
13
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En coordonnées cylindriques, il s'écrit :

of 107 0f

gradf = or'r 00’ 9z

6-2 Champ de gradient

ﬁ
Un champ de vecteur V est un champ de gradient s'il existe une fonction f(x, y, z) telle que I'on

L. d —_— .
peut écrire V' = grad f(x, y,z) en tout point.

Les surfaces d'équation f(x, y, z) = Constante sont dites "surfaces équipotentielles" (ou surfaces

- —
de niveau) du champ V. Sur cette surface, pour tout déplacement élémentaire dM, la variation
de f(x, y, z) est donc nulle. Il s'ensuit que :

df = gradf-dM = 0.
% . .
Le vecteur grad f est donc normal aux surfaces équipotentielles.

%
En mécanique des fluides, on s'intéressera aux écoulements ou le vecteur vitesse V' est un
gradient V = gradf

6-3 Potentiel scalaire

ﬁ
On désigne par potentiel scalaire, dont dérive le champ de gradient V', toute fonction scalaire
U telle que :

- —
V =-grad U
7 Divergence

Soit un vecteur V =V, (x,y,2) €, + V,(x,y,2) ¢, +V;(x,y,2) €,.

La divergence de ce vecteur est la somme de ses dérivées partielles prise par rapport a la

coordonnée correspondante :
oo oV, av, a1
divV = + +
dx dy 0z

_)
Ainsi on passe d'un vecteur V' a un scalaire. On montre que ce scalaire est un invariant par
rapport a tout changement de triedre.

Parfois on utilise I'opérateur "nabla"V pour définir la divergence
., 0 d

On écrit :
divV =V -V

Le résultat est bien un scalaire.

En coordonnées cylindriques la divergence d'un vecteur V, s'écrit :

14
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o 1lo(rV,) av, a(rV)
dl‘UV—;[ ar +09+

8 Rotationnel

_)
Le rotationnel d'un vecteur V =V, (x,y,z) &, + V,(x,y,2) €, + V; (x,y, z) €; est le vecteur

— o av, advy\, av, aV\,
7 - (-2 (-5
dz 0x dx 0dy

aya_z

(6 /A 6V2> S
Il est également intéressant d'utiliser I'opérateur nabla pour déterminer avec méthode le

rotationnel :
— = a > a - a - - - -
€1 & &
0 d 0
otV = £ 2
dx dy 0z
Vi V1
Développons ce déterminant :
d 0 d d 0 d
— = . -~ > | _— > | -
rotV =-e,|0y 0z|—e,|ox az|+és|ox Oy
V, W Vi, n "

Soit le résultat indiqué précédemment :

_97_<6V3 6V2>ﬁ <6V1 6V3)9+<6V2 avl)ﬁ
otV =Gy T a5 T )t G Ty )

En coordonnées cylindriques le rotationnel d'un vecteur ¥ , s'écrit

N l(av a(rV9)> av. v, 1<6(rV9) aV)l

dz ) 0z or'r or 00

9 Théoréme d'Ostrogradski
Dans un repére orthonormé (e) = (0,6,,€,,6;) associé a un systéme de coordonnées

cartésiennes, considérons quatre points de coordonnées :

X x + dx X X
M |y N y P|y+dy Q| vy
Z 7z z z+dz

Construisons le parallélépipede rectangle dont les quatre sommets sont M, N, P et Q. Sur chaque
face orientons le vecteur normal vers I'extérieur du parallélépipede rectangle.

Désignons par:
15
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VM) =V(x%y,2) =V,(x,y,2) 8 + V,(x,y,2) &, +V;(x,y,2) € le vecteur champ au
voisinage du point M.

Le flux sortant par les faces d'abscisses x et x+dx

est:
do, =V (N) - é,dydz + V (M) - (—&,)dydz y g
=[V,(x +dx,y,z) =V, (x,y,2)]dydz :
A= 1-7N
Soit encore : A /7
é Q
v (xy,2) _ 0V, (x,y,2) 2, > >
do, —=— dxdydz o /

FigureIl. 05 Flux élémentaire sortant
Désignons pardV le volume élémentaire dxdydz.
En procédant de la méme fagon pour les faces d'abscisses y, y+dy, z, z+dz nous obtenons :

aV »
_ Z(Xyz)dV

do, 5

oV, (x,vy,2)
Ao, = ———2""2qv
3 0z
Le flux de V' (x, y, z)sortant du volume dV est donc :
do =dd, +dP, + dPd,

Soit encore :

4 = v, (x,y,2) N v, (x,y,2) N Vs (x,y,7) v
0x dy 0z

do = divV'(M)dV

_)
Supposons que le champ de vecteurs V (P) soit également défini en tout point de la surface A
et du volume V. Désignons par 7 le vecteur unitaire normal a 1'élément de surface dA4 entourant
le point P.

Le flux traversant la surface A est donc :
b = f f V(P) nidA
A

Intéressons-nous a l'ensemble du volume V et décomposons-le en parallélépipedes
¢lémentaires, conformément a la figure II. 06.

Pour deux parallélépipédes en contact, le flux sortant de leur face commune est €gal mais de
signe contraire, leur somme est donc nulle.

16
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Evidemment, il en est de méme
pour tous les parallélépipedes
¢lémentaires a l'intérieur du
volume V. Seuls restent en compte
les flux sur les faces des
parallélépipedes appartenant a la
surface extérieure A.

Sy

Volume V et surface A
dv@

FigureIl. 06 Flux éléementaire sortant du volume V

Compte tenu du  résultat
précédemment établi, on déduit :

@ =ff do =ff divV (M)dV

Ce qui permet d'écrire :

® = [f,V (P)-7idA = [|, divV (M)aV (IL.05)
Ce résultat constitue le théoreme d'Ostrogradski qui s’énonce :

Si un champ de vecteurs est défini sur un domaine D, le flux sortant de toute surface A dont
l'intérieur est inclus dans D est égal a l'intégrale de la divergence du champ sur le volume V
limité par la surface A.

Soit m soit un scalaire et posons V = mé;, 1 = aé,. De la relation ci-dessus on déduit :

om
ffmadAz ff—dV
A y 0x

Si nous posons également ¥V =mé, §=fé, puisensuite V=mé,, §=yé, nous

obtenons de la méme fagon :
f f BdA f f o™
m = || —
4 v 0y

om
ffmydA =ff —dV
" y 0z

Ce qui s'écrit sous forme vectorielle :

—
jfmﬁdA = ﬂgradm dv (11.06)
A |4

10 Théoréme de Green dans le plan

Le théoréeme de Green dans le plan donne la relation entre une intégrale curviligne le long d'une
courbe simple fermée C et l'intégrale double surla région du plan D délimité par C.

17
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dex+Qdy Jf 6_Q_6_P dxdy

P et Q sont des fonctions continues de x et y et ont des dérivées continues dans D.

La courbe C, est parcourue dans le sens positif c'est-a-dire dans le sens trigonométrique.

La courbe C possede la propriété suivante : toute AY
droite parallele aux axes de coordonnées rencontre, d D
au plus, la courbe C en deux points. A
L'équation de la courbe ABC est y1=Fi(x) et celle b D C
de la courbe ADC est y2=F2(x). B
a T 2%

Figurell. 07 Domaine D
Calculons l'intégrale double : J f — dy

2 e ([ ) =t i)

F.

f f 3—5 dydx = — f ich(x, F, () dx — f izap(x, F,(0) dx = — f pdx

Soit encore :

de ﬂ P dyd (1L07)
x=— || — dydx )
c p 0y

Tenons le méme raisonnement que précédemment en exprimant, cette fois x en fonction de y.
Posons xi=fi(y) pour la courbe BAD et pour celle de la courbe DCB x2=f2(y).

d
Donc de fagon analogue, calculons 1'intégrale double : ff % dx dy
D

[[ 5% ayax = [ yb < [ fZ(y)a—de> tv=["" (00 £~ 00 £) dy

y= i) 0x y=b

ﬂDZ—g dydx =Jy:dQ(y,fz(y)) dy+jy=bQ(y.f1(y)) dy = Lde

y=b y=d
Donc :
[ot = [[ 2 aya 08
CQ *= ) ax W (11.08)
En additionnant (I1.07) plus (I.08) on obtient la relation de Green dans le plan :
6Q aP
dex + Qdx = ff % v dydx (I.09)

18
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11 Théoréeme de Stokes

La circulation d'un vecteur ¥ le long d'un contour fermé C est égal au flux du rotationnel de ce
vecteur a travers une surface A admettant C comme fronticre.

fmz)-dﬁ =ﬂmv-ﬁdA
C A

Considérons une surface A telle que ces projections
sur les plans Oxy, Oyz et Oxz soient des courbes
simples fermées, conformément a la figure (I11.08).

Admettons que la surface A est pour représentation
z=f(x, y) ou x=g(y,z) ou encore y=h(x, z) ou f(x, y),
2(y,z), h(x, z) sont des fonctions continues,
différenciables.

Posons :

X I7=V1 (x,y,2z) €, + V,(x,y,2) €, + V;(x,y,2) €,

FigurelIl. 08 Projection de la surface A Soit
oit :

f 7otV 7 dA = ffm(Vl(x,y,z) & 4V, (y,2) S, +V,(x,y,2) 8,) 7 dA
A A
Intéressons-nous tout d'abord au terme :

f f 7ot (V,(x,y,7) €,) 7 dA
A

d
ax %
v - a aV N aV N
rot(V,(x,y,z) é,) = @A 0 = a_Zlez _6_;83
9 o
0z
Et :
rot P 7 aVl v aVl > =
rot(Vi(x,y,2) &) 7L dA = 78,7 dA — 5 2éqii dA (IL10)

En prenant z=f(x,y) comme €quation de la surface A nous avons pour tout point N€A :

. 00N af (x,y)

ON = xé, + ye, + f(x,y)é; = — =é,+ 3y e,

19



Chapitre II Analyse vectorielle Concepts généraux

, 0N . . ,
On peut donc déduire que le vecteur . est tangent a la surface A, il s'ensuit donc :
y

aﬁl\_i_) - — af(xly) > —> aZ—) —
— n=0 = e, N=———— €e;'N=———€ezn
dy dy dy
Et par suite :
. o ov,oz adVy\,
rot(V, (x,y,2z) é;)) - ndA = — (a_z@ + E) é;-ndA (I.11)
Or sur la surface A, nous pouvons écrire :
Vi(x,y,2) = Vy(x,y, f(x,3) = P(x,y)
La relation (II.11) devient :
—_— - — dP > —
rot(V,(x,y,z)é,) - ndA = —533 1 dA (I.12)

Désignons par A1 la projection de la surface A surle plan au Oxy et par Ci la frontieére de A1.

ffm(vl(x,y,z) 27 dA = —ff
A Ay
Puisque €, - 11 dA = dxdy

de d I1.13

En vertu du théoréme de Green nous avons :

[ rocm[] & aea
X =— — dx dy
o Alay

Notons qu'en chaque point (x, y) de Ci, la valeur de P est la méme que celle de V,(x,y,z) en
tout point (x, y, z) de C. Comme dx est le méme pour les deux courbes nous pouvons écrire :

j Pdx = le(x,y,z)dx
c c

1

ffAr_of(V1 (x,y,2) €,) -1 dA = fc V, (x,y,z)dx (11.14)

En tenant le méme raisonnement pour les plans de projection Oyz et Oxz, on déduit :

[, 70t (V,(x,,2)€,) - 1t dA = [ V,(x,y,2)dy (11.15)
[, rot(V;(x,y,2)€;) - 1t dA = [ Vs (x,y,2)dz (11.16)

En additionnant les relations (I1.14), (IL.15) et (II.16), on obtient la relation de Stockes :

fV(M)-d[W =ffml7-ﬁd,4

20



Chapitre II Analyse vectorielle Concepts généraux

12 Relations générales

¥V et W sont des champs vectoriels et f et g sont des champs scalaires

grad(fh) = fgradh + hgradf (L18)
7ot(fV) = frot(V) — V A gradf (I.19)
div(fV) = fdiv(V) + V.gradf (11.20)
div(VAW) = W.rot(V) —rot(W).V (IL21)
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Chapitre 111

Cinématique du solide

La cinématique est I’étude des mouvements indépendamment des causes qui les provoquent.

En mécanique, dite rationnelle, on considere le corps solide comme un systéme de points
matériels qui restent fixes les uns par rapport aux autres.

Cette notion du corps solide indéformable est théorique mais suffisante pour étudier son
mouvement sous l'action d'un systéme de forces. Dans ces conditions on le désigne souvent par
solide théorique.

1 Référentiel et repére

Pour étudier un solide, il faut se fixer un référentiel pour déterminer a tout instant sa situation.
L'association d'un repére d'espace a trois dimensions (0,€,,€,,€;) et du repére de temps a une
dimension constitue un référentiel.

Un repere d'espace différent (01, E.E . E; )et du repére de temps définit un autre référentiel.

Habituellement, nous utiliserons un référentiel absolu ou Galiléen que nous noterons Rg. Dans
la partie " dynamique du solide " il sera précisé qu’un repere Galiléen est défini par la premiere
loi de Newton.

Le repere de Copernic est une bonne approximation du référentiel galiléen. Son origine est le
centre du soleil et ses trois axes sont définis par des étoiles fixes.

Dans un repére d’espace, le systéme d'axes de coordonnées peut étre quelconque mais par
simplification nous n’utiliserons que des systemes d'axes orthonormés directs.

y/F
De surcroit, nous utiliserons un systéme de
coordonnées cartésiennes oxyz comportant
trois vecteurs unitaires €,,€,,€,. Ces
€l vecteurs sont de méme direction et de méme
sens que les trois axes du repére
conformément a la figure II1.01.

FigureIIl.01 Repere cartésien

Dans ce repére, un vecteur unitaire 77 de composantes a, § et y s'écrira :
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n=aé, + pé,+ye,
avec (M) = a? +p*+y* =1

Dans la partie spécifique aux turbomachines, il sera souvent utilisé un repére cylindrique ou un
point M aura comme coordonné :

OM =r i(6) +z &, (IIL.01)

M Avec :
T
ru(@)=r <cost9 u(0)+ sinf u (§)>

En ayant posé:

¢, =1(0) et & = a(g)

\ 4

Figure III.02 Projection dans un repere
cylindrique

2 Notions de torseur
On appelle torseur [I"] 'ensemble des deux champs de vecteurs suivants :

L'un est le vecteur libre que 1'on appelle somme du torseur.

L=n
S= Y AM =AM, +A,M, + - ... +A M + ... +A M,

i=1

L'autre est désigné par moment en O du torseur[I'].

i:
M,= » 0A NAM, = 0A, NA M, +-+0A, NAM, + -+ 04, NA M,

i=

S

=

Ces deux vecteurs S et Mosont les éléments de réduction du torseur [I'] au point O.

La théorie de l'algebre des torseurs sort du cadre de cet ouvrage, mais néanmoins rappelons
quelques-unes de leurs propriétés.

La somme de deux torseurs [I,] et [I,] de résultantes S, et S, et de moments M, et M, est le
torseur [I'] de résultante S, + S, et de moment M, + M,.

Considérons un torseur [I'] de résultante S et de moments M, en un point O et un torseur [I"’]
de résultante S et de moment M, en un point p.
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M,= ) 0A ANAM,
i=1
l=n
M, =) PA NAM,
i=1
De la relation de Chasles on déduit :
i=n i=n i=n
M,= ) (PO+0A)NAM,=POA Y AM, + ) OA ANAM,
i=1 i=1 i=1
Soit en définitive :
M, =M, +POAS (IIL.02)

Cette derniere relation est parfois désignée par formule du changement de I'origine des
moments.

La résultante S, constituant un champ de vecteurs uniforme, estun invariant. Le produit scalaire
des ¢léments de réduction d'un torseur ne dépend pas du point ou il est calculé.

Pour le monter comparons alors les deux scalaires : [ =S - M, et I'=S- M,

I'=3-My=3-(My+POAS)=3-M,+3-(POAS)=1
1=5-M, 0 (111.03)

L'expression (II1.03) est donc indépendante du choix de O, c'est un deuxieme invariant.

L'utilisation des torseurs simplifie les mises en équations des systémes mécaniques. En effet
une ¢égalité de torseurs remplace deux égalités vectorielles et six égalités scalaires.

2-1 Torseur des efforts extérieurs

Les efforts extérieurs s'exercant sur un corps solide se décomposent en deux grandes familles
- les forces de contact qui agissent sur sa surface extérieure.

- les forces a distance qui s'exercent sur sa masse comme par exemple le poids ou les forces
d'inertie.

Soit ¥, F; ’ensemble des efforts extérieurs exercés surle solide (S) en leurs points d’application
Mi. La résultante est :

R = Z ﬁi = R(forces — surface) + R(forces a distance — solide)
i

Et le moment en un point quelconque P est :
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l 2

M:, = Z(PM A 17"-) = M, (forces — surface) + 1\7,3 (forces a distance — solide)
i

Ces deux vecteurs R et M, sont les éléments de réduction du torseur des efforts extérieurs
[reffOTtS extérieurs] au point P.

=3

R
[Fefforts extérieurs] {1\7 (HI.O4)
P

2-2 Principe fondamental de la statique du solide

Pour qu'un solide soit en équilibre, il faut que le torseur des efforts extérieurs, en un point P
quelconque, soit égal a un torseur nul.

(ot fores exterieurs] = [(0)] (I11.05)

Et sous forme vectorielle, le principe fondamental de la statique du solide s'écrira :
R(forces = surface) + R(forces a distance — solide) = 0
Mp(forces - surface) + IWP(forces adistance — solide) =0

3 Vecteur rotation

Dans un repere orthonormé R considérons deux points M et P d’un solide indéformable. Nous
pouvons donc écrire :

— 2
(MP) = constante
En dérivant par rapport autempstona :

—
— (d MP

2MP|—— ] =0
dt

R

Et en utilisant la relation de Chasles, on obtient :

)

—>d1m—’> — (d /— — — N
MP——=M (E(M0+OP)>=—MP-V(M/R)+MP-V(P/R)=O

Soit en définitive :

—> — —_— —

MP- V(M/R) = MP- V(V/R) (I111.06)
La relation (II1.06) est a rapprocher des relations (I11.03) et (II1.02), elle caractérise un torseur.

Ce qui nous permet d’écrire :
— — —_— —_
V(P/R) = V(M/R) + PM A ® (1I.07)

Le vecteur w est appelé vecteur rotation.
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Remarque :

Désignons par O l'origine du repére R et supposons que la vitesse ¥ (0/R) soit nulle.
—_ -
La relation (IIL.07) s'écrit donc : V(o/R) = V(M/R) + OM A @ = 0. Il s'ensuit donc :

V(M/R) =@ AOM
Posons : V(M/R) =V, &, +V,&, + V,&, et  ®=w6;+w,6,+ wié,

Sachant que dans le repére R, le point M a pour coordonnées X, y, z, nous pouvons €crire :

4 W, X WyZ— w3y
V, =|w, Aly = w3x — w2z

Or on peut remarquer que sinous faisons le calcul de %r_ot)V)(M /R) nous obtenons :

d
/_ WyZ — 0)3}1\
ox w, — (_wl)

1__, 11 o |
—TOtV(M/R) =1 — A\ W3X — W Z — w, — (_wz)
2 2| dy
w3 — (—w;)
i WY — WX
0z
C’est-a-dire :
1__, .
Eroﬁ?’(M/R) = (111.08)

4 Torseur cinématique

On appelle torseur cinématique, le torseur ol la vitesse ¥ est le moment et @ la résultante. Les
¢léments de réduction de ce torseuren P sont & et V(P/R) en M ils seraient w et V (M/R).
[T,

@
cinématique] ]7

5 Rotation d’un solide autour d’un axe fixe

Considérons la rotation d’un solide (s) autour de ’axe OZ dans le repére R.
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Dans ce repere un point M € a (s) aura comme
coordonnées :

OM = X&é, + Y&, + Z&,
Pour ce solide en rotation autour de OZ le
vecteur rotation sera :

W = Weé,

Dans ces conditions la relation (II1.07) peut
s’écrire :

V(0/R) =V(M/R) + OM A @

Figure IIl.03 Rotation autour de OZ
La vitesse de tous les points appartenant a I’axe Oz est nulle donc V(0/R) = 0
Mais puisque OMA & = Ywé, — Xwé,
Il s’ensuit que V(M/R) = & AOM = (=Y&, + X&,) w
Remarque :

Ce résultat est immédiatement obtenu en travaillant avec le repére cylindrique représenté sur la
figure I11.02. Dérivons la relation (II1.01) parrapport au temps t :

V(M/R) = (@) =7 d—eﬂ(e +2)

Et puisque : 17.’(0 +§) =—sin@ é,+cos6 e, X=rcosh Y=rsiné
Nous retrouvons le résultat de la relation précédente :
V(M/R) =@ ANOM = (Y&, + X&,)

Pour un solide tournant autour d’un axe fixe, nous pouvons écrire :

do

— = 1109
i (111.09)

On appelle w la vitesse de rotation (ou vitesse angulaire) d’un systéme en rotation. Ce scalaire
w, désigne également la pulsation (ou fréquence angulaire) d’un phénomene périodique.

Pour w, 'unité est le radian par seconde (rad/s). Dans le monde industriel, notamment dans
celui des turbomachines, on exprimera w en tours par minute (tr/min).

6 Mouvement d’un repére

Soit (R) un repere orthonormé O,El,EZ,E3 en mouvement par rapport a un repére (g) fixe
0,€,,8,, €, conformément a la figure TI1.04.



Chapitre III Cinématique du solide M écanique des milieux continus

Pour une raison pédagogique posons ﬁl = OM et utilisons la relation (I11.07)
V(0/g)=V(M/g)+O0M AT
Que I’on peut mettre sous la forme :

0

V(M/g)-V(0/g) +O0M A&

(@) —<@> 4O AG =0

dt g dt —
pE—e)

g E\ NG
En tenant le méme raisonnement surE, et E;on obtient, en définitive, les résultats suivants :

Y4\
E dE o
) 2 (d_tl> =w AE1
2 Q dE
E E, (£22) — @A 1. 10
0O - 3 Ml\ dt . w 2 ( ' )
-4 - #
] o1 i d—EE =oAE
3 dt 3
Z g

Figure IIl1.04 Mouvement du repere (R)

7 Dérivation des vecteurs

Supposons connues les composantes d’un vecteur L dans les repéres (g) et (R) définis
précédemment.

C’est a dire dans le repére (g) : L = aé, + bé, + cé,
Et dans le repére (R) : L = AE, + BE, + CE,

Dérivons, par rapport au temps, L dans les repéres (g) et (R)

dL da db dc

- - -

— | =—e, +——e,+—¢
dt dt ' dt * dt 3

dL\ _dA  dB.  dC
dt | dt ' dt ? dt

R

E,

Si E,, E, et E;sont des fonctions du temps nous avons :

7
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dL\ _da. dB
dt | — dt ' dt
g

dc dE
—E. +4—2
dt 3 +

dE,
+B—2+C

E, + dt dt dt

Compte tenu des relations (II1.10) nous avons :

dL dL dL
= =% +AG NE, + BGAE, + C& AE; = = + @ A (AE, + BE, + CE,)

g R R

Soit en définitive :

L) _ (4L +@AL .11
de | \dt @ (L. 11)
g R

8 Composition des vitesses

Conservons les notations d’un paragraphe précédent, c¢’est a dire un repere (R) en mouvement
parrapport a un repére (g) fixe conformément a la figure 111.04.
Dans le repére (g) un point M aura comme coordonnées :

oM = xé, +y8é, + zé,
Et dans le repére (R) :
OM = XE, + YE, + ZE,

Le vecteur vitesse du point M, dans le repére (g) est :

d oM dx , dy., dz,
V(M/g)—( It ) _Eel+d_tez+d_te3

Dans le repére (R) la vitesse de M est :

dOM d d d
PM/R) = <—;tM> Rl RS )
Mais :
S d oM d(0o0 + OM
vonse) = (“2) = (1 oM)
g R
- (£2) (29
g g

e oW
701/9) = V(0/g) + ()
9

Compte tenu de la relation (II.11), en posant L = OM on obtient
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dOM
ViM/g) =V(0/g) + (7> + @ AOM (1I.12)
R
Le vecteur @ est la rotation d’entrainement de (R) par rapport a (g) que I’on notera w(R / g).
S (M (0 (R - . . .
Le vecteur V, (E) =V <§> +w <§> A OM est appelé vitesse d’entrainement du point M

R dOM , , .
Le vecteur V(M/R) = TS est la vitesse du point M par rapport a (R).
R

On la désigne souvent par vitesse relative.
V(M/g)=V,(M/g)+V(M/R) (1I.13)

9 Composition des accélérations

Dans le repére (g) dérivons, par rapport au temps la relation (III.12) pour décomposer
I’accélération de M dans le repére (g).

/= (202), = (S9) 1 (4(2) ) +(89), 0 43 ()

Y(0/9)
Utilisons la relation (III.11) pources termes :

d (dOM\ \ _ (dV(M/R)\ _ (d*V(M/R)\ _
(E(—dt )) ‘( dt >g‘< at’ > ANV
R” g R

=y(M/R)+ & AV(M/R)

4\ _(d@\ . . _(d&
dt ] \dt CAO=\ e
g R R

Remarquons que :

Et pour le dernier terme :

dt dt

. (dOM B dOM Lo\ e
w/\( >=w/\<(—> +a)/\0M>=a)/\I7(M/R)+w/\(w/\0M)
g R

D’ou I’expression du vecteur accélération :

—

dw _— ., - o ——
—) AOM + &G AV(M/R) + @A (@ AOM)

y(M/g) =7¥(0/g) +7(M/R) + @ AV(M/R) + <dt
)
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Soit en ordonnant :

y(M/g) =v(0/g) + (%) ANOM + @A (B AOM)+ 28 AV(M/R) + ¥(M/R) (1I1.14)
R

Yc (M)

Ve(M)

Y.(M) est par définition le vecteur accélération du point M.
Yc (M) est le vecteur accélération de Coriolis.

yM/g) =V, (M) + 7, (M) + y(M/R) (1. 15)
10 Coordonnées intrinséques

Soit (C) la trajectoire décrite par un point M animé d’une vitesse V(M). Désignons par
ds = MM le déplacement ¢élémentaire du point M pendant ’intervalle de temps dt.

O

Cercle osculateur

x\“ﬁ

M ds “u(a) ANda

V(M)
Figure IIL.05 Plan osculateur M, u(a), U (0{ + g)

Posons :OM = R et V(M) =V t(a)

ds
Par ailleurs nous avons: ds = R da et V= a

L’accélération du point M dans ce repere est donc :

av d d
7(M) = (;W) d‘; ()+Vd—au(a+7zt)

da_dads_ 1V
mais o= sdr . R

D’ou I’expression de ’accélération :

av & T
y(M) = — t(a) + —tla+= 1116
P = G W@ R( ?) (1IL. 16)
accélération tangentielle accélération normale

10
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Chapitre IV

Cinetique et dynamique du solide

La cinétique est I’étude du mouvement des corps en utilisant les notions de longueur, de temps
et de masse.

1 Notion de masse
La masse d’un solide est un nombre plus grand que zéro vérifiant les axiomes suivants :
- conservatrice dans le temps, ¢’est-a-dire constante.

- grandeur mesurable
La masse caractérise une quantité de maticre.

2 Centre de masse

Le centre de masse d’un solide, est le point ou I'on applique les effets d'inertie, on I'appelle
donc également centre d'inertie.

On définit le centre de masse G, ou centre d’inertie, par la relation suivante :
f GMdm =0 (Iv.01)
MEeS

Ou M désigne un point d’un solide (S) de masse m.

Pour déterminer le centre de masse, considérons un point O quelconque (I’origine du repere par
exemple) et appliquons la relation de Chasles.

mdm=j C0 dm +j OMdm =71
MEeS

MEeS MEeS

- -
GO [yyegdm=GOm

Soit en définitive :
1
0G = —J OM dm (1V.02)
mJyes

Le centre de masse d’un solide ne doit pas étre confondu avec le centre de gravité d’un solide
qui est le point d'application de la résultante des forces de pesanteur.

Remarques :

Dans un repere orthonormé (R) d’origine O, on obtient en dérivant, par rapport au temps, la
relation (IV.02) :

11
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- Pour la vitesse : mV'(G/R) = f V(M/R) dm (Iv.03)
Mes

- Pour I’accélération : my(G/R) = J y(M/R) dm (Iv.04)
Mes

3 Moment cinétique

Le moment cinétique en un point A, d’un solide (S) dans son mouvement par rapport a un repere
(R) est par définition :

3(4,S/R) = f AM AV (M/R)dm (IV.05)

MES
4 Torseur cinétique

Le torseur cinétique d’un solide (S) dans son mouvement par rapport a un espace (R) est défini
par les relations (IV.03) et (IV.05). Soit :

Résultante cinétique :

mV(G/R) = J V(M/R) dm
MeS
M oment cinétique en A :

&(4,S/R) =f AM AV (M/R)dm

f V(M/R)dm
Meg (4,S/R)

[

inétique]

Remarque :

En un autre point B, le moment cinétique s’écrirait :

G(B,S/R) = j

Me

BM AV(M/R)dm
S

Et de la relation (I11.02) nous déduisons immédiatement :
G(A,S/R) = &(B,S/R) + AB AmV(G/R) (IV.06)
5 Torseur dynamique

La résultante dynamique est définie par a relation (IV.04) : my(G/R) = fme Y (M/R) dm

Le moment dynamique en un point A, d’un solide (S) dans son mouvement par rapport a un
repere (R) est par définition :

5(A,S/R) = [, . AM A7(M/R)dm 1V.07)

12
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D’ou I'expression du torseur dynamique :

my(G/R)
[ Tty namique ] { 5(a.5/R) (IV.08)

6 Relation entre moment cinétique et moment dynamique

Dérivons dans R le moment cinétique, relation (IV.05)

d
—3(A,S/R) =f —AM /\V’(M/R)dm+f AM Ay (M/R)dm
dt MeS dt __ MES
& (A0 +OM)=—V (4/R)+7(M/R) 84S /R)
En tenant compte de la relation (IV.03) on obtient l'importante égalité :
8(A,S/R) = =G (A,S/R) +m V(A/R) AV (G/R) (IV.09)

Remarque :

En considérant le centre de masse G et en appliquant la relation (I11.02) on obtient les théorémes
de Kcenigs pour le moment cinétique et pour le moment dynamique.

3(A,S/R) = 3(G,S/R) + 4G AmV (G/R)
5(A,S/R) = 6(G,S/R) + AG Amy(G/R)

7 Moment d’inertie

Le moment d'inertie est une grandeur physique qui caractérise la géométrie des masses d’un
solide.

Considérons un solide (S) en rotation autour de O dans un repere orthonormé (R). Le moment
cinétique en O, d’un solide (S) est (relation IV.05) :

3(0,S/R) = f OM AV (M/R)dm

MeS

En utilisant la relation (II1.08) nous pouvons écrire :
3(0,S/R) = [, .OM A (& A OM)dm (IV.10)

Dans ce repere posons :

OM = x&, + yé, + zé,

® = ad, + bé, + c&,

En effectuant le double produit vectoriel : OM A (& A OM)
On obtient :

13
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z A a(y?+ z?)— bxy — cxz
OM A (DAOM) =4 b(z%+ x?) — cyz — axy
c(x*+y?) —axz— byz

Et par suite la relation (IV.09) devient :

(aj(y2+zz)dm—bfxydm—cszdm
S S N

(0,S/R) = bf(22+x2)dm —cfyzdm—afxydm
S S S

kcf(x2+y2)dm —afxzdm—bfyzdm
FigureIV.01 Rotation autour de O * * °

Lexpression I, = [ (y? +2?) dm est appelée moment d’inertie parrapport & I'axe x.

De méme I, = fs(z2 +x?%) dmet I, = fs(x2 + y?2) dm sont respectivement les moments
d’inertie par rapport aux axes y et z.

Les termes fs xydm, fs xzdm, fs yzdm sont les produits d’inertiec et respectivement notés

Ixy, Ixz, Iyz.

Compte tenu de ces notations le moment cinétique peut s’écrire :

aly, —bl,, —cl, al,, —bl,, —cl,,
é(0,S/R) ={bl,, —cl,, —al,, =< —al,, + bl,, —cl,,
cl,, —al,, — bl,, —al,, —bl,, +cl,,

Ou sous forme matricielle :

Ixx - Ixy - Ixz a
(0,S/R) = | Ly + L, — 1, H
_Ixz - Iyz + Izz ¢
Ixx - Ixy - Ixz
La matrice J, = | —Ly, +1,, — I, | est appelée matrice d’inertie en O du solide S.

_Ixz - Iyz + Izz
Soit en notation plus condensée :
6(0,S/R)=], w (Iv.11)

En vertu de la relation (IV.09) on peut écrire :

—

5 (0,S/R) =], C;—(: (1V.12)
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8 Dynamique

La dynamique est la partie de la mécanique qui s'occupe des relations entre les forces et les
mouvements qu'elles provoquent.

Pour cela, la dynamique introduit le distinguo entre les divers efforts qui s'exercent sur un corps
solide. On est ainsi amené a marquer la différence entre les efforts extérieurs et les efforts
intérieurs.

Les forces extérieures s'exercant sur un corps solide sedécomposent €également en deux grandes
familles. D'une part, les forces qui s'appliquent sur la surface du corps et d'autre part les forces
a distance qui s'exercent dans le volume du corps, comme par exemple le poids ou les forces
d'inertie.

Les efforts intérieurs, qu'il ne faut surtout pas confondre avec les forces a distance, proviennent
des particules intérieures au systéme qui exercent des actions les unes sur les autres. Les forces
intérieures sont égales et opposées deux a deux. Il s’ensuit que le torseur des efforts intérieurs
est nul. Cette notion de forces intérieures sera développée dans un prochain paragraphe.

Dans 1'énoncé du principe fondamental de la mécanique, il n'y a que les efforts extérieurs qui
interviennent.

9 Principe fondamental de la mécanique

Dans tout espace-temps galiléen (g) et pour tout systéme matériel le torseur dynamique (IV.08)
est constamment égal au torseur des efforts extérieurs (I11.04).

R=my(G/g)
MA = S(A,S/g)

(Iv.13)
Pour un point matériel et dans tout espace-temps galiléen (g) la relation (IV.13) devient :

R=my(M/g) (IV.14)
10 Travail et puissance d'une force qui s'exerce sur un point matériel

Soit un point matériel M décrivant une courbe C dans un repere orthonormé
(e) = (0, €,,¢,, € ) et une force F appliquée en M.

Par définition le travail élémentaire effectué par la force F, lorsque son point d'application se
déplace de dOM est égal au produit scalaire :

dW =F-dOM =X dx +Y dy +Z dz
aw =F-V dt (IV.15)

> (OM
Puisque la vitesse du point M dans le repere (e) est: V = <E>
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A
V4
C
X La puissance développée par cette force est :
M aw
Y p=""c=F.7
z dt
Le travail et la puissance d'une force dépendent du
R X repere dans lequel ils sont évalués.
é, ﬂL Fly
. Z Pour aller d'un état initial "i" a un état final "f" la
Of & > » force F peutse déplacer sur des courbes différentes.

. y Le travail correspondant aura des valeurs
différentes suivant le chemin emprunté.

z ; Si tel n'est pas le cas, on dira que la force F dérive
de la fonction de force ® ou du potentiel V= - ®.
Nous aurons alors nécessairement :

X_aq>_ Y_acp_ _ 0D
~ox’ oy’ T ez’
Soit :
oF oF oF S
dW = —dx + —dy +—dz = gradF - dOM

0x dy 0z

X
Figure IV.03 Chemins utilisés pour
aller dei a f

Le travail ainsi produit au cours d'un déplacement élémentaire sera une différentielle totale
exacte. Dans ces conditions :

f
i

Et ceci quel que soit le chemin parcouru.

11 Travail et puissance d'une force qui s'exerce sur un solide

Soit (R) un repére orthonormé 0, €,,€,, €, et un solide (S). Considérons un point M i de ce solide
sur lequel est appliquée une force F"l-.

Compte tenu de la relation (IV.15), le travail élémentaire de la force F'i pour un déplacement
dOM; du point Mjest:

—_

dw, = F, - dOM,

Pour n forces appliquées a un solide :
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dw = Z F,-dOM, (IV.16)

En un point P, quelconque, du solide la relation (II1.07) permet d'écrire :
V(M;/R) =V(P/R) + M,PA &
Pour un petit déplacement élémentaire :
dOM, = dOP + M,P A & dt

En portant dOM, dans la relation (IV.16) nous obtenons pour le solide :

i=n i=n
aw =Zﬁidop+2ﬁi-(1\ﬁ’/\a dt)
i=1 i=1

Les propriétés du produit mixte permettent d'écrire :

i=n i=n

F,-(MPAG dt) = ) @dt-(F, A M,P)
Remarquons que le torseur des efforts extérieurs est :
( i=n
| R= )R
i=1
[ efforts exterleurs { i=n
l\MP PMl AE,

Le travail ¢lémentaire peut donc s'écrire :
dW =R-dOP + M, - & dt

En divisant par df on obtient I'expression de la puissance pour un corps solide.

dW_,

= V(P/R)+ M, &

C’est-a-dire €gal au produit scalaire du torseur cinématique par le torseur dynamique.
12 Energie cinétique

En désignant par G le centre de masseet par M un point d’un solide (S) de massem, nous avons
en utilisant la relation (II1.07) :

V(M/R) =V(G/R) + @ AGM
Par définition, 1'énergie cinétique d'un solide (S) dans son mouvement parrapporta (R) est:
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1 R
E.= —J V2(m/R) dm (IV.17)
2 Jres

Et par suite :
V2(M/R) = V3(G/R) + (@A GM) (@AGM) + 2V(G/R) (& AGM)
D'apres les propriétés du produit mixte, le deuxieme terme du second membre peut s'écrire :

(@AGM) - (& AGM) =6-(W/\(<D’/\W))

Soit :

2E, =mV2(G/R) + af GM A (& AGM)dm + 2V (G/R) JAJ GM dm
MES MES
d(G/R)=];& 0

D’ou la relation :
2E. = mV2(G/R) + W/, ® (Iv.18)
Remarque :

Pour un solide tournant autour d'un axe, par exemple l'axe Oz, nous aurions : @ = w €;. Si de
surcroit le centre de masse G est sur I'axe Oz nous aurons V(G /R ) =0.

.. 1
Dans ces conditions : E, = ;IZZ w?
On désigne souvent par I, le moment d'inertie par rapport a un axe donc :

1 2
Ec=5l, (IV.19)

Parfois on appelle "r" le rayon de giration du solide autour de l'axe telle que : I, = mr?

13 Théoréme de Keenigs

Soit G le centre d'inertie d'un systeme matériel (S) de masse m et désignons par:

5 A

€3
(2) = (g €1, €,, €3) un repére d'espace.
(R) = (G, E_l), E_Z), E) le repére central en translation par
rapport a (g).
M un point quelconque de (S).
Puisque R est en translation par rapport a g, la relation
(III.12) devient :

3 ViM/g)=V(G/g)+ (7> =V (G/9) +V(M/R)
R

1
Figure IV.04 Mouvement autour de G

En formant le carré scalaire des deux membres et en intégrant par rapport ala masse, on obtient :
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2 B, =mV3(G/g) + f V2(M/R) dm +2V(G/g) | V(M/R)dm

MEeS MEeS

0
L'énergie cinétique d'un systéme matériel (S) est égale a la somme de I'énergie cinétique de son

centre d'inertie G, affecté de la masse totale m de (S), et de I'énergie cinétique de (S) dans son
mouvement autour de G.

2 E. =mV%(G/g) + j V2(M/R) dm (IV.20)

MeS
14 Théoréme de 1'énergie cinétique pour un systeme de particules
Le travail ¢lémentaire d'une force qui s'exerce surun point matériel est de la relation (IV.15) :
dW = F-dOM =F -V dt

Et pour un systéme de n particules de masse mj, cette relation devient :
i=n
aw = Zﬁi V.dt (IV.21)
i=1

ﬁi est la force exercée sur la particule Pi par ses voisines et d'éventuelles actions extérieures.

Pour I'ensemble du systéme de particules on distingue le travail provenant des forces extérieures
avec celui consécutif a I'action des particules les unes sur les autres.

Il estnoté dW. et dW; et appelérespectivement travail des forces extérieures et travail des forces
intérieures.

Le travail des forces intérieures n'est pas nul puisque le déplacement élémentaire de chaque
particule est, en principe, différent. Ce n'est pas le cas pour la résultante des forces intérieures
qui s'annulent deux a deux.

dW = dW, + dW,

Par ailleurs, en vertu de la relation (IV.14) et simplifiant les écritures nous avons :

ﬁi =m;y; = mi%
Ce qui permet d'écrire :
i=n i=n P
dw = Zmiv’i-dV} =Zmid12/" — dE,
i=1 i=1

Au cours des déplacements ¢lémentaires des particules pendant la durée dt, le travail de toutes
les forces, intérieures et extérieures, est €gal a la variation d'énergie cinétique du systéme.
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dE, = dW, + dW, (IV.22)

Compte tenu des relations (IV.21) et (IV.22) nous pouvons encore écrire :

~

=n

dEC = F)'l - Vldt
i=1
Et entre deux instants tj et tz :
t, i=n
Folt) = Ee(6) = [ ) RVt
b=t
Sous une forme plus abrégée :
AE. =W, + W, (Iv.23)

La variation d'énergie cinétique d'un systéme de particules, entre les instants t et t2, est égal au
travail de toutes les forces, intérieures et extérieures, appliquées au systéme pendant cette durée.

Remarque :
Rappelons qu'enmécanique, dite rationnelle, on considére le corps solide comme indéformable.
Donc, dans un repere li¢ au solide, les déplacements de ses particules, sont nuls, il en est donc
de méme pour le travail des forces intérieures.

AE. =W,

15 Energie cinétique dans le repére central

Conservons les mémes notations et ajoutons un indice astérisque * pour les grandeurs évaluées
dans (R). Ainsi la relation (IV.20) s'écrira :

_ mV?(G/g)

= E

Le travail étant un produit scalaire, il est donc distributif par rapport a I'addition. Le travail des
forces extérieures agissants sur le systéme peut donc se mettre sous la forme suivante :

W =W, + W
Et de la relation (IV.23) :
AV2(G
W, +W; + W, = m(—/g)+AEg‘
We
Avi(G/g) . o .
or W, = mT et par conséquent la relation ci-dessus devient

W, + W, = AE; (IV.24)

Le travail des forces intérieures est indépendant du repere : W; = W/
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Soit en définitive la méme forme d'équation :

f
W+ W = AE;
i

21



Chapitre V Contraintes M écanique des milieux continus

Chapitre V
Contraintes

Un solide se déforme lorsque des forces s'exercent sur lui. Dans un état de référence, désignons
par [ la longueur d'une chaine de particules, prise au sein du solide. Sous l'action des efforts
exercés, cette distance devient [ + dl mais la variation relative : dl /1 reste petite devant l'unité.

Ainsi on congoit facilement que, pour transmettre des efforts d'un point a un autre, l'intérieur
du solide doit étre contraint. On désigne par solides réels de tels corps.

On appelle milieu continu solide tout domaine de I'espace occupé par un solide réel dont ses
propriétés physiques attachées a la distribution de matiére (masse volumique, capacité
thermique massique etc.) sont des fonctions continues et différentiables des coordonnées d'un
point M appartenant au solide.

Le but essentiel, de la théorie de I'élasticité, est de pouvoir déterminer les contraintes et les
déformations en tous points d'un solide réel soumis a un chargement extérieur.

Ce chapitre selimitera a I'étude de solides réels isotropes, homogenes et a temp érature uniforme
et constante (équilibre thermique).

1 Définition d'une contrainte

Considérons un solide réel S en équilibre sous I'action F, F
de forces extérieures.
Nous supposerons que l'action des forces extérieures P \ 5
s'effectue tres lentement afin de pouvoir appliquer le L > «—*
principe fondamental de la statique, relation (III. 05). /" """ Al
[AFre = $}] = [0 ' =
En chaque point du solide il existe des forces Figure V.01 Solide S
intérieures.

Coupons fictivement le solide en deux parties, absolument quelconques, G (gauche) et D
(droite) et désignons par {2 la surface de séparation des deux parties G et D.

La partie gauche, par exemple, pourra étre considérée comme étant en équilibre sous l'action
des forces extérieures (ﬁl et ﬁz) qui s'exercent sur elle, et sous l'action des forces intérieures
appliquées par la partie droite D sur la partie gauche G.

Les forces intérieures appliquées, par la partie D sur la partie G, s'exercent en chacun des points
de la surface (2. Cette action de D sur G est une action de proche en proche, c’est-a-dire que
chaque petit ¢lément de la partie D, placé sur la surface (2, exerce une action de proche en
proche surI'élément de G situé exactement en regard.

Ces deux parties fictives G et D doivent rester en équilibre.
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La partie G sera en équilibre sous l'action
des efforts extérieurs que l'on peut
décomposer en deux catégories :

- ceux qui s'exercent sur sa surface fictive
Q) et qui caractérisent l'action de D sur G.
- ceux qui agissent sur la surface réelle de
G, et sur son volume comme son poids, par
exemple. Ils seront désignés par F,

{A.F, > G}+{A,D—>G}={0} (V.01)

En résistance des matériaux, c'esta dire la théorie des poutres,
cette relation est fondamentale. A est, alors, le centre
géométrique d'une section droite.

Figure V.04 Facette

Intéressons-nous au terme {4,D — G}.
Pour cela considérons, sur la surface fictive (2, une aire élémentaire df2 contenant le point M.

L'action exercée par I'élément infiniment petit, de la partie D, placé immédiatement en regard

de d2 se manifeste en M par une résultante dF et un moment dM.
Le moment dM est du second ordre et est négligé devant dF.

La force élémentaire dF sera supposée proportionnelle & l'aire géométrique df2, soit :
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dF =¢dQ
C est le vecteur contrainte en M, relatif a 1'élément de surface df2 .

Le petit élément de surface d(l est appelé facette. Une facette est définie par sa normale
extérieure unitaire 7i.

Le vecteur "contrainte" est projeté dans la direction deT et dans le plan de la facette.

Vectoriellement, nous pouvons écrire :

g= (- R)A+AAEAR (V.02)
o

=l

La composante normale suivant 1i est désignée par o et on pose & = o7l

Si dans un solide nous avons :

o > 0 la contrainte normale est une traction ou une tension.
6 <0 la contrainte normale est une compression

o = 0et¢# 0il y acisaillement pur, puisque 7 -7 = 0

Dans le plan de la facette la composante tangentielle est 7.

Figure V.05 Projection suivantn

La grandeur scalaire T, attachée au vecteur 7, s'appelle la contrainte tangentielle ou encore
cission et parfois contrainte de cisaillement.

Dans un repére orthonormé (e) = (0,6,,€,,€;) associ¢ & un systéme de coordonnées
cartésiennes M xyz, le vecteur 7 est projeté sur deux axes rectangulaires appartenant a la facette
dn.

Pour décomposer le vecteur contrainte, dans ce systéme de coordonnées, on adopte les notations
suivantes :

- Le premier indice caractérise la direction de la normale extérieure.
- Le deuxiéme indice indique sur quel axe a été projeté le vecteur contrainte correspondant.

La figure V.06 représente une facette passant par M et définie par 71 = €,. Pour cette facette le
vecteur contrainte s'écrirait :

¢=C(M,é,) =0,,€ +1,,€,+1,,€

Pour décomposer le vecteur contrainte, dans ce systéme de coordonnées, on adopte les notations
suivantes :
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- Le premier indice caractérise la direction de la A\

normale extérieure. Oyx

- Le deuxieme indice indique sur quel axe a été .
projeté le vecteur contrainte correspondant. e

La figure V.06 représenteune facette passant parM 13
et définie par 1 = €,. Pour cette facette le vecteur
contrainte s'écrirait :
C=C(M,é,) = 0,6 +71,,6,+1,,6
Pour la facette définie par7i = €, nous aurions :
c=c(M,é,) =1,,8 +0,,6+1,8E
Et pour la facette définie parii = €;nous aurions :
¢ =¢(M,é;) = 1,8, +1,,6,+0,,¢

\ 4

Figure V.06 Convention d'indices
En un point M, il y a une infinité de facettes. Le vecteur contrainte varie en grandeur et direction
lorsque 7 tourne autour de M.
Dans un souci de précision, on notera désormais pour le vecteur contrainte :
c(M,n)
Ce qui signifie que le vecteur contrainte agit en M sur une facette définie par 7.

On nomme faisceau de contraintes en un point d'un corps, I'ensemble des contraintes relatives
a toutes les facettes passant par ce point.

On appelle champ de contraintes dans un volume, I'ensemble des faisceaux de contraintes relatif
a chaque point.

2 Faisceau des contraintes

Considérons I'élément de volume tétraédrique infiniment petit ABCD. Supposons connues les
contraintes agissant sur les trois facettes définies par —€,,—€, et — é,.

Nous nous proposons de déterminer les composantes du vecteur contrainte ¢(M,71) en fonction
des grandeurs connues.

Soit 7t le vecteur unitaire normal & la surface BCD et de composante @, 8,y dans le repére
AX,y,Z.
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zZ
Z‘(Mz;—?z) /

7
ay
S
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@l
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Désignons par:

¢(M,,—€,) le vecteur agissant en M 1 sur la
surface ADC notée dSx.

¢(M,,—é,) le vecteur agissant en M2 surla
surface ABD notée dSy.

¢(M,,—é;) le vecteur agissant en M3 surla
surface ABC notée dS..

B ¢(M,n) le vecteur agissant en M sur la

(M3, —e3) surface BCD notée dS.

X

Figure V.07 Faisceau des contraintes

En vertu de la loi de I'action et de la réaction nous avons :
¢c(M,,—é,) = —c(M,,é,)
¢(M,,—é,) = —¢(M,,é,)
¢(M;, —é;) = —c(M,,é,)
Appelons @ dV les forces de volume agissant sur le tétraédre ABCD.
Pour ce petit ¢lément de volume, appliquons le principe fondamental de la statique :
—2(M,,—é,)dS, — é(M,,é,)dS,, — (M3, —é;)dS, + (M, 1) + &dV =0

Du cours de géométrie analytique nous savons que :

ds, = adS
ds, = pds
ds, =vydS

Rappel :

Soient les points M et My appartenant au plan BCD et posons :
OM = x&, +yé, + zé,
OM, = x0€, + Yo, + 2,8,
L'équation du plan est : MM, - 1 = 0 soit (x — x)a+(y —y,)B+ (z—z,)y =0
Soit encore :
c—xa—yp

xa+ yp + zy = c (constante) dou z= ”
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c—xa—
OM = xé, +yé, +Tyﬂ53 =
= E(x,y)
dS = [E, AE,]| dx dy
4 - a - 4 - -
avec E =8,——8& Ey=ez—ﬁe3
14 14
S -
E, NE, =;el+;ez+e3
S =2 af+ B4y 1
E.NE = =—
(EunBy)' = S L
dxd
Et par suite :dS = = ce qui nous autorise a écrire :
dx dy=dS,=y dS
Si bien que la résultante des forces appliquées s'écrit en divisant par dS :
. . . . . . Y. adv o
—c(My,é1)a—c(M,,8,)B — (M, eé3)y + (M, 1) + & 5= 0 (V.03)

Faisons tendre B, D et C vers A tout en déplacant le plan BCD parall¢lement a lui-méme.

. av ,
Dans ces conditions le terme P — 0 et les points M, M 1, M2 et M 3 sont confondus.

La relation (V.03) devient :
c(M, 1) =c(M,é)a+ (M, e,)B +7(Ms, )y
En posant ¢(M,n) = Xé, +Yé, + Zé,il vient :
X =00 +7,0+ 1T,y
Y =1ya+0,f+1,Y

Z =Ty +1y,B+ 05y

Ce sont les formules de CAUCHY, elles définissent les trois composantes X, Y, et Z du vecteur
contrainte ¢(M,7) connaissant la direction 7(a, B,7).

Sous forme matricielle cette relation d'équilibre s'écrit :

X Oy  Tyx Tzx][&
Y=y 9y Tzy||B (V.04)
A Txz Tyz 0711V

Soit encore sous forme abrégée :

[¢(M,7)] = [L] [7i]
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Il est tout a fait évident que le vecteur contrainte ¢(M,7) ne dépend pas de l'orientation des
axes X, y, z.Si I'on change 'orientation des axes, I'état de contrainte en un point reste invariable,
il sera, évidemment, déterminé par d'autres valeurs de Oy Tyxer Tzzr €C . €t donc par une autre
matrice[L].

L'état de contrainte en un point varie seulement lorsque la charge extérieure s'exercant sur le
corps considéré est modifice.

Nous pouvons donc dire qu'en tout point M, nous associons un vecteur contrainte ¢(M, 1) a une
direction donnée 7, et ceci quel que soit le repére dans lequel nous travaillons.

¢(M,n) = L(n)

"L" est un opérateur linéaire et les mathématiciens disent que I'étre " L" a une structure
tensorielle.

3 Equations d'équilibre

m A priori I'état de contrainte en un point est
N

~ défini par les neuf grandeurs suivantes :

~ Oxs Tyys Txzs T

En écrivant les équations de I'équilibre on
L / montre qu'il suffit de six grandeurs pour
Seos /) caractériser I'état de contrainte en un point.
€, - Considérons un volume ¥ contenu dans le
e, n < volume du solide réel étudié. Ce volume V est
0 délimité par une surface S pouvant étre en

partie fictive et en partie réelle, ou tout aussi
X v bien purement fictive.

Figure V.08 Volume V

yX? Gy’ Tyz’ Txo sz’ G-

Désignons par:

- M un point quelconque a l'intérieur de V et dV le volume ¢élémentaire contenant M.
- P un point quelconque situé sur la face S et dS la surface élémentaire contenant P.

- 11 le vecteur unitaire normal et extérieur a I'élément de surface dS.

- p la masse volumique du solide.

-X la force parunité de masse et de composante X, , X y, X,dans le repére 0,x, y, z.

Les forces extérieures agissant sur le volume V sont de deux natures ; les forces de volume et
les forces de surface. Pour le volume ¢élémentaire nous aurons :

ﬁv = pXdv

Les forces de surface, agissant en tous points de la surface S sont caractérisées par le vecteur
contrainte ¢(P,7). La force élémentaire agissant sur le petit élément de surface dS sera :

- - —
dF ¢ = ¢(P,n)dS
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3-1 Résultante

Ecrivons que la somme de toutes les forces extérieures, agissant sur le volume V, doivent étre
nulles :

Jf, pXav + [[é(P,7)dS =0 (V.05)

Projetons cette relation surl'axe des x :
ﬂprdV + ﬂ (o, + 7,8 + T,2¥)dS =0
v s

Introduisons un champ vectoriel auxiliaire W, dans le repére 0, x, y; z tel que :
- - -
W = 0.€1 1 Tyx€; + 7,063

M oyennant quoi :
j-f(axa+ TyuB +T,y) dS = ffW-ﬁdS
S S

L'intégrale représente le flux du vecteur Wsortant a travers la surface S. La formule
d'Ostrogradsky, relation (I1.05) permet d'écrire :

—, do, Ot Jt,
ﬂw-ﬁdsz UdideVzU < bt x)dV
s v v \ 0x ady 0z
La projection de la résultante surl'axe des x devient donc :
do, Ot Jt
X =+ 24+ = )dV =0
.Uv<px+6x+ay 0z

Cette relation doit €tre vérifiée quel que soit le volume pris a l'intérieur du solide réel. Ce qui
signifie que la fonction figurant sous le signe intégral doit étre nulle en tous les points du solide.

En projetant également la relation (V.05) sur les axes y et z, nous obtenons les trois relations
ci-dessous :
do, 0t ot

X x VX zx _ 0
Pyt ox * dy 0z
X+ 01y, 0o, 01, _

(V.06)

Ces relations sont appelées équations différentielles de I'équilibre
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3-2 Moment

D'une fagon analogue a la résultante, €crivons que la somme des moments des forces
extérieures, agissant sur le volume V, doit étre nulle :

—> . — -
ffOM/\deV+ffOM/\c(P,n)dS=0
% s

Comme précédemment pour la résultante, en projetant sur I'axe des x on obtient tous calculs
effectués :

ff X+6T”+6Tyz+aaz X+6T"y+aay+arzy—0 + av =0
A\ T e Ty Tz )Y T\ P T ox Tay T ez )P T e T ey -

Cette relation doit €tre vérifiée quel que soit le volume pris a l'intérieur du solide réel. Ce qui
signifie que la fonction figurant sous le signe intégral doit €tre nulle en tous les points du solide.

En vertu des relations (V.06) il ne subsiste que :

Ty, =Ty =0 =2 7, =17,

De méme en projetant sur I'axe des y et z nous obtenons :

Tyz = sz
Txy = Tyx

Ceci constitue la loi de réciprocité des contraintes tangentielles.

4 Tenseur des contraintes

Compte tenu de la réciprocité des contraintes tangentielles, 1'état de contrainte en un point est
déterminé par six grandeurs scalaires :

Oy Txy Txz
[L] =Ty Oy Tyz (V.07)
Txz Tyz 0,

Nous connaissons la notion de vecteur déterminé par trois nombres en tant que grandeur. L'état
de contrainte se détermine par six nombres et constitue ce qu'on appelle un tenseur.

L'interprétation physique du tenseur des contraintes est facile en considérant les trois facettes
définies par: €,,€, et é; .
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z
Pour le vecteur contrainte défini par €, : 1
o, T T o 0z
. . X xy XZ 1 X _é 5z
c(M,e;))=|Txy 9 Tyz[|0| =|Txy
Tez Tyz 07 |10 Ty Txz
Oy
De méme : M / y
- - _ -> - - TXy
c(M,é,) =1,,€, + 0,6, +1,,€;
- - - - -
c(M,e;) =1,,6, + Ty,€, + 0,63 Ox

X

Figure V.09 Interprétation du tenseur des
contraintes

Exercice

Conformément a la figure ci-dessous, une plaque d'épaisseur e, de longueur [ et de hauteur h
est encastrée a l'une de ses extrémités AB. A son autre extrémité A'B’, elle est soumise a un
chargement qui provoque une contrainte tangentielle constante, sur toute sa surface (Si).
K =-Ké,
Elle supporte également sur sa partie supérieure AA' un chargement vertical qui se manifeste
par une pression p, linéairement décroissante de po a 0, sur toute la longueur de sa surface
(S2). Soit pour un petit élement de surface dS: :
-

dF = —pdS,é, avec p = ZZ—O (L—x)

On négligera l'action de la pesanteur sur la plaque, et on précise que les surfaces (S3), (S4) et
(Ss5) ne sont pas chargées.

A i » (S2)
zmllllllum“m.
m I
7% |
| ? K h/2
R 1% . )
26631 |O| /0 e]: | YV
" 3 g ¢ . Y
S S
M 7 s sy |\
ll % _@‘5_) T h/2
% B | R'l \ 4
9%6' Z/ >
1 [« ) L

1. Ecrire les conditions aux limites, en contraintes, pour la surface (Si).
2. Méme question pour (S2).
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3. Méme question pour (S3).
4. Déterminer le torseur en o des forces de liaisons diies a l'encastrement de la face AB.

Corrigé
1. PourM € (S,) nous avons : x=1L et ¢(M,é,) = —Ke,
Oy  Tyy o,=0
c(M,e,) = [Txy gy ] [ ] =—K
Txz Tyz =0
2. PourM € (S,) nous avons : y =% et c(M,e,) = ——(L - x)é,
7,,=0
Ox Txy Txz][0 xy D
cM,é)=|Txy 9y Ty|1] = o, = —=2(L-x)
xz CYyz O0z110 L
7,, =0

3. PourM € (S;) nous avons : z =§ et ¢(M,—é,)=70

Oy  Txy Tyxz 0 Tyz =
cM,—€3)=[txy 9 Tyz|| 0|=0 = T, =
Txz Tyz 0z |1—

4. 1l faut écrire l'équilibre de la plaque.
4 -1 Pour la résultante R :

0= ﬂsl ¢(M,é,)ds, + ffsz ¢(M,8,)ds, + ff56 ¢(M,—é,)ds,
Avec:
h
H ¢(M,é,)ds, = j J —Ké,dydz = —Kehé,

L
jf ¢(M,é,)ds, = j f (L—x)é,dxdz = _poze é,

D oii l'expression de la résultante R:

:ff 2M, -2 dsq =

pOeL -
2 )e2

4 -2 Pour le moment M, :

0= ff OM; AE(My,é,)ds; + ff OM, AE(My,é,) ds, + ff OMg A (Mg, —€,) dsg

M, €S, M,ES, MgESs
5 L 0 zK
Avec : OM; ANC(My,é))=|yA|-K=| 0
z 0 —LK
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1l vient :
e h
- 2 2
f f OM, AEM,,8) ds, = [ [ (ak&, - LKE,) dydz = —KLen?,
M,ES, 2 2
x pL—O (L—-x)z
De méme : OM ACE(M,,é,) = % T(L—X) = 0
z 0 — pL—O (L—x)x
1l s'ensuit :
e e
- - - 2 2 pO 2\ =
OM, AE(M,,é,) ds, = Z—(L —x)é,dxdz — T(Lx —x%)é;dxdz
e e
M,ES, 270 270
~ L?e
f j OM, A E(M,,8,) ds, = 22,
M, €S,

Et en définitive :

oAz 3 pLy
ﬂ. OMy A C(Mg,—€,) dsg = Le (Kh +?) é,

M4ES;
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Chapitre VI

Tenseur des contraintes

1 Contraintes principales et directions principales

Le tenseur [L] étant symétrique, il existe en chaque point M du solide un repére orthonormé
MXYZ dans lequel la matrice |L| est diagonale.

Les valeurs propres de |L| se nomment contraintes principales en M et sont notées :0,,0,, 05.
Elles s'obtiennent en résolvant I'équation :

Oy —0 Tyx Tox
Ty 0, —0 Tzy =0 ( \/l.Ol)
Ty, Ty, g, —0

Les directions propres M X, MY, MZ sont appelées directions principales, et les trois facettes
formées par ces trois directions sont les facettes principales. Par exemple. Pour la direction
principale M X définie, dans le repére MXYZ, par le vecteur unité : 7 = @, €, + B,€, + v, €,
Nous avons donc :

Ox  Tyx Tzx][%1 a,
Txy Oy Tyy||Bi|=0,|B1
Tz Tyz 9z1Lln )41

Dans le repére principal M XYZ, le tenseur des contraintes s'écrit :

opb 0 O
[L]= [O g, 0
0 0 oy

En particulier, dans ce repére, le vecteur contrainte ¢ (M E 1) a pour expression :
opb 0 071 0,
E(M,El):[o o, 0][0]:[0] :O-lﬁl
0 0 a3llo 0
le vecteur El est porté par l'axe MX.

Les vecteurs contraintes agissant surles facettes principales sont perpendiculaires a ces facettes,
et n'ont pas de contraintes tangentielles.
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\ 4

0y

Figure V1.01 Contraintes principales

2 Ellipsoide des contraintes

M écanique des milieux continus

Le vecteur contrainte, en un point M dans une direction #(a, B,y), s'écrit dans le repére

principal :

Figure V1.02 Ellipsoide des contraintes

Désignons par X1, Y1, Z1 les composantes du vecteur contrainte, soit :
X, =0 Y, = 0,8 Z, =03y
Et comme a? + f? +y? = 1, il s'ensuit que :

XN, 4

=1
2 2 2
o4 0y O3

0
0,
0

0
0
03

[d

(V1. 02)

Le lieu de l'extrémité "E" du vecteur contrainte ¢(M,7) décrit un ellipsoide lorsque 71 varie.

C'est I'ellipsoide de Lamé.
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Exercice VI.1

Dans un repére orthonormée = (o, 51, 52, 53) la matrice du tenseur des contraintes en un point
M d'un solide, a pour expression :

40  —30v3 0
L=1-30/3 =20 o |Valeurs en N/mm?.
0 0 30
ZA 30

53“ Ag

R ) &

e g —30VB -20

40

Qy
o
N

N

4. Calculer dans ce repere les composants du vecteur contrainte défini par sa normale
extérieure :

L _ V3, 3, 1,
n=—7e1+ze2+§e3

2. Calculer les contraintes principales.
3. Déterminer les directions principales.
4. Indiquer [’équation de [’ellipsoide des contraintes.

Corrigé

4. Le vecteur contrainte s ’écrit_ : )
40 -30v3 o |[-V3/4
cM, ) =_30v3 —20 of| 3/4

0 0 30]1 1/2
3 3 _
403 _g0¥3 32,5V3
4 4
MR =| —90_060 _| 75
4 4
15 15

2. Pour calculer les contraintes principales nous devons satisfaire la relation suivante :

[Lel[;] = o;[7]
Donc :
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[Lelln;] - oy[7;] = [0]

40-0 —30V3 0
—30V3 -20-¢ o |=0
0 0 30— o

(30—0)(c?—200 —3500)=0

Les racines de cette équation sont les contraintes principales soit :
o, =70 o, = =50 o; = 30

Remarquons que sans faire de calcul on s apercoit que l'axe z est une direction principale a
laquelle on peut associer la contrainte principale :

=05 = 30
3. Cherchons la direction de X :
[Lc]ln,] = 04[] avec o,=70 et 71, =a,é,+B€,+V,é;

Soit :

40  —30v3 0 40a; — 30V3B, =70a,
—-30V3 —20 [ = —30V3a, — 208, = 708,
0 30y, =70y,

En résolvant ce systeme d'équation, on obtient :

a, = ? = cos(—30) )

=

5 = — 0

=g == sin(—BO)je = =30
» =0

De méme pour la direction de Y on a :

[Lc][n,] = o,[1,] avec o0, =50 et n,=a,é, +B,6,+V,¢é;

D’ou :
40a, — 30V3p, = 50a, a, = cos60
—30V3a, — 208, = 508, etondéduit: 1,|(B; = Sin60}92 = 60°
30y, = 50y, Y. =0
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Y
N
y 50 Remarquons qu'il était inutile de calculer le
3dv3 120 vecteur propre correspondanta 0, puisque
< 7 A les directions principales sont orthogonales.
30V3
60° 40
X
W/
70
X

4. Equation de l'ellipsoide de Lamé :

X? Y2 Z?
702 T502 T302

3 Définition d’un étatde contrainte

3-1 Etat de contrainte triple

Si les trois contraintes principales sont différentes de zéro, on dit que I’état de contrainte est
triple. La contrainte sur n’importe quelle facette d’un point M est alors différente de zéro.

3-2 Etat de contrainte double

On dit que I’état de contrainte est double en un point lorsque que I'une des contraintes
principales est nulle en ce point. L’ellipsoide des contraintes dégénere alors en la surface d’une
ellipse, tous les vecteurs contraintes ont alors leur origine et leur extrémité dans un méme plan
appelé plan de contrainte double ou, plus simplement, plan de contrainte.

Lorsque surtrois facettes quelconques formant triédre, les contraintes sont paralléles a un méme
plan (P), I’état de contrainte est double et admet ce plan comme plan (P) de contrainte.

3-3 Etat de contrainte simple

On dit qu'en un point I'état de contrainte est simple lorsque que deux des contraintes principales
sont nulles en ce point. L'ellipsoide des contraintes dégénére alors en un segment de droite.
Toutes les contraintes sont alors paralleles a une méme droite dite "direction des contraintes".
Exemple : une poutre droite soumise a de la traction.
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4 Invariants scalaires du tenseur des contraintes

En développant les calculs de le relation (VI.O1), c’est-a-dire :

— 0 T T

x yx zx
Ty Oy—0 Ty |=0
T,y T, 0,—0
On obtient :
—a3+02(a +o0 +0)—0(00 +o0,0 +0,0, —1%2, —12 — 12
X y VA X~y y-z Z7X Xy XZ yz

2 2 2 —
+ 0,0,0, + 2T, T, T, — T4,0y — Ty, 0y — Ty, 0, = 0

Soit a résoudre une équation de la forme :
—03+ A6 —-Bo+C=0
Dont les racines o, 0,, 05 sont les contraintes principales.

Or I'état de contrainte en un point d'un corps ne dépend que du chargement auquel il est soumis.
Lors d'un changement de repére cette équation reste invariable et il en est donc de méme pour
ses racines g, 0, 0.

Par conséquent les quantités A, B et C sont constantes. Pour les calculer il est évidemment plus
simple de les calculer dans le repere principal puisque les contraintes tangentielles sont nulles.

A=o0, to,+o0;

B = 0,0, + 0,05 + 050,

C =0,0,0; (VI.03)
A, B et Csont appelés les invariants scalaires du tenseur des contraintes.

On appelle contrainte moyenne o,, la grandeur obtenue en divisant l'invariant scalaire A par
trois.

5 Déviateur des contraintes

On décompose le tenseur des contraintes en deux tenseurs symétriques :

(L] [4,] [4;]
Oy  Txy Tz Oy — Op, Tyy Tz g, 0 0
Tey Oy Tyl = Ty Oy, — Op %z |+|0 o, O (VL.04)
Txz Tyz O Txz Tyz 0z = Om 0 0 Om

[A,]est le déviateur des contraintes, sa trace et nulle. Les directions principales sont les mémes
que celles de [L] et ses valeurs propres sont :

01 = 0p » 0 = 0p 03 — Oy
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[A,] est le tenseur isotrope ou encore le tenseur sphérique et I'ellipsoide devient une sphére.
Dans un fluide au repos, une seule grandeur caractérise 1'état de contrainte : la pression p.

-p 0 0
Soit : [L] = [4,] = [ 0 -p O ]
0 0 -p

6 Représentation plane de MOHR

Nous avons vu que l'extrémité du vecteur contrainte en un point M décrivait un ellipsoide
lorsque 71 variait.

La représentation plane de M OHR concerne également le faisceau des contraintes, mais elle est
obtenue en partant la projection du vecteur contrainte suivant la normale et dans le plan de la

facette ; ce sont les grandeurs o et tque nous avions précédemment définies (relation (V.02)).

c(M,n) = (M, 1) - mn+nA(CE(M,n)AnR)

o T

Considérons en M le repére principal et un axe 4 issus de M et du vecteur unitaire 7.

Par construction portons : Z A
MA, =0, 7 E
MA, =0, 7t
MA, = o, 7
et supposons que :
G,>0,>0,

En désignant par E Tlextrémité du vecteur
contraintec(M, 1) nous pouvons écrire :

EA, =EM + MA, = —¢(M, i) + M4,

Figure V1.03 Construction de MOHR

Soit :
(2} 0 0 a o, 0
ﬁ1=_[0 o, O]||B|+ alﬁ]= (0, — 0,)B
0 0 o;11Y oY (o'l — 0'3)y
En tenant le méme raisonnement pour FZZ et F?Qnous obtenons :
(0, —0)a (03 —a)a
ﬁz = 0 et ﬁ3 = (0'3 — o'z)ﬁ
(0'2 - 0'3))/ 0

Formons les produits scalaires :

EA, - EA, = (0,—0,)(0, —05)y2 20
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EA, Ed, = (0,—0)(0;—0)a? =0
EA,- EA, = (0,— 0,)(0, — 0,)B> <0

Remarquons que l'axe 4 et ¢(M,7) définissent un plan (1) pour une valeur donnée de 7.
Choisissons un plan fixe (1r,) défini par un repére orthonormé oo et ot. Superposons (1) et
(1y)en amenant 4 sur oo, M = o.

Le point E devient P et A1, A2, A3 deviennent respectivement P1, P2 et P3.
Les inégalités ci-dessus s'écrivent :
PP, -PP,>0
PP, PP >0
PP,- PP, <0
11 va de soi que sinous avions PP, - PP, = 0, le point P se trouverait sur un cercle de diamétre :
¢=”P1P2|| =0,70;
T ﬂ‘
Ce serait notamment le cas si :

it = aE, + BE, + OE,
L'inégalité PP; - PP,>0 traduit le fait que
A

l'angle P doit étre obtus donc le point se trouve
a l'extérieur de ce cercle.

1l en serait de méme pour: PP, - PP,> 0.

)
)
N
-
[:9
(=)
Ny
Q\

Figure VI1.04 Cercle de MOHR

Par contre l'inégalité PP, - PP, < 0 signifie que le point p doit étre a l'intérieur du cercle de
diametre : (D=||P1P3|| = 0, — 03, comme le montre la figure VI.0S5.
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N

3(0—3IO) P2 (0—2' O:) Pl(o-ll 0)\

FigureVI1.05 Tri cercle de MOHR

Cas particulier important :

Imposons a 7t de rester constamment dans le plan principal M XY. Dans le repére principal nous
aurions : i = aE, + BE, + OE, eten posant @ = cos 6 et § = sin 6 nous avons : 7 = #(6).
Dans ces conditions :

g 0 07[cos® g, cos 0
c(M,n) = B(M,ﬁ(e)) = [0 o, 0] [sin 0] = [02 sin 9]
0 0 oy 0 0

Or de la relation (V.02) nous avons :

&(M,1(6)) = (¢(M,1(6)) -1(8))u(B) +1(0) A (E(M,TH(6)) ATi(6) )

-

] To

Calculons tout d'abord oy

2

.
Zc0s20

gy = 0, cos*(0) + o, sin*(0) =

Pour T4 nous avons :

Les composantes du vecteur E(M , ﬂ(@)) sont donc :
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Oy = cos28

2 2

0, — 0, .
Tg = ——=——sin 20

2
. « - , . s . +03 01—0y
C’est-a-dire les équations paramétriques d'un cercle de centre et de rayon
AT
g

\ 4

Og +2E Og

FigureV1.06 Contraintes et cercle de MOHR

Exercice V1.2

Dans un repére orthonormée = (0, €,,8€,, €;) le tenseur des contraintes en un point d'un solide
a pour expression :

-120 0 O
L=| 0 80 30|valeursen N/mm?
0 30 40

1. Calculer les contraintes principales.

2. Déterminer les directions principales.

3. Représenter sur un croquis l'état de contrainte donné ainsi que les contraintes et directions
principales.

4. Construire le tri-cercle de Mohr et retrouver les résultats précédemment établis.

5. De la question précédente, déduire la valeur de la plus grande contrainte tangentielle.
Préciser la facette correspondante en faisant un croquis.

Corrigé
L.
—-120-6 0 0
0= 0 80—oc 30 |=-(120+0)((80—0)(40 —0) — 900)
0 30 40-o

Nous déduisons immédiatement de cette relation les contraintes principales :
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0,=120 g, =96,055..... 0, = 23,94....

2. x=x1 estune direction principale puisque les contraintes tangentielles t,,, et T,, sont nulles.

120 a,
’ 80 30” ]_96055[ﬁ]
30 40 Y2

a, =0 puisque —120a, =96,055a,, il s'ensuitdonc :

Ce qui permet d'écrire :

804, + 30y, = 96,0550,
308, + 40y, = 96,055y,
En posant 3, = cos8, et y, = sin6, nous obtenons :
6, = 28°155...
Les autres directions sont orthogonales.

3. Pour simplifier on arrondit o, = 96 et g, = 24

ZN\
A
z 40
06
24 . )
/74%
Z4
vy
28°155
30
2 .
7 ZA 80 Ty
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A

o, = —120

5. La plus grande contrainte tangentielle Y
est évidemment obtenue pour :

120 + 96
— =108

C'est-a-dire pour une facette définie dans
le repere principale par :

2 2. . o 7
ﬁlzgﬁl+\/—_E2+0 D710

Dans le repere M x y z, le tenseur des contraintes s'écrirait :

-12 -108 O
L=[—108 —-12 0]

0 0 24
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Chapitre VII

Petites déformations

1 Déplacement et déformation

Le concept de contrainte est en fait une abstraction, car on ne peut ni la voir ni la mesurer
directement. Expérimentalement c'est la mesure des déformations du corps étudié¢ qui permet
de déterminer 1'état de contrainte du solide.

Sous Tl'action d'efforts les corps solides changent de forme. Cette variation résulte du
déplacement de ses points.

La distance entre les positions d'un point M avant et apreés changement de la forme du solide
est appelée déplacement.

On désignera par 1i(M) le vecteur déplacement et dans un repére orthonormé
(e) = (0,€,,€,,€5) ce vecteur s'écrira : u(M) = ué, + ve, + weé,
-

Comme OM = xé, + yé, + zé, il s'ensuit que i(M) = u(x,y,2) €, +v(x,y,2) € + w(x,y, 2)€;

A

Considérons alors un point P infiniment voisin du
point M tel que :
MP =ds = dxé, + dyé, + dzé, dx = ads
MP = 7ids = (aé, + fé,+ yé,)ds ¢ 4y = Bds
avec (M)? =1 dz = yds
Désignons par M' la position du point M apres
déformation, soit I'extrémité du vecteur u(M).
De méme, désignons par P' la position du point P
aprés déformation et posons :

ds'=M'P" et ||@|| =ds'

X

Figure VIIL.01 Déplacement et déformation

Si quel que soit M € solide et pour une orientation 7 absolument quelconque nous avons :
ds = ds' nous dirons que le solide a subi un déplacement d'ensemble sans déformation. Dans
le cas contraire ds # ds' il y aura déplacement avec déformation.

2 Etude de la déformation

Pour évaluer la déformation on a coutume de considérer le rapport :
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ds'—dS
ds

C'est-a-dire la déformation relative-dans une direction donnée.

Pour déterminer ce rapport écrivons (relations de Chasles) :

MP = MM +1\j£+ 5’5’

—H(M) + dS +u(P)

IS
“
I

Soit : %(P) — %(M) = dS' — dS
Notons que: %(P) —U(M) = i(x +dx, y +dy, z +dz) —1i(x,y,z) = du(M)
Il s'ensuit que :

S+ du(M)=ds’
— 2 —_ —_ ,
@$)2+ (@) +2 ds- du() = (ds")’
. 2
Dans I'hypothése des petites déformations, nous considérons toujours que (du (M )) est
négligeable devant(dS)?.

Nous écrirons donc :
(dS)? = (dS)? + 2 dS - di(M) (VILO1)

Effectuons le calcul de d(ﬁ(M)) :

ou du du
du=ad +a—dy+£dZ
— dav dv dv
d(u(M)) dv = adx+@dy+ &dz
ow ow aw
dw _adx+5dy+EdZ

En tenant compte que dx = adS, dy = BdS, dz = yds, nous pouvons écrire sous forme
matricielle cette expression :

o o ou
[dul lox ay ozl|[*]
vl =] 22 2 g ViLo2
U1 |ox ay oz || | (VIL02)
lawl low aw awl], |
lox 0dy 0zl
Sous forme abrégée : [d(ﬁ(M))] = [M][n][dS]

En désignant :
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[du Jdu O0u
ax dy o0z
_{O0v dv 0dv
[M] = ox 9y oz
ow Jdw Jdw
0x dy 0z

11 vient pour le produit scalaire :

dS. di(M) = [R][M][R]dS?
Et pour simplifier les écritures, posons :
A = [n][M][7] (VIL03)
Si bien que de I'expression (VIL. 01) devient :

dS)=1+2D)DdS)? = dS' = (1 +2DdS

. , . . . N - 2 .
L'hypothése des petites déformations qui consiste a négliger (d@(M))" devant (dS)? conduit
également a dire que les neuf composantes de la matrice [M] sont petites devant I'unité, il en
est donc de méme pour A.

Nous sommes donc en droit d'écrire que :
dS'=(1+21)dS
Puisque: (1 4+ )2 =14+ 12 +21=1+21
11 s'ensuit que le rapport caractérisant la déformation relative du point M peut s'écrire :

ds'—ds _ (1+A)dS—dS_A
s ds B

(VIL 04)

3 Calcul de la déformation relative A

[Ju Ou OJu ]
ox 09y 0z I[a]l

v dv O0dv
A= [RME =1a 8 1|2 2 g
A =l 6, Al 50 5 5 11|
ow oJow oJw [VJ

ldx Jdy 0zl

/,L_au 2+6v 2+6w 2+(6u+6v) +<6v+6W)ﬂ +(6W+6u>
_ax“ ayﬁ az” Jdy 0x ap dz 0dy v dx 0z e

On pose généralement :
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_ u ) _ ou 4 v

x = ox Gy = dy 0x
av ow Jdu

= — 2 - -

¢ oy Yz = 9y * 0z
ow v Jdw

e, = E Zgyz = E + a

Si bien que A s'écrit :
A=e.a’+e,f*+e, v’ +2g,,aB+2g,.,ay+2g,,By
€x  YIxy Yxz

En posant [L,] = [gxy €y Gy
Ixz Yyz €z

on remarquera que A peut également s'écrire :

A = [Al[L,[) (VILOS)

4 Tenseur des déformations

o ou duy
ox Jdy 0z
. v v dv . .
Décomposons la matrice [M] = ar 5 5, | en une matrice symétrique [M,] et une
ow Jdw Jw
lox  dy oz

matrice anti symétrique[M,] soit :

du Jdu Jdu du 1/0u dvy 1,/0u ow 1/0u oJv 1/0u odw
ax dy oz ax E(@+E) E(E E) 0 E($_$> E(E_E)
dv dv dv 1/0u dv av 1/0v ow 1/0u dv 1/0v ow
ax 9y o9z| z(a*a) ay 5(5 @) * ‘z(@‘a) 0 z(z‘a)
dw dw Jdw 1/0u ow\ 1/0v oJw aw 1/0u Jdw 1/0v dw

ox 9y oz 2(3 5%) 5(5*@) oz ~2(55) ‘5(5‘@)

L [M] L M,] 1 M,]

Nous remarquons que la matrice [M,] est égale a la matrice [L,] : [M,] = [L,]

Pour avoir une signification physique de la matrice [M,] supposons que notre solide soit
indéformable (solide théorique).

Donc, en considérant un petit déplacement, nous avons :
MM’ = 7ot (MM') nOM

De méme :

—_ —

PP = %75% (PP') AOP
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Puisque O est un point fixe nous avons :
wdt = Erot(MM) = Erot (PP )
Formons la différence :
— — 1 —
PP'~ MM = 7ot (MM') A (OP - OM)
11 s'ensuit que pour un solide indéformable :
dii(M) = 7ot(i(M)) A MP = Zrot(i(M)) A7idS
En développant les calculs, on obtient :
1—) — — =
|57t (@) adids| = (] 7 as)

La différence avec un solide déformable est donc :

[L,][7][ds]

En résumé pourun solide quelconque, nous pouvons écrire :

da(M) = [M,I[IldS]  + [L,IF[ds] (VILO6)
Rotation ¢élémentaire Déformation

n'altére pas le matériau.
On pose:

d(M,7) = [L4][#][dS]
C'est le vecteur déformation en M dans la direction de 7.

[L,] qui a une structure tensorielle est appelé le tenseur des déformations.

€x gxy YGxz

[Ld] = [gxy ey gyz
YIxz gyz €

Exercice VII. 1

Un corps élastique constitué par un matériau homogene et isotrope est soumis a des
sollicitations extérieures qui provoquent, dans un repére orthonormé (e) = (0,€,,€,,€,) le

champ des déplacements suivants :
a

u = 2ayx v=§y2—bx2 w=0
a et b étant deux constantes tres petites. Déterminer le tenseur des déformations.
Corrigé
Nous avons :
du ) Jdv ow 0
e, = — =4 e. =—=q e. = — =
* o ox Y Y oy Y Z 0z
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1(6u+0v)_( b) _1(6W+6u)_0 _1<6v+aw>_0
dy ox) ¢ X 9z = 5\ox Taz) T 9z = 3\52 ay/)

L'expression du tenseur des déformations est donc :

gxy=z

[Lgl=1(a—b)x ay 0

2ay (a—Db)x 0]
0 0 0

5 Interprétations des composantes du tenseur des déformations

5.1 Dilatations linéiques

Précédemment (relations (VIL.04) et(VIL05)), nous avons vu que la grandeur A caractérisait la
déformation et avait pour expression :

ds'—ds

A=——e—=A=[AllL[]

Dans le cas particulier ou €, = 7 nous aurions :

€x gxy Ixz111
/11 = [1 0 0] gxy ey gyz 0
Yxz gyz e 0
A= e,
De méme si:
e, =1 = A,=e,
é.=1M1 = A,=e

3 3

Nous voyons ainsi que e,, e, et e, sont les dilatations linéiques suivant les axes du repere
choisi.

5.2 déformation angulaire

L'interprétation faite ci-dessus exclut totalement les termes en g;;.
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" La figure VIL.O2 donne une
eydy$_l)2 P signification physique.é ces
A termes en considérant
uniquement la déformation.
dy Pour simplifier, raisonnons
dans le plan Mxy en
superposant les points M et

0 P;" M'.
A
\

dx e X

<
'~

Figure VIL.02 Déformation angulaire

A4

S'il n'y avait pas de déformation, nous aurions : P = P"

Tout d'abord calculons :

. L R B e, gxy 1 _ exdx
d(M,el) = [Ld] [el]dx - [gxy €y ] [O] dx = .gxydx
. LN R _ €y gxy 0 _ gxydy
d(M, ez) = [Ld] [ez]dy = [-gxy e, ] [1] dy = eydy

Apres déformation le point P; se trouve en P/'et P, en P,’ . Il en sera de méme pourle point P
qui deviendra P”, mais pour connaitre cette déformation il nous faut calculer : d(M, 7).

e,cosd dS +g,,sinf dS

S 1o [6x  Yxy][cosb _
d(M,1) = [Ly][r]dS = [g ] [ ds = Jxy €0s0 dS +e,sin dS

Xy ey sin@

Et comme dx =cos 6 dS et dy =sinf dS nous avons :

- =N exdx gxydy 3 > 3 -
d(M,n) = Guydx e, dy =dM,e)+dM,e,)
Désignons par a I'angle PYMP; qui a pour valeur : tga = lg_l_i
€x

Comme il s'agit de petites déformations €, et Jxy sont trés petits devant 1, il s'ensuit donc :
tga = gy, = «
II en serait de méme pour l'angle PZTI\HDZ.
Ainsi la variation de l'angle droit P,MP, s'écrit :
T =,
>~ P MP, = 2g,,

Cette déformation angulaire que l'on note y,,, = 29,,, se nomme le glissement.
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6 Dilatations principales et directions principales

Il s'agit des directes actions propres et des valeurs propres de la matrice ||L ;]|. Comme cette
matrice est symétrique il existe un repere orthonormé M XYZ qui la diagonalise.
[L,] prend donc la forme suivante :

Figure VIL.03 Déformation dans repére principal

a, b et c sont les dilatations principales et M X, MY, MZ sont les directions principales.

Pour les directions principales, le glissement est nul et I'interprétation physique est trés simple,
comme le montre la figure VIL.03.

Un parallélépipede rectangle dont les faces sont paralléles aux plans principaux restent apres
déformation un parallélépipéde rectangle.

7 Ellipsoide des déformations

Le point M étant fixé, cherchons le lieu des points P, lorsque 7 varie, c'est-a-dire l'extrémité du
vecteur d (M, 7).

Pour une question de commodité, on préfere considérer une grandeur relative en cherchant le
lieu de I'extrémité du vecteur :

d(M,7)
s

[L4][7]

Travaillons dans le repére principal M XYZ.

aM,ﬁ a 0 01[%*: aa, X,
(d5)=[0 b o”ﬁ1 = |bB, = |Y;
0 0 clln o R VA

Puisque a? + f2 + y? = 1, il s'ensuit que :
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Xt v z

a2tpte=!
C'estl'équation de I'ellipsoide de lamé de la déformation. Ces axes coincident avec les directions
principales de la déformation.

8 Tri-cercle de Mohr des déformations

Un raisonnement calqué sur le tri-cercle de M ohr des contraintes, nous conduit au tri-cercle des
déformations.

gt La construction du tri-cercle de M ohr
des déformations rend évidentes les
L d(M, 7 propriétés suivantes :
: - Dans chaque plan principal, le plus
grand glissement a lieu suivant la
: bissectrice des axes principaux et a pour
C 1 al €, valeur la demi-différence des deux
dilatations principales correspondantes.
- La plus grande valeur du glissement a
lieu dans le plan défini par les dilatations
principales extrémes.

Figure VIL.04 Tri-cercle des déformations

Un cas particulier important est celui ou 7 peut prendre toutes les directions dans un plan
principal. Par exemple supposons que 71 = 1 (0)

Dans le repére principal M X, MY nous aurions :

j(M.l—i(@))_[a 0 [0059 __lacos@
ds Lo bllsingl ™ |bsing

Projetons ce vecteur suivant 12 () et dans le plan perpendiculaire a 1(6):

&(MC,Z:(H)) — <&(M£(0)) .me))ﬁ(e) +1(6) A (‘“Md_z(e)) A 3(9)> (VILOT)
19 u(0) gea(e_g)

Par analogie aux résultats obtenus pour les contraintes, nous poserons : 15 = e,

Nous avons donc :

a+b

eg = acos?(6) + bsin*(0) =—+ %COSZQ ( )
VII.O8

Jo = (a—b)cosesin9=%sin20
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C’est-a-dire les équations paramétriques d'un cercle de centre (azi, O) et de rayon %

YA

as

~

X,

Figure VIL05 Cercle de Mohr des déformations

9 Mesures extensométriques

L'extensométrie a pour objet de mesurer ala surface des corps, les déformations longitudinales
en certains points, au moyen d'appareils appelés extensometres.

Les plus utilisés sont les extensometres a fils résistants, qui sont constitués par un fil en
constantan de 0,015 a 0,020 mm de diametre collé en zigzag entre deux bandes de papier ou sur
un support trés mince en résine époxyde.

: L 5 L'exrtensométre, ou jauge a ﬁl‘s ,rési§tants, est

coll¢ sur la surface de la picce a étudier de telle

sorte que la direction des fils coincide avec la

direction de la dilatation que l'on souhaite
mesurer.

Fils d'arrivée

Figure VIL06 Extensomeétre

Nous savons qu'en un point de la surface ou il n'y a pas de force directement appliquée, la
contrainte sur le plan tangent a la surface est nulle et, par suite, il y aun état plan de contraintes
en ce point.

Pour déterminer les dilatations principales a et b il faut mesurer les déformations longitudinales
suivant trois directions.

. . , , .. . , . AR
Dans une direction donnée I'expérience montre que la variation relative de résistance 'Y et
. . Al ., .
l'allongement linéique ’ sont liés par la relation :

AR Al
K=
R l

58



Chapitre VII Petites déformations M écanique des milieux continus

Pour des déformations inférieures a 5/1000 le coefficient de jauge K est généralement égal a 2.

Il existe dans le commerce des jauges électriques spéciales, dites rosettes dans lesquelles les
directions des jauges sont bien déterminées.

v

A
Il
J=—= u A

_— >

Rosettea 120° Rosette a 90°
Figure VIL.07 Jauges extensométriques
A titre d'exemple traitons le cas d'une rosette a 90°. Pour cela, désignons par 6 l'angle formé

par l'axe Mx avec la direction principale M X. Compte tenu de la relation (VII.08) exprimons
les grandeurs mesurées e, e, et e, par:

exzegzaTer+aT_bco.929
a+b a-b T a+b a-b .
eu=e9+%= > + COSZ(Q-I—Z): > T sin26
a+b a-b T a+b a->b
eyzee%z > + > COSZ(@-I—E): > T3 cos20
et pour le glissement nous obtenons :
9o = ——sin26
a—b T a—>b
g9+%= > sm2(9+z)= cos26
a—b T a—b
g9+§=751n2(9+5):— > sin20

De ces relations nous déduisons :

ex+ey=a+b
2 2

a
= cos 20 =g9+%

Soit les éléments qui nous permettent de construire le cercle de Mohr, puisque dans le repére

(e, g nous avons :

P a+b
-les coordonnées du centre du cercle : 00' = (T ; 0)

: . 7 _ _ . _ex—ey,
-les coordonnées d'un point P du cercle : OP = (69_% =e, g‘9+Z = T)
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YA

€9

(atb)2

q T
............ g@+;

Figure VII.08 Construction du cercle de Mohr

Exercice VII.2

En un point M d'une structure en acier, on a mesuré, a l'aide de jauges extensométriques les
dilatations suivantes :

e,=28510"° e,=5510" e,=369210

suivant trois directions Mx, Mv, My faisant entre elles des angles de 45° (rosette a 90°).

Déterminer : Ny v
1. Les dilatations principales. 45°
2. Les directions principales.
45°
M X

Corrigé
1. Nous avons :
a+b 285+5,5 _ _
= .107° =17.107°
2 2
285—5,5 s s
9o,." = > 10-—> =11,5.10

Nous disposons ainsi de tous les éléments
pour construire le cercle de Mohr.

Nous lisons :

a=40.10° et b=-55.107
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2. Par lecture nous lisons :60 = —30°
),Ik
yp Y
y
v
M 5 X M X,
-0
X
Interprétation dans le repere principal. Interprétation dans le repere initial.

10 Invariants scalaires du tenseur des déformations

Les trois invariants scalaires du tenseur des déformations se définissent de fagon analogue a

ceux du tenseur des contraintes.

L'équation caractéristique associée au tenseur L est évidemment indépendante de la base

choisie, et s'écrit :

éx—¢€ YIxy Y9xz
gxy ey —e€ gyz =0
YIxz 9yz e,—¢e

Soit a résoudre une équation de la forme :

Dont les racines a, b, et ¢ sont les dilatations principales.

Ag, Bd et Cq sont les invariants scalaires du tenseur des déformations. Dans le repere principal

leurs expressions sont tres simples, et s'écrivent :

Aj=a+b+c=e, te,+e,
B;=ab+b.c+c.a
C;,=ab.c

11 Coefficient de dilatation cubique

(VIL09)

Pour un point M appartenant au solide étudié, considérons dans le repere principal M XYZ un

parallélépipede de volume dX dY dZ avant déformation.
Apres déformation le volume de ce parallélépipede devient :

(dX+adX) (dY+bdY)HdZ+cdZ)
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Bien que la figure (VIL.09) puisse
laisser supposer le contraire, il ne faut
cdzZ pas perdre de vue que :

a1 b«1 cK1
si bien qu'en négligeant les termes a
partir du second ordre, ce volume est
équivalent a :

dXdydz (I+atb+d) dX dY dZ
Y D'ou la variation relative de volume :
—> d

%
—=a+b+c=4,
adX77/ Y

ﬂ)dY §

Figure VIL09 Dilatation cubique

On pose souvent :

dv
A =3e,=4,=¢e,+ e,+e, (VIL.10)

V est le volume avant déformation.

em représente une déformation linéique moyenne, puisque :

_at+tb+c e te, te,
me3 3

e

3 em ou Ag est appelé le coefficient de dilatation volumique relative, ou coefficient de dilatation
cubique.

12 Déviateur des déformations

D'une fagon tout a fait analogue au tenseur des contraintes, nous décomposons le tenseur [L,]
en deux tenseurs symétriques :

€x YIxy YIxz €x ~ €m Yxy Gxz e, 0 0
[gxy €y YGyz| = YGxy €y —€nm Gyz +10 € 0 ] (VH.l 1)
Ixz Yyz €z Yxz 9yz €z~ €m 0 0 €m
[Lq4] (B, ] [B,]

[B,] est le déviateur de la déformation, de trace nulle, il y a comme valeurs propres :
a-em, b-em, C-em,
et mémes directions principales que [L,]

Remarquons que lorsque le déviateur [B,] est égal au tenseurdes déformations [L ;]nous avons
... . . . . . av
e,, = 0. Dans ces conditions, le coefficient de dilatation volumique relative et nulle : e 0.

[B,] est appelé le tenseur isotrope.
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13 Conditions de compatibilité entre déformations et déplacements

Pour résoudre des problémes d'¢lasticité on se fixe souvent, a priori, le champ des contraintes
ou le champ des déformations.

Comme nous le verrons dans le prochain chapitre, les contraintes et les déformations sont liées
par des relations linéaires, ce quin'estpas le cas pourles déplacements et déformations, puisque
nous avons :

_ ou ) _ ou + ov

x = ox Gy = dy 0x
dv ow Jdu

= — 2 g _
ho e
w v w

e, = E Zgyz = E-l— @

Il faut que le champ des déformations (ou des contraintes) satisfasse au champ des
déplacements. Pour cela on montre qu'en ¢éliminant dans les six relations ci-dessus u, v, w on
marque nécessairement les conditions que doit satisfaire le champ des déformations.

On obtient ainsi :

azex = i agxy + agxz — a‘gyz azex + azey = Zazgxy
dydz 0x\ 0z ady dx dy? = 0x? d0xdy
d%e, _0(99y, , 09xy 09x, 6Zey+62e2= Zazgyz
0xdz 0y \ 0x 0z dy d0z?>  0y? dyoz
d*e, 0 (dg,, 0Jg ag 0%e, 0% 0%g
I + yz _ xy Z+ X :2 Xz VIIlZ
dxdy 6z< ay 0x 0z 0x? 0z2 0x0z ( )
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Chapitre VIII

Relations entre contraintes et déformations

1 Généralités
Comptetenu de I'expérience, nous nous proposons d'établir les relations qui existent en un point
entre les composantes du tenseur des contraintes et les composantes du tenseur des

déformations.

D'une facon générale ces diverses composantes peuvent étre fonction du temps et la temp érature
peut varier d'un point & un autre.

Dans ces notions d'élasticité nous faisons un certain nombre d'hypotheses simplificatrices :
- Température uniforme (équilibre thermodynamique).

- Le temps n'intervient pas dans les équations.

- Le matériau est homogene et isotrope.

- Les déformations sont petites.

- Relations lin€aires entre les déformations et contraintes.

Cette dernieére hypothése nous conduit a écrire sous forme matricielle.

(Ox1 [%11 @12 Q13 Ay Qg5 Qe[ Gx ]
Ty Ap1 Qpp Q3 Qpq Gy Qx| €y
Oz | Q31 QA3 A3z A3z Q35 Qzgl| €z
Tyl 1041 Qup Gy3 Quy Qus Gy |l9xy
Txz A5y G5y Qg3 Agy Qg5 Qs 11 Yxz
[Tyzl  Ldg; Qgz Qg3 Qgy Qs Qg LGy,

Considérons en un point du corps son état de contrainte caractérisé par son tenseur des
contraintes et son ellipsoide des contraintes ( C ).

En ce méme point, considérons le tenseur des déformations et l'ellipsoide des
déformations ( D).

Un plan principal de ( C ) constitue évidemment un plan de symétrie pour les contraintes.

L'hypothése d'isotropie du corps exige que ce plan soit également plan de symétrie pour la
déformation. L'expérience le confirme.

Donc en chaque point d'un corps homogeéne isotrope, l'ellipsoide des contraintes et 1'ellipsoide
des déformations ont mémes axes.
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D'ou la propriété fondamentale suivante :

Les deux tenseurs ont les mémes plans de symétrie et par conséquent les mé mes directions
principales.

Dans le repére principal M XYZ nous avons :

01 by by bys]ga
02| = b2y by bys Ibl =
O3 by, by bszllc
Notons que cette matrice caractérise une relation linéaire entre les contraintes et les
déformations principales, mais elle n'est pas fonction du chargement.

o, = byya+ by,,b + bysc

Considérons des chargements conformes a la figure VIIL.O1, définissant des états obtenus par
diverses permutation.

7N 7N 7N\
A
0'3 02 02
0, 0y ¥ O3
< >Y —>Y > Y

0y 03 o
X X X
Etat 1 (référence). Etat 2. Etat 3.

Figure VIIL.O1 Chargements

Les lois des contraintes en fonction des déformations n'ont pas changé sur les axes ; on peut
donc écrire :

Etat 2
O3 by by, bis)pc 03 = by ¢+ byya + byzb
01| = by by by [al = 0y = byy € + by + bysb
0z by, by, bllb 0, = by;c + by,a + bysb
Etat 3

0, = bj;a+b,c+bzb
03 = by;a + by,c + bysh
0, = by;a + by, ¢ + bysb

oy

0, by; by, byz]ra
O3| = |byy by by [Cl =
92 by, b by31th

32

En identifiant pour ces trois états les termes ena,, g, et g;nous obtenons les résultats :

Soit en remplagant :
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(of) b,;, by, bj1ra o, =bja+b,(b+c)
0, =|b;, by by, lbl = o, = byb+by,(a+c)
O3 b,, by, by o; = b;,c +b,(a+b)

Que I'on peut écrire de la fagon suivante :

o, = (by; —byp)a+ b,(a+b+c)

o, = (by; — by)b+ b,(a+b+c)

o3 = (by; —by)c+b,(a+b+c)
On pose:

b, — b, =2G et b, =4

Nous avons donc :

o, =2Ga+A(a+b+c)
g, =2Gb +A(a+ b+ c) (VIIL 01)
g, =2Gc+AMa+b+c)

G et A sont les coefficients d'élasticité de Lamé, ils ont la dimension d'une contrainte.

G est encore appelé le module de Coulomb ou module de glissement ou module de torsion et
souvent module d'élasticité transversal.

En résolvant ce systéme par rapport aux dilatations principales a, b et ¢, on obtient :

At G (al L(O'Z +a3)>

TG+ 20\ T 20+ 6)
L __AtG A
= m o, — m(ﬁl + 0'3) (VIH 02)
_A+G A
‘=teir2o\®  arp ot )

2 Relations entre contraintes et déformations dans un repére quelconque
Ajoutons membre a membre les termes de la relation (VIIL.O1)

o,+0,+0; =30, =26(a+b+c)+3A(a+b+c)
o, = (2G+ 3e,, (VIILO3)

Des relations (VIIL.O1) et (VIIL.O3) nous déduisons :
o, — 0, = 26G(a—e,)
o, —0a, =2G(b—e,,)
o3 — 0, =2G(c—e,)
Compte tenu du déviateur des contraintes (VI.04) et du déviateur des déformations (VIL.11),

tous deux, écrits dans le repére principal, nous avons :
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[A;] = 2G[B,] (VIIL04)

Cette relation matricielle est indépendante du repere choisi. Dans un repere quelconque nous
avons :

Ox —Onm Ty Txz €x —€m YGxy Yxz
Txy 9%~ 0m  Tyz | =2G| Gy €y~ C€m  Yyz (VIILO5)
Txz Tyz 0, = Onp YGxz Gyz €, —€nm

Des relations (VIL.10), (VIIL.03), (VIIL.OS) on déduit facilement :

0, =2Ge, + A(e, + e, + e,) Tyy = 2G G,y
o, = 2Ge, + (e, + e, +e,) T, = 2Gg,,
0,=2Ge, + (e, +e, +e,) T, =2Gg,, (VIIL 06)

En résolvant (VIIL.06) parrapporte,, e,, e, onobtient :

y'

146 2 (0 +0)

“Te@r+ 20\ 20+0)\ Y T
1+G

= ———mm—m— —_—— _I_
& = eGir 20\% 2050 % T o)

_A+G A (6, 4 0.)
2T eGBA+20)\ 77 20+ 6) T T %

On pose:

G(3A+26) , y)
=———— et V=
A+G 2(1+G)

E est le module d'é¢lasticité longitudinal ou encore module de Young.
v est le coefficient de Poisson.

Les relations ci-dessus deviennent :

e, =%(0x —v(ay+az))\| {a:%(o‘l — (o, +03))

e, = %(ay —v(o, + az)) et dans le repére principal 4 b= %(02 — (o, +03)) VIILO7)
1

e, =1(0, = v(o, +0,)) ¢ =—(0; —v(o, + 0))

Prenons l'exemple simple d'une poutre cylindrique, de longueur L et de diamétre D, soumise a
de la traction. L'équilibre de la poutre, relation (II1.05), exige :

-

F,+F, =0

Conformément aux conventions de la résistance des matériaux (relation VI.01), I'équilibre de
la partie gauche G de la poutre, s'écrit :

R(F,>G)+R(D->G)=0
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Soit tout simplement : —F; + 0,2 = 0 puisque: ¢(M € Q,E,) = 0, E,.

Section droite {2 Y =D
1\ Dans le repere principal gXYZ , le
) E. G =N F, X tenseurdes contraintes s'ecrit :
) =3 -7 s, 0 0
zJ . [£]=| 0 0 0
> 0 00
Figure VIIL.02 Poutre droite
Compte tenu de la relation VII.0O7 le tenseur des déformations devient :
0.
-+ 0 0
a 0 0 I E " —I
0 0 ¢ o
lo o v
AL AD : -
Oro, == , a= T b=c= 53 si bien que de la relation (VII.08)on déduit :
F AL F AD
a 1T " 'a~ "D

AL . AD .
La force F provoque dans la barre un allongement o et une contraction transversale 'S Ce qui

permet de déduire expérimentalement E et v.

Ainsi on peut obtenir :

Ev
G=———— et A=
2(v+1) ¢ 1+v)(1-2v)
Valeurs de A, E, et G exprimées en daN/mm?
Désignation 211073 E.10°3 G.1073 v
Acier 9-13 20-22 7,9-8,4 0,27-0,31
Laiton 8,5 11 4,1 0,33
Cuivre 9-14 13 4,8 0,33-0,38
Plomb 3,5 1,6 0,56 0,43
Verre 2,7-3 6 2,38 0,26

Tableau VIII.1 Constantes pour quelques matériaux usuels
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3 Problemes d'élasticité

L'étude du comportement d'un solide nous conduit a considérer quinze fonctions inconnues :
- Déplacement : u, v, w

- Composantes du tenseur des déformations : e,,e,,e,, gy Gxz Iyz

- Composantes du tenseur des contraintes : gy, 0y, 0, Tyy) Tyzr Ty

On dispose pour résoudre ce probléme de quinze équations.

- Six équations géométriques :

_ Ou 1 <6u N av)
= ox ey =3 oy 0Ox
_0v 1 <6w N 6u>
= 3y 92 = 5\ox " 32
_ow 1 <6v N 6W>
2= %52 9rz =5 \5 dy
- Six relations entre les contraintes et les déformations :
o, = 2Ge, + 31e Ty = 2G 9y,
o, =2Ge, + 32e T, = 2Gg,,
o, = 2Ge, +31e 7y, = 2Gg,,
- Trois équations différentielles de I'équilibre :
do, Ot ot
X X yx zZx _ 0
Pyt ox * oy * 0z
Jt do, Ot
X, + =2 Y =
PEy T Tox dy 0z
dt,,  O0t, 0J0,
pX, + =2+ +—2=0

0x dy 0z

La résolution d'un probléeme d'¢lasticité exige d'intégrer ce systeéme d'équation aux dérivées
partielles, en tenant compte des conditions aux limites (chargements, déplacement).

La solution exacte "mathématique" n'est connue que dans des cas particuliers, mais des
méthodes de calcul telles que les €léments finis permettent de résoudre numériquement les
problémes d'élasticité.

Pour résoudre analytiquement, on peut utiliser une méthode dite semi inverse qui consiste a se
fixer a priori les composantes du déplacement u, v, w ou a se donner le champ des contraintes
ou des déformations.
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Dans ce dernier cas, par exemple, il faudrait que les six fonctions données
(ex,ey, ez 9xyr Gxz gyz) soient continues et admettent des dérivées partielles du premier

ordre et qu'elles satisfassent aux équations d'équilibre ainsi qu'aux conditions de compatibilité
entre déplacements et déformations.

Exercice VIII 1

Sachant que dans son utilisation courante la piece représentée ci-dessous, doit étre
parfaitement cylindrique lorsqu'elle est soustraite au champ de pesanteur terrestre §.

z Comment doit-on ['usiner sur terre et
controler ses cotes lorsqu'elle est posée
(S2) g verticalement sur une table horizontale

suivant (S, ).
Le cylindre a un rayonr et est limité par deux

(S3)
sections droites (S1) et (S2) de centre g, et g,
1 é; et distantes de :
(S]) g] ...... :57 - h = |glgz | .
i On précise que seule la pesanteur exerce une
e action sur ce cylindre.

La surface latérale sera désignée par (S3).

1. Ecrire les conditions aux limites sur la face (S,).

2. Conditions aux limites sur la face (S,).

3. Conditions aux limites sur la face (S).

4. Déduire des questions précédentes une forme trés simple du champ des contraintes. Il faudra
s'assurer que ce champ vérifie bien les équations de l'équilibre et les équations de compatibilité.
5. Déterminer le tenseur des déformations.

6. Exprimer le champ des déplacements u(x,y,z), v(x,y,z), w(x,y,z) en fonction des
constantes d'intégration.

7. En précisant les conditions aux limites, déterminer les constantes d'intégration de la question
précédente. Déduire le champ des déplacements.

Corrigé

1. Le plan exerce une action sur le cylindre égal au poids pghmr®h. Ce qui nous autorise a
dire que le plan exerce une pression p = pgh sur la surface(Si1) du cylindre. Soit pourM, €
(S

¢(M,,—é;) = pgh é,.

Ox  Txy Tyxz 0
Comme,; C(M;,—€3) = [Txy Oy Ty 0 | nous avons donc pour la face (Si) :
Txz Tyz O -1
T, = 0 _Tyz=0 — 0, = pgh

2. Sur la face (S2) nous avons pour M, € (S,) :
¢(M,,é,) = 0.
ce qui se traduit par :

p‘
Il
o
a
Il
(e}
Q
I
o

yz
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3. Sur la face (S3) nous avons pour M5 € (S3) :

y N
M;
Ox Txy Txz][cos @
E(M3,ﬁ(9)) =0= [Txy Oy Tyz] [sin 9] u(e
Tyz Tyz o, 0 9

W

0, €050 + 7,,5in 0 =0
Tyy C0SO + 0, sin6 =0
Ty, 0SSO +1T,,5in6 =0

Ces relations doivent étre vérifiées quel que soit 0 ce qui implique que 0y,Tyy,0y,Tx;, Ty, SOlent
nulles.

4. L'ensemble des précédentes conditions aux limites admet comme solution :

Oy =Ty =0, =T7,=17, =0 et o, # 0sur (S,).

Le tenseur ci-dessous satisfait les conditions aux limites pour les contraintes et vérifie bien les
équations de l'équilibre.

0 0 0
[L] = [O 0 0 ]
0 0 —pglh—2)
Puisque :
0t ot do,
X Xz vz z _ 0
PE*%x Yoy Tz

-pg+ 0 + 0 +pg =0

Pour les équations de compatibilités écrivons les relations entre contraintes et déformations.

v
ex=a=Epg(h—z) Jxy =0
v
eyzbzgpg(h—z) Gxz =0
eZ=c=—pE—g(h—z) 9y, = 0.
Nous avons bien :
E)Zex=0 62ex=0 c')zey=0
dyoz dy? dx?
d%e, _ o d%e, _ o de, _
0x0z d0z? dy?
d%e, _ d%e, _ de, _
dxdy 0x? 0z?
5.
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De la question précédente on déduit immédiatement :

v(h—z) 0 0
0 v(h— z) 0
0 0 —(h—2)

P9

(L) =5

6. Des relations entre déplacement et déformation nous déduisons :

g—g=%pg(h—z) = u=%pg(h—Z)X+f1(%Z)
@=Epg(h—z) = v=Epg(h—Z)Y+fz(X.Z)
(;_Vzl/:_%(h—z) = Wz—%pg(h—%)z+f3(9€,)’)
ow Jdu v d . z)  0fz(x,
zgxz=%+aa—vi=0=—€pgx+af%zi+af§éyz )
29y =5+, = 0= ~pPIY P 3ay'y 3)

Deérivons (1) par rapporta y :

0’f,(y,2) —0 o afl(y‘_z) =a(z)+b = fi(y,z2)=alz2)y+by+c(z)+d

dy? ay
Dérivons (2) par rapporta z :
0°f,(y,2) _

3,2 0 = fiyz)=a,(y)z+bz+c,(y)+d,

Ces deux valeurs de f, (y,z) doivent étre égales si bien que nous avons :
a(z)y =a,(y)z= Ayz by = ¢,(y) c(z) = b,z d,=d
Donc l'expression de la fonction f,(y,z) est:

fily,z) =Ayz+by +biz+d 4)

Dérivons (2) par rapportax et (3) par rapport a z puis procédons de méme en dérivant (3) par
rapport a y puis (2) par rapporta x on obtient sans difficulté les expressions des fonctions

f,(x,2) et f3(x,y) :

f,(x,z) = Bxz+ b,x + b;z + d, 5)
f:(x,y) =2V—Epg(x2+y2)+b4x+ny+ bsy +d, (6)
Mais il va de soi que les relations (4), (5), (6) doivent satisfaire les relations (1), (2), (3) :
Az+b+bz+b, =0
v v
—gP9x + Ay + +b, +Epgx+ b,+Cy=20
v v
—Epgy+Bx+ b, +Epgy+ Cx+bs=0
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Ces relations doivent étre vérifiées quelles que soient x, y et z donc :

A=B=C=0
D'ou les composantes du vecteur déplacement (M) :
u=%pg(h—z)x+by+blz+d

v =%pg(h —2z)y —bx+ byz+d,

w=—7pg (h=3)z+5;pg(x? +y?) — bix — byy + d,

()
()

©)

7. Ecrivons tout d'abord que le centre g, dois étre fixe, c'est-a-dire :u(g,) = 0. Ce qui revient
a dire que pour ; x=0, y=0, z=0 nous avons : u=0, v=0, w=0. Cette condition aux limites sur

les déplacements implique forcément que : d=0, d>=0, d4=0.

Du fait de la symétrie les déplacements doivent étre A
radiaux : u(6)
(M) = MM = &,1(0) + &,8,
En particulier si M est l'axe des x, c’est-a-dire si 0 =0 : Mz M
MM = g,u(0) + &,€, >
X

V xet z nous avons pour y=0 la composante v qui est

nulle et de la relation (8), nous déduisons :
b=0etb3=0

A . ryrvri s
En tenant le méme raisonnement sur l'axedes y :MM' = &,u (;) + &,€,

V yet z nous avons pour x=0 la composante u qui est nulle.
De la relation (7), nous déduisons :

b=0etb1=0

En définitive le champ des déplacements s'écrit :

v
u = Epg(h - zZ)x

v
v=Epg(h—Z)y

__Y _Z v 2 4 2
w= Epg(h 2)z+2Epg(x +y?)

Les problémes de la théorie de 1'¢lasticité sont simplifiés, dans une large mesure, lorsque 1'on

rencontre I'un des deux cas particuliers importants :
- L'état plan de contrainte (état de contrainte double).
- L'état plan de déformation.
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4 Etat plan de contrainte

Il existe un trés grand nombre de problémes industriels dans lesquels la répartition des
contraintes se trouve dans un méme plan. C'est notamment le cas d'une plaque mince soumise
a l'action de forces réparties appliquées sur toute son épaisseur.

\y‘u

B
NV

Figure VIIIL.03 Etat plan de contrainte

Dans le repére ci-dessus les composantes du tenseur des contraintes o,, 7,,, T,,sontnulles sur
les deux faces latérales de la plaque. Si la plaque est mince on peut dire qu'il en est de méme a

l'intérieur de celle-ci sans erreur appréciable.

On peut également admettre que les autres composantes du tenseur des contraintes oy, 0, Ty,
ne sont pas des fonctions de z. C'est-a-dire qu'elles restent constantes en tous les points de
I'épaisseur de la plaque. Le tenseur des contraintes s'écrit donc :

Op Tyy O
[L] = [rxy o, 0] (VIIL09)
0 0 0

Les relations entre contraintes et déformations deviennent :

1 T

ex=E(0x—v0y) gxy=%
1

ey =z (0, —vay) Gz =0 (VIIL.10)
1

e, =E(0_V(Gy +0x)) 9y, =0

Elles nous permettent d'écrire le tenseur des déformations :

ex Gxy O
[Lgyl=|9xy € O (VIIL11)
0 0 e

z

Il suffit donc de déterminer oy, o), T,, pour en déduire e,, ey, €,,, gy, , puis les
composantes du vecteur déplacement u, v, w.
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Pour cela nous disposons :

- Des équations d'équilibre :

do, Ot
X, +—= X =0
PR T 5% dy

Jt do.
X 24 —2=0
Pt o Ty
pX,=0

M écanique des milieux continus

(VIIL12)

Ces relations expriment que les forces volumiques sont contenues dans un plan parallele a oxy.

Dans (VIIL.12) dérivons la premiere relation par rapport a X, la seconde par rapporta y et la
troisiéme par rapport a z. Ajoutons les résultats ainsi obtenus :

anx+620'x azfyx+any+aZTxy azo-y+anZ=0
dx  0x? 0dxdy dy  0dxdy  dy? 0z
Soit sous forme plus condensée :
d%c, _0%1 ‘0 S
+2—+—2L+pdivk=0
0x? dxdy  0dy? paty

- Des équations de compatibilité :
Les équations de compatibilité entre les déformat

2
0%e,

=0
dyoz

d0%e
y:0
0x0z

2
0“e,

dxdy

Or, compte tenu des relations contraintes déformations, la relation (VIII.14) s'écrit :

19? (0, —va,) N 162(

ions et déplacements deviennent :

d%e, N d0%e, _ 0 gy
dy? = 0x? dxdy
0%e, N d%e, _ 0

dz?  0dy?

d%e, 0d%e, _o

dx?  0z?

_ 2
% vao,) _ 10 Tyy

E dy? E
Des relations (VIIL.13) et G =

E
2(v+1)

0%(o, +0,) N 02 (o, +

dx? G dxdy

nous obtenons tous calculs effectués :

%) +(1+v)pdivk =0

dx? dy?
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5 Etat plan de déformation

On arrive a une simplification similaire lorsque la dimension suivant I'axe z est trés grande, et
surtout si les extrémités de la piece considérée sont maintenues entre deux plans fixes
parfaitement lisses et rigides, de telle sorte que tout déplacement axial soit évité.

Il existe beaucoup de problémes importants de cette espéce ; un barrage de retenue, un tube
cylindrique soumis a une pression interne etc ...

Dans un état plan de déformation les composantes du vecteur déplacement #(M) sont :
u=u(x,y), v=v(x,y), w=0 ou égale a une constante.

Le tenseur des déformations s'écrit dans ces conditions :

€x Gxy O
[Lal=|g9,, e, O (VIIL16)
0 0 O
Puisque :
_ Ou _Ov _ow 0
= ox © = 3y =%, "
_1<6u+6v) _1<6w+6u>_0 _
9y = 53\5y " ox 922 =5\ox Taz) vz =
Les relations entre contraintes et déformations s'écrivent :
o, =2Ge, + A(e, +e,) Tey = 2Gg,,
o, = 2Ge, + e, + ey) Ty =
o, = A(ex + ey) Ty, =
D'ou I'expression du tenseur des contraintes :
O Tyy O
[L]= |ty o, O (VIIL17)
0 0 o
Remarquons que :e, = %(O’Z - v(ay + ax)) =0 > og,= v(ay + ax)
Par conséquent, il s'ensuit :
1 1+v
e, == (ax —v (ay +v(o, + ax))) =— ((1 —v)o, — vay)
(VIIL.18)

e, = %(ay —v (ax +v(o, + ax))> = ! ;V ((1 —v)o, — vax)

Comme oy, g,, 0,, T,, ne sont des fonctions que de x et y, l'équation d'équilibre (V.06)
s'écrit :
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do, Ot
pXx+ a;y =0
a0t do
pX, + a;y+ a;’—O
pX,=0

Donc, comme pour I'état plan de contrainte, la relation (VIII.13) est inchangée et il en est de
méme pour les équations de compatibilité qui se résument a la relation (VIIL.14).

Reportons larelation (VIII.18) dans la relation (VIII.14) :

14 1,62 ((1 —v)ax —vay) N 1 +v62 ((1 —v)oy —vax) =lazfxy
E dy? E 0x? G 0x0dy

Et compte tenu de (VIII.13) il vient en définitive :

Bz(ax + ay) 02 (ax + ay) o
(1-v) ( 922 + 3y7 > + pdivE =0

6 Fonctiond'Airy

Dans le cas particulier fréquent ou le champ des forces volumiques pX est tel que :
divk =0

Les états plans de contraintes et les états plans de déformations se réduisent a I'équation :

Oz(ax + ay) 0 (o, + ay) 02 (ax + ay) _o
0x? dy? 0z? B

Ao, +0,) =
Ces problémes d'¢lasticité plane ont une solution générale qui a été donnée par Airy.
Envisagions les deux cas suivants: X =0 ou X #0

6-1X=0

Supposons qu'il existe deux fonctions ¢ et P telles que :

_ 09 _ oy _ 09 0y
Ux_ay' % T oy’ Ty T Ty T oy
OF OF
Posons alors : ¢ = P et Y= o, - [l s'ensuit
0°F 0°F 0°F
Ux=0_yz; %= gx?’ T’”’:_axay

Dans ces conditions :
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Mosto)=a(LE L BE\OF OF ) OF
T T %) =2\ G2 dy?) odx* dy* 0x20%y
= A(AF)

Le Laplacien du Laplacien de F est nul, F est une fonction bi-harmonique. C'est la fonction
d'AIRY.

6-2 X dérive d'une fonction de force U

_w

ou
Soit, parexemple : pX, = ™ et pX, = %

Les équations de I'équilibre (VI.06) deviennent :

ou +60x N 0Tyx _ (U +a,) N 0T,

- yx =0
dx Ox dy 0x dy
U N 0T,y 4 do, _ 0Ty, +6(U+ ay,) _
Jdy Ox ady d0x dy
Ces équations sont satisfaites sion pose:
0°F 0°F 0°F
O'x+U=a—yz; O},+U=W; Txy=—axay

Exercice VIII.2

Pour barrer une vallée de grande largeur dans la direction €5 (par exemple dans le but de
constituer une retenue d'eau) on construit un massif prismatique en béton schématisé ci-apres.

Ce barrage de section triangulaire OAB repose simplement sur le sol par son coté AB et retient
une certaine hauteur d'eau sur son coté eau OA. Nous étudierons le cas ou le barrage est plein.

Le béton qui constitue ce barrage est supposé homogene, isotrope et élastique, et on désignera
par p sa masse volumique et par p, la masse volumique de l'eau.

La pesanteur est évidemment dirigée suivant €.

Z > />
; f
7 3.V 7
V/ ' /
V/ /
V/ /
V/ /
V/ /
V/ /
V/ /
7 7
P 4
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1. Sachant que l'on a affaire a un cas de déformation plane, on peut déterminer le champ des
contraintes en considérant un polynome du troisieme degré comme fonction d'Airy :

A B C D
Flx,y) ==x3+—y3 +Ey2x+§yx2

6 6
Exprimer o, Ty, Tyy €N fonction des constantes A, B, C et D (il est recommandéde bien vérifier

que les équations de l'équilibre sont satisfaites).

2. Exprimer les conditions aux limites sur le plan vertical (P,) défini par y=0 (on se rappellera
que par définition des états de référence, il ne faut comptabiliser que les pressions effectives :

(p ~ Patm )

3. Exprimer les conditions aux limites sur le plan (P,) défini par y — Bx avec B = tg6. On
remarquera que ce plan n'est pas chargé puisqu'il n'est soumis qu'a la pression atmosphérique

Patm-

4. Calculer en fonction de B, p, p,, g, x ety l'expression des contraintes :0y, 0y, Ty,

Corrigé
1. Nous avons :

0°F 0 (B 5 D ,
o, +U= (Ey +ny+5x>

T oy? T ay
0°F 0 (A , C ,
0y+U=ﬁ=a<5x +§y +Dyx)
0*F Jd (B , D
o =y~ (2?7 )

Puisque la pesanteur est dirigée suivant €, nous avons U = pgx, il s'ensuit que l'expression
des contraintes est :

ox = By+Cx — pgx

gy = Ax + Dy — pgx

Tyy = —Cy —Dx
Nous avons bien :

X+aa"+ary"— +C C=0
ot do.

2 +—2=-D+D=0

0x dy

2. En vertu de l'équation fondamentale de l'hydrostatique nous avons dans notre repere :

p Patm
— =—+x = P = Patm = P19X
P19 P19 am
Nous avons pour la facette définie par —€, au point 0
M, e(B): =
c(My,—€;) = (D = Paem )€, = p19%xé, ;<€ =
Commeil s'agit d'un état plan de déformation cette —€; E]M 1
relation s'écrit : =
x?
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Oy Txy 0 0
¢(My,—8,) =|Tyy o, 0f|-1]|=
0 0 o,/LO

0
pP19x
0

Soit :

—Tyy, =Cy+Dx =0
—0, = p1gx = —Ax — Dy + pgx

Orsurceplan (P)) y=0=2>A=(p—p,)g et D =0.

3. Au point M, € (P,) sur la facette définie par u (0 + g) nous avons . € (Mz, U (9 + g)) =0

. A Puisque le plan (PZ) n'est pas chargé.
€1
N T Oy Txy 0 —sin 6
i(6+3) é(Mpi(0+5)) =]ty o O [ cos 0 ‘ =0
0 0 o, 0
M,
B

1l s'ensuit donc :
—0, sinf + 1, cos =0
—Tyy Sin + 0, cos =0

Compte tenu de ['expression des contraintes en fonction des constantes A, B, C, D, ces deux
relations s'écrivent :

—(By+ Cx —pgx)sin@ — (Cy + Dx) cos 6 =
(Cy+ Dx) sin@ + (Ax + Dy — pgx) cos 0 =

0
0
Puisque y = Bx avec [ = tg0 nous avons :

—(BB+C—pg)px—(CB+D)x=0 = —BB*>+(pg—2C)B—D =0
(CB+D)Bx+(A+DB—pg)x=0 =  CP*+2DB+A—pg=0

Puisque nous avonsA = (p — p;)g et D = 0 les valeurs des constantes C et B sont :

2
PRY R IR
B B B
4. Les valeurs des constantes A, B, C, D permettent d'exprimer les contraintes o, 0y, Tyy €N

fonction de B, p, p,, g,x ety. Soit :

. :<p’Tg_2§;g)y+p§fx—pgx=<< —%)%+<%— >x>g
o, = (p —p1)gx — pgx

P19
xy — _F}’

T

80



Chapitre IX Aspect macroscopique de I’état fluide M écanique des milieux continus

Chapitre IX

Aspect macroscopique de I’état fluide

1 Pression

Pour aborder la notion de fluide sous l'aspect macroscopique, il est commode d'utiliser la notion
de contrainte dans les corps solides.

Une contrainte normale dirigée vers l'intérieur est appelée compression ou pression. Dans un
fluide il n'y a que des pressions. Bien que dans certains états métastables, sortant du cadre de
cet ouvrage, on puisse observer des tensions dans les liquides.

Il faut six grandeurs pour définir en un point I'état de contrainte d'un solide et il en est de méme
pour un fluide.

Les liquides sont caractérisés par une masse volumique relativement importante et sont
pratiquement incompressibles, ce qui est le contraire pour les gaz.

On distingue des corps intermédiaires entre les fluides et les solides tels que ’argile, le verre
en fusion, les métaux lorsqu’on les forge, le béton avant coulée etc....

L’¢tude entre les déformations et les contraintes appliquées a ces corps s’appelle la rhéologie.

2 Fluide parfait

Les notions de fluide parfait et de gaz parfait sont souvent des sources de confusions.

Tout d'abord, intéressons-nous au fluide parfait. Le gaz parfait a été précédemment défini sous
l'aspect microscopique. Il sera évoqué en fin de chapitre sous l'aspect macroscopique.

La théorie de I'¢lasticité montre que dans un solide isotrope les contraintes sont liées aux
déformations par des relations linéaires, ce qui n'est pas le cas pour les fluides.

Dans les gaz et les liquides, les contraintes tangentielles dépendent de la vitesse a laquelle la
déformation s'est effectuce.

Dans un fluide au repos la vitesse est égale a zéro, il s'ensuit que les contraintes tangentielles
sont nulles.

Lorsqu'en tout point M d'un fluide en mouvement les contraintes tangentielles sont nulles, quel
que soit la facette, nous dirons que le fluide est parfait.

Les fluides réels ne répondent généralement pas a cette condition.
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La notion de fluide parfait constitue une fiction qu'il est cependant utile d'étudier pour avoir un
terme de comparaison commode. Les fluides réels apparaissent alors comme s'en rapprochant
plus ou moins.

Quand les phénoménes de viscosité restent faibles, on pourra en premiere approximation
admettre dans les calculs que le fluide réel se comporte comme un fluide parfait.

En désignant par p la pression d'un fluide parfait en mouvement ou d'un fluide réel au repos le
vecteur "contrainte" devient :

CM, 1) = —pn
Puisqu'il ne subsiste que des contraintes normales.

Cette pression est donc indépendante de son orientation, c'est le principe de Pascal.

3 Principe zéro de la thermodynamique

Un corps nous parait plus ou moins chaud (ou froid) suivant la sensation que nous avons en le
touchant. La comparaison de ces constatations tactiles ne peut pas, évidemment, conduire a des
résultats tres satisfaisants.

Par contre, 1'é¢tude de certains phénomenes physiques nous a permis d'établir sans ambiguité un
classement d'apres leur ordre d'intensité. Notamment, depuis fort longtemps, on a remarqué que
la dilatation des corps suit celle de nos impressions sensorielles.

Lorsqu'on met en contact un corps chaud et un corps froid, on constate que le corps chaud se
refroidit en se contractant et le corps froid s'échauffe en se dilatant. Ces variations de volume
se ralentissent et lorsqu'elles ont cessé€ nous disons que les corps sont en équilibre thermique.

Deux corps mis en contact prolongé se mettent en équilibre thermique. Deux corps en équilibre
thermique avec un troisiéme sont aussien équilibre thermique entre eux.

Cet énoncé constitue le principe zéro de la thermodynamique.
La température caractérisant I'état thermique d'un corps peut étre mesurée grace a ce principe.

Un "thermometre" repere non seulement sa propre température mais €galement celle du milieu
dans lequel il se trouve.

4 Température

Les premiers thermoscopes, ballon surmonté d'une tige mince, cylindrique et contenant un
liquide dont on observe la dilatation remontent a environ deux si€cles avant notre ére. Il a fallu
attendre le début du dix-septieme siecle pour repérer des points fixes et ainsi réaliser un
thermometre.
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4-1 Température centésimale

On prend arbitrairement deux états d'équilibre thermique O et 1 différents et reproductibles. A
ces deux états bien définis correspondent, pour un thermoscope donné, deux longueurs de
liquide /o et /; auxquelles on associe les grandeurs # et ¢; appelées température.

Trés longtemps en France, ces états d'équilibre ont été obtenus en utilisant les propriétés de
'eau pure. Sous la pression atmosphérique normale de 101325 Pa la température 7 = 0° est
choisie pour la fusion de la glace et #; = 100° pour I'ébullition de I'eau.

L'intervalle 0-100 de la tige cylindrique est divisé en 100 parties égales et la graduation est
prolongée de part et d'autre. La température est déterminée par la loi d'interpolation linéaire :
t,—t, 100—0 1, —1,

Un tel appareil est appelé un thermométre, la lecture est / et la température ¢ correspondante est
dite centésimale.

Pour des liquides thermométriques différents, les valeurs des températures correspondent a 0°
et 100° mais divergent plus ou moins aux autres températures.

Il est important de noter qu'au sens strict du terme, la température définie avec cette échelle
centésimale n'est pas une grandeur mesurable.

Le rapport de deux températures n'a pas de sens physique.
4-2 Température Kelvin

Dans ce qui précede nous avons utilisé une grandeur thermométrique constituée par la longueur
d'une colonne de liquide, ce qui est usuel. M ais la grandeur thermométrique peut €tre tout autre
comme la dilatation d'un solide (bilame), la résistanced'un fil de platine, la force électromotrice
d'un thermocouple ou bien la pression d'un gaz a volume constant.

Sous l'action de la température les gaz se dilatent beaucoup plus que les liquides ou les solides.
11 s'ensuit que l'utilisation de thermomeétres a gaz basés sur la variation de volume a pression
constante, ou sur la variation de pression a volume constant, apporte plus de rigueur a la
définition de la température.

Prenons l'exemple du thermométre a gaz a variation de volume V sous la pression
atmosphérique normale de 101325 Pa. En utilisant les états d'équilibre précédemment définis,
nous pouvons écrire :

t—t,  t—0 V-V
t,—t, 100—0 1V, -V,

Soit encore :

4 1
=at+1 avec a= <—— 1)—
A 100

0
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De méme avec un thermométre a gaz a variation de pressionsous volume constant nous aurions

£=,8t+1 avec ,8=(

Po

n_p) L
Po 100

Le tableau ci-dessous donne, pour quelques gaz, les valeurs de a et S obtenues dans des
conditions proches des normales de pression et de température.

Hélium Hydrogene Azote Oxygene CO2
1 1 1 1 1
* 2734 273,3 2724 2724 269,5
1 1 1 1 1
g 273,2 2731 272,4 2734 2711

Si nous faisons tendre la pression vers zéro, nous trouvons pour tous les gaz :

1

% = Fo = 37375

Les coefficients a et f sont affectés de l'indice "o" pour bien marquer la différence avec les
p q
résultats précédemment obtenus.

Lorsque cette égalité est satisfaite en dehors de cette condition restrictive (pression qui tend
vers z€ro), le gaz est dit parfait.

Pour un thermometre utilisant un gaz parfait et fonctionnant a pression constante le rapport des
volumes devient :

v t+1

— =

Vo °

Cette relation, appelée loi de Gay-Lussac, devient en posant T =t + 273.15:

vV T
V, 273,15

Le méme raisonnement pour le thermomeétre a gaz, a variation de pression sous volume
constant, conduit a un résultat analogue, que 1'on désigne parfois par loi de Charles.

14 T

P 273,15

T est l'unité légale de température, elle fut d'abord appelée degré¢ Kelvin (°k) pour étre
maintenant désignée par Kelvin (symbole K).

A pression constante l'expression V /V, = T/273,15 montre que la température T ne peut
jamais étre négative. Ce qui justifie le qualificatif donné a 7 de température absolue du gaz
parfait. L'origine est qualifiée de zéro absolu.
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La température absolue d'un gaz parfait est une grandeur mesurable. Elle est directement lice a
une propriété de ce gaz.

Par contre, la température absolue d'un corps quelconque, mesurée par comparaison avec un
gaz parfait, n'a pas les caractéres d'une grandeur mesurable. Mais nous verrons que la
température absolue s'identifie a la température thermodynamique, qui apparait comme
mesurable vis-a-vis d'un corps quelconque. C'est ce qui justifie le choix préférentiel de cette
échelle de température.

4-3 Température Celsius

Pour des questions de commodité, le comité international des poids et mesures permet l'usage
de température Celsius définie par la relation :

t=T-273.15

L'unité de mesure est le degré Celsius, symbole °C. Une différence de température s'exprime
en °C par le méme nombre qu'en Kelvin.

Le symbole de la température Celsius est ¢ ou 8. Lorsque ¢ préte a confusion, notamment avec
le temps ¢, on utilise alors 6.

Exercice IX 1

Le but de cet exercice est de comparer deux thermometres différents et ceci dans l'intervalle de
température compris entre 0°C et 100°C.

L'un utilise une grandeur thermométrique satisfaisant la relation :X(t) = a + bt + ct?ou t est
la température Celsius et a, b et c sont des constantes.

L'autre thermometre fonctionne suivant umne échelle centésimale dont la grandeur
thermométrique est X(8) = AB + B Le terme 0 estla température centésimale.

Sachant que ces deux thermomeétres doivent parfaitement correspondrea 0° et 100° déterminer
a quelle température t l'écart t — 0 passe par une valeur maximale.

Corrigé

Puisque ces deux thermometres doivent correspondre aux états d'équilibre de 0° et 100° nous
pouvons écrire :

X(0)=a=B
X(100)=a+100b+10000c=1004+B
1l s'ensuit A=b+100c

Pour obtenir l'écart maximal il faut déja que les températures lues sur les deux thermomeétres
soient égales : X(t) = X(0)

Soit encore :
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a+bt+ct? = (b+100c) 6 +a
D'ou la valeur de 0 et de t- 0

3 bt + ct?
" b +100c

100ct — ct?

t—0=
b +100c
Cet écart sera maximal pour t=50°C, puisque :

d(t—0) _100c — 2ct
dt ~ b+100c

5 Chaleur

5-1 Equation calorimétrique

M ettons en contact prolongé¢ deux corps de méme nature et de méme masse a des températures
différentes ti et t2. Ces deux corps semettent en équilibre thermique, conformément au principe
zéro de la thermodynamique. Nous savons que cette température finale sera sensiblement égale
a la moyenne arithmétique des temp ératures initiales #; et z.

tr = % ou encore (tf — tl) + (tf - tz) =0

Si les deux corps sont de méme nature mais de masse différente cette relation devient :

m,t; + myt :
3 :W oubien: m,(t; —t,) +m,(t; —t,)

Exercice IX.2

Pour remplir une baignoire de 140 dm? on dispose d'eau a 80°C. Quelle devra étre la quantité
d'eau froide a 10°C a mélanger pour obtenir une eau a 37°C. La masse volumique de l'eau est
de 1000 Kg/m”.

Corrigé
mi(tr=t)) + m2(tr—t2) =mi (37 - 80) + m2(80 - 10) =0
mi;+m2=0,140x 1000 =140 Kg
Nous avons deux équations et deux inconnues d’ou: m; = 54 Kget m>= 86 Kg.

Si les deux corps sont différents, nature et masse, la température finale est donnée par une
relation de la forme :

mici(tr—t) +maca(tr-1) =0
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Cette relation se généralise pourn corps en contact thermique, sans action chimique les uns sur
les autres.

1
3

=

i:
Le produit mic;=C; qui caractérise un corps donné de masse m; est appelé capacité thermique.

Le coefficient c;qui dépend de la nature du corps considéré est la capacité thermique massique.

Remarquons que cette relation est valable aussibien pourdes températures exprimées en Kelvin
qu'en degré Celsius puisqu'elles n'interviennent que par leurs différences.

La quantité Q; = mici(tf — tl-) est appelée quantité de chaleur échangée par le corps "i" avec
les autres corps.

Lorsque n corps sont mis en contact prolongé et se mettent mutuellement en équilibre
thermique, la somme algébrique des quantités de chaleur échangées par chaque corps avec les
autres est nulle.

1
3

Q;=0

[y

1=

Cette relation est appelée ; équation calorimétrique.

5-2 Quantité de chaleur

L'équation calorimétrique montre qu'entre deux corps en contact la quantité de chaleur gagnée
par l'un est égale a la quantité de chaleur perdue par l'autre.

Les physiciens du XVIlléme si¢cle avaient établi expérimentalement cette propriété. Ils
pensaient que la quantité de chaleur jouait le role d'une grandeur indestructible analogue a la
masse en mécanique du solide. Pour eux la chaleur apparaissait comme une substance
constituée par un fluide immatériel imprégnant les corps en quantité totale invariable dans la
nature et susceptible de passer d'un corps a un autre.

Ils désignaient a I'époque "phlogistique" cette substance pour l'appeler, ensuite, au milieu du
XIXeéme siecle le "calorique".

Cette propriété de conservation n'est valable que dans les phénomenes purement calorifiques.
Si I'énergie mécanique intervient, la quantité de chaleur ne reste pas constante, d’ou la nécessité
d'utiliser la thermodynamique. Malgré tout, nous avons conservé le langage de I'époque du
"calorique" en parlant de "chaleur" présente dans un corps. Elle est apportée, cédée, dégagée,
absorbée, perdue, recue, gagnée, emportée un peu comme si la chaleur était une substance.

La chaleur, dans le langage commun, est souvent confondue avec la notion de température.

Cette confusion est entretenue, en bonne partie, par la définition précédente: Q:=m;c; (tf —t;)
ou la chaleur recue entraine forcément une augmentation de température et inversement.
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En fait un systéme peut recevoir ou céder de la chaleur sans qu'il y ait variation de température.

C'est le cas d'un changement d'état physique comme par exemple la fusion de la glace ou
I'ébullition de I'eau a pression constante.

De méme, la température d'un systéme peut se trouver modifiée sans observer de transfert de
chaleur. L'évolution du fluide contenu a l'intérieur d'une turbomachine s'effectue, la plupart du
temps, sans transfert de chaleur. Pourtant la température du fluide, entre la bride d'entrée et la
bride de sortie, augmente ou diminue suivant qu'il s'agit d'une machine de compression ou de
détente. Il y a eu échange d'énergie mécanique.

Il est trés important de noter qu'une quantité de chaleur ne se percoit qu'a son transfert d'un
corps a un autre.

Le développement de la thermodynamique statistique a permis de définir la chaleur comme un
transfert de I'agitation thermique des particules.

Prenons un exemple simple. Au gré des chocs aléatoires qui se produisent a I'échelle
microscopique, les molécules d'un gaz chaud, plus agitées, frappent les molécules d'un gaz froid
en leur cédant de fagon désordonnée une partie de leur énergie, jusqu'a ce que l'équilibre
thermique soit atteint.

A l'équilibre thermique, la température absolue d'un gaz mesure le degré d'agitation des
molécules. Un gaz dont les particules sont plus agitées présentera une température d'équilibre
plus élevée et inversement.

En résumé la température est une grandeur servant a décrire 1'état d'équilibre d'un systeéme alors
que la quantité de chaleur est un transfert d'agitation thermique assimilable a une quantité
d'énergie.

I1 faut donc absolument éviter de confondre température et quantité de chaleur. Une quantité de
chaleur fournie par une "source" a la température T 1 n'est pas équivalente a la méme quantité
de chaleur cédée a la température T2 plus faible. La premiére est susceptible d'effets dont la
seconde est incapable (cuisson d'un ceuf par exemple).

La chaleur étant une forme d'énergie, les quantités de chaleur se mesurent avec les mémes unités
que le travail, donc en Joules. Bien que ce soit déconseillé parle Comité International des Poids
et Mesures, la calorie est encore parfois utilisée.

La calorie (symbole cal) est la quantité de chaleur nécessaire pour élever la température de 1 g
d'eau de 14,5°C a 15,5°C sous la pression normale de 101325 Pa.

La calorie désignée parfois par "petite calorie" est: 1cal =4,1855].
La kilocalorie, appelée "grande calorie est : lkcal = 4,1855kJ
La thermie est: 1thermie = 10 cal

Dans les industries frigorifiques il est courant d'exprimer les quantités de chaleur enlevées en
frigories (fg). La frigorie est une kcal négative : 1fg = — lkcal
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Citons a titre d'information : 1kwh = 3600 kJ = 4316;’0 Keal = 860kcal
55

La tonne équivalente de pétrole (tep)

1 tep = 4,1855 101]J.

5-3 Capacité thermique massique

Pour un corps donné la valeur de la capacité thermique massique n'est pas une constante. Elle
varie essentiellement avec la température. Dans l'intervalle de température #;, #2 et pour une

iy . 8Q . o . . )
masse unité, 'expression : ¢ = It est appelée capacité thermique massique vraie.

Alors que: ¢ = est la capacité thermique massique moyenne.

t1-t;

Expérimentalement, les capacités thermiques massiques vraies sont déterminées a pression
constantes ou a volume constant. Elles sont notées respectivement ¢, et cCy.

cp est la capacité thermique massique a pression constante.

cv est la capacité thermique massique a volume constant.

Remarques :

- La valeur de la capacité thermique massique moyenne ne dépend pas du sens de I'évolution.
En d'autres termes, la quantité de chaleur recue parun corps qui s'échauffe de # a # est égale a

celle qu’il céderait en se refroidissant de #a #.

- La valeur de la capacité thermique massique d'un corps en contact avec un autre corps ne
dépend pas de la nature du partenaire.

- Pour les liquides et les solides, les tables donnent en principe les capacités thermiques
massiques a pression constante. Il est difficile de maintenir un liquide ou un solide a volume
constant pendant son échauffement. Il faudrait, pourcela, maintenir le corps dans une enveloppe
absolument indilatable.

Exercice IX.3

Le calorimetre dit de Berthelot permet de déterminer la capacité thermique massique d'un
corps. Tres schématiquement il est constitué d'un réservoir conformément a la figure IX 01.

On suppose avoir pris les précautions nécessaires pour que les échanges de chaleur entre
l'enceinte calorimétrique et le milieu extérieur soient négligeables.

Ce calorimetre contient 0,1kg d'eau a 16°C et la capacité thermique du vase et de ses

accessoires est de 75J/K. La capacité thermique massique a pression constante de ['eau est
cp=4185J/kg K.

89



Chapitre IX Aspect macroscopique de I’état fluide M écanique des milieux continus

On plonge dans [’eau un corps métallique pesant 0,03kg et ayant une température de 84°C.A
I'équilibre thermique la température finale est de 17,6°C.

Calculer la capacité thermique massique a pression constante de cet échantillon métallique.
Corrigé

Pour 'ensemble du systeme contenu a l'intérieur de l'enceinte il n'y a ni travail, ni chaleur
echangée avec le milieu extérieur.

Thermomeétre Corrige

1l faut donc appliquer l'équation calorimétrique :

I1=n
Yo
i=1

Parois isolantes

Enceinte Soit :
calorimétrique 0,1 x 41855 x (17,6 =16) + 75 x (17,6 -16)+ 0,03 x cpx (17.6-84) = 0
Une équation, une inconnue d’ou :
cp =396 Jkg K
Support isolants

Figure IX.01 Calorimetre dit de Berthelot

5-4 Source de chaleur

Une source de chaleur est un milieu a température uniforme dans lequel la capacité thermique
est trés grande par rapport a celle du systéme étudié. Si bien qu'une source de chaleur peut
recevoir ou céder des quantités de chaleur quelconques, en gardant invariablement la méme
température, grandeur qui la caractérise.

6 Gaz parfait

La notion de gaz parfait (qu'il ne faut pas confondre avec celle de fluide parfait) est une assez
bonne approximation lorsque les conditions de pression du gaz se trouvent éloignées de la zone
de liquéfaction.

L'hypothese du gaz parfait présente un intérét pratique dans les applications industrielles.
6-1 Equation d'état des gaz parfaits

Les premiéres études concernant les relations entre le volume et la pression d'une masse de gaz
ont abouti a la loi de M ariotte, attribuée aussia Boyle:

"Les volumes occupés par une masse déterminée de gaz, maintenue a température constante,
sont inversement proportionnels aux pressions qu'ils supportent".

L'évolution isotherme d'un gaz parfait traduit cette loi par la relation pJ = constante.
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D'une fagon générale, il faut distinguer trois variables pour caractériser I'état dun gaz, sa
pression p, sa température 7 et son volume V. Dans le cas d'un gaz parfait la combinaison, de
la loi de Mariotte avec celle de Gay-Lussac (ou de Charles), permet d'obtenir facilement son
¢quation d'état.

Pour le montrer considérons une évolution isotherme p ¥=C'® suivie d'une évolution isobare :

v T
V, 273,15

Représentons ces évolutions sur un diagramme, dit de Clapeyron, obtenu en portant p en
ordonnée et V en abscisse. Soit une masse quelconque de gaz parfait dans un état initial ;
caractérisé par p;, Vi et Ti.

Supposons qu'on I'emmene dans un état final f défini par py, Vr et Ty en passant par un état
intermédiaire 1 ou il regne py, Vi et Ti.

Nous pouvons écrire p;Vi=psV1 pour I'évolution isotherme de i a 1.

p
A 1 f
prl : Pour I'évolution isobare de 1 a f; nous avons :
: E = d et ﬁ = i
;p=constante V, 273,15 Vo 273,15
Soit : V, = LV, = Ly,
T=constante Ty Pr
14 V-
: : Ou encore : 2L = Pi¥%i =PV — copstante
. E . Tf Ti T
pl ....g .................. .E. ..................... : l
5 : : __,  Puisque I'état initial i et I'état final / ont été
Vi Vr Vii.'' V' choisis de fagon arbitraire.

Figure IX.02 Diagramme de Clapeyron

Pour une mole de gaz parfait, ce résultat s'écrit :

PV _ o
T

C'est-a-dire I'équation d'état des gaz parfaits, déja obtenue au chapitre consacré aux notions sur

l'aspect microscopique de I'état fluide.

Utilisons les conditions normales pour calculer la constante universelle R des gaz parfaits :

3
101325 Pa 0,02241383 m” /mol
~ ——

%
Po mo = 8,3144... J
T, mol. K

“
273,15 K

R =
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Cette expression, établie pour une mole de gaz parfait, revét d'autres formes qui sont trés
utilisées dans les applications pratiques de la thermodynamique. A cet effet multiplions les deux
membres de I'équation d'état des gaz parfaits par le nombre de moles n.

De la définition du volume molaire, il vient immédiatement p V=nR T

Il est commode de poser: » = R/M. Cette fois r est une constante qui dépend de la nature du gaz
parfait considéré, ce qui n'est pas le cas pour R.

Cette constante 7 s'exprime en Joule par kilogramme Kelvin (J/kg K).
De la définition de la masse molaire nous déduisons :

pV =nMrT = mrT
Et de la définition du volume massique : pn% =pv=1rT

Moyennant quoi, pour plus de clartés, récapitulons ci-dessous les diverses écritures de
I'équation d'état des gaz parfaits :

pVm=RT
pV =nRT
pV=mrT
pv=rT

Exercice IX 4

Sachant que dans les conditions normales de pression et de température la masse volumique
de l'air est p, =1, 293kg/m’ calculer sa constante r en supposant qu'il se comporte comme un
gaz parfait.

Corrigé

Ecrivons l'équation d'état dans les conditions normales :

1
PoVy = Do E =Ty
Soit :
po 10132 rike k
1,293 x 273,15
Exercice IX 5

Les pneus d'une automobile sont gonflés a 2 bar lorsque la température ambiante est de -8°C.
Quelle sera la pression de l'air a l'intérieur des pneus si l'automobile se retrouve dans un
endroit ou la température est de 18°C ?
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Pour simplifier, on supposera invariable le volume intérieur des pneus.
Corrigé

Affectons de l'indice "1" les caractéristiques de l'air a 2 bar et -8°C et par l'indice "2" lorsque
la température estde 18°C.

De l'équation d'état des gaz parfaits nous déduisons :
p1Vi=mrT]
p2Vo=mr1:

Puisque par hypothése Vi=V2 il vient immédiatement :

T,  273,15+18

Po =7 P17~ 73158

p2=2,196 bar
6-2 M élange de gaz parfaits

Considérons un mélange constitué¢ d'un gaz G1 de masse mz, d'un gaz G2 de massemo, ..... Gi
de masse mi...... etc....et désignons par N le nombre de ses constituants.

i=N
La masse totale du mélange sera: m = Z mQ;

i=1

La composition d'un mélange est définie par les fractions massiques et molaires de ses
constituants.

La fraction massique d'un constituant de masse m; estle rapport de sa massem; a la masse totale
du mélange. Son symbole est wi.

La fraction molaire d'un constituant de masse m; est le rapport du nombre de moles n; de ce
constituant au nombre total n de moles du mélange. Son symbole est x;.

93



Chapitre IX Aspect macroscopique de I’état fluide M écanique des milieux continus

i
=

M=) M.

iXi

i
i=1

De méme la constante r d'un mélange de gaz parfait s'écrit :

i=N i=N
R Rn Z Rn; rm;
r =—=—= =
M m m m
=1 i=1
i=N
r = Tl- Wi
i=1
Exercice IX 6

Si l'on considere que l'air est un mélange dans la proportion de 79 moles d'azote pour 21 moles
d'oxygene, calculer la masse molaire de l'air.

(La masse molaire de l'azote est de 0,028 kg/mol et de 0,032 pour kg/mol I'oxygene).
Corrigé

7 +0,032 x 21

M =0,028 x
79+ 21 79+ 21

=0,02884 kg / mol

En fait la masse molaire est de 0,02896 kg/mol en tenant compte des autres constituants de
l'air.

6-3 Loi de Dalton

Un mélange de gaz parfaits se comporte comme un gaz parfait. Par conséquent en désignant
parp, V, T, et n la pression, le volume, la température et le nombre de moles du mélange,
I'équation d'état du mélange s'écrit :

pV=nRT

Si bien que nous avons :

<
3
~

p

ﬂ
~
ﬂ

i=1 i=1

Or pour calculer le nombre de moles #n; gaz Gi nous pouvons supposer qu’il occupe seul le
volume total V & la température T du mélange et sous une pression p;, soit :

piV; Pi,V

n; = =
RT, RT

En tenant le méme raisonnement pour les autres constituants, nous aurions :
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Ou encore :
i=N

p=p+p, +ps+...Di+..py = zpé

i=1

Les pressions ainsi définies s'appellent pressions partielles. La pression p; est la pression
partielle du gaz Gi.

La pression totale d’'un mélange de gaz parfaits est égale a la somme des pressions partielles
des différents gaz constituants, considérés chacun comme occupant le volume total du mélange
a la température de celui-ci.

Ceci constitue la loi de Dalton.

Exercice IX.7

Un mélange d'air et gaz carbonique (CO3) considéré comme un gaz parfait a une masse
m=1,4.10"kg et occupe un volume V =10"m? lorsque la température t = 20°C et la pression

p = 98655Pa.

Dans les conditions normales de pression et de température (top = 0°C et po = 101325Pa)
calculer les volumes d'air Vi et de gaz carbonique V> qu'il faut mélanger pour obtenir le mixage
défini ci-dessus. Rappelons que dans les conditions normales :

Pair = 1,293kg/m? et pc, = 1977kg/m’
Corrigé
En désignant par m et m2 les masses d'air et de gaz carbonique, nous avons :
m=m;+m, = pgiVy + Peo, V2
Soit en passant a l'application numérique : 1,4.1073=1,293 V;+1,977 V>
D'autre part nous pouvons écrire :

ﬂ=P0V1+p0V2=p_o
T T, T, T,

W +V,)

98655 x 107 101325
29315 273,15

v, +V)
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Nous avons ainsi deux équations et deux inconnues, ce qui permet d'obtenir :
Vi=0,57510°m®> et 72=0,33210"m’
Exercice IX.8

Déterminer la pression d'un mélange d'air et de gaz carbonique occupant un volume V=4m’ a
la température T=300K. Le mélange contient 3,5Kg d'air et 2Kg de CO>.

Pour l'air la constante r estde 287 J/kg K et pour le gaz carbonique de 189 J/kg K.
Corrigé

En vertu de la loi de Dalton la pression totale du mélange est égale a la somme des pressions
partielles de l'air et du CO2, considérés chacun comme occupant le volume V a la température
T.

’ ’ T
P= DPar t Pco, = (mairrair + Mo, T 02) v
—— —_——
Mgir Tair T Mo, Yeoo T
Meog Tcop ©

v %

p=(35%287+2x ]89)37?0 = 103687 Pa
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Chapitre X

Cinématique des fluides

1 Généralités

La mécanique des fluides est une science trés vaste qui interfére, dans de nombreux domaines,
avec la thermodynamique. Il va de soi que la mécanique des fluides compressibles ne peut pas
se concevoir sans faire appel a la thermodynamique et inversement.

La mécanique des fluides fait appela des notions différentes de celles exposées en mécanique
du solide. Dans un écoulement il y a déformation du fluide. Pour étudier son mouvement on
décompose fictivement le fluide en volumes €élémentaires continus que l'on appelle particules.

La cinématique des fluides, comme son nom l'indique, permet de décrire les mouvements des
fluides sans se préoccuper de ses causes afin d'étudier le champ des vitesses.

1-1 Particule fluide

La particule fluide est une portion de fluide, de dimensions arbitrairement choisies, a laquelle
correspondent, pendant un intervalle de temps dt entourant I'instant t, une vitesse, une pression,
une température, une masse volumique, etc... Par convention nous dirons que ce sont les
valeurs de ces grandeurs a l'instant t au centre d'inertie de la particule.

Par définition de la particule fluide tous ses points matériels M ont une vitesse, au deuxieme
ordre pres, €gale a la vitesse du centre d'inertie de la particule. Ce qui permet d'écrire tout
simplement :

E. =
cmz

|4
=m —
2
Chaque particule d'un fluide est soumise a des forces de volumes comme le poids ou les forces

d'inerties et a des forces de contact transmises a la surface de la particule par les éléments
environnants.

Ainsi, un fluide apparait pareillement a un corps homogene et continu dont les diverses
particules peuvent se déplacer ou se déformer sous l'action d'une force tres faible.

En mécanique des fluides deux approches différentes peuvent étre utilisées. Elles different par
le choix des variables utilisées, soit Lagrange ou Euler.

Dans la description lagrangienne on suit une particule fluide dans son mouvement. Comme par
exemple, un petit morceau de bois emporté par le courant d'une riviere. Les variables de
Lagrange sont surtout réservées a I'étude des solides.

Dans la description eulérienne on se place en un point M (X, y, z) du fluide et on étudie les
variations des grandeurs physiques ades instants différents. Comme par exemple examiner dans
une riviere les tourbillons qui se forment derriere un obstacle.
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Pour étudier le mouvement d'un fluide, il est plus commode d'utiliser les variables d'Euler. Elles
permettent de définir le champ des vitesses a chaque instant t et en tout point M du fluide.

1-2 Variables de Lagrange

Dans un repére orthonormé €,,€,,€,, les coordonnées d'une particule fluide sont xo, yo, zo,a la
date = #9. A l'instant ¢, elles deviennent :

x=x(,¥0,20,t), ¥ = ¥(X0, Y0, Zoo ), 2 = 2(x, Yy, Zo t)

Ces coordonnées sont appelées variables de Lagrange. Le mouvement d'une particule fluide est
connu en exprimant X, y et z en fonction de x,, y,, z et de t .

Désignons par V, (x,y,2,t), V,(x,y,2,t), V5(x,y,2t) les composantes de la vitesse V d'une
particule, en un point M et a une date t. Par définition de la vitesse nous avons :

dx =V, (x,y,zt)dt dy = V,(x,y,z,t)dt dz =V,(x,y,2z t)dt

Soit encore :
dx dy dz

V,(x,y, 20 N V,(x 5 20 - Vi(x 20 N

dt

On définit alors la trajectoire comme étant le chemin que suit une particule fluide. Comme par
exemple, le petit morceau de bois emporté par le courant d'une riviere que l'on suit en tracant
son trajet.

Les trajectoires issues d’'un méme point a différents instants seront différentes (sauf si
I’écoulement est permanent). En pratique les particules ne conservent pas longtemps leur
individualité et il est difficile de déterminer leur trajectoire.

Dans I'é¢tude des écoulements il n'est pas important de connaitre la marche individuelle de
chaque particule, si bien que ce mode de calcul n'est donc pas trés employé en mécanique des
fluides.

1-3 Variables d'Euler

Supposons qu'au contraire on porte attention a l'ensemble de tous les vecteurs vitesses des
particules au méme instant. L’utilisation, de ce qu'on appelle les variables d’Euler, sera alors
mieux adaptée pour résoudre les problémes de mécanique des fluides. Les variables d’Euler
sont les composantes Vi, V2, V3, de la vitesse a un instant to.

Admettons que I'on connaisse, a une date to, les vecteurs vitesses en différents points. Dans ces
conditions il sera alors possible de tracer les lignes tangentes a ces vecteurs vitesses en chacun
de leurs points. Ces lignes, appelées lignes de courant a I'instant to, sont définies par les relations

différentielles :
dx dy dz

Viixyzt) Vu(xyzt) Vilxyzt,)

L’utilisation des variables d’Euler est plus commode, en mécanique des fluides, que celles de
Lagrange pour les raisons suivantes :

- les vecteurs vitesses de I'écoulement forment un champ de vecteurs auquel on peut appliquer
les propriétés des champs de vecteurs.
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- pour les écoulements permanents, la projection des vitesses dans le repére ne dépend pas du
temps.

Toutes les lignes de courant qui s'appuient surune courbe fermée constituent un tube de courant.
On définit un filet de courant lorsque la section du tube de courant devient infiniment petite.

1-4 Ecoulement permanent

Si en chaque point d'un écoulement, le champ des vitesses, la pression et la température ne
dépendent pas du temps, on dit que I'écoulement est permanent (ou stationnaire). Les

composantes u, v et w du vecteur vitesse V sont alors fonction que du point, c'est-a-dire de x, y
et z.

Dans un écoulement permanent les trajectoires coincident alors avec les lignes de courant.

Dans un écoulement permanent un tube de courant est fixe dans le temps et tout se passe comme
sile fluide s'écoulait a I'intérieur de parois rigides. On assimilera souvent I'écoulement dans les
tuyauteries a un tube de courant. Ce sera fréquemment le cas dans les canalisations utilisées par
les turbomachines.

2 Dérivées particulaires

Les principes de la thermodynamique et les relations fondamentales de la mécanique
s'appliquent a des systémes que I'on suit dans leurs mouvements. Lorsqu'on veut utiliser les
variables d'Euler, pour traiter un probléme de mécanique ou de thermodynamique, on introduit
la notion de dérivées particulaires.

2-1 Dérivée particulaire d'une fonction scalaire

= - - — .
Considérons une particule fluide M de vitesse V =V, e; + V, e, + I; e; et une fonction
scalaire f'(x, y, z, ¢). La différentielle de cette fonction est :

of of of of
df = Lar+ Lax+ Lay+ 2Ly
[ =gty @t gty 4

En divisant par df, on définit la dérivée particulaire de la fonction f'(x, y, z, #) :

b _of of, O, L of,

Dt 9t ox dy ? 0z
Soit encore :
Df oOf -
— =—2+V grad .01
Dt g TV gra f (X.01)

Compte tenu de ces résultats nous pouvons écrire que I'accélération y de la particule M a pour
composantes :

99



Chapitre X Cinématique des fluides M écanique des milieux continus

DV1_6V1+V0V1+V6V1+V6V1
Dt ot  toax  tay %oz

DV, 3V 0y, Vs OV,
Dt ot tox  *ay 3oz
DV, aV, LA oV, v,
De o Max TR TR

<

2
En remarquant que (V) =V2=V2+V2+ Ve lecteur vérifiera facilement,
d'exercice, que cette relation peut se mettre sous la forme :

DV 6V1

Y 2
y = TR 2gradV + 7OtV AV

Ou encore, de la relation (II1.08), on déduit :

DV _3V 1 advi2aay
D or 297 @

v

2-2 Dérivée particulaire d'une intégrale de volume

a titre

(X.02)

Considérons un écoulement fluide occupant a l'instant # un domaine D de volume (V) et limité

par une surface fermée (4).

Désignons par F(M,¢) une fonction de la position de la particule M et du temps ¢ ainsi que par

I'l'intégrale de volume :
I = fffVF(M,t) dv

Pendant l'intervalle de temps df le domaine D est venu en D,.

(X.03)

Dans la partie constituée par I'inclusion de D et D, (partie commune a D et D,) :la variation de

F (Mt
l'intégrale de volume est : fff ( ) dt dV
Le volume V occupé parle fluide a l'instant n n
tdans D est devenu Vi dans D1 son
évolution a été de :
dejJ(V-ﬁ) dt dA D D,
A

4

Figure X.01 Transformationde D en D

Ce qui provoque une variation de l'intégrale de volume :
[[,FM,t) (V-7) dt dA

Au total la variation de l'intégrale de volume I est :
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dl = W% dt dV+ﬂF(M,t) (V- #) dt dA

Que I'on peut mettre sous une autre forme en divisant par dt et en simplifiant les écritures :

dl d0F (M, t o
— = w¥ v+ ffF(M,t) (V1) dA (X.04)
dt y Ot y

Dérivée particulaire = Dérivée locale Dérivée convective

3 Equation de continuité

L'équation de continuité traduit le principe de la conservation de la masse.
Premi¢re démonstration.

Soit p la masse volumique et dV le volume d'une particule fluide. Considérons une portion de
fluide de masse m que I'on suit dans son mouvement :

m= [ff,p av.

Cette masse restant constante sa dérivée particulaire est nulle. En vertu de la relation (X.04)

nous avons donc :
dm ap _>
— = — dv V-n) dA=0
dt fffv at @ HAP V-7)

Du théoréme d'Ostrogradski (I1.05) :

JLpV- n dA= jjvdiv(pV)dV

fﬂv (g—f + div(p7)> dvV = 0

Cette relation doit étre vérifiée quel que soit I'élément de volume ¥ donc :

Il s'ensuit donc :

g—’; +div(pV) =0 (X.05)

Deuxiéme démonstration.

Considérons un fluide en écoulement et délimitons une surface fermée (A) limitant un volume
(V) dans ce fluide.

L'augmentation de masse contenue dans ce volume V, pendant un certain temps, doit étre égale
a la somme des masses du fluide qui entrent diminuées de celles qui en sortent.
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'fJzJz/fJzJz/fJz/f/f/f/f/f/f/f/f/f/f/f/zJJJJJJJJJJJJJJJJJJJA Dés lgn()ns p ar M un p Omt app art enal’lt
//// N a la surface 4 ou la vitesse du fluide
\ —
Surface 4 A\ n est V(M).
s s\
//
~
e — 2V (M) Pendant le temps dr, la masse de
Ve . .
s \ fluide qui traverse la surface
4 hrg \ .
'/ Volume V | ¢élémentaire dA est :
\ — - J
\ | -: : / 7 - d d
\ ! = y pV (M) ndAdt
\ : dV 1 1 //
\ ' Ll
Se o T g n  est le vecteur unitaire

perpendiculaire a dA4 et dirigé vers
l'extérieur de V.

Figure X.02 Volume fictif V dans un écoulement
fluide

Pour le volume ¥ la masse dm qui traversera la surface 4 pendant le temps dt sera :

dm = <Hp17(1v1) -ﬁdA) dt

Et en vertu de la formule d'Ostrogradskinous pouvons écrire :

dm = <fprl7(M)- ﬁdA) dt = vadiv (pV’(P))dV> dt

Pendant ce méme temps, la masse contenue a l'intérieur du volume élémentaire dV est :

o dth
Jt

o [ )

Si I'écoulement est conservatif, 'augmentation de masse dm; a I'intérieure du volume V doit étre
¢gale a la masse dm qui est entrée en traversant la surface A pendant le méme intervalle de
temps dt (une diminution de masse dm; serait, évidement, égale a celle qui sort).

Et pour le volume V :

Ce qui se traduit par la relation :

(M _dV> dt+ ( f f div (PV(P))dV> dt =0
W +dw pV(P) ]dv 0

Cette relation doit étre vérifiée quel que soit le point P considéré et bien sir le volume
¢lémentaire dV soit la relation (X.05) :

Ou encore :

p
E+dw(pV)—O
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4 Différents types d’écoulements

Ecoulements non conservatifs

Si I'écoulement n'est pas conservatif, c'est-a-dire s'il y a apparition ou dissipation de fluide dans
le champ de I'écoulement, il faudra tenir compte des débits massiques qui entrent (sources) ou
qui sortent (puits). La relation (X.05) deviendra :

op . _
ET + div (pl7) = Z pq,

Ecoulements permanents

I a9 . :
Si I'écoulement est permanent nous avons £ = ( et la relation (X.05) devient :

div(pV) =0 (X.06)
Ecoulements isovolumes

Compte tenu de (I1.20) la relation (X.06) peut également s'écrire :
div(pl7) = pdivV + Vgradp

Si bien que pour I’écoulement d’un fluide incompressible (isovolume p = constante) les
relations (X.05) et (X.07) prennent la méme forme :

divV =0 (X.07)

Pour un écoulement isovolume I'équation de conservation de la masse est donc la méme que le
régime soit permanent ou variable.

Cas particulier

On remarquera que pour un écoulement permanent la relation (X.07) est également satisfaite si

—3 . . . . .
Vgradp = 0, c'est-a-dire si les variations de masse volumique sont orthogonales, en tous
points, au vecteur vitesse. Ce cas peut se rencontrer dans des écoulements stratifiés par salinité
ou température (courants marins).

Ecoulements unidimensionnels

Considérons un écoulement permanent d’un fluide dans une canalisation, ou dans un simple
tube de courant, et admettons également que cet écoulement soit unidimensionnel. C’est-a-dire
qu'en tous points d’une section droite, la pression, la vitesse et la masse volumique conservent

n.n

la méme valeur et ne dépendent uniquement que de I’abscisse "s".

C’est une hypothese souvent admise dans les applications industrielles. De la relation (X.06)
on en déduit que :

a(pV)
ds

div(pV) =

Prenons comme volume de contrdle V' la portion de fluide comprise entre les sections droites
de surface A; et A2 représentées sur la figure X.03.
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o a(pv) ) Al
En intégrant f f fV [ s ] dV on obtient : 7
p.Vo Ay —p V1A = 0. R

Que I'on écrit :

y
q,, = pVA (X.08) ?

s
qm st le débit masse. Figure X.03 Ecoulement unidimensionnel

Si la masse volumique p est constante (cas des liquides) la relation (X.08) seréduit a :

q, = AV (X.09)

qv est le débit volume.
5 Répartition des vitesses

Soit un élément de fluide en mouvement entourant un point 4 ou la vitesse est ¥V, de
composantes Vs, Va2, Va3. Considérons un point M, proche de 4, de coordonnés x, y, z dont
l'origine est le point 4 et désignons parV,;, V,, V; les composantes de la vitesse I7M du point M.

La formule des accroissements finis permet de déterminer les composantes de la vitesse I7M en
supposant que M est suffisamment voisin de 4 pour négliger les termes de second ordre.

L AN/
LT T e T Y ey T

Et pour les trois composantes écrites sous forme matricielle :

oV, adv, aV;
dx Jdy 0z
_ av, av, adV,} __,
7 =7+ |52 52 S [AM] = (7] + 1[0
avy, av, dV,

Ldx Jdy 0z

D'une fagon analogue au chapitre VII (concernant le tenseur des déformations), décomposons
la matrice [M] en une matrice symétrique [M, ] et une matrice anti symétrique [M,] soit :

[M] = [M1] + [Mz]

oV, av, 0V

dx dJdy 0z

v, v, v,

ox dy 0z |

ov, av; aV;

Ldx Ody 0z
[M]
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vy L(%hy ) 12 0w (o _oh) 12 o)
[ ax 2 \dy T ax 2 \0z 0x ] [ 0 2\ dy dx 2\ 0z ax ]
I | | I
|2(2 4 22) L Y ) P BT 0 L2 gy
| 2\ 0y ax dy 2\ 0z ay | | 2\ oy ax 2\ 0z ay |
1(ov %) l(% %) s _l(%_%) _l(%_%)
lz(az + 0x 2\ 0z + oy 0z J [ 2\ 9z ox 2\ 0z oy 0 J

[(M,] [M,]

Nous pouvons écrire :

W=V, + [M][AM] + [M,][AM]

Vu= VW, +zrotV, NAM + [M,][AM] (X.10)
Translation W m

Translation Rotation % Déformation

Le mouvement d'une particule fluide apparait ainsi comme l'accumulation d'une translation,
d'une rotation et d'une déformation.

6 Ecoulements irrotationnels ou a potentiel des vitesses

Un écoulement est irrotationnel lorsque que les particules fluides ne subissent aucune rotation,
en d'autres termes :

26 = rot? (¥) =0 (X.11)

R

Appliquons le théoréme de Stockes : la circulation d'un vecteur ¥ le long d'un contour fermé C
est égal au flux du rotationnel de ce vecteur a travers une surface A admettant C comme
frontiere.

Par conséquent, pour un écoulement irrotationnel nous aurons :
J.V(M)-dM = [[, 7otV -7l dA=0 (X.12)

Et ceci quel que soit la courbe C dans le fluide.
courbe C
Considérons 2 points 4 et B de la courbe C.
La circulation entre ces 2 points est indépendante
du chemin suivi pour aller de 4 a B. V

La vitesse V' dérive donc d'un potentiel ¢ .

sz V(M) -dM = @, — ¢,
AB
Figure X.04 Circulation

On remarquera
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-a) que rot(gradg) = 0, puisque 7otV = 0 on peut écrire : V = gradg
-b) que surune ligne équipotentielle nous avons :

[, V(M)-dM = [, _grade-dM = @5 — @, = 0.

Ce qui montre que le vecteur vitesse en un point M est normal a la ligne équipotentielle qui
passe par ce point. Les lignes de courant sont orthogonales aux équipotentielles.

Exercice X 1

Rappelons qu'en coordonnées cylindriques l'expression de la vitesse est en un point M :
— — — T -
V(M) = V,ii(8) +V, i (6 + E) +V,8,

Et conformément au chapitre II, paragraphe 8, en coordonnées cylindriques le rotationnel de

la vitesse est :
ot < [L(2% 20V 2V, 3V, 100GV oV,
r\ oo dz ) 0z or'r or 00
y
V(M)
Déterminer le rotationnel de la vitesse d'un écoulement dont

1, les lignes de courant sont des cercles concentriques de

ﬁ centre O.
“ g On précise que la vitesse d'un point M ne dépend que de la
X distance r, c'est-a-dire :

V()| = f(r) =V,
V=0 e V,=0.

On examinera les deux cas suivants :
k
f(l"):; et f(’”):kr

Corrigeé

11 s'ensuit que le rotationnel de V(M) s'écrit :
19(rvy) . <f(r) 6f(r)>%

r or r ar

—

rot

<l
I

106



Chapitre X Cinématique des fluides M écanique des milieux continus

1. Pour lecas "a'" nous avons :

= (104 E)e, = (E-K)e,  mw=s

r or r2 r2

L'écoulement est donc irrotationnel.

Considérons une particule fluide de forme carrée occupant
la position A a la date t.

Elle occupera, a la date t+A4¢ la position B.

Son coté "ajaz" plus prés du centre du cercle se déplacera
plus vite que son coté opposé "aszas".

La particule s'est déplacée en se déformant mais sans tourner sur elle-méme. Le vecteur @ est
nul en tous points sauf au centre O.

2. Pour le cas ""b'" nous avons :

o - (10,20,

I
==~
+| 3
+
=~
—
4
w

r or
rotV = 2ké, = 2wé, # 0
L'écoulement est rotationnel

Donnons une signification physique simple aux résultats de l'exercice X 1.

7 Ecoulements rotationnels
Lorsque le vecteur tourbillon est différent de zéro, w+# 0, 1'écoulement est rotationnel. On
I'é¢tudie en associant au chant des vitesses habituelles le champ des vecteurs tourbillon et on

appelle :

- Ligne tourbillon, une ligne tangente en chaque point au vecteur tourbillon en ce point.
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- Surface tourbillon, une surface tangente en chaque point au vecteur tourbillon.

- Filet tourbillon, I'ensemble des lignes tourbillon s'appuyant sur une courbe fermée infiniment
petite.

- Intensités d'un tube tourbillon, le flux du rotationnel du vecteur vitesse a travers une section
quelconque de ce tube.

8 Ecoulements laminaire et turbulent

Les écoulements laminaires et turbulents ont été¢ mis en évidence pour la premiere fois par
Reynolds.

L'expérience consistaita observer le mouvement d'un fluide a I'intérieur d'un tube de verre dans
lequel on introduisait un liquide coloré.

Dans cette expérience, souvent répétée, on constatait qu'aux faibles vitesses le filet coloré reste
stable sur toute la longueur du tube. L'écoulement est dit laminaire. Les lignes de courant sont
bien parall¢les et il n'y a pas d'échange de particules.

Lorsque la vitesse du fluide augmente, a une certaine distance de I'entrée du tube, le filet coloré
se mélange avec le fluide initial. L'écoulement devient instable ; il est dit turbulent.

Liquide coloré

Figure X.05 Expérience de Reynolds

La prise en compte des forces de viscosité fait apparaitre un groupement sans dimensions qu'on
appelle le nombre de Reynolds (Re). Il a été mis en évidence, en 1883, par Osborne Reynolds.
Il caractérise la nature du régime d'écoulement d'un fluide (laminaire, transitoire, turbulent).

_pVL VL

u v
V est la vitesse du fluide.

L est une longueur caractéristique.

Re (X.13)

Si I'écoulement est laminaire le nombre de Reynolds est plus petit que 2000 il y a une forte
viscosité.

Si le Reynolds est compris entre 2000 et 3000 le régime est dit intermédiaire transitoire.
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Lorsque le Reynolds devient supérieur a 3000 le régime est dit turbulent. Lorsque le régime
devient turbulent on dit que ce nombre est le Reynolds critique.

Exercice X2
Calculer le nombre de Reynolds d'un écoulement d'air dans une tuyauterie cylindrique ayant
un diametre de 0,09 m. La vitesse de ['air dans cette tuyauterie est de 15m/s et sa température
est de 20°C sous une pression de 2 bar.

Corrigé

Dans ces conditions de pression et de température la masse volumique de l'air est :

P 2.10° _ 9377k 5
P =17 28729315 »377Ka/m
D'oui le nombre de Reynolds (relation X.13) :
2,377-15- 0,09

18,1.107¢

Ce calcul montre que le régime est turbulent et que nous sommes loin du Reynolds critique. Ce
n'estpas un cas particulier. Les écoulements laminaires ne s'observent qu'assez rarement dans
le domaine des turbomachines et des moteurs. On les rencontre dans les paliers et glissieres et
parfois pour des fluides trés visqueux s'écoulant lentement dans des canalisations.

9 Viscosité

L’expérience montre que, lors d’un écoulement d’un fluide, la pression (force normale) ne suffit
pas a expliquer les phénomeénes et qu’il convient d’introduire des forces tangentielles qui
s’opposent au mouvement du fluide. Ces forces, de type frottement, dues aux interactions entre
molécules du fluide, sont appelées forces de viscosité.

De la méme fagon qu'au chapitre VI on décompose le tenseur des contraintes. Dans la relation
(VL04) enposantg,, = —p

Soit :
[L] Tenseur isotrope Tenseur de viscosité
Oy Txy Txz -p 0 0 Ot D Tyy Txz
Txy Oy Ty|=|l0 -p O0|+]| 7 oO,+p Ty (X.14)
Txz Tyz O 0 0 —p Tz Ty, o,+p

Le tenseur de viscosité est nul lorsque les contraintes tangentielles le sont également et que :
o, =0, =0, =—p.
Il ne subsiste alors que le tenseur isotrope et on dit, comme on I'a vu précédemment, que le

fluide est parfait. Disons, peut-étre plus simplement que, en un point M d'un fluide parfait, il ne
subsiste que la pression p, et ceci quelle que soit la direction de la facette considérée.
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Notons que, dans un fluide réel au repos, les forces de frottement sont également nulles.
Lorsque les contraintes tangentielles ne sont pas nulles on dit que le fluide est visqueux.

Dans un écoulement par filets horizontaux, la contrainte tangentielle en un point donné est
proportionnelle au gradient de vitesse perpendiculaire au plan de glissement.

On peut également dire, qu'entre deux couches fluides planes glissant 1'une sur l'autre, s'exerce
par unité de surface la force de frottement visqueux :

5)4

T=U 3y (X.15)
A
y u est le coefficient de viscosité dynamique qui
VvV, s'exprime en Pascal.seconde (Pa.s). Ce coefficient,
=7, dans l'ancien systéme CGS était le poise (P) ;
I 1P=0,1Pa.s.

Figure X.06 Viscosité

On associe souvent la masse volumique au coefficient de viscosité dynamique sous la forme :

v=2 (X.16)

v estappelé le coefficient de viscosité cinématique, il s'exprime dans le systéme SI en metres
carrés par seconde (m?/s). Dans le systéme CGS, il s'exprimait en stockes (St) ; 1St=10"*m?/s.

Exercice X 3

Un espace de 2 cm entre deux larges surfaces planes et paralleles est rempli d'huile ayant un
coefficient de viscosité dynamique : 11 =0,4 Poise.

Quelle force horizontale faut-il appliquer a une plaque trés mince de 20 cm? de surface, situé
a égale distance des deux parois pour la déplacer a une vitesse de 10 m/s. On supposera le
gradient de vitesse constant.

Corrigé
V4 av 10
p) 777777777777 Ona:as =001~ 1000
] | e——— 1 u = 0,4 Poise = 0,04 Pa.s
0 77777777777 Pour déterminer la force F il faut comptabiliser les

deux surfaces de la plaque soit : 40 cm? au total.

D'ou:F = M*Z—Z*S =4.10"2% 1.10° x 40.10™*

F=016N
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La viscosité dynamique des liquides et des gaz varie différemment avec la température et la
pression. Pour les liquides la viscosité dynamique diminue avec la température et elle est peu
sensible a la pression. Pour les gaz c'est le contraire, la viscosité dynamique augmente avec la
pression et la température.

Pour quelques liquides et gaz usuels le tableau X.1 donne le coefficient de viscosité dynamique
en fonction de la température.

Températures
Désignation 0 | 0 | 20 | 50 | 100 | 250 | 500
Air 16,67 | 17,2 | 18,1 | 19,1 | 21,77 | 27,77 | 35,62
Azote 16,18 | 16,7 | 17,6 | 18,9 | 20,99 | 26,25 | 33,96
Ammoniaque 9,2 12,8
Dioxyde de carbone 13,44 | 13,9 | 149 | 16,4 | 1883 | 24,42 | 32,91
Dioxyde de soufre 11,7 16,2
Eau 1800 | 1000 | 660 280
Vapeur d'eau 8 8,8 10,0 | 12,6 | 18,22 | 28,40
Ethyléne 9,3 12,4
Hydrogene 8,14 8,3 8,7 9,4 |10,30 | 12,97 | 16,69
M éthane 10,3 13,6
M onoxyde d'azote 17,8 22,7
M onoxyde de carbone 16,18 | 16,7 | 17,6 18,9 | 20,99 | 26 04
Oxydes d'azote 13,6 18,2
Oxygene 18,53 | 19,10 | 20,30 | 22 | 24,42 | 30,95 | 40,11
Sulfure d'hydrogene 11,6 15,9

Tableau X.1. Coefficient de viscosité dynamique en 10° Pa.S

111



Chapitre XI Dynamique des fluides M écanique des milieux continus

Chapitre XI

Dynamique des fluides

Pour déterminer le comportement d'un fluide monophasique, il est nécessaire de connaitre, en

chaque point, le vecteur vitesse ¥ et ses trois composantes V7, V2 et V3, la masse volumique p,
la température 7 et la pression p. Soit au total 6 grandeurs scalaires qui sont toutes fonction du
point considéré M (x, y, z) et du temps ¢. Ces six grandeurs sont liées entre-elles par six relations
que nous enseigne la physique. Elles sont généralement mesurables et parfois fonction du
temps .

La thermodynamique donne une relation entre la masse volumique p, la température 7 et la
pression p. Comme nous le savons maintenant, ces trois grandeurs sont liées parune équation
d'état (pv = rTpour un gaz parfait), ou soit encore par l'utilisation des diagrammes ou des tables
numériques. L'étude de la mécanique des fluides conduit a établir les cinq autres relations. Il
est bon de noter qu'il faudra ajouter a ces six €quations les conditions aux limites, encore
nommées conditions aux frontiéres, pour résoudre un probléme.

1. Equations d'Euler

fluide parfait et désignons un domaine D de

a0\
» - (g volume (V) limité par une surface fermée (A)
\ fixe.

/ A\
7 . o ,
- Surface 4 \»;@\\ En I'absence de viscosité les efforts exercés sur
s - : .
/~ Volume ¥ ) toute la surface (4) par la pression p sont :
‘ g’ / - f f p ndA
\ dV i v A
\\ tot _ De la relation (II.0O6) nous avons I'égalité
S~ _ -7 F suivante :
_HAP ndA = —fffvgradp av.

Figure X1.01 Domaine fictif D

Soit F la force de volume, rapportée a I'unité de masse, agissant sur le fluide contenu dans le
volume V. La résultante des forces de volume est donc :

ffvﬁpdV

Et par suite la résultante de toutes les forces agissant surle volume V est :

I_?)=fffvﬁpdV—jﬂVWpdV

112



Chapitre XI Dynamique des fluides M écanique des milieux continus

Du principe fondamental de la mécanique (IV.14) nous avons :

M”V‘”’ mp—dv
Mp Priade ﬂvﬁpdv_wvmp W
ﬂf < ~-F p+gradp> v =T

Cetterelation doit étre vérifiée quel que soitle volume pris a I'intérieur du fluide. Ce qui signifie

que la fonction figurant sous le signe intégral doit étre nulle en toutes les particules élémentaires
du fluide.

D’ou:

Ou encore :

Il s'ensuit que :

Et en divisant par © on obtient les équations d'Euler

dV_ﬁ 1_d,
dt — graap

La notion de dérivée particulaire permet d'écrire :

v ol 1
E+§gradV + 2w AV —F +;gradp=0 (X1.01)

Rappelons que les équations d'Euler s'appliquent a des fluides dénués de viscosité. Les
équations d'Euler s'appliquent aussibien pour des fluides compressibles qu'incompressibles.

2. Equations de Navier Stokes
Les équations de Navier Stockes sont obtenues en ajoutant aux équations d'Euler la viscosité.

Ce sont des équations aux dérivées particlles non linéaires qui décrivent le mouvement des
fluides. La résolution de ces éaquations ne peut étre intéerée aque dans auelaues cas particuliers.
Cependant elles permettent parfois une résolution approchée en proposant une modélisation
pour certaines applications pratiques.

Utilisons une approche différente pour établir les éaquations de Navier stockes aue celle utilisée
précédemment pour les équations d'Euler. Ecrivons le principe fondamental de la mécanique
de la fagon suivante :

—

dv .
pPr= F p+ div[L]

De la relation (X.14) rappelée ci-apres :
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[L] Tenseur isotrope Tenseur de viscosité=[Ly,]
o, tDp Txy Txz
_p + Txy O-y + p Tyz
Txz Tyz o, tp

Nous obtenons I'équation générale de la dynamique des fluides visqueux en divisant par p :

dv 1— . 1
i F - ;gradp + ;dlU[LV]

Et, comme précédemment, en utilisant la notion de dérivée particulaire :

v o1 SR S . S
E_i_ Egrad V24 20AV —F +—gradp——dw[L,] =0 (X.02)
p p

3. Equations de Bernoulli

Dans I'équation d'Euler, considérons le cas particulier d'un fluide incompressible
(p = constante). Dans ces conditions nous pouvons écrire :

! ad aP
—gradp = grad—
D D

Multiplions la relation (XI.01) parla vitesse V .

oV oo oo (1 . —Dp
V-—+V-(2w/\V)+V-<—grad Vi—F +grad—> =

Dans le cas des liquides, la force F est généralement due a 'apesanteur. Dans ces conditions F
dérive d'une fonction de force et nous pouvons écrire :

F = —gradgh.
Ou 4 mesure l'altitude.

Par ailleurs si I'écoulement est permanent nous aurons :

—

o7 _ &
ot

Dans ces conditions il ne subsistera que :

1 .
V- (Egrad V?+ gradgh + grad%) =0

2

grad( + gh +Z>=0
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Posons :

2
H=o+h +—
2g Pg

H estla charge du fluide, comptée en métre de fluide en mouvement. En vertu de la relation
(X.01) on peut écrire :

DH
— =0
Dt
C'est le théoréme de Bernoulli ; la charge du fluide reste constante sur une ligne de courant.
& p
—+ h +— = Constante (XTL.03)
29 rg

Lorsque dans I'équation de Bernoulli les vitesses sont nulles, la relation obtenue est dite
"équation fondamentale de I'hydrostatique".

P + z = constante (X1.04)

Pg

Remarque

Il est facile de retrouver la relation (X1.04). Pour cela considérons a l'intérieur d'un liquide au
repos, un cylindre vertical fictif de diamétre d et de hauteur z,—z>. Ecrivons son équilibre
vertical, il est soumis, d'une part a son propre poids et, d'autre part, aux forces de pression p; et
P2 qui agissent sur ses extrémités.

z
* En désignant par p la masse volumique du liquide il
vient :
zZ] d? d? d?
Pt = pgn (2, - 2,) = 0
42
22 . . . .
On obtient en simplifiant par T E
0 p. + pgz, = p, + pgz, = p + pgz = constante
Eigyre X1.02 Pression dans un On retrouve bien le résultat P + z = constante
liquide pg
Exercice X1.01

En supposant la pression atmosphérique égale a 101 325 Pa, déterminer la pression qui regne
sur l'extérieur d'un sous-marin, assimilé a un point, enfoncé et immobile a 100 m de profondeur.

La masse volumique de l'eau sera prise égale a 1000 kg/m?>.
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Corrigé

Affectons de l'indice "1" le niveau d'eau et par "2" la profondeur du sous-marin.
De la loi fondamentale de I'hydrostatique, nous avons

i &=&+zl—zz
] — Py PI
—_— — Soit

- D2 101325
2 - P2_ U095 4 100 =110,32
— pg 1000 x 9,81 + m

p, = 110,32 X 1000 X 9,81 = 1 082 239 Pa
p, = 10,82 bars

Exercice X1.02

Soit un liqguide contenu dans un récipient A et s'écoulant par un orifice percé B a sa base.

z L'ouverture B est située a 1,5 m au-
A dessous du niveau libre A. La surface
ZA A pa libre est a la pression atmosphérique
‘r parde 101325 Pa.
1,5m  Calculer la vitessedu liquide a la sortie
de l'orifice B.
ZB B Pat ¥
-=i T
Corrigé

Appliquons le théoreme de Bernoulli aux filets fluides compris entre A et B.

V2 p A D
ZA+A+_A:ZB+£+_B
29  pg 29 pg
Ici nous avons :

zy—zp=13 Ps = Pp = Pat

Si la surface libre A est grande vis-a-vis de la surface de l'orifice B on peut négliger le terme
2

1%
ZA' L'équation de Bernoulli devient :
)

2
' = Vg ZVZQ(ZA_ZB)

ZA=ZB+2g

Soit :

Vs =4/2%981x%x13=505m/s

En désignant par h = z, — zg larelation V = ,/2gh constitue la loi de Torricelli.
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Exercice XI1.03

L'entrée E d'un tuyau se trouve a 10 m sous la surface libre d'un réservoir d'eau R de grande
dimension. La sortie esta 30 m au-dessous de cette méme surface libre. Le tuyau a un diametre
de 8 cm et se termine par une courte tuyere T d'un diamétre de 4 cm.

A La pression atmosphérique est égale a

i ‘ 1 bar et la masse volumique de l'eau est
2 =1000 kg/m®.

10m

o)

~
p

On négligera toutes les pertes de charges.

1) Quelle est la valeur de la vitesse de
E v l'eau a la sortie de la tuyere.
= 2) Quel est le débit volume d'eau qui
s'écoule.

30m

Diameétre de la tuyauterie = 8 cm

Diametre de la section S = 4 cm
S il
\ 4 N A

Ar —__—-

3) Déterminer dans le tuyau la valeur de la pression en E ainsi que dans une section Ar située
Jjuste en amont de la tuyére T de sortie.

Corrigé

1. Considérons un filet fluide allant de A a T et écrivons l'équation de Bernoulli :

V2 V2
A g +PA Ty, I
29 pg 29 Pg

2

Or nous avons : 2—A =(. Le réservoir est grand et le niveau d'eau reste constant.
g

D'autre part Pa4= Pr= pression atmosphérique. Il s'ensuit donc :

VZ
Zy—Zr :é = Vr=v29(z,—zy)

Vp =4/2x%9,81x 30 =2426m/s
2. Le calcul du débit volume est immédiat :

_mX 0,042

X 24,26
4

q, = ArVp
q, = 0,0305 m?/s
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3. Ecrivons l'équation de Bernoulli de A a E

Pour déterminer la pression p, il faut tout d'abord calculer la vitesse VE.

v = q9, 00305 6.07
E =2 = wx o082 o07M/s
4
Et par suite :
V? 1.10° 6,072
Pe _ Y — Zp +&__E= + - =18,32m
pg pg 2g 1000x 9,81 2x991g

pr = 18,32 pg = 18,32 x 1000 x 9,81 = 179719 Pa
pg = 1,8 bar.

Ecrivons Bernoulli entre A et A a l'amont de la tuyére de sortie.

VZ
Pa_ Ay, Par
pg 29 Py

Sachant que V, = = Vg nous déduisons la pressionp,  :

Par pa VA 1.10° 6,072

= + —
pg pg 29 1000x9,81 2x9,81

= 38,32m
Pa, = 375919 Pa
Pa, = 3,76 bar

Exercice XI.04

De l'eau s'écoule, en régime permanent, dans une tuyauterie horizontale et cylindrique. Elle
comporte un Venturi dont le col a un diametre de 8 cm. A l'amont du Venturi le diametre de la
tuyauterie est de 22 cm et a l'avalil estde 11 cm

Conformément aux croquis ci-dessous un tube en U relié au col et a la section de sortie du
Venturi indique une différence de pression de 8 cm de mercure.

Calculer la vitesse d'écoulement au col et le débit d'eau.
Nous supposerons que l'écoulement est réversible.

On précise que la masse volumique de l'eau est de 1000 kg/m> et que la masse volumique du
mercure estde deux 13 600 kg/m’.
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z d=22cm

Corrigé

En désignant par p le volume massique de l'eau, le débit masse s'écrit :
Am = pAL V1 = pA, V, = pAs V;
Ce qui permet d'écrire :

d? md3 d,\*
7 T B2 V3:(d_3) V2

La tuyauterie étant horizontale, I'équation de Bernoulli prise entre2 et 3 s écrit :

pg 29 pg 29 5T 2 dy/ ) 2

Du principe fondamental de la statique des fluides nous pouvons écrire entre 2 et 4 ainsi
qu'entre 3 et 5:

E+Zz=pg+24
p3+ _p5+ ﬁps_Pz=p5_p4+<Zs_Z4_(23—22))P9=p5—p4—pgh
E 3= T Zs 0

En désignant par Py, le volume massique du mercure, nous pouvons écrire :

Dy tz, = Ps

Prg 9 " Pugd

+ z5 = Ps — Py = (24 — 25)Pyyg = Puggh

De ces trois dernieres relations on deduit :
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Ps — Dy = D5 — Py — Pgh = (pyy —p)gh

1l s'ensuit donc la vitesse au col de la tuyere :

d\"\ pV;2
Pz =P = (1 - (d_> ) (pHg P)gh
3
PHg _
2( p 1)gh

(@)

L'application numérique conduit a V2=5,2 m/s et q,, = pA, V, = 26,3 kg/s

Exercice X1.05

Une magquette d'aile d'avion est essayée en soufflerie avec une vitesse d'air de 38 m/s.

En un point E de l'extrados de l'air, une prise de pression statique indique une dépression
h=290 mm d'eau.

Quelle est la vitesse de l'air au point E ?

On précise que dans la soufflerie la pression atmosphérique est de 101325 Pa et la masse
volumique de l'air est de 1,205 kg/m?.

A
38 m/é

)

Corrigé

Par définition la pression totale au point A est :

o VE 1,205 x 382
Protate s = Pa t+ paerA =101325 + T

Protaie s = 102195Pa
La pression statique au point E est :

Pe = Patmosphérique — M Peau 9 = 101325 — 0,29 X 1000 x 9.81

pg = 98480Pa
Pour les filets fluides s'écoulant autour de l'aile, écrivons Bernoulli de A a E

V2 |/
PA A =P g,
Pair9 Zg Pair9 Zg
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V2 V2
Pair 74 + 9PairZa =P t+ Pair T

Py t+ + 9PqirZEDE

L'écartentre z, et z; est minime si bien qu'on peut écrire :Z, =Z,

Pair Vi Pair Vi
pA + al; : = pE + al; - :pTotaleA

Il s'ensuit donc :

v = |o Prowiea=Ps_ |, 102195 — 98480
Pair 1,205

V, = 78,5m/s
4. Théoreme des quantités de mouvement

La quantité de mouvement, variables beaucoup utilisées en mécanique des fluides, est le produit
de la masse par le vecteur vitesse d'une particule fluide. Pour le volume élémentaire dV, on

définit une grandeur vectorielle par : VpdV.

En mécaniaue des fluides. 1'équation de bilan de la quantité de mouvement découle du principe
fondamental de la dynamique du solide appliqué un fluide.

4.1 Résultante

La résultante des forces extérieures est égale a la dérivée par rapport au temps de la résultante
des quantités de mouvement.

=2 D —
Pt =5 j j ] Vpav (XL.05)
14

Des relations (X.04) et (X1.05) nous déduisons :

P, =fff‘/%(7p)dV+fL7p(I7?)dA

Dans le cas d'un écoulement permanent cette relation devient :
E. = f f Vp (V-7)dA (X1.06)
A

Il n'a été fait aucune hvpothése sur le fluide. ce théoréme est applicable indifféremment au
fluide parfait et au fluide réel. Seul change le bilan des forces extérieures.

Considérons I'écoulement permanent d'un fluide a lintérieur d’un morceau de tuyauterie
représentée sur la figure XI1.03.

Désignons par 11, et7l, les normales aux surfaces A; et A> et dirigés suivant I’abscisse curviligne
« s ». La surface latérale est 43 et on désigne par 71, sa normale extérieure.
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En supposant que les frottements soient négligeables, on décomposera la relation (XI1.06) de la
fagon suivante :

fLVp(Wﬁ)dA:ffA Vp(Wﬁ)dAz—fL Vp (V' 7)dA,

Si en outre. on admet que la pression. la masse volumique. la vitesse ont les mémes valeurs en
tous les points d'une section droite et ne dépendent que de I'abscisse curviligne « s » on peut
écrire :

|| 707708 = 0,0, (9, i2,)8, = Vs, (7, 77 )4,

A

M ais nous avons :

Py (V;-ﬁz)Az = p1(]7;-ﬁ1)‘41 =qmn
C’est-a-dire égal au débit masse gm.

A; Avec toutes ces hypothéses l'intégration

de la relation (X1.06) conduit au théoreme
des quantités de mouvements :

—

ns

Figure X1.03 Tuyauterie

|| 7o 7704 = @, =¥, ) = Fuc (X1.07)
A

Nous pouvons décomposer la force F,,, de la facon suivante :

- Les forces p, A1, — p,A,1, exercées par le fluide a I'amont et a I'aval du systéme considéré.
Les vecteurs unitaires 7, et 1, sont dirigés dans le sens des vitesses 17; et 17;

- L'action R exercée parles parois sur le fluide.

- L'action de la pesanteur P exercée sur le fluide

Reportons ces forces dans la relation (X1.07)
Fove = D1AsT, —po Ay, + P+R = (17; -7 )Qm
p1AsR, — P, At, + P+ R = (]7; -7 )Qm
4.2 Moment

Le moment résultant par rapport a un point fixe M des forces extérieures est égal a la dérivée
parrapport au temps des moments des quantités de mouvement.

M e = % J J jv (OM AV)pdV (X1.08)
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Comme précédemment nous pouvons écrire :

Mpoee = fﬂv%(mmp)dv +ﬂA(WM7) o (V -7)dA
5. Etude dynamique d'une particule fluide en écoulement permanent

Tout d'abord supposons que le fluide soit
parfait et considérons la trajectoire que suit la
particule. Dans un écoulement permanent les
trajectoires et les lignes de courant sont
confondues.

A la date 7 la particule fluide occupe dans le
tube de courant le contour ABCD et a la date
t+dt la position infiniment voisine
A*B*C*D*.

AB se déplace de ds; et CD de ds>.

Figure X1.05 Pression sur une particule
fluide

Désignons par p et A; les valeurs moyennes de la pression et de la surface de la section droite
du tube de courant en AB. De méme notons p+dp et A2 les grandeurs moyennes de CD pendant
ce déplacement.

Le fluide étant supposé parfait, les forces de contact sont toutes normales a la surface de la
particule. Dans I'évaluation de leur travail au cours du déplacement ne subsisteront que les
forces de pression agissant sur les surfaces A1 et Az. Soit :

oW =p A1 dsi—(p+dp) A2 ds>

Puisque I'écoulement est permanent, la masse contenue dans le contour ABB*A* est identique
a celle qui est contenue dans CDD*C*. Il s'ensuit :

dV, = A, ds; =vdm et dV, =4, ds, = (v+ dv)dm

v étant le volume massique du fluide.
Remplagons dV; et dV> dans l'expression de ce travail :

SW =[pv — (p +dp)(v + dv)]dm
= —d(pv)dm
Et rapporté a I'unité de masse :
dw = —d(pv)

Dans ce cas particulier, nous aurions pu noter dw au lieu de W puisque le travail est ici une
différentielle totale exacte.

Dans un fluide réel, le vecteur contrainte agissant sur un ¢lément de surface a une composante
tangentielle due au frottement. En régime laminaire, les efforts tangentiels sont provoqués par
la viscosité. En régime turbulent, elles résultent dun apport de quantité de mouvement li¢ aux
fluctuations de la vitesse.
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En chaque point d'un fluide en écoulement permanent, ces efforts sont constants quelle que soit
la date ¢. T out tube de courant voisin, plus rapide que la particule, lui transmet un travail moteur.
C'est I'inverse s'il est plus lent.

Pour le déplacement élémentaire de la particule fluide, le travail de frottement rapporté a l'unité
de masse sera noté owy. Le signe de dwyest, a priori, absolument quelconque.

Pour un écoulement permanent le travail des forces de contact sur une particule fluide aura
l'expression suivante :

Sw = —d(pv) + dw, (XI1.09)

Si le fluide est parfait wy = 0

6 Travail des forces de contact dans un fluide quasiment au repos

Pour déterminer le travail, des forces de contact s'exer¢ant surun fluide quasiment au repos, il
est plus simple de considérer un gaz emprisonné dans un cylindre surmonté d'un piston. Les
résultats obtenus sont évidemment valables pour une particule fluide.

Sous l'action des poids dont la résultante est la force F le pistonsedéplace de dx. Dans le repére
ci-contre, ce travail est donc : 0W =- F dxe; =- Fdx

Pour que le fluide reste quasiment au repos, il faut que le piston se déplace infiniment lentement.
C'est une succession d'états d'équilibres.

A chaque état d'équilibre il doit régner une pression uniforme dans toute la masse de gaz.

En désignant par p la pression quirégne dans le gaz et par 4 la surface du piston, I'équilibre du
piston n'impose que F=4 p.

x4 F Le travail correspondant est donc :
oW = —Apdx = —pdV
puisque Adx= dV

Par unité de masse, le travail des forces de
contact s'exergant sur un fluide quasiment au
repos s'exprime donc par :

ow = —pdv (XI.10)

Figure XI.06 Déplacement d’un piston
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7 Travail des forces intérieures agissant sur une particule fluide

Puisque le travail des forces intérieures est indépendant du repére choisi pour I'évaluer, il est
commode de choisir le repére central. Pour une particule fluide, la relation (IV.24) permet de
déduire immédiatement :

—SW™ = 8W;,

Puisque dE; est nul par définition.

Dans ce repcere, le travail de la force de pesanteur est également nul. Il ne subsistera que le
travail des forces de contact caractérisant la déformation de la particule.

- Si les forces de contact sont normales a la surface de la particule, le résultat est trés simple :
SW; = —(—pdV) = pdv

- Si les forces de contact ne sont pas normales a la surface de la particule, le travail di aux
contraintes tangentielles de frottement, entrainera une dissipation d'énergie souvent notée —oF.
Ce terme est par nature résistant donc toujours négatif. Il est parfois appelé travail dégradé ou
encore travail non compensé.

En conclusion, le travail des forces intérieures agissant sur une particule fluide, absolument
quelconque, sera :

oW, = pdV — 6F
Et par unité de masse :

ow; = pdv — 6f (XIL.11)
8 Equation fondamentale d'un écoulement permanent unidimensionnel

Le théoreme de I'énergie cinétique (IV.22) permet d'établir trés facilement I'équation de
mouvement d'un écoulement unidimensionnel.

dE. = dW, + dW,

Pour cela considérons une particule fluide a I'intérieur d'un tube de courant.
L'écoulement étant permanent, le travail des forces de contact est Sw = —d(pv) + Sw, (Voir
relation (X1.09)).

z
1 L'action de la pesanteur sur la particule est

parunité de masse: -g dz.

Le travail des forces intérieures est : pdv-of
(relation (XL.11)).

-g dm &5

Figure XL07 Ecoulement d'une particule
fluide
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Des termes se simplifient :—d(pv) + pdv =—vdp—p dv+p dv=—v dp

En mécanique des fluides et dans le domaine des turbomachines il estd'usage d'utiliser la masse
volumique au lieu du volume massique.

dp
vdp = —
p

Cela, par ailleurs, évite les confusions entre la vitesse Vet le volume massique v.

En posant: 6§ = — (6w, — &f ) larelation (IV.22) devient :
p f
V3\ dp
d 7 +?+gdz+6§'=0 (XI].Z)

C'est-a-dire la relation de Bernoulli a laquelle les pertes ont été ajoutées.
Remarque importante.

Le terme mesurant le travail des forces tangentielles de frottement 0wy disparait lorsqu'on
considére l'ensemble d’une tranche fluide s'écoulant a I'intérieur d'une tuyauterie.

La vitesse du fluide s'annule le long des parois de la
canalisation et il en est de méme pour les contraintes
tangentielles.

Pour une tranche de fluide la quantité §¢ = &f caractérise donc

) une dégradation énergétique.
Figure XI1.08 Répartition

des vitesses

6¢ est souvent appelée "perte de charge".

En ne s'intéressant qu'aux valeurs moyennes de I'écoulement, nous aurons en intégrant la
relation (XI1.12):

VZ—VZ (2dp
%+f 7+g(z2—z1) +&.,,=0 (X1.13)
1

Cette relation, fréquemment utilisée, est souvent désignée par "équation fondamentale d'un
¢coulement permanent unidimensionnel".

- 2dp A , . , .
Pour intégrer le terme f 1 —p, il faut connaitre la nature des évolutions, afin de déterminer les
p
relations liant la pression p a la masse volumique p. En d'autres termes, utiliser les relations de
la thermodynamique.

Lorsqu'on néglige la pertede charge et la pesanteur, la relation (XI.13) est désignée par équation
de Barré de Saint Venant.

EoVE L [fep

0 (X1.14)
2 L P
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9 Perte de pression

Aussibien en régime laminaire qu’en régime turbulent, la perte de pression Ap d’une tuyauterie
sereprésente par la relation :

Ap LV?
?p =iz (XL.15)

A quin’a pas de dimension est appelé le coefficient de perte de charge.
Vi est la vitesse moyenne du fluide dans la tuyauterie exprimée en m/s
L estla longueur de la tuyauterie.

D estle diametre de la tuyauterie. Parfois on comptabilise le diamétre hydraulique D défini par

4A . . f .y
D, = o ou A est la surface de la section droite tuyau et Py le périmetre mouillé.
m
En régime laminaire, c¢’est-a-dire lorsque le Reynolds est inférieur a 2000, le coefficient 4 ne
dépend que du nombre de Reynolds. Il est donné par la relation suivante :

_ 64

r=R

e
Si on construit la courbe en utilisant une échelle logarithmique on obtient une droite de pente

négative, dite droite de Poiseuille.

Lorsque le Reynolds est compris entre 2000 et 4000 la zone est critique. Le coefficient 4 ne
dépend que du Reynolds mais sa valeur est mal définie.

En régime turbulent lisse que I’on définit dans I’intervalle de la turbulence naturelle pour la
limite inférieure et la rugosité des parois pour la limite supérieure. Dans cette région on définit
approximativement la loi de Blasius :

1

A =0316R,*

En coordonnées logarithmiques cette relation se traduit par une droite inclinée de pente -1/4,
appelée droite de Blasius.

Les travaux expérimentaux effectués par Darcy puis par Nikuradse ont montré que 4 esten fait
fonction du nombre de Reynolds et d’un coefficient de rugosité caractérisant 1’état de surface
de la paroi intérieure de la tuyauterie.

Dans ses essais Nikuradse avait rendu les conduites rugueuses artificiellement en collant des

grains de sable. Ce qui permettait, ainsi, de définir un coefficient de rugosité relative égal a D
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G40 T
0,09+ N\t
0.08 +—-\-1

007-+—N\

Droite de Poiseuille.

Droite de Blasius

Figure XI.09 Courbes de Nikuradse et Woody d’apres R Ouziaux et J. Perrier

10 Pertes de pression singuliéres des conduites

Indépendamment des pertes par frottement dans la partie droite d’une tuyauterie, I’estimation
de la résistance d’une conduite doit tenir compte des pertes singuliéres qui peuvents’y produire.

Les pertes singuliéres proviennent des changements de direction, des changements de section
ou de forme, de clapets, de vannes etc. etc.

La relation (XI.165) représente la perte de pression Ap d’une tuyauterie droite. En introduisant
un coefficient K, on exprime les pertes de pression singulieres d’une fagon analogue :

Ap V2
P_k - (XL.16)
p

Le coefficient K est déterminé pour chaque type de singularité et la vitesse moyenne V,,, est
calculée a son amont.

10. 1. Klargissement brusque

Calculons la perte de pression Ap, entre deux sections droites A1 et A2, provoquée par un
¢largissement brusque, soit :

A V2 V2 —p, V2 VP
_p:<ﬂ+_1>_<p_2+i> Pr7P 2

p \p 2 p2:p 2 2

Pour cela considérons deux conduites de diameétre différent et raccordées ’une a ’autre. Elles
sont parcourues par un fluide en écoulement permanent.

Aupassage de la premicre conduite, de surface droite 47, a la deuxieme, de surface droite 4>, il
se produit un élargissement brusque représenté sur la figure (XI.10).
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Pression p;

R

LAF N FFEFFFFFFFFFFFFFFFFrFysyFFryryyryyyrryi

Figure XI.10 Elargissement brusque

Pour déterminer le coefficient K appliquons le théoréme des quantités mouvement. En
supposant les tuyauteries horizontales et en négligeant I’action de la pesanteur sur le fluide la

relation (X1.07) devient :

p A, —p, A, +R=(V, =V, )q,, (X1.17)
Le terme R caractérise I’action exercée par les parois sur le fluide. Plus précisément les
tourbillons exercent sur la surface annulaire A4>-4;.une pression p ou I’expérience montre

au’elle est sensiblement égale a p;.
Tout le calcul repose sur cette hypothése. On a donc :

Dans les sections 1 et 2 le débit masse s’écrit :
Am = pAV; = pA,V,
En tenant compte de R etde (,, la relation (XI.17) devient :
(p; — p)A, = pA, sz - /)141‘/12

PP A
-2
4 P A,
Et en tenant compte que : A—1 V, =V, cette derniére relation devient :
2

— A A
P1 P2 _ (_1) —1)lrpe
P 4, 4,

A
dans ’expression de la perte de pression 2P hous obtenons :
2 212
B () )y W ()
p A, A, 2 A,) 2

ap _ (ﬁ)z_zﬁﬂ V_f:<1_é)2V_f
p A, A, 2 A,) 2

P1—DP2

En reportant
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D’ou I’expression du coefficient K pour un élargissement brusque :

2

K = (1 - 2—:) (X1.18)

On remarquera que lorsque la section A, > A, c’est-a-dire lorsque la tuyauterie de section A,

débouche dans un réservoir de trés grande dimension on a K=1. La perte de pression
2

: 4 4 . . : \ )l S
devient : & = 71 Cette perte correspond a la dégradation complete de I’énergie cinétique.
p

10. 2. Rétrécissement brus que

Dans un rétrécissement brusque la part importante de la perte de pression est a I’aval de la
contraction. Sébastien Candel, dans son cours de mécanique des fluides, donne les valeurs

suivantes de K en fonction du rapport des surfaces A, /A .

Figure XI.11 Rétrécissement brusque

o 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 |
1
K 0,37 | 0,35 ] 0,32 | 0,27 | 0,22 | 0,17 | 0,10 | 0,06 | 0,02 0

Tableau X1. 01 Coefficient K pour un rétrécissement brusque

La perte de pression varie avec la géométrie du rétrécissement. Si la contraction est profilée
I’écoulement sera moins perturbé et la perte de charge se trouvera diminuée.

Par exemple, pour la géométrie de la section d’entrée de conduite représentée sur la figure
X1.12, le coefficient K de perte de charge sera relativement faible.

Figure XI.12 Entrée de conduite profilee
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Chapitre XII

Premier principe de thermodynamique

1 Spécificités de la thermodynamique

Les thermodynamiciens utilisent une terminologie et des notations qui leur sont spécifiques.
Citons par exemple les termes suivants : source de chaleur, transformation irréversible,
évolution isentropique, transformation cyclique, transformation ditherme, variables d'états,
évolution polytropique. Certaines de ces expressions ne peuvent pas étre précisées dans ce
chapitre. Il faut que le niveau de connaissance acquis soit suffisant pour bien comprendre leur
signification.

1-1 Systémes thermodynamiques

Définir un systéme thermodynamique c'est délimiter la région de l'espace ou se trouve la
matiere dont on veut étudier les propriétés. Pour distinguer cette région du reste de l'univers, on
la limite parune surface fermée qui peut étre réelle ou imaginaire.

Ce quin'est pas le systeme est appelé le milieu extérieur.

Un systéme thermodynamique peut échanger de I'énergie avec le milieu extérieur sous diverses
formes (mécanique, calorifique, ¢électrique). Il peut étre composé d'un ensemble de corps de
composition variable ou non. Par exemple, il peut s'agir d'une certaine quantité d'essence et d'air
qui se transforme chimiquement en gaz brilés ou bien de I'eau qui se vaporise partiellement ou
totalement.

Un systeme est dit ouvert s'il échange de la maticre et de I'énergie avec le milieu extérieur. Un
exemple simple a prendre est celui de la fusée.

Un systéme est dit fermé s'il n'échange que de I'énergie avec le milieu extérieur sans transfert
de maticres. Etudier un systéme fermé, c'est centrer son analyse sur une quantité donnée de
matiere tel un gaz emprisonné dans un cylindre surmonté d'un piston.

Un systéme est dit isolé s'il n'échange ni matiére ni énergie avec son milieu extérieur.

Un systéme est dit homogeéne si ses propriétés (pression, température, composition etc...) ont
la méme valeur en tous ses points. Le systéme est nécessairement en phase unique.

Un systéme est hétérogene ou discontinu s'il est constitué de plusieurs sous-ensembles
individuellement homogeénes mais différents les uns des autres. Par exemple, un systéme
constitué de plusieurs phases (liquide-vapeur).

Un systeéme est dit continu si ses propriétés sont des fonctions continues du point considéré
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1-2 Variables d’états

La thermodynamique macroscopique ne se préoccupe que des propriétés directement
observables et mesurables. L'état dans lequel se trouve un systéme, a une date donnée, est
caractérisé¢ par des grandeurs appelées variables d'états ou coordonnées thermodynamiques.
Elles se décomposent en coordonnées externes (vitesse, position, etc.) et en variables d'états
internes extensives ou intensives.

Les wvariables extensives sont des grandeurs quantitatives, c'est-a-dire directement
proportionnelles a la "taille" du systéme comme la masse, le volume, ...

Les variables intensives sont des grandeurs qualitatives, elles définissent la qualité d'un systéme
comme par exemple la pression, la température ou la masse volumique.

Pour distinguer les variables extensives des variables intensives, il faut supposerquel'on ajoute
deux systémes thermodynamiques identiques. Dans ces conditions les variables d'états
extensives doubleraient ce qui serait le cas de leur masse ou de leur volume. Par contre les
variables d'états intensives resteraient constantes comme la pression, la température ou la masse
volumique.

Si les variables intensives ne dépendent pas du temps, le systéme se trouve soit dans un état
d'équilibre soit dans un état stationnaire. Un état stationnaire s'établit sous I'effet de causes
extérieures, par contre un €tat d'équilibre est déterminé par des conditions qui sont internes au
systeme.

Pour un systéme quelconque, I'équilibre thermique sera réalisé si la température est uniforme.
Dans le cas d'un gaz il y aura équilibre mécanique sic'est la pression qui est uniforme.

L'expérience montre que tout systéme isolé tend vers un état d'équilibre qu'il ne peut désormais
plus quitter sans intervention extérieure.

C'est de cette constatation qu'est née la thermodynamique classique qui ne concerne que les
¢tats d'équilibres des systémes.

En fait, on traite les évolutions des systémes par le biais d'une succession d'états d'équilibre, et
on définit a ce propos la notion idéaliste d'évolutions réversibles.

1-3 Transformations et évolutions thermodynamiques
Le passage d'un systeme d'état initial (i) a un état final (f) est appel€ transformation.
Si ces deux états sont infiniment voisins, la transformation est dite élémentaire.

Si le systéme se retrouve a I'état final dans le méme état qu'initialement, la transformation est
dite cyclique.

Pour qu'un systéme subisse une transformation au cours du temps, il est nécessaire que les
conditions d'équilibre ne soient pas satisfaites. Par exemple :
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- Lorsque la résultante des forces s'exercant sur un systéme n'est pas nulle il se produit un
mouvement et il y a un échange de travail entre le systéme et le milieu extérieur.

- Si deux réservoirs contenant un méme gaz a des pressions différentes sont réunis, il se produit
alors un écoulement du gaz d'un réservoir dans l'autre.

- Lorsqu'un systeme est séparé dumilieu extérieur par des parois perméables a la chaleur (parois
conductrices ou diathermanes) et qu'il existe une différence de température entre le systéme et
son milieu extérieur, il se produit un échange de chaleur. Ce qui a pour effet d'atténuer I'écart
de température en entrainant des changements d'état au sein du systeme.

Il est possible de passer d'un état initial (i) & un état final (f) en utilisant des chemins différents.
Le terme d'évolution est souvent préféré a celui de transformation lorsqu'il est précisé la nature
du "chemin" que suit le systéme pour passerde (i) a (f).

Un systéme subit une évolution adiabatique lorsqu'il est thermiquement isolé de son milieu
extérieur empéchant ainsi tout échange de chaleur.

Lorsqu'un systéme est entouré de parois rigides indéformables, il ne peut subir que des
évolutions a volume constant. Une évolution a volume constant est appelée isochore.

Une évolution au cours de laquelle la température du systéme reste constante est appelée
évolution isotherme.

Une évolution au cours de laquelle la pression du systéme reste constante est appelée évolution

Pour les wvariations ¢élémentaires de variables caractérisant 1'état d'un systéme
thermodynamique, ou pour des différentielles totales exactes, nous emploierons comme il est
d'usage le symbole "d" (d7, dp, dv, dp). Le symbole "8" sera réservé dans le cas contraire
6w, é8Q....... ).

1-4 Transformations réversibles etirréversibles

Une transformation d'un systéme sera dite réversible si a chaque instant de son évolution, le
systéme peut étre défini par des variables d'état possédant la méme valeur en tous les points
d'une phase homogene.

La transformation progressive du systéme peut étre considérée comme une succession continue
d'états d'équilibre infiniment voisins. Dans ces conditions, les variables d'état possedent a tout
instant des valeurs bien déterminées. Ce qui permet de représenter les variations des propriétés
thermodynamiques par des relations mathématiques.

Il suffit d'actions extérieures trés faibles, théoriquement aussi petites que l'on veut, pour
provoquer la transformation dans le sens désiré. Ainsiil est possible de revenir a I'état initial en
repassant successivement, mais dans l'ordre inverse, par tous les états antérieurs. Cela suppose
l'absence de forces de frottement ou plus précisément de phénomene de dissipation.

Une évolution réversible est une transformation dont les effets peuvent étre enticrement effacés.

Il n'est pas nécessaire que le fluide soit pratiquement au repos pour que les évolutions soient
réversibles. Cette notion de transformation réversible s'applique également dans un fluide en
mouvement.
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Par exemple, considérons 1'écoulement d'un fluide parfait et plus particuliecrement d'une
particule fluide. Dans son mouvement la particule fluide peut augmenter sa pression en
diminuant sa vitesse dans un diffuseur ou faire 1'opération inverse.

La particule fluide étanta chaque instant dans
= ]: un état tres voisin d'un état d'équilibre par

rapport a des axes liés au mouvement.

Figure XIL.01 Divergent réversible

A l'opposé de I'exemple précédent, la détente —\.\Jg—

d'un gaz au moyen d'un volet, diaphragme ou ://l\\:E:

robinet est une opération irréversible.
Figure XI1.02 Diaphragme

En fait les transformations réelles sont irréversibles mais il se trouve que la schématisation par
des évolutions réversibles, constitue trés souvent dans la physique que nous faisons, une
approximation suffisante des phénomenes réels.

Les principales causes d'irréversibilités sont le frottement, la viscosité, la déformation
permanente d'un solide, voire la rupture, les réactions chimiques, les ondes de choc, ...

Toute évolution irréversible laisse une trace dans l'univers. Cette trace indélébile apparait
comme une sorte de perte d'énergie qui sera précisée ultérieurement.

1-5 Représentation graphique

La transformation d'un systéme passantd'un état initial (i) & un état final (f) peut étre représentée
sur un diagramme thermodynamique a condition que les évolutions correspondantes soient
réversibles.

Pour les transformations irréversibles il sera défini, lors de I'étude des turbomachines, la notion
d'évolution polytropique pour tourner cette difficulté.

2 Energie interne

Considérons un systéme fermé constitué de corps quelconques et limité par une surface réelle
ou fictive.

Supposons qu'une transformation amene ce systéme d’un état initial (7) & un état final (f) en
recevant ou cédant un travail W et une quantité de chaleur Q tout en subissant une variation de
son énergie cinétique :
i
AE_

Ces grandeurs, précédemment définies sont mesurables.

Ceci étant dit, formons la somme :
i
f
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Les calculs montrent que cette somme ne dépend
toujours que de I’état initial et de 1’état final.

En d'autres termes, on peut dire que cette somme ne
change pas en utilisant des évolutions différentes
pour passer du méme état initial au méme état final.

o

Figure XII1.03 Systeme fermé

Le résultat est tout a fait remarquable.

Ces faits expérimentaux étant indéfiniment reproductibles et controlables conduisent a ériger
en principe que cette somme représente la variation d’une fonction des seules variables d'état.

Cette fonction d'état, désignée par la lettre U, est appelée énergie interne. L'énergie interne
massique est notée "u". Cette énergie est constituée par I'énergie cinétique des molécules. Dans
chaque état défini, une masse donnée d'un corps renferme une quantité bien déterminée qui est

son énergie interne.
3 Expression du premier principe

Le résultat précédent, valable pour tous les systémes fermés, constitue le premier principe de la

thermodynamique. Il se traduit par I'égalit¢ fondamentale :
i i

W+ Q =AU + AE, (XILO1)
f f
Par unité de masse il s'écrira :
i i
w+Q =Au+Ae, (X11.02)
f f

L’énergie ne se perd pas etne se crée pas, elle ne fait que passerd’une forme a une autre
dans les diverses transformations physiques et chimiques.

L’¢énoncé sous cette forme, est désigné par loi de la conservation et de la transformation de
I’énergie.
Sous forme différentielle le premier principe de la thermodynamique s'écrit :

SW +6Q = dU + dE,

ow +6Q = du + de, (XI1.03)

i
A Tlorigine de la thermodynamique, le terme AE, n'apparaissait pas, on se préoccupait

f

essentiellement de I'é¢tude de systémes quasi-immobiles et a variations lentes telles les
capsulismes.

Aujourd'hui le mouvement et ses variations sont souvent des facteurs importants des
transformations qu'il faut étudier, 1'énoncé ci-dessus doit étre le seul retenu.
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Exercice XII.1

Une voiture d 'une massem = 1350 kg descend une route dont la pente correspond a un angle
o=3°

Le conducteur doit freiner pour immobiliser son véhicule sur une distance de 75 m.
Avant freinage, la voiture avait une vitesse initiale V= 87 km/h.

Calculer la chaleur dégagée lors du
freinage, sachant que :

- l'action de I'air agissant sur la voiture
est néglige.

- le glissement des roues sur laroute est
supposé nul.

O v
mg 'l o .
- [l’énergie interne de la voiture ne
Figure XII.04 Pente inclinée varie pas.

Corrigé

Du premier principe de la thermodynamique nous avons :6W + 8Q = dE. puisque par
hypothése dU=0

La variation d'énergie cinétique est :

iE - lAVZ—135o 0 1<87000)2 — —394 219
fc_mfz_ 2\3600/) | ~ J

Le travail des forces extérieures est :

W =F - dOM =mg sina dx
W =1350%9,81 x sin3" x 75 =51983]
Ce qui permet de déduire la chaleur dégagée lors du freinage :

O=-394219-51983=—-446 202J

4 Transformation cyclique

Par définition d'une transformation cyclique, le systéme se retrouve a 1'état final dans le méme
état qu'initialement.

Puisque dU et dEc sont des différentielles totales exactes, nous avons :
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[ [
AU =0 AE, =0
f f

Dans ces conditions le premier principe de la thermodynamique devient :
W+Q=0 (XI1.04)

I existe de nombreux systémes ou le fluide décrit une transformation cyclique, parfois appelé
circuit fermé ou tout simplement cycle.

Par exemple, c'est le cas des centrales
thermiques ou nucléaires ou l'eau se trouve
successivement sous forme de liquide et de
vapeur.

é Turbine
2— Condense

Cette transformation cyclique, représentée
sur la figure XILO5, se compose,

Générateur essentiellement, dun condenseur, d'une
de vapeur pompe alimentaire, d'un générateur de vapeur
Pompe et d'une turbine.

Figure XI1.05 Production d’énergie

5 Equation thermodynamique générale
En tenant compte du théoréme de I’énergie cinétique (IV.23) le premier principe s'écrit :

SW+6Q=dU+ dE. =dU+ W+ W,
SWrow;
Il s'ensuit donc :
6Q = dU + 6W;,

Pour une particule fluide, le travail des forces intérieures massique est W, = pdV — §F, ce
qui permet d'obtenir une autre expression du premier principe de la thermodynamique :

5Q + 6F = dU + pdV
Q+ +p } (XIL05)

Et par unité de masse 6Q +6f =du +pdv

Expression appelée parfois "deuxieme équation fondamentale" ou encore 'équation
thermodynamique générale".

6 Expression simplifiée

Si la transformation élémentaire est réversible, le terme caractérisant la dissipation d'énergie est
nul, il ne subsiste que :
6Q = dU + pdV
¢ p } (XIL06)

6Q = du + pdv

Cette relation est parfois appelée "expression simplifiée" du premier principe de la
thermodynamique.
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n l‘"

Pour une transformation réversible amenant le systéme d'un état initial aun état final "/", on
9

a, en intégrant cette relation :
vr
Q=uf—ui+J pdv
Vi

Exercice XII.2

Au cours d'une évolution isobare réversible, po = 5 bar, le volume d'une masse de gaz parfait
passede 5107 m? a 1.107" m>.
Pendant cette évolution l'énergie interne du gaz augmente de 18 kcal.

Déterminer la quantité de chaleur transférée en précisant si elle est recue ou cédée par le gaz.
Corrigé

De l'expression simplifiée du premier principe de la thermodynamique, nous déduisons pour

cette évolution réversible:

Ve

Vi
Avec:

U —U; = 18.103 x 4,1855 = 75339
Et puisque l'évolution est isobare :
Ve
j pdV =p,(V; — V;) = 5.10° x (1.10™* —5.1072) = 25000 ]
Vi
1l vient donc en définitive :

0 =75339 + 25000 =100339 J = 24 kcal

La quantité Q est positive, le gaz a donc regu de la chaleur.

7 Systéme ouvert

Dans I'¢tude d'un systeme thermodynamique le travail, échangé avec le milieu extérieur, est
décomposé afin de faire apparaitre, le cas échéant, sa partie utile.

Il est facile de concevoir que dans certaines applications une fraction du travail soit directement
échangée avec l'atmosphere. Sa connaissance ne présente pas, a priori, un intérét considérable
bien qu'il soit a comptabiliser dans le bilan énergétique. Par contre, industriellement, le travail
fourni ou absorbé par une machine constituera un ¢lément important de 1'é¢tude. Ce travail, noté
Wi, est désigné par travail interne.

Dans le cas des turbomachines, il est la conséquence du transfert d'énergie entre le fluide et les
aubes de la machine.

Pour plus de généralités, considérons un systéme en régime instationnaire échangeant de
I'énergie et de la matiere avec son milieu extérieur. Ce serait, par exemple, le cas d'une
turbomachine en phase d'accélération ou de décélération.

8
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Ramenons artificiellement 1'étude d'un systéme ouvert a celui d'un systéme fermé afin de
pouvoir appliquer le premier principe de la thermodynamique. Pour cela définissons un systéme
formé d'une quantité constante de matiere et suivons son évolution entre les instants t et t+dt.

Systeme ouvert Systeme ouvert
a l'instant ¢ a l'instant t+dt
E S E S
me Mi+dt
dmg, Ve, pE, ue, Ve dms, vs, ps, us, Vs
Figure XI1.06 Systeme fermé a la date t Figure XI1.07 Systeme fermé a la date t+dt
Désignons par:

dmEg = masse €élémentaire qui entre a la date ¢.
m; = masse du systéme ouvert a la date .

m+dr = masse du systéme ouvert a la date #+dt.
dms= masse élémentaire qui sort a la date ¢+dr.

Par construction I'égalité des masses doit €tre satisfaite :
m =dmg + m: = me+dr + dms

Pour ce systéme artificiellement fermé, de masse m, explicitons chacun des termes du premier
principe de la thermodynamique (XI1.03), entre les instants t et t+dt. Soit :

6W, , estici le travail interne d'une machine, qu'il ne faut pas confondre avec le travail des forces
intérieures noté W..

dE,, est I'énergie potentielle du systeme de masse m qui se décompose également de la fagon
suivante: dE, = dEp + gzgdmg — gzzdmy. Le terme dE, est]'énergie potentielle du systéme
ouvert pendant I'intervalle de temps dt.

6Q, est la quantité de chaleur échangée, par le systéme de masse m, avec son milieu extérieur
pendant l'intervalle de temps dt.

dU™ est I'énergie interne du systéme ouvert pendant l'intervalle de temps dt.

Les termes us et ug représentent respectivement I'énergie interne massique de la masse
¢lémentaire qui sort et de celle qui entre.

V2 V2
dE, = dE} +75de —7’5de

dE; estla variation d'énergie cinétique du systeme ouvert.
Vs et Ve sont les vitesses moyennes dans les brides de sortie "S" et d'entrée "E".
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Reportons ces expressions dans (XI1.03) en regroupant les termes de méme nature, on obtient
I'équation (XIL.07) :

V2 VZ
Wy +6Q =d(U"+E¢c +Ep)+ <u5+p5v5+925 +%>dms_ <uE+ PeVg+ gz + 7E>de

Divisons celle-ci par l'intervalle de temps dt et posons :

% . . . .
p, = d—t’ =Puissance fournie ou absorbée par une machine.
5Q . .
P,, = —= =Puissance thermique.
dt

am r1e . \ . .
Qs = d_ts =D¢ébit massique a la sortie de la machine.

dm f1es . \ , .
Qme = d—tE =D¢ébit massique a I'entrée de la machine.

On obtient, l'expression du premier principe de la thermodynamique pour un systéme en régime
instationnaire sous forme de puissance.

d * * * ‘/52 VEZ
PI+Pth=E(U +E;+ Ep)+ us+PsVs+ng+7 Ams — uE+pEUE+gZE+7 Amg

Si le systéme est ouvert et en régime stationnaire (régime permanent) cette expression se
simplifie :

d * * *

Les débits se conservent gms = gmE = gm = constante.

Dans ces conditions, cette relation s'écrit :

S 2
P+ P, =A (u +pv+g9z+ VT) Qm (XI1.08)
E

Et en divisant parle débit massique qm :

S 2
w,+Q=A (u +pv+gz+ V;) (XI1.09)
E
8 Enthalpie
En posant :
h=u+pv (XI1.10)

La relation (XII.09) devient :

10
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S .
w+Q=A(h+gz+%) (XIL11)
E
Et sous forme différentielle :
VZ
Sw, +06Q = dh + gdz +d (%) (XIL12)

h est une fonction d'état, appelée enthalpie. Ici, plus précisément, elle est désignée par
enthalpie massique et s'exprime en J/Kg.

L'enthalpie rapportée a la masse du fluide, s'écrit :
H=U+pV.
9 Autre forme de I'équation thermodynamique générale
Cette fonction d’état n’est pas restrictive a I’étude des machines et des moteurs.

On rencontre 'enthalpie dans de trés nombreux domaines de la thermodynamique, mais il se
trouve qu’elle s’introduit tout naturellement lorsqu’il s’agit d’un systéme ouvert en écoulement
permanent.

Il est commode et fort utile d'introduire I'enthalpie dans l'équation de thermodynamique
générale. En effet, de la définition méme de I'enthalpie h, nous pouvons écrire :

dh =d(u+pv) =du+ pdv + vdp

dp
du+pdv=dh—vdp=dh—?

L'équation de thermodynamique générale (XII.05), peut donc s'écrire :

dp
8Q +68f =dh - (XIL. 13)

D'autre part en remplagant dans (XII.12) I'enthalpie élémentaire dh déduite de (XII.13), il vient :

dp vz
dw, +6Q =5Q+5f+?+gdz+d >
Soit:
dp vz
dw, = ?+gdz +d 7 +6f (XI.14)

Dans cette derniere relation la quantité de chaleur Q disparait. Toutefois il serait hasardeux d'en
déduire que la relation (XII.14) est réservée uniquement aux €volutions adiabatiques.

La nature des transformations sera marquée par | intégration de —p

La relation (XII.14) est constamment utilisée dans I'é¢tude des turbomachines.
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Remarquons que si le travail interne wr est nul, nous retrouvons I'équation (XI.12), pour une
tranche de fluide s'écoulant a l'intérieur d'une tuyauterie.

10 Enthalpie d'arrét

En mécanique des fluides et dans le domaine des turbomachines, il est souvent posé :

2

hy=h+= (XIL15)

La quantité 4; est alors désignée par enthalpie d'arrét (ou enthalpie totale et parfois enthalpie
d'impact).

Avec cette notation, pour un systéme ouvert en régime permanent, le premier principe de la
thermodynamique peut s'écrire :

S
w, +Q =A(h; + gz)
E

Dans le cas de fluide compressible (gaz), le terme gz est généralement négligeable, le premier
principe devient :

S
w,+Q=Ah (XIL16)
E

L'enthalpie d'arrét jouit de propriétés remarquables, éminemment pratiques. Prenons quelques
exemples en se plagant toujours dans le cas de fluides compressibles.

a) Ecoulement adiabatique d'un fluide compressible

Le travail interne wi est nul, puisqu'il n'y a
pas de machines. L'écoulement est

N adiabatique donc Q =0, il s'ensuit :

— —
VE::_/: Vs his- hie =0
E S L'évolution du fluide est a enthalpie d'arrét

. constante.
Figure XI1.08 Ecoulement d’un fluide

b) Echangeur

Dans un échangeur, le travail interne est
évidemment nul.

La quantité de chaleur transférée est donc:

E S O = his- hie
Figure XI1.09 Transfert de chaleur
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c¢) Turbomachines

Compte tenu de leur faible surface extérieure
et de leur puissance, les turbomachines
n'échangent pratiquement pas de chaleur
avec leur milieu extérieur (Q = 0).

Wi = his- hie
E S

Figure XII.10 Turbomachines adiabatiques

Cette hypothese d'adiabaticité n'est mise en défaut que dans quelques cas particuliers.

13
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Chapitre XIII

Etude thermodynamique des gaz parfaits

1 Expérience de Joule

Conformément au schéma ci-dessous deux réservoirs A et B, a parois conductrices de la
chaleur, sont plongés dans I'eau d'un calorimétre. A 1'état initial le réservoir A contient un gaz
sous pression et est reli¢ a B, initialement vide, par une tuyauterie munie d'un robinet. Ouvrons
le robinet, une partie du gaz du réservoir A se transvase, irréversiblement, dans le réservoir B.
A T'état final les deux réservoirs sont en équilibre thermique.

Durant cette transformation, I'expérience montre que la température de I'eau du calorimétre est
restée constante ; 7r= T
Ti Tr=Ti

% %

Etat initial. Etat final

Figure XII1.01 Systeme isolé

Lors de la transformation i = f, appliquons le premier principe de la thermodynamique au
systéme constitué par le gaz. Ce systéme est délimité par les surfaces des réservoirs et de la
tuyauterie les reliant.

f o f

W+Q=AU+AE;
i i
Explicitons chacun de ces termes.

W =0, puisque aucun travail n'a été échangé avec le milieu extérieur.

O = 0, les échanges entre les bouteilles et I'eau du calorimétre sont uniquement d'ordre
calorimétrique. Or la température de 1'eau n'a pas varié, il s'ensuit que le transfert de chaleur est
nul, I'évolution i — f est donc adiabatique.

f

A E. = 0, la variation d'énergie cinétique est nulle puisque le gaz est au repos a 1'état initial et
i
a I'état final.

14
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Ces trois termes étant nuls, il s'ensuit que la variation d'énergie cinétique est également nulle.

f

AU =0= U; =U; =U = constante.

i
Par contre, durant cette détente adiabatique, le volume et la pressiondu gaz ont obligatoirement
varié. La température étant restée constante, Joule a déduit que 1'énergie interne ne pouvait étre
fonction que de la température.

Cette expérience de Joule était en réalité peu précise. Des expérimentations plus récentes sur
un certain nombre de gaz, a température constante, ont montré que leur énergie interne était
légerement fonction de leur volume ou de leur pression.

Dorénavant nous considérerons qu'un gaz parfait est un gaz hypothétique dont I'équation d'état
est pv = rT et qui, en outre obéit a I'équation de Joule.

2 Expression de I'énergie interne d'un gaz parfait

Si nous considérons une évolution réversible et isochore (dv = 0), l'expression simplifiée du
premier principe de la thermodynamique (XI1.06) permet d'écrire :

6Q =du
Cette quantité de chaleur, transférée a volume constant, est : ¢y dt et par conséquent :

du = cv dt (XIILO1)

L'énergie interne est une fonction d'état et ne dépend que de I'état final et de I'état initial
d'équilibre. Cette relation est donc valable quelle que soit la nature des évolutions.

Cette notion de fonction d'état est trés importante en thermodynamique.

A titre d'exemple, pour le lecteur pas encore familiarisé avec les fonctions d'état, nous allons
montrer d'une autre facon que la relation (XIII.01) n'est pas restrictive aux évolutions isochores.
Puisque nous pouvons utiliser n'importe quel chemin pour effectuer une transformation
amenant un gaz parfait d'un état initial (i) & un état final (f), utilisons les évolutions particuliéres
suivantes :

- évolution isochore pouraller de i — A p  Ta=T¢=constante
- évolution isotherme pouraller de A — f TA

Pour I'évolution isochore, nous avons :

TA=Tf 1
Uy, —u; = ¢, dT

v >
T; v

Figure XIII.02 Représentations des évolutions

Pour I'évolution isotherme us = uy, puisque I'énergie interne ne dépend que de la température.
On conclue que l'expression :

Ty
uf—ul-=j c, dT
T,

i
est valable quelles que soient les transformations d'un gaz parfait pouraller de i — f
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Exercice XIII. 1

Deux moles d'un gaz parfait occupent a l'état initial un volume Vi = 2 m* a la température
t1=10°C.

Ces deux moles décrivent la transformation cyclique réversible suivante :

1 — 2 Evolution isochore jusqu'd la température t> = 30 °C .
2 — 3 Evolution isotherme jusqu'au volume V3 = 0,5 m>.

3 — 4 Evolution isochore jusqu'd la température ts = t1 =0 °C.
4 — 1 Evolution isotherme jusqu'au volume Vi = 2 m>.

Calculer :

1- Les quantités de chaleur échangées avec le milieu extérieur pour chacune de ces évolutions.
2- La variation d'énergie interne au cours du cycle.

3- Le travail échangé avec le milieu extérieur durant cette transformation cyclique.

1l est précisé que la capacité thermique molaire a volume constant est : ¢v=20,786 J/mol.K.

1l est rappelé que la constante universelle des gaz parfaits est R = 8,3144 J/mol K.

Corrigé

1- Tout d'abord, représentons cette transformation cyclique sur un diagramme de Clapeyron.
Les évolutions étant réversibles, nous pouvons écrire :

par unité de masse: 8Q = du + pdv
P pour la masse totale: 6§Q = dU + pdV
Pour chacune de ces évolutions, calculons les
transferts de chaleur.

1-26Q=du
4 puisque [l'évolution est isochore; dV = 0. 1l
9 s'ensuit :

O =ncy (tr-t1) = 2x20,786% (30-0) = 1 247 J

< V 2 36Q = pdV pour une évolution isotherme
i dU =0.
Figure XII1.03 Transformation cyclique

Remplacons la pression p déduite de l'équation d'état p = % et intégrons cette relation.
La chaleur transférée durant cette évolution est donc :

% qy A 05
Q= RTzf ~ = NRTyn > =2 X 83144 X (27315+ 30) X In—~ = ~ 6968 ]

v 2
3 — 4 Evolution isochore jusqu'a la température ts=t;=0°C.
Q=ncy(ts-t3) =ncy(ti-tz) =—1247J

Puisque ty=t1 ett3 = 12
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4 —» 1 Comme précédemment U - Uy = 0 et par suite :

1 dv v 2
Q =RT, — =nRT;In—==2x8,3144 x 273,15 X In—= 6297 ]

v V v, 0,5
2- La variation d'énergie interne est nulle pour une transformation cyclique. L'état final est
confondu avec l'état initial.

3- Durant cette transformation cyclique la quantité de chaleur échangée avec le milieu
extérieur est :

Q =1247-6988-1247-691= —691 J

Le premier principe de la thermodynamique pour une transformation cyclique (XII.04) permet
de déduire le travail échangé avec le milieu extérieur :

W=-0=0691J
Le travail est positif, il est regu par le systeme.
3 Expression de I'enthalpie
Un raisonnement calqué sur celui de I'énergie interne permet d'obtenir immédiatement
l'expression de l'enthalpie d'un gaz parfait. La relation (XIL.13) devient pour une évolution
réversible et isobare.
6Q =dh
Cette quantité de chaleur transférée a pression constante est : ¢p dt et par suite :

dh = ¢, dt (XI11.02)

L'enthalpie, comme I'énergie interne, est une fonction d'état et ne dépend, donc, que de I'état
mitial et de I'état final.

4 Relation de Mayer
En partant, directement, de la définition de l'enthalpie on obtient:

j_@ = du + d(pv)
cpdt cydt 75/

Soit la relation, dite de M ayer, pour un gaz parfait.

(XI11.03)

5 Détentes et compressions adiabatiques réversibles d'un gaz parfait
L'expression simplifiée du premier principe (XI1.06) pour une évolution adiabatique s'écrit :

0O=du+pdv=cdlT +pdv
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Ecrivons, I'équation d'état des gaz parfaits, sous forme différentielle :
1
dT = ;(v dp + p dv)
et reportons cette expression de d7 dans la relation précédente :

%vdp+(%+1) pdv=0

o T .
Multiplions par — et en tenons compte de la relation de M ayer :
13%

dp dv
G—+c,—=0
p v
En posant :
c
y=-"2 (XIIL. 04)
CU
Intégrons cette dernicre relation :
p v¥ = constante (XIIL.OS)

Pour une évolution adiabatique réversible entre un état initial (7) et un état final (f) la relation
(XIIL.OS) peut s'écrire :
Y
v Y
Pr _ <—l> - (p—f) (XIIL 06)
b; Vg P
Par combinaison avec I'équation d'état des gaz parfaits, nous obtenons également :

T, _ (&)Wi) S () ()” XIIL07)

T; p; Pi Vs

l
Remarques :
a) Lorsque les capacités thermiques cp et ¢y sont constantes, le gaz est dit parfois "idéal parfait".

b) En utilisant les relations (XII1.03) et (XIIL.05) il est facile d'exprimer cp et cv en fonction de
retdey.

Exercice XIII.2

Une turbo soufflante de haut fourneau comprime adiabatiquement et réversiblement
39000 kg/h d'un mélange de gaz considéré comme parfait dont les caractéristiques sont :

cp = 1050,6 Jkg.K cv=761,8J/kg.K

Pour simplifier, le rendement de cette machine sera supposé égal a 1.

A l'entrée de la turbomachine, nous avons les valeurs suivantes pour le fluide :

Pression: pe = 1,025 bar.

Température: tg =24 °C.

Vitesse: Ve=15m/s.
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A la sortie les caractéristiques du fluide sont devenues :

Pression: ps = 1,81 bar
Vitesse: Vs =20 m/s.
Calculer :

1) La température a la sortie de la turbo soufflante.
2) La puissance interne de la machine, sachant qu'elle est égale au débit masse multiplié par
le travail interne.

Corrigeé

1) La température a la sortie est :

y—1
= 1050,6
p5>( ) < =1,379

T,=T, (— avec y = £

ST E\p, Y=, 7618
par suite :

1379-1)

1,81\ iz
1,025)

Tg = (273,15+ 24) % ( =34741 K

te = 74,26 °C

2) La relation (XII.16), pour cette évolution adiabatique, s'écrit :

Wy = hig —hyg = hg — hg +T
20% — 157
w, = 1050,6 X (347,15 — (273,15 + 24)) + —
w, = 52890 J/kg
La puissance interne est donc :

P, = 39000 X 52890 = 572975 W
™ 3600 B
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Exercice XIII.3

Conformément au croquis ci-dessous, un réservoir comporte deux parties A et B. Le piston de
séparation, non pesant, peut se déplacer sans frottement.

Z 7

MMM

Figure XII1.04 Etat initial (i) Figure XII1.05 Etat final (f)

Les deux parties, A et B, contiennent la mémemassede gaz parfait caractérisépar sa constante
retparsony.

A l'état initial, il regne une pression p et une température T dans les deux enceintes.

La partie A regoit une quantité de chaleur Q4 tandis que la partie B subit une évolution
adiabatique réversible.

Déterminer l'état final du systeme (p4, ps, T4, Ts, V4, VB,) en fonction de Q4,pi, Ti, Vi, r et y.

Corrigé
Tout d'abord, considérons le systeme composé du piston et des deux réservoirs A et B. Le
systeme n'échange que de la chaleur avec le milieu extérieur, le travail des forces extérieures

est nul. Le systeme est au repos a l'état initial et a l'état final, la variation d'énergie cinétique
est également nulle. Le premier principe de la thermodynamique devient :

Qs =U; — U =mc, (T, — T;) + mc, (T — T})
r

Pour satisfaire l'équilibre du piston il faut que : p4 = ps.
Remarquons également que : Vi + Vg = 2V;

Ecrivons l'équation d'état, pour les gaz parfaits contenus dans les réservoirs A et B a l'état
final :

PaVa = PpVy =mrTy
PV = mrTy
Ajoutons ces deux dernieres relations :

mr(T, +Tg) = pg(V, +V3) = 2pgV;
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Reportons la somme des températures dans 'expression de Q4 :

2
Qq = yTl (pgVi —mrT))

Une équation, une inconnue pa.

1 7y-1
( +p;

y—1
P =\ +mrT") -2,

L l

La pression pp étant connue il est facile de déduire les autres résultats.
1
P>
Vg = (—l)y v,
Pg

)
Ty = (’;—3) T
i
v, =2V, ” Ve
PaVa

TA - mr

Exercice XIII.4

Un gaz parfait, défini par r et y, est emprisonné dans un cylindre surmonté d'un piston qui
coulisse sans frottement.

A I'état initial, le gaz occupe un volume V; sous une température Ti et une pression pi.
Ce gaz est comprimé adiabatiquement jusqu'a la pression finale pret il est envisagé les deux
cas suivants :

Cas A - L'évolution est supposée réversible.

Pour concevoir une telle évolution, il faudrait supposer, placer progressivement, une infinité
de petits poids sur le piston. Ainsi a chaque étape, la pression, la température et la masse
volumique seraient homogenes dans toute la masse de gaz.

Calculer le volume V4 et la température T4 en fonction dey, Vi, T;, pi et py

7

Figure XIIL.06 Evolution réversible

pt Va, Ta.

Cas B - L'évolution est supposée irréversible

Conformément a la figure XII1.07, l'index estretiré brutalement et le gaz est comprimé jusqu'a
la pression py.

Calculer la température Tp et le volume Vp en fonction de y, Vi, T, pi et pr.
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Index

X A
Xi

pr Vs, Is

Figure XIIL07 Evolution irréversible

Corrigé
Cas A.

Le résultat s'obtient immédiatement a partir des relations (XIIL.06) et (XII1.07).

o)
Py
)
T, =T, (p—f> !
pi
Cas B

Explicitons tous les termes du premier principe de la thermodynamique, relation (XI1.03).
Le travail des forces extérieures est constitué par l'action du piston sur le gaz :6W = —F dx.

Pendant toute I'évolution, la force F reste constante dans le cas B. En désignant par A la surface
du piston, cette force est égale a prA. Il vient donc :

*f
W=—Fj dx=pfA(xi—xf)=pf(Axi—Axf)
Xq

W= pf(Vi —Vs)

Nous avons le droit d'écrire l'équation d'état des gaz parfaits a l'état initial et a l'état final. Ce
serait completement faux dans les états intermédiaires, la masse de gaz ne serait pas homogene
vis-a-vis des pressions et des températures.

p;V; = mrT;
pfVp = mrTy

1l s'ensuit donc :

T, T
W = p; (mr—l—mr—3> = mr (Tl-p—f—TB>
bi Pr

Par hypothese l'évolution est adiabatique : §Q = 0
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La variation d'énergie interne est :
T
UB - Ui = va(TB - Tl) = myTl (TB - Tl)

En définitive, il ne reste dans le premier principe que SW = dUsoit :

r
mr (Tlp—f _TB) = m“yT]_(TB - Tl)

i
Une équation, une inconnue Ts.

T; p
Ty = —l[(y— 1L+ 1]
g 14 bi

Connaissant Tp, le volume Vg s'obtient a partir de ['équation d'état :
V. .
Vy =— <y -1+ &>
14 bs

Exercice XIIL5

A I'état initial, une bouteille munie d'un robinet de remplissage est vide.
On ouvre le robinet, une masse d'air pénetre adiabatiquement, et irréversiblement, dans la
bouteille.

Pam Calculer la température régnant dans
£ la bouteille, juste au moment ou la
pression dans la bouteille devient

égale a la pression atmosphérique.

1l est précisé :

Pression atmosphérique :
Pam = 101325 Pa

Etat initial (i) Etat final () Température ambiante : t; = 18 °C

Figure XIIL.08 Remplissage d 'une bouteille vide r=287J/kg. K et y=14

Corrigé

1l s'agit d'un systeme ouvert donc la relation (XII.07), rappelée ci-dessous, est tout a fait
appropriée pour résoudre ce probleme.

2

Ve V2
SW;+8Q =d(U+ Ec+Ep)+ (us +psvs+ 9gzs +%> dmg— (uE + PV + 9Zg +7E>de

Le systeme étudié est l'air qui entre dans la bouteille.
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L'air qui pénétre dans la bouteille ne provoque pas de travail interne §W, = 0
L'évolution est suffisamment rapide pour justifier I'hypothése d'adiabaticité §Q = 0
L'air entre dans la bouteille mais ne sortpas dms = 0.

L'énergie potentielle (action de la pesanteur) est négligeable.

A l'état initial et a l'état final, l'air est au repos dEc =0.

Compte tenu de ces remarques la relation (XI1.07) se simplifie et devient :

0 =dU — (ug + pgvg) dmg = dU — hzdmg
Soit :

Uf_ i = hE de

A l'état initial, il n'y a pas d'air dans la bouteille donc U; =0 = Up — U; = mge, Ty

D'autre part, en admettant que l'air se comporte comme un gaz idéal parfait, il vient :

mg mg
hgdmg = hg dmg = c,T;mg
0 0
Par conséquent, il s'ensuit :
Cva = CpTl
“p
Tf =—T,=yT,
CU

Tr=14X (273,15+ 18) = 407,61K soit: t, = 134,46°C

L air contenu dans la bouteille s est réchauffé de 116,46°C.
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Chapitre XIV

Deuxiéme principe de la thermodynamique

1 Postulat de Clausius

Le premier principe de la thermodynamique établit entre les diverses formes de I’énergie une
équivalence quantitative.

11 s’oppose ainsi au mouvement perpétuel dit de premicre espéce, basé sur I’idée de production
illimitée de travail sans recevoir, sous aucune forme, d’énergie. Mais il ne donne pas une
description compléte des phénomenes naturels, plus précisément, il ne se préoccupe pas de
savoir si telle ou telle autre transformation est réalisable.

Par exemple, on peut arréter un train en marche parle frottement des patins de freins contre les
roues qui s'échauffent. Le premier principe montre que I'énergie cinétique du train s'est
transformée en chaleur. Ce principe ne serait pas mis en défaut si, en chauffant les patins de
freins, le train repartait en retrouvant sa vitesse initiale. Ce qui est impossible, comme nous le
savons.

Un autre exemple, qui est d'ailleurs important en thermodynamique, est celui du corps chaud
que nous mettons en présence d'un corps froid. Si dans une enceinte adiabatique, nous
mélangeons 1 kg d'eau a ;7 = 60°C avec 1 kg d'eau a ;2 = 20°C, nous obtenons 2 kg d'eau a
tr=40°C.

cp(tf —t;y) + cp(tf —t,) =0
4,18><(4-0—60) + 4,18 ><(40—20) =0

(CT R )

Le corps froid s'est réchauffé et le corps chaud s'est refroidi. Une quantité de chaleur a été
transférée du corps chaud vers le corps froid. Cependant si dans ce mélange, nous avions obtenu
a I'état final 1 kg d'eau a t;y=70°Cet 1 kg d'eau a t2r=10°C au lieu des 2 kg d'eau a #r = 40°C,
le résultat n'aurait pas été contraire au premier principe de la thermodynamique.

Cp(tlf - tll) + Cp(tzf - tlZ) = O

4,18x(70-60) + 4,18x(10-20) = 0
—~ —
(@ (-Q)

Si cela avait été possible, le corps froid se serait encore refroidi alors que le corps chaud se
réchaufferait. Ainsi une quantité de chaleur aurait été transférée du corps froid vers le corps
chaud.

Une telle transformation n'a jamais été observée.
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L'expérience montre que les échanges purement calorifiques s'effectuent toujours dans le méme
sens ; du corps chaud vers le corps froid. Cecin'estautre que le postulat de Clausius et constitue
lI'un des énoncés classiques du second principe de la thermodynamique.

Une quantité de chaleur ne peut jamais €tre transférée, sans dépense d’énergie, d’un corps
froid a un corps chaud.

Le second principe introduit une distinction fondamentale entre les transformations réversibles
et les transformations irréversibles. Rappelons qu'une transformation est réversible si, apres
avoir été accomplie, elle peut retourner a son état initial, en empruntant le chemin inverse, en
retrouvant les mémes valeurs du travail et de la quantité de chaleur changées de signes.

Du postulat de Clausius, nous retiendrons que tout transfert de chaleur entre deux corps a des
températures différentes est irréversible. Pour que le transfert de chaleur soit réversible, il faut
que les évolutions soient isothermes.

2 Postulatde Thomson-Kelvin

Pour mettre en évidence le postulat de Thomson-Kelvin, prenons l'exemple de la propulsion
d'un navire et raisonnons par l'absurde. Si le postulat de Clausius était faux, nous pourrions
transférer de la chaleur, de I'eau a la température 72, a un corps ayant une température ¢; plus
¢levée. Puis nous utiliserions cette source chaude pour produire de la vapeur afin d'entrainer
une turbine.

Ainsi ce navire se déplacerait en empruntant uniquement de la chaleur a I'eau de la mer.

Une telle installation, contraire au postulat de Clausius réaliserait un mouvement perpétuel de

seconde espece.
1

Chaudiére

——= L
0>

Figure XIV.01 Transformation cycliqgue monotherme

Température de I'eau = £2

__I—- ‘{ F — —
0

C'est le second principe de la thermodynamique qui affirme le caractére utopique de telles
réalisations, d'ou I'énoncé du postulat de Thomson (lord Kelvin) :

A Paide d’un systéme qui décrit une transformation cyclique et qui n’est en contact
qu’avec une seule source de chaleur, il estimpossible de recueillir du travail.

Ou, sous une forme différente mais équivalente :
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Lorsqu’un systéme matériel est revenu a son état initial aprés n’avoir échangé de chaleur
qu’avec une seule source, il a obligatoirement recu du travail et cédé de la chaleur.

La conformité au postulat de Thomson Kelvin peut se traduire parle schéma ci-apres :

Systéme décrivant une
transformation cyclique

7N

W travail .

fourni au 0 quantité de chaleur

systéme cédée par le systeme
ala source S

Figure XIV.02 Conformité au postulat de Thomson Kelvin

Le postulat de Thomson-Kelvin est équivalent a celui de Clausius. Pour le montrer, raisonnons
de fagon analogue a l'exemple du bateau ci-dessus.

Supposons donc que le postulat de Thomson-Kelvin soit faux. Nous pourrions alors prélever a
la source froide S2 une quantité de chaleur O que nous transformerions ensuite en travail W
puisque W+ O = 0.

Systéme décrivant une
transformation cyclique

w

Figure XIV.03 Transformation impossible a réaliser

Ce travail pourrait étre retransformé en chaleur par frottement a une température T; > T,, puis
cédé a une source de chaleur S; ou régnerait la méme température 7. Ainsi la quantité de
chaleur Q aurait été transférée de la source froide S2 a la source chaude Si sans aucune
contribution du milieu extérieur.
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Cette opération est impossible en vertu du postulat de Clausius. Le postulat de Thomson-Kelvin
est équivalent a celui de Clausius.

Dans une transformation cyclique réversible d'un systéme n'échangeant de la chaleur qu'avec
une seule source, le travail # mis en jeu, et corrélativement la quantité de chaleur O, sont nuls.

En effet, d'apres le postulat de Thomson-Kelvin, le travail doit €tre positif, mais I'hypothese de
réversibilité implique que le travail puisse devenir négatif. La seule solution possible est W=0.
Or du premier principe de la thermodynamique, nous avons: W + Q =0, donc Q = 0.

Avec une transformation non cyclique, il est possible de produire du travail en n'échangeant de
la chaleur qu'avec une seule source. Dans ces conditions, il faut toujours avoir présent a I'esprit
que I'état final du systéme doit étre, nécessairement, différent de 1'état initial.

3 Transformation cyclique ditherme

Une transformation cyclique est dite monotherme si les transferts de chaleur ne s'effectuent
qu'avec une seule source de chaleur. C'est le cas des schémas du paragraphe précédent. Par
contre, si les transferts de chaleur s'effectuent a partir de deux sources de chaleur, la
transformation cyclique est dite ditherme.

Il est possible de transférer de la chaleur d'un
corps froid a un corps chaud, en utilisant un
systéeme qui décrit une transformation
cyclique ditherme.

Pour le montrer utilisons tout d'abord le
postulat de Thomson-Kelvin.

Si la transformation cyclique était
monotherme le systéme pourrait recevoir un
travail I, et céder une quantité de chaleur Q;
a une source chaude caractérisée par sa
température 77.

Il est alors facile de concevoir qu'une telle
transformation cyclique peut comporter une
partie ou la température 7* devienne
inférieure a 7.

Figure XIV.04 Principe de fonctionnement
des pompes a chaleur et machines

frigorifiques

Ce qui permet cette fois, conformément au postulat de Clausius, de prélever une quantité de
chaleur Q> a une autre source dite froide, et définie par sa température T, > T *. La
transformation cyclique devient ainsi ditherme.

Appliquons le premier principe de la thermodynamique a cette transformation cyclique
ditherme :
W+Q,+Q,=0 avec W >0 Q, <0 Q,>0

Puisque le signe est positiflorsque le travail ou la quantité de chaleur sont regus par le systéme.

C'est l'inverse dans le cas contraire. Ce qui permet d'écrire cette expression sous la forme
suivante :
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|Q1| =W + Qz
Ainsi on renvoie ala source chaude plus de chaleur qu'on en a extraite de la source froide.
C'est sur ce principe que fonctionnent les pompes a chaleur et les machines frigorifiques.

Dans les pompes a chaleur la source froide sera, par exemple, 'atmosphére a I'extérieur d'une
maison, et I'air chaud a l'intérieur, constituera la source chaude.

La source froide d'un réfrigérateur domestique est l'intérieur de l'armoire, alors que la source
chaude est l'air ambiant de la piéce dans laquelle il se trouve. Si la porte du réfrigérateur reste
ouverte, la transformation cyclique devient monotherme, et en vertu du postulat de
Thomson-Kelvin, il se transforme en radiateur.

Le probléme, de la conversion d'énergie thermique en énergie mécanique, est résolu en
inversant le sens de la transformation cyclique, précédemment décrit.

Maais cette fois :

W+Q,+Q,=0 avec:
wW<0 Q>0 Q,<0

Il s'ensuit que :

|W| = Q1 - |Q2|

Ainsi inévitablement, pour produire le travail W, une

quantité de chaleur Q, doit étre rejetée a la source
froide S».

I est donc impossible de transformer intégralement
de la chaleur en travail, alors qu'il est possible de
faire I'inverse (travail en chaleur).

Figure XIV.05 Production d’énergie

Le second principe établit, en quelque sorte, que la chaleur estune énergie de qualité
inférieure.

4 Rendement thermique

En 1824, Sadi Carnot désignait par puissance motrice du feu ce qu’on appelle aujourd’hui le
rendement d’une machine.

Le rendement thermique, d'une transformation cyclique ditherme, est le rapport de I'énergie
mécanique recueillie a I'énergie thermique qu'il faut emprunter a la source chaude.

i 4 Q1 + Qz Qz |Q2|
= = =14+-—==1-— XIvV.01
"o T e Ty o (V00

5 Théoréme de Carnot

Toutes les transformations cycliques dithermes réversibles, qui fonctionnent entre deux
températures données 77 et 72, ont le méme rendement.
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Pour le montrer, considérons deux transformations cycliques C et C°, produisant respectivement

le travail W et W’, et qui ont la particularité de fonctionner entre les mémes sources de chaleur
Si et So.

Supposons également que ces installations sont calculées pour que les quantités de chaleurs Q;
et Q] prélevées a la source chaude Si soient égales.

Par définition, les rendements de ces transformations cycliques sont :
-w
Q1

—we

etpourC° n°= Q0 = Wl =n°Q =n°Q,
1

Si la transformation cyclique C est réversible nous pouvons emprunter le chemin inverse. Le
travail et les quantités de chaleur changent donc de signe.

Pour C n = Wl =nQ,

Figure XIV.06 Transformation ditherme Figure XIV.07 Transformation monotherme

Avec cette hypothése, accouplons C avec C°. Ainsi, la source Si recoit la méme quantité de
chaleur qu'elle céde. Le systéme, C et C° est donc devenu monotherme. 11 n'échange de la
chaleur qu'avec la source S».

En vertu du postulat de Thomson-Kelvin, le travail #W* échangé avec le milieu extérieur ne peut
étre que positifou nul.

Nous devons satisfaire 1'égalité suivante :
Wl=w «+w°|

De I'expression des rendements cette expression devient :
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nQ,= w*+ 7]0 Q4
Soit encore :

Envisageons les deux cas évoqués.
a) C° estirréversible donc W* > 0 = n > n°

Ce qui semble en soi assez normal. Le rendement d'une machine parfaite est supérieur au
rendement d'une machine imparfaite.

b) C° est également réversible W* = 0 = n

Il
=

C'est-a-dire le théoréme de Carnot.

Ce résultat est tout a fait extraordinaire, car on obtient le méme résultat quel que soit I'agent

moteur (eau, fluide frigorigéne, etc...) ou quelles que soient les machines réversibles utilisées

(turbomachines, moteurs a pistons, etc..).

Le rendement est uniquement fonction des deux sources définies par leur propre température.
n=n(Ty,T,)

Dans son ouvrage célebre, en 1824, Sadi Carnot avait énoncé un principe fondamental :

La puissance motrice de toute machine thermique parfaite estindépendante de ’agent de
transformation et ne dépend que des températures extrémes entre lesquelles se fait le
transport de calorie.

6 Température thermodynamique

Pour des transformations cycliques réversibles le théoreme de Carnot s'écrit :

Q +Q, 1Q, |
n=-""2=pnT,T,)=1-—"=
Q, v Q,
Ce qui permet d'exprimer le rapport des quantités de chaleur sous la forme suivante :
Q4
= f(Ty,T,)
o1 /T

Nous allons montrer que ce rapport définit, en fait, une échelle de température.
Pour cela, considérons trois sources Si, S2, So, ayant respectivement des températures 77, 72 et
To, qui satisfont I'inégalité :

T,>T, >T,

Conformément a la Figure XIV.08, intercalons deux transformations cycliques réversibles C
et C".
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C entre S1 et So.
C"entre Sz et So.

Admettons que C* absorbe en provenance de Sz la méme quantité de chaleur que celle cédée
par C. C'est-a-dire :
Qi = |Q2|

Pour la transformation cyclique réversible C* nous avons :

0
o, ~ (T2 To)

L'ensemble C et C* constitueun systéme de transformations cycliques réversibles n'échangeant
de la chaleur qu'avec les sources Si et So, donc :

Q,
= f(T,, T,)
Qo voo
Formons le rapport de ces deux dernieres
relations :
Ql — f(Tl’TO)
Q.1 f(T,,Tp)

Or, en considérant uniquement le cyclique C,
nous aurions obtenu :

Q
0,1 f(Ty,T,)
Soit :
_f(T,T,)
f(Tl'TZ) - f(TZJTO)

Figure XIV.08 Transformations en série
ditherme

Les températures 77 et 7> peuvent étre considérées comme des variables. La température 7 est
fixe et constitue, en quelque sorte un repere. Si bien que :

Q _ f(T,Ty) 6(T)
Q. f(T,,Ty) — 6(T,)

Prenons pour la fonction 8(T) la forme la plus simple en posant 8 = 6(T)
Il vient alors :

Ql 61
— = XIV.02
0,1~ 5, (XIV.02)

Cette relation exprime, que le rapport des températures dans I'échelle 6 est égal au rapport des
quantités de chaleur transférées lors d'une transformation cyclique réversible. La température 0
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devient une grandeur mesurable, et définit ainsi une échelle de température dite
thermodynamique.

7 Cycle de Carnot

Conformément au postulat de Clausius, une transformation cyclique ditherme sera réversible si
déja les transferts de chaleur s'effectuent a la température des sources. En plus, ces deux
évolutions isothermes doivent €tre intercalées avec d'autres transformations réversibles, pour
obtenir un cycle.

Si ces intermédiaires sont deux évolutions adiabatiques réversibles, la transformation cyclique
est appelée cycle de Carnot.
Calculons le rendement d'un cycle de Carnot parcouru par une masse m d'un gaz idéal parfait.

Pour cela utilisons l'expression simplifiée du premier principe de la thermodynamique,
relation (XI1.06) :
6Q =dU +pdV.

Tout d'abord, déterminons I'expression des transferts de chaleur Q; et Q> échangés avec les
sources Si et Sp.

P Dans ces deux évolutions isothermes la
e variation d'énergie interne est nulle.
Puisqu'en vertu de I'expérience de Joule,
I'énergie interne pour un gaz parfait n'est
fonction que de la température.

La relation (XII.06) se simplifie :

6Q =pdV

A Pour intégrer, il faut exprimer la pression
— |y p en fonction du volume V. L'équation
d'é¢tat des gaz parfaits satisfait cette

exigence :
pV =mrT
Figure XIV.09 Représentation d’un cycle de
Carnot
Soit pour I'évolution 4 = B: Q, = mrT, [/* L =mrT, In’E
p - &2 2y, v 2 My
Et pour l'évolution € - D:Q, = mrT, [° & =mrT, In22

D’ou l'expression du rendement :
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0 mrT, ln[‘;—B
n=1+ Q—Z =1+ VA
14)3
1 mrT; In 7A
La relation (XIII.07) permet de simplifier, puisque :
=)
<£) vV o B _ %
TZ VC D VA VD
D’ou:
In [I;—B
A
v, - *
In2
Ve
En définitive, le rendement d'un cycle de Carnot s'écrit :
Q2 T,
n=1+—==1--—+- (XIV.03)
¢ T

Remarque :

De la température thermodynamique, précédemment définie, et du rendement d'un cycle de
Carnot, nous obtenons :

Q) T, 6,

_ Q T, 6, ) )
La température thermodynamique est proportionnelle a la température absolue définie a partir
des propriétés des gaz parfaits. Pour ces deux échelles, le kelvin est choisi comme unité. Ces
deux températures sont égales.

T=206
Exercice XIV.1

De l'eau recoit d'une chaudiere Q1 = 230 kWh a une température t1 = 460°C. Cette eau décrit
un cycle de Carnot.

Sachant que la source froide est a la température t> = 20°C, déterminer la quantité de chaleur
Q: rejetée a cette source.

Corrigé

T, 273,15 + 20
Q,=—72Q, = — o x 230 = —91,965 kWh
T, 273,15 + 460
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Chapitre XV

L'entropie

1 Transformations cycliques dithermes

Comme précédemment, considérons tout d'abord un cycle de Carnot et raisonnons par unité de
masse, pour simplifier les écritures. Son rendement (XIV.03) permet d'écrire :

QL _ T

Q. T
U, % _,
Tl TZ

Ou encore :

Puisque les deux transferts de chaleur s'effectuent a la température des sources, nous pouvons
écrire sous forme abrégée :
cycle T

Par contre, s'il y a irréversibilité dans une transformation cyclique, il est intéressant d'effectuer
une comparaison avec un cycle de Carnot fonctionnant entre les mémes sources de chaleur.

Désignons par n°le rendement du cycle de Carnot et par 7 celui de la transformation cyclique
ditherme irréversible. Comme nous le savons, le rendement d'une machine imparfaite est
inférieur au rendement d'une machine parfaite.

Soit n < n°, ce qui permet d'écrire :

T.
n=1 +& < 1-=
Q, T,
Ou encore :
0,2
Tl TZ

Il est important de préciser que les irréversibilités peuvent €tre de natures différentes. Il faut
distinguer les irréversibilités thermiques des irréversibilités internes. Elles peuvent se produire
simultanément ou séparément.

Les irréversibilités thermiques sont extérieures au cycle et proviennent de la différence de
température qui existe entre la source de chaleur et le fluide qui évolue. Les transferts de chaleur

ne s'effectuent donc pas isothermiquement.

Les irréversibilités internes aux transformations sont essentiellement dues aux frottements.
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2 Transformations cycliques échangeantde la chaleur avec une infinité de

sources

Pour qu'une transformation cyclique absolument quelconque soit réversible, il faut, qu'en plus
de la réversibilit¢ mécanique, les transferts de chaleur soient isothermes.

Pour satisfaire cette derniére condition, il faut disposerd'un trés grand nombre de sources de
chaleur, voire d'une infinité, la température du systéme variant de fagon continue d'un point a

un autre.

Figure XV.01 Cycle de rendement maximum

Considérons alors un cycle de
Cammot ABCD, fonctionnant
entre les tempé€ratures
extrémales Tnaxi €t Tmini d'une
transformation cyclique afyd,
de configuration quelconque.

Décomposons alors la
transformation cyclique affyd
en un ensemble cycles
¢lémentaires de Carnot.

Chacun de ces cycles

¢lémentaires a un rendement
inférieur a celui de ABCD.

Par exemple pour le cycle (i)
nous aurions :

po=1 -2 < lmm
L T, T

maxi

Il en serait de méme pour tous ces cycles ¢lémentaires de Carnot ainsi que pour la

transformation afyé.

Son rendement est, en quelque sorte, une moyenne de ces cycles €lémentaires.

Compte tenu des résultats précédemment obtenus, nous pouvons écrire pour chacun de ces

cycles élémentaires :

1 1

6Q, 60,
Q11+ Q12 =0

En faisant la somme des n cycles élémentaires constituant le cycle étudié¢ nous obtenons :

i=n

i=n

50. 50.
z Qu +Z Q: _,
= T Ty

i=1

Si n tend vers l'infini (cycles infiniment petits) et en désignant par C le cycle afyd, cette expression

devient :
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0Q _
LT =0 (XV.01)

(9 o . . L
La quantité f c ?Q s'appellel'intégrale de Clausius et I'équation ci-dessus montre qu'elle est nulle
pour toute transformation cyclique réversible.

Si la transformation cyclique comporte des irréversibilités la relation (XV.01) devient :

0Q
f — <0 (XV.02)
c T

Exercice XV.1

Un gaz parfait, décrit réversiblement un cycle de Beau de Rochas. C'est-a-dire, une
transformation cyclique composée de deux isochores et de deux adiabatiques conformément au
croquis ci-dessous.

C'est le cycle théorique des moteurs a combustion interne a allumage commandé en excluant
les phases d'aspiration et d'échappement.

p

4*3 B j

i
W

>V
Vi Vg
Point n?(;;’t haut Point ;;f;rt bas
Figure XV.02 Cycle de Beau de Rochas Figure XV.03 Moteur a allumage commandé
1) Calculer le rendement thermique de ce cycle en fonction du taux de compression
VB
=— etdu
H v, 4

2) Montrer que l'intégrale de Clausius est nulle pour cette transformation cyclique.
Corrigé.
1) Tout d'abord, suivons chacune de ces évolutions.

- Evolution adiabatique (compression)1 — 2
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De la relation (VIII.07) nous déduisons :

T (&)(V‘” _ 0D

VH

- Evolution isochore (combustion) 2 — 3

De l'expression simplifiée du premier principe (XI1.06) et de la relation (XII.01) nous avons :
6Q = dU = mc,dT

Soit en intégrant : Q =mc, (T;—T,)
2-3

- Evolution adiabatique (détente) 3 — 4
T Vo@D 1\ -1 T T T
e (—H) = (—) ou ==u"V etparsuite >=-2
T3 Vs H T, T, T
- Evolution isochore 4 — 1

Q =mc, (T,-T,)
4-1
Du premier principe pour une transformation cyclique, relation (VIIL.04), nous déduisons le
travail échangé avec le milieu extérieur :

-W=Q=Q +Q

2-3 4-1

Pour déterminer la quantité de chaleur fournie au cycle, il est intéressant de remarquer que

T, >T, et T, > T,. Cequiveutdireque Q > 0 et Q < O0etparconséquent Q est
2—-3 4-1 2-3

la quantité de chaleur regue par le cycle.

De la définition du rendement thermique (XIV.01) nous déduisons :

T.
+ T,(1—7
n:_WZZ—Q’3 4(—%1: _T4_T1:1_ 4( T4):1_£
Q Q T,—T _T. T.
1 L5 3 2 T3(1 T3) 3
. I; T, r,_T,
puisque —=-— > —=—
s I T, Ts

D ou l'expression du rendement thermique d'un cycle théorique de Beau de Rochas :

n= 1 _’u()’—l)

Nous voyons ainsi que le rendement augmentera avec le taux de compression.
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Remarque :

Les calculs montrent que le travail et la chaleur sont positifs lorsqu'ils entrent dans le systeme
etudié. Par contre, ils sont négatifs lorsqu'ils en sortent. Un moyen mnémotechnique un peu
trivial, consiste a penser a son porte monnaies, ce qui rentre est positif et négatif dans le cas
contraire.

2) Calculons l'intégrale de Clausius pour ce cycle.

f Q_ [ 9@ [ 9, Q&J °Q
Cycle 4-1

T 1-2 T 2-3 T 3-4 T T

) 3 mc,dT Tvmc, dT
f _y + f —+ 0 +f =
Cycle

T T T T, T
5Q ( T, T, T,T,
— =mc ln—+ln—)=mc In
nycle T 7 TZ T4 v T2T4
T1T3 . .
or =1, il s'ensuit donc :
T2T4-

1)
[,
Cycle T

3 Transformations non cycliques

Soit une transformation non cyclique amenant un systéme d'un état initial (7) a un état final (f).
Deux cas sont a envisager suivant que la transformation est réversible ou irréversible.

3-1 Transformations réversibles

Pour faire subir a un systéme une transformation réversible, utilisons le chemin "a" pour passer
de I'état initial (i) a I'état final (f). Puis revenons, réversiblement, a I'état initial (/) mais, cette
fois, en utilisant le chemin "b", conformément a la figure XV.04.

Remarquons que i - f o devient ainsi une transformation cyclique réversible.
a b
L'intégrale de Clausius est donc nulle.

) ) )
J oQ_ _£+j_8=0
Cycle T i-f T f::i T
@ b

Pour aller de (i) a (f) nous aurions pu utiliser un autre chemin réversible, par exemple, le
parcours "c" et revenir, comme précédemment, parle chemin "5".
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)% Un raisonnement calqué sur le précédent
conduit a écrire :
d d
f f QL [,
o T T

S

ol

[ b
i Ce qui permet de déduire :

a [
>V i_jT i_jT

Figure XV.04 Divers chemins

Quelle que soit la transformation réversible, pour aller du point (i) au point (f), l'intégrale de
Clausius conserve la méme valeur. Elle ne dépend donc que de I'état initial (7) et de I'état final
(f) du systeme.

Ce qui peut s'exprimer par:

5Q

Cette fonction d'état s, ainsi définie, est appelée "entropie", plus précisément ici, entropie
massique (J.kg'K"). Comme u et h, elle n'est définie, a priori, qu'a une constante prés.

Lorsque l'entropie n'est pas massique (J.K '), elle est notée S.

Pour toute transformation élémentaire réversible, nous avons :
0Q
ds = T ouT ds =0Q (XV.04)

ds est une différentielle totale exacte, ce qui n'est pas le cas de 3Q.

Une évolution adiabatique réversible a lieu a entropie constante, ds = 0. Elle est dite
isentropique.

L'entropie n'est pas accessible a nos sens, comme d'ailleurs I'énergie interne, l'enthalpie ou
I'énergie cinétique.

Il est intéressant de remarquer que toute énergie est le produit d'une variable intensive par une
variable extensive.

Par exemple :

Dans le champ de pesanteur : W = — m g 95
extensive intensive
Pour la compression d'un gaz dans un capsulisme: 6W =— p ciL/
[}

intensive extensive

Pour une énergie thermique : 6Q = T dS
(o} —
intensive extensive
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L'entropie est une variable extensive. L'entropie d'un systéme est la somme des entropies de ses
constituants. Par exemple, I'entropie dun systéme composé d'air et d'eau sera la somme de
l'entropie de 'air et de I'entropie de I'eau.

3-2 Transformations irréversibles

Cette fois, pour aller de I'état initial (7) a 1'état final (f) en utilisant le chemin "a", faisons subir
au systéme une transformation irréversible. Puis revenons, réversiblement, a I'état initial (i) en
empruntant le chemin "", conformément a la figure XI.05.

Cette transformation cyclique i 2 f o1 est donc irréversible et en vertu de la relation (XV.02)

a b
nous avons :
é
[ 2, ,
i=f oi T 1 Chemin réversible
a b
Or cette intégrale peut se décomposer de Y
la fagon suivante : ;
6Q 5Q . : L
—+ — <0 i vy .+~ Chemin irréversible
iop T Jpi T ROTC AR N
[ — a
S;—=Sf >
v

Figure XV.05 Transformation cyclique irréversible

11 s'ensuit donc :

0Q
f — < S—s; (XV.05)
.. T
i->f
et sous forme différentielle :
0Q
?< ds ou 0Q < T ds (XV.06)

Ces résultats peuvent également s'obtenir en comparant une transformation irréversible avec
une transformation réversible en faisant passer, dans ces deux cas, un fluide du méme état initial
au méme état final.

Raisonnons sur une transformation élémentaire et appliquons le premier principe de la
thermodynamique (XII1.03). Utilisons I'indice "r" pour la transformation réversible et "ir" pour
la transformation irréversible.

dw, +98Q, = dw;. +98Q;. = du + de,

Du fait des irréversibilités dw,,. — dw,. = §f > 0, cette différence est toujours positive quel
que soit le signe du travail dw.

-Si Sw > 0 le travail estregu par le fluide, par exemple ; les pompes, les ventilateurs et les
compresseurs. Pour obtenir le méme résultat, une machine imparfaite consommera plus
d'énergie que la machine parfaite, Sw;. > dw, donc §f > O.
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-Si 6w < 0 le travail est fourni par le fluide comme par exemple les moteurs ou les turbines.
Une machine imparfaite produira moins d'énergie que la machine parfaite pourobtenir le méme
résultat :

|6w;,.| < |8w,| et parconséquent Sw;, — dw, = —|6w;,.| — (= |[dw,|) = 8f > 0.

Il s'ensuit :

Sw, — 0w, =36Q,— 5Q,,= 6f> 0
Avec ces notations la relation (XV.04) permet d'écrire : 6Q, = Tds
Soit : Tds=6Q,.+df
Dorénavant on écrira :

Tds=0Q+df (XV.07)

En posant tout simplement : 6@ = 0Q,,
Notons que I'on retrouve trés facilement les résultats précédemment établis.
- Si I'évolution estréversible : 6f =0 et Tds=JQ

- Si I'évolution est irréversible, of#0 etT ds= 8Q+ of
ou encore 0Q < Tdspuisquedf > 0

Ainsi les relations (XI1.05) et (XI1.06) revétent une forme beaucoup plus simple.
Tds =du+pdv=dh—vdp ou TdS=dU+pdV =dH-Vdp (XV.08)

Cette équation reste valable aussi bien pour une évolution réversible que pour une évolution
irréversible.

Exercice XV.2

Un gaz idéal parfait, de massem et de constantes r et y, subit des transformations qui l'amenent
d'un état initial (i), caractérisé par pi et Ti, a un état final (f) ou regne une pression pr et une
température Ty.

Calculer la variation d'entropie en fonction des données.
Corrige.
La variation d'entropie s 'obtient a partir de la relation (XV.08) :

dH Vdp
dS=———
T T

La variation élémentaire de ['enthalpie s'obtient a partir de la relation (XIIL.02), en tenant
compte de l'expression de la capacité thermique massique en fonction des constantesr ety.
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yr
dH =m ¢, dT = m——dT
y—1
L'équation d'état des gaz parfaits permet d'écrire :
V. mr
T p
Si bien que nous avons :
dr d
ds = mr <L— - _p)
y-1T p

D'ou la variation d'entropie en intégrant cette derniere relation :

14 f pf)
Se—=8, =mr ( In2+—in—
ro y—1 T, pi
Y
TG p,
Sp—=S§ =mrin (—f>y Pi
T; br
Remarque :
yz—l) Di

Si I'évolution était isentropique Sy =S , [(gﬁ)( p—l = 1 on retrouve la relation (XII1.07)
i f

pour une évolution adiabatique réversible.

4 Extension du second principe aux irréversibilités thermiques

La relation (XV.07) estI'égalité de Jouguet limitée aux irréversibilités internes. En effet nous
nous sommes uniquement intéressés a la transformation d'un fluide sans nous préoccuper de la
réversibilité ou non des transferts de chaleur.

Le postulat de Clausius montre que les irréversibilités d'ordre thermique proviennent des
différences de température entre la source et le systéme évoluant. Il est difficile, dans la
pratique, d'annuler cet €cart de température.

Il est important de bien différentier les pertes thermiques, extérieures au systéme qui évolue, et
les pertes internes comme le frottement par exemple.

Pour bien distinguer ces pertes, comparons, comme précédemment, des transformations
réversible et irréversible, qui font passer le systéme, dans les deux cas, du méme état initial (7)
au méme ¢état final (f) infiniment voisin.

Supposons qu'au cours de sa transformation ¢lémentaire, avec transfert de chaleur, le systéme
se trouve a une température Tsyseme alors que la température 8 régne dans la source.
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Pour aller réversiblement de I'état initial (i) a I'état final (f), le transfert de chaleur est
obligatoirement isotherme a la température 6 de la source. Les autres €volutions sont
nécessairement isentropiques.

Représentons ces évolutions sur un diagramme 7, s. Ce diagramme, trés utile a 1'é¢tude des
turbomachines, sera traité lors d'un prochain chapitre.

De la méme facon que précédemment, utilisons I'indice "7" pour la transformation réversible et
"ir" pour la transformation irréversible.

Pour aller réversiblement de i a f nous avons :
6Q, =0 ds

Par comparaison avec la transformation irréversible : §Q, = 8Q; + 0 frorates

TA
Evolutions réversibles Le termed fi,qq0s représente ici les pertes
2] totales d'énergie.
/s Ces pertes comptabilisent les irréversibilités
T§iame "1 i ::P‘\ thermiques plus les irréversibilités internes.
i ““ 1
Trahsformation irréversible Pour faire apparaitre les pertes internes de la
- — As _ transformation irréversible i — f, utilisons la
' — relation (XV.07) :
S sy s

. . fqr . TdS=5QiT+5f
Figure XV.06 Transformations élémentaires

Cette fois o freprésente, comme nous le savons, la perte énergétique interne.

Afin d'exprimer la perte totale, on élimine dans ces trois dernicres relations les transferts de
chaleur 0 Q;,. et 6Q,.. Soit :

8ftotates = (0 —T)ds + 8f (XV.09)

pertes thermiques pertes internes

En quelque sorte (8 — T)ds mesure le travail produit par une transformation cyclique réversible
fonctionnant entre la source chaude a la température 6 et la source froide a la température 7.

Cette perte, par irréversibilité thermique (6 — T)ds, revét un caractére idéal. Elle constitue le
supplément de travail que I'on tirerait de I'équilibre thermique du systéme avec la source. Par
contre, la perte interne 6 f appartient bien au phénomene réel.

C'est I'exergie qui développe ces notions de pertes thermiques et internes. L'exergie, fonction
d'état, est utile dans I'é¢tude des cycles, un peu moins dans le domaine spécifique aux
turbomachines.
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Exercice XV.3

Un corps solide de capacité thermique constante "mcp" se trouvant a la température T; est mis
en contact, a pression constante, avec une source de chaleur a la température 8 > T,. Ce corps
semet en équilibre thermique a la température Ty = 6.

Calculer la variation d'entropie du systeme constitué par la source et le corps.
Corrigé
Aussi bien pour le corps que pour la source, l'évolution est purement thermique.

La variation d'entropie du systeme est la somme de celles qui sont obtenues par la source et le
corps.

- Pour la source le transfert de chaleur est réversible puisqu'il s'effectue a la température
constante 0. La quantité de chaleur cédée par la source est opposée a celle qui est regue par le
corps.

SQcorps = mc, dr = _aQsource

Qcorps = mc, (9 - Ti) = _Qsource

(le travail et la chaleur sont positifs lorsqu'ils entrent dans le systeme étudie et négatifs dans le
cas contraire)

La variation d'entropie de la source estdonc :

mc,(0—T,)
Assource =- %

- Pour le corps solide, nous avons a priori : Tds = 8§Q + 8§f mais comme ['évolution est
uniquement calorifique, (par exemple, une barre métallique introduite dans un four) le terme
caractérisant les irréversibilités internes est supposé nul. 6f = 0

Par suite la variation d'entropie du corps est :

dT

dscorps =mc, T
0
ASorps = MCy, lnF

i

La variation d'entropie du systeme constitué par la source et le corps est donc :

0 T;
S¢ —§; =mc, <lnf— 1+§)

l
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5 Variation d'entropie

Tout changement d'état d'un systémes'accompagne d'une variation d'entropie que nous pouvons
écrire sous la forme :

6Q  o6f
ds = —+—
S +I_,
ds, ds;

La premiere contribution ds. résulte des interactions entre le systéme et son environnement. S'il
s'agit d'une évolution adiabatique, réversible ou irréversible, ds.estnulle. En quelque sorte c'est
I'entropie transférée de l'extérieur et ds. peut étre négative, nulle ou positive suivant la
transformation considérée.

La deuxiéme contribution ds; provient de l'entropie crée dans le systéme au cours de sa
transformation. Elle représente la dégradation énergétique produite par des processus internes
au systeme. Elle ne peut pas étre négative.

ds; = 0 pour une transformation réversible

ds; > 0 pour une transformation irréversible

6 Entropie des systémes isolés

Considérons une transformation réelle, donc irréversible, d'un systéme isolé. En vertu de la
relation (XV.02) nous avons :

— < S;—S;
f i
LfT

Puisque le systéme est isolé, il ne peut pas y avoir de transfert de chaleur avec son milieu
extérieur, donc :0¢ = 0 etpar suite s; < s¢

Si un systeme isolé évolue, I'entropie du systeme croit en général. Ce n'est que dans le cas idéal
ou toutes les transformations seraient réversibles que I'entropie demeurerait stationnaire.

Ce théoréme est attribué a Clausius.

Clausius, considérant I'univers comme un systeme isolé, avait conclu que I'entropie de I'univers
tend vers un maximum. L'augmentation d'entropie d'un systeme isolé est liée a une dégradation
énergétique qui se convertit en chaleur. Ce qui conduit a penser que 1'évolution du monde ne
pourra tendre que vers 1'égalisation des températures. Le monde serait alors dans un vaste état
d'équilibre thermodynamique dans lequel aucun événement ne pourrait plus se produire.

Cette proposition entraine que l'univers ne passe jamais deux fois par le méme état. Il convient
d'accueillir avec prudence ces théories scientifico-philosophiques, car rien ne nous permet
d'assurer que le concept d'entropie est valable dans toutes les régions de l'univers. En particulier,
la ou il regne des températures se chiffrant par des centaines de milliards de degrés.
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Chapitre XVI

Relations thermodynamiques

1 Généralités

Des méthodes purement mathématiques permettent d'obtenir des relations utilisant les
propriétés thermodynamiques des fluides. L'équation d'état, dun corps pur a I'é¢tat de fluide
homogene, est caractérisée parune équation de la forme :

F(p,v,T) =0

Cette relation peut également se mettre sous les formes suivantes :

v=v(p,T)
p=pWT)
T =T(p,v)

Dont les différentielles sont :

OF  9F  OF
S dp+——dv +——dT =0

ap d aT
Ou avec une autre écriture :

F,dp + F,dv + F7.dT = 0 (XVLO1)

_ (2 o
dv = ( av)r dp + ( aT)p dr (XVL02)

_ (2» 9p
dp = ( aU)T dv + ( ar),, dT (XVL03)

_(r or
dT = (av)v dp + (av)p dv (XVL04)

Ces notations sont utilisées par les thermodynamiciens.

Elles rappellent, tout simplement, que la dérivée s'est effectuée en considérant comme constante
la variable portée en indice.

Dans les relations ci-dessus, ces notations peuvent paraitre superflues. Par contre, sila situation
d'un fluide est caractérisée par des fonctions d'état comme par exemple : F(4,s,p) = 0, nous
verrons apparaitre des termes de la forme :
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<6h> (0h> )
o 55 ) etc...

S

D'ou la nécessité d'utiliser ces notations pour lever toute ambiguité.

Travaillons sur les expressions précédemment obtenues. Portons (XVI.02) dans (XVLO1) et
groupons les termes en dp et dT.

F'+F'(av) dp + F'+F'(av) dp =0
p v ap . p T v aT » p =
Les termes entre les "crochets" sont nuls, et par suite :

’

ov F, ov Fy
G-« G-
o), F ar), ~ _F

v

Faisons une permutation circulaire ou portons (XVI.03) et (XV1.04) dans (XVI.01) :

’

<6T> R, (aT) _ K

wp F W), F
), =%« D=7
or/),  F, w/r F

Le lecteur vérifiera que les relations ci-dessous sont également satisfaites :
=1

o), o).~

&), G,

(&), 7). =1
G, ), &), =

) ), (),

2 Coefficients de dilatation et de compressibilité

Les dérivées partielles figurant dans les relations précédentes permettent de définir les
coefficients suivants :

48



Chapitre XVI. Thermodynamique Relations thermodynamiques

- Coefficient de dilatation isobare :

_1 (o
a=1 ( aT)p (XVLO5)
- Coefficient de compression isochore :
1 (dp
B=1 (2) (XVL06)

- Coefticient de compressibilité isotherme :

rn==1 () XVL07)

Pour un accroissement de pression, nous avons une diminution de volume, d'ou la nécessité de
mettre un signe moins devant cette expression.

Ces trois coefficients ne sont pas indépendants, ils sont liés par une relation facile a établir :

o
Xr=— (XVIL.08)
"B
- Coefficient de compressibilité isentropique :
1 sov
Xs =~ (-) (XVI1.09)
v \dp/,
Exercice XVI. 1

Les coefficients de dilatation isobare a et compressibilité isotherme x ; d'un certain gaz peuvent
étre représentés par les relations empiriques suivantes :

r 1 a
a=— et Yr=—+-—
pv p v

", n

Ou r est la constante de ce gaz, "a" une constante.

Déterminer l'équation d'état de ce gaz sachant que pour v fixé, nous avons p qui tend vers zéro
si T tend également vers zéro.

Corrigé

Par définition de ces coefficients, nous avons :

_1(61;) T . _ 1<6v> _1+a
- aT/, pv ° A=y op/, p v

Cela s'integre facilement en considérant que la température T est une fonction de p et de v.
Soit :
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Donc :

1l s'ensuit :

<6—T>=(E+@) = Tzzjr—v+CL2—zf+f(v)

=§+df(v)=g . Y _

= " I 0 = f(v)= Constante

2
v oa

T = i +L+ Constante
T 2r

Puisque pour v fixé, nous avons p et T qui tendent vers zéro, cela implique que la constante est
nulle. L'équation d'état de ce gaz s'écrit donc :

a 2
pv+%=rT

3 Coefficients calorimétriques

Faisons subir une transformation élémentaire et réversible a un fluide homogeéne quelconque.
Pour une évolution réversible (§f = 0) et pour une masse unité, la relation (XV.08) s'écrit :

Tds=6Q0Q=du+pdv=dh—vdp

L'énergie interne u et I'enthalpie 4 peuvent s'exprimer en fonction des couples (p,v), (p,T) ou
encore (v, 7). Il en est donc de méme pour la quantité de chaleur transférée Q.

Soit a choisir, pour §Q, parmi I'une des trois relations suivantes :
6Q = c,dT + L dv (XVL10)
ou ¢, et /; sont des fonctions de 7et v
6Q = ¢,dT + hpdp (XVLI11)

ou ¢, et A, sont des fonctions de 7et p
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6Q = A,dp + u,dv (XVL12)
ou 4, et u, sontdes fonctions de pet v

La quantité de chaleur §Q, transférée par le systéme avec son milieu extérieur, peut toujours
étre exprimée en fonction de deux des six coefficients c,, I, Cp» hy, A, et K- Ces
coefficients ne sont pas indépendants les uns des autres. Il existe entre eux quatre relations.

Les coefficients [y, iy, A, et p,, sont exprimés en fonction des capacités thermiques
massiques ¢y et ¢y qui sont facilement accessibles a I'expérience. A titre d'exemple exprimons
Iret hr.

Des relations (XVI.10), (XVI.02) et (XVI.11), nous déduisons :

9 9
80 = c,dT +lpdv = c,dT + I, [(%) dp + (a_;]*) dTl = ¢, dT + hydyp
T p

Groupons les termes en d7 et dp :

9 9
¢, + 1 () —c lar + |1 (22) —h,|dp=0
v Tan 1% Tap T
T

Soit encore :

br = pav -
(7,
ov c, —c¢, (0v ov\ (0T c, —¢C,
e=tr(55), = @ G),= = &), 5),= - (g—i;)v
On trouverait de méme :
b= et A=
Gr, (@),

Remarquons, qu’expérimentalement, il faut attacher un soin tout particulier a la détermination
numérique du ¢y et du ¢, car les évolutions ne sont jamais rigoureusement réversibles.

4 Formules de Reech

Pour une évolution isentropique, la relation (XVI.12) permet d’écrire :

dv Ay

0=2,dp + p,dv = —=——
dp yp

Cette relation est restrictive aux évolutions isentropiques si bien qu'il est préférable d'écrire

ov ) dv i .,
(6_) au lieu de o Remplagons 4, et y,, par leur valeur trouvée precédemment :
p/ p
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Puisque

(%)p_(av)p (6T) 1 <av)T

@) ()
aTv avT

Il vient en définitive la relation connue sous le nom de formule de Reech.

(),

y = (XVI.13)

(),

5 Formules de Clapeyron

Comme précédemment, faisons subir une transformation ¢élémentaire réversible a un fluide.
Tout d’abord, considérons que I’énergie interne u et ’entropie s sont fonction des deux
variables indépendantes T et v.

d _<6u) d +<6u> dT (XVI.14)
“= v/, %Y T \ar), '
d _(65) d +<65> dT (XVL15)
= \av), * ot/ '

On déduit des relations (XVI.10), (XVIL.14) et (XVIL.04) :

6Q = c,dT + 1l dv=du +pdv =Tds

0= [[2) o]+ (2)

Regroupons les termes en dv et dT.

0= [(2) +o-tfar+ ), -

On déduit alors :

Ju Jdu
<%> —l—p et (6_T) = ¢, (XVI.16)
T v

La relation et (XVI.15) permet d’écrire :
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6Q ¢, -
=—=—dT —
ds T T dT + T dv
d _(65) d +<65> aT
= \av/,* " \ar),
Soit:
0s Ly 0s C,
3,5 « G5
ov/y T ar/, T
En écrivant que :
0%u 0%u 0%s d%s

9vaT _aTav ¢ awar _ aTav

((’Jc,,) _(alT> (ap> _(OIT) L
ov/, \or/, \or/), \or/), T

Ce qui permet d’écrire la premiere formule de Clapeyron :

On obtient :

op
I, =T <6_T>v (XVIL.17)

En choisissant T et p comme variables indépendantes on obtient la deuxieme formule de
Clapeyron :

ho = T(a”) (XVL18)
r— " \er/, '
Exercice XVI.2

o 6%) 9%p
Montrer que nous avons la relation ( 90 ) T < 372 )

Corrigeé

Précédemment nous avons montré que :

&), GF).~ G,

De la premiere formule de Clapeyron nous obtenons :

al d d d 0?
or ), orl \ar),l, ~ \ar/, ™ "\arz)

. . (0c, 0’p
D ou le résultat demandeé : (—) =T|—
ov/r aT? ,

53



Chapitre XVI. Thermodynamique Relations thermodynamiques

6 Formule de Mayer généralisée

De la premiere formule de Clapeyronetde I’expression de /7 en fonction de ¢p et de ¢v on obtient
immédiatement :

T(av) (0}0) (XV1.19)
c,— ¢, =T\ (== :
po v ar/),\aT/,

Evidemment on obtiendrait le méme résultat en travaillant avec la deuxiéme formule de
Clapeyron.

7 Formules de Maxwell

Pour établir les formules de Maxwell on considére les quatre couples de variables
indépendantes, sv, sp, Tv, Tp, pour décrire une transformation. A chacun de ces couples, on
associe une fonction caractérisant I’état du systéme.

7-1 Premiére relation de Maxwell

La relation (XV.08) permet d’associer 1’énergie interne au couple de valeurs indépendantes s,v.
Soit :

du = Tds — pd _<6u> d +<6u> d
u= spv—aSTs avsv

<au) _7 ‘ (6u> _
as/r ¢ v/, P

Il s’ensuit que :

*u  0*u
La premicre relation de M axwell s’obtient immédiatement en écrivant : =
dsdv  dvds
5).--) xv120)
v/,  \ds/, ’

On procede de fagon analogue pour obtenir les autres relations de M axwell.

7-2 Deuxiéme relation de Maxwell
Au couple de valeurs s et p on associe I’enthalpie dh = Tds + vdp et on obtient :
(a_T) __ (a_”> (XVI21)
dp/, 0s/,
7-3 Troisieme relation de Maxwell

11 faut définir la fonction d’état /' =u - Ts, appelée énergie libre ou fonction de Helmholtz, pour
le couple de valeurs Tet v.

On a donc :
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dF =du —T ds —s dT = du — (du + pdv) — sdT

dF = pd dT—(aF)d+<aF>dT
—Par TSl =50 ), 4 T \ar ),

Ce qui permet de déduire la troisiéme relation de M axwell :

7)., =~ &), xv122)

7-4 Quatrieme relation de Maxwell

Au couple T et p on associe une fonction d’état G que ’on désigne par enthalpie libre ou
fonction de Gibbs : G = h - Ts.

dG = dh — T ds— s dT = dh — (dh — vdp) — sdT

dG = vd dT—(aG) d +<66) ar
- vep T sal = ap/ P ar/,
D’ou la quatrieme relation de M axwell :
(av) _ (65) XVL23
or/,  \op/, (x¥123)
Exercice XVI.3

On comprime isentropiquement, de 1 a 10 bar, un liquide ayant une température initiale

ti=26°C.
Calculer la temperature finale tr sachant que p, c,, et & sont constants et ont pour valeurs :
p =700kg/m3 ¢, = 25000/ /kg.K a =1,3.103K"1
Corrigé
La deuxieme relation de Maxwell est bien appropriée pour résoudre ce genre de probleme.

(50). = G2),

N

Or le deuxieme membre de cette relation peut s écrire, compte tenu de (XVI.05) :

&), = &), G), = (),

De (XVI.11) on déduit :
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1l s’ ensuit que :

cp_(OS) _ 1 _av
T —\ar/), — (dT\ ~ (v
’ (ml, (%)p
c_p= av
" (%)
dp s
Soit :
(GT) _ avT_ aT
op/s & PG

Puisque I’évolution est isentropique, nous pouvons remplacer les " 0" par des "d". Soit :

dT a 2 (pop;
T _ L N T, = Tiepcp(pf )

T pc

Passons a l'application numérique :

1,3.1073

T, = (273,15 + 26) €700x25000

(10-1).10°

Tr = 299,17K
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Chapitre XVII

Gaz réels

Gaz réels

Le chapitre précédent est I'outil indispensable aux traitements analytiques des gaz réels.

1 Validité de I'équation d'état des gaz parfaits

Pour mettre en évidence les écarts entre les gaz parfaits et les gaz réels on utilise souvent le
facteur de compressibilité :

Z

_ Pl _pPv
RT T

(XVIL01)

Par exemple pour une température de 0°C le tableau XVIL.1 donne les valeurs de Z pour
différents gaz a diverses pressions.

0,8
0,6
04
0,2

Pression en bar
Gaz
0,1 1 51

H 1,0000 1,0001 1,0253
H»> 1,0002 1,0007 1,0316
N2 0,9999 0,9995 0,9841
Oz 1,0000 0,9992 0,9565
CO2 0,9993 0,9932 0,104

Tableau XVII. 1 Facteur de compressibilité

e 380°C «» a» ¢ 500°C e 800C

A

\

\

"

0 100 200 300 400 500 600 700 800 900 1000

Figure XVII.01 Facteur de compressibilité de la vapeur d'eau

Pression en bar
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Souvent ces variations sont représentées graphiquement en portant Z en ordonnée et la pression
p en abscisse. Pour les gaz parfaits et pour les gaz réels aux trés faibles pressions, le facteur de
compressibilité Z est égal a l'unité.

2 Equations d'état sous forme du viriel

Avec une excellente approximation, on obtient l'expression d'une isotherme en considérant la
relation empirique :
Z=1+4+Bp+Cp*+Dp3+-- (XVIL02)

Dans ce développement en série nous avons bien Z = [ pourp = 0.

Puisqu'en premicre approximation V, varie comme — , il est aisé d'exprimer, a température

p
constante, Z en fonction du volume V;, :
Z=1+>+5+2 4. (XVIL03)

Ces deux développements en série sont appelés "équations d'état sous forme du viriel". Les
coefficients B, C, D.... ou B", C*, D"....sont des fonctions de la température et s'appellent
deuxiéme, troisieéme, quatrieéme, etc... coefficient du viriel.

Exercice XVII. 1
Montrer que les coefficients du viriel sont liés par les relations :

B* C*"—B" _D*+ZB*3—3B*C*

B =— ; C=—— ; D = ;
RT (RT)? (RT)3

etc. ...

Corrigé

Tirons, des relations (XVIL.01) et (XVIL.03), la valeur de la pression p.

_rr(1+ 20D
P= V. V2T V3

D ’out les expressions de p’ et P° en conservant que les premiers termes.

2 = (RT)Z (1+ZB*+ 20T+ B + (0B + D) + )
P=\y A V3

3 = (RT)3 (1+3B* + ! (3C*+3B*?) + )
P =\y AR

Portons ces valeurs dans la relation (XVIL.02). En regroupant les termes on obtient :
BRT 1 1
Z=1+ 7+ vz (BB*RT + CR*T?*) + Ve (BC*RT + 2B*CR?T? + DR3T?3) + ---

Par identification avec la relation (XVII.03) on obtient le résultat cherché :
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B*
B* = BRT - B2
RT
C* = BB*RT + CR2T? = =B
B ~ (RT)?
D* + 2B* —3B*(C*
D* = BC*RT + 2B*CR2T? + DR3T?3 = =

(RT)3
3 Pressioninterne et covolume

Pour un gaz parfait les forces d'interactions a distance entre molécules sont nulles et par
conséquent les forces de pression sont uniquement dues a l'action exercée par les parois du
récipient qui les contient.

Dans le cas d'un gaz réel il en est tout autrement. La pression p exercée par un gaz réel, sur la
paroi du récipient qui le contient, sera moins grande que celle d'un gaz parfait qui occuperait le
méme volume dans des conditions de température identiques.

On posealors :
pression du gaz parfait = p+m
La quantité  est appelée pression interne.

Dans le modele du gaz parfait, il est admis que les molécules peuvent étre considérées comme
ponctuelles. En réalité, ce n'est pas le cas. Pour se déplacer, les molécules ne disposent pas du
volume du récipient qui les contient mais d'un volume inférieur.

Le volume a comptabiliser est celui qui est compris entre les molécules. On considere donc le
volume :

V—->b
V estle volume du récipient.

b est appelé le covolume. Il correspond au volume minimal que puisse occuper la matiére. On
montre que b est égal a quatre fois le volume propre des molécules.

Ces remarques, concernant les notions de pression interne et de covolume, incitent a remplacer
I'équation d'état des gaz parfaits par la relation :

(p+m(V,, — b) =RT (XVIL04)

La relation (XVIL.04) n'est guere utilisée sauf pour des pressions trés élevées. Dans ces
conditions, la pression interne 7 devient négligeable devant p.

Exercice XIII.2
Montrer que pour un gaz d'équation d'état p(v —b) =T :

1 — L'énergie interne ne dépend que de T.
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2 — Les équations des isentropiques sont de la forme : p(v — b)Y = constante
Corrigé
1 — Choisissons T et v comme variables indépendantes.

Des relations (XVI.16) et (XVI.17) nous déduisons que :

(50), =tr-v =7(57)
ov), T P ="\5r), 7P

. , . , T oL (D
Par ailleurs 'équation d'état p = UTTb permet d écrire (a_) =—= g
v

ov
température puisque T et v avaient été choisis, a priori, comme variables indépendantes.

. 5} , .o , .
1l s'ensuit que (—u) =0 = u#f(v). L'énergie interne n’est donc fonction que de la
T

2 — Travaillons avec la formule de Reech (XVI.13)

(),

(3)
dp/
De l'équation d'étatv — b = % nous déduisons que :

(av) _ rT_ v—>b
dp p? p

T

Et par suite :

(617) _ lv—0>b
op Yy p

N

Cette derniere relation n'estvraie que si l'évolution est isentropique donc écrivons que :
(6v> dv
dp/, dp

dv +dp_0
yv—b p

1l s'ensuit alors que :

Soit en intégrant :
yln(v—b) +Inp =c

p(v — b)Y = constante
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4 Equations d'état des gazréels

Un grand nombre d'équations d'état ont €té proposées, parmi lesquelles la plus connue est celle
de Van Der Waals. Des considérations théoriques, ont conduit Van Der Waals a admettre que
la pression interne était indépendante de la température et inversement proportionnelle au carré
du volume.

a
N
L'équation de Van Der Waals s'écrit donc:
(p + V%) (V.. — b) = RT (XVILO5)

Dans le prochain chapitre consacré aux changements d'états des corps purs il sera utilisé, a titre
d'exercice, une méthode visant a déterminer les constantes aetb.

Exercice XVII.3

Une compression isotherme ameéne un gaz réel d'un état initial i a un état final f.
Sachant que ce gaz obéit a l'équation de Van Der Waals et que le covolume b est petit devant v,

calculer :
vy
— f p dv

Vi
Corrigé

De l'équation de Van Der Waals nous tirons la valeur de p pour intégrer :
vr rr rT a v, —b a a
—f pdvz—f ( ——2>dv=—rTln - ———
v y, \WW—b v v;—b vy v

1 b
v, 1 1
=Tl | 21— Y + a<———>

Puisque le covolume b est petit devant le volume v nous pouvons écrire :

b b
7 b<1 1> . l v, 179 b<1 1)
=~ —_ _——— nf — = — —_———
1_£ v, vy vfl_g v, Vs
Yy Yy

1l vient en définitive :

vr v, 1 1
—J pdv=rTin—+ (a—1rTh)|———
v Uf vl Uf

Si le gaz était parfait les constantes a et b seraient, évidemment nulles.
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Clausius a cherché a améliorer I'équation de Van Der Waals en supposant que la pression
interne dépendait également de la température.

*

a

= a et f§ étant des constantes
TV, + B)?

T

D’ou I'équation de Clausius :

*

(p + S ) (V,,—b) =RT (XVIL06)
TV, +B)?

L'équation de Daniel Berthelot est trés souvent utilisée :

kk

a

2 ) (V,,—b) = RT (XVIL07)

(bt
Ces équations empiriques sont nombreuses et c'est la quantité des constantes qui augmentent.

Citons, par exemple 1'équation de Redlich-Kwong a 3 constantes :

_ RT a
" Vp—b TV, (V,+b)

p

Ainsi que I'équation de Wohl a 4 constantes :

RT a 4 c
V.,—b TVm(Vm —b) T2V2

p:

5 Capacité thermiques massiques des gaz réels

Lorsque les capacités thermiques massiques sont constantes on dit souvent que le gaz est idéal
parfait.

Lorsque les capacités thermiques massiques ne dépendent que de la température (loi de Joule),
le gaz est dit parfait. Pour décrire leurs variations en fonction de la température on utilise des
relations empiriques.

— 2
C,=a+DbT+cT avec C, en]/molK

Le tableau XVIL.2 donne les valeurs des constantes a, b, ¢ pour différents gaz a la pression
atmosphérique et pour des températures comprises entre 273 K et 1500 K.
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Gaz a b c

H> 29,09 8.3710* 2,01 10°
02 25,74 1,30 1072 3,86 10°°
N> 27,29 5,23 1073 -4,0210°
Cco 26,87 6,99 1073 -8,20 1077
H20 30,39 9,63 1073 1,18 10°°
CO» 25,99 4,35 1073 -1,48 107

Tableau XVIL.2 valeurs des constantes a, b, c.

Pour un gaz réel les capacités thermiques massiques dépendent également de la deuxieme
variable qui définit I'état du gaz, pression ou volume.

Le chapitre X VI, consacré aux relations thermodynamiques, montre que pour un fluide réel et
homogene, il existe des relations entre les capacités thermiques et certaines grandeurs
thermodynamiques. Par exemple rappelons :

<6u) _
or), = <

0 02
(52, -1 (5%
ov/y oT? ,

-7(5) ()
@~ %="\or),\ar/,

Exercice XVIIL.4

Exprimer, en fonction des variables d'états T et Vu, la capacité thermique molaire a volume
constant d'un gaz obéissant a l'équation de Daniel Berthelot.

Corrigé

Pour une mole de gaz nous avons :

(E)Cv> _7 <62p>
—\a572

W/, aT v

De l'équation XVIL.O7 nous tirons l'expression de la pressionp :

RT * R 2a*”
a s < p) 3 a
74

P=yv —b Tve arz) T T Tspz

Que nous portons dans la relation précédente :
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<0 C,,) 2a™*
WVn/ . T2V2,
Par intégration nous obtenons le résultat cherché :

Za**

v Ty

C + C,,

La constante C,, est la capacité thermique molaire a volume constant lorsque Vm tend vers
l'infini.
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Chapitre XVIII

Transition de phase

1 Changementd'état

Les conséquences analytiques du premier et second principe permettent d'établir un certain
nombre de relations thermodynamiques entre les variables intensives d'un corps pur, lorsqu'il
se trouve a I'état de fluide homogene.

Ce chapitre a pour but d'étudier le comportement des corps purs lorsqu'il change d'état. Il se
limite au cas ou il n'existerait qu'une seule variété solide (cristallin).

Les changements d'état sont désignés par :
Fusion et solidification.
Vaporisation (évaporation) et liquéfaction (condensation).
Sublimation et condensation.

Solidification Evaporation
ou vaporisation
Fusion Condensation

&, 'f\ ou liquéfaction

Sublimation

>
Etat solide Etat gazeux

Condensation

Figure XVIII.01 Changements d'état

Le terme de vapeur est fréquemment utilisé pour désigner I'état gazeux d'un corps pur que l'on
connait habituellement sous forme de liquide ou de solide, dans les conditions normales de
pression et de température, comme 1'eau par exemple.

C'estle changement d'état liquide-gaz (ou l'inverse) que rencontrent souvent les turbomachines,
dans leurs utilisations. Citons par exemple les centrales thermiques ou nucléaires.
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2 Vapeur saturante

Pour montrer les propriétés de condensation et d'évaporation d'une masse donnée de fluide
utilisons I'expérience classique représentée sur la figure X VIIL.02.

Z
0\ Cet appareil se compose de deux tubes A et B
retournés sur une cuve remplie de mercure.
________ ZA A est un tube barométrique, il régne le vide
| o ——————— ZB dans sa partie supérieure. A constitue, en
Tube A § quelque sorte, un repeére pour le tube B.

B est un tube qui peut coulisser verticalement
dans la cuve a mercure. Sa partie supérieure est
remplie d'éther qui se trouve dans sa phase
gazeuse.

La différence des niveaux de mercure de ces
deux tubes mesure la pression au haut du tube
B puisque :

P4 Pp
Aiz,=24
A= 09 B

2]

M ercure

Figure XVIIIL.02 Description
Or Pa= 0 puisqu'il régne le vide au-dessus du niveau de mercure du tube A, donc :
Py = pg(z4 = 25) = pgh
Vs Ve, V. Vi vz Vs . Vi Vip

Vi 12 Ve Vs Vs J
Référence H """ ' H ; i ; :
| v ﬂ N 4

B 7L L Q| [hh | [k ; ]

hio hin

Figure XVIII.03 Déplacement du tube B

Afin de faire subir a la masse d'éther une évolution isotherme, le tube B est enfoncé tres
lentement dans le mercure. Ainsi la masse d'éther va successivement occuper les volumes
caractérisés par les positions 1,2, 3,...10, 11 précisées sur la figure XVIIL.03.

Supposons que I'état initial corresponde a la position 1 ou I'éther est entierement vaporisé en
occupant le grand volume V.

66



Chapitre X VIII Thermodynamique Transition de phase

En enfongant le tube B on constate que I'éther reste sous forme gazeuse jusqu'au volume Vs en
suivant approximativement 1'équation d'état des gaz parfaits :

pV=mrT

Immédiatement apres le volume V2, on voit apparaitre une trace de liquide au-dessus du niveau
du mercure. Il y a condensation de la vapeur d'éther.

En continuant d'enfoncer le tube, on voit augmenter la masse d'éther sous forme de liquide. Par
contre la pression, caractérisée par la grandeur A, reste constante. La vapeur est alors en
équilibre avec le liquide, elle est dite saturante. La pression correspondante, que I'on note py,
est appelée pression de vapeur saturante.

Le mélange constitué par le liquide et la vapeur est souvent désigné par vapeur humide. En
toute rigueur cette appellation concernerait plutot un mélange de vapeur et de gouttelettes en
suspension.

On constate, en poursuivant notre exp érience jusqu'au volume Vo, que toute la masse d'éther se
trouve sous forme liquide.

En continuant d'enfoncer le tube, on remarque que le volume varie trés peualors que la pression
augmente considérablement.

On retrouverait les mémes résultats en recommencant en sens inverse cette évolution isotherme.

3 Point critique

Transcrivons les résultats de I'expérience précédente en portant p en ordonnée et V' en abscisse
(diagramme de Clapeyron). Cette évolution isotherme se compose de trois parties :

Py Point 11

1—4 Pour les faibles pressions, la
courbe se rapproche plus ou moins
Point 9 Point 4 d'une hyperbole équilatere. L'éther

e ——- o mmmmmm———
/ -
, -

est sous forme gazeuse.

911 Pour les fortes pressions, la
Point 1 courbe est presque verticale. L'éther
est liquide.
i 4—9 Entre ces courbes un palier
H N . \ 1z
Vi1~ Vo Ve 7 horizontal correspondant a [I'état

liquide-vapeur.
Figure XVIII.04 Résultats expérimentaux

Il est intéressant de noter :

- que pour le palier 4 = 9 l'isotherme et l'isobare sont confondues.

- qu'aux valeurs numériques pres, on observerait la méme allure de courbe pour un quelconque
COrps pur.

Recommencons cette expérience avec une température plus élevée. On constate alors que le
volume massique du liquide v'augmente et que le volume massique de la vapeur saturante
v"diminue.
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La figure XVIIL.O5S montre que le palier horizontal raccourcit lorsque la température s'accroit.
Ce palier s'annule en un point ¢ que I'on appelle le point critique.

PA Au point critique, la température, la
pression et le volume sont désignés
par:

Pel-4 - température critique 7.

- pression critique pe
- volume critique ve

En c le palier disparait.

L'isotherme 7. présente donc en ¢ un
point  d'inflexion &  tangente
horizontale.

Ly LT

D e v v
Figure XVIIL 05 Isothermes d'Andrews

»

Ce qui se traduit dans ce diagramme par:

op d%p
—) =0 et (—] =0
(av)T ¢ <6v2)T

Pour des températures supérieures a la température critique T, les isothermes ne présentent
plus de palier de liquéfaction et nous avons :

dp
— 0
(6v>T <

Pour chaque gaz, il existe une température critique au-dessus de laquelle il est impossible
d'observer une liquéfaction.

Pour les températures inférieures a la température critique 7., on donne souvent le nom de
vapeur seéche a I'état gazeux en l'absence de liquide. Ainsi que nous l'avons précédemment
évoqué, la vapeur en équilibre avec le liquide est souvent désignée par vapeur saturante ou
vapeur humide.

Le lieu des extrémités des paliers horizontaux AB formé de deux branches est appelé courbe de
saturation.

La branche Ac donnant les variations de v est la courbe d'ébullition.

La partie Be, relative a v, est désignée par courbe de rosée.
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Exercice XVIII 1

Connaissant la température critique Tec et le volume molaire critique Ve d'un gaz obéissant a
l'équation de Van der Waals :
a
(p +V—2) (Vm—b) = RT
m
Calculer les constantes a et b.

Corrigé
L'équation de Van der Waals peut s'écrire :
_RT a
P=y b V2

En utilisant les propriétés du point critique on obtient deux équations :

dp RT 2a
R
v T (Vmc - b)z fonc
<62p> _ 2RT 6a 0
ov,2 . V,.—b)® Vi,
Ce qui permet de déduire les valeurs de a et b :
9 |74
@ = ZRTV, et b= ’?:‘C

Remarque :

Si nous reportons dans I'équation de Van Der Waals les valeurs de a et b, nous pouvons obtenir
la valeur de la pression critique pe.

c _ — C c"mc — C
Vine = b VrrZLc V. — YZZLC. 8V$nc 8Vinc
mc 3
De la définition du facteur de compressibilité Z, nous pourrions déduire que pour tous les gaz

RT a RT 9RT Vine  3RT,

pPc =

. . - v, 3 . . . .
nous aurions au point critique : Z, = % =5= 0,375. Ce qui est inexact puisque Z varie
c

d'une substance a une autre et qu'il se situe entre 0,23 et 0,29.

A titre indicatif, le tableau XVIII.1 donne les constantes de quelques corps purs a leur point
critique.
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Symbole TeenK Pc en bar veen m/kg

M ercure Hg 1733,9 1066 0,0002

Oxygeéne 02 154,7 50,4 0,002326
Argon A 150,8 48,6 0,001883
Azote N2 126 33,9 0,003215
Hydrogene H» 33,5 12,96 0,03223

Hélium He 5,2 2,29 0,01443

Eau H>O 647,3 221,2 0,00317

Benzéne CeHe 562 48,34 0,00333

Propane CsHs 369,9 42,56 0,004425
Ethyléne CoHg 2639 51,17 0,004545
M éthane CH4 190,6 46,29 0,006172
Alcool C>HsOH 516 63,84 0,003629
Ether (C2Hs)0 467 35,99 0,003787
Fréon 12 CCLF2 385 41,15 0,00179
Ammoniac NH3 405 112,97 0,004255
Gaz carbonique CO2 304,2 73,76 0,00216

Tableau XVIIIL. 1 Exemple de points critiques

4 Titre

La notion de titre a pour but de connaitre, dans un mélange liquide-vapeur, la part respective de
liquide et de vapeur.

Le titre, désigné parx, est égal au rapport de la masse de vapeur m'a la masse totale m :

= — XVIIL. 01
x=— (XVIIL01)

Le titre x représente, en quelque sorte, la masse de vapeur contenue dans I'unité de masse du
mélange. La masse de liquide contenue dans le mélange est désignée par m . Sa teneur dans le
mélange est :

1—x=— XVIIL. 02
x=— (XVIIL02)

Evidemment, la relation m = m’' + m"doit étre satisfaite.
Le volume V occupé par le mélange s'écrit :
V=mv +m'v' =mv (XVIILO03)

v’ et v’ sont respectivement le volume massique du liquide et de la vapeur aux points A et B
du palier de vaporisation représenté sur la figure X VIIL06.
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rt En désignant par v le volume massique
du mélange, nous pouvons écrire :
ml ’ m” .,
vV=—v +—7v
m m- . .
: Et compte tenu de la définition du titre :
Ai M. B v=(1—-x)v +xv
2 R Nous déduisons une autre expression du
i : L titre :
ol ‘e,
i b v AM o on
! 1 1 X = = — .
5 —t > v'—v'  AB
v vV v v

Figure XVIIIL.06 Palier de vaporisation

Le point M d'abscisse v, partage le palier AB en deux segments dont le rapport est égal a celui
des masses des deux phases en présence :

AM_ X m

MB 1-x m

Les courbes a titre constant (isotitre) sont obtenues en joignant les points qui partagent tous les
paliers de vaporisation dans le méme rapport :

_AM, A,M,  A;My  AM,  AgM
B AlBl B AZBZ B A3B3 B A4B4 B ASBS

X

Toutes ces courbes a titre constant partent du point critique c.

Sur la courbe d'ébullition (lieu des
points A)onax = 0.
Sur la courbe de rosée (lieu des
points B)onax=1.

Puisque I'énergie interne,
l'enthalpie et l'entropie sont des
grandeurs extensives, donc

additives, nous pouvons les
exprimer d'une facon analogue au
raisonnement tenu pour le volume
V.

Figure XVIIL.07 Isofitres

Donc, compte tenu de la relation (XVIIL.04), 'énergie interne massique, I'enthalpie massique et
l'entropie massique peuvent s'écrire :

u=(1-x)u +xu’ (XVIILO5)
h=1—-x)h +xh" (X VIILO6)
s=(1-x)s +xs" (XVIILO7)

Ou encore :

u—u  h—h s—s
- = (XVIIL 08)
u'—u B —=p s'—s

X =
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Exercice XVIIL.2

Sous une pression de 1 bar, un réservoir contient 50 kg de vapeur d'eau au titre de 0,8.
Sachant qu'a cette pression de 1bar nous avons :

v'=0,0010434 m3/kg v ' =1,694 m3®/kg

h' =417,51k]/kg h'=26754 kj/kg
Calculer :

1) Les masses respectives de liquide et de vapeur contenues dans le réservoir.
2) Le volume du réservoir.
3) L'enthalpie massique de la vapeur humide.

Corrigé

1) Par définition du titre, relation (XVIIL.O1), et de la connaissance de la masse m il vient
immédiatement :

Pour lavapeur m'=xm =0,8x50=40kg
Pour le liquide m'=m—m" =50—-40 =10 kg

2) Le volume du réservoir est donné par la relation (XVIIL.03) :
V=mv +m'v'=10x0,0010434 + 40 X 1,694
V =6777m3
3) De la relation (XVIIL.06) on déduit la valeur de l'enthalpie massique.
h=1-x)h +xh =(1-08)x417,51+ 0,8 X 7,3598

h=22238 kJ/kg

5 Courbe de vaporisation

Un liquide en présence de sa vapeur est caractéris€ par sa pression de vapeur saturante p, et par
sa température. La connaissance de 7 impose celle de la pression de vapeur saturante py. On
peut dire que la pression et la température sont liées par une relation de la forme : p, = f(7).
D’ou l'existence d'une courbe d'équilibre liquide-vapeur, en coordonnée (p, T), qui s'arréte au
point critique "c". En ce point, la pente de la tangente n'est ni nulle ni infinie.

Pour l'eau ; a titre d'exemple la loi py=f(T) est donnée dans le tableau X VIIL2 et représentée

sur la figure X VIIL.08

72



Chapitre X VIII Thermodynamique Transition de phase

Dv
ten°C pv en bar A
0,01 0,0061 C
5 0,0087
10 0,01227
20 0,02337 Liquide
50 0,12335
100 1,01325 M, * M,
200 15,549
300 85,927 Vapeur
374,15 221,2
> T
Tableau XVIIL2 Figure XVIIIL.08 Courbe de vaporisation

Vaporisation de l'eau

La température peut étre considérée comme le seul parameétre indépendant puisque pv = f(7).
On dit que le systéme est dit monovariant.

La variance d'un systéme apparait comme le nombre de parametres que I'on peut faire varier
arbitrairement sans modifier sa nature.

Si on place le systeme en dehors de cette courbe, py=f(7), tel que le point figuratif M 1 (ou M»),
représenté sur la figure XVIILOS, I'une des phases liquide ou vapeur disparait. L'équation d'état
redevient f(p, v, T) = 0. Le systéme est dit divariant ; il faut deux parametres pour définir son
état.

6 Continuité de 1'état gazeux et de 1'état liquide

Les isothermes d'Andrews, figure X VIIL.05, montrent que la condensation (ou liquéfaction) ne
peut pas se produire si la température du gaz est supérieure a la température critique.

Par exemple pour l'évolution isotherme i - B - A — f ou la température T < T,, la
condensation apparait dans la partiec B — A représentée sur la figure XVIIL.09. Mais il est
possible de contourner le point critique sans voir apparaitre de condensation. Pour cela
considérons, cette fois, la transformation amenant le fluide de I'état initial gazeux "i" a 1'état
final liquide "/" en utilisant le chemin suivant :

- Evolution isobare i — I jusqu'a une température T,>T,

- Evolution isotherme 1 — 2 jusqu'a unepression p,>p.

- Evolution isobare 2 — 3 jusqu'a température T;=T,
- Evolution isotherme 3 — f
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\ 4

PA PA
3 2 3 2
Pe . U |y e
S, a
1 % HI
1 Kl
1 N 1
i rod
HE Liquide| Vapeur
| Ap
Iliquidei i ...... ] i
i Liquide +vapeur ' VA i | bi
L TS —— 1
S Pt A ]
|
1

Les différents points i, 1, 2, 3 ; f de ce chemin correspondent a des états homogenes du fluide.
On est passé de I'état gazeux a I'état liquide sans avoir apergu la moindre discontinuité. Dans
cette transformation il y a continuité lors du passage de I'état gazeux a I'état liquide.

Evidemment l'inverse (passage de I'état liquide a I'état gazeux) serait également vrai.

7 Point triple

Dans le domaine de coexistence des deux phases liquide et gaz la courbe de vaporisation,
pPv :f(Da s'arréte au pOint Cl‘itique "o

DA Dans le sens des pressions décroissantes,
cette courbe se prolonge jusqu'a un certain
fusion c point T.

En ce point elle rencontre une courbe
holide Liquide Gaz analogue qui est celle de I'équilibre du
liquide et du solide (courbe de fusion).

évaporatiol
En T il y a équilibre entre liquide-gaz et
liquide-solide.
sublimation
>T Nous en déduisons qu'il y a, également,
Figure XVIIL10 Point triple T équilibre entre le gaz et le solide.

Le point triple T appartient donc aussia la courbe de sublimation.

Les trois courbes, sublimation, fusion et vaporisation, se coupent en ce méme point T appelé
point triple.

Dans 1'état actuel de nos connaissances la courbe de fusion s'étend apparemment sans limite
vers les hautes pressions.

On ne saurait réaliser ni méme concevoir le passage continu de I'état liquide a I'état solide.
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Transition de phase

Le tableau X VIIL.3 donne a titre d'exemple les coordonnées de quelques points triples.

Désignation Ten K P en bar
Azote 63 0,126
Ammoniac 195,5 0,061
Gaz carbonique 216,5 5,34

Eau 273,16 0,0061
Naphtaléne 353 0,012

Tableau XVIIIL. 3 Points triples

8 Surface caractéristique

A des fins pédagogiques, la partie dessinée en
vert clair sur la figure XVIIL.11, représente la
surface caractéristique de 1'équation d'état des
gaz parfaits ; pv=RT.

La figure XVIIL.12 représente la surface
caractéristique d'un corps pur dans le domaine
des températures ou les diverses phases sont
susceptibles de coexister.

Figure XVIII. 11 Surface pv=RT

Les courbes précédemment obtenues sur les diagrammes "p v" et "p T" sont évidemment les
projections de la surface caractéristique.

folide

évaporation

Liquide + gaz

Liquide + vapeur

sublimation

Solide +vapeur

Figure XVIIIL 12 Surface caractéristique d'un corps pur
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9 Chaleur latente

La chaleur latente de vaporisation d'un corps pur est la variation d'enthalpie de I'unité de masse
de ce corps ; lorsqu'il passe de I'état liquide a I'état gazeux, sous pression constante a la
température 7. On pose :

L,=h —h (XVIIL09)

On définit de méme une chaleur latente de fusion et une chaleur latente de sublimation que
l'on note respectivement Lret Ls.

La figure XVIIL.O7 et la relation X VIIL.O8, permettent L
de déduire que la chaleur de vaporisation diminue
quand la température augmente. Elle s'annule au point
critique.

dL,
Lorsque 77— T, nous avons a7 - 0

T.T
Figure XVIII.13 L en fonction de T

Empiriquement a 0,2% prés, on donne pour I'eau entre 0°C et 180°C :
L,=597,5-0,592 t avec Ly en kcal/kg et ten °C.

10 Formule de Clapeyron

Dans la phase liquide-vapeur d'un corps pur considérons, conformément a la figure X VIIIL. 14,
un cycle élémentaire de Carnot ABCD. Pour ce cycle, I'expression du rendement s'écrit :

—aw_l T  dT
5Q,  T+dT T

‘r]:

Or l'aire du cycle représente le travail fourni—8W. A un infiniment petit prés ce travail est égal
a: dpv dv.

La quantité de chaleur §Q, fournie par

P, la source chaude est :
5Q, = L,dm’
La quantité dm est la masse vaporisée
pendant la transformation isotherme
AB.
pvtdpy Il s'ensuit :

P, —8W _dp,dV _ dT

8Q, L,dm’" T

V4 De la définition du titre et de la relation
Figure XVIII 14 Cycle élementaire de Carnot XVIIIL.04, on obtient :

U”—U, m vn_vr
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Soit:

(v'—v)dp,dV _dT . . av. .
=~ cten remarquant que —— =

L,mdv

On obtient la formule de Clapeyron :

"

~dap,
L =T —
v =T —v)or

(XVIIL. 10)

Exercice XVIII 3

Montrer qu'en négligeant le volume massique du liquide devant celui de la vapeur, assimilé a
un gaz parfait, on peut déduire une loi approximative de la pression de vapeur saturante en
fonction de la température pv=f(T).

Corrigeé
Compte tenu de cette hypothese, I'équation d'état des gaz parfaits s'écrit :

p,v =71T
Portons cette valeur de v"dans I'équation de Clapeyron sans oublier que v' est petit devant v'.

.d rTd
L,=Tv Py _ It Py
dT p, dT
Soit en séparant les variables :
dp, L,dT
= d(lnpv) = TF

v

Intégrons cette expression dans un intervalle de température suffisamment réduit pour que l'on
puisse supposer Ly constant, sans erreur appréciable.

Ly

pv = Ke_TT
Pour déterminer la constante K supposons qu'a la température Ty, il régne la pression pvo et
que le volume massique de la vapeur soitv). Avecp,, v, = rT,l'expression ci-dessus devient :

_LIL” 1_ZQ)

T
Py = PuoePr™

Faisons une application numérique, pour de la vapeur d'eau, a la température To= 100°C.
A cette température la pression partielle est pyo = 1,0133 bar, le volume massique est

v, = 1,673 m3/kg et la chaleur latente de vaporisation Ly = 2256,9 kJ/kg.

Pour des températures comprises entre 80°C et 120°C on obtient des résultats satisfaisants,
comme le montre le tableau XVIII.4.
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ten*C TenK I;Vc;gublger lue d{u):lj ’lqeingbles.
80 353,15 0,4768 0,4736
85 358,15 0,5802 0,5780
90 363,15 0,7023 0,7011
95 368,15 0,8457 0,8453
105 378,15 1,2083 1,2080
110 383,15 1,4343 1,4327
115 388;15 1,6950 1,6906
120 393,15 1,9946 1,9854

Tableau XVIII.4 Comparaisons

11 Troisieme principe de la thermodynamique

Lors d'une transformation infinitésimale réversible, d'un corps pur homogene, la variation
d'entropie peut s'écrire (relations XV.04 et XVL.11):

§Q  dT  dp

ds =—=c,—+ hp—
T PT T
Pour une évolution isobare, cette relation devient :
dT
ds = Cp T

Pour cette évolution isobare, une difficulté apparait lorsque la température 7 tend vers le zéro
absolu. En effet, si la capacité thermique massique a pression constante ¢, €tait différente de
z¢€ro, le rapport ¢,/T deviendrait infini.

Dans ces conditions la variation d'entropie allant de la température 7 = 0 a la température 7 ne

it pas étre finie : s — s, = [ ¢, &
pourrait pas €tr€ 1ni€ : S So = OCpT'

Evidemment on peutrépéterle méme raisonnement a volume constant. Si la capacité thermique
massique a volume constant cv n'est pas nulle la variation d'entropie, pour une €volution

. . ~ . T ar
isochore, ne pourrait pas étre finie : s — sy = | o Co

Ces indéterminations ont été levées par Nernst, physicien et chimiste allemand. Il a eu le mérite
d'énoncer une hypothése qui a été ensuite confirmée par l'expérience. Cette hypothese
complétée par Planck a été érigée en postulat. Compte tenu de son importance le terme de
troisiéme principe de la thermodynamique est maintenant utilis€. I s'énonce ainsi :

Au zéro de la température absolue, l'entropie de tout corps cristallisé, chimique ment
homogene, posséde la valeur zéro.

Les expériences qui ont été effectuées aux trés basses températures montrent qu'en se
rapprochant du zéro absolu :

- les capacités thermiques massiques ¢, et ¢y tendent vers zéro.

- les coefficients de dilatations isobare et isochore a et Stendent également vers zéro.
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- le volume massique v reste fini.

- Le coefficient de compressibilité isotherme y, reste fini.

La connaissance de ces coefficients en fonction des variables d'états permet de calculer
l'entropie. Lorsque le corps étudié subit des changements d'états, il y a lieu d'ajouter les
variations d'entropie, liés a ces changements de phase. Supposons, par exemple, connaitre a la
pressionatmosphérique la capacité thermique cp, en fonction de la température 7°d'un corps pur
simple. A partir de I'état cristallisé au zéro absolu, il est facile de calculer l'entropie.

Lorsqu'on atteint la température de fusion 7%, le changement d'état nécessite de fournir la chaleur
latente de fusion Ly a la température 7y La variation d'entropie de ce changement d'état
est : L¢/Tt. Juste au début de 1'état liquide I'entropie est :

fo dT N L,
S =17, — C,— T —
p f 0 p T Tf

Pour une vapeur a la pression atmosphérique et a la température 7, l'entropie a comme
expression :
frf dT+Lf+fTv ,dT+Lv+j‘T . dT (XVIIL11)
S =1,T = C,— — C, — — C, — .
p o 'T T; Tpr T, Tva
Remarque :

I est important de noter, qu'en thermodynamique technique on s'intéresse plus aux variations
d'entropie qu'a sa valeur propre. On choisit arbitrairement un état de référence pour lI'entropie.
En principe l'entropie est prise nulle dans 1'état choisi pour zéro de I'enthalpie ou de I'énergie
interne. Ainsi, par exemple, pour I'eau I'entropie est prise nulle a son point triple.
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Chapitre XIX

Diagrammes

1 Généralités

Pour traduire les caractéristiques d'un fluide dans toutes ses phases, il serait intéressant de
disposer d'une équation d'état, valable quelles que soient la température et la pression du corps
étudié. Hélas, c'estimpossible, les chapitres précédents montrent qu'il est déja difficile d'obtenir
une ¢équation d'état dans une phase unique. Pour définir I'é¢tat d'un fluide, on a recours aux
résultats expérimentaux que l'on utilise sous forme de tables numériques, de logiciels ou de
diagrammes.

Les diagrammes thermodynamiques ne se limitent pas a traduire les propriétés des corps. Ils
représentent graphiquement les transformations que subit une masse de fluide, ce qui est un
atout considérable surle plan pédagogique.

L'équilibre d'une masse de fluide, chimiquement invariable, est défini au moyen de deux
variables. Il est possible de les choisir parmi la pression, la température, le volume massique ou
encore parmi les fonctions d'états u, 4, s, G, F.

Pour construire un diagramme, on se fixe comme axe de coordonnées, deux quelconques des
variables énumérées ci-dessus. Les autres peuvent étre, suivant la nécessité, utilisées comme
courbes paramétriques ; isobares, isochores, isothermes, isentropes, etc. Tous les diagrammes
ainsi construits pour un méme fluide expriment évidemment les mémes propriétés. Leur
commodité d'emploi est plus ou moins bien adaptée a tel ou tel autre probléme.

Sur le plan pédagogique le diagramme de Clapeyron"p, v" est intéressant.

Dans le domaine des turbomachines le diagramme entropique "7, s" et le diagramme
enthalpique (ou de Mollier pour la vapeur d'eau) "4, s" sont fréquemment employés.

Les diagrammes "A, p", "In p, h" et "h, v" sont beaucoup utilisés dans I'é¢tude des machines
frigorifiques.

Si les transformations sont réversibles, les courbes représentatives tracées sur les diagrammes
possedent de propriétés particulieres.

Si les transformations sont irréversibles, le fluide en évolution ne se trouve pas dans un état
thermodynamique uniforme. Il en résulte des différences locales de pression, de température,
d'énergie interne, d'entropie, etc. Malgré tout, ces transformations sont représentées, sur les
diagrammes thermodynamiques, en faisant I'hypotheése qu'a chaque instant de I'évolution
considérée, 1'état correspondant du fluide est rendu uniforme par mélange.
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Ultérieurement, il sera évoqué la notion d'évolution polytropique qui résulte de cette derniere
remarque. Les courbes tracées, pources évolutions irréversibles, ne possédent pas les propriétés
des transformations réversibles. Elles sont souvent représentées en pointillé pour bien marquer
la différence avec les transformations réversibles.

2 Diagramme de Clapeyron (p, v)

Ce diagramme est treés intéressant car ses variables, la pression et le volume massique, sont
deux grandeurs qui parlent bien a I'imagination.

Dans ce diagramme, l'aire correspondant a une transformation cyclique réversible représente le
travail échangé avec le milieu extérieur. En effet, les relations XV.07 et XV.08 s'écrivent :

Tds =6Q +6f =du +pdv =dh—vdp

Pour une transformation cyclique on a : us_; —u; =0 etdeméme hy_; —h; =0 puisque
I'état final "f" est le méme que I'état initial. Il s'ensuit que :

Q+f of = pdvz—f vdp
cycle cycle cycle

La somme fcycle Of représente la dégradation énergétique produite par les processus internes

lors de cette transformation cyclique. Or du premier principe de la thermodynamique,
0 +w= 0, ce qui permet de déduire :

W=—Q=—f pdv+f of = vdp+f of
cycle C c

ycle cycle ycle

Si la transformation cyclique est réversible nous

avons : I of =0
N cycle
P . D’ou le résultat :
aire = |w|
w=— J.pdv = Ivdp = aire
cycle cycle
- Pour une évolution irréversible cette aire ne
> représente plus le travail

Figure XIX.01 Propriété de l'aire

Ce diagramme peut servir au calcul des machines a pistons dans la mesure ou les rapports de
compression ne sont pas trop élevés. Si ce n'est pas le cas, il prend rapidement des dimensions
considérables. C'est d'ailleurs la raison pour laquelle ce diagramme est peu utilisé, dans la
pratique, pour les calculs graphiques.

Les isothermes et les isentropiques représentés sur un diagramme de Clapeyron se coupent sous
un angle relativement faible égal a y.

En effet de la formule de Reech (relation XVI.13), nous avons :
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@), @)

G, @),

La valeur tres faible de cet angle est nuisible a la détermination précise du point d'intersection.

3 Diagramme entropique (7, s)

Dans un diagramme entropique, I'entropie est portée en abscisse et la température 7 en
ordonnée.

Sur le plan didactique ce diagramme est tres intéressant car il posséde un grand nombre de
propriétes.

1. Les évolutions isothermes sont représentées
pardes paralleles a I'axe des "s" et les isentropes T
paralleles a I'axe des "7™.

Tmaxi| —=~-
Si bien que pour n'importe quel fluide un cycle
de Carnot sera toujours représenté¢ par un  Tmini |-----
rectangle. Ce qui n'est pas le cas pour un >

diagramme de Clapeyron. i §
Figure XIX.02 Cycle de Carnot

2. Les évolutions adiabatiques irréversibles sont représentées par des courbes (en pointillé)
inclinées vers les valeurs croissantes de I'entropie puisque :

6f
ds=—2>0
T
N - 7 N,
““‘ | i '00..
. ,e* | 1 ‘e
1 Ir | : .“ f
| ' ' i
: jCompression ! ':Détente
] -
| I R : . >
Si Sf S Si Sf 5

Figure XIX.03 Compression et détente adiabatique irréversible

3. L'aire sous-tendue par une courbe, représentant TA f
une transformation réversible, mesure la chaleur —  [|------ > '

transférée avec le milieu extérieur puisque i
0Q =Tdset parsuite :

f
Q =] Tds = aire en jaune
i

>
s

as
Figure XIX.04 Quantité de chaleur
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4. La variation d'enthalpie, d'une évolution TA
isobare, est mesurée par l'aire sous tendue de la
courbe représentée sur la figure XIX.05. f

En effet, pour une évolution isobare la relation i

(XV.08) devient Tds = dh. 1l s'ensuit donc : /
f
he — h; = J Tds = aire en jaune
i

“s
Figure XIX.05 variation d'enthalpie

Si I'évolution était isochore la relation (XV.08) permettrait d'écrire que 7ds= du. L'aire en jaune
représenterait alors la variation d'énergie interne.

Pour la mesure de ces surfaces, il faut toujours considérer I'axe correspondant au zéro absolu.
La température 7 doit étre nécessairement exprimée en Kelvin.

5. Les aires du diagramme entropique et du

diagramme de Clapeyron représentent des A
énergies. Dans le cas d'une transformation cyclique
réversible elles sont équivalentes puisque : aire = |w|

Q= Tds=f pdv=—] vdp = —w
cycle cycle cycle

>
Figure XIX.06 Travail

6. La sous-tangente en un point M d'une courbe représentative d'une transformation réversible
mesure la capacité thermique massique en ce point pour I'évolution considérée.

Pour une évolution isobare i — f, nous pouvons écrire que :
6Q =c,dT =Tds
Si bien qu'au point M nous avons :

. _T_cpdTl_dT
‘ga_ab_ ds ab ds

D'ou le résultat :

_ b_T<as>
cp—a = an

De méme pour une évolution isochore nous aurions :

—aw=7(Z)
c, =a'b'= aT).
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y

~
b/ 7S

Figure XIX.07 Représentation graphique des capacités thermiques massiques cp et ¢y

On remarquera qu'en un méme point M, d'un fluide homogene, la pente des isochores est plus
grande que celle des isobares puisque le ¢, est plus petit que le cp.

7. Les isobares et les isochores d'un fluide homogene, ayant des capacités thermiques massiques
constantes, sont des exponentielles.

Pour une transformation élémentaire réversible les relations (XV.04), (XVL10) et (XVL11)
permettent d'écrire :

Tds =6Q = ¢, dT + hydp = ¢, dT + ldv
Pour une évolution isobare, cette expression devient Tds = §Q = ¢,dT soit :

dr

ds =cpT

Si la capacité thermique massique cp est constante, on obtient par intégration :

T s=so
S—sochln<T—) > T =Ty "
0

S

Soit l'expression d'une exponentielle T = Ke®

N

Pour une évolution isochore, on obtiendrait de méme T = K'ecv

En toute rigueur nous ne pouvons pas dire que les isochores et les isobares d'un fluide homogene
sont des exponentielles. Toutefois la forme réelle de ces courbes s'en éloigne assez peu.

Les variations des capacités thermiques massiques sont relativement lentes avec la température.

8. Dans un gaz idéal parfait, les isobares se déduisent les unes des autres par des translations
paralleles a l'axe des s. Il en est de méme pour les évolutions isochores.

De l'expression (XV.08) appliquée a un gaz parfait et pour une transformation allant de 7 a f,
Tds = ¢,dT — vdp, nous déduisons que la variation d'un gaz idéal parfait est :

T, p
Sp—S; = ¢, ln—Tf— T ln;{— (XIX.01)
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Conformément a la figure XIX.08, considérons maintenant deux isobares p; et p> ainsi qu'une
parallele quelconque a l'axe des "s". Cette isotherme coupe les deux isobares en A et B.
Puisque 74 = T3, la relation (XIX.01) devient :

e pPe__ P2
Sp =Sy =—rin—=—r

[ (21

Tragons une autre isotherme qui coupe, cette fois, les isobares en Cet D.

Pour les mémes raisons que précédemment, 7c = Tp, donc :

Pp P,
Sp—Sc=-rln—=—-r—
Pc P1
11 s'ensuit que :
D2 ™ pi/ D2
B / A B
i i a_—
Ly A 5
Sc Sy Sp Sg °s A B s
Figure XIX.08 Translation des isobares Figure XIX.09 Egalite des surfaces

Ceci est vrai pour n'importe quelle isotherme délimitée parles deux isobares p; et p>.
Ainsi l'aire aAB [est finie et égale a I'aire du rectangle A'ABB'.

Exercice XIX 1
Une mole de gaz parfait décrit réversiblement un cycle défini par les évolutions suivantes :
Compression isotherme 1 — 2
Chauffage isochore 2-73
Chauffage isobare 3-4
Détente isentropique 4 — 1

Repreésenter schématiquement cette transformation cyclique sur un diagramme entropique et
sur un diagramme de Clapeyron.
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Corrigé
TA DA 3 4
4
2
3
2 1
1
? %

4. Diagramme entropique des corps purs
Le but est de construire dans le diagramme entropique les caractéristiques d'un corps pur.

A titre d'exemple construisons celui de I'eau. Pour des questions pratiques, on prend nulles
l'entropie et I'énergie interne au point triple.

Pour la construction, I'enthalpie est €galement prise nulle puisqu'au point triple le produit pv est
trés petit (p = 0,0061 bar).

1. Construction des isobares

Pour construire une isobare donnée, il faut étre en mesure de déterminer avec précision un point
de départ D.

En partant du point triple (s = 0), considérons une évolution isentropique amenant 'eau liquide
jusqu'a la pression désirée.

La connaissance des capacités thermiques massiques, permet de déterminer la variation de
température en utilisant les conséquences analytiques du premier et second principe de la
thermodynamique.

Conformément a la Figure XIX.10, la branche DA correspond a I'échauffement isobare de I'eau
liquide, de la température 7p a la température 74 de vaporisation. En tous points de cette courbe,
la valeur de I'entropie est obtenue par intégration de :

fT , dT
C —
Tp P T

La capacité thermique massique cz'J de l'eau est presque une constante dans le domaine des
températures et des pressions modérées. Cette courbe aura donc l'allure d'une exponentielle.

Dans la phase liquide-vapeur les isothermes et les isobares sont confondues. Il s'ensuit que le
palier horizontal AB représentera ce changement de phase.
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L'entropie du point B sera:

fTA ,dT+Lv
Sg = Cp——+=
T pT

D Ty
A , o
Ly étant la chaleur latente de vaporisation a la
température T .
A B Dans la région de la vapeur surchauffée, le
D / \ long d'une isobare, nous aurons :
273,16 1
fT , dT
> S—Sp = C,—
s re=ty = T

Figure XIX. 10 Construction des isobares

Comme pour l'eau liquide, cette courbe ressemblera a une exponentielle.

2. Courbe de saturation

Les courbes de titre constant (isotitres) sont obtenues en divisant, tout d'abord, en parties égales
les paliers de vaporisation AB, puis en reliant les points homologues.

A ﬁ A
x=0 {:] x= x=1

/NN aava

~ yavaa
7/ 7
% >
Figure XIX.11 Construction des isotitres

La plupart du temps les fluides ont une courbe de rosée (x = /) de pente négative i—: < 0. Mais
il peut en étre tout autrement. Avec les hydrocarbures, une partie de la courbe x = / a une pente

. d
pos1t1ve—T > 0.
ds

3. Construction des isochores

Supposons construit le réseau des isothermes dans le diagramme p,v (voir figure X VIILO0S).
Dans ce diagramme, en tout point d'une verticale (v = constante), nous pouvons relever les
valeurs de la pression et de la température correspondantes.
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PA A 8
8
\ 6
6
5
4
\
2 \
1 \ Y 2 S
~ / 1 S
> —

Figure XIX.12 Construction des isochores

Si dans le diagramme 7,s le réseau des isobares est tracé, nous pouvons reporter tous les points
précédemment relevés. En les joignant, nous tragcons une courbe a volume constant. En rép étant
cette opération, nous obtenons le réseau des isochores dans le diagramme entropique.

4. Construction des isenthalpes

11 serait possible de déterminer les courbes a enthalpie constante a partir de la mesure des aires
sous-tendues par les isobares. Mais on préfére, compte tenu des grandeurs relevées
expérimentalement, calculer directement l'enthalpie. Notons que ces valeurs sont données dans
les tables et leur simple report permet de construire les isenthalpes dans le diagramme
entropique.

™m
Les isenthalpes sont fortement descendantes / / / / / /
dans la zone de vaporisation et relativement
peu a droite de la courbe de rosée.

Pour la vapeur surchauffée, qui tend a se
comporter comme un gaz parfait, les
isenthalpes se rapprochent de I'horizontale
puisque, dans ces conditions, nous avons :

Ah = cpAT

\>S

Figure XIX. 13 Construction des isenthalpes

5 Diagramme de Mollier (4,s)

Conformément a la relation XII.16, le premier principe de la thermodynamique appliqué a un
systéme ouvert en régime permanent s'écrit :
S
w,t+Q=A N
E
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Dans les applications industrielles, notamment dans le domaine des machines, les variations de
l'enthalpie d'arrét sont prépondérantes. Il est donc commode d'utiliser un diagramme sur lequel
l'enthalpie est portée en ordonnées et I'entropie en abscisse. Ce diagramme est particulierement
intéressant dans I'étude des turbomachines qui sont considérées comme adiabatiques. Ainsi les
abscisses seront représentatives de la qualit¢ thermodynamique de l'appareil. La différence
d'ordonnée mesurera directement, suivant le sens de I'échange, le travail interne recu ou cédé
par la turbomachine.

5-1. Propriété du diagramme (4,s)

Les évolutions isenthalpiques sont représentées par des paralléles a I'axe des entropies et les
isentropes par des paralleles a I'axe des isenthalpes.

Les évolutions isobares sont des courbes ayant un coefficient angulaire égal a la température
absolue du point considéré. En effet pour une évolution isobare, la relation XV.08 permet de

déduire :
(ah) _T
0s/, B
Dans la phase liquide, les isobares sont pratiquement confondues avec la courbe d'ébullition.

Dans la zone d'équilibre des deux phases liquide-vapeur, les isobares, confondues avec les
isothermes, sont des droites ayant un coefficient angulaire égal a la température absolue.

Dans la zone vapeur les isobares sont des courbes croissantes qui seraient des exponentielles si
le gaz était idéal parfait.

5-2 Gaz parfait

Dans le cas particulier ou le fluide en évolution est idéal parfait, le diagramme #4,s s'identifie au
diagramme entropique 7,s (& un changement de I'échelle des ordonnées pres). En effet nous
avons :

Si le gaz est parfait les capacités thermiques massiques ne sont fonction que de la température.
Les isothermes sont donc encore des paralleles a I'axe des s, mais leur écartement croit avec la
température puisque ¢, augmente avec 7.

5-3 Diagramme (4,s) d'un corps pur

Le diagramme 4,s d'une vapeur s'obtient par la transformation du diagramme 7s. Les abscisses
¢tant les mémes, il suffit de placer le diagramme 4,s au-dessous du 7,s et de porter en ordonnée,
a la verticale de chaque points, la valeur de I'enthalpie correspondante.

La figure XIX.14 montre qu'il est facile de construire, dans le diagramme #4,s, la courbe de
saturation en partant du diagramme entropique 7,s. Evidemment, cette construction peut
s'effectuer en partant directement d'une table de vapeur.

La courbe de saturation est obtenue en reportant les valeurs de /', s’ et celles de 42", s". En
joignant par des droites, les points correspondants, on obtient les isobares dans la phase liquide -
vapeur. Ces droites, de coefficient angulaire a 7, sont également représentatives des isothermes,
puisque dans la phase liquide-vapeur, elles sont confondues avec les isobares.
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Les courbes de titre constant s'obtiennent,
comme pour le diagramme T,s, en divisant T
en partie égales les paliers de vaporisation

et en reliant entre eux les points
homologues.

Dans la région de la vapeur surchauffée,
les isobares et les isothermes se raccordent
aux paliers de vaporisation. Lorsqu'on
s'¢loigne de la courbe de saturation, pour
se rapprocher du gaz parfait, les isobares
ont une allure exponentielle et les
isothermes tendent vers des horizontales. A

0°C

i

La figure XIX.16 est directement
représentative des diagrammes de M ollier,
de la vapeur d'eau, que I'on trouve dans le
commerce. IIs sont tracés dans la zone qui
contient le domaine d'emploi industriel.
Ces diagrammes sont particuliérement
utiles dans 1'étude et la conception des
turbines a vapeur.

ha
h3
h2
hi

ho a'

y

Figure XIX. 14 Construction du diagramme h,s

h A

Isobare

Isochore

Isotherme
N
Courbe de saturation

Les isobares et les isothermes
sont confondues dans la phase
liquide-vapeur.

Isotitre

Figure XIX. 15 Schématisation du diagramme h,s
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Figure XIX. 16 Diagramme de Mollier de la vapeur d'eau

Exercice XV.2

Un cylindre fermé par un piston contient, a l'état initial, un volume Vi = 45 dm? de vapeur d'eau
a une température de t; = 123°C sous une pression de pi = 1 bar. On laisse se déplacer tres
lentement le piston jusqu'auvolume final de Vy= 20dm?>. On admet que I'évolution est isotherme.

En disposant d'un diagramme de Mollier déterminer la pression ou a lieu le début de
liguéfaction ainsi que le titre de la vapeur a l'état final.

Corrigé

A U'état initial "i", avant déplacement du piston, on lit, approximativement a l'intersection de
l'isobare pi = 1bar et de l'isotherme t; = 123°C, un volume massiquevi= 1,8m’/kg.

La masse de vapeur d'eau contenue dans le cylindre est :

;0,045 3
m=—=——=2510""kg
v, 1,8

4

Soit M le point ou débute la liquéfaction, on lit a l'intersection de l'isothermeti= 123°C et de
la courbe x = 1, une pression py= 2,1bar.
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Pour placer le point final "f"
caractérisant l'état final, il faut
calculer le volume massique du
mélange eau-vapeur.

Vi 0,020
v = e—=
F = m ~ 25.1073

vp = 0,8m3/kg

L'isochore vi=0;8 m’/kg coupe
l'isobare 2,1 bar au point "f" ou
nous lisons un titre x=0,96.

6 Diagrammes des frigoristes

6-1 Diagramme pression-enthalpie (p,h)

Pour une question de commodité, liée a la représentation des systémes cycliques des
installations frigorifiques, les spécialistes préferent utiliser des diagrammes obtenus en portant
l'enthalpie /# en abscisse et la pression p en ordonnée. Les diagrammes p,i des fluides
frigorigénes sont généralement construits en prenant arbitrairement l'enthalpie et l'entropie
nulles pour la température = 0°C.

1. Isobares et isenthalpes

Dans ce diagramme les isobares sont représentées par des paralleles a 1'axe des enthalpies 4 et
les isenthalpes par des parall¢les a I'axe des isobares p.

2. Isothermes

Evidemment dans le domaine de coexistence des phases liquide et vapeur, les isothermes sont
confondues avec les isobares.

Dans le domaine ou le fluide se rapproche d'un gaz parfait, les isothermes deviennent des
paralleles a I'axe p. Dans la phase liquide, ou le volume massique est quasiment constant, elles
sont également verticales.

3. Isentropes
De la relation T ds = dh — v dp on déduit :

P _dh Td _(6;9) dh (6p) P
p_v 175_6hS E)shs
Et par suite :
57, =
oh/g v
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Diagrammes

Ainsi le coefficient angulaire des isentropes est, en tout point, inversement proportionnel au

volume massique.

Les isentropes sont des courbes a
coefficient angulaire positif croissant P4
puisque, lorsque la pression croit, le
volume massique décroit.

4. Isotitres

Isentrope

De fagon analogue aux diagrammes 7,s ou
h,s, on obtient les courbes de titre constant

en divisant les paliers de vaporisation en
parties égales et en reliant entre eux les

points homologues.

.y

Figure XIX. 17 Diagramme pression-enthalpie

6-2 Diagramme In (p,h)

Ce diagramme dérive du p,h. L'abscisse porte I'enthalpie et sur 'ordonnée il y a les pressions
graduées en une échelle logarithmique. Cette représentation permet de réduire 1'encombrement

en hauteur du graphique.

Notons que la pente des isentropes est changée puisque :
d 1 /0p
o) -3

<ah ( "p)> p\on/,
S
1
Et comme (—) = — il sensuit que :
s U

oh
] 1
(% (In p)> =

Dans la région ou le fluide tend vers un gaz parfait, il vient :

] 1
(a—h(ln p)) =7

La pente des isentropes est inversement proportionnelle a la température 7.
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Chapitre XX

Anergie et exergie

1 Généralités

L'utilisation du premier et second principe de la thermodynamique permet d'analyser les
¢changes d'énergie dans une installation industrielle.

Le second principe introduit une hiérarchie entre les diverses sources d'énergie et il offre la
possibilité d'apprécier I'aptitude d'un systéme a produire du travail.

Par contre, la notion d'entropie présente l'inconvénient de ne pas avoir de signification physique
concrete et de s'exprimer en joules par kelvin (J/K).

L'intérét majeur de l'exergie est de permettre de substituer a I'entropie un outil plus clair tout en
¢tant homogene a une énergie.

La théorie de l'exergie s'applique a des systémes absolument quelconques, qu'ils soient fermés
ou ouverts. Devant leur importance industrielle nous ne traiterons ici que les systémes ouverts
en régime permanent. Une démarche similaire permettrait de traiter le cas des autres types de
systemes.

2 Expression de l'exergie

Une fagon de procéder pour conduire a la notion d'exergie est de définir un mode de
compatibilité des échanges d'énergie en tenant bien compte de la différence de nature entre le
travail et la chaleur. Ceci dans le but de calculer le travail utile maximal susceptible d'étre
récupéré a partir d'un état déterminé.

D'ou la notion de travail équivalent, ou d'énergie noble, liée a un échange d'énergie.

Dans un systéme ouvert en écoulement permanent le travail utile est celui qui est récupéré ou
fourni par l'arbre de la machine.

Il s'ensuit que le travail équivalent sera le travail §w, lui-méme.

Le travail équivalent a un échange de chaleur dQ est celui qui serait mis en ceuvre dans un cycle
idéal.

Pour un cycle de Carnot la source chaude, a température 7, fournirait la quantité de chaleur 50
tandis que la source froide serait constituée par le milieu ambiant. Dans ce cas la source froide
serait dite gratuite.

Dans ces conditions nous savons que :
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5Q = TdS 5Q* = —T,dS |sw| = §Q + 50

11 s'ensuit donc que I'énergie noble équivalente a Q0 est :

(- B)u

Pour I'évolution élémentaire d'un systéme ouvert en
écoulement permanent I'énergie noble, telle que nous
I'avons définie, s'écrit :

TO
Sw, + (1 - 7) 50
En combinant cette expression avec le premier et le

second principe de la thermodynamique nous
obtenons :

Sw, + (1 T")d
W T Q
VZ
=dh + d7+gdz —T,ds +T,ds;

Puisque du premier principe :
2

%
6w, +8Q = dh +d -+ gdz

Figure XX.01 Production d’énergie

é
Et du second principe en posant §s; = ?f (chapitre 15 paragrap hes 5)

)
ds =TQ+ ds;

2
De la définition de l'enthalpied'arrét h; = h+ - et en négligeant l'action de la pesanteur,

l'expression de 1I'énergie noble devient :
TO
sw, + (1 - ?) 8Q = dh, —T,ds + T, ds,

Dans cette derni€re expression posons :
ex =h; —T,s et 6P, =T,ds;

Nous aboutissons a ce que I'on désigne habituellement par bilan énergétique :
TO
ow, + (1 —F> 8Q = d(ex) + 6P,

La fonction "ex" est appelée exergie massique. Comme la fonction de Gibbs G =h —Ts ,
l'exergie est une fonction d'état mais par contre, elle fait intervenir la température ambiante 7o
qui est une variable extérieure au systéme.
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Le terme P,, = Tof5si est appelé la perte exergétique. Comme nous le savons, Js;
caractérise la dégradation énergétique, il est toujours positif sauf dans le cas particulier
d'évolution réversible ou il serait nul.

Echange d'énergie noble = variation d'exergie + perte exergétique
g g g 4 getilq

3 Rendement exergétique

Le rendement exergétique 7,, sera défini comme le rapport de I'exergie (considérée comme
utile) produite par le systéme a I'exergie consommée.

A titre d'exemple, considérons la compression adiabatique irréversible depuis un état 7 jusqu'a
un état 2. Pour plus de généralité nous admettrons que I'état 1 est différent de I'état ambiant

(T, et p,).

2
Aex
1 1 _ hig —hyy — To(sz - 51)
= WI hiz - hil

Représentons sur un diagrammes 7,s cette évolution et comparons le rendement exergétique au
rendement isentropique ainsi qu’au rendement polytropique.

Le rendement isentropique est égal au

rapport des aires suivantes :
A A

“A+B+C+D

nis

Le rendement polytropique aux aires

_ A+B
L Q?
et le rendement exergétique p_u_o,
> s
Noy = A+B+C Figure XX.02 Comparaison des rendements
“ A+B+C+D

Le rendement isentropique caractérise 1'ensemble des pertes ((B+C+D). 1l est séduisant par sa
simplicité mais, en fait, d'un intérét limité car il dépend de la qualité technologique du
compresseur et de son rapport de compression.

Le rendement polytropique tient uniquement compte des pertes par frottement et par choc qui
2
correspondent aux aires : C+ D = J Tds
1

Le rendement polytropique est tres représentatif de la qualité technologique du compresseur et
par conséquent du plus grand intérét pour le constructeur. C’est la raison pour laquelle il sera
développé dans I’étude des turbomachines.
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Le rendement exergétique considére uniquement comme perte le terme T,(s, —s;) que l'on
nomme parfois I'anergie. Il présente un intérét dans I'analyse des cycles ou l'aire C peut étre
récupérée. Dans la construction des turbomachines il est trés peu utilisé.

Exercice XX 1

Un compresseur adiabatique aspire de l'air dans un état ambiant a Tio=288K et
Pio = 101325 Pa pour le refouler a Tio = 523K et p;; = 6 bar.

Calculer le rendement exergétique sachant que l'air se comporte comme un gaz ideal parfait
de caractéristiques :

r=287JkgK y=14 cp=10045J/kg. K
Corrigé.

La variation d'exergie est :

1
éex = hil - hio - To(s1 - 50)
Avec :
hy —hyg = ¢, (Tyy —Typ) = 101325 (523 — 288)
hi, — hiy = 236057,5 ] /kg
et:
Ty ( )=T ( l I l pl)—288 1004,51 523 2871 6.10°
A N s R SRUPTT " 101325
T,(s, —s,) = 25588.4 | /kg
1l vient :
1
ldex = 210469,1 | /kg
0

Le travail absorbé par le compresseur adiabatique est :
w, = hy; —h;y = 236057,5 J/kg
1l s'ensuit que le rendement exergétique est :

210469.1
= = 0,892

Mex = 5360575

Le calcul conduirait a un rendement isentropique de 0,812 et a rendement polytropique de

0,852.

La notion de rendement exergétique n'est pas restrictive aux transformations non cycliques. Ce
rendement est tout a fait adapté pour caractériser le degré de perfection d'une installation au
sens de I'énergétique thermodynamique.

Par exemple pour une transformation cyclique ditherme, productrice d'énergie le rendement
énergétique serait :
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- lwl
ex — T.
22
o (1 Tl)
Alors que le rendement thermique est :

vl

1
Et celui d'un cycle de Camnot :

TZ
Ncarnot = (1 - T_l)

Ainsi pour une transformation cyclique
réversible le rendement exégétique est égal
al.

11 est d'autant inférieur a 1 que le procéd¢ est
irréversible. Il vaut sensiblement 0,6 pour
I'ensemble des centrales électriques.

Figure XX.03 Cycle ditherme

4 Bilan exergétique

Le choix du systéme thermodynamique a étudier est trés important pour 1'établissement des
bilans enthalpiques et exergétiques. Lors des transferts de chaleur deux démarches sont
possibles :

- On peut définir un systéme dans lequel les transferts de chaleur s'effectuent avec le milieu
extérieur aux températures du fluide qui évolue. En d'autres termes cela signifie qu'on
s'intéresse uniquement a la transformation sans se préoccuper des transferts de chaleur avec les
sources.

- On peut définir un systéme plus large dans lequel les transferts de chaleur s'effectuent aux
températures des sources. Ainsi on pourra prendre en compte les irréversibilités liées aux
transferts thermiques entre les sources de chaleur et le fluide qui évolue.

Exercice XX 2

Dans une centrale nucléaire le transfert de chaleur entre le dioxyde de carbone en provenance,
du réacteur, de la vapeur d'eau alimentant la turbine, s'effectue dans les conditions suivantes :

- L'écoulement du CO est permanent ainsi que celui du H>O.
- L'échangeur est parfaitement calorifuge.
- L'état atmosphérique est po=101 325 Pa et T= 300 K.

Pour le COzona:

-en (1) a l'entrée de l'échangeur on a. : pi= 26 bar et t;=413°C.

-en (2) a la sortieon a :p2= 25,5 bar et t2= 230°C.
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On admettra que le dioxyde de carbone se
comporte comme un gaz parfait ayant, dans
cet intervalle de température, les
caractéristiques suivantes :

r = 187]/kg.K
¢, =800,8+0,4807 T
avecT enK et cen J/kg.K

Le débit masse est: qmco, = 9000kg/s

Anergie et exergie

Pour le H>O on donne : les caractéristiques sous la forme du tableau suivant :

Désignation p en bar ten °C h en kJ/kg s en kJ/kg K
Point 3 36 100 421,7 1,3041
Point 4 34 400 3225.9 6,8595

En négligeant les variations d'énergie cinétique calculer :

1.- la perte exergétique du CO>.
2.- la perte exergétique globale.
3.- le rendement exergétique de l'échangeur.

Corrige.

1.- Pour le dioxyde de carbone le bilan exergétique s'écrit :
(1 - TT—") 8Q = d(ex) + 6P, puisque Wi= 0 dans un échangeur.
Calculons chacun de ces termes.
TO
1.1.-Terme en (1 - 7) 60

Pour un systeme ouvert en écoulement permanent le premier principe de la thermodynamique
nous permet d'écrire :

6Q =dh

J2(1 TO)SQ—h h szdh
1 T 2 1 01T

De I'hypothese du gaz parfait :

Et par suite :

6Q =c,T

.l-Z( T T, T, dT
1——")6sz c dT—Tf c, —
1 T T1 P ° T P T

1

Donc :
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Avec :
T, 503,15
f Cp dT = f (808,8+ 0.4807 T) dT = —200320J/kg
T 686,15
bodr 808,81 203,15 +0,4807(230 — 413) 3389 J/kg.K
Cy /7 = O lMN——m— ’ - = - ’ 9.
T, L 686,15
On obtient :

2, T
f (1 - 7) 50 — 200320 — 300 x (—338,9)
1

f (1 —%) 5Q = —98650 J/kg

1.2.-Variation d'exergie :

2
Aex =hy —h, —T,(s, — 5,)
1
Ona:
h, —h, =—200320J/Kg
JTZ dT sz dp
S, —S, = c, — — r—
2 1 n P T T p
25,5
s, —s; =—3389 —187In 6 = —335,3J/kg.K
Et:
2
Aex = —200320 — 300 x (—335,3) = —99730/ /kg
1

1.3.- Pertes exégétiques
De l'équation de bilan nous déduisons la perte exergétique du CO2 :

Pex = —98650 — (=99730) = —1080 J/kg

1-2

La puissance correspondant a cette perte est :

Pex = 9000 x 1,080 = 9720 kW

1-2

2.- Pour l'ensemble de I'échangeur le bilan exergétique s'écrit sous forme de puissance :

. 2 4
Pex = —qco,4€X — Gy, 0deX
1 3

2.1.- Calcul du débit masse d'eau
Nous devons satisfaire la relation :

Amco, (hy —hy) + mezo(h4 —hy) =0
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Soit :
9000 x 200320

Imi0 = (32250 —a21,7)108  O+-0 K/
2.2.- Variation de l'exergie de l'eau :
4
Aex =h, — hy —T,(s, —S3)
A 3
Aex = 32259 —421,7 — 300 x (6,8595 — 1,3041)
3
4
Aex = 1137,58 k] /kg
3

D'ou la perte exergétique :
P =(—9000 x (—99730) — 642,9 x 11137580)1073

P =166220 kW

3.- Rendements exergétiques.
Le rendement exergétique de cet échangeur est :

4
dmu,04€x

Mex = —
Qmco,4€x
1

= 0,815
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Chapitre XXI

Application de la thermodynamique a la
mécanique des fluides

1 Etude thermodynamique des écoulements stationnaires

Le premier principe peut s’écrire (relation XII.12).
VZ
dw, + 6Q = dh+gdz+d<7>

Rappelons que dw; est le travail interne d'une machine, qu'il ne faut pas confondre avec le
travail des forces intérieures noté w;.

Des relations (XV. 07 et XV. 08) le second principe de la thermodynamique s’écrit.

d
Tds=6Q+5f=dh—vdp=dh—7p

En procédant par substitution, on déduit de ces deux relations :

dp &
dw, =7+d > + gdz + 6f (XX1.01)

En négligeant ’action de la pesanteur, si nous considérons un écoulement réversible d’un fluide
dans une canalisation nous retrouvons la relation (XI.14) parfois appelée Barré de Saint-Venant.

d V2
—p+d(—>=0
p 2

En raison de la faible conductivité thermique des gaz et bien souvent de la rapidité des
écoulements, on peut assimiler cette transformation a des évolutions adiabatiques.

Pour déterminer les grandeurs caractéristiques de ces écoulements nous disposons des relations
suivantes :

V2 V7
- du premier principe: h; + 71 =h, + 72 (évolution a enthalpie d'arrét constante)
D2 dp
- du second principe:  h, — h, = f ? +{;,, (relation (XV.08))
D1

-de la conservation du débit masse: q,, = p; 4.V} = p,4,V,
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Exercice XX1.01

Un gaz supposéidéal parfait, de caractéristiques y = 1,312 et r = 487,8 | /kg.K s écoule en
régime permanent dans une tuyauterie divergente et horizontale conformément au croquis
suivant. On supposera que l’écoulement est adiabatique et réversible, c ‘est-a-dire isentropique.

9=d,

111Ilfllflflflilif:fflllll FTFLTTILTTIIF,

IETTIIITTE ITTTITTTTISIIIS.

T TFTTF,

IIII’I’ ]
F ,I’III’II’I’I’Ifl””"”llll”,.’f!”

WA T TS

On donne les valeurs suivantes :

-al’amonten I :

Vitesse moyenne Vi=250 m/s
Température statique t1=20°C
Pression statique p1=35 bar

Diametre de la tuyauterie  di= 0,06 m

-al’aval en 2

Vitesse moyenne V=100 m/s
Calculer :

1) la température statique %)

2) le diametre de la tuyauterie d>

3) la pression statique p2

4) les pressions d’arrét pii et pi2
5) la masse volumique P,

Corrigé

1) Du premier principe de la thermodynamique nous avons pour un écoulement permanent :

4 v;
hiy = hy :h1+7:hi2+7
Soit pour un gaz est ideal parfait :
4 4
CpTl + 7 = CpTZ + 7
V12 — sz V12 — sz
D ’ou la températ. tati r,=T,+—=T,+——— -1
ou la température statique T, =T, 2c, | 2 b-1)

T, =293+ (250)° — (100)° (1.312—1) = 305,8K t, = 32,7°C
2 2x1,312%x487,8 N ’ 25




Chapitre XXI Turbomachines Application de la thermodynamique a la mécanique des fluides

2) La continuité du débit exige :

nd? p,V, md?
dm = P14V, = p, AV, = A, = 41 P:Vz = 42

PV
PV,

Dou d,=d,

1
. ' . : . P1 T (Y—l)
Puisque I’évolution est isentropique on a;, — = T_

2

et par suite :
P2

1
4 = ( 293 )0,31‘2 250 « 0.06 = 0.0886
2= [\3058 100 0T BUescm

3) Le calcul de la pression statique p> est immédiat :

1.312

e ()7

(305,8
n

)0'312 5,98 b
X |— =
293 20 bar

4) L’ évolution étant isentropique et le gaz parfait nous avons :p;; = D;,

- (Tu)(ﬁ) t T, =T, + i 293 + 250°x 0312 _ 308,23K
P =P etavec iy = Iy 2¢, 2x1312x4878

D’ou les pressions d’arrét :

1,312
308,23\0,312
Pin = Pip = 5 X ( 293 ) = 6,19 bar
5) la masse volumique p, est:
5,98.10°
=Pz _ =4 kg/m3

P2 =T, T 487,8 % 305,8
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Exercice XXI1.02.

De la vapeur d’eau s 'écoule en régime permanentdans un dispos itif horizontal comportant une
soupape conformément a la figure ci-dessous.

En 1 a l'amont de la soupape, la vapeur a les
caracteristiques suivantes :
Température statique t; = 200 °C
Pression statique p1 = 5.10° Pa
Surface A1 = 0,05 m?

On précise que le débit masse de la vapeur
estqmn=1,2kg/s.

En 2 a l'aval de la soupape la pression
statique p2=10° Pa.

1) En utilisant un diagramme de Mollier déterminer le volume massique de la vapeur d’eau
en I a l'amont de la soupape.

2) Calculer la vitesse Vi moyenne dans la section Aj.

3) Sachant que :

a) les parois de cet appareil sont adiabatiques.

b) la vitesse moyenne de la vapeur en 2 est V>=200m/s.
Calculer I'enthalpie dans la section Az.

4) Repreésenter sur un diagramme de Mollier [’évolution de la vapeur de 1 a 2. En déduire la
température 2.

5) Calculer la surface Az>.
6) Quelle est la variation d’entropie de la vapeur durant cette évolution.

Corrigé

1) Sur un diagramme de Mollier nous lisons
a l'intersection de l'isotherme 200 °C et de
l'isobare cing bars les valeurs suivantes :

hi = 2854 kJ/kgetv, = 0,43 mkg

2) De l'équation de débit :

A

qm = 1A, V) = ”

t

Nous dédui p qm vV, 12%x0,43 132 m/
ous aeauisons . = = =1, m/s
LA, 0,05

3) Du premier principe de la thermodynamique, pour un systéeme ouvert en régime permanent,
nous déduisons :
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V2 -V} 10,322 — 2002 3
h, = 2834 k] /kg
4) Nous avons :
VZ 2
" v2 hi1=h1+71=2854+ %1073
b v h, = 2854,05 kj/kg

h . . .
! Les points 1 et il sont quasiment confondus.

Malgré tout, nous les distinguons sur le
diagramme ci-contre pour une question de
pédagogie.

ho

Par lecture nous lisons a [intersection de
h2=2834 kJ/kg et de l'isobare p2 =1 bar les
valeurs suivantes :

t2=180°Cetv>,=21mYkg

12} 4

182
5) De I’équation de débit nous déduisons :

v, 12x21
= dmY2 _ = 0,0126 m?
v, 200

A,

6) Par lecture sur le diagramme de Mollier nous lisons les valeurs de I'entropie en let 2. D ou
la variation :
s, —s;, =7,74—-7,05=0,69 kJ/kg.K

2 Célérité du son

Pour déterminer la célérité du son, notée a, considérons tout d’abord 1’écoulement permanent
d’un liquide parfait contenu a I’intérieur une canalisation rectiligne. Nous supposerons en outre
que cette canalisation est rigoureusement indéformable et de section constante A.

Si nous provoquons alors un €branlement, il y aura au passage de ’'onde une discontinuité de
la pression p, de la masse volumique p , de la température 7 et également de la vitesse V.
Pendant le temps dt, 1a masse de fluide concernée par le parcours de cette onde est pAadt et

%4
elle subit une accélération I

Pour cette masse de fluide 1’équation de la dynamique s’écrit :

av
A(p+dp) —Ap = pAath
Soit :

dp = padV (XX1.02)

A la date t = t,, cette onde élémentaire se trouve a une abscisse x = x, dans la canalisation.
A ladate t, = t; + dt I’onde se trouvera a I’abscisse x, = x, + adt.
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Au temps ¢, toutes les particules du fluide comprises entre les sections A; et A, ont
¢videmment conservé leur masse volumique p et leur vitesse V.

Autemps #2 la section 4; se trouve en As et la masse volumique et vitesse des particules fluides
comprises entre A3 et 4> sont devenues respectivement p + dp et V +dV.

A; 2
S a
r. F.
X1 X2 . X
.f 7 2
A3 A2 \a
rd
dVdt
j adt

Figure XX1.01 Conservation de la masse

Ainsi que nous I’avions précédemment indiqué, avant le passage de ’onde, la masse de fluide
comprise entre 4; et A2 s’écrit :

pAadt

Apres le passage de I’onde, cette méme masse de fluide compris entre les sections A3 et A2
s’écrit :

(p + dp)A(adt — dVdt)
En égalant ces expressions et en négligeant les termes du second ordre on a :
adp = pdV (XXI1.03)
Des relations (XX1.02) et (XXI1.03) nous déduisons I’expression de la célérité du son a :

a’ :d_p
dp

On admet généralement que la propagation d’une onde plane s’effectue adiabatiquement et
puisque ’on néglige le frottement, 1’évolution est isentropique.

En utilisant les notations de la thermodynamique, la célérité d’une onde de pression dans un

milieu fluide indéterminé s’écrit :

a? = (Z—Z)S (XX1.04)
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Exercice XX1.03
Calculer la célérité du son de I'air dans les conditions suivantes :
Pression atmosphérique : pam = 101325 Pa
Température ambiante : tamb =18 °C
on suppose que [’air se comporte comme un gaz parfait de caractéristiques :
r=287]/kg.K et y=14
Corrigé
Puisque I’évolution est supposée isentropique la relation (XII1.06) conduit a :

p =cp’ avecc =constante

dp=cyp¥Vdp = I;)_V avec g =7rT

1l vient en définitive :

d
(£>S =yrT = a?

a=JyrT = 1,4 x 287 x (273,15 + 18) = 342,03 m/s

3 Théoréme du Capitaine Hugoniot

Les tuyéres convergentes divergentes permettent de transformer en €nergie cinétique la pression
d’un fluide compressible en écoulement permanent.

Dans une détente la vitesse croit au fur et 8 mesure de la baisse de pression. La section, qui doit
étre réalisée a I’endroit ou la vitesse est V, doit satisfaire I’équation de débit :

qm = PAV

Pour un liquide la masse volumique est constante et il en est donc de méme pour le produit AV.
La section de la tuyére décroit, elle est simplement convergente.

11 en est tout autrement dans un fluide compressible comme on peut le voir a partir des équations
de débit et de Barré de Saint Venant soit :
dp dA dV dp VZ\ dp
O=—+—+— et —+d =—+VdV =0
p AV p p

2
D’ou:

Cette écriture suppose évidemment que 1I’écoulement est isentropique et par conséquent :
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=3
dp

|4
En désignant par M = 2 le nombre de M ach il vient en définitive :

N

D’ou le tableau des variations.

M M<1
% V<a

M>1
V>a

< X
1
Q -

Tableau XXI.1 Représentation des variations

D’ou le théoréme d’Hugoniot.

Au col tuyeres de détente la vitesse du
fluide est égale a la valeur de la vitesse du
son dans un fluide homogéne dont les
caractéristiques seraient celles du fluide
considéré au col.

Figure XX1.02 Tuyere
Convergente-divergente

Les caractéristiques d’un gaz parfait au col d’une tuyére convergente divergente se déterminent
facilement a partir du théoréme d’Hugoniot et du premier principe de la thermodynamique.
Soit :

a? —Vf

hcol - hO + 2

=0
Le gaz étant supposé idéal parfait :

yr
hcol - ho = Cp(Tcol - TO) = y_—l(Tcol - TO)
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(Tcol - TO) + Tcol -0

Comme : V2 «a’ nous avons :

y—1 2
Et par conséquent :
y—-1
Tcol — 2 — (pcol)T
r, vyv+1 P,

Ce rapport est constant et ne dépend que des caractéristiques thermodynamiques du gaz.

4 Calcul du débit d’un gaz parfait au col d’une tuyére
convergente-divergente

2 _
Nous avons : q,, = pAV = p.n 4.0 @ avec p., = po (m)y '

1

. 2 \y-1 .
SOit : g = o (m)y A 17T,q mais Ty =

2T,
y+1

Il s’ensuit que :
y+1

2 v 1
Qm = ( ) 4 p—OAcol = constante X ﬂAcol

RV~ N
Le débit masse ne dépend pas des conditions de I’aval.

Exercice XX1.04.

Une tuyere convergente divergente est alimentée par de la vapeur d’eau. Les conditions a
["amont sont :

po =100 bar to=500°C Vo= 0m/s
La pression al’aval estp; = 30 bar et le débit masse alimentant cette tuyere est gqm = 10 kg/s.
L’évolution est supposée isentropique.
Déterminer la section du col dans les deux cas suivants :
Cas 1 : On suppose que la vapeur se comporte comme un gaz idéal parfait de caractéristique :
y=13 et r=4619]/kgK

Cas 2 : Déterminer la section approximative en utilisant un diagramme de Mollier.

Corrigeé
Nous avons :
2T, 2(273,15+500) ) o
T.oi = SE 1 = 1371 =672,30K soit: t, =399,15°C
Y 1,3
( 2 )H 100 ( )1'3_1 54,57
= _ = X =
Pea =P}, 31 13+1 2o
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La section au col de la tuyere est :

4 A/ To 10 X /273,15 + 500

ol = = = 8,956 x 10™*m?

y+1 ,3+

2 (),er—l)y'lg 100x105x\[(1’3zﬁ)1'31%

A, = 895,6mm?

=
[y

Cas 2 :

Sur le diagramme de Mollier nous lisons les valeurs de l’enthalpie h et du volume massique v.

Nous avons :
& GV
hO =hi0 =h+_, V= Z(hlo_h), A=——
2 |4
Ce qui nous permet de construire le tableau :
h
A Pen h en ven Ven Aen

isochorev

bar kikg | mikg | m/s mm?

100 3377 | 0,032 =0

100bar

400°C 60 3216 | 0.0493 | 567 | 869

33bay 30bay 55 | 3190 | 00529 612 | 864
313°C

% rl s0 | 3165 | 0.0565| 651 | 867
S

[
»

Le col sesituera vers la pression de 55 bar et la section sera de l'ordre de 864 mm?.
Par lecture la température au col est : tcoi= 400 °C.

Par rapport au gaz est idéal parfait (cas 1) I’erreur sur la pression et la température n’est pas
considerable, elle I’est davantage sur la surface du col.

10
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Chapitre XXII

Généralités sur les turbomachines

1 Définition

On appelle turbomachine une machine tournante dont le role est d'assurer un échange d'énergie
mécanique entre un fluide en écoulement, quasi-permanent dans son stator, et un rotor, muni
d'aubages (ou pales), animé d'un mouvement de rotation a vitesse constante autour d'un axe.

Selon le sens de I'échange d'énergie la turbomachine sera dite réceptrice (ou de détente)
lorsqu'elle regoit de I'énergie du fluide et génératrice (ou de compression) quand elle lui en
communique.

Puisqu'elle consomme ou recueille de 1'énergie sur son arbre, elle doit €tre, nécessairement,
accouplée a une autre machine. Par exemple :

-dans le premier cas ; avec un alternateur ou une turbomachine génératrice.

-dans le second cas ; entrainée par un moteur €lectrique, un moteur a combustion interne ou une
turbomachine réceptrice.

Une turbomachine peut extraire et rejeter un fluide dans un méme milieu mais elle est souvent
interposée entre deux ou plusieurs enceintes contenant le méme fluide a des niveaux de
pressions et de températures différentes.

Le corps, ou stator, se raccorde a la tuyauterie d'amenée par sa bride d'entrée et a celle du
refoulement par sa bride de sortie.

2 Classification

On différencie les turbomachines suivant :

- le sens de I'échange d'énergie

- que le fluide véhiculé est incompressible ou compressible.

- la nature de l'écoulement interne dans la roue conformément a la figure XXII.01.

IxE YA

radial hélicoradial axial radial hélicoradial axial ft i
2 J ongerntiel
centrifuge centrifuge (générateur) centripéte centripéte (récepteur) i

Figure XXII.01 Les différents types d'écoulements internes dans les roues

11
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Le tableau XXII.1 représente les principales familles de turbomachines classées suivant ces
trois critéres. Cette classification n'est pas exhaustive, en particulier le spécialiste est souvent
tenu d'apporter des informations complémentaires sur certains types de machines. Par exemple
en précisant si la turbomachine est monocellulaire ou multicellulaire et en distinguant les
aubages a action des aubages a réaction.

Turbomachines Fluide Nature de 1'écoulement

Désignation Génératrice Réceptrice Incompressible | Compressible | Axial Radial | Hélico radial Tangentiel

Compresseurs % %k % %k %
Soufflantes

Ventilateurs * * * *

Hélices

*
Pompes * * * * *
marines * * E 3

Hélices % %k
aériennes

Eoliennes

Turbines % %k % sk
Francis

Turbines

hélice, Kaplan % % %

et groupes
bulbes

Turbines % %k %
Pelton

Turbines a
vapeur

Turbines a gaz

Tableau XXII.1 Classification des turbomachines

Sur ce tableau, il peut sembler curicux que les ventilateurs et les éoliennes figurent dans la
méme colonne que les turbomachines hydrauliques, alors qu'ils véhiculent des gaz. Le taux de
compression de ces appareils est relativement faible si bien que la pression et la température
restent quasiment constantes pendant I'échange d'énergie. Ce qui permet de négliger les petites
variations de masse volumique et de considérer le fluide comme incompressible.

Lorsque le fluide véhiculé dans les turbines est un liquide, généralement de I'eau, on dit qu'on
a affaire a des turbines hydrauliques.

3 Principe de fonctionnement d’une pompe centrifuge

La machine seraccorde en E et S a deux tuyauteries cylindriques.

- La premiere, dite conduite d'aspiration, sert a amener le fluide a I'entrée de la pompe.

- La seconde est appelée conduite de refoulement.

La partie active de la machine est constituée par la roue (rotor) qui porte les aubages mobiles
(aubes, pales, ailettes). Les aubes sont toutes identiques. En désignant par n le nombre d'aubes,
leur écart angulaire est égal a 2m/n.

L'espace compris entre deux aubes mobiles est appelé canal mobile.

12
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Le fluide guidé par la tuyauterie d'aspiration arrive a la bride d'entrée et I'ouie de la pompe ou
il se répartit également entre les différents canaux inter-aubes.

L'espace compris entre la bride d'entrée et le bord d'attaque des aubages est le siege d'un
¢coulement permanent par rapport a un repeére fixe, généralement Galiléen. Cette capacité est
souvent appelée fond d'aspiration de la pompe.

S (sortie)

——

Diffuseur
E (entrée)
| Roue
— F
\ Aubes mobile
Ouie

Figure XXI1.02 Schéma d'une pompe centrifuge

Du fait du mouvement d'entrainement a vitesse angulaire constante, transmis par le rotor suivant
par la fleche F, les aubages exercent des efforts de pression sur le fluide qui se traduisent par
l'existence d'une surpression coté intrados et d'une dépression sur l'intrados.

A T'intérieur d'un canal mobile, ou a lieu le transfert énergétique, 1'écoulement est considéré
comme permanent par rapport au repere lié a la roue.

La machine est qualifiée de pompe centrifuge parce qu'a la traversée du rotor, le fluide s'éloigne
de l'axe de rotation pour s'écouler, a la sortie de la roue, dans une direction sensiblement
perpendiculaire a cet axe.

Le corps de la pompe, encore appelé stator ou enveloppe, porte une couronne d'aubages fixes
nommeée diffuseur.

L'espace compris entre deux aubages fixes constitue un canal fixe. Ces canaux fixes sont
parcourus par un écoulement considéré comme permanent par rapport a un repere fixe.

L'énergie recue par le fluide au cours de satraversée dans les canaux mobiles se manifeste par
un accroissement de sa pression et de son énergie cinétique.

En ralentissant le fluide, le diffuseur provoque une nouvelle augmentation de la pression. Il
assure au sein du fluide une conversion de I'énergie cinétique en énergie piézométrique.

A la sortie du diffuseur, le fluide doit étre collecté et conduit vers la bride de refoulement. La
partie du corps remplissant cette fonction est appelée volute du fait de sa forme.

La volute contribue également a la conversion de I'énergie cinétique du fluide en énergie
piézométrique.

13
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4 Principe d’une turbine centripéte

Pour décrire le fonctionnement d’une turbine centripéte on prendra I’exemple d'un
turbocompresseur de suralimentation équipant un moteur d’automobile.

Conformément a la figure XXII.03, une turbine centripéte comporte, en suivant le sens de
I’écoulement des gaz :

- une bride d’admission (E)

- une volute (V)

- un distributeur (D)

- une roue mobile en rotation (R)
- un diffuseur (F)

- une bride d’échappement (S)

Le role de la volute est d'accélérer le
fluide et de transformer son
écoulement rectiligne en un flux
axisymétrique afin d'alimenter le plus
correctement possible l'entrée du
distributeur. Figure XXII1.03 Schéma d’une turbine centripéte

D'un point de vue technologique, la volute est souvent réalisée en fonte réfractaire a graphite
sphéroidal.

Le distributeur se substitue a la volute pour continuer l'accélération du fluide. Dans les petites
turbines, il est souvent lisse (sans aubages) et de dimension trés limitée pour des raisons
d'encombrement.

Le distributeur peut posséder des aubages fixes ou a calage variable et étre a géométrie variable.

Dans le cas d'un distributeur a aubes on ménage, malgré tout, un petit espace a I'amont de la
roue pour éviter les vibrations dues a l'interaction aérodynamique rotor stator. Les différentes
techniques de géométrie variable du distributeur et de la volute sont décrites dans les
paragraphes qui suivent.

Dans les applications aux moteurs d'automobiles diesel ou essence, la roue est en alliage de
nickel chrome molybdéne afin de résister a I'oxydation a chaud et aux contraintes mécaniques
et thermiques provoquées par des vitesses de rotation supérieures a 200 000 tr/min et par des
températures pouvant atteindre 1000°C a I'entrée de la turbine.

La roue est centripéte ou hélico-centripéte mais toujours ouverte afin de diminuer sa masse et
son moment d'inertie. Elle doit étre calculée pour qu'au point d'adaptation le fluide sorte
axialement afin d'entrer convenablement dans le diffuseur dont la mission est de convertir
I'énergie cinétique du fluide en pression.

Dans ces petites turbines de suralimentation, dont la régulation s'effectue par by-pass, la
présence du conduit de retour de la soupape oudu clapet de décharge aun effet particulierement
néfaste sur les performances du diffuseur.

L'ensemble constitué par la bride d'entrée, la volute, le distributeur, le diffuseur et la bride de
sortie est désigné par corps de la turbine.

14
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5 Turbine a vapeur mono étage

La vapeur entre dans la turbine par une conduite de section circulaire qui débouche dans une
capacité qui présente une symétrie de révolution par rapport a I'axe de rotation de la roue. De
ce fait, cette capacité porte le nom de tore d'admission.

Son rdle est d'alimenter de fagon axisymétrique une couronne d'aubages fixes, appelés aubages
distributeurs.

Ces aubages répartissent le fluide vers la roue mobile selon I'angle voulu. Le tracé de ces
aubages distributeurs est tel que le fluide subit un accroissement important de sa vitesse. Il y a
dans ce cas conversion de I'énergie piézométrique de la vapeur en énergie cinétique. Comme il
s'agit d'un écoulement de détente, on utilise également le terme de tuyéres pour désigner les
distributeurs.

& i - Rotor

1
i
1 Distributeur

o —
i iy

Coupe bb'
E 4

La roue mobile porteune couronne d'aubages. Aussibien dans les distributeurs que dans la roue
les trajectoires des particules fluides restent sensiblement sur un cylindre de révolution. Ce qui
classe cette turbine dans la catégorie des turbomachines axiales.

Figure XXI1.04 Schéma d'une turbine axiale

En sortant des distributeurs, le fluide vient pousser les aubes mobiles en exercant un effort
provoquant la rotation du rotor. Il y a ainsi l'existence d'une surpression sur l'intrados et d'une
dépression sur l'extrados. Ces efforts aérodynamiques produisent un travail moteur, recueilli
sur l'arbre de la turbine. Il y a un emprunt d'énergie mécanique au fluide.

15
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A la sortie de la roue, la vapeur détendue est collectée dans une capacité appelée fond
d'échappement et conduite au condenseur.

Remarques

On peut imaginer de disposer, surun méme arbre, plusieurs étages en série afin de cumuler les
effets de compression ou de détente intéressant un méme débit de fluide. Selon que ces
machines comporteront un seul ou plusieurs étages, elles seront dites mono ou multicellulaires.

En résumé, on retiendra qu'un étage (ou cellule) de turbomachine comprend d'une manicre
générale :

- une roue animée d'un mouvement de rotation angulaire a vitesse constante et qui porte une
couronne d'aubages mobiles créant I'échange d'énergie mécanique entre le fluide et le rotor.

- un stator qui porte une couronne d'aubages fixes située en aval de la roue dans une
turbomachine génératrice eten amont dans une turbomachine réceptrice. Ces aubages fixes sont
le siege d'une transformation entre les deux formes pi€zométrique et cinétique de I'énergie du
fluide.

6 Représentation de I'écoulement

Une turbomachine ayant une vitesse de rotation constante et des débits masses égaux a la bride
d’entrée et a la bride de sortie génere, malgré tout, des écoulements internes instationnaires.
Ceci estdliala présencedes aubages mobiles. Cette instationnaritéest parfaitement exacte pour
une particule fluide. Par contre, pour ’ensemble d’une masse de fluide contenue a I’intérieur
d’une roue, I’écoulement peut €tre considéré comme stationnaire en moyenne.

Dans I'¢tude classique des turbomachines nous considérons, en premiére approximation, que
I'écoulement du fluide est permanent dans le stator en prenant un repere (g) lié au corps. Il est
¢galement supposé stationnaire dans les canaux mobiles en choisissant un repere (R) li€¢ a la
roue.

En d'autres termes, aussi bien pour les aubes fixes que mobiles nous admettrons que
I'écoulement est stationnaire. M ais a condition de prendre un repere solidaire aux aubages fixes
et un autre repére pour les aubages mobiles.

Pour passer durepere fixe (g) au repere mobile (R) (ou l'inverse) nous utiliserons la régle de la
composition des vitesses, soit la relation (I11.13)

v(M/g)=V,(M/g) +V(M/R)
Pour simplifier les écritures nous poserons, tout simplement, pour la vitesse d'entrainement :
U=v,M/g)=V(0/g)+ @(R/g) AOM
Dans I’étude les turbomachines on considére que le vecteur 7 (0/g)est nulle.
dOM
dt

De méme pour la vitesse relative nous écrirons : W = V(M/R) =

16
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Si bien que dans le domaine des
turbomachines, la composition des
vitesses s'écrira :

V=W+T (XXILO1)

Figure XX1.05 Triangle des vitesses

Ne pas confondre la vitesse relative W et le travail W notés de la méme fagon pour respecter
les usages.

Les indices E et S seront utilisés pour désigner, respectivement, l'entrée et la sortie d'une
turbomachine.

Par coutume on prend l'indice "1" pour I'entrée d'une roue et "2" pour la sortie.

Figure XXII.06 Aubages et triangles des vitesses

17
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Chapitre XXIII
Analyse des échanges d'énergie

Les théorémes généraux qui régissent le fonctionnement des turbomachines proviennent des
principes fondamentaux de la mécanique du solide, mécanique des fluides et de la
thermodynamique.

Nous admettrons que les écoulements internes sont unidimensionnels. L’étude en 2D ou en 3D
sort du cadre de cet ouvrage.

1 Application du premier principe de la thermodynamique

Pour un systéme ouvert (chapitre XII) le premier principe de la thermodynamique s’écrit :
2

d e 14 V2
P1+Pth:E(U +EC+EP)+ u5+p5v5+gzs+7 qms — uE+pEUE+gZE+7 Ampg

E désigne I’entrée de la turbomachine et S sa sortie.
Dans cet ouvrage on supposera toujours que le débit masse qui entre dans la turbomachine est

égal a celui qui sort et on admettra que I’écoulement est permanent.

d
E(U* +E;+E)=0 Om = Gms = Gme = constante

Ainsi le premier principe devient :

s 2
P, + P, = 2(!1 +9z+2) 4y, (XXIILOI)

P, est la puissance interne échangée entre la roue (ou les roues) et le fluide a l'intérieur de la
turbomachine. Si on désigne par C le couple transmis par le fluide et par Py la puissance
dissipée par frottement de disque on obtient une autre expression de la puissance interne :

P]Z(A)C+Pfd (ou |PI|:(U|C|—Pfd) (XXIIIO2)

P, est la puissance thermique correspondant aux transferts de chaleur dus a la non adiabaticité
de I'écoulement. Pour la plupart des turbomachines les écoulements sont supposés adiabatiques.
On rencontre des écoulements non adiabatiques dans les petites turbines de suralimentation des
moteurs & combustion interne.

L'enthalpie /4 et la vitesse V' sont les valeurs moyennes dans les brides d'entrée et de sortie de la
turbomachine.
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La puissance d'une turbine, c'est-a-dire la puissance nécessaire a transmettre a 'accoup lement
d'une autre machine tel qu'un alternateur ou une turbomachine génératrice, est :

P=P,+P,, (XXIILO3)

Ou la puissance P, ., représente les dissipations externes qui sont, évidemment, toujours
positives. Ces dégradations d'énergie sont dues aux résistances passives externes a I'écoulement
et provoquées par les paliers, butées et joints. Comme il s'agit de pertes d'origine purement

Scanique, 51 itu scaniques”.
mécanique, on les désigne habituellement par "pertes mécaniques"

On définit également le travail interne en divisant la puissance interne par le débit masse
traversant la turbomachine :

P
w;=— (XXIIL04)
I
Soit :
s 2
w+Q=24(h+gz+%) (XXIILO3)
E

Rappelons que w;, estle travail interne d'une machine, qu'il ne faut pas confondre avec le travail
des forces intérieures noté W..

L'énergie d'un fluide diminue lors de son passage dans une turbine. Il s'ensuit que les valeurs
de la puissanceet du travail sont négatives vis a vis de la thermodynamique. Or le langage usuel
ne retient que les valeurs positives de ces grandeurs, ce qui nous conduira souvent a ne
considérer que la valeur absolue de la puissance et du travail. Par exemple, pour la puissance et

le travail interne, on écrira :

| Py
|P| = |P;| = Prec et lw;|=—

2 Application du second principe

Pour un systéme fermé ou un systéme ouvert en écoulement permanent 1'égalité de Jouguet,
limitée aux irréversibilités internes, constitue une forme pratique d'application du second
principe de la thermodynamique a I'étude des turbomachines.

Des relations (XV.07) et (XV.08) le second principe de la thermodynamique s’écrit :

d
T ds=6Q+8f =dh—v dp:dh—jp

Intégrons entre l'entrée "E" et la sortie "S" de la machine :

S
Soit en posant f Of =¢&ps
E

Q =hs—hg~ f;%” — & (XXIILO6)
E-S

Le terme &, représente la dégradation énergétique dans la turbomachine.
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En reportant cette valeur de Q dans la relation (XXIII.05) on obtient :
(o]
E-S
d VE —V2
£ 2

+9(zg—zp) + &g (XXIILO7)

Remarques :

- La disparition de la quantité de chaleur Q dans cette expression ne signifie pas que les
)
E-S
évolutions sont adiabatiques puisqu'on a procédé par substitution.

S
- Il va de soi que l'intégration de f B

des évolutions a l'intérieur de la machine.

dp o . e .
— conduira a des expressions différentes suivant la nature
p

- Le débit masse véhiculé par la turbomachine est : g,,,. Du fait de la présencedes fuites internes
le débit masse passant dans laroue g, sera :

4, > q,, pour une turbomachine génératrice
q, < q,, pour une turbomachine réceptrice

Pour ce débit g,. on peut écrire la relation (XXIIL.07) entre I’entrée (1) et la sortie (2) de la roue.
Soit en négligeant la variation d’énergie potentielle :

dp V2
w, = J +,;‘1%2 (XXIILOS)

Le travail w, correspond a I’échange d’énergie entre le fluide et I’arbre de la turbomachine et
¢,_,, comptabilise les pertes dans la roue (ou les roues pour une machine multicellulaire).

3 Ecoulement dans une roue de turbomachine

Du théoréme de I’énergie cinétique relation (IV.24)
2
W, + W, = AE;
1

11 nous faut expliciter chacun de ces termes.

Désignons par (g) le repere galiléen et par (R) le repere li¢ a la roue. Sous forme différentielle
I’énergie cinétique dans le repere li¢ a la roue s’écrit en un point M :

dE; =y(M/g)- VIM/R) =y(M/g) - W
De la composition des accélérations ; relation (II1.14) :
- - d(l—)) - — — - — 17 -
y(M/g) =y(0/g) + (E) AOM + & A (a) A OM) +208 AW +y(M/R)
T

¥(0/g) = 0 puisqu’on considére que dans les turbomachines que le point O est fixe.
Nous avons donc :

dE; =

da - — — - — By 2 - A7
EA0M+wA(a)/\0M)+2w/\W+)/(M/R)l-Wdt
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Dans I’é¢tude des turbomachines nous supposons toujours que la vitesse de rotation est
constante, il s’ensuit que :

d5_6
dt
Donc :
dE; = [@ A (@ AOM)|-Wat + [28 A W] - Wdt +2% Wt
— —at _
doM 0 W-diw
Mais :
U=wAOM
o N s dU?
[a)/\(a)/\m)]-dm\/i =(dW Aw)-(w/\W)z—ﬁ-dﬁz—T
Il s’ensuit :

. du?  dw? W2 — U2
dEC=—T+ 2 =d T

Le travail des forces extérieures et intérieures, conserve dans le mouvement relatif la méme
forme que celle établie pour le mouvement galiléen. C’est-a-dire :

dp
SW: + 8W, =—7—gdz—5f

Pour un canal mobile, en négligeant la variation d’énergie potentielle est en considérant les
vitesses moyennes a I’entrée et a la sortie de la roue on obtient :

2 WZ _ UZ 2 dp
A (—) +J —+&.,,=0 (XXIIL09)
1 2 1 P

On désigne souvent cette expression par théoréme de Barré de Saint Venant (ou de Bernoulli)

généralisé au mouvement relatif.

4 Travail sur ’arbre de la roue

Des relations (XXIII.08) et (XXIII.09) nous obtenons une expression du travail /¥, en fonction
de la composition des vitesses a I’entrée et a la sortie de la roue.

VZ—V?2 U2 -U?> Wp2—-W?
wa=221+221— 22 ! (XXIIL10)

Mi s sous cette forme le travail sur I’arbre, en fonction de la composition des vitesses a I’entrée
et a la sortie de la roue, revét une forme pédagogique.
2 1

Elle permet de voir immédiatement qu’une machine radiale bénéficiera du terme en ce

qui ne sera pas le cas dans une machine axiale puisque U, = Uj.

21



Chapitre XXIII Turbomachines

wi-wi

Dans un repere lié a la roue, le terme — 5

Analyse des échanges d'énergie

montre que dans une machine génératrice, il

faudra ralentir le fluide en cours de compression. Ce sera 'inverse dans une machine de

détente.

La figure XXIILO1 représente les triangles de vitesse pour des turbomachines de compression

et de détente.

\ 4

V. 2 ﬁl
g

, A(X’) ’)A“ U2 Ul \'’4 \'4 ; i

: Wi Vv 1 !
Vil a4 Wi v B2 :

i I U U, a, 1

! W, V2

I I :

| | 1)

i v v E Y
Compression Détente '

Figure XXIII.01 Triangle des vitesses des roues de turbomachines
5 Théoréme d'Euler

5.1 Premiére démonstration

Les angles a et fdoivent satisfaire les relations :
U-V=UVcosa
U-W =UW cos(m — B)
Des considérations purement géométriques permettent d’écrire :
w=vV-U
En ¢levant au carré on obtient :
W2 =v2+4+U2-20-V

Ecrivons cette relation a ’entrée et a la sortie de la roue.
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W2 =V2+U? - 2U,V, W2 —-W? VZ2-V? U2-U?
12 12 12 17 cos g 2 L -2 L2 1 — UV, cosa, +U;V; cosaq
W2 =V + U} — 2U,V, cosa, 2 2 2

Ainsi la relation (XXIII.10) peut s’écrire :
w, = U,V, cosa, —U,V, cosa, (XXIIL.1T)
Cette relation est souvent désignée par équation d’Euler.

En négligeant les frottements de disques, la puissance fournie ou recue par une roue de
turbomachines peut s’écrire :

P, =q,w, =q,.(U,V, cosa,—U,V; cosa,)
=q,0(nV, cosa, —nV, cosa,)

Ce qui permet de déduire I’expression du couple C:
Pa
C=—=q,(V, cosa, —1,V; cosa,) (XXIIL.12)
)

5.2 Deuxiéme démonstration

Pour évaluer le counle exercé par le fluide sur la roue. on applique le théoréme des moments
des quantités de mouvements. D’aprés ce théoréme, le moment résultant des forces extérieures
parrapport a I’axe de rotation de la roue est égal a la dérivée par rapport au temps des moments
des quantités de mouvement.

Tout d’abord pour le moment des forces extérieures, considérons un tube de courant dans un

aubage mobile. Les efforts exercés sur ce tube de courant, provoque un couple dC, et se
décomposeen :

- des forces de pression s’exercant sur les extrémités du tube de courant constitué par les
surfaces de révolution dA4; et dA>. Les lignes d’action de ces forces passent par I’axe de rotation
et par conséquent le moment est nul.

- des forces de pression exercées par le milieu extérieur sur le tube de courant.

Pour I’ensemble du fluide contenu dans la roue il est évident que le couple C s’identifie au
couple que les aubages exercent sur le fluide. En effet. pour deux tubes de courant accolés les
forces latérales s’annulent puisqu’elles sont égales et opposées. Seuls subsistent les efforts
latéraux exercés par les parois des aubages surle fluide.

Pour déterminer la dérivée par rapport au temps du moment des quantités de mouvement
utilisons la relation (XI.08) :

— D —_— =
M,F,,, =C= D—tﬁf(OM/\V)pdV
14
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Figure XXIII.02 Tube de courant dans un aubage mobile

Et de la méme fagon qu’au chapitre (XI) paragraphe 4, nous pouvons écrire :
0 I =
C=[ff,5;(OMAVp)av + [[,(OM AV) p(V+7i)dA.
Par hypothése, I’écoulement est permanent dans la roue, la relation (XI1.08) devient :
¢ = ff(WAV’) o (7 -7)dA
A
Désignons par:

Ar la surface intérieure de la roue correspondant au petitrayonri et par 4> celle au rayon
extérieur 12

1, et 1, les normales aux surfaces A1 et Az dirigées suivant I’abscisse curviligne « s ».
c= || @A) o0, ), - || @ AT) o)A,
A2 Al

Puisque I’écoulement est permanent, et que le débit qui passe dans la roue est g nous avons :

P (V; 'ﬁz)dAz = .01(]7; '—ﬁ1)d‘41 = dq,
Il s’ensuit :
¢ = [, (0M, AV,) dq,~ [f, (OM, AV;)dg, (XXIIL13)

Désignons par €, un vecteur unitaire porté par ’axe de la roue et multiplions scalairement la
relation (XXIII.13) par ;. Nous avons ainsi :

¢ -é, =C (0—1\4’2/\17;) -8, =1V, cosa, (WlAﬁ)-§3=r1Vlcosa1

La relation (XXIII.13) devient :

szf r,V, cos a, dqr—ff r,V, cosa,dq,
A Aq
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Dans le cas hypothétique ou tous les filets fluides seraient identiques (ou tout simplement en
considérant les valeurs moyennes) on retrouve la relation (XXIII.12)

C=mV, cosa,—nV, cosa,) q,
Remarques.

- Pour une turbomachine comportant n cellules surle méme arbre nous aurions évidemment :

C= ij avee  ( =ff 1riVaj €OS @y dqrj—ff r1;Vijcos ay;dq,;
A A

2j 1j

- Extérieurement aux canaux mobiles, la roue comporte des surfaces inactives. Ces surfaces
sont soumises aux frottements du fluide et sont responsables d’une dégradation énergétique que
I’on désigne, dans la profession, par perte par frottements de disques.

6 Evolutions polytropiques

Les diverses évolutions que nous considérons, relativement élémentairement, sont des
transformations idéales qu’il est difficile a réaliser pratiquement. C’est le cas notamment pour
les évolutions isothermes et isentropiques.

Conformément a la relation (XXIILO7), pour déterminer le travail recu ou cédé par une
turbomachine il est nécessaire d’évaluer :

[

E P

Cette intégrale doit étre, comme on le sait, déterminée en suivant les états physiques réels du
fluide dans la traversée de la machine. Mais nous sommes dans I’'impossibilité de connaitre
I’équation représentative de la véritable évolution p = f(p). Si bien qu’on remplace,
arbitrairement, la loi réelle par une courbe partant de E pour aboutir en S de fagon a satisfaire
la relation :

Ps _Ps

pE P§
Cette courbe j_k = constante est appelée une polytrope. L’exposant k est désigné par coefficient

polytropique. La loi réelle coincide donc avec la polytrope a ’entrée E et a la sortie S de la
turbomachine.

On remplace ainsi la loi réelle par une approximation.

Les évolutions isobares, isochores, isothermes et isentropiques constituent des cas particuliers
des évolutions polytropique suivant la valeur de I’exposant polytropique K. En effet pour:

k= 0 on a une isobare.

k=1 on a une isotherme.
k= vy on a une isentropique.
k= oo on a une isochore.
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L’expression % = pvk = constante fournit des relations de formes analogues a celles
P
obtenues pour les évolutions isentropiques, relation (XII1.07) :
k-1

(k-1)
T_f _ (p_f)(T) _ (p_f)(k—l) _ (ﬂ)
Ty \p; p; Vr

7 Travail polytropique

Si dans la relation (XXIII.07) nous retranchant les pertes {;_¢ ala valeur du travail interne, on
obtient le travail polytropique.

Sd VZ_vZ
@ s~V

W, =W =g s = £+ 9(zs — zg) (XXIIIL14)
P 2

E

Ainsiprésenté le travail polytropique mesure I'énergie regue ou fournie dans une turbomachine
qui fonctionnerait sans dégradation énergétique. La puissance correspondante est donc le
produit du travail polytropique par le débit masse traversant la machine, soit :

PP:qum

Notons également que les relations (XV.07) et (XXIIL.O5) permettent de donner une autre
expression du travail polytropique :

Ss VZ_VZ
Wp:—f Td5+h5—h5+ S > E+g(ZS—ZE)
S

E

Dans les applications usuelles usuelle des turbomachines les expressions du travail interne et
du travail polytropiques se simplifient. La variation d’énergie cinétique et la variation d’énergie
potentielle, entre I’entrée E et la sortie S de la machine sont trés souvent négligeables. Et on

écrit :
s
dp
wp = L r + $eos
S dp
w, = —
P o
e . . . .z . Sisen dp
On définit le travail isentropique w;,,, en appliquant k = y dans I’évaluation de : fE 7
8 Représentation graphique

Dans un diagramme entropique, la figure XXII.O3 représentent les aires
caractérisant w,,,, W;, Wp et &_, ¢ pourune turbomachine génératrice.

26



Chapitre XXIII Turbomachines Analyse des échanges d'énergie

L'aire A (jaune) représente le travail

isentropique W, . TA

L'aire B (bleu) plus laire A (jaune)
constituent le travail polytropique wp.

L'aire C (rouge) constitue les pertes & .

La somme de ’aire A + ’aire B + 'aire C _~
représente le travail interne wy. ]

~
7 S

Figure XXIIL.03 w¢,,,, W;, Wp et &g
Pour une turbomachine réceptrice la représentation sur le diagramme entropique est plus
délicate (Figure XXIII.03). Dans la comptabilisation des travaux et des pertes, ’aire C peut étre
soit négative ou soit positive.
L'aire A (jaune) représente le travail isentropique w;,,, -
L'aire B (bleu) plus l'aire A (jaune) constituent le travail polytropique wp.

L'aire C (rouge) plus l'aire B (bleu) constitue les pertes & _s.

L’aire A (jaune) moins I’aire C (rouge) représente le travail interne wy.

Figure XXIII.03 Représentations de Wz, W;, Wp €t &p_¢
pour une turbomachine réceptrice

9 Rendements

9-1 Rendement global

Dans une turbomachine génératrice la puissance fournie (puissance a 1’accouplement) est
supérieure a la puissance disponible.

— Pp
ng - F
C’est I'inverse pour une machine réceptrice :
P
Mg =5
) PP
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9-2 Rendement mécanique

Pour une turbo machine génératrice le rendement mécanique est le rapport entre la puissance
interne et la puissance a I’accouplement.

Mmee =
C’est I’inverse pour une machine réceptrice :

T]méc -

D|w ol

9-3 Rendement volumétrique

Le rendement volumétrique n,, compare le débit véhiculé par la machine g,,, au débit passant
réellement dans les aubages mobiles. Ainsidéfini ce rendement comptabilise les débits de fuites
internes g et néglige les fuites externes qui peuvent s’échapper de la machine.

Pour une turbomachine génératrice le rendement volumétrique est :

p, = —m __
Y qmtay
Et pour une machine réceptrice :
n, = Qm — qf
T m

9-4 Rendement isentropique

Ainsi que nous I’avons déja précisé les écoulements dans les turbomachines sont généralement
adiabatiques. Dans ces conditions il peut €tre intéressant de comparer la machine réelle a une
turbomachine idéale qui serait le siege d’une évolution isentropique.

Les transferts de chaleur avec le milieu extérieur étant nuls, la relation (XXIII.05) devient en
négligeant les variations d’énergie cinétique entre I’entrée et la sortie de la turbo machine : :

w; = his — hig

Le rendement isentropique peut étre évalué a hA
l'aide d'un diagramme de M ollier.

hiSS - hiE
Ng =—F——>F—
* hiS - hiE

Dans I'éventualité d'un gaz est idéal parfait

ce rendement deviendrait :
Tis s Tig

TiS - TiE

Ns =

\ 4

Figure XXIII.04 Evolutions adiabatiques
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Soit encore :

9-5 Rendement polytropique

Le rendement polytropique a pour réle de rendre compte de la non adiabaticité de I'écoulement
et de I'ensemble des pertes internes. Par conséquent en supprimant la perte mécanique dans
l'expression du rendement global on obtient I'expression du rendement polytropique.

Pour une turbo machine génératrice :

po= Ve W P
F W, w,+0p,s P

Pour une turbomachine réceptrice :

ﬂ_|wp|_ZE—>S_P1

n = = —_
Towe [wp | Pe

Remarquons également que le rendement global est le produit du rendement mécanique par le
rendement polytropique 1y = e *Mp-

Le rendement polytropique posséde des propriétés qui le font physiquement préférer au
rendement isentropique. Il rend compte directement des pertes internes réelles, au sens du
second principe de la thermodynamique.

En associant en série plusieurs étages de méme rendement polytropique, la machine
multicellulaire ainsi constituée aura pour rendement polytropique celui des étages individuels.

On peut résumer ces diverses qualités en disant que le rendement polytropique est un critére de

la qualité technique d’un type de machine. Pour un compresseuril est indépendant du taux de
compression.
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Chapitre XXIV

Pompes centrifuges

La description sommaire d’une pompe centrifuge a été effectuée au Chapitre XXII consacré
aux généralités sur les turbomachines.

1. Notations

Pour repérer une particule fluide, s’écoulant a I'intérieur d’une pompe centrifuge, nous
utiliserons les notations ci-dessous notées sur la figure XXIV.01.

E Entrée pompe
1  Entrée roue
2 Sortie roue et entrée diffuseur.
3 Sortie diffuseur et entrée volute
S Sortie pompe
S
B 2
1
——> \
Ol
Figure XX1V.01 Notations

2. Hauteur manométrique

Lors de I’établissement de la formule de Bernoulli, au chapitre XXI, il a été défini la charge du
2

1% . .
fluide H = 5 +h + :;g qui est exprimée en metres de fluide (on dit parfois colonne de
fluide).

Dans les stations de pompage et dans de nombreux domaines de I’hydraulique, on préfére
utiliser cette unité pour une question de commodité.
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Ainsi on définit la hauteur manométrique H d’une pompe comme étant le travail polytropique
exprimée en metres de fluide. Le volume massique étant constant la relation (XXIII.14) devient
pour une pompe :

Wp  Ds — Pg VS2 - VE2
H=—= + +g(zs— z) (XXIV.01)
g pyg 29 5 TE

3 Hauteur théorique

On définit également la hauteur théorique Hm» comme étant le travail sur 'arbre w, exprimé en
metres de fluide. Soit :

H,, = ?‘1 (XXIV.02)

4 Rendement hydraulique

Le rendement hydraulique d’une pompe est égal au rapport :
H

Ny, =—7—
Hy,

5 Répartition des pressions etde I’énergie cinétique

La connaissance des caractéristiques du fluide aux différents endroits de la pompe nous permet
de déduire I’évolution de la pression et de I’énergie cinétique. En négligeant les termes de
pesanteur, comme il est d’usage dans les turbomachines, la relation de Bernoulli entre I’entrée
de la pompe E et I’entrée de la roue 1 s’écrit :

VZ V2
E _I_p_E_ 1 _I_&

Py -5 - +€—>
29 pg 29 pg 7!

Bien que n’ayant pas changé les notations, il est évident que la perte de charge ¢ est exprimée
ici en métres de fluide.

De la relation (XXIII.08) on déduit :

w, V? V.2
24 1 +&— 2

&)
L= tpilig
g 29 pg 29 pg ?

Appliquons larelation de Bernoulli successivementde 2 — 3, et 3 > S

Soit :

V2 V.2

_2 +&:i+p_3+§2_)3
29 pg 29 pg
V.2 V2

3 _l_&_ s +Ps

2oy By
29 pg 29 pg 70
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Ces relations nous permettent de donner I’allure des diverses énergies en fonction des points
caractéristiques que nous avons précisées ci-dessus.

152 iS
A
E3—>S
A 5 VS2
29 29
2
H,, = Wq 2 \
t ’ Vn
\
iE
2 \ 4
Vi EE—)
2g A by Pz Ps
M P Pg pg
29
A
Pe Py
Pg pPg
\ 4 A A 4 >
E 1 2 3 S

Figure XX1V.02 Evolution de la pression et de [’énergie cinétique

6 Relations entre la hauteur théorique Hy, et le débit volume qy
d’une pompe

Dans le but d’établir les relations entre la hauteur théorique et le débit volume, examinons la
déformation des triangles des vitesses lorsque le débit varie en maintenant constante la vitesse
de rotation de la roue.

Supposons que le débit croisse, dans ces conditions la
vitesse V1 augmente. La direction de W est modifiée d’ou
les pertes par choc a I’entrée de la roue.

A la sortie, la direction du fluide est imposée par I’anglef5,
des aubages. La direction de la vitesse relative W2 ne
change pas et sa norme augmente avec le débit. Par contre
la direction de la vitesse absolue V2 est modifiee et il
s’ensuit des pertes par choc a I’entrée du diffuseur ou de la
Figure XXIV.03 volute.

Variation débit
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D’une fagon tout a fait analogue a ’exercice XXIV.01, traité a la fin de ce chapitre, appliquons
I’équation d’Euler en considérant le débit de la roue. Ainsi nous avons :

UZ qv ]
H,=—|U,— ————
hg Lt 20,y L,tg B,
A
Hin Soit une relation de la forme :
B> 7
03 5 H,, = Aw?* + Bwgq, (XXIV.03)
Yz , ==
2 A vitesse de rotation constante, la hauteur
g, <= théorique varie linéairement avec le débit. La
Z T2 pente de la droite sera positive ou négative
> suivant le signe de tan f3,.
4r
Figure XX1V.04 Hw en fonction de 3,
B B B,
s s s
,32 < 2 .32 -5 ﬁz > 2

Figure XXIV.05 Forme des roues de pompe en fonction de l'angle [,

Pour des raisons de stabilité de fonctionnement et de rendement, les roues des pompes
centrifuges ont des aubes couchées en arriere. Sauf dans quelques cas particuliers d'utilisation.

7 Courbes caractéristiques

En enlevant de la droite H,, = f(q,) les pertes aérodynamiques ¢, , c'est-a-dire la somme
$poqg &5, + &5 &5, on déduit la hauteur manométrique H puisque :

H = ch - Eaéro
Le terme ¢,,., peut également se décomposer en pertes par frottement et en pertes par

incidence.
u débit d'adaptation le fluide pénetre dans la

Pertes par frottement : ————— roue avec un angle trés proche de celui des

Pertes par incidence : ————— aubages. Les pertes par incidence sont alors
A . . . r .

& minimales mais en dehors de ce régime elles

croissent de part et d'autre suivant une courbe
d'allure parabolique.

faéro

Les pertes par frottement varient sensiblement
qvr comme le carré du débit.

Figure XX1V.06 Pertes dans la roue
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On a ainsi tous les éléments pour construire la courbe de la hauteur manométrique / en fonction
du débit g, qui passe dans la roue.

La relation (XXIV.03) montre, qu'a vitesse constante la hauteur théorique H,, en fonction du
débit dans la roue est une droite. En déduisant de la hauteur théorique les pertes aérodynamiques
on obtient la hauteur manométrique.

H
4

Hauteur manométrique H
Hauteur théorique H,

4

.

7\/;’
Figure XX1V.07 Hauteur manométrique

Remarquons que gy est le débit volume qui traverse la roue et non celui qui est fourni par la
pompe gy. Pour obtenir la courbe utile H en fonction de ¢, il faut translater la courbe H (g.,) en
comptabilisant le débit de fuite.

Le rendement global (XXIII. 16) permet d'écrire pour une pompe :

_ P9q,H
Mg =—p (XXIV.04)
P est la puissance a l'accouplement (XXIII. 03).
Mg A Ce rendement est nul pour g, = 0 et A=0.
Tt Il est maximum au point d'adaptation pour

lequel les incidences sur les aubages sont
faibles (inférieures a+5°).

Pour utiliser correctement une pompe
(centrifuge ou non) il est indispensable de
disposer des courbes caractéristiques du
constructeur Figure XXIV.08.

v

qv
Figure XXIV.08
Courbe constructeur

Il faudra en outre disposer des caractéristiques de la pompe vis-a-vis de la cavitation qui sera
évoquée lors d'un prochain chapitre.
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8 Déviation, influence du nombre des aubes

Jusqu'a présent, nous avons supposé que le fluide sortait de la roue avec lI'anglef,qypqges des
aubages.

Ceci serait exact sile nombre d'aubes était infini. On a évidemment intérét a limiter le nombre
d'aubes pour ne pas augmenter la puissance dissipée par frottement dans les canaux mobiles.

U, On accepte un écart entre l'angle moyen de
sortie des filets fluides et l'angle B,4,54ges
Waq \& conformément a la figure XXIV.09.

BZaubages
Cette différence est appelée la déviation

angulaire.
D Uz L =
Figure XX1V.09 Déviation
Elle dépend du nombre d'aubes, de l'angle B,4,pqges €t Plus généralement de la forme des

aubages.
La grandeur yU, est représentative de la perte d'énergie fournie au fluide.

Il existe des relations empiriques pour calculer la déviation. La plus connue est celle de Stodola
qui donne la valeur du y.

T
X= E sin :82aubages

Z étant le nombre d'aubes.

9 Diffuseurs

Ainsi qu'il a été déja évoqué, les diffuseurs, en ralentissant le fluide, provoquent une nouvelle

augmentation de la pression. Ils assurent au sein du fluide une conversion de I'énergie cinétique

en énergie pi€ézométrique.

Les diffuseurs peuvent comporter des aubes ou étre lisse, c'est-a-dire sans aubes.

Si la largeur d'un diffuseur est constante, I'équation de débit conduit a la relation suivante :
nV, sina, = r;V; sin a, (XXIV.05)

10 Diffuseurs lisses

Puisqu’il n’y a pas d’aubes, I’action du fluide est nul en négligeant le frottement sur les parois
lisses du diffuseur. En vertu du théoréme d’Euler (relationXXIIL.12) :

nV, cosa, =nr;V; cos a;.

Et de la relation (XXIV.05) nous déduisons que :
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tana; = tan a, = constante.
Et par suite :
r,V, =r;V; =rV = constante (XXIV.06)

Les trajectoires, dans un diffuseur lisse de largeur constante, sont des spirales logarithmiques.

Pour le montrer considérons un point M défini dans le repére ci-dessous par:0M = r ()
N

y \ I s’ensuit que :
d (ri(0)) dr do T
i V=———"=—0@)+r—u(0+=
u(9+§) dt a¢ 1O rdtu( 2)
a Remarquons que dans le repére u(6), d (9 + g) nous
pouvons exprimer la vitesse de la fagon suivante :
u (2) ! N N N T
4 V=Vsinau(9)+Vcosau(9+E)
u(9)
AT S
0 =10 X
Figure XX1V.10

Définition du repere
De ces deux derni€res relations nous déduisons :

dr_V )
5 = Vsina
dB_V
ro; = Veosa

Soit encore :

r
— = ad#@ puisque tana = constante
r

Et en intégrant on obtient le résultat recherché :

r =Ke®
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Figure XX1V.11 Diffuseurs lisses

11 Diffuseurs a aubes
Dans un diffuseur a aubes il y a, évidemment, un couple qui s’exerce sur les aubages :
C=q,15V;sina; —nV,sina,) #0
Si la largeur du diffuseur est constante la relation (XXIV.05) s’écrit :
nV, sina, = r,V; sina,
Pour ralentir davantage le fluide il faut donc que :

A3 avec aubages > @ 35ans aubage pourque V3 avec aubages < V3 sans aubage *

1
; T~ .-

Figure XX1V.12 Diffuseurs a aubes
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Exercice XX1V.01

Soit un débit d’eau gv= 2500 m¥h et une hauteur manométrique H= 148 m le point de régime
nominal d’'une pompe centrifuge de caractéristiques :

- Vitesse de rotation N=1480 tr/min

- Rayon extérieure de la rouer> =324 mm

- Largeur a la sortie de la roue [ =43 mm

- Angle de sortie 5, =28° 18’

1 - Sachant que la vitesse V; est dirigée radialement (a1=90°), que le rendement volumétrique
n, =0,95, calculer le rendement hydraulique de la pompe.

2 - A la sortie de la roue le fluide pénétre dans un diffuseur, il en sort au rayon rs avec la vitesse
V3 sous l'angle 3. Quelle est la variation de son énergie cinétique dans les cas suivants :

A) diffuseur lisse.

B) diffuseur a aubes.

On donne :
r3=450mm et 3= b.
Pour le diffuseur a aubes o.3=16°.

3 - On suppose que le diffuseur a aubes est responsable de 30 % des pertes hydrauliques a ce
régime nominal. On précise que la masse volumique de I’eau est: p = 1000 kg/m?> . Calculer
l"augmentation de pression qu’il permet de réaliser.

Corrigé
1 - De la relation (XXIII.11) nous avons :
w, = U,V, cosa, —U,V, cosa, =U,V, cosa,,puisquea; = 90°.
Au rayon r la vitesse périphérique est :

_2nrN % 0,324 X 1480

= = = 50,2
2= 760 30 m/s
/% 2 Le débit volume qv de la roue doit satisfaire la
oS By AN relation :
Uz“‘-.‘_ 174 Vi /?
2 q,r =2V, sina, = 2nr,l,W, sin 3,
Us, P A
%, : Par ailleurs nous avons :
oy
r] U,—-W,cosp,=V,cosa, =U, ————
2 2 B 2 2 2 21, L,tgP,
1l s ensuit :
Aor
X 4 =U,|lU, ————
Ya 2172 2mn,l,tgp,
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Compte tenu du rendement volumétrique et de la relation (XXIV.02) nous déduisons :

UZ d,

H,=—|U,— ——
“ gl? 21,y L, tg B,

2500

Hen = 222 50,2 3600

th ~ 981 ’ 2% 0,95 x 3,14 x 0,324 x 0,043 x tg(28°18)
Hn=177,65m
D ’ou le rendement hydraulique :

_H 148 0.83

"=, T 17765

2 - Il faut déterminer les caractéristiques du fluide a la sortie de la roue, c’est-a-dire a l’entrée
du diffuseur.

. 4y .
W, sinf,=—=V,sina )
2 27 2mn,myl, 2 2 = tang. = Y2
H 2™
gUth =V, cosa, 2mn, 1,1, gHy,
2
50,2 X 2200
tana, = = 0.2406 > a, = 13°32’
2x0,95x%3,14x 0,324 x 0,043 x 9.81 x 177,65
Et par suite :
H 9.81 x 177.65
V, = 9% _ = 35,7m/s

2" U,cosa, 50,2xcos13°32’
A) L’équation de débit s écrit :
q, = 2nryl Vs sin ay = 2nn, LV, sina, = 2nn, 5V, sina, = nlV;sina; =1V, sina,.
Et de la relation (XXIV.06) on déduit :

TV _ 0324%357
" r, 0,450

= 25,7m/s

La variation d’énergie cinétique dans le diffuseur lisse est donc :

VZ—-V2 257%—35,72
2 2

= —307J/kg

B) L’équation de débit pour le diffuseur a aubes permet de déduire la vitesse V- :
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_nVysina, 0,324 X 35,7 X sin 13°32'

Vs =218m
3 73 Sina, 0,450 X sin16° /s
La variation d’énergie cinétique dans le diffuseur a aubes est :
Vi-V? 21,8%—35,7?
= = —399 J/kg

2 2
3 - La perte hydraulique du diffuseur est donc :
$,3-=03x%x(177,65—148) =89 m

Appliquons ['équation de Bernoulli entre 2 et 3 :

P, V2 P. V2
_2_|_i= _3+i+52_)3*
pg 29 pg 29

Et par suite :
Py—P, V2-VA2 35,72 — 21,87
3 2 — 2 3 _ 52_)3* — _8,9
rg 29 29
P;- — P,
T =3184m = P;—P,=31,84x%x1000x9,81=312350 Pa
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Chapitre XXV

Pompes hélices

Une pompe hélice mono étage comporte :

Redresseur
N

Figure XXV.01 Pompe hélice

- un canal d’admission.
> - une roue munie d’un nombre réduit de
S pales (54 10),
>

Pompes hélices

- un redresseur fixe et muni d’un nombre
de pales plus ¢€levées que ceux de la roue
(10 2 20).

- un canal de sortie.

Dans ce type de turbomachine, il est nécessaire d’étudier les conditions d’équilibre radial des
différents filets fluides. Dans les pompes centrifuges les conditions d’équilibre sont

automatiquement réalisées.

1 Triangle des vitesses

Les calculs sont conduits pour que tous les filets fluides,
compris entre le rayon intérieur r; et le rayon extérieur re,
recoivent la méme énergie au point d’adaptation. Cela
implique que le travail massique w, reste constant Vr 3
|7, 7, [. En d’autres termes il ne faut pas que wy soit fonction
der.

Sachant que I’angle a, = g la relation (XXIIL.11) devient :

w, = U,V, cos a, = constante

La répartition des pressions a I’intérieur d’une pompe hélice
est tout a fait similaire a celle d’une pompe centrifuge. Par

contre, pour obtenir ’accroissement de pression dans la roue,

on ne bénéficie pas duterme caractérisant la force centrifuge
puisque : Uy = Ua.

Zd Vz_Vz
p
1
B, W oW
2 e 2

2
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On obtient une augmentation de pression uniquement par ralentissement des vitesses relatives.
Les pompes hélices comportent relativement peud’aubes et il s’ensuit que les filets fluides sont
mal guidés. Cette particularité rend délicat le tracé des machines de compression axiale.

Sur la figure XXV.03 on a superposé le triangle des vitesses a I'entrée des aubages avec celui
de la sortie.

Les risques de décollements sont
favorisés par des ralentissements
des vitesses trop brusques et par
des changements de direction des
fluides trop importantes. Il faut
donc que la différence des angles
B, — B, soit faible.

Figure XXV.03 Triangle des vitesses

Pour surmonter cette difficult¢ que on fait appel @ une généralisation de la théorie de ’aile
d’avion appliquée aux aubes considérées comme des surfaces portantes placées dans un
courant.

2 Action du fluide sur les aubes

2-1 Théoréme des quantités mouvement

Dans ce but, considérons une grille d’aubes et appliquons le théoréme des quantités de
mouvements un canal fluide entourant un petit ¢lément d’aubes, d’épaisseur dr.

L

1(0) <

2

g7 Wt
N

Pas ¢

A

n

Figure XXV.04 Grille d’aubes

Conformément a la figure XXV.04, ce canal est limité par deux lignes de courant distantes d’ un
pas tet par les plans d’entrée et de sortie respectivement notée 1 et 2.
Soit :

(v, =) da,, = (o, —p,) tdru (%) + dR{aube — fluide} ~ (XXV.01)

Remarquons que nous pouvons écrire :
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Et par suite la relation (XXV.01) devient :
(Wz 1_1)(,82) + Wla(ﬁl))dqm =(p, — pz)tdra (g) + dR {aube — fluide} (XXV.02)

Que nous pouvons mettre sous une autre forme en tenant de compte du théoreme de Bernoulli
en mouvement relatif pour une pompe hélice (XXIIL.09) :

W2 — W2 —
2 _ 1 +p2pp1+€1_>2=0

La relation (XXV.02) devient :

g 2 _ 2 - - -
dR {ﬂuide — aube} = (M-F fl_)2>ptdru (g) - (qu(ﬁz) — Wlu(ﬂl)) dq, (XXV.03)

Puisque qu’en vertu de la loi de I’action et réaction nous avons :

dR {aube — fluide} = —dR {fluide — aube}
2-2 Propriété des triangles quelconques

Les propriétés de la médiane, dans les triangles quelconques, seront utiles pourtransformer plus
simplement la relation (XXV.03).

Pour cela, considérons out d'abord un petit ¢lément fluide d’épaisseur dr entourant une aube
(figure XXV.04) et exprimons le débit :

dq,, = ptW, sin p, dr = ptW, sin B, dr = ptW, sin codr. (XXV.04)

Ce qui permet de déduire que : W, sinf8; = W, sinf3, = W, sin 3, (XXV.05)

— [ TT
i(Z) AoA . »
2 |<—> Ainsinous pouvons écrire :

A
Wyu(B,) = W, () + Au(0)
Wi W,4(B,) = W, () — A%(0)
W W2 = W2 + 12 + 2W, Acos o
Bi \® |5 W2 = W2 + 12 — 2W, Acos o
i(0)
Figure XXV.05 MédianeW
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Retranchons ces deux premicres relations :
W, () — W, 8(B,) = 2AT(0) (XXV.06)
Ajoutons la troisiéme et quatrieme de ces relations :

VVz2 - Wl2
— = —2 W, Acos o (XXV.07)

On désigne souvent ces résultats par théoréme de la médiane.

2-3 Efforts sur les aubes

Utilisons les relations (XXV.04), (XXV.06) et (XXV.07) dans I’expression de I’action de ’aube
sur le fluide (XXV.03) :

dR {fluide — aube} = (—2W,,Acos o+ &;_,5) pta’ra (g) + 22 u(0)ptW,, sineedr
En négligeant la perte &, _,, cette expression devient :
dR{fluide - aube} = —2W.. Apt (— sine=(0) + cos ool G)) dr= —2W.. Apt u (oo + g) dr

Nous pouvons mettre cette relation d’une autre forme en multipliant la relation (XXV.06) par
1(0)nous avons : =24 = W, cos B, — W, cos 3, , soit :

dR {fluide — aube} = W..(W, cos B, — W; cos ﬂl)pt; (°° + g) dr = dRu (°° + ;—T) (XXV.08)

dR{fluide —» aube}

Ainsi, pour une tranche de fluide W
d’épaisseur dr, ’action du fluide sur I’aube

est perpendiculaire  la vitesse W,,.

Figure XXV.06 Action du fluide sur une aube

3 Théorie sommaire de 1'aile d'avion

Toujours en négligeant &,_,,, ’analyse dimensionnelle permet d’exprimer dR de la facon
suivante :

1
dR = 5P WZC,dA (XXV.09)
C: est appelé coefficient de portance ou encore coefficient de sustentation.

A est une surface arbitraire qu’on appelle surface de référence.

Dans notre cas on prendra : dA=Idr
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/ l est la corde de l'aile

dr est toujours I'épaisseur d’un petit élément
i w fluide entourant l'aile.

0

Figure XXV.07 Corde! et incidence i On définit également I’angle d’incidence
formé par la direction de W, et de la corde /

HZ‘H

Dans le domaine des turbomachines, on a coutume de poser :W cosf =W, et pour

W, cosp, — W, cosff, ont écrit tout simplement AW, aulieu de AW, .Ainsi la relation

1
(XXV.08) permet d’écrire :
dR =W, AW, p tdr (XXV.10)
Des relations (XXV.9) et (XXV.10) nous déduisons :
1 2
Ep WsC, ldr =W, AW, ptdr
D’ou la relation fondamentale :
l AW,
C,-=2 (XXV.11)
t w,

0

Si on ne néglige pas les pertes &;_,, la force élémentaire dR nest plus perpendiculaire a
W, 1 (o) car il y a une composante tangentielle Ry due au frottement. On définit également un
coefficient de trainée que I’on désigne par C.

Ainsi nous avons :

1
dR, = ZpWZC,1dr

1
dR, =7 pWZC,ldr

Rz est la portance.

Rx est la trainée.

w,

o0

Figure XXV.08 Portance et trainée
A T'aide d’une balance aérodynamique, on mesure les composantes R et Rx pour diverses

incidences "i". Ce qui permet de déduire expérimentalement C:et Cx en fonction de I’incidence
"1". La figure XXV.09 représente I’allure de ces courbes.
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Cz N Czp

=
1 1
0,8

0,6 ‘/ 0,6 /
0,4 / 0,4

/
0,2 / 0,2
/ el ~ ~
0 4 8 12 16 20 i 0 0,1 0,2 0,3 Cx
Figure XXV.09 Ci et C; en fonction de i Figure XXV.10 Finesse

. C . . .
La finesse d’une aile est le rapport C—Z, la trainée est faible lorsque la finesse est grande.
X

Les avions de ligne ont des finesses comprises entre 16 et 18. Une aile de planeur a souvent une
finesse comprise entre 27 et 32 ce qui est excellent, mais certains planeurs récents peuvent
atteindre 60.

On ne peut pas prendre n’importe quelle valeur du C.. L’apparition des premiers décollements
importants sur I’aube ce situe vers 1,2 et on ne dépasse guére cette valeur. D’autre part il existe
une valeur optimale du C; voisines de 0,8 , qui correspond a la finesse maximale.

On remarquera que le minimum du C; se trouve au voisinage de I’incidence de sustentation,
ce qui semble assez normal.

L’application de la théorie des ailes d’avion, au calcul des roues de turbomachines hélices,
consiste essentiellement a assimiler en premiere approximation, la polaire d’un profil disposé
en grille a celle du méme profil placé dans un courant plan.

L’¢tude des différences entre le comportement du profil en grille est celui du méme profil
disposé dans un courant plan constitue le probléme délicat des interactions.

4 Tracé aurayonr

Lorsqu’on connait le triangle des vitesses a un rayon donn¢ on peut déterminer ’aubage de la
fagon suivante :

A - Choix d’un profil.

B - On prend le Cz optimal ou légerement inférieur. L’incidence est alors lue sur la polaire et
on peut caler le profil sous cet angle parrapport ala direction de Woo.

C - La détermination du serrage des pales est obtenue par la relation XXV.11 :

I AW,
C,-=2
t W

0
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4(0)
Figure XXV.11 Calage de I’aube au rayonr

5 Equilibre des différents filets
Recherchons les conditions d’équilibre des différents filets d’une machine axiale. Spécialement
celles qui correspondent au maintien d’un méme filet sur un cylindre concentrique a I’axe au

rayon r. Pour cela considérons une roue comprise entre deux cylindres de rayon intérieur 7; et
de rayon extérieur r. conformément a la figure XXV.12.

A AV
—’.-]. _——— - \V2m
Vim ‘\
\

Vi Ve

Figure XXV.12 Etude d’un filet fluide

Supposons qu’a I’amont de la roue les filets soient tous sur des cylindres concentriques a I’axe
de rotation. Les filets fluides qui étaient a ’amont sur un cylindre de rayon » pourront étre a
I’aval sur un cylindre de rayon différent. Au voisinage de la roue, les filets ne resteront pas sur
un cylindre. Les vitesses auront une composante radiale. Par exemple la vitesse V> pourra avoir
trois composantes Vam , Vau et Var.

En raison de la proximité des parois la composante radiale V2, ne pourra jamais prendre de
valeur importante. Nous pouvons donc la négliger dans I’équation de mouvement.

De la relation (II1.16) et du principe fondamental de la mécanique (IV.13) on déduit I’équation
de mouvement suivant le rayon 7 :

1ap V2
SRS (XXV.12)
por r
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Cette équation exprime les différences de pression qu’il existe entre les filets fluides afin
d’équilibrer I’action des forces centrifuges consécutives au mouvement giratoire.

Pour simplifier, nous supposerons qu’en amont de la roue tous les filets fluides ont la méme
énergie, la méme pression p; et la méme vitesse V7. Nous admettrons également que :

- la vitesse V7 est axiale.

- le travail wq n’est fonctions que de .

S
dr )

Nous disposons des trois relations ci-dessous pour résoudre le probléme de la répartition des
filets fluides en aval de la roue.

a) La relation (XXIII.08) appliquée a une pompe permet d’écrire :

P, — D1 sz - V12
w, = P + 5 +&,,

En écrivant que : V.2 = V.2, + V.2 (puisqu’on néglige V,,) cette relation peut s écrire :

V2, + V2 Ve
%2+ 2u . 2m =wa+%+71—€m (XXV.13)

b) Dans une pompehélice, lorsque la vitesse V; estaxiale (a; = g), I’équation d’Euler devient :
w, = U,V, cosa, =U,V,, (XXV.14)
¢) En 2 la relation (XXV.12) devient :

10 V2
l—)% = % (XXV.15)

En tenant compte des hypothéses, dérivons la relation (XXV.13):

10p, Vo Vo _ dw,
——- V2u 2m =
p Or ar or dr
Compte tenu de (XXV.15), cette relation devient :
VZ%J aVZu aVZm dWa
—+V,, =+, ——=
e T = dr

w
Remarquons que V,, est fonction du rayon r, puisque: V,,, = U—a =F ()
2

Wy
or
peut calculer cette constante avec 1’équation du débit volume ¢y :

il s’ensuit que : V,,, = F,(r), ce qui permet de déterminer V2, a une constante prés. On

)
q, = f 2mr Vs, dr

T1
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Nous avons ainsi tous les éléments pour construire le triangle des vitesses a chaque rayon.
Exercice XXV.01.

Déterminer la vitesse Vam dans les deux cas hypothétiques suivants :
a) wa = égale a une constante quelle que soit le rayon r

b) wa = Kr
Corrigeé
a) Puisque wqa = K nous avons :
w, K
Vou = U_z ==
il s'ensuitdonc :
Vo _ _K
or r?
De la relation (XXV.16) on déduit :
K? K? oV
— = =0 = V,, = constante

LT
Ainsi siwa = K, la vitesse débitante est constante et ceci quelle que soit r.
b) wa = Kr. On procéde d'une fagon analogue au cas précédent.

v _Wa_Kr_K
2u—U2—wr— 1

a
De la relation (XXV.16) avec% = K on déduit :

oV, K}
Vom =5, = K=

Si wq = Kr, la vitesse débitante serait :

2

|74
%zKr—Kflnr-i—KZ

6 Tracé des aubages

Le choix des aubages est le méme que celui développé au paragraphe 4 (tracé au rayon r).
A — Choix d’un profil.

B — On prend le C: optimal ou légerement inférieur. L’incidence est alors lue sur la
polaire et on peut caler le profil sous cet angle parrapport a la direction de We.

49



Chapitre XXV Turbomachines Pompes hélices

C — La détermination du serrage des pales est obtenue par la relation :

I AW,
C,-=2
t W

0

Tragons, pour le profil choisi, le triangle des vitesses
au rayon intérieur ri et au rayon extérieur re .
Choisissons une loi simple :

w, = U,V,,, = constante K

Figure XXV.13 Rayon de la roue

Cette loi implique, comme nous I’avons vu, que la vitesse débitante reste également constante
quelle que soit le rayon r.

l AW AV
C-=2—Y=p—_t—p2u
z t WOO o0 WOO
_ 21r
- Z

Z étant le nombre d’aubes. Ces deux relations permettent de déterminer la corde 1 :

nr V,,

|=4—2%
ZC, W,

Avec ces hypotheses réalistes la corde est de la forme :
Constante

W

o0

On voit ainsi que lorsque le rayon augmente, la corde diminue.
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Figure XXV.14 Calage des aubes de la roue au rayon riet au rayon re

7 Courbes caractéristiques

De la relation XXV.11, on déduit le coefficient de portance, soit :

c,=2-—2=2
z I W,

Au-dessous de Cz = 0,8 la portance est trop faible et les pertes par frottement relativement

importantes.
Au-dela de Cz= 1,2 la portance est exagérée et il y a des risques de décrochage.

77“_
On voit donc que, connaissant le triangle des
vitesses, cette loi va nous permettre de
H|=T— déterminer le pas optimum z. C’est-a-dire en
définitive, le nombre des aubages qui sont
nécessaires.
Lorsque le débit se réduit, la hauteur fournit
par chaque filet fluide augmente et le
coefficient de portance se met a croitre. Il
arrive un moment ou des décollements
apparaissent sur [I’extrados des profils
d’aubes.
La courbe H présente alors un maximum en
général assez aigu, a gauche duquel
Qv apparaissent des fonctionnements instables.

Figure XXV.15
Courbes caractéristiques
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Parfois, on loge a I'intérieur du moyeu un mécanisme commandé de I’extérieur afin de faire
pivoter I’aube autour de son axe radial. Le but étant d’obtenir des caractéristiques de
fonctionnement permettant de conserver un rendement acceptable sur une large plage.

Exercice XXV.02

(On appelle ventilateurs des turbomachines génératrices a fluide compressible donnant des
rapports de compression inférieurs a 1,2. Tous les calculs de construction et de
fonctionnement peuvent étre conduits comme s’il s’agissait d’un fluide incompressible, c’est-
a-dire comme une pompe).

Un ventilateur axial (hélice) a une roue comportant 10 aubes, dont le Czen fonction de I’angle
d’incidence i est donné par la courbe ci-dessous.

C:
I, 0/\

0.8y _ |
0.8 Pz BN

0,6 /
0,4
|/

0 7 70 767

Le point de fonctionnement normal a été déterminé a partir des données suivantes :
Vitesse de rotation N=270 tr/min.
Debit d’air traversant la roue ¢w=250 m3/s
Masse volumique de l'airp ,;,=1,293 kg/m?.
Masse volumique de I’eau py, o=1000 kg/m?
i = 10° sur toute la largeur des aubages.
Vitesse d’entrée de l’air Vi=50m/s. Cette vitesseestaxiale et constante sur toute
la hauteur des aubages.
Rendement hydraulique de la roue n,,=0,92 sur toute la hauteur des aubages.
Hauteur manométrique fournie par la roue H = 368 mm de colonne d’eau quel
que soit le rayon r.

1 - Sachant que le rayon intérieur du rotor est ri=1m, calculer pour le point de fonctionnement
normal en négligeant [’épaisseur des aubes :

1-1. Le rayon extérieur re.

1-2. La puissance.

1-3. La corde des aubes aux rayons ri, et re.

2 - On fait varier le débit de maniere a avoir Vi=35 m/s puis Vi=65 m/s.
2-1. Calculer pour ces deux valeurs du deébit, les nouveaux angles d’incidence
aux rayons ri, et re.
2-2. Montrer qu’en modifiant de maniere adéquate le calage des pales, on peut
pour ces deux valeurs du débit, conserver un Cz pratiquement constant et
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sensiblement égale a 0,85. Donner la valeur des angles de calage lorsque
Vi=35 m/s puis a 65 m/s

3 - Les modifications de calage précédentes étant réalisées, calculer pour ri, rm etreet pour les
vitesses Vi=35 m/s et 65 m/s, les hauteurs théoriques fournies par le ventilateur.

Corrigé.

1
1-1. Puisque la vitesse V| n’est pas fonction du rayon, nous avons :

Gy = (17 — 2V, soit :
Qo 5 250
= +12 = / +12 = 1,61
Te rV, i - 50 m

Remarquons que le Ap 1,,,, fourni par le ventilateur doit satisfaire la relation :

1-2. Puissance

ApTotale = pairgHair = pHZO-gHHZO

_ PuoHuo 1000 x 0,368

H=H .
o Pair 1,293

= 284,61 m,;,

De la relation XXIV.04 nous déduisons :

_pgq,H 1,293 x 9,81 x 250 x 284,61

P
m, 0,92

=981000 W

1-3. La corde

La relation XV.11 permet de déterminer la corde :

=2 iVZ_u
C‘Z o0
Avec :
gH 2
H = 284,61 m,, w, =— = 30348 t=——=10,628r
), 10
2nrN w, 29,876
=—=101,58r Vou =—=
U, T
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1 1
2 2

, Vaur\> , 29,876\
Woo= Vl +(U—T> =50 +<101,58T— o )

Nous avons tous les éléments pour déterminer la corde en fonction du rayonr, soit tous calculs
effectués :

1

0,338)2 2
T

l= <1,2815 + (2,299 r—

Au rayonri=1m, la corde | = 0,442 m
Au rayonrve= 1,61 m, la cordel = 0,272 m

2
2-1. Conformément a la figure ci-dessous, désignons par 0 ['angle formépar i + 3,

NV ARE

~

Ui
Le calage des aubes étant fixe il s ensuit que l’'angle 6 = [, + i est constant pour un rayon r
donné. Tout d’abord, calculons ’angle 6 au régime normal de fonctionnement au rayonriet re

en sachant que :
= arcta () = areta (1555
L= AR Iy ) T 9 T01,58r

r I m 1,61 m
Incidence i 10° 10°

By 26° 17°
0=p+i 36 27

Nous avons tous les éléements pour calculer l'incidence aux vitesses Vi=35m/s et V2=65 m/s.

Vi 35 m/s 65 m/s
r Im 1,61 m Im 1,61 m
6 36° 27° 36° 27°
— Arct (—1> 19° 12° 32.6° 21,7°
br=4rcta\101 58
Incidence i = 0 — 3, 17,2° 14,9° 3,6° 5,3°
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2-2. Sur la courbe donnée dans [’énoncé, nous voyons que les variations du C:sont tres faibles
autour de ’angle d’incidence i=10°.

Pour Vi= 35 m/s, on peut réduire 'angle de calage des pales de 6°. Et pour V1= 65 m/s on peut
augmenter cet angle de calage de 5,5°

Vi 35 m/s 65 m/s
r Im 1,61 m Im 1,61 m
0 30° 21° 4] 5° 32 5°
=Arct ( 4! ) 19° 12° 32,6° 21,7°
Br=Aretg (15158, ’ ’
Incidence i = 6 — [, 11° 9° 8,96° 10,8°

A ces angles d’incidence i correspondent des valeurs des C:voisines de 0,85.
3
Nous avons : w, = UV, avec U=10158r

1l faut expliciter le terme V2u. Pour cela nous disposons des deux relations suivantes :

1
2tV

W, =—2% W, = V2+(U—V2—U>2 2
o] Czl oo 1 2

En regroupant ces deux termes élevés au carré nous obtenons :

4t2 2

VZU
=i+ (v-3)

C’est-a-dire une équation du second degréenV,, :

4t 1
z

Pour simplifier les écritures posons :

42 1
A=< ——) et C=VE+U?

C2l12 4
Soit : AV + UV, —C =0 qui admet comme racines V,,, = _UiZU—AHAC . Seule la racine

positive a une signification compatible avec le probleme.
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Vi 35 m/s 65 m/s
r Im 1,61 m Im 1,61 m
t=0628r 0,628 0,272 0,628 0,272
A= (;‘;2 - %) 10,94 76,33 10,94 76,33
U=101,58r 101,58 | 16354 | 101,58 | 16354
C=V2+U? 115435 | 279703 | 115435 | 27970,3
¥y, = “LYTHC 28,2 18 32,1 19,1
W, = UV 28645 | 29437 | 32607 | 31236
Hu en m dair 292 300 3324 3184
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